1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package tls 6 7import ( 8 "crypto/aes" 9 "crypto/cipher" 10 "crypto/des" 11 "crypto/hmac" 12 "crypto/rc4" 13 "crypto/sha1" 14 "crypto/sha256" 15 "crypto/x509" 16 "hash" 17 18 "golang_org/x/crypto/chacha20poly1305" 19) 20 21// a keyAgreement implements the client and server side of a TLS key agreement 22// protocol by generating and processing key exchange messages. 23type keyAgreement interface { 24 // On the server side, the first two methods are called in order. 25 26 // In the case that the key agreement protocol doesn't use a 27 // ServerKeyExchange message, generateServerKeyExchange can return nil, 28 // nil. 29 generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error) 30 processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error) 31 32 // On the client side, the next two methods are called in order. 33 34 // This method may not be called if the server doesn't send a 35 // ServerKeyExchange message. 36 processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error 37 generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) 38} 39 40const ( 41 // suiteECDH indicates that the cipher suite involves elliptic curve 42 // Diffie-Hellman. This means that it should only be selected when the 43 // client indicates that it supports ECC with a curve and point format 44 // that we're happy with. 45 suiteECDHE = 1 << iota 46 // suiteECDSA indicates that the cipher suite involves an ECDSA 47 // signature and therefore may only be selected when the server's 48 // certificate is ECDSA. If this is not set then the cipher suite is 49 // RSA based. 50 suiteECDSA 51 // suiteTLS12 indicates that the cipher suite should only be advertised 52 // and accepted when using TLS 1.2. 53 suiteTLS12 54 // suiteSHA384 indicates that the cipher suite uses SHA384 as the 55 // handshake hash. 56 suiteSHA384 57 // suiteDefaultOff indicates that this cipher suite is not included by 58 // default. 59 suiteDefaultOff 60) 61 62// A cipherSuite is a specific combination of key agreement, cipher and MAC 63// function. All cipher suites currently assume RSA key agreement. 64type cipherSuite struct { 65 id uint16 66 // the lengths, in bytes, of the key material needed for each component. 67 keyLen int 68 macLen int 69 ivLen int 70 ka func(version uint16) keyAgreement 71 // flags is a bitmask of the suite* values, above. 72 flags int 73 cipher func(key, iv []byte, isRead bool) interface{} 74 mac func(version uint16, macKey []byte) macFunction 75 aead func(key, fixedNonce []byte) cipher.AEAD 76} 77 78var cipherSuites = []*cipherSuite{ 79 // Ciphersuite order is chosen so that ECDHE comes before plain RSA and 80 // AEADs are the top preference. 81 {TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadChaCha20Poly1305}, 82 {TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadChaCha20Poly1305}, 83 {TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM}, 84 {TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM}, 85 {TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, 86 {TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, 87 {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil}, 88 {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil}, 89 {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil}, 90 {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil}, 91 {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil}, 92 {TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil}, 93 {TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM}, 94 {TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, 95 {TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil}, 96 {TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil}, 97 {TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil}, 98 {TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil}, 99 {TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil}, 100 101 // RC4-based cipher suites are disabled by default. 