1 /* Profile counter container type.
2    Copyright (C) 2017-2018 Free Software Foundation, Inc.
3    Contributed by Jan Hubicka
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_PROFILE_COUNT_H
22 #define GCC_PROFILE_COUNT_H
23 
24 struct function;
25 class profile_count;
26 
27 /* Quality of the profile count.  Because gengtype does not support enums
28    inside of classes, this is in global namespace.  */
29 enum profile_quality {
30   /* Uninitialized value.  */
31   profile_uninitialized,
32   /* Profile is based on static branch prediction heuristics and may
33      or may not match reality.  It is local to function and can not be compared
34      inter-procedurally.  Never used by probabilities (they are always local).
35    */
36   profile_guessed_local,
37   /* Profile was read by feedback and was 0, we used local heuristics to guess
38      better.  This is the case of functions not run in profile fedback.
39      Never used by probabilities.  */
40   profile_guessed_global0,
41 
42   /* Same as profile_guessed_global0 but global count is adjusted 0.  */
43   profile_guessed_global0adjusted,
44 
45   /* Profile is based on static branch prediction heuristics.  It may or may
46      not reflect the reality but it can be compared interprocedurally
47      (for example, we inlined function w/o profile feedback into function
48       with feedback and propagated from that).
49      Never used by probablities.  */
50   profile_guessed,
51   /* Profile was determined by autofdo.  */
52   profile_afdo,
53   /* Profile was originally based on feedback but it was adjusted
54      by code duplicating optimization.  It may not precisely reflect the
55      particular code path.  */
56   profile_adjusted,
57   /* Profile was read from profile feedback or determined by accurate static
58      method.  */
59   profile_precise
60 };
61 
62 /* The base value for branch probability notes and edge probabilities.  */
63 #define REG_BR_PROB_BASE  10000
64 
65 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
66 
67 bool slow_safe_scale_64bit (uint64_t a, uint64_t b, uint64_t c, uint64_t *res);
68 
69 /* Compute RES=(a*b + c/2)/c capping and return false if overflow happened.  */
70 
71 inline bool
safe_scale_64bit(uint64_t a,uint64_t b,uint64_t c,uint64_t * res)72 safe_scale_64bit (uint64_t a, uint64_t b, uint64_t c, uint64_t *res)
73 {
74 #if (GCC_VERSION >= 5000)
75   uint64_t tmp;
76   if (!__builtin_mul_overflow (a, b, &tmp)
77       && !__builtin_add_overflow (tmp, c/2, &tmp))
78     {
79       *res = tmp / c;
80       return true;
81     }
82   if (c == 1)
83     {
84       *res = (uint64_t) -1;
85       return false;
86     }
87 #else
88   if (a < ((uint64_t)1 << 31)
89       && b < ((uint64_t)1 << 31)
90       && c < ((uint64_t)1 << 31))
91     {
92       *res = (a * b + (c / 2)) / c;
93       return true;
94     }
95 #endif
96   return slow_safe_scale_64bit (a, b, c, res);
97 }
98 
99 /* Data type to hold probabilities.  It implements fixed point arithmetics
100    with capping so probability is always in range [0,1] and scaling requiring
101    values greater than 1 needs to be represented otherwise.
102 
103    In addition to actual value the quality of profile is tracked and propagated
104    through all operations.  Special value UNINITIALIZED is used for probabilities
105    that has not been determined yet (for example bacause of
106    -fno-guess-branch-probability)
107 
108    Typically probabilities are derived from profile feedback (via
109    probability_in_gcov_type), autoFDO or guessed statically and then propagated
110    thorough the compilation.
111 
112    Named probabilities are available:
113      - never           (0 probability)
114      - guessed_never
115      - very_unlikely   (1/2000 probability)
116      - unlikely        (1/5 probablity)
117      - even            (1/2 probability)
118      - likely          (4/5 probability)
119      - very_likely     (1999/2000 probability)
120      - guessed_always
121      - always
122 
123    Named probabilities except for never/always are assumed to be statically
124    guessed and thus not necessarily accurate.  The difference between never
125    and guessed_never is that the first one should be used only in case that
126    well behaving program will very likely not execute the "never" path.
127    For example if the path is going to abort () call or it exception handling.
128 
129    Always and guessed_always probabilities are symmetric.
130 
131    For legacy code we support conversion to/from REG_BR_PROB_BASE based fixpoint
132    integer arithmetics. Once the code is converted to branch probabilities,
133    these conversions will probably go away because they are lossy.
