1 /* Optimize by combining instructions for GNU compiler.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21    Portable Optimizer, but redone to work on our list-structured
22    representation for RTL instead of their string representation.
23 
24    The LOG_LINKS of each insn identify the most recent assignment
25    to each REG used in the insn.  It is a list of previous insns,
26    each of which contains a SET for a REG that is used in this insn
27    and not used or set in between.  LOG_LINKs never cross basic blocks.
28    They were set up by the preceding pass (lifetime analysis).
29 
30    We try to combine each pair of insns joined by a logical link.
31    We also try to combine triplets of insns A, B and C when C has
32    a link back to B and B has a link back to A.  Likewise for a
33    small number of quadruplets of insns A, B, C and D for which
34    there's high likelihood of success.
35 
36    LOG_LINKS does not have links for use of the CC0.  They don't
37    need to, because the insn that sets the CC0 is always immediately
38    before the insn that tests it.  So we always regard a branch
39    insn as having a logical link to the preceding insn.  The same is true
40    for an insn explicitly using CC0.
41 
42    We check (with modified_between_p) to avoid combining in such a way
43    as to move a computation to a place where its value would be different.
44 
45    Combination is done by mathematically substituting the previous
46    insn(s) values for the regs they set into the expressions in
47    the later insns that refer to these regs.  If the result is a valid insn
48    for our target machine, according to the machine description,
49    we install it, delete the earlier insns, and update the data flow
50    information (LOG_LINKS and REG_NOTES) for what we did.
51 
52    There are a few exceptions where the dataflow information isn't
53    completely updated (however this is only a local issue since it is
54    regenerated before the next pass that uses it):
55 
56    - reg_live_length is not updated
57    - reg_n_refs is not adjusted in the rare case when a register is
58      no longer required in a computation
59    - there are extremely rare cases (see distribute_notes) when a
60      REG_DEAD note is lost
61    - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62      removed because there is no way to know which register it was
63      linking
64 
65    To simplify substitution, we combine only when the earlier insn(s)
66    consist of only a single assignment.  To simplify updating afterward,
67    we never combine when a subroutine call appears in the middle.
68 
69    Since we do not represent assignments to CC0 explicitly except when that
70    is all an insn does, there is no LOG_LINKS entry in an insn that uses
71    the condition code for the insn that set the condition code.
72    Fortunately, these two insns must be consecutive.
73    Therefore, every JUMP_INSN is taken to have an implicit logical link
74    to the preceding insn.  This is not quite right, since non-jumps can
75    also use the condition code; but in practice such insns would not
76    combine anyway.  */
77 
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107 
108 /* Number of attempts to combine instructions in this function.  */
109 
110 static int combine_attempts;
111 
112 /* Number of attempts that got as far as substitution in this function.  */
113 
114 static int combine_merges;
115 
116 /* Number of instructions combined with added SETs in this function.  */
117 
118 static int combine_extras;
119 
120 /* Number of instructions combined in this function.  */
121 
122 static int combine_successes;
123 
124 /* Totals over entire compilation.  */
125 
126 static int total_attempts, total_merges, total_extras, total_successes;
127 
128 /* combine_instructions may try to replace the right hand side of the
129    second instruction with the value of an associated REG_EQUAL note
130    before throwing it at try_combine.  That is problematic when there
131    is a REG_DEAD note for a register used in the old right hand side
132    and can cause distribute_notes to do wrong things.  This is the
133    second instruction if it has been so modified, null otherwise.  */
134 
135 static rtx_insn *i2mod;
136 
137 /* When I2MOD is nonnull, this is a copy of the old right hand side.  */
138 
139 static rtx i2mod_old_rhs;
140 
141 /* When I2MOD is nonnull, this is a copy of the new right hand side.  */
142 
143 static rtx i2mod_new_rhs;
144 
145 struct reg_stat_type {
146   /* Record last point of death of (hard or pseudo) register n.  */
147   rtx_insn			*last_death;
148 
149   /* Record last point of modification of (hard or pseudo) register n.  */
150   rtx_insn			*last_set;
151 
152   /* The next group of fields allows the recording of the last value assigned
153      to (hard or pseudo) register n.  We use this information to see if an
154      operation being processed is redundant given a prior operation performed
155      on the register.  For example, an `and' with a constant is redundant if
156      all the zero bits are already known to be turned off.
157 
158      We use an approach similar to that used by cse, but change it in the
159      following ways:
160 
161      (1) We do not want to reinitialize at each label.
162      (2) It is useful, but not critical, to know the actual value assigned
163 	 to a register.  Often just its form is helpful.
164 
165      Therefore, we maintain the following fields:
166 
167      last_set_value		the last value assigned
168      last_set_label		records the value of label_tick when the
169 				register was assigned
170      last_set_table_tick	records the value of label_tick when a
171 				value using the register is assigned
172      last_set_invalid		set to nonzero when it is not valid
173 				to use the value of this register in some
174 				register's value
175 
176      To understand the usage of these tables, it is important to understand
177      the distinction between the value in last_set_value being valid and
178      the register being validly contained in some other expression in the
179      table.
180 
181      (The next two parameters are out of date).
182 
183      reg_stat[i].last_set_value is valid if it is nonzero, and either
184      reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 
186      Register I may validly appear in any expression returned for the value
187      of another register if reg_n_sets[i] is 1.  It may also appear in the
188      value for register J if reg_stat[j].last_set_invalid is zero, or
189      reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 
191      If an expression is found in the table containing a register which may
192      not validly appear in an expression, the register is replaced by
193      something that won't match, (clobber (const_int 0)).  */
194 
195   /* Record last value assigned to (hard or pseudo) register n.  */
196 
197   rtx				last_set_value;
198 
199   /* Record the value of label_tick when an expression involving register n
200      is placed in last_set_value.  */
201 
202   int				last_set_table_tick;
203 
204   /* Record the value of label_tick when the value for register n is placed in
205      last_set_value.  */
206 
207   int				last_set_label;
208 
209   /* These fields are maintained in parallel with last_set_value and are
210      used to store the mode in which the register was last set, the bits
211      that were known to be zero when it was last set, and the number of
212      sign bits copies it was known to have when it was last set.  */
213 
214   unsigned HOST_WIDE_INT	last_set_nonzero_bits;
215   char				last_set_sign_bit_copies;
216   ENUM_BITFIELD(machine_mode)	last_set_mode : 8;
217 
218   /* Set nonzero if references to register n in expressions should not be
219      used.  last_set_invalid is set nonzero when this register is being
220      assigned to and last_set_table_tick == label_tick.  */
221 
222   char				last_set_invalid;
223 
224   /* Some registers that are set more than once and used in more than one
225      basic block are nevertheless always set in similar ways.  For example,
226      a QImode register may be loaded from memory in two places on a machine
227      where byte loads zero extend.
