1------------------------------------------------------------------------------ 2-- -- 3-- GNAT RUN-TIME COMPONENTS -- 4-- -- 5-- S Y S T E M . E X P L L I -- 6-- -- 7-- B o d y -- 8-- -- 9-- Copyright (C) 1992-2018, Free Software Foundation, Inc. -- 10-- -- 11-- GNAT is free software; you can redistribute it and/or modify it under -- 12-- terms of the GNU General Public License as published by the Free Soft- -- 13-- ware Foundation; either version 3, or (at your option) any later ver- -- 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- 15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- 16-- or FITNESS FOR A PARTICULAR PURPOSE. -- 17-- -- 18-- As a special exception under Section 7 of GPL version 3, you are granted -- 19-- additional permissions described in the GCC Runtime Library Exception, -- 20-- version 3.1, as published by the Free Software Foundation. -- 21-- -- 22-- You should have received a copy of the GNU General Public License and -- 23-- a copy of the GCC Runtime Library Exception along with this program; -- 24-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- 25-- <http://www.gnu.org/licenses/>. -- 26-- -- 27-- GNAT was originally developed by the GNAT team at New York University. -- 28-- Extensive contributions were provided by Ada Core Technologies Inc. -- 29-- -- 30------------------------------------------------------------------------------ 31 32package body System.Exp_LLI is 33 34 --------------------------- 35 -- Exp_Long_Long_Integer -- 36 --------------------------- 37 38 -- Note that negative exponents get a constraint error because the 39 -- subtype of the Right argument (the exponent) is Natural. 40 41 function Exp_Long_Long_Integer 42 (Left : Long_Long_Integer; 43 Right : Natural) 44 return Long_Long_Integer 45 is 46 Result : Long_Long_Integer := 1; 47 Factor : Long_Long_Integer := Left; 48 Exp : Natural := Right; 49 50 begin 51 -- We use the standard logarithmic approach, Exp gets shifted right 52 -- testing successive low order bits and Factor is the value of the 53 -- base raised to the next power of 2. 54 55 -- Note: it is not worth special casing base values -1, 0, +1 since 56 -- the expander does this when the base is a literal, and other cases 57 -- will be extremely rare. 58 59 if Exp /= 0 then 60 loop 61 if Exp rem 2 /= 0 then 62 declare 63 pragma Unsuppress (All_Checks); 64 begin 65 Result := Result * Factor; 66 end; 67 end if; 68 69 Exp := Exp / 2; 70 exit when Exp = 0; 71 72 declare 73 pragma Unsuppress (All_Checks); 74 begin 75 Factor := Factor * Factor; 76 end; 77 end loop; 78 end if; 79 80 return Result; 81 end Exp_Long_Long_Integer; 82 83end System.Exp_LLI; 84