134 */
135 
class(user)136 class GTY((user)) profile_probability
137 {
138   static const int n_bits = 29;
139   /* We can technically use ((uint32_t) 1 << (n_bits - 1)) - 2 but that
140      will lead to harder multiplication sequences.  */
141   static const uint32_t max_probability = (uint32_t) 1 << (n_bits - 2);
142   static const uint32_t uninitialized_probability
143 		 = ((uint32_t) 1 << (n_bits - 1)) - 1;
144 
145   uint32_t m_val : 29;
146   enum profile_quality m_quality : 3;
147 
148   friend class profile_count;
149 public:
150 
151   /* Named probabilities.  */
152   static profile_probability never ()
153     {
154       profile_probability ret;
155       ret.m_val = 0;
156       ret.m_quality = profile_precise;
157       return ret;
158     }
159   static profile_probability guessed_never ()
160     {
161       profile_probability ret;
162       ret.m_val = 0;
163       ret.m_quality = profile_guessed;
164       return ret;
165     }
166   static profile_probability very_unlikely ()
167     {
168       /* Be consistent with PROB_VERY_UNLIKELY in predict.h.  */
169       profile_probability r
170 	 = profile_probability::guessed_always ().apply_scale (1, 2000);
171       r.m_val--;
172       return r;
173     }
174   static profile_probability unlikely ()
175     {
176       /* Be consistent with PROB_VERY_LIKELY in predict.h.  */
177       profile_probability r
178 	 = profile_probability::guessed_always ().apply_scale (1, 5);
179       r.m_val--;
180       return r;
181     }
182   static profile_probability even ()
183     {
184       return profile_probability::guessed_always ().apply_scale (1, 2);
185     }
186   static profile_probability very_likely ()
187     {
188       return profile_probability::always () - very_unlikely ();
189     }
190   static profile_probability likely ()
191     {
192       return profile_probability::always () - unlikely ();
193     }
194   static profile_probability guessed_always ()
195     {
196       profile_probability ret;
197       ret.m_val = max_probability;
198       ret.m_quality = profile_guessed;
199       return ret;
200     }
201   static profile_probability always ()
202     {
203       profile_probability ret;
204       ret.m_val = max_probability;
205       ret.m_quality = profile_precise;
206       return ret;
207     }
208   /* Probabilities which has not been initialized. Either because
209      initialization did not happen yet or because profile is unknown.  */
210   static profile_probability uninitialized ()
211     {
212       profile_probability c;
213       c.m_val = uninitialized_probability;
214       c.m_quality = profile_guessed;
215       return c;
216     }
217 
218 
219   /* Return true if value has been initialized.  */
220   bool initialized_p () const
221     {
222       return m_val != uninitialized_probability;
223     }
224   /* Return true if value can be trusted.  */
225   bool reliable_p () const
226     {
227       return m_quality >= profile_adjusted;
228     }
229 
230   /* Conversion from and to REG_BR_PROB_BASE integer fixpoint arithmetics.
231      this is mostly to support legacy code and should go away.  */
232   static profile_probability from_reg_br_prob_base (int v)
233     {
234       profile_probability ret;
235       gcc_checking_assert (v >= 0 && v <= REG_BR_PROB_BASE);
236       ret.m_val = RDIV (v * (uint64_t) max_probability, REG_BR_PROB_BASE);
237       ret.m_quality = profile_guessed;
238       return ret;
239     }
240   int to_reg_br_prob_base () const
241     {
242       gcc_checking_assert (initialized_p ());
243       return RDIV (m_val * (uint64_t) REG_BR_PROB_BASE, max_probability);
244     }
245 
246   /* Conversion to and from RTL representation of profile probabilities.  */
247   static profile_probability from_reg_br_prob_note (int v)
248     {
249       profile_probability ret;
250       ret.m_val = ((unsigned int)v) / 8;
251       ret.m_quality = (enum profile_quality)(v & 7);
252       return ret;
253     }
254   int to_reg_br_prob_note () const
255     {
256       gcc_checking_assert (initialized_p ());
257       int ret = m_val * 8 + m_quality;
258       gcc_checking_assert (profile_probability::from_reg_br_prob_note (ret)
259 			   == *this);
260       return ret;
261     }
262 
263   /* Return VAL1/VAL2.  */
264   static profile_probability probability_in_gcov_type
265 				 (gcov_type val1, gcov_type val2)
266     {
267       profile_probability ret;
268       gcc_checking_assert (val1 >= 0 && val2 > 0);
269       if (val1 > val2)
270 	ret.m_val = max_probability;
271       else
272 	{
273 	  uint64_t tmp;
274 	  safe_scale_64bit (val1, max_probability, val2, &tmp);
275 	  gcc_checking_assert (tmp <= max_probability);
276 	  ret.m_val = tmp;
277 	}
278       ret.m_quality = profile_precise;
279       return ret;
280     }
281 
282   /* Basic operations.  */
283   bool operator== (const profile_probability &other) const
284     {
285       return m_val == other.m_val && m_quality == other.m_quality;
286     }
287   profile_probability operator+ (const profile_probability &other) const
288     {
289       if (other == profile_probability::never ())
290 	return *this;
291       if (*this == profile_probability::never ())
292 	return other;
293       if (!initialized_p () || !other.initialized_p ())
294 	return profile_probability::uninitialized ();
295 
296       profile_probability ret;
297       ret.m_val = MIN ((uint32_t)(m_val + other.m_val), max_probability);