228 
229      We record in the following fields if a register has some leading bits
230      that are always equal to the sign bit, and what we know about the
231      nonzero bits of a register, specifically which bits are known to be
232      zero.
233 
234      If an entry is zero, it means that we don't know anything special.  */
235 
236   unsigned char			sign_bit_copies;
237 
238   unsigned HOST_WIDE_INT	nonzero_bits;
239 
240   /* Record the value of the label_tick when the last truncation
241      happened.  The field truncated_to_mode is only valid if
242      truncation_label == label_tick.  */
243 
244   int				truncation_label;
245 
246   /* Record the last truncation seen for this register.  If truncation
247      is not a nop to this mode we might be able to save an explicit
248      truncation if we know that value already contains a truncated
249      value.  */
250 
251   ENUM_BITFIELD(machine_mode)	truncated_to_mode : 8;
252 };
253 
254 
255 static vec<reg_stat_type> reg_stat;
256 
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258    regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259    but during combine_split_insns new pseudos can be created.  As we don't have
260    updated DF information in that case, it is hard to initialize the array
261    after growing.  The combiner only cares about REG_N_SETS (regno) == 1,
262    so instead of growing the arrays, just assume all newly created pseudos
263    during combine might be set multiple times.  */
264 
265 static unsigned int reg_n_sets_max;
266 
267 /* Record the luid of the last insn that invalidated memory
268    (anything that writes memory, and subroutine calls, but not pushes).  */
269 
270 static int mem_last_set;
271 
272 /* Record the luid of the last CALL_INSN
273    so we can tell whether a potential combination crosses any calls.  */
274 
275 static int last_call_luid;
276 
277 /* When `subst' is called, this is the insn that is being modified
278    (by combining in a previous insn).  The PATTERN of this insn
279    is still the old pattern partially modified and it should not be
280    looked at, but this may be used to examine the successors of the insn
281    to judge whether a simplification is valid.  */
282 
283 static rtx_insn *subst_insn;
284 
285 /* This is the lowest LUID that `subst' is currently dealing with.
286    get_last_value will not return a value if the register was set at or
287    after this LUID.  If not for this mechanism, we could get confused if
288    I2 or I1 in try_combine were an insn that used the old value of a register
289    to obtain a new value.  In that case, we might erroneously get the
290    new value of the register when we wanted the old one.  */
291 
292 static int subst_low_luid;
293 
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295    must consider all these registers to be always live.  */
296 
297 static HARD_REG_SET newpat_used_regs;
298 
299 /* This is an insn to which a LOG_LINKS entry has been added.  If this
300    insn is the earlier than I2 or I3, combine should rescan starting at
301    that location.  */
302 
303 static rtx_insn *added_links_insn;
304 
305 /* And similarly, for notes.  */
306 
307 static rtx_insn *added_notes_insn;
308 
309 /* Basic block in which we are performing combines.  */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
312 
313 
314 /* Length of the currently allocated uid_insn_cost array.  */
315 
316 static int max_uid_known;
317 
318 /* The following array records the insn_cost for every insn
319    in the instruction stream.  */
320 
321 static int *uid_insn_cost;
322 
323 /* The following array records the LOG_LINKS for every insn in the
324    instruction stream as struct insn_link pointers.  */
325 
326 struct insn_link {
327   rtx_insn *insn;
328   unsigned int regno;
329   struct insn_link *next;
330 };
331 
332 static struct insn_link **uid_log_links;
333 
334 static inline int
insn_uid_check(const_rtx insn)335 insn_uid_check (const_rtx insn)
336 {
337   int uid = INSN_UID (insn);
338   gcc_checking_assert (uid <= max_uid_known);
339   return uid;
340 }
341 
342 #define INSN_COST(INSN)		(uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN)		(uid_log_links[insn_uid_check (INSN)])
344 
345 #define FOR_EACH_LOG_LINK(L, INSN)				\
346   for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
347 
348 /* Links for LOG_LINKS are allocated from this obstack.  */
349 
350 static struct obstack insn_link_obstack;
351 
352 /* Allocate a link.  */
353 
354 static inline struct insn_link *
alloc_insn_link(rtx_insn * insn,unsigned int regno,struct insn_link * next)355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
356 {
357   struct insn_link *l
358     = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 					  sizeof (struct insn_link));
360   l->insn = insn;
361   l->regno = regno;
362   l->next = next;
363   return l;
364 }
365 
366 /* Incremented for each basic block.  */
367 
368 static int label_tick;
369 
370 /* Reset to label_tick for each extended basic block in scanning order.  */
371 
372 static int label_tick_ebb_start;
373 
374 /* Mode used to compute significance in reg_stat[].nonzero_bits.  It is the
375    largest integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
376 
377 static scalar_int_mode nonzero_bits_mode;
378 
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380    be safely used.  It is zero while computing them and after combine has
381    completed.  This former test prevents propagating values based on
382    previously set values, which can be incorrect if a variable is modified
383    in a loop.  */
384 
385 static int nonzero_sign_valid;
386 
387 
388 /* Record one modification to rtl structure
389    to be undone by storing old_contents into *where.  */
390 
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
392 
393 struct undo
394 {
395   struct undo *next;
396   enum undo_kind kind;
397   union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398   union { rtx *r; int *i; struct insn_link **l; } where;
399 };
400 
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402    num_undo says how many are currently recorded.
403 
404    other_insn is nonzero if we have modified some other insn in the process
405    of working on subst_insn.  It must be verified too.  */
406 
407 struct undobuf
408 {
409   struct undo *undos;
410   struct undo *frees;
411   rtx_insn *other_insn;
412 };
413 
414 static struct undobuf undobuf;
415 
416 /* Number of times the pseudo being substituted for
417    was found and replaced.  */
418 
419 static int n_occurrences;
420 
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 					 scalar_int_mode,
423 					 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 						scalar_int_mode,
426 						unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 			  rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 			      int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 			    rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 			      unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 			      scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 			  unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 				     unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 				   unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 			    HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 				 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 					     rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
486 static int reg_dead_at_p (rtx, rtx_insn *);
487 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
488 static int reg_bitfield_target_p (rtx, rtx);
489 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
490 static void distribute_links (struct insn_link *);
491 static void mark_used_regs_combine (rtx);
492 static void record_promoted_value (rtx_insn *, rtx);
493 static bool unmentioned_reg_p (rtx, rtx);
494 static void record_truncated_values (rtx *, void *);
495 static bool reg_truncated_to_mode (machine_mode, const_rtx);
496 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
497 
498 
499 /* It is not safe to use ordinary gen_lowpart in combine.
