1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package tls
6
7import (
8	"crypto/aes"
9	"crypto/cipher"
10	"crypto/des"
11	"crypto/hmac"
12	"crypto/rc4"
13	"crypto/sha1"
14	"crypto/sha256"
15	"crypto/x509"
16	"hash"
17
18	"golang_org/x/crypto/chacha20poly1305"
19)
20
21// a keyAgreement implements the client and server side of a TLS key agreement
22// protocol by generating and processing key exchange messages.
23type keyAgreement interface {
24	// On the server side, the first two methods are called in order.
25
26	// In the case that the key agreement protocol doesn't use a
27	// ServerKeyExchange message, generateServerKeyExchange can return nil,
28	// nil.
29	generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error)
30	processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
31
32	// On the client side, the next two methods are called in order.
33
34	// This method may not be called if the server doesn't send a
35	// ServerKeyExchange message.
36	processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error
37	generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
38}
39
40const (
41	// suiteECDH indicates that the cipher suite involves elliptic curve
42	// Diffie-Hellman. This means that it should only be selected when the
43	// client indicates that it supports ECC with a curve and point format
44	// that we're happy with.
45	suiteECDHE = 1 << iota
46	// suiteECDSA indicates that the cipher suite involves an ECDSA
47	// signature and therefore may only be selected when the server's
48	// certificate is ECDSA. If this is not set then the cipher suite is
49	// RSA based.
50	suiteECDSA
51	// suiteTLS12 indicates that the cipher suite should only be advertised
52	// and accepted when using TLS 1.2.
53	suiteTLS12
54	// suiteSHA384 indicates that the cipher suite uses SHA384 as the
55	// handshake hash.
56	suiteSHA384
57	// suiteDefaultOff indicates that this cipher suite is not included by
58	// default.
59	suiteDefaultOff
60)
61
62// A cipherSuite is a specific combination of key agreement, cipher and MAC
63// function. All cipher suites currently assume RSA key agreement.
64type cipherSuite struct {
65	id uint16
66	// the lengths, in bytes, of the key material needed for each component.
67	keyLen int
68	macLen int
69	ivLen  int
70	ka     func(version uint16) keyAgreement
71	// flags is a bitmask of the suite* values, above.
72	flags  int
73	cipher func(key, iv []byte, isRead bool) interface{}
74	mac    func(version uint16, macKey []byte) macFunction
75	aead   func(key, fixedNonce []byte) cipher.AEAD
76}
77
78var cipherSuites = []*cipherSuite{
79	// Ciphersuite order is chosen so that ECDHE comes before plain RSA and
80	// AEADs are the top preference.
81	{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
82	{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
83	{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
84	{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM},
85	{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
86	{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
87	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
88	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
89	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
90	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
91	{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
92	{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
93	{TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
94	{TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
95	{TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
96	{TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
97	{TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
98	{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
99	{TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil},
100
101	// RC4-based cipher suites are disabled by default.
102	{TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, suiteDefaultOff, cipherRC4, macSHA1, nil},
103	{TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE | suiteDefaultOff, cipherRC4, macSHA1, nil},
104	{TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteDefaultOff, cipherRC4, macSHA1, nil},
105}
106
107func cipherRC4(key, iv []byte, isRead bool) interface{} {
108	cipher, _ := rc4.NewCipher(key)
109	return cipher
110}
111
112func cipher3DES(key, iv []byte, isRead bool) interface{} {
113	block, _ := des.NewTripleDESCipher(key)
114	if isRead {
115		return cipher.NewCBCDecrypter(block, iv)
116	}
117	return cipher.NewCBCEncrypter(block, iv)
118}
119
120func cipherAES(key, iv []byte, isRead bool) interface{} {
121	block, _ := aes.NewCipher(key)
122	if isRead {
123		return cipher.NewCBCDecrypter(block, iv)
124	}
125	return cipher.NewCBCEncrypter(block, iv)
126}
127
128// macSHA1 returns a macFunction for the given protocol version.
129func macSHA1(version uint16, key []byte) macFunction {
130	if version == VersionSSL30 {
131		mac := ssl30MAC{
132			h:   sha1.New(),
133			key: make([]byte, len(key)),
134		}
135		copy(mac.key, key)
136		return mac
137	}
138	return tls10MAC{hmac.New(newConstantTimeHash(sha1.New), key)}
139}
140
141// macSHA256 returns a SHA-256 based MAC. These are only supported in TLS 1.2
142// so the given version is ignored.
