1 /* Generic dominator tree walker
2    Copyright (C) 2003-2018 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "cfganal.h"
26 #include "domwalk.h"
27 #include "dumpfile.h"
28 
29 /* This file implements a generic walker for dominator trees.
30 
31   To understand the dominator walker one must first have a grasp of dominators,
32   immediate dominators and the dominator tree.
33 
34   Dominators
35     A block B1 is said to dominate B2 if every path from the entry to B2 must
36     pass through B1.  Given the dominance relationship, we can proceed to
37     compute immediate dominators.  Note it is not important whether or not
38     our definition allows a block to dominate itself.
39 
40   Immediate Dominators:
41     Every block in the CFG has no more than one immediate dominator.  The
42     immediate dominator of block BB must dominate BB and must not dominate
43     any other dominator of BB and must not be BB itself.
44 
45   Dominator tree:
46     If we then construct a tree where each node is a basic block and there
47     is an edge from each block's immediate dominator to the block itself, then
48     we have a dominator tree.
49 
50 
51   [ Note this walker can also walk the post-dominator tree, which is
52     defined in a similar manner.  i.e., block B1 is said to post-dominate
53     block B2 if all paths from B2 to the exit block must pass through
54     B1.  ]
55 
56   For example, given the CFG
57 
58                    1
59                    |
60                    2
61                   / \
62                  3   4
63                     / \
64        +---------->5   6
65        |          / \ /
66        |    +--->8   7
67        |    |   /    |
68        |    +--9    11
69        |      /      |
70        +--- 10 ---> 12
71 
72 
73   We have a dominator tree which looks like
74 
75                    1
76                    |
77                    2
78                   / \
79                  /   \
80                 3     4
81                    / / \ \
82                    | | | |
83                    5 6 7 12
84                    |   |
85                    8   11
86                    |
87                    9
88                    |
89                   10
90 
91 
92 
93   The dominator tree is the basis for a number of analysis, transformation
94   and optimization algorithms that operate on a semi-global basis.
95 
96   The dominator walker is a generic routine which visits blocks in the CFG
97   via a depth first search of the dominator tree.  In the example above
98   the dominator walker might visit blocks in the following order
99   1, 2, 3, 4, 5, 8, 9, 10, 6, 7, 11, 12.
100 
101   The dominator walker has a number of callbacks to perform actions
102   during the walk of the dominator tree.  There are two callbacks
103   which walk statements, one before visiting the dominator children,
104   one after visiting the dominator children.  There is a callback
105   before and after each statement walk callback.  In addition, the
106   dominator walker manages allocation/deallocation of data structures
107   which are local to each block visited.
108 
109   The dominator walker is meant to provide a generic means to build a pass
110   which can analyze or transform/optimize a function based on walking
111   the dominator tree.  One simply fills in the dominator walker data
112   structure with the appropriate callbacks and calls the walker.
113 
114   We currently use the dominator walker to prune the set of variables
115   which might need PHI nodes (which can greatly improve compile-time
116   performance in some cases).
117 
118   We also use the dominator walker to rewrite the function into SSA form
119   which reduces code duplication since the rewriting phase is inherently
120   a walk of the dominator tree.
121 
122   And (of course), we use the dominator walker to drive our dominator
123   optimizer, which is a semi-global optimizer.