500    See comments in gen_lowpart_for_combine.  */
501 #undef RTL_HOOKS_GEN_LOWPART
502 #define RTL_HOOKS_GEN_LOWPART              gen_lowpart_for_combine
503 
504 /* Our implementation of gen_lowpart never emits a new pseudo.  */
505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT      gen_lowpart_for_combine
507 
508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
509 #define RTL_HOOKS_REG_NONZERO_REG_BITS     reg_nonzero_bits_for_combine
510 
511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES  reg_num_sign_bit_copies_for_combine
513 
514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE    reg_truncated_to_mode
516 
517 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
518 
519 
520 /* Convenience wrapper for the canonicalize_comparison target hook.
521    Target hooks cannot use enum rtx_code.  */
522 static inline void
target_canonicalize_comparison(enum rtx_code * code,rtx * op0,rtx * op1,bool op0_preserve_value)523 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
524 				bool op0_preserve_value)
525 {
526   int code_int = (int)*code;
527   targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
528   *code = (enum rtx_code)code_int;
529 }
530 
531 /* Try to split PATTERN found in INSN.  This returns NULL_RTX if
532    PATTERN can not be split.  Otherwise, it returns an insn sequence.
533    This is a wrapper around split_insns which ensures that the
534    reg_stat vector is made larger if the splitter creates a new
535    register.  */
536 
537 static rtx_insn *
combine_split_insns(rtx pattern,rtx_insn * insn)538 combine_split_insns (rtx pattern, rtx_insn *insn)
539 {
540   rtx_insn *ret;
541   unsigned int nregs;
542 
543   ret = split_insns (pattern, insn);
544   nregs = max_reg_num ();
545   if (nregs > reg_stat.length ())
546     reg_stat.safe_grow_cleared (nregs);
547   return ret;
548 }
549 
550 /* This is used by find_single_use to locate an rtx in LOC that
551    contains exactly one use of DEST, which is typically either a REG
552    or CC0.  It returns a pointer to the innermost rtx expression
553    containing DEST.  Appearances of DEST that are being used to
554    totally replace it are not counted.  */
555 
556 static rtx *
find_single_use_1(rtx dest,rtx * loc)557 find_single_use_1 (rtx dest, rtx *loc)
558 {
559   rtx x = *loc;
560   enum rtx_code code = GET_CODE (x);
561   rtx *result = NULL;
562   rtx *this_result;
563   int i;
564   const char *fmt;
565 
566   switch (code)
567     {
568     case CONST:
569     case LABEL_REF:
570     case SYMBOL_REF:
571     CASE_CONST_ANY:
572     case CLOBBER:
573       return 0;
574 
575     case SET:
576       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
577 	 of a REG that occupies all of the REG, the insn uses DEST if
578 	 it is mentioned in the destination or the source.  Otherwise, we
579 	 need just check the source.  */
580       if (GET_CODE (SET_DEST (x)) != CC0
581 	  && GET_CODE (SET_DEST (x)) != PC
582 	  && !REG_P (SET_DEST (x))
583 	  && ! (GET_CODE (SET_DEST (x)) == SUBREG
584 		&& REG_P (SUBREG_REG (SET_DEST (x)))
585 		&& !read_modify_subreg_p (SET_DEST (x))))
586 	break;
587 
588       return find_single_use_1 (dest, &SET_SRC (x));
589 
590     case MEM:
591     case SUBREG:
592       return find_single_use_1 (dest, &XEXP (x, 0));
593 
594     default:
595       break;
596     }
597 
598   /* If it wasn't one of the common cases above, check each expression and
599      vector of this code.  Look for a unique usage of DEST.  */
600 
601   fmt = GET_RTX_FORMAT (code);
602   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603     {
604       if (fmt[i] == 'e')
605 	{
606 	  if (dest == XEXP (x, i)
607 	      || (REG_P (dest) && REG_P (XEXP (x, i))
608 		  && REGNO (dest) == REGNO (XEXP (x, i))))
609 	    this_result = loc;
610 	  else
611 	    this_result = find_single_use_1 (dest, &XEXP (x, i));
612 
613 	  if (result == NULL)
614 	    result = this_result;
615 	  else if (this_result)
616 	    /* Duplicate usage.  */
617 	    return NULL;
618 	}
619       else if (fmt[i] == 'E')
620 	{
621 	  int j;
622 
623 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 	    {
625 	      if (XVECEXP (x, i, j) == dest
626 		  || (REG_P (dest)
627 		      && REG_P (XVECEXP (x, i, j))
628 		      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 		this_result = loc;
630 	      else
631 		this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632 
633 	      if (result == NULL)
634 		result = this_result;
635 	      else if (this_result)
636 		return NULL;
637 	    }
638 	}
639     }
640 
641   return result;
642 }
643 
644 
645 /* See if DEST, produced in INSN, is used only a single time in the
646    sequel.  If so, return a pointer to the innermost rtx expression in which
647    it is used.
648 
649    If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650 
651    If DEST is cc0_rtx, we look only at the next insn.  In that case, we don't
652    care about REG_DEAD notes or LOG_LINKS.
