1------------------------------------------------------------------------------ 2-- -- 3-- GNAT LIBRARY COMPONENTS -- 4-- -- 5-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_KEYS -- 6-- -- 7-- B o d y -- 8-- -- 9-- Copyright (C) 2004-2018, Free Software Foundation, Inc. -- 10-- -- 11-- GNAT is free software; you can redistribute it and/or modify it under -- 12-- terms of the GNU General Public License as published by the Free Soft- -- 13-- ware Foundation; either version 3, or (at your option) any later ver- -- 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- 15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- 16-- or FITNESS FOR A PARTICULAR PURPOSE. -- 17-- -- 18-- As a special exception under Section 7 of GPL version 3, you are granted -- 19-- additional permissions described in the GCC Runtime Library Exception, -- 20-- version 3.1, as published by the Free Software Foundation. -- 21-- -- 22-- You should have received a copy of the GNU General Public License and -- 23-- a copy of the GCC Runtime Library Exception along with this program; -- 24-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- 25-- <http://www.gnu.org/licenses/>. -- 26-- -- 27-- This unit was originally developed by Matthew J Heaney. -- 28------------------------------------------------------------------------------ 29 30package body Ada.Containers.Red_Black_Trees.Generic_Keys is 31 32 pragma Warnings (Off, "variable ""Busy*"" is not referenced"); 33 pragma Warnings (Off, "variable ""Lock*"" is not referenced"); 34 -- See comment in Ada.Containers.Helpers 35 36 package Ops renames Tree_Operations; 37 38 ------------- 39 -- Ceiling -- 40 ------------- 41 42 -- AKA Lower_Bound 43 44 function Ceiling (Tree : Tree_Type; Key : Key_Type) return Node_Access is 45 -- Per AI05-0022, the container implementation is required to detect 46 -- element tampering by a generic actual subprogram. 47 48 Lock : With_Lock (Tree.TC'Unrestricted_Access); 49 50 Y : Node_Access; 51 X : Node_Access; 52 53 begin 54 -- If the container is empty, return a result immediately, so that we do 55 -- not manipulate the tamper bits unnecessarily. 56 57 if Tree.Root = null then 58 return null; 59 end if; 60 61 X := Tree.Root; 62 while X /= null loop 63 if Is_Greater_Key_Node (Key, X) then 64 X := Ops.Right (X); 65 else 66 Y := X; 67 X := Ops.Left (X); 68 end if; 69 end loop; 70 71 return Y; 72 end Ceiling; 73 74 ---------- 75 -- Find -- 76 ---------- 77 78 function Find (Tree : Tree_Type; Key : Key_Type) return Node_Access is 79 -- Per AI05-0022, the container implementation is required to detect 80 -- element tampering by a generic actual subprogram. 81 82 Lock : With_Lock (Tree.TC'Unrestricted_Access); 83 84 Y : Node_Access; 85 X : Node_Access; 86 87 begin 88 -- If the container is empty, return a result immediately, so that we do 89 -- not manipulate the tamper bits unnecessarily. 90 91 if Tree.Root = null then 92 return null; 93 end if; 94 95 X := Tree.Root; 96 while X /= null loop 97 if Is_Greater_Key_Node (Key, X) then 98 X := Ops.Right (X); 99 else 100 Y := X; 101 X := Ops.Left (X); 102 end if; 103 end loop; 104 105 if Y = null or else Is_Less_Key_Node (Key, Y) then 106 return null; 107 else 108 return Y; 109 end if; 110 end Find; 111 112 ----------- 113 -- Floor -- 114 ----------- 115 116 function Floor (Tree : Tree_Type; Key : Key_Type) return Node_Access is 117 -- Per AI05-0022, the container implementation is required to detect 118 -- element tampering by a generic actual subprogram. 119 120 Lock : With_Lock (Tree.TC'Unrestricted_Access); 121 122 Y : Node_Access; 123 X : Node_Access; 124 125 begin 126 -- If the container is empty, return a result immediately, so that we do 127 -- not manipulate the tamper bits unnecessarily. 