1 /* Utilities to execute a program in a subprocess (possibly linked by pipes
2    with other subprocesses), and wait for it.  Generic Unix version
3    (also used for UWIN and VMS).
4    Copyright (C) 1996-2018 Free Software Foundation, Inc.
5 
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11 
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 Library General Public License for more details.
16 
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING.LIB.  If not,
19 write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21 
22 #include "config.h"
23 #include "libiberty.h"
24 #include "pex-common.h"
25 #include "environ.h"
26 
27 #include <stdio.h>
28 #include <signal.h>
29 #include <errno.h>
30 #ifdef NEED_DECLARATION_ERRNO
31 extern int errno;
32 #endif
33 #ifdef HAVE_STDLIB_H
34 #include <stdlib.h>
35 #endif
36 #ifdef HAVE_STRING_H
37 #include <string.h>
38 #endif
39 #ifdef HAVE_UNISTD_H
40 #include <unistd.h>
41 #endif
42 
43 #include <sys/types.h>
44 
45 #ifdef HAVE_FCNTL_H
46 #include <fcntl.h>
47 #endif
48 #ifdef HAVE_SYS_WAIT_H
49 #include <sys/wait.h>
50 #endif
51 #ifdef HAVE_GETRUSAGE
52 #include <sys/time.h>
53 #include <sys/resource.h>
54 #endif
55 #ifdef HAVE_SYS_STAT_H
56 #include <sys/stat.h>
57 #endif
58 #ifdef HAVE_PROCESS_H
59 #include <process.h>
60 #endif
61 
62 #ifdef vfork /* Autoconf may define this to fork for us. */
63 # define VFORK_STRING "fork"
64 #else
65 # define VFORK_STRING "vfork"
66 #endif
67 #ifdef HAVE_VFORK_H
68 #include <vfork.h>
69 #endif
70 #if defined(VMS) && defined (__LONG_POINTERS)
71 #ifndef __CHAR_PTR32
72 typedef char * __char_ptr32
73 __attribute__ ((mode (SI)));
74 #endif
75 
76 typedef __char_ptr32 *__char_ptr_char_ptr32
77 __attribute__ ((mode (SI)));
78 
79 /* Return a 32 bit pointer to an array of 32 bit pointers
80    given a 64 bit pointer to an array of 64 bit pointers.  */
81 
82 static __char_ptr_char_ptr32
to_ptr32(char ** ptr64)83 to_ptr32 (char **ptr64)
84 {
85   int argc;
86   __char_ptr_char_ptr32 short_argv;
87 
88   /* Count number of arguments.  */
89   for (argc = 0; ptr64[argc] != NULL; argc++)
90     ;
91 
92   /* Reallocate argv with 32 bit pointers.  */
93   short_argv = (__char_ptr_char_ptr32) decc$malloc
94     (sizeof (__char_ptr32) * (argc + 1));
95 
96   for (argc = 0; ptr64[argc] != NULL; argc++)
97     short_argv[argc] = (__char_ptr32) decc$strdup (ptr64[argc]);
98 
99   short_argv[argc] = (__char_ptr32) 0;
100   return short_argv;
101 
102 }
103 #else
104 #define to_ptr32(argv) argv
105 #endif
106 
107 /* File mode to use for private and world-readable files.  */
108 
109 #if defined (S_IRUSR) && defined (S_IWUSR) && defined (S_IRGRP) && defined (S_IWGRP) && defined (S_IROTH) && defined (S_IWOTH)
110 #define PUBLIC_MODE  \
111     (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)
112 #else
113 #define PUBLIC_MODE 0666
114 #endif
115 
116 /* Get the exit status of a particular process, and optionally get the
117    time that it took.  This is simple if we have wait4, slightly
118    harder if we have waitpid, and is a pain if we only have wait.  */
119 
120 static pid_t pex_wait (struct pex_obj *, pid_t, int *, struct pex_time *);
121 
122 #ifdef HAVE_WAIT4
123 
124 static pid_t
pex_wait(struct pex_obj * obj ATTRIBUTE_UNUSED,pid_t pid,int * status,struct pex_time * time)125 pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status,
126 	  struct pex_time *time)
127 {
128   pid_t ret;