653 
654    Otherwise, we find the single use by finding an insn that has a
655    LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
656    only referenced once in that insn, we know that it must be the first
657    and last insn referencing DEST.  */
658 
659 static rtx *
find_single_use(rtx dest,rtx_insn * insn,rtx_insn ** ploc)660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662   basic_block bb;
663   rtx_insn *next;
664   rtx *result;
665   struct insn_link *link;
666 
667   if (dest == cc0_rtx)
668     {
669       next = NEXT_INSN (insn);
670       if (next == 0
671 	  || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 	return 0;
673 
674       result = find_single_use_1 (dest, &PATTERN (next));
675       if (result && ploc)
676 	*ploc = next;
677       return result;
678     }
679 
680   if (!REG_P (dest))
681     return 0;
682 
683   bb = BLOCK_FOR_INSN (insn);
684   for (next = NEXT_INSN (insn);
685        next && BLOCK_FOR_INSN (next) == bb;
686        next = NEXT_INSN (next))
687     if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688       {
689 	FOR_EACH_LOG_LINK (link, next)
690 	  if (link->insn == insn && link->regno == REGNO (dest))
691 	    break;
692 
693 	if (link)
694 	  {
695 	    result = find_single_use_1 (dest, &PATTERN (next));
696 	    if (ploc)
697 	      *ploc = next;
698 	    return result;
699 	  }
700       }
701 
702   return 0;
703 }
704 
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706    insn.  The substitution can be undone by undo_all.  If INTO is already
707    set to NEWVAL, do not record this change.  Because computing NEWVAL might
708    also call SUBST, we have to compute it before we put anything into
709    the undo table.  */
710 
711 static void
do_SUBST(rtx * into,rtx newval)712 do_SUBST (rtx *into, rtx newval)
713 {
714   struct undo *buf;
715   rtx oldval = *into;
716 
717   if (oldval == newval)
718     return;
719 
720   /* We'd like to catch as many invalid transformations here as
721      possible.  Unfortunately, there are way too many mode changes
722      that are perfectly valid, so we'd waste too much effort for
723      little gain doing the checks here.  Focus on catching invalid
724      transformations involving integer constants.  */
725   if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726       && CONST_INT_P (newval))
727     {
728       /* Sanity check that we're replacing oldval with a CONST_INT
729 	 that is a valid sign-extension for the original mode.  */
730       gcc_assert (INTVAL (newval)
731 		  == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732 
733       /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 	 CONST_INT is not valid, because after the replacement, the
735 	 original mode would be gone.  Unfortunately, we can't tell
736 	 when do_SUBST is called to replace the operand thereof, so we
737 	 perform this test on oldval instead, checking whether an
738 	 invalid replacement took place before we got here.  */
739       gcc_assert (!(GET_CODE (oldval) == SUBREG
740 		    && CONST_INT_P (SUBREG_REG (oldval))));
741       gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 		    && CONST_INT_P (XEXP (oldval, 0))));
743     }
744 
745   if (undobuf.frees)
746     buf = undobuf.frees, undobuf.frees = buf->next;
747   else
748     buf = XNEW (struct undo);
749 
750   buf->kind = UNDO_RTX;
751   buf->where.r = into;
752   buf->old_contents.r = oldval;
753   *into = newval;
754 
755   buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757 
758 #define SUBST(INTO, NEWVAL)	do_SUBST (&(INTO), (NEWVAL))
759 
760 /* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
761    for the value of a HOST_WIDE_INT value (including CONST_INT) is
762    not safe.  */
763 
764 static void
do_SUBST_INT(int * into,int newval)765 do_SUBST_INT (int *into, int newval)
766 {
767   struct undo *buf;
768   int oldval = *into;
769 
770   if (oldval == newval)
771     return;
772 
773   if (undobuf.frees)
774     buf = undobuf.frees, undobuf.frees = buf->next;
775   else
776     buf = XNEW (struct undo);
777 
778   buf->kind = UNDO_INT;
779   buf->where.i = into;
780   buf->old_contents.i = oldval;
781   *into = newval;
782 
783   buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785 
786 #define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT (&(INTO), (NEWVAL))
787 
788 /* Similar to SUBST, but just substitute the mode.  This is used when
789    changing the mode of a pseudo-register, so that any other
790    references to the entry in the regno_reg_rtx array will change as
791    well.  */
792 
793 static void
do_SUBST_MODE(rtx * into,machine_mode newval)794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796   struct undo *buf;
797   machine_mode oldval = GET_MODE (*into);
798 
799   if (oldval == newval)
800     return;
801 
802   if (undobuf.frees)
803     buf = undobuf.frees, undobuf.frees = buf->next;
804   else
805     buf = XNEW (struct undo);
806 
807   buf->kind = UNDO_MODE;
808   buf->where.r = into;
809   buf->old_contents.m = oldval;
810   adjust_reg_mode (*into, newval);
811 
812   buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814 
815 #define SUBST_MODE(INTO, NEWVAL)  do_SUBST_MODE (&(INTO), (NEWVAL))
816 
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression.  */
818 
819 static void
do_SUBST_LINK(struct insn_link ** into,struct insn_link * newval)820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822   struct undo *buf;
823   struct insn_link * oldval = *into;
824 
825   if (oldval == newval)
826     return;
827 
828   if (undobuf.frees)
829     buf = undobuf.frees, undobuf.frees = buf->next;
830   else
831     buf = XNEW (struct undo);
832 
833   buf->kind = UNDO_LINKS;
834   buf->where.l = into;
835   buf->old_contents.l = oldval;
836   *into = newval;
837 
838   buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840 
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 
843 /* Subroutine of try_combine.  Determine whether the replacement patterns
844    NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
845    than the original sequence I0, I1, I2, I3 and undobuf.other_insn.  Note
846    that I0, I1 and/or NEWI2PAT may be NULL_RTX.  Similarly, NEWOTHERPAT and
847    undobuf.other_insn may also both be NULL_RTX.  Return false if the cost
848    of all the instructions can be estimated and the replacements are more
849    expensive than the original sequence.  */
850 
851 static bool