128 129 if Tree.Root = null then 130 return null; 131 end if; 132 133 X := Tree.Root; 134 while X /= null loop 135 if Is_Less_Key_Node (Key, X) then 136 X := Ops.Left (X); 137 else 138 Y := X; 139 X := Ops.Right (X); 140 end if; 141 end loop; 142 143 return Y; 144 end Floor; 145 146 -------------------------------- 147 -- Generic_Conditional_Insert -- 148 -------------------------------- 149 150 procedure Generic_Conditional_Insert 151 (Tree : in out Tree_Type; 152 Key : Key_Type; 153 Node : out Node_Access; 154 Inserted : out Boolean) 155 is 156 X : Node_Access; 157 Y : Node_Access; 158 159 Compare : Boolean; 160 161 begin 162 -- This is a "conditional" insertion, meaning that the insertion request 163 -- can "fail" in the sense that no new node is created. If the Key is 164 -- equivalent to an existing node, then we return the existing node and 165 -- Inserted is set to False. Otherwise, we allocate a new node (via 166 -- Insert_Post) and Inserted is set to True. 167 168 -- Note that we are testing for equivalence here, not equality. Key must 169 -- be strictly less than its next neighbor, and strictly greater than 170 -- its previous neighbor, in order for the conditional insertion to 171 -- succeed. 172 173 -- Handle insertion into an empty container as a special case, so that 174 -- we do not manipulate the tamper bits unnecessarily. 175 176 if Tree.Root = null then 177 Insert_Post (Tree, null, True, Node); 178 Inserted := True; 179 return; 180 end if; 181 182 -- We search the tree to find the nearest neighbor of Key, which is 183 -- either the smallest node greater than Key (Inserted is True), or the 184 -- largest node less or equivalent to Key (Inserted is False). 185 186 declare 187 Lock : With_Lock (Tree.TC'Unrestricted_Access); 188 begin 189 X := Tree.Root; 190 Y := null; 191 Inserted := True; 192 while X /= null loop 193 Y := X; 194 Inserted := Is_Less_Key_Node (Key, X); 195 X := (if Inserted then Ops.Left (X) else Ops.Right (X)); 196 end loop; 197 end; 198 199 if Inserted then 200 201 -- Key is less than Y. If Y is the first node in the tree, then there 202 -- are no other nodes that we need to search for, and we insert a new 203 -- node into the tree. 204 205 if Y = Tree.First then 206 Insert_Post (Tree, Y, True, Node); 207 return; 208 end if; 209 210 -- Y is the next nearest-neighbor of Key. We know that Key is not 211 -- equivalent to Y (because Key is strictly less than Y), so we move 212 -- to the previous node, the nearest-neighbor just smaller or 213 -- equivalent to Key. 214 215 Node := Ops.Previous (Y); 216 217 else 218 -- Y is the previous nearest-neighbor of Key. We know that Key is not 219 -- less than Y, which means either that Key is equivalent to Y, or 220 -- greater than Y. 221 222 Node := Y; 223 end if; 224 225 -- Key is equivalent to or greater than Node. We must resolve which is 226 -- the case, to determine whether the conditional insertion succeeds. 227 228 declare 229 Lock : With_Lock (Tree.TC'Unrestricted_Access); 230 begin 231 Compare := Is_Greater_Key_Node (Key, Node); 232 end; 233 234 if Compare then 235 236 -- Key is strictly greater than Node, which means that Key is not 237 -- equivalent to Node. In this case, the insertion succeeds, and we 238 -- insert a new node into the tree. 239 240 Insert_Post (Tree, Y, Inserted, Node); 241 Inserted := True; 242 return; 243 end if; 244 245 -- Key is equivalent to Node. This is a conditional insertion, so we do 246 -- not insert a new node in this case. We return the existing node and 247 -- report that no insertion has occurred. 248 249 Inserted := False; 250 end Generic_Conditional_Insert; 251 252 ------------------------------------------ 253 -- Generic_Conditional_Insert_With_Hint -- 254 ------------------------------------------ 255 256 procedure Generic_Conditional_Insert_With_Hint 257 (Tree : in out Tree_Type; 258 Position : Node_Access; 259 Key : Key_Type; 260 Node : out Node_Access; 261 Inserted : out Boolean) 262 is 263 Test : Node_Access; 264 Compare : Boolean; 265 266 begin 267 -- The purpose of a hint is to avoid a search from the root of 268 -- tree. If we have it hint it means we only need to traverse the 269 -- subtree rooted at the hint to find the nearest neighbor. Note 270 -- that finding the neighbor means merely walking the tree; this 271 -- is not a search and the only comparisons that occur are with 272 -- the hint and its neighbor. 