298       ret.m_quality = MIN (m_quality, other.m_quality);
299       return ret;
300     }
301   profile_probability &operator+= (const profile_probability &other)
302     {
303       if (other == profile_probability::never ())
304 	return *this;
305       if (*this == profile_probability::never ())
306 	{
307 	  *this = other;
308 	  return *this;
309 	}
310       if (!initialized_p () || !other.initialized_p ())
311 	return *this = profile_probability::uninitialized ();
312       else
313 	{
314 	  m_val = MIN ((uint32_t)(m_val + other.m_val), max_probability);
315 	  m_quality = MIN (m_quality, other.m_quality);
316 	}
317       return *this;
318     }
319   profile_probability operator- (const profile_probability &other) const
320     {
321       if (*this == profile_probability::never ()
322 	  || other == profile_probability::never ())
323 	return *this;
324       if (!initialized_p () || !other.initialized_p ())
325 	return profile_probability::uninitialized ();
326       profile_probability ret;
327       ret.m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
328       ret.m_quality = MIN (m_quality, other.m_quality);
329       return ret;
330     }
331   profile_probability &operator-= (const profile_probability &other)
332     {
333       if (*this == profile_probability::never ()
334 	  || other == profile_probability::never ())
335 	return *this;
336       if (!initialized_p () || !other.initialized_p ())
337 	return *this = profile_probability::uninitialized ();
338       else
339 	{
340 	  m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
341 	  m_quality = MIN (m_quality, other.m_quality);
342 	}
343       return *this;
344     }
345   profile_probability operator* (const profile_probability &other) const
346     {
347       if (*this == profile_probability::never ()
348 	  || other == profile_probability::never ())
349 	return profile_probability::never ();
350       if (!initialized_p () || !other.initialized_p ())
351 	return profile_probability::uninitialized ();
352       profile_probability ret;
353       ret.m_val = RDIV ((uint64_t)m_val * other.m_val, max_probability);
354       ret.m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
355       return ret;
356     }
357   profile_probability &operator*= (const profile_probability &other)
358     {
359       if (*this == profile_probability::never ()
360 	  || other == profile_probability::never ())
361 	return *this = profile_probability::never ();
362       if (!initialized_p () || !other.initialized_p ())
363 	return *this = profile_probability::uninitialized ();
364       else
365 	{
366 	  m_val = RDIV ((uint64_t)m_val * other.m_val, max_probability);
367 	  m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
368 	}
369       return *this;
370     }
371   profile_probability operator/ (const profile_probability &other) const
372     {
373       if (*this == profile_probability::never ())
374 	return profile_probability::never ();
375       if (!initialized_p () || !other.initialized_p ())
376 	return profile_probability::uninitialized ();
377       profile_probability ret;
378       /* If we get probability above 1, mark it as unreliable and return 1. */
379       if (m_val >= other.m_val)
380 	{
381 	  ret.m_val = max_probability;
382           ret.m_quality = MIN (MIN (m_quality, other.m_quality),
383 			       profile_guessed);
384 	  return ret;
385 	}
386       else if (!m_val)
387 	ret.m_val = 0;
388       else
389 	{
390 	  gcc_checking_assert (other.m_val);
391 	  ret.m_val = MIN (RDIV ((uint64_t)m_val * max_probability,
392 				 other.m_val),
393 			   max_probability);
394 	}
395       ret.m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
396       return ret;
397     }
398   profile_probability &operator/= (const profile_probability &other)
399     {
400       if (*this == profile_probability::never ())
401 	return *this = profile_probability::never ();
402       if (!initialized_p () || !other.initialized_p ())
403 	return *this = profile_probability::uninitialized ();
404       else
405 	{
406           /* If we get probability above 1, mark it as unreliable
407 	     and return 1. */
408 	  if (m_val > other.m_val)
409 	    {
410 	      m_val = max_probability;
411               m_quality = MIN (MIN (m_quality, other.m_quality),
412 			       profile_guessed);
413 	      return *this;
414 	    }
415 	  else if (!m_val)
416 	    ;
417 	  else
418 	    {
419 	      gcc_checking_assert (other.m_val);
420 	      m_val = MIN (RDIV ((uint64_t)m_val * max_probability,
421 				 other.m_val),
422 			   max_probability);
423 	    }
424 	  m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
425 	}
426       return *this;
427     }
428 
429   /* Split *THIS (ORIG) probability into 2 probabilities, such that
430      the returned one (FIRST) is *THIS * CPROB and *THIS is
431      adjusted (SECOND) so that FIRST + FIRST.invert () * SECOND
432      == ORIG.  This is useful e.g. when splitting a conditional
433      branch like:
434      if (cond)
435        goto lab; // ORIG probability
436      into
437      if (cond1)
438        goto lab; // FIRST = ORIG * CPROB probability
439      if (cond2)
440        goto lab; // SECOND probability
441      such that the overall probability of jumping to lab remains
442      the same.  CPROB gives the relative probability between the
443      branches.  */
444   profile_probability split (const profile_probability &cprob)
445     {