143func macSHA256(version uint16, key []byte) macFunction {
144	return tls10MAC{hmac.New(sha256.New, key)}
145}
146
147type macFunction interface {
148	Size() int
149	MAC(digestBuf, seq, header, data, extra []byte) []byte
150}
151
152type aead interface {
153	cipher.AEAD
154
155	// explicitIVLen returns the number of bytes used by the explicit nonce
156	// that is included in the record. This is eight for older AEADs and
157	// zero for modern ones.
158	explicitNonceLen() int
159}
160
161// fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
162// each call.
163type fixedNonceAEAD struct {
164	// nonce contains the fixed part of the nonce in the first four bytes.
165	nonce [12]byte
166	aead  cipher.AEAD
167}
168
169func (f *fixedNonceAEAD) NonceSize() int        { return 8 }
170func (f *fixedNonceAEAD) Overhead() int         { return f.aead.Overhead() }
171func (f *fixedNonceAEAD) explicitNonceLen() int { return 8 }
172
173func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
174	copy(f.nonce[4:], nonce)
175	return f.aead.Seal(out, f.nonce[:], plaintext, additionalData)
176}
177
178func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
179	copy(f.nonce[4:], nonce)
180	return f.aead.Open(out, f.nonce[:], plaintext, additionalData)
181}
182
183// xoredNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce
184// before each call.
185type xorNonceAEAD struct {
186	nonceMask [12]byte
187	aead      cipher.AEAD
188}
189
190func (f *xorNonceAEAD) NonceSize() int        { return 8 }
191func (f *xorNonceAEAD) Overhead() int         { return f.aead.Overhead() }
192func (f *xorNonceAEAD) explicitNonceLen() int { return 0 }
193
194func (f *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
195	for i, b := range nonce {
196		f.nonceMask[4+i] ^= b
197	}
198	result := f.aead.Seal(out, f.nonceMask[:], plaintext, additionalData)
199	for i, b := range nonce {
200		f.nonceMask[4+i] ^= b
201	}
202
203	return result
204}
205
206func (f *xorNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
207	for i, b := range nonce {
208		f.nonceMask[4+i] ^= b
209	}
210	result, err := f.aead.Open(out, f.nonceMask[:], plaintext, additionalData)
211	for i, b := range nonce {
212		f.nonceMask[4+i] ^= b
213	}
214
215	return result, err
216}
217
218func aeadAESGCM(key, fixedNonce []byte) cipher.AEAD {
219	aes, err := aes.NewCipher(key)
220	if err != nil {
221		panic(err)
222	}
223	aead, err := cipher.NewGCM(aes)
224	if err != nil {
225		panic(err)
226	}
227
228	ret := &fixedNonceAEAD{aead: aead}
229	copy(ret.nonce[:], fixedNonce)
230	return ret
231}
232
233func aeadChaCha20Poly1305(key, fixedNonce []byte) cipher.AEAD {
234	aead, err := chacha20poly1305.New(key)
235	if err != nil {
236		panic(err)
237	}
238
239	ret := &xorNonceAEAD{aead: aead}
240	copy(ret.nonceMask[:], fixedNonce)
241	return ret
242}
243
244// ssl30MAC implements the SSLv3 MAC function, as defined in
245// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 5.2.3.1
246type ssl30MAC struct {
247	h   hash.Hash
248	key []byte
249}
250
251func (s ssl30MAC) Size() int {
252	return s.h.Size()
253}
254
255var ssl30Pad1 = [48]byte{0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36}
256
257var ssl30Pad2 = [48]byte{0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c}
258
259// MAC does not offer constant timing guarantees for SSL v3.0, since it's deemed
260// useless considering the similar, protocol-level POODLE vulnerability.
261func (s ssl30MAC) MAC(digestBuf, seq, header, data, extra []byte) []byte {
262	padLength := 48
263	if s.h.Size() == 20 {
264		padLength = 40
265	}
266
267	s.h.Reset()
268	s.h.Write(s.key)
269	s.h.Write(ssl30Pad1[:padLength])
270	s.h.Write(seq)
271	s.h.Write(header[:1])
272	s.h.Write(header[3:5])
273	s.h.Write(data)
274	digestBuf = s.h.Sum(digestBuf[:0])
275
276	s.h.Reset()
277	s.h.Write(s.key)
278	s.h.Write(ssl30Pad2[:padLength])
279	s.h.Write(digestBuf)
280	return s.h.Sum(digestBuf[:0])
281}
282
283type constantTimeHash interface {
284	hash.Hash
285	ConstantTimeSum(b []byte) []byte
286}
287
288// cthWrapper wraps any hash.Hash that implements ConstantTimeSum, and replaces
289// with that all calls to Sum. It's used to obtain a ConstantTimeSum-based HMAC.