273 274 -- Handle insertion into an empty container as a special case, so that 275 -- we do not manipulate the tamper bits unnecessarily. 276 277 if Tree.Root = null then 278 Insert_Post (Tree, null, True, Node); 279 Inserted := True; 280 return; 281 end if; 282 283 -- If Position is null, this is interpreted to mean that Key is large 284 -- relative to the nodes in the tree. If Key is greater than the last 285 -- node in the tree, then we're done; otherwise the hint was "wrong" and 286 -- we must search. 287 288 if Position = null then -- largest 289 declare 290 Lock : With_Lock (Tree.TC'Unrestricted_Access); 291 begin 292 Compare := Is_Greater_Key_Node (Key, Tree.Last); 293 end; 294 295 if Compare then 296 Insert_Post (Tree, Tree.Last, False, Node); 297 Inserted := True; 298 else 299 Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted); 300 end if; 301 302 return; 303 end if; 304 305 pragma Assert (Tree.Length > 0); 306 307 -- A hint can either name the node that immediately follows Key, 308 -- or immediately precedes Key. We first test whether Key is 309 -- less than the hint, and if so we compare Key to the node that 310 -- precedes the hint. If Key is both less than the hint and 311 -- greater than the hint's preceding neighbor, then we're done; 312 -- otherwise we must search. 313 314 -- Note also that a hint can either be an anterior node or a leaf 315 -- node. A new node is always inserted at the bottom of the tree 316 -- (at least prior to rebalancing), becoming the new left or 317 -- right child of leaf node (which prior to the insertion must 318 -- necessarily be null, since this is a leaf). If the hint names 319 -- an anterior node then its neighbor must be a leaf, and so 320 -- (here) we insert after the neighbor. If the hint names a leaf 321 -- then its neighbor must be anterior and so we insert before the 322 -- hint. 323 324 declare 325 Lock : With_Lock (Tree.TC'Unrestricted_Access); 326 begin 327 Compare := Is_Less_Key_Node (Key, Position); 328 end; 329 330 if Compare then 331 Test := Ops.Previous (Position); -- "before" 332 333 if Test = null then -- new first node 334 Insert_Post (Tree, Tree.First, True, Node); 335 336 Inserted := True; 337 return; 338 end if; 339 340 declare 341 Lock : With_Lock (Tree.TC'Unrestricted_Access); 342 begin 343 Compare := Is_Greater_Key_Node (Key, Test); 344 end; 345 346 if Compare then 347 if Ops.Right (Test) = null then 348 Insert_Post (Tree, Test, False, Node); 349 else 350 Insert_Post (Tree, Position, True, Node); 351 end if; 352 353 Inserted := True; 354 355 else 356 Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted); 357 end if; 358 359 return; 360 end if; 361 362 -- We know that Key isn't less than the hint so we try again, this time 363 -- to see if it's greater than the hint. If so we compare Key to the 364 -- node that follows the hint. If Key is both greater than the hint and 365 -- less than the hint's next neighbor, then we're done; otherwise we 366 -- must search. 367 368 declare 369 Lock : With_Lock (Tree.TC'Unrestricted_Access); 370 begin 371 Compare := Is_Greater_Key_Node (Key, Position); 372 end; 373 374 if Compare then 375 Test := Ops.Next (Position); -- "after" 376 377 if Test = null then -- new last node 378 Insert_Post (Tree, Tree.Last, False, Node); 379 380 Inserted := True; 381 return; 382 end if; 383 384 declare 385 Lock : With_Lock (Tree.TC'Unrestricted_Access); 386 begin 387 Compare := Is_Less_Key_Node (Key, Test); 388 end; 389 390 if Compare then 391 if Ops.Right (Position) = null then 392 Insert_Post (Tree, Position, False, Node); 393 else 394 Insert_Post (Tree, Test, True, Node); 395 end if; 396 397 Inserted := True; 398 399 else 400 Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted); 401 end if; 402 403 return; 404 end if; 405 406 -- We know that Key is neither less than the hint nor greater than the 407 -- hint, and that's the definition of equivalence. There's nothing else 408 -- we need to do, since a search would just reach the same conclusion. 