446       profile_probability ret = *this * cprob;
447       /* The following is equivalent to:
448          *this = cprob.invert () * *this / ret.invert ();  */
449       *this = (*this - ret) / ret.invert ();
450       return ret;
451     }
452 
453   gcov_type apply (gcov_type val) const
454     {
455       if (*this == profile_probability::uninitialized ())
456 	return val / 2;
457       return RDIV (val * m_val, max_probability);
458     }
459 
460   /* Return 1-*THIS.  */
461   profile_probability invert () const
462     {
463       return profile_probability::always() - *this;
464     }
465 
466   /* Return THIS with quality dropped to GUESSED.  */
467   profile_probability guessed () const
468     {
469       profile_probability ret = *this;
470       ret.m_quality = profile_guessed;
471       return ret;
472     }
473 
474   /* Return THIS with quality dropped to AFDO.  */
475   profile_probability afdo () const
476     {
477       profile_probability ret = *this;
478       ret.m_quality = profile_afdo;
479       return ret;
480     }
481 
482   /* Return *THIS * NUM / DEN.  */
483   profile_probability apply_scale (int64_t num, int64_t den) const
484     {
485       if (*this == profile_probability::never ())
486 	return *this;
487       if (!initialized_p ())
488 	return profile_probability::uninitialized ();
489       profile_probability ret;
490       uint64_t tmp;
491       safe_scale_64bit (m_val, num, den, &tmp);
492       ret.m_val = MIN (tmp, max_probability);
493       ret.m_quality = MIN (m_quality, profile_adjusted);
494       return ret;
495     }
496 
497   /* Return true when the probability of edge is reliable.
498 
499      The profile guessing code is good at predicting branch outcome (ie.
500      taken/not taken), that is predicted right slightly over 75% of time.
501      It is however notoriously poor on predicting the probability itself.
502      In general the profile appear a lot flatter (with probabilities closer
503      to 50%) than the reality so it is bad idea to use it to drive optimization
504      such as those disabling dynamic branch prediction for well predictable
505      branches.
506 
507      There are two exceptions - edges leading to noreturn edges and edges
508      predicted by number of iterations heuristics are predicted well.  This macro
509      should be able to distinguish those, but at the moment it simply check for
510      noreturn heuristic that is only one giving probability over 99% or bellow
511      1%.  In future we might want to propagate reliability information across the
512      CFG if we find this information useful on multiple places.   */
513 
514   bool probably_reliable_p () const
515     {
516       if (m_quality >= profile_adjusted)
517 	return true;
518       if (!initialized_p ())
519 	return false;
520       return m_val < max_probability / 100
521 	     || m_val > max_probability - max_probability / 100;
522     }
523 
524   /* Return false if profile_probability is bogus.  */
525   bool verify () const
526     {
527       gcc_checking_assert (m_quality != profile_uninitialized);
528       if (m_val == uninitialized_probability)
529 	return m_quality == profile_guessed;
530       else if (m_quality < profile_guessed)
531 	return false;
532       return m_val <= max_probability;
533     }
534 
535   /* Comparsions are three-state and conservative.  False is returned if
536      the inequality can not be decided.  */
537   bool operator< (const profile_probability &other) const
538     {
539       return initialized_p () && other.initialized_p () && m_val < other.m_val;
540     }
541   bool operator> (const profile_probability &other) const
542     {
543       return initialized_p () && other.initialized_p () && m_val > other.m_val;
544     }
545 
546   bool operator<= (const profile_probability &other) const
547     {
548       return initialized_p () && other.initialized_p () && m_val <= other.m_val;
549     }
550   bool operator>= (const profile_probability &other) const
551     {
552       return initialized_p () && other.initialized_p () && m_val >= other.m_val;
553     }
554 
555   /* Output THIS to F.  */
556   void dump (FILE *f) const;
557 
558   /* Print THIS to stderr.  */
559   void debug () const;
560 
561   /* Return true if THIS is known to differ significantly from OTHER.  */
562   bool differs_from_p (profile_probability other) const;
563   /* Return if difference is greater than 50%.  */
564   bool differs_lot_from_p (profile_probability other) const;
565   /* COUNT1 times event happens with *THIS probability, COUNT2 times OTHER
566      happens with COUNT2 probablity. Return probablity that either *THIS or
567      OTHER happens.  */
568   profile_probability combine_with_count (profile_count count1,
569 					  profile_probability other,
570 					  profile_count count2) const;
571 
572   /* LTO streaming support.  */
573   static profile_probability stream_in (struct lto_input_block *);
574   void stream_out (struct output_block *);
575   void stream_out (struct lto_output_stream *);
576 };
577 
578 /* Main data type to hold profile counters in GCC. Profile counts originate
579    either from profile feedback, static profile estimation or both.  We do not
580    perform whole program profile propagation and thus profile estimation
581    counters are often local to function, while counters from profile feedback
582    (or special cases of profile estimation) can be used inter-procedurally.