290type cthWrapper struct {
291	h constantTimeHash
292}
293
294func (c *cthWrapper) Size() int                   { return c.h.Size() }
295func (c *cthWrapper) BlockSize() int              { return c.h.BlockSize() }
296func (c *cthWrapper) Reset()                      { c.h.Reset() }
297func (c *cthWrapper) Write(p []byte) (int, error) { return c.h.Write(p) }
298func (c *cthWrapper) Sum(b []byte) []byte         { return c.h.ConstantTimeSum(b) }
299
300func newConstantTimeHash(h func() hash.Hash) func() hash.Hash {
301	return func() hash.Hash {
302		return &cthWrapper{h().(constantTimeHash)}
303	}
304}
305
306// tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3.
307type tls10MAC struct {
308	h hash.Hash
309}
310
311func (s tls10MAC) Size() int {
312	return s.h.Size()
313}
314
315// MAC is guaranteed to take constant time, as long as
316// len(seq)+len(header)+len(data)+len(extra) is constant. extra is not fed into
317// the MAC, but is only provided to make the timing profile constant.
318func (s tls10MAC) MAC(digestBuf, seq, header, data, extra []byte) []byte {
319	s.h.Reset()
320	s.h.Write(seq)
321	s.h.Write(header)
322	s.h.Write(data)
323	res := s.h.Sum(digestBuf[:0])
324	if extra != nil {
325		s.h.Write(extra)
326	}
327	return res
328}
329
330func rsaKA(version uint16) keyAgreement {
331	return rsaKeyAgreement{}
332}
333
334func ecdheECDSAKA(version uint16) keyAgreement {
335	return &ecdheKeyAgreement{
336		sigType: signatureECDSA,
337		version: version,
338	}
339}
340
341func ecdheRSAKA(version uint16) keyAgreement {
342	return &ecdheKeyAgreement{
343		sigType: signatureRSA,
344		version: version,
345	}
346}
347
348// mutualCipherSuite returns a cipherSuite given a list of supported
349// ciphersuites and the id requested by the peer.
350func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
351	for _, id := range have {
352		if id == want {
353			for _, suite := range cipherSuites {
354				if suite.id == want {
355					return suite
356				}
357			}
358			return nil
359		}
360	}
361	return nil
362}
363
364// A list of cipher suite IDs that are, or have been, implemented by this
365// package.
366//
367// Taken from http://www.iana.org/assignments/tls-parameters/tls-parameters.xml
368const (
369	TLS_RSA_WITH_RC4_128_SHA                uint16 = 0x0005
370	TLS_RSA_WITH_3DES_EDE_CBC_SHA           uint16 = 0x000a
371	TLS_RSA_WITH_AES_128_CBC_SHA            uint16 = 0x002f
372	TLS_RSA_WITH_AES_256_CBC_SHA            uint16 = 0x0035
373	TLS_RSA_WITH_AES_128_CBC_SHA256         uint16 = 0x003c
374	TLS_RSA_WITH_AES_128_GCM_SHA256         uint16 = 0x009c
375	TLS_RSA_WITH_AES_256_GCM_SHA384         uint16 = 0x009d
376	TLS_ECDHE_ECDSA_WITH_RC4_128_SHA        uint16 = 0xc007
377	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA    uint16 = 0xc009
378	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA    uint16 = 0xc00a
379	TLS_ECDHE_RSA_WITH_RC4_128_SHA          uint16 = 0xc011
380	TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA     uint16 = 0xc012
381	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA      uint16 = 0xc013
382	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA      uint16 = 0xc014
383	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023
384	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256   uint16 = 0xc027
385	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256   uint16 = 0xc02f
386	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b
387	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384   uint16 = 0xc030
388	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c
389	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305    uint16 = 0xcca8
390	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305  uint16 = 0xcca9
391
392	// TLS_FALLBACK_SCSV isn't a standard cipher suite but an indicator
393	// that the client is doing version fallback. See
394	// https://tools.ietf.org/html/rfc7507.
395	TLS_FALLBACK_SCSV uint16 = 0x5600
396)
397