129   struct rusage r;
130 
131 #ifdef HAVE_WAITPID
132   if (time == NULL)
133     return waitpid (pid, status, 0);
134 #endif
135 
136   ret = wait4 (pid, status, 0, &r);
137 
138   if (time != NULL)
139     {
140       time->user_seconds = r.ru_utime.tv_sec;
141       time->user_microseconds= r.ru_utime.tv_usec;
142       time->system_seconds = r.ru_stime.tv_sec;
143       time->system_microseconds= r.ru_stime.tv_usec;
144     }
145 
146   return ret;
147 }
148 
149 #else /* ! defined (HAVE_WAIT4) */
150 
151 #ifdef HAVE_WAITPID
152 
153 #ifndef HAVE_GETRUSAGE
154 
155 static pid_t
pex_wait(struct pex_obj * obj ATTRIBUTE_UNUSED,pid_t pid,int * status,struct pex_time * time)156 pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status,
157 	  struct pex_time *time)
158 {
159   if (time != NULL)
160     memset (time, 0, sizeof (struct pex_time));
161   return waitpid (pid, status, 0);
162 }
163 
164 #else /* defined (HAVE_GETRUSAGE) */
165 
166 static pid_t
pex_wait(struct pex_obj * obj ATTRIBUTE_UNUSED,pid_t pid,int * status,struct pex_time * time)167 pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status,
168 	  struct pex_time *time)
169 {
170   struct rusage r1, r2;
171   pid_t ret;
172 
173   if (time == NULL)
174     return waitpid (pid, status, 0);
175 
176   getrusage (RUSAGE_CHILDREN, &r1);
177 
178   ret = waitpid (pid, status, 0);
179   if (ret < 0)
180     return ret;
181 
182   getrusage (RUSAGE_CHILDREN, &r2);
183 
184   time->user_seconds = r2.ru_utime.tv_sec - r1.ru_utime.tv_sec;
185   time->user_microseconds = r2.ru_utime.tv_usec - r1.ru_utime.tv_usec;
186   if (r2.ru_utime.tv_usec < r1.ru_utime.tv_usec)
187     {
188       --time->user_seconds;
189       time->user_microseconds += 1000000;
190     }
191 
192   time->system_seconds = r2.ru_stime.tv_sec - r1.ru_stime.tv_sec;
193   time->system_microseconds = r2.ru_stime.tv_usec - r1.ru_stime.tv_usec;
194   if (r2.ru_stime.tv_usec < r1.ru_stime.tv_usec)
195     {
196       --time->system_seconds;
197       time->system_microseconds += 1000000;
198     }
199 
200   return ret;
201 }
202 
203 #endif /* defined (HAVE_GETRUSAGE) */
204 
205 #else /* ! defined (HAVE_WAITPID) */
206 
207 struct status_list
208 {
209   struct status_list *next;
210   pid_t pid;
211   int status;
212   struct pex_time time;
213 };
214 
215 static pid_t
pex_wait(struct pex_obj * obj,pid_t pid,int * status,struct pex_time * time)216 pex_wait (struct pex_obj *obj, pid_t pid, int *status, struct pex_time *time)
217 {
218   struct status_list **pp;
219 
220   for (pp = (struct status_list **) &obj->sysdep;
221        *pp != NULL;
222        pp = &(*pp)->next)
223     {
224       if ((*pp)->pid == pid)
225 	{
226 	  struct status_list *p;
227 
228 	  p = *pp;
229 	  *status = p->status;
230 	  if (time != NULL)
231 	    *time = p->time;
232 	  *pp = p->next;
233 	  free (p);
234 	  return pid;
235 	}
236     }
237 
238   while (1)
239     {
240       pid_t cpid;
241       struct status_list *psl;
242       struct pex_time pt;
243 #ifdef HAVE_GETRUSAGE
244       struct rusage r1, r2;
245 #endif
246 
247       if (time != NULL)
248 	{
249 #ifdef HAVE_GETRUSAGE
250 	  getrusage (RUSAGE_CHILDREN, &r1);
251 #else
252 	  memset (&pt, 0, sizeof (struct pex_time));
253 #endif
254 	}
255 
256       cpid = wait (status);
257 
258 #ifdef HAVE_GETRUSAGE
259       if (time != NULL && cpid >= 0)
260 	{
261 	  getrusage (RUSAGE_CHILDREN, &r2);
262 