102 {TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, suiteDefaultOff, cipherRC4, macSHA1, nil}, 103 {TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE | suiteDefaultOff, cipherRC4, macSHA1, nil}, 104 {TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteDefaultOff, cipherRC4, macSHA1, nil}, 105} 106 107func cipherRC4(key, iv []byte, isRead bool) interface{} { 108 cipher, _ := rc4.NewCipher(key) 109 return cipher 110} 111 112func cipher3DES(key, iv []byte, isRead bool) interface{} { 113 block, _ := des.NewTripleDESCipher(key) 114 if isRead { 115 return cipher.NewCBCDecrypter(block, iv) 116 } 117 return cipher.NewCBCEncrypter(block, iv) 118} 119 120func cipherAES(key, iv []byte, isRead bool) interface{} { 121 block, _ := aes.NewCipher(key) 122 if isRead { 123 return cipher.NewCBCDecrypter(block, iv) 124 } 125 return cipher.NewCBCEncrypter(block, iv) 126} 127 128// macSHA1 returns a macFunction for the given protocol version. 129func macSHA1(version uint16, key []byte) macFunction { 130 if version == VersionSSL30 { 131 mac := ssl30MAC{ 132 h: sha1.New(), 133 key: make([]byte, len(key)), 134 } 135 copy(mac.key, key) 136 return mac 137 } 138 return tls10MAC{hmac.New(newConstantTimeHash(sha1.New), key)} 139} 140 141// macSHA256 returns a SHA-256 based MAC. These are only supported in TLS 1.2 142// so the given version is ignored. 143func macSHA256(version uint16, key []byte) macFunction { 144 return tls10MAC{hmac.New(sha256.New, key)} 145} 146 147type macFunction interface { 148 Size() int 149 MAC(digestBuf, seq, header, data, extra []byte) []byte 150} 151 152type aead interface { 153 cipher.AEAD 154 155 // explicitIVLen returns the number of bytes used by the explicit nonce 156 // that is included in the record. This is eight for older AEADs and 157 // zero for modern ones. 158 explicitNonceLen() int 159} 160 161// fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to 162// each call. 163type fixedNonceAEAD struct { 164 // nonce contains the fixed part of the nonce in the first four bytes. 165 nonce [12]byte 166 aead cipher.AEAD 167} 168 169func (f *fixedNonceAEAD) NonceSize() int { return 8 } 170func (f *fixedNonceAEAD) Overhead() int { return f.aead.Overhead() } 171func (f *fixedNonceAEAD) explicitNonceLen() int { return 8 } 172 173func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte { 174 copy(f.nonce[4:], nonce) 175 return f.aead.Seal(out, f.nonce[:], plaintext, additionalData) 176} 177 178func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) { 179 copy(f.nonce[4:], nonce) 180 return f.aead.Open(out, f.nonce[:], plaintext, additionalData) 181} 182 183// xoredNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce 184// before each call. 185type xorNonceAEAD struct { 186 nonceMask [12]byte 187 aead cipher.AEAD 188} 189 190func (f *xorNonceAEAD) NonceSize() int { return 8 } 191func (f *xorNonceAEAD) Overhead() int { return f.aead.Overhead() } 192func (f *xorNonceAEAD) explicitNonceLen() int { return 0 } 193 194func (f *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte { 195 for i, b := range nonce { 196 f.nonceMask[4+i] ^= b 197 } 198 result := f.aead.Seal(out, f.nonceMask[:], plaintext, additionalData) 199 for i, b := range nonce { 200 f.nonceMask[4+i] ^= b 201 } 202 203 return result 204} 205 206func (f *xorNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) { 207 for i, b := range nonce { 208 f.nonceMask[4+i] ^= b 209 } 210 result, err := f.aead.Open(out, f.nonceMask[:], plaintext, additionalData) 211 for i, b := range nonce { 212 f.nonceMask[4+i] ^= b 213 } 214 215 return result, err 216} 217 218func aeadAESGCM(key, fixedNonce []byte) cipher.AEAD { 219 aes, err := aes.NewCipher(key) 220 if err != nil { 221 panic(err) 222 } 223 aead, err := cipher.NewGCM(aes) 224 if err != nil { 225 panic(err) 226 } 227 228 ret := &fixedNonceAEAD{aead: aead} 229 copy(ret.nonce[:], fixedNonce) 230 return ret 231} 232 233func aeadChaCha20Poly1305(key, fixedNonce []byte) cipher.AEAD { 234 aead, err := chacha20poly1305.New(key) 235 if err != nil { 236 panic(err) 237 } 238 239 ret := &xorNonceAEAD{aead: aead} 240 copy(ret.nonceMask[:], fixedNonce) 241 return ret 242} 243 244// ssl30MAC implements the SSLv3 MAC function, as defined in 245// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 5.2.3.1 246type ssl30MAC struct { 247 h hash.Hash 248 key []byte 249} 250 251func (s ssl30MAC) Size() int { 252 return s.h.Size() 253} 254 255var ssl30Pad1 = [48]byte{0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36} 256 257var ssl30Pad2 = [48]byte{0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c} 258 259// MAC does not offer constant timing guarantees for SSL v3.0, since it's deemed 260// useless considering the similar, protocol-level POODLE vulnerability. 