124 
125   TODO:
126 
127     Walking statements is based on the block statement iterator abstraction,
128     which is currently an abstraction over walking tree statements.  Thus
129     the dominator walker is currently only useful for trees.  */
130 
131 /* Reverse postorder index of each basic block.  */
132 static int *bb_postorder;
133 
134 static int
cmp_bb_postorder(const void * a,const void * b)135 cmp_bb_postorder (const void *a, const void *b)
136 {
137   basic_block bb1 = *(const basic_block *)(a);
138   basic_block bb2 = *(const basic_block *)(b);
139   /* Place higher completion number first (pop off lower number first).  */
140   return bb_postorder[bb2->index] - bb_postorder[bb1->index];
141 }
142 
143 /* Permute array BBS of N basic blocks in postorder,
144    i.e. by descending number in BB_POSTORDER array.  */
145 
146 static void
sort_bbs_postorder(basic_block * bbs,int n)147 sort_bbs_postorder (basic_block *bbs, int n)
148 {
149   if (__builtin_expect (n == 2, true))
150     {
151       basic_block bb0 = bbs[0], bb1 = bbs[1];
152       if (bb_postorder[bb0->index] < bb_postorder[bb1->index])
153 	bbs[0] = bb1, bbs[1] = bb0;
154     }
155   else if (__builtin_expect (n == 3, true))
156     {
157       basic_block bb0 = bbs[0], bb1 = bbs[1], bb2 = bbs[2];
158       if (bb_postorder[bb0->index] < bb_postorder[bb1->index])
159 	std::swap (bb0, bb1);
160       if (bb_postorder[bb1->index] < bb_postorder[bb2->index])
161 	{
162 	  std::swap (bb1, bb2);
163 	  if (bb_postorder[bb0->index] < bb_postorder[bb1->index])
164 	    std::swap (bb0, bb1);
165 	}
166       bbs[0] = bb0, bbs[1] = bb1, bbs[2] = bb2;
167     }
168   else
169     qsort (bbs, n, sizeof *bbs, cmp_bb_postorder);
170 }
171 
172 /* Set EDGE_EXECUTABLE on every edge within FN's CFG.  */
173 
174 void
set_all_edges_as_executable(function * fn)175 set_all_edges_as_executable (function *fn)
176 {
177   basic_block bb;
178   FOR_ALL_BB_FN (bb, fn)
179     {
180       edge_iterator ei;
181       edge e;
182       FOR_EACH_EDGE (e, ei, bb->succs)
183 	e->flags |= EDGE_EXECUTABLE;
184     }
185 }
186 
187 /* Constructor for a dom walker.  */
188 
dom_walker(cdi_direction direction,enum reachability reachability,int * bb_index_to_rpo)189 dom_walker::dom_walker (cdi_direction direction,
190 			enum reachability reachability,
191 			int *bb_index_to_rpo)
192   : m_dom_direction (direction),
193     m_skip_unreachable_blocks (reachability != ALL_BLOCKS),
194     m_user_bb_to_rpo (true),
195     m_unreachable_dom (NULL),
196     m_bb_to_rpo (bb_index_to_rpo)
197 {
198   /* Set up edge flags if need be.  */
199   switch (reachability)
200     {
201     default:
202       gcc_unreachable ();
203     case ALL_BLOCKS:
204       /* No need to touch edge flags.  */
205       break;
206 
207     case REACHABLE_BLOCKS:
208       set_all_edges_as_executable (cfun);
209       break;
210 
211     case REACHABLE_BLOCKS_PRESERVING_FLAGS:
212       /* Preserve the edge flags.  */
213       break;
214     }
215 }
216 
217 /* Constructor for a dom walker.  */
218 
dom_walker(cdi_direction direction,enum reachability reachability)219 dom_walker::dom_walker (cdi_direction direction,
220 			enum reachability reachability)
221   : m_dom_direction (direction),
222     m_skip_unreachable_blocks (reachability != ALL_BLOCKS),
223     m_user_bb_to_rpo (false),
224     m_unreachable_dom (NULL),
225     m_bb_to_rpo (NULL)
226 {
227   /* Compute the basic-block index to RPO mapping.  */
228   if (direction == CDI_DOMINATORS)
229     {
230       int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
231       int postorder_num = pre_and_rev_post_order_compute (NULL, postorder,
232 							  true);
233       m_bb_to_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
234       for (int i = 0; i < postorder_num; ++i)
235 	m_bb_to_rpo[postorder[i]] = i;
236       free (postorder);
237     }
238 
239   /* Set up edge flags if need be.  */
240   switch (reachability)
241     {
242     default:
243       gcc_unreachable ();
244     case ALL_BLOCKS:
245       /* No need to touch edge flags.  */
246       break;
247 
248     case REACHABLE_BLOCKS:
249       set_all_edges_as_executable (cfun);
250       break;
251 
252     case REACHABLE_BLOCKS_PRESERVING_FLAGS:
253       /* Preserve the edge flags.  */
254       break;
255     }
256 }
257 
258 /* Destructor.  */
259 
~dom_walker()260 dom_walker::~dom_walker ()
261 {
262   if (! m_user_bb_to_rpo)
263     free (m_bb_to_rpo);
264 }
265 
266 /* Return TRUE if BB is reachable, false otherwise.  */
267 
268 bool