263 	  pt.user_seconds = r2.ru_utime.tv_sec - r1.ru_utime.tv_sec;
264 	  pt.user_microseconds = r2.ru_utime.tv_usec - r1.ru_utime.tv_usec;
265 	  if (pt.user_microseconds < 0)
266 	    {
267 	      --pt.user_seconds;
268 	      pt.user_microseconds += 1000000;
269 	    }
270 
271 	  pt.system_seconds = r2.ru_stime.tv_sec - r1.ru_stime.tv_sec;
272 	  pt.system_microseconds = r2.ru_stime.tv_usec - r1.ru_stime.tv_usec;
273 	  if (pt.system_microseconds < 0)
274 	    {
275 	      --pt.system_seconds;
276 	      pt.system_microseconds += 1000000;
277 	    }
278 	}
279 #endif
280 
281       if (cpid < 0 || cpid == pid)
282 	{
283 	  if (time != NULL)
284 	    *time = pt;
285 	  return cpid;
286 	}
287 
288       psl = XNEW (struct status_list);
289       psl->pid = cpid;
290       psl->status = *status;
291       if (time != NULL)
292 	psl->time = pt;
293       psl->next = (struct status_list *) obj->sysdep;
294       obj->sysdep = (void *) psl;
295     }
296 }
297 
298 #endif /* ! defined (HAVE_WAITPID) */
299 #endif /* ! defined (HAVE_WAIT4) */
300 
301 static void pex_child_error (struct pex_obj *, const char *, const char *, int)
302      ATTRIBUTE_NORETURN;
303 static int pex_unix_open_read (struct pex_obj *, const char *, int);
304 static int pex_unix_open_write (struct pex_obj *, const char *, int, int);
305 static pid_t pex_unix_exec_child (struct pex_obj *, int, const char *,
306 				 char * const *, char * const *,
307 				 int, int, int, int,
308 				 const char **, int *);
309 static int pex_unix_close (struct pex_obj *, int);
310 static int pex_unix_wait (struct pex_obj *, pid_t, int *, struct pex_time *,
311 			  int, const char **, int *);
312 static int pex_unix_pipe (struct pex_obj *, int *, int);
313 static FILE *pex_unix_fdopenr (struct pex_obj *, int, int);
314 static FILE *pex_unix_fdopenw (struct pex_obj *, int, int);
315 static void pex_unix_cleanup (struct pex_obj *);
316 
317 /* The list of functions we pass to the common routines.  */
318 
319 const struct pex_funcs funcs =
320 {
321   pex_unix_open_read,
322   pex_unix_open_write,
323   pex_unix_exec_child,
324   pex_unix_close,
325   pex_unix_wait,
326   pex_unix_pipe,
327   pex_unix_fdopenr,
328   pex_unix_fdopenw,
329   pex_unix_cleanup
330 };
331 
332 /* Return a newly initialized pex_obj structure.  */
333 
334 struct pex_obj *
pex_init(int flags,const char * pname,const char * tempbase)335 pex_init (int flags, const char *pname, const char *tempbase)
336 {
337   return pex_init_common (flags, pname, tempbase, &funcs);
338 }
339 
340 /* Open a file for reading.  */
341 
342 static int
pex_unix_open_read(struct pex_obj * obj ATTRIBUTE_UNUSED,const char * name,int binary ATTRIBUTE_UNUSED)343 pex_unix_open_read (struct pex_obj *obj ATTRIBUTE_UNUSED, const char *name,
344 		    int binary ATTRIBUTE_UNUSED)
345 {
346   return open (name, O_RDONLY);
347 }
348 
349 /* Open a file for writing.  */
350 
351 static int
pex_unix_open_write(struct pex_obj * obj ATTRIBUTE_UNUSED,const char * name,int binary ATTRIBUTE_UNUSED,int append)352 pex_unix_open_write (struct pex_obj *obj ATTRIBUTE_UNUSED, const char *name,
353 		     int binary ATTRIBUTE_UNUSED, int append)
354 {
355   /* Note that we can't use O_EXCL here because gcc may have already
356      created the temporary file via make_temp_file.  */
357   return open (name, O_WRONLY | O_CREAT
358 		     | (append ? O_APPEND : O_TRUNC), PUBLIC_MODE);
359 }
360 