combine_validate_cost(rtx_insn * i0,rtx_insn * i1,rtx_insn * i2,rtx_insn * i3,rtx newpat,rtx newi2pat,rtx newotherpat)852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 		       rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855   int i0_cost, i1_cost, i2_cost, i3_cost;
856   int new_i2_cost, new_i3_cost;
857   int old_cost, new_cost;
858 
859   /* Lookup the original insn_costs.  */
860   i2_cost = INSN_COST (i2);
861   i3_cost = INSN_COST (i3);
862 
863   if (i1)
864     {
865       i1_cost = INSN_COST (i1);
866       if (i0)
867 	{
868 	  i0_cost = INSN_COST (i0);
869 	  old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 		      ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 	}
872       else
873 	{
874 	  old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 		      ? i1_cost + i2_cost + i3_cost : 0);
876 	  i0_cost = 0;
877 	}
878     }
879   else
880     {
881       old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882       i1_cost = i0_cost = 0;
883     }
884 
885   /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886      correct that.  */
887   if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888     old_cost -= i1_cost;
889 
890 
891   /* Calculate the replacement insn_costs.  */
892   rtx tmp = PATTERN (i3);
893   PATTERN (i3) = newpat;
894   int tmpi = INSN_CODE (i3);
895   INSN_CODE (i3) = -1;
896   new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
897   PATTERN (i3) = tmp;
898   INSN_CODE (i3) = tmpi;
899   if (newi2pat)
900     {
901       tmp = PATTERN (i2);
902       PATTERN (i2) = newi2pat;
903       tmpi = INSN_CODE (i2);
904       INSN_CODE (i2) = -1;
905       new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
906       PATTERN (i2) = tmp;
907       INSN_CODE (i2) = tmpi;
908       new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
909 		 ? new_i2_cost + new_i3_cost : 0;
910     }
911   else
912     {
913       new_cost = new_i3_cost;
914       new_i2_cost = 0;
915     }
916 
917   if (undobuf.other_insn)
918     {
919       int old_other_cost, new_other_cost;
920 
921       old_other_cost = INSN_COST (undobuf.other_insn);
922       tmp = PATTERN (undobuf.other_insn);
923       PATTERN (undobuf.other_insn) = newotherpat;
924       tmpi = INSN_CODE (undobuf.other_insn);
925       INSN_CODE (undobuf.other_insn) = -1;
926       new_other_cost = insn_cost (undobuf.other_insn,
927 				  optimize_this_for_speed_p);
928       PATTERN (undobuf.other_insn) = tmp;
929       INSN_CODE (undobuf.other_insn) = tmpi;
930       if (old_other_cost > 0 && new_other_cost > 0)
931 	{
932 	  old_cost += old_other_cost;
933 	  new_cost += new_other_cost;
934 	}
935       else
936 	old_cost = 0;
937     }
938 
939   /* Disallow this combination if both new_cost and old_cost are greater than
940      zero, and new_cost is greater than old cost.  */
941   int reject = old_cost > 0 && new_cost > old_cost;
942 
943   if (dump_file)
944     {
945       fprintf (dump_file, "%s combination of insns ",
946 	       reject ? "rejecting" : "allowing");
947       if (i0)
948 	fprintf (dump_file, "%d, ", INSN_UID (i0));
949       if (i1 && INSN_UID (i1) != INSN_UID (i2))
950 	fprintf (dump_file, "%d, ", INSN_UID (i1));
951       fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
952 
953       fprintf (dump_file, "original costs ");
954       if (i0)
955 	fprintf (dump_file, "%d + ", i0_cost);
956       if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 	fprintf (dump_file, "%d + ", i1_cost);
958       fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
959 
960       if (newi2pat)
961 	fprintf (dump_file, "replacement costs %d + %d = %d\n",
962 		 new_i2_cost, new_i3_cost, new_cost);
963       else
964 	fprintf (dump_file, "replacement cost %d\n", new_cost);
965     }
966 
967   if (reject)
968     return false;
969 
970   /* Update the uid_insn_cost array with the replacement costs.  */
971   INSN_COST (i2) = new_i2_cost;
972   INSN_COST (i3) = new_i3_cost;
973   if (i1)
974     {
975       INSN_COST (i1) = 0;
976       if (i0)
977 	INSN_COST (i0) = 0;
978     }
979 
980   return true;
981 }
982 
983 
984 /* Delete any insns that copy a register to itself.
985    Return true if the CFG was changed.  */
986 
987 static bool
delete_noop_moves(void)988 delete_noop_moves (void)
989 {
990   rtx_insn *insn, *next;
991   basic_block bb;
992 
993   bool edges_deleted = false;
994 
995   FOR_EACH_BB_FN (bb, cfun)
996     {
997       for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
998 	{
999 	  next = NEXT_INSN (insn);
1000 	  if (INSN_P (insn) && noop_move_p (insn))
1001 	    {
1002 	      if (dump_file)
1003 		fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1004 
1005 	      edges_deleted |= delete_insn_and_edges (insn);
1006 	    }
1007 	}
1008     }
1009 
1010   return edges_deleted;
1011 }
1012 
1013 
1014 /* Return false if we do not want to (or cannot) combine DEF.  */
1015 static bool
can_combine_def_p(df_ref def)1016 can_combine_def_p (df_ref def)
1017 {
1018   /* Do not consider if it is pre/post modification in MEM.  */
1019   if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1020     return false;
1021 
1022   unsigned int regno = DF_REF_REGNO (def);
1023 
1024   /* Do not combine frame pointer adjustments.  */
1025   if ((regno == FRAME_POINTER_REGNUM
1026        && (!reload_completed || frame_pointer_needed))
1027       || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1028 	  && regno == HARD_FRAME_POINTER_REGNUM
1029 	  && (!reload_completed || frame_pointer_needed))
1030       || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1031 	  && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1032     return false;
1033 
1034   return true;
1035 }
1036 
1037 /* Return false if we do not want to (or cannot) combine USE.  */
1038 static bool
can_combine_use_p(df_ref use)1039 can_combine_use_p (df_ref use)
1040 {
1041   /* Do not consider the usage of the stack pointer by function call.  */
1042   if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1043     return false;
1044 
1045   return true;
1046 }
1047 
1048 /* Fill in log links field for all insns.  */
1049 
1050 static void
create_log_links(void)1051 create_log_links (void)
1052 {
1053   basic_block bb;
1054   rtx_insn **next_use;
1055   rtx_insn *insn;
1056   df_ref def, use;
1057 
1058   next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1059 
1060   /* Pass through each block from the end, recording the uses of each
1061      register and establishing log links when def is encountered.
1062      Note that we do not clear next_use array in order to save time,
1063      so we have to test whether the use is in the same basic block as def.