261func (s ssl30MAC) MAC(digestBuf, seq, header, data, extra []byte) []byte { 262 padLength := 48 263 if s.h.Size() == 20 { 264 padLength = 40 265 } 266 267 s.h.Reset() 268 s.h.Write(s.key) 269 s.h.Write(ssl30Pad1[:padLength]) 270 s.h.Write(seq) 271 s.h.Write(header[:1]) 272 s.h.Write(header[3:5]) 273 s.h.Write(data) 274 digestBuf = s.h.Sum(digestBuf[:0]) 275 276 s.h.Reset() 277 s.h.Write(s.key) 278 s.h.Write(ssl30Pad2[:padLength]) 279 s.h.Write(digestBuf) 280 return s.h.Sum(digestBuf[:0]) 281} 282 283type constantTimeHash interface { 284 hash.Hash 285 ConstantTimeSum(b []byte) []byte 286} 287 288// cthWrapper wraps any hash.Hash that implements ConstantTimeSum, and replaces 289// with that all calls to Sum. It's used to obtain a ConstantTimeSum-based HMAC. 290type cthWrapper struct { 291 h constantTimeHash 292} 293 294func (c *cthWrapper) Size() int { return c.h.Size() } 295func (c *cthWrapper) BlockSize() int { return c.h.BlockSize() } 296func (c *cthWrapper) Reset() { c.h.Reset() } 297func (c *cthWrapper) Write(p []byte) (int, error) { return c.h.Write(p) } 298func (c *cthWrapper) Sum(b []byte) []byte { return c.h.ConstantTimeSum(b) } 299 300func newConstantTimeHash(h func() hash.Hash) func() hash.Hash { 301 return func() hash.Hash { 302 return &cthWrapper{h().(constantTimeHash)} 303 } 304} 305 306// tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3. 307type tls10MAC struct { 308 h hash.Hash 309} 310 311func (s tls10MAC) Size() int { 312 return s.h.Size() 313} 314 315// MAC is guaranteed to take constant time, as long as 316// len(seq)+len(header)+len(data)+len(extra) is constant. extra is not fed into 317// the MAC, but is only provided to make the timing profile constant. 318func (s tls10MAC) MAC(digestBuf, seq, header, data, extra []byte) []byte { 319 s.h.Reset() 320 s.h.Write(seq) 321 s.h.Write(header) 322 s.h.Write(data) 323 res := s.h.Sum(digestBuf[:0]) 324 if extra != nil { 325 s.h.Write(extra) 326 } 327 return res 328} 329 330func rsaKA(version uint16) keyAgreement { 331 return rsaKeyAgreement{} 332} 333 334func ecdheECDSAKA(version uint16) keyAgreement { 335 return &ecdheKeyAgreement{ 336 sigType: signatureECDSA, 337 version: version, 338 } 339} 340 341func ecdheRSAKA(version uint16) keyAgreement { 342 return &ecdheKeyAgreement{ 343 sigType: signatureRSA, 344 version: version, 345 } 346} 347 348// mutualCipherSuite returns a cipherSuite given a list of supported 349// ciphersuites and the id requested by the peer. 350func mutualCipherSuite(have []uint16, want uint16) *cipherSuite { 351 for _, id := range have { 352 if id == want { 353 for _, suite := range cipherSuites { 354 if suite.id == want { 355 return suite 356 } 357 } 358 return nil 359 } 360 } 361 return nil 362} 363 364// A list of cipher suite IDs that are, or have been, implemented by this 365// package. 366// 367// Taken from http://www.iana.org/assignments/tls-parameters/tls-parameters.xml 368const ( 369 TLS_RSA_WITH_RC4_128_SHA uint16 = 0x0005 370 TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a 371 TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f 372 TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035 373 TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003c 374 TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009c 375 TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009d 376 TLS_ECDHE_ECDSA_WITH_RC4_128_SHA uint16 = 0xc007 377 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009 378 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a 379 TLS_ECDHE_RSA_WITH_RC4_128_SHA uint16 = 0xc011 380 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012 381 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013 382 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014 383 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023 384 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc027 385 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f 386 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b 387 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc030 388 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c 389 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305 uint16 = 0xcca8 390 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 uint16 = 0xcca9 391 392 // TLS_FALLBACK_SCSV isn't a standard cipher suite but an indicator 393 // that the client is doing version fallback. See 394 // https://tools.ietf.org/html/rfc7507. 395 TLS_FALLBACK_SCSV uint16 = 0x5600 396) 397