361 /* Close a file.  */
362 
363 static int
pex_unix_close(struct pex_obj * obj ATTRIBUTE_UNUSED,int fd)364 pex_unix_close (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd)
365 {
366   return close (fd);
367 }
368 
369 /* Report an error from a child process.  We don't use stdio routines,
370    because we might be here due to a vfork call.  */
371 
372 static void
pex_child_error(struct pex_obj * obj,const char * executable,const char * errmsg,int err)373 pex_child_error (struct pex_obj *obj, const char *executable,
374 		 const char *errmsg, int err)
375 {
376   int retval = 0;
377 #define writeerr(s) retval |= (write (STDERR_FILE_NO, s, strlen (s)) < 0)
378   writeerr (obj->pname);
379   writeerr (": error trying to exec '");
380   writeerr (executable);
381   writeerr ("': ");
382   writeerr (errmsg);
383   writeerr (": ");
384   writeerr (xstrerror (err));
385   writeerr ("\n");
386 #undef writeerr
387   /* Exit with -2 if the error output failed, too.  */
388   _exit (retval == 0 ? -1 : -2);
389 }
390 
391 /* Execute a child.  */
392 
393 #if defined(HAVE_SPAWNVE) && defined(HAVE_SPAWNVPE)
394 /* Implementation of pex->exec_child using the Cygwin spawn operation.  */
395 
396 /* Subroutine of pex_unix_exec_child.  Move OLD_FD to a new file descriptor
397    to be stored in *PNEW_FD, save the flags in *PFLAGS, and arrange for the
398    saved copy to be close-on-exec.  Move CHILD_FD into OLD_FD.  If CHILD_FD
399    is -1, OLD_FD is to be closed.  Return -1 on error.  */
400 
401 static int
save_and_install_fd(int * pnew_fd,int * pflags,int old_fd,int child_fd)402 save_and_install_fd(int *pnew_fd, int *pflags, int old_fd, int child_fd)
403 {
404   int new_fd, flags;
405 
406   flags = fcntl (old_fd, F_GETFD);
407 
408   /* If we could not retrieve the flags, then OLD_FD was not open.  */
409   if (flags < 0)
410     {
411       new_fd = -1, flags = 0;
412       if (child_fd >= 0 && dup2 (child_fd, old_fd) < 0)
413 	return -1;
414     }
415   /* If we wish to close OLD_FD, just mark it CLOEXEC.  */
416   else if (child_fd == -1)
417     {
418       new_fd = old_fd;
419       if ((flags & FD_CLOEXEC) == 0 && fcntl (old_fd, F_SETFD, FD_CLOEXEC) < 0)
420 	return -1;
421     }
422   /* Otherwise we need to save a copy of OLD_FD before installing CHILD_FD.  */
423   else
424     {
425 #ifdef F_DUPFD_CLOEXEC
426       new_fd = fcntl (old_fd, F_DUPFD_CLOEXEC, 3);
427       if (new_fd < 0)
428 	return -1;
429 #else
430       /* Prefer F_DUPFD over dup in order to avoid getting a new fd
431 	 in the range 0-2, right where a new stderr fd might get put.  */
432       new_fd = fcntl (old_fd, F_DUPFD, 3);
433       if (new_fd < 0)
434 	return -1;
435       if (fcntl (new_fd, F_SETFD, FD_CLOEXEC) < 0)
436 	return -1;
437 #endif
438       if (dup2 (child_fd, old_fd) < 0)
439 	return -1;
440     }
441 
442   *pflags = flags;
443   if (pnew_fd)
444     *pnew_fd = new_fd;
445   else if (new_fd != old_fd)
446     abort ();
447 
448   return 0;
449 }
450 
451 /* Subroutine of pex_unix_exec_child.  Move SAVE_FD back to OLD_FD
452    restoring FLAGS.  If SAVE_FD < 0, OLD_FD is to be closed.  */
453 
454 static int
restore_fd(int old_fd,int save_fd,int flags)455 restore_fd(int old_fd, int save_fd, int flags)
456 {
457   /* For SAVE_FD < 0, all we have to do is restore the
458      "closed-ness" of the original.  */
459   if (save_fd < 0)
460     return close (old_fd);
461 