1064 
1065      There are a few cases below when we do not consider the definition or
1066      usage -- these are taken from original flow.c did. Don't ask me why it is
1067      done this way; I don't know and if it works, I don't want to know.  */
1068 
1069   FOR_EACH_BB_FN (bb, cfun)
1070     {
1071       FOR_BB_INSNS_REVERSE (bb, insn)
1072         {
1073           if (!NONDEBUG_INSN_P (insn))
1074             continue;
1075 
1076 	  /* Log links are created only once.  */
1077 	  gcc_assert (!LOG_LINKS (insn));
1078 
1079 	  FOR_EACH_INSN_DEF (def, insn)
1080             {
1081               unsigned int regno = DF_REF_REGNO (def);
1082               rtx_insn *use_insn;
1083 
1084               if (!next_use[regno])
1085                 continue;
1086 
1087 	      if (!can_combine_def_p (def))
1088 		continue;
1089 
1090 	      use_insn = next_use[regno];
1091 	      next_use[regno] = NULL;
1092 
1093 	      if (BLOCK_FOR_INSN (use_insn) != bb)
1094 		continue;
1095 
1096 	      /* flow.c claimed:
1097 
1098 		 We don't build a LOG_LINK for hard registers contained
1099 		 in ASM_OPERANDs.  If these registers get replaced,
1100 		 we might wind up changing the semantics of the insn,
1101 		 even if reload can make what appear to be valid
1102 		 assignments later.  */
1103 	      if (regno < FIRST_PSEUDO_REGISTER
1104 		  && asm_noperands (PATTERN (use_insn)) >= 0)
1105 		continue;
1106 
1107 	      /* Don't add duplicate links between instructions.  */
1108 	      struct insn_link *links;
1109 	      FOR_EACH_LOG_LINK (links, use_insn)
1110 	        if (insn == links->insn && regno == links->regno)
1111 		  break;
1112 
1113 	      if (!links)
1114 		LOG_LINKS (use_insn)
1115 		  = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1116             }
1117 
1118 	  FOR_EACH_INSN_USE (use, insn)
1119 	    if (can_combine_use_p (use))
1120 	      next_use[DF_REF_REGNO (use)] = insn;
1121         }
1122     }
1123 
1124   free (next_use);
1125 }
1126 
1127 /* Walk the LOG_LINKS of insn B to see if we find a reference to A.  Return
1128    true if we found a LOG_LINK that proves that A feeds B.  This only works
1129    if there are no instructions between A and B which could have a link
1130    depending on A, since in that case we would not record a link for B.
1131    We also check the implicit dependency created by a cc0 setter/user
1132    pair.  */
1133 
1134 static bool
insn_a_feeds_b(rtx_insn * a,rtx_insn * b)1135 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1136 {
1137   struct insn_link *links;
1138   FOR_EACH_LOG_LINK (links, b)
1139     if (links->insn == a)
1140       return true;
1141   if (HAVE_cc0 && sets_cc0_p (a))
1142     return true;
1143   return false;
1144 }
1145 
1146 /* Main entry point for combiner.  F is the first insn of the function.
1147    NREGS is the first unused pseudo-reg number.
1148 
1149    Return nonzero if the CFG was changed (e.g. if the combiner has
1150    turned an indirect jump instruction into a direct jump).  */
1151 static int
combine_instructions(rtx_insn * f,unsigned int nregs)1152 combine_instructions (rtx_insn *f, unsigned int nregs)
1153 {
1154   rtx_insn *insn, *next;
1155   rtx_insn *prev;
1156   struct insn_link *links, *nextlinks;
1157   rtx_insn *first;
1158   basic_block last_bb;
1159 
1160   int new_direct_jump_p = 0;
1161 
1162   for (first = f; first && !NONDEBUG_INSN_P (first); )
1163     first = NEXT_INSN (first);
1164   if (!first)
1165     return 0;
1166 
1167   combine_attempts = 0;
1168   combine_merges = 0;
1169   combine_extras = 0;
1170   combine_successes = 0;
1171 
1172   rtl_hooks = combine_rtl_hooks;
1173 
1174   reg_stat.safe_grow_cleared (nregs);
1175 
1176   init_recog_no_volatile ();
1177 
1178   /* Allocate array for insn info.  */
1179   max_uid_known = get_max_uid ();
1180   uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1181   uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1182   gcc_obstack_init (&insn_link_obstack);
1183 
1184   nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1185 
1186   /* Don't use reg_stat[].nonzero_bits when computing it.  This can cause
1187      problems when, for example, we have j <<= 1 in a loop.  */
1188 
1189   nonzero_sign_valid = 0;
1190   label_tick = label_tick_ebb_start = 1;
1191 
1192   /* Scan all SETs and see if we can deduce anything about what
1193      bits are known to be zero for some registers and how many copies
1194      of the sign bit are known to exist for those registers.
1195 
1196      Also set any known values so that we can use it while searching
1197      for what bits are known to be set.  */
1198 
1199   setup_incoming_promotions (first);
1200   /* Allow the entry block and the first block to fall into the same EBB.
1201      Conceptually the incoming promotions are assigned to the entry block.  */
1202   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1203 
1204   create_log_links ();
1205   FOR_EACH_BB_FN (this_basic_block, cfun)
1206     {
1207       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1208       last_call_luid = 0;
1209       mem_last_set = -1;
1210 
1211       label_tick++;
1212       if (!single_pred_p (this_basic_block)
1213 	  || single_pred (this_basic_block) != last_bb)
1214 	label_tick_ebb_start = label_tick;
1215       last_bb = this_basic_block;
1216 
1217       FOR_BB_INSNS (this_basic_block, insn)
1218         if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1219 	  {
1220             rtx links;
1221 
1222             subst_low_luid = DF_INSN_LUID (insn);
1223             subst_insn = insn;
1224 
1225 	    note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1226 		         insn);
1227 	    record_dead_and_set_regs (insn);
1228 
1229 	    if (AUTO_INC_DEC)
1230 	      for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1231 		if (REG_NOTE_KIND (links) == REG_INC)
1232 		  set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1233 						    insn);
1234 
1235 	    /* Record the current insn_cost of this instruction.  */
1236 	    if (NONJUMP_INSN_P (insn))
1237 	      INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1238 	    if (dump_file)
1239 	      {
1240 		fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1241 		dump_insn_slim (dump_file, insn);
1242 	      }