583 
584    There are 3 basic types
585      1) local counters which are result of intra-procedural static profile
586         estimation.
587      2) ipa counters which are result of profile feedback or special case
588         of static profile estimation (such as in function main).
589      3) counters which counts as 0 inter-procedurally (beause given function
590         was never run in train feedback) but they hold local static profile
591         estimate.
592 
593    Counters of type 1 and 3 can not be mixed with counters of different type
594    within operation (because whole function should use one type of counter)
595    with exception that global zero mix in most operations where outcome is
596    well defined.
597 
598    To take local counter and use it inter-procedurally use ipa member function
599    which strips information irelevant at the inter-procedural level.
600 
601    Counters are 61bit integers representing number of executions during the
602    train run or normalized frequency within the function.
603 
604    As the profile is maintained during the compilation, many adjustments are
605    made.  Not all transformations can be made precisely, most importantly
606    when code is being duplicated.  It also may happen that part of CFG has
607    profile counts known while other do not - for example when LTO optimizing
608    partly profiled program or when profile was lost due to COMDAT merging.
609 
610    For this reason profile_count tracks more information than
611    just unsigned integer and it is also ready for profile mismatches.
612    The API of this data type represent operations that are natural
613    on profile counts - sum, difference and operation with scales and
614    probabilities.  All operations are safe by never getting negative counts
615    and they do end up in uninitialized scale if any of the parameters is
616    uninitialized.
617 
618    All comparsions that are three state and handling of probabilities.  Thus
619    a < b is not equal to !(a >= b).
620 
621    The following pre-defined counts are available:
622 
623    profile_count::zero ()  for code that is known to execute zero times at
624       runtime (this can be detected statically i.e. for paths leading to
625       abort ();
626    profile_count::one () for code that is known to execute once (such as
627       main () function
628    profile_count::uninitialized ()  for unknown execution count.
629 
630  */
631 
632 class sreal;
633 
class()634 class GTY(()) profile_count
635 {
636 public:
637   /* Use 62bit to hold basic block counters.  Should be at least
638      64bit.  Although a counter cannot be negative, we use a signed
639      type to hold various extra stages.  */
640 
641   static const int n_bits = 61;
642 private:
643   static const uint64_t max_count = ((uint64_t) 1 << n_bits) - 2;
644   static const uint64_t uninitialized_count = ((uint64_t) 1 << n_bits) - 1;
645 
646 #if defined (__arm__) && (__GNUC__ >= 6 && __GNUC__ <= 8)
647   /* Work-around for PR88469.  A bug in the gcc-6/7/8 PCS layout code
648      incorrectly detects the alignment of a structure where the only
649      64-bit aligned object is a bit-field.  We force the alignment of
650      the entire field to mitigate this.  */
651 #define UINT64_BIT_FIELD_ALIGN __attribute__ ((aligned(8)))
652 #else
653 #define UINT64_BIT_FIELD_ALIGN
654 #endif
655   uint64_t UINT64_BIT_FIELD_ALIGN m_val : n_bits;
656 #undef UINT64_BIT_FIELD_ALIGN
657   enum profile_quality m_quality : 3;
658 
659   /* Return true if both values can meaningfully appear in single function
660      body.  We have either all counters in function local or global, otherwise
661      operations between them are not really defined well.  */
662   bool compatible_p (const profile_count other) const
663     {
664       if (!initialized_p () || !other.initialized_p ())
665 	return true;
666       if (*this == profile_count::zero ()
667 	  || other == profile_count::zero ())
668 	return true;
669       return ipa_p () == other.ipa_p ();
670     }
671 public:
672 
673   /* Used for counters which are expected to be never executed.  */
674   static profile_count zero ()
675     {
676       return from_gcov_type (0);
677     }
678   static profile_count adjusted_zero ()
679     {
680       profile_count c;
681       c.m_val = 0;
682       c.m_quality = profile_adjusted;
683       return c;
684     }
685   static profile_count guessed_zero ()
686     {
687       profile_count c;
688       c.m_val = 0;
689       c.m_quality = profile_guessed;
690       return c;
691     }
692   static profile_count one ()
693     {
694       return from_gcov_type (1);
695     }
696   /* Value of counters which has not been initialized. Either because
697      initialization did not happen yet or because profile is unknown.  */
698   static profile_count uninitialized ()
699     {
700       profile_count c;
701       c.m_val = uninitialized_count;
702       c.m_quality = profile_guessed_local;
703       return c;
704     }
705 
706   /* Conversion to gcov_type is lossy.  */
707   gcov_type to_gcov_type () const
708     {
709       gcc_checking_assert (initialized_p ());
710       return m_val;
711     }
712 
713   /* Return true if value has been initialized.  */
714   bool initialized_p () const
715     {
716       return m_val != uninitialized_count;
717     }
718   /* Return true if value can be trusted.  */
719   bool reliable_p () const
720     {
721       return m_quality >= profile_adjusted;
722     }
723   /* Return true if vlaue can be operated inter-procedurally.  */
724   bool ipa_p () const
725     {
726       return !initialized_p () || m_quality >= profile_guessed_global0;
727     }
728   /* Return true if quality of profile is precise.  */
729   bool precise_p () const
730     {
731       return m_quality == profile_precise;
732     }
733 
734   /* When merging basic blocks, the two different profile counts are unified.