462   /* For SAVE_FD == OLD_FD, all we have to do is restore the
463      original setting of the CLOEXEC flag.  */
464   if (save_fd == old_fd)
465     {
466       if (flags & FD_CLOEXEC)
467 	return 0;
468       return fcntl (old_fd, F_SETFD, flags);
469     }
470 
471   /* Otherwise we have to move the descriptor back, restore the flags,
472      and close the saved copy.  */
473 #ifdef HAVE_DUP3
474   if (flags == FD_CLOEXEC)
475     {
476       if (dup3 (save_fd, old_fd, O_CLOEXEC) < 0)
477 	return -1;
478     }
479   else
480 #endif
481     {
482       if (dup2 (save_fd, old_fd) < 0)
483 	return -1;
484       if (flags != 0 && fcntl (old_fd, F_SETFD, flags) < 0)
485 	return -1;
486     }
487   return close (save_fd);
488 }
489 
490 static pid_t
pex_unix_exec_child(struct pex_obj * obj ATTRIBUTE_UNUSED,int flags,const char * executable,char * const * argv,char * const * env,int in,int out,int errdes,int toclose,const char ** errmsg,int * err)491 pex_unix_exec_child (struct pex_obj *obj ATTRIBUTE_UNUSED,
492 		     int flags, const char *executable,
493 		     char * const * argv, char * const * env,
494                      int in, int out, int errdes, int toclose,
495 		     const char **errmsg, int *err)
496 {
497   int fl_in = 0, fl_out = 0, fl_err = 0, fl_tc = 0;
498   int save_in = -1, save_out = -1, save_err = -1;
499   int max, retries;
500   pid_t pid;
501 
502   if (flags & PEX_STDERR_TO_STDOUT)
503     errdes = out;
504 
505   /* We need the three standard file descriptors to be set up as for
506      the child before we perform the spawn.  The file descriptors for
507      the parent need to be moved and marked for close-on-exec.  */
508   if (in != STDIN_FILE_NO
509       && save_and_install_fd (&save_in, &fl_in, STDIN_FILE_NO, in) < 0)
510     goto error_dup2;
511   if (out != STDOUT_FILE_NO
512       && save_and_install_fd (&save_out, &fl_out, STDOUT_FILE_NO, out) < 0)
513     goto error_dup2;
514   if (errdes != STDERR_FILE_NO
515       && save_and_install_fd (&save_err, &fl_err, STDERR_FILE_NO, errdes) < 0)
516     goto error_dup2;
517   if (toclose >= 0
518       && save_and_install_fd (NULL, &fl_tc, toclose, -1) < 0)
519     goto error_dup2;
520 
521   /* Now that we've moved the file descriptors for the child into place,
522      close the originals.  Be careful not to close any of the standard
523      file descriptors that we just set up.  */
524   max = -1;
525   if (errdes >= 0)
526     max = STDERR_FILE_NO;
527   else if (out >= 0)
528     max = STDOUT_FILE_NO;
529   else if (in >= 0)
530     max = STDIN_FILE_NO;
531   if (in > max)
532     close (in);
533   if (out > max)
534     close (out);
535   if (errdes > max && errdes != out)
536     close (errdes);
537 
538   /* If we were not given an environment, use the global environment.  */
539   if (env == NULL)
540     env = environ;
541 
542   /* Launch the program.  If we get EAGAIN (normally out of pid's), try
543      again a few times with increasing backoff times.  */
544   retries = 0;
545   while (1)
546     {
547       typedef const char * const *cc_cp;
548 
549       if (flags & PEX_SEARCH)
550 	pid = spawnvpe (_P_NOWAITO, executable, (cc_cp)argv, (cc_cp)env);
551       else
552 	pid = spawnve (_P_NOWAITO, executable, (cc_cp)argv, (cc_cp)env);
553 
554       if (pid > 0)
555 	break;
556 
557       *err = errno;
558       *errmsg = "spawn";
559       if (errno != EAGAIN || ++retries == 4)
560 	return (pid_t) -1;