409 410 Node := Position; 411 Inserted := False; 412 end Generic_Conditional_Insert_With_Hint; 413 414 ------------------------- 415 -- Generic_Insert_Post -- 416 ------------------------- 417 418 procedure Generic_Insert_Post 419 (Tree : in out Tree_Type; 420 Y : Node_Access; 421 Before : Boolean; 422 Z : out Node_Access) 423 is 424 begin 425 if Checks and then Tree.Length = Count_Type'Last then 426 raise Constraint_Error with "too many elements"; 427 end if; 428 429 TC_Check (Tree.TC); 430 431 Z := New_Node; 432 pragma Assert (Z /= null); 433 pragma Assert (Ops.Color (Z) = Red); 434 435 if Y = null then 436 pragma Assert (Tree.Length = 0); 437 pragma Assert (Tree.Root = null); 438 pragma Assert (Tree.First = null); 439 pragma Assert (Tree.Last = null); 440 441 Tree.Root := Z; 442 Tree.First := Z; 443 Tree.Last := Z; 444 445 elsif Before then 446 pragma Assert (Ops.Left (Y) = null); 447 448 Ops.Set_Left (Y, Z); 449 450 if Y = Tree.First then 451 Tree.First := Z; 452 end if; 453 454 else 455 pragma Assert (Ops.Right (Y) = null); 456 457 Ops.Set_Right (Y, Z); 458 459 if Y = Tree.Last then 460 Tree.Last := Z; 461 end if; 462 end if; 463 464 Ops.Set_Parent (Z, Y); 465 Ops.Rebalance_For_Insert (Tree, Z); 466 Tree.Length := Tree.Length + 1; 467 end Generic_Insert_Post; 468 469 ----------------------- 470 -- Generic_Iteration -- 471 ----------------------- 472 473 procedure Generic_Iteration 474 (Tree : Tree_Type; 475 Key : Key_Type) 476 is 477 procedure Iterate (Node : Node_Access); 478 479 ------------- 480 -- Iterate -- 481 ------------- 482 483 procedure Iterate (Node : Node_Access) is 484 N : Node_Access; 485 begin 486 N := Node; 487 while N /= null loop 488 if Is_Less_Key_Node (Key, N) then 489 N := Ops.Left (N); 490 elsif Is_Greater_Key_Node (Key, N) then 491 N := Ops.Right (N); 492 else 493 Iterate (Ops.Left (N)); 494 Process (N); 495 N := Ops.Right (N); 496 end if; 497 end loop; 498 end Iterate; 499 500 -- Start of processing for Generic_Iteration 501 502 begin 503 Iterate (Tree.Root); 504 end Generic_Iteration; 505 506 ------------------------------- 507 -- Generic_Reverse_Iteration -- 508 ------------------------------- 509 510 procedure Generic_Reverse_Iteration 511 (Tree : Tree_Type; 512 Key : Key_Type) 513 is 514 procedure Iterate (Node : Node_Access); 515 516 ------------- 517 -- Iterate -- 518 ------------- 519 520 procedure Iterate (Node : Node_Access) is 521 N : Node_Access; 522 begin 523 N := Node; 524 while N /= null loop 525 if Is_Less_Key_Node (Key, N) then 526 N := Ops.Left (N); 527 elsif Is_Greater_Key_Node (Key, N) then 528 N := Ops.Right (N); 529 else 530 Iterate (Ops.Right (N)); 531 Process (N); 532 N := Ops.Left (N); 533 end if; 534 end loop; 535 end Iterate; 536 537 -- Start of processing for Generic_Reverse_Iteration 538 539 begin 540 Iterate (Tree.Root); 541 end Generic_Reverse_Iteration; 542 543 ---------------------------------- 544 -- Generic_Unconditional_Insert -- 545 ---------------------------------- 546 547 procedure Generic_Unconditional_Insert 548 (Tree : in out Tree_Type; 549 Key : Key_Type; 550 Node : out Node_Access) 551 is 552 Y : Node_Access; 553 X : Node_Access; 554 555 Before : Boolean; 556 557 begin 558 Y := null; 559 Before := False; 560 561 X := Tree.Root; 562 while X /= null loop 563 Y := X; 564 Before := Is_Less_Key_Node (Key, X); 565 X := (if Before then Ops.Left (X) else Ops.Right (X)); 566 end loop; 567 568 Insert_Post (Tree, Y, Before, Node); 569 end Generic_Unconditional_Insert; 570 571 -------------------------------------------- 572 -- Generic_Unconditional_Insert_With_Hint -- 573 -------------------------------------------- 574 575 procedure Generic_Unconditional_Insert_With_Hint 