735      Return true if this can be done without losing info about profile.
736      The only case we care about here is when first BB contains something
737      that makes it terminate in a way not visible in CFG.  */
738   bool ok_for_merging (profile_count other) const
739     {
740       if (m_quality < profile_adjusted
741 	  || other.m_quality < profile_adjusted)
742 	return true;
743       return !(other < *this);
744     }
745 
746   /* When merging two BBs with different counts, pick common count that looks
747      most representative.  */
748   profile_count merge (profile_count other) const
749     {
750       if (*this == other || !other.initialized_p ()
751 	  || m_quality > other.m_quality)
752 	return *this;
753       if (other.m_quality > m_quality
754 	  || other > *this)
755 	return other;
756       return *this;
757     }
758 
759   /* Basic operations.  */
760   bool operator== (const profile_count &other) const
761     {
762       return m_val == other.m_val && m_quality == other.m_quality;
763     }
764   profile_count operator+ (const profile_count &other) const
765     {
766       if (other == profile_count::zero ())
767 	return *this;
768       if (*this == profile_count::zero ())
769 	return other;
770       if (!initialized_p () || !other.initialized_p ())
771 	return profile_count::uninitialized ();
772 
773       profile_count ret;
774       gcc_checking_assert (compatible_p (other));
775       ret.m_val = m_val + other.m_val;
776       ret.m_quality = MIN (m_quality, other.m_quality);
777       return ret;
778     }
779   profile_count &operator+= (const profile_count &other)
780     {
781       if (other == profile_count::zero ())
782 	return *this;
783       if (*this == profile_count::zero ())
784 	{
785 	  *this = other;
786 	  return *this;
787 	}
788       if (!initialized_p () || !other.initialized_p ())
789 	return *this = profile_count::uninitialized ();
790       else
791 	{
792           gcc_checking_assert (compatible_p (other));
793 	  m_val += other.m_val;
794 	  m_quality = MIN (m_quality, other.m_quality);
795 	}
796       return *this;
797     }
798   profile_count operator- (const profile_count &other) const
799     {
800       if (*this == profile_count::zero () || other == profile_count::zero ())
801 	return *this;
802       if (!initialized_p () || !other.initialized_p ())
803 	return profile_count::uninitialized ();
804       gcc_checking_assert (compatible_p (other));
805       profile_count ret;
806       ret.m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
807       ret.m_quality = MIN (m_quality, other.m_quality);
808       return ret;
809     }
810   profile_count &operator-= (const profile_count &other)
811     {
812       if (*this == profile_count::zero () || other == profile_count::zero ())
813 	return *this;
814       if (!initialized_p () || !other.initialized_p ())
815 	return *this = profile_count::uninitialized ();
816       else
817 	{
818           gcc_checking_assert (compatible_p (other));
819 	  m_val = m_val >= other.m_val ? m_val - other.m_val: 0;
820 	  m_quality = MIN (m_quality, other.m_quality);
821 	}
822       return *this;
823     }
824 
825   /* Return false if profile_count is bogus.  */
826   bool verify () const
827     {
828       gcc_checking_assert (m_quality != profile_uninitialized);
829       return m_val != uninitialized_count || m_quality == profile_guessed_local;
830     }
831 
832   /* Comparsions are three-state and conservative.  False is returned if
833      the inequality can not be decided.  */
834   bool operator< (const profile_count &other) const
835     {
836       if (!initialized_p () || !other.initialized_p ())
837 	return false;
838       if (*this == profile_count::zero ())
839 	return !(other == profile_count::zero ());
840       if (other == profile_count::zero ())
841 	return false;
842       gcc_checking_assert (compatible_p (other));
843       return m_val < other.m_val;
844     }
845   bool operator> (const profile_count &other) const
846     {
847       if (!initialized_p () || !other.initialized_p ())
848 	return false;
849       if (*this  == profile_count::zero ())
850 	return false;
851       if (other == profile_count::zero ())
852 	return !(*this == profile_count::zero ());
853       gcc_checking_assert (compatible_p (other));
854       return initialized_p () && other.initialized_p () && m_val > other.m_val;
855     }
856   bool operator< (const gcov_type other) const
857     {
858       gcc_checking_assert (ipa_p ());
859       gcc_checking_assert (other >= 0);
860       return initialized_p () && m_val < (uint64_t) other;
861     }
862   bool operator> (const gcov_type other) const
863     {
864       gcc_checking_assert (ipa_p ());
865       gcc_checking_assert (other >= 0);
866       return initialized_p () && m_val > (uint64_t) other;
867     }
868 
869   bool operator<= (const profile_count &other) const
870     {
871       if (!initialized_p () || !other.initialized_p ())
872 	return false;
873       if (*this == profile_count::zero ())
874 	return true;
875       if (other == profile_count::zero ())
876 	return (*this == profile_count::zero ());
877       gcc_checking_assert (compatible_p (other));
878       return m_val <= other.m_val;
879     }
880   bool operator>= (const profile_count &other) const
881     {
882       if (!initialized_p () || !other.initialized_p ())
883 	return false;
884       if (other == profile_count::zero ())
885 	return true;
886       if (*this == profile_count::zero ())
887 	return !(other == profile_count::zero ());
888       gcc_checking_assert (compatible_p (other));
889       return m_val >= other.m_val;
890     }
891   bool operator<= (const gcov_type other) const
892     {
893       gcc_checking_assert (ipa_p ());
894       gcc_checking_assert (other >= 0);
895       return initialized_p () && m_val <= (uint64_t) other;
896     }
897   bool operator>= (const gcov_type other) const
898     {
899       gcc_checking_assert (ipa_p ());
900       gcc_checking_assert (other >= 0);
901       return initialized_p () && m_val >= (uint64_t) other;
902     }
903   /* Return true when value is not zero and can be used for scaling.