561       sleep (1 << retries);
562     }
563 
564   /* Success.  Restore the parent's file descriptors that we saved above.  */
565   if (toclose >= 0
566       && restore_fd (toclose, toclose, fl_tc) < 0)
567     goto error_dup2;
568   if (in != STDIN_FILE_NO
569       && restore_fd (STDIN_FILE_NO, save_in, fl_in) < 0)
570     goto error_dup2;
571   if (out != STDOUT_FILE_NO
572       && restore_fd (STDOUT_FILE_NO, save_out, fl_out) < 0)
573     goto error_dup2;
574   if (errdes != STDERR_FILE_NO
575       && restore_fd (STDERR_FILE_NO, save_err, fl_err) < 0)
576     goto error_dup2;
577 
578   return pid;
579 
580  error_dup2:
581   *err = errno;
582   *errmsg = "dup2";
583   return (pid_t) -1;
584 }
585 
586 #else
587 /* Implementation of pex->exec_child using standard vfork + exec.  */
588 
589 static pid_t
pex_unix_exec_child(struct pex_obj * obj,int flags,const char * executable,char * const * argv,char * const * env,int in,int out,int errdes,int toclose,const char ** errmsg,int * err)590 pex_unix_exec_child (struct pex_obj *obj, int flags, const char *executable,
591 		     char * const * argv, char * const * env,
592                      int in, int out, int errdes,
593 		     int toclose, const char **errmsg, int *err)
594 {
595   pid_t pid;
596 
597   /* We declare these to be volatile to avoid warnings from gcc about
598      them being clobbered by vfork.  */
599   volatile int sleep_interval;
600   volatile int retries;
601 
602   /* We vfork and then set environ in the child before calling execvp.
603      This clobbers the parent's environ so we need to restore it.
604      It would be nice to use one of the exec* functions that takes an
605      environment as a parameter, but that may have portability issues.  */
606   char **save_environ = environ;
607 
608   sleep_interval = 1;
609   pid = -1;
610   for (retries = 0; retries < 4; ++retries)
611     {
612       pid = vfork ();
613       if (pid >= 0)
614 	break;
615       sleep (sleep_interval);
616       sleep_interval *= 2;
617     }
618 
619   switch (pid)
620     {
621     case -1:
622       *err = errno;
623       *errmsg = VFORK_STRING;
624       return (pid_t) -1;
625 
626     case 0:
627       /* Child process.  */
628       if (in != STDIN_FILE_NO)
629 	{
630 	  if (dup2 (in, STDIN_FILE_NO) < 0)
631 	    pex_child_error (obj, executable, "dup2", errno);
632 	  if (close (in) < 0)
633 	    pex_child_error (obj, executable, "close", errno);
634 	}
635       if (out != STDOUT_FILE_NO)
636 	{
637 	  if (dup2 (out, STDOUT_FILE_NO) < 0)
638 	    pex_child_error (obj, executable, "dup2", errno);
639 	  if (close (out) < 0)
640 	    pex_child_error (obj, executable, "close", errno);
641 	}
642       if (errdes != STDERR_FILE_NO)
643 	{
644 	  if (dup2 (errdes, STDERR_FILE_NO) < 0)
645 	    pex_child_error (obj, executable, "dup2", errno);
646 	  if (close (errdes) < 0)
647 	    pex_child_error (obj, executable, "close", errno);
648 	}
649       if (toclose >= 0)
650 	{
651 	  if (close (toclose) < 0)
652 	    pex_child_error (obj, executable, "close", errno);
653 	}
654       if ((flags & PEX_STDERR_TO_STDOUT) != 0)
655 	{
656 	  if (dup2 (STDOUT_FILE_NO, STDERR_FILE_NO) < 0)
657 	    pex_child_error (obj, executable, "dup2", errno);
658 	}
659 
660       if (env)
661 	{
662 	  /* NOTE: In a standard vfork implementation this clobbers the
663 	     parent's copy of environ "too" (in reality there's only one copy).