1243 	  }
1244     }
1245 
1246   nonzero_sign_valid = 1;
1247 
1248   /* Now scan all the insns in forward order.  */
1249   label_tick = label_tick_ebb_start = 1;
1250   init_reg_last ();
1251   setup_incoming_promotions (first);
1252   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1253   int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1254 
1255   FOR_EACH_BB_FN (this_basic_block, cfun)
1256     {
1257       rtx_insn *last_combined_insn = NULL;
1258 
1259       /* Ignore instruction combination in basic blocks that are going to
1260 	 be removed as unreachable anyway.  See PR82386.  */
1261       if (EDGE_COUNT (this_basic_block->preds) == 0)
1262 	continue;
1263 
1264       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1265       last_call_luid = 0;
1266       mem_last_set = -1;
1267 
1268       label_tick++;
1269       if (!single_pred_p (this_basic_block)
1270 	  || single_pred (this_basic_block) != last_bb)
1271 	label_tick_ebb_start = label_tick;
1272       last_bb = this_basic_block;
1273 
1274       rtl_profile_for_bb (this_basic_block);
1275       for (insn = BB_HEAD (this_basic_block);
1276 	   insn != NEXT_INSN (BB_END (this_basic_block));
1277 	   insn = next ? next : NEXT_INSN (insn))
1278 	{
1279 	  next = 0;
1280 	  if (!NONDEBUG_INSN_P (insn))
1281 	    continue;
1282 
1283 	  while (last_combined_insn
1284 		 && (!NONDEBUG_INSN_P (last_combined_insn)
1285 		     || last_combined_insn->deleted ()))
1286 	    last_combined_insn = PREV_INSN (last_combined_insn);
1287 	  if (last_combined_insn == NULL_RTX
1288 	      || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1289 	      || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1290 	    last_combined_insn = insn;
1291 
1292 	  /* See if we know about function return values before this
1293 	     insn based upon SUBREG flags.  */
1294 	  check_promoted_subreg (insn, PATTERN (insn));
1295 
1296 	  /* See if we can find hardregs and subreg of pseudos in
1297 	     narrower modes.  This could help turning TRUNCATEs
1298 	     into SUBREGs.  */
1299 	  note_uses (&PATTERN (insn), record_truncated_values, NULL);
1300 
1301 	  /* Try this insn with each insn it links back to.  */
1302 
1303 	  FOR_EACH_LOG_LINK (links, insn)
1304 	    if ((next = try_combine (insn, links->insn, NULL,
1305 				     NULL, &new_direct_jump_p,
1306 				     last_combined_insn)) != 0)
1307 	      {
1308 		statistics_counter_event (cfun, "two-insn combine", 1);
1309 		goto retry;
1310 	      }
1311 
1312 	  /* Try each sequence of three linked insns ending with this one.  */
1313 
1314 	  if (max_combine >= 3)
1315 	    FOR_EACH_LOG_LINK (links, insn)
1316 	      {
1317 		rtx_insn *link = links->insn;
1318 
1319 		/* If the linked insn has been replaced by a note, then there
1320 		   is no point in pursuing this chain any further.  */
1321 		if (NOTE_P (link))
1322 		  continue;
1323 
1324 		FOR_EACH_LOG_LINK (nextlinks, link)
1325 		  if ((next = try_combine (insn, link, nextlinks->insn,
1326 					   NULL, &new_direct_jump_p,
1327 					   last_combined_insn)) != 0)
1328 		    {
1329 		      statistics_counter_event (cfun, "three-insn combine", 1);
1330 		      goto retry;
1331 		    }
1332 	      }
1333 
1334 	  /* Try to combine a jump insn that uses CC0
1335 	     with a preceding insn that sets CC0, and maybe with its
1336 	     logical predecessor as well.
1337 	     This is how we make decrement-and-branch insns.
1338 	     We need this special code because data flow connections
1339 	     via CC0 do not get entered in LOG_LINKS.  */
1340 
1341 	  if (HAVE_cc0
1342 	      && JUMP_P (insn)
1343 	      && (prev = prev_nonnote_insn (insn)) != 0
1344 	      && NONJUMP_INSN_P (prev)
1345 	      && sets_cc0_p (PATTERN (prev)))
1346 	    {
1347 	      if ((next = try_combine (insn, prev, NULL, NULL,
1348 				       &new_direct_jump_p,
1349 				       last_combined_insn)) != 0)
1350 		goto retry;
1351 
1352 	      FOR_EACH_LOG_LINK (nextlinks, prev)
1353 		  if ((next = try_combine (insn, prev, nextlinks->insn,
1354 					   NULL, &new_direct_jump_p,
1355 					   last_combined_insn)) != 0)
1356 		    goto retry;
1357 	    }
1358 
1359 	  /* Do the same for an insn that explicitly references CC0.  */
1360 	  if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1361 	      && (prev = prev_nonnote_insn (insn)) != 0
1362 	      && NONJUMP_INSN_P (prev)
1363 	      && sets_cc0_p (PATTERN (prev))
1364 	      && GET_CODE (PATTERN (insn)) == SET
1365 	      && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1366 	    {
1367 	      if ((next = try_combine (insn, prev, NULL, NULL,
1368 				       &new_direct_jump_p,
1369 				       last_combined_insn)) != 0)
1370 		goto retry;
1371 
1372 	      FOR_EACH_LOG_LINK (nextlinks, prev)
1373 		  if ((next = try_combine (insn, prev, nextlinks->insn,
1374 					   NULL, &new_direct_jump_p,
1375 					   last_combined_insn)) != 0)
1376 		    goto retry;
1377 	    }
1378 
1379 	  /* Finally, see if any of the insns that this insn links to
1380 	     explicitly references CC0.  If so, try this insn, that insn,
1381 	     and its predecessor if it sets CC0.  */
1382 	  if (HAVE_cc0)
1383 	    {
1384 	      FOR_EACH_LOG_LINK (links, insn)
1385 		if (NONJUMP_INSN_P (links->insn)
1386 		    && GET_CODE (PATTERN (links->insn)) == SET
1387 		    && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1388 		    && (prev = prev_nonnote_insn (links->insn)) != 0
1389 		    && NONJUMP_INSN_P (prev)
1390 		    && sets_cc0_p (PATTERN (prev))
1391 		    && (next = try_combine (insn, links->insn,
1392 					    prev, NULL, &new_direct_jump_p,
1393 					    last_combined_insn)) != 0)
1394 		  goto retry;
1395 	    }
1396 
1397 	  /* Try combining an insn with two different insns whose results it
1398 	     uses.  */
1399 	  if (max_combine >= 3)
1400 	    FOR_EACH_LOG_LINK (links, insn)
1401 	      for (nextlinks = links->next; nextlinks;
1402 		   nextlinks = nextlinks->next)
1403 		if ((next = try_combine (insn, links->insn,
1404 					 nextlinks->insn, NULL,
1405 					 &new_direct_jump_p,
1406 					 last_combined_insn)) != 0)
1407 
1408 		  {
1409 		    statistics_counter_event (cfun, "three-insn combine", 1);
1410 		    goto retry;
1411 		  }
1412 
1413 	  /* Try four-instruction combinations.  */
1414 	  if (max_combine >= 4)