bb_reachable(struct function * fun,basic_block bb)269 dom_walker::bb_reachable (struct function *fun, basic_block bb)
270 {
271   /* If we're not skipping unreachable blocks, then assume everything
272      is reachable.  */
273   if (!m_skip_unreachable_blocks)
274     return true;
275 
276   /* If any of the predecessor edges that do not come from blocks dominated
277      by us are still marked as possibly executable consider this block
278      reachable.  */
279   bool reachable = false;
280   if (!m_unreachable_dom)
281     {
282       reachable = bb == ENTRY_BLOCK_PTR_FOR_FN (fun);
283       edge_iterator ei;
284       edge e;
285       FOR_EACH_EDGE (e, ei, bb->preds)
286 	if (!dominated_by_p (CDI_DOMINATORS, e->src, bb))
287 	  reachable |= (e->flags & EDGE_EXECUTABLE);
288     }
289 
290   return reachable;
291 }
292 
293 /* BB has been determined to be unreachable.  Propagate that property
294    to incoming and outgoing edges of BB as appropriate.  */
295 
296 void
propagate_unreachable_to_edges(basic_block bb,FILE * dump_file,dump_flags_t dump_flags)297 dom_walker::propagate_unreachable_to_edges (basic_block bb,
298 					    FILE *dump_file,
299 					    dump_flags_t dump_flags)
300 {
301   if (dump_file && (dump_flags & TDF_DETAILS))
302     fprintf (dump_file, "Marking all outgoing edges of unreachable "
303 	     "BB %d as not executable\n", bb->index);
304 
305   edge_iterator ei;
306   edge e;
307   FOR_EACH_EDGE (e, ei, bb->succs)
308     e->flags &= ~EDGE_EXECUTABLE;
309 
310   FOR_EACH_EDGE (e, ei, bb->preds)
311     {
312       if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
313 	{
314 	  if (dump_file && (dump_flags & TDF_DETAILS))
315 	    fprintf (dump_file, "Marking backedge from BB %d into "
316 		     "unreachable BB %d as not executable\n",
317 		     e->src->index, bb->index);
318 	  e->flags &= ~EDGE_EXECUTABLE;
319 	}
320     }
321 
322   if (!m_unreachable_dom)
323     m_unreachable_dom = bb;
324 }
325 
326 const edge dom_walker::STOP = (edge)-1;
327 
328 /* Recursively walk the dominator tree.
329    BB is the basic block we are currently visiting.  */
330 
331 void
walk(basic_block bb)332 dom_walker::walk (basic_block bb)
333 {
334   basic_block dest;
335   basic_block *worklist = XNEWVEC (basic_block,
336 				   n_basic_blocks_for_fn (cfun) * 2);
337   int sp = 0;
338   bb_postorder = m_bb_to_rpo;
339 
340   while (true)
341     {
342       /* Don't worry about unreachable blocks.  */
343       if (EDGE_COUNT (bb->preds) > 0
344 	  || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
345 	  || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
346 	{
347 	  edge taken_edge = NULL;
348 
349 	  /* Callback for subclasses to do custom things before we have walked
350 	     the dominator children, but before we walk statements.  */
351 	  if (this->bb_reachable (cfun, bb))
352 	    {
353 	      taken_edge = before_dom_children (bb);
354 	      if (taken_edge && taken_edge != STOP)
355 		{
356 		  edge_iterator ei;
357 		  edge e;
358 		  FOR_EACH_EDGE (e, ei, bb->succs)
359 		    if (e != taken_edge)
360 		      e->flags &= ~EDGE_EXECUTABLE;
361 		}
362 	    }
363 	  else
364 	    propagate_unreachable_to_edges (bb, dump_file, dump_flags);
365 
366 	  /* Mark the current BB to be popped out of the recursion stack
367 	     once children are processed.  */
368 	  worklist[sp++] = bb;
369 	  worklist[sp++] = NULL;
370 
371 	  /* If the callback returned NONE then we are supposed to
372 	     stop and not even propagate EDGE_EXECUTABLE further.  */
373 	  if (taken_edge != STOP)
374 	    {
375 	      int saved_sp = sp;
376 	      for (dest = first_dom_son (m_dom_direction, bb);
377 		   dest; dest = next_dom_son (m_dom_direction, dest))
378 		worklist[sp++] = dest;
379 	      /* Sort worklist after RPO order if requested.  */
380 	      if (sp - saved_sp > 1
381 		  && m_dom_direction == CDI_DOMINATORS
382 		  && m_bb_to_rpo)
383 		sort_bbs_postorder (&worklist[saved_sp], sp - saved_sp);
384 	    }
385 	}
386       /* NULL is used to mark pop operations in the recursion stack.  */
387       while (sp > 0 && !worklist[sp - 1])
388 	{
389 	  --sp;
390 	  bb = worklist[--sp];
391 
392 	  /* Callback allowing subclasses to do custom things after we have
393 	     walked dominator children, but before we walk statements.  */
394 	  if (bb_reachable (cfun, bb))
395 	    after_dom_children (bb);
396 	  else if (m_unreachable_dom == bb)
397 	    m_unreachable_dom = NULL;
398 	}
399       if (sp)
400 	bb = worklist[--sp];
401       else
402 	break;
403     }
404   bb_postorder = NULL;
405   free (worklist);
406 }
407