664 	     This is ok as we restore it below.  */
665 	  environ = (char**) env;
666 	}
667 
668       if ((flags & PEX_SEARCH) != 0)
669 	{
670 	  execvp (executable, to_ptr32 (argv));
671 	  pex_child_error (obj, executable, "execvp", errno);
672 	}
673       else
674 	{
675 	  execv (executable, to_ptr32 (argv));
676 	  pex_child_error (obj, executable, "execv", errno);
677 	}
678 
679       /* NOTREACHED */
680       return (pid_t) -1;
681 
682     default:
683       /* Parent process.  */
684 
685       /* Restore environ.
686 	 Note that the parent either doesn't run until the child execs/exits
687 	 (standard vfork behaviour), or if it does run then vfork is behaving
688 	 more like fork.  In either case we needn't worry about clobbering
689 	 the child's copy of environ.  */
690       environ = save_environ;
691 
692       if (in != STDIN_FILE_NO)
693 	{
694 	  if (close (in) < 0)
695 	    {
696 	      *err = errno;
697 	      *errmsg = "close";
698 	      return (pid_t) -1;
699 	    }
700 	}
701       if (out != STDOUT_FILE_NO)
702 	{
703 	  if (close (out) < 0)
704 	    {
705 	      *err = errno;
706 	      *errmsg = "close";
707 	      return (pid_t) -1;
708 	    }
709 	}
710       if (errdes != STDERR_FILE_NO)
711 	{
712 	  if (close (errdes) < 0)
713 	    {
714 	      *err = errno;
715 	      *errmsg = "close";
716 	      return (pid_t) -1;
717 	    }
718 	}
719 
720       return pid;
721     }
722 }
723 #endif /* SPAWN */
724 
725 /* Wait for a child process to complete.  */
726 
727 static int
pex_unix_wait(struct pex_obj * obj,pid_t pid,int * status,struct pex_time * time,int done,const char ** errmsg,int * err)728 pex_unix_wait (struct pex_obj *obj, pid_t pid, int *status,
729 	       struct pex_time *time, int done, const char **errmsg,
730 	       int *err)
731 {
732   /* If we are cleaning up when the caller didn't retrieve process
733      status for some reason, encourage the process to go away.  */
734   if (done)
735     kill (pid, SIGTERM);
736 
737   if (pex_wait (obj, pid, status, time) < 0)
738     {
739       *err = errno;
740       *errmsg = "wait";
741       return -1;
742     }
743 
744   return 0;
745 }
746 
747 /* Create a pipe.  */
748 
749 static int
pex_unix_pipe(struct pex_obj * obj ATTRIBUTE_UNUSED,int * p,int binary ATTRIBUTE_UNUSED)750 pex_unix_pipe (struct pex_obj *obj ATTRIBUTE_UNUSED, int *p,
751 	       int binary ATTRIBUTE_UNUSED)
752 {
753   return pipe (p);
754 }
755 
756 /* Get a FILE pointer to read from a file descriptor.  */
757 
758 static FILE *
pex_unix_fdopenr(struct pex_obj * obj ATTRIBUTE_UNUSED,int fd,int binary ATTRIBUTE_UNUSED)759 pex_unix_fdopenr (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd,
760 		  int binary ATTRIBUTE_UNUSED)
761 {
762   return fdopen (fd, "r");
763 }
764 
765 static FILE *
pex_unix_fdopenw(struct pex_obj * obj ATTRIBUTE_UNUSED,int fd,int binary ATTRIBUTE_UNUSED)766 pex_unix_fdopenw (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd,
767 		  int binary ATTRIBUTE_UNUSED)
768 {
769   if (fcntl (fd, F_SETFD, FD_CLOEXEC) < 0)
770     return NULL;
771   return fdopen (fd, "w");
772 }
773 
774 static void
pex_unix_cleanup(struct pex_obj * obj ATTRIBUTE_UNUSED)775 pex_unix_cleanup (struct pex_obj *obj ATTRIBUTE_UNUSED)
776 {
777 #if !defined (HAVE_WAIT4) && !defined (HAVE_WAITPID)
778   while (obj->sysdep != NULL)
779     {
780       struct status_list *this;
781       struct status_list *next;
782 
783       this = (struct status_list *) obj->sysdep;
784       next = this->next;
785       free (this);
786       obj->sysdep = (void *) next;
787     }
788 #endif
789 }
790