576 (Tree : in out Tree_Type; 577 Hint : Node_Access; 578 Key : Key_Type; 579 Node : out Node_Access) 580 is 581 begin 582 -- There are fewer constraints for an unconditional insertion 583 -- than for a conditional insertion, since we allow duplicate 584 -- keys. So instead of having to check (say) whether Key is 585 -- (strictly) greater than the hint's previous neighbor, here we 586 -- allow Key to be equal to or greater than the previous node. 587 588 -- There is the issue of what to do if Key is equivalent to the 589 -- hint. Does the new node get inserted before or after the hint? 590 -- We decide that it gets inserted after the hint, reasoning that 591 -- this is consistent with behavior for non-hint insertion, which 592 -- inserts a new node after existing nodes with equivalent keys. 593 594 -- First we check whether the hint is null, which is interpreted 595 -- to mean that Key is large relative to existing nodes. 596 -- Following our rule above, if Key is equal to or greater than 597 -- the last node, then we insert the new node immediately after 598 -- last. (We don't have an operation for testing whether a key is 599 -- "equal to or greater than" a node, so we must say instead "not 600 -- less than", which is equivalent.) 601 602 if Hint = null then -- largest 603 if Tree.Last = null then 604 Insert_Post (Tree, null, False, Node); 605 elsif Is_Less_Key_Node (Key, Tree.Last) then 606 Unconditional_Insert_Sans_Hint (Tree, Key, Node); 607 else 608 Insert_Post (Tree, Tree.Last, False, Node); 609 end if; 610 611 return; 612 end if; 613 614 pragma Assert (Tree.Length > 0); 615 616 -- We decide here whether to insert the new node prior to the 617 -- hint. Key could be equivalent to the hint, so in theory we 618 -- could write the following test as "not greater than" (same as 619 -- "less than or equal to"). If Key were equivalent to the hint, 620 -- that would mean that the new node gets inserted before an 621 -- equivalent node. That wouldn't break any container invariants, 622 -- but our rule above says that new nodes always get inserted 623 -- after equivalent nodes. So here we test whether Key is both 624 -- less than the hint and equal to or greater than the hint's 625 -- previous neighbor, and if so insert it before the hint. 626 627 if Is_Less_Key_Node (Key, Hint) then 628 declare 629 Before : constant Node_Access := Ops.Previous (Hint); 630 begin 631 if Before = null then 632 Insert_Post (Tree, Hint, True, Node); 633 elsif Is_Less_Key_Node (Key, Before) then 634 Unconditional_Insert_Sans_Hint (Tree, Key, Node); 635 elsif Ops.Right (Before) = null then 636 Insert_Post (Tree, Before, False, Node); 637 else 638 Insert_Post (Tree, Hint, True, Node); 639 end if; 640 end; 641 642 return; 643 end if; 644 645 -- We know that Key isn't less than the hint, so it must be equal 646 -- or greater. So we just test whether Key is less than or equal 647 -- to (same as "not greater than") the hint's next neighbor, and 648 -- if so insert it after the hint. 649 650 declare 651 After : constant Node_Access := Ops.Next (Hint); 652 begin 653 if After = null then 654 Insert_Post (Tree, Hint, False, Node); 655 elsif Is_Greater_Key_Node (Key, After) then 656 Unconditional_Insert_Sans_Hint (Tree, Key, Node); 657 elsif Ops.Right (Hint) = null then 658 Insert_Post (Tree, Hint, False, Node); 659 else 660 Insert_Post (Tree, After, True, Node); 661 end if; 662 end; 663 end Generic_Unconditional_Insert_With_Hint; 664 665 ----------------- 666 -- Upper_Bound -- 667 ----------------- 668 669 function Upper_Bound 670 (Tree : Tree_Type; 671 Key : Key_Type) return Node_Access 672 is 673 Y : Node_Access; 674 X : Node_Access; 675 676 begin 677 X := Tree.Root; 678 while X /= null loop 679 if Is_Less_Key_Node (Key, X) then 680 Y := X; 681 X := Ops.Left (X); 682 else 683 X := Ops.Right (X); 684 end if; 685 end loop; 686 687 return Y; 688 end Upper_Bound; 689 690end Ada.Containers.Red_Black_Trees.Generic_Keys; 691