904      This is different from *this > 0 because that requires counter to
905      be IPA.  */
906   bool nonzero_p () const
907     {
908       return initialized_p () && m_val != 0;
909     }
910 
911   /* Make counter forcingly nonzero.  */
912   profile_count force_nonzero () const
913     {
914       if (!initialized_p ())
915 	return *this;
916       profile_count ret = *this;
917       if (ret.m_val == 0)
918 	{
919 	  ret.m_val = 1;
920           ret.m_quality = MIN (m_quality, profile_adjusted);
921 	}
922       return ret;
923     }
924 
925   profile_count max (profile_count other) const
926     {
927       if (!initialized_p ())
928 	return other;
929       if (!other.initialized_p ())
930 	return *this;
931       if (*this == profile_count::zero ())
932 	return other;
933       if (other == profile_count::zero ())
934 	return *this;
935       gcc_checking_assert (compatible_p (other));
936       if (m_val < other.m_val || (m_val == other.m_val
937 				  && m_quality < other.m_quality))
938 	return other;
939       return *this;
940     }
941 
942   /* PROB is a probability in scale 0...REG_BR_PROB_BASE.  Scale counter
943      accordingly.  */
944   profile_count apply_probability (int prob) const
945     {
946       gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
947       if (m_val == 0)
948 	return *this;
949       if (!initialized_p ())
950 	return profile_count::uninitialized ();
951       profile_count ret;
952       ret.m_val = RDIV (m_val * prob, REG_BR_PROB_BASE);
953       ret.m_quality = MIN (m_quality, profile_adjusted);
954       return ret;
955     }
956 
957   /* Scale counter according to PROB.  */
958   profile_count apply_probability (profile_probability prob) const
959     {
960       if (*this == profile_count::zero ())
961 	return *this;
962       if (prob == profile_probability::never ())
963 	return profile_count::zero ();
964       if (!initialized_p ())
965 	return profile_count::uninitialized ();
966       profile_count ret;
967       uint64_t tmp;
968       safe_scale_64bit (m_val, prob.m_val, profile_probability::max_probability,
969 			&tmp);
970       ret.m_val = tmp;
971       ret.m_quality = MIN (m_quality, prob.m_quality);
972       return ret;
973     }
974   /* Return *THIS * NUM / DEN.  */
975   profile_count apply_scale (int64_t num, int64_t den) const
976     {
977       if (m_val == 0)
978 	return *this;
979       if (!initialized_p ())
980 	return profile_count::uninitialized ();
981       profile_count ret;
982       uint64_t tmp;
983 
984       gcc_checking_assert (num >= 0 && den > 0);
985       safe_scale_64bit (m_val, num, den, &tmp);
986       ret.m_val = MIN (tmp, max_count);
987       ret.m_quality = MIN (m_quality, profile_adjusted);
988       return ret;
989     }
990   profile_count apply_scale (profile_count num, profile_count den) const
991     {
992       if (*this == profile_count::zero ())
993 	return *this;
994       if (num == profile_count::zero ())
995 	return num;
996       if (!initialized_p () || !num.initialized_p () || !den.initialized_p ())
997 	return profile_count::uninitialized ();
998       if (num == den)
999 	return *this;
1000       gcc_checking_assert (den.m_val);
1001 
1002       profile_count ret;
1003       uint64_t val;
1004       safe_scale_64bit (m_val, num.m_val, den.m_val, &val);
1005       ret.m_val = MIN (val, max_count);
1006       ret.m_quality = MIN (MIN (MIN (m_quality, profile_adjusted),
1007 			        num.m_quality), den.m_quality);
1008       if (num.ipa_p () && !ret.ipa_p ())
1009 	ret.m_quality = MIN (num.m_quality, profile_guessed);
1010       return ret;
1011     }
1012 
1013   /* Return THIS with quality dropped to GUESSED_LOCAL.  */
1014   profile_count guessed_local () const
1015     {
1016       profile_count ret = *this;
1017       if (!initialized_p ())
1018 	return *this;
1019       ret.m_quality = profile_guessed_local;
1020       return ret;
1021     }
1022 
1023   /* We know that profile is globally 0 but keep local profile if present.  */
1024   profile_count global0 () const
1025     {
1026       profile_count ret = *this;
1027       if (!initialized_p ())
1028 	return *this;
1029       ret.m_quality = profile_guessed_global0;
1030       return ret;
1031     }
1032 
1033   /* We know that profile is globally adjusted 0 but keep local profile
1034      if present.  */
1035   profile_count global0adjusted () const
1036     {
1037       profile_count ret = *this;
1038       if (!initialized_p ())
1039 	return *this;
1040       ret.m_quality = profile_guessed_global0adjusted;
1041       return ret;
1042     }
1043 
1044   /* Return THIS with quality dropped to GUESSED.  */
1045   profile_count guessed () const
1046     {
1047       profile_count ret = *this;
1048       ret.m_quality = MIN (ret.m_quality, profile_guessed);
1049       return ret;
1050     }
1051 
1052   /* Return variant of profile counte which is always safe to compare
1053      acorss functions.  */
1054   profile_count ipa () const
1055     {
1056       if (m_quality > profile_guessed_global0adjusted)
1057 	return *this;
1058       if (m_quality == profile_guessed_global0)
1059 	return profile_count::zero ();
1060       if (m_quality == profile_guessed_global0adjusted)
1061 	return profile_count::adjusted_zero ();
1062       return profile_count::uninitialized ();
1063     }
1064 
1065   /* Return THIS with quality dropped to AFDO.  */
1066   profile_count afdo () const
1067     {
1068       profile_count ret = *this;
1069       ret.m_quality = profile_afdo;
1070       return ret;
1071     }
1072 
1073   /* Return probability of event with counter THIS within event with counter
1074      OVERALL.  */
1075   profile_probability probability_in (const profile_count overall) const
1076     {
1077       if (*this == profile_count::zero ()
1078 	  && !(overall == profile_count::zero ()))
1079 	return profile_probability::never ();
1080       if (!initialized_p () || !overall.initialized_p ()
1081 	  || !overall.m_val)
1082 	return profile_probability::uninitialized ();
1083       if (*this == overall && m_quality == profile_precise)
1084 	return profile_probability::always ();
1085       profile_probability ret;
1086       gcc_checking_assert (compatible_p (overall));
1087 
1088       if (overall.m_val < m_val)
1089 	{
1090 	  ret.m_val = profile_probability::max_probability;
1091 	  ret.m_quality = profile_guessed;
1092 	  return ret;
1093 	}
1094       else
1095 	ret.m_val = RDIV (m_val * profile_probability::max_probability,
1096 			  overall.m_val);
1097       ret.m_quality = MIN (MAX (MIN (m_quality, overall.m_quality),
1098 				profile_guessed), profile_adjusted);
1099       return ret;
1100     }
1101 
1102   int to_frequency (struct function *fun) const;
1103   int to_cgraph_frequency (profile_count entry_bb_count) const;
1104   sreal to_sreal_scale (profile_count in, bool *known = NULL) const;
1105 
1106   /* Output THIS to F.  */
1107   void dump (FILE *f) const;
1108 
1109   /* Print THIS to stderr.  */
1110   void debug () const;
1111 
1112   /* Return true if THIS is known to differ significantly from OTHER.  */
1113   bool differs_from_p (profile_count other) const;
1114 
1115   /* We want to scale profile across function boundary from NUM to DEN.
1116      Take care of the side case when NUM and DEN are zeros of incompatible
1117      kinds.  */
1118   static void adjust_for_ipa_scaling (profile_count *num, profile_count *den);
1119 
1120   /* THIS is a count of bb which is known to be executed IPA times.
1121      Combine this information into bb counter.  This means returning IPA
1122      if it is nonzero, not changing anything if IPA is uninitialized
1123      and if IPA is zero, turning THIS into corresponding local profile with
1124      global0.  */
1125   profile_count combine_with_ipa_count (profile_count ipa);
1126 
1127   /* The profiling runtime uses gcov_type, which is usually 64bit integer.
1128      Conversions back and forth are used to read the coverage and get it
1129      into internal representation.  */
1130   static profile_count from_gcov_type (gcov_type v);
1131 
1132   /* LTO streaming support.  */
1133   static profile_count stream_in (struct lto_input_block *);
1134   void stream_out (struct output_block *);
1135   void stream_out (struct lto_output_stream *);
1136 };
1137 #endif
1138