1415 	    FOR_EACH_LOG_LINK (links, insn)
1416 	      {
1417 		struct insn_link *next1;
1418 		rtx_insn *link = links->insn;
1419 
1420 		/* If the linked insn has been replaced by a note, then there
1421 		   is no point in pursuing this chain any further.  */
1422 		if (NOTE_P (link))
1423 		  continue;
1424 
1425 		FOR_EACH_LOG_LINK (next1, link)
1426 		  {
1427 		    rtx_insn *link1 = next1->insn;
1428 		    if (NOTE_P (link1))
1429 		      continue;
1430 		    /* I0 -> I1 -> I2 -> I3.  */
1431 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1432 		      if ((next = try_combine (insn, link, link1,
1433 					       nextlinks->insn,
1434 					       &new_direct_jump_p,
1435 					       last_combined_insn)) != 0)
1436 			{
1437 			  statistics_counter_event (cfun, "four-insn combine", 1);
1438 			  goto retry;
1439 			}
1440 		    /* I0, I1 -> I2, I2 -> I3.  */
1441 		    for (nextlinks = next1->next; nextlinks;
1442 			 nextlinks = nextlinks->next)
1443 		      if ((next = try_combine (insn, link, link1,
1444 					       nextlinks->insn,
1445 					       &new_direct_jump_p,
1446 					       last_combined_insn)) != 0)
1447 			{
1448 			  statistics_counter_event (cfun, "four-insn combine", 1);
1449 			  goto retry;
1450 			}
1451 		  }
1452 
1453 		for (next1 = links->next; next1; next1 = next1->next)
1454 		  {
1455 		    rtx_insn *link1 = next1->insn;
1456 		    if (NOTE_P (link1))
1457 		      continue;
1458 		    /* I0 -> I2; I1, I2 -> I3.  */
1459 		    FOR_EACH_LOG_LINK (nextlinks, link)
1460 		      if ((next = try_combine (insn, link, link1,
1461 					       nextlinks->insn,
1462 					       &new_direct_jump_p,
1463 					       last_combined_insn)) != 0)
1464 			{
1465 			  statistics_counter_event (cfun, "four-insn combine", 1);
1466 			  goto retry;
1467 			}
1468 		    /* I0 -> I1; I1, I2 -> I3.  */
1469 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1470 		      if ((next = try_combine (insn, link, link1,
1471 					       nextlinks->insn,
1472 					       &new_direct_jump_p,
1473 					       last_combined_insn)) != 0)
1474 			{
1475 			  statistics_counter_event (cfun, "four-insn combine", 1);
1476 			  goto retry;
1477 			}
1478 		  }
1479 	      }
1480 
1481 	  /* Try this insn with each REG_EQUAL note it links back to.  */
1482 	  FOR_EACH_LOG_LINK (links, insn)
1483 	    {
1484 	      rtx set, note;
1485 	      rtx_insn *temp = links->insn;
1486 	      if ((set = single_set (temp)) != 0
1487 		  && (note = find_reg_equal_equiv_note (temp)) != 0
1488 		  && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1489 		  /* Avoid using a register that may already been marked
1490 		     dead by an earlier instruction.  */
1491 		  && ! unmentioned_reg_p (note, SET_SRC (set))
1492 		  && (GET_MODE (note) == VOIDmode
1493 		      ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1494 		      : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1495 			 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1496 			     || (GET_MODE (XEXP (SET_DEST (set), 0))
1497 				 == GET_MODE (note))))))
1498 		{
1499 		  /* Temporarily replace the set's source with the
1500 		     contents of the REG_EQUAL note.  The insn will
1501 		     be deleted or recognized by try_combine.  */
1502 		  rtx orig_src = SET_SRC (set);
1503 		  rtx orig_dest = SET_DEST (set);
1504 		  if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1505 		    SET_DEST (set) = XEXP (SET_DEST (set), 0);
1506 		  SET_SRC (set) = note;
1507 		  i2mod = temp;
1508 		  i2mod_old_rhs = copy_rtx (orig_src);
1509 		  i2mod_new_rhs = copy_rtx (note);
1510 		  next = try_combine (insn, i2mod, NULL, NULL,
1511 				      &new_direct_jump_p,
1512 				      last_combined_insn);
1513 		  i2mod = NULL;
1514 		  if (next)
1515 		    {
1516 		      statistics_counter_event (cfun, "insn-with-note combine", 1);
1517 		      goto retry;
1518 		    }
1519 		  SET_SRC (set) = orig_src;
1520 		  SET_DEST (set) = orig_dest;
1521 		}
1522 	    }
1523 
1524 	  if (!NOTE_P (insn))
1525 	    record_dead_and_set_regs (insn);
1526 
1527 retry:
1528 	  ;
1529 	}
1530     }
1531 
1532   default_rtl_profile ();
1533   clear_bb_flags ();
1534   new_direct_jump_p |= purge_all_dead_edges ();
1535   new_direct_jump_p |= delete_noop_moves ();
1536 
1537   /* Clean up.  */
1538   obstack_free (&insn_link_obstack, NULL);
1539   free (uid_log_links);
1540   free (uid_insn_cost);
1541   reg_stat.release ();
1542 
1543   {
1544     struct undo *undo, *next;
1545     for (undo = undobuf.frees; undo; undo = next)
1546       {
1547 	next = undo->next;
1548 	free (undo);
1549       }
1550     undobuf.frees = 0;
1551   }
1552 
1553   total_attempts += combine_attempts;
1554   total_merges += combine_merges;
1555   total_extras += combine_extras;
1556   total_successes += combine_successes;
1557 
1558   nonzero_sign_valid = 0;
1559   rtl_hooks = general_rtl_hooks;
1560 
1561   /* Make recognizer allow volatile MEMs again.  */
1562   init_recog ();
1563 
1564   return new_direct_jump_p;
1565 }
1566 
1567 /* Wipe the last_xxx fields of reg_stat in preparation for another pass.  */
1568 
1569 static void
init_reg_last(void)1570 init_reg_last (void)
1571 {
1572   unsigned int i;
1573   reg_stat_type *p;
1574 
1575   FOR_EACH_VEC_ELT (reg_stat, i, p)
1576     memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1577 }
1578 
1579 /* Set up any promoted values for incoming argument registers.  */
1580 
1581 static void
setup_incoming_promotions(rtx_insn * first)1582 setup_incoming_promotions (rtx_insn *first)
1583 {
1584   tree arg;
1585   bool strictly_local = false;
1586 
1587   for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1588        arg = DECL_CHAIN (arg))
1589     {
1590       rtx x, reg = DECL_INCOMING_RTL (arg);
1591       int uns1, uns3;
1592       machine_mode mode1, mode2, mode3, mode4;
1593 
1594       /* Only continue if the incoming argument is in a register.  */
1595       if (!REG_P (reg))
1596 	continue;
1597 
1598       /* Determine, if possible, whether all call sites of the current
1599          function lie within the current compilation unit.  (This does
1600 	 take into account the exporting of a function via taking its
1601 	 address, and so forth.)  */
1602       strictly_local = cgraph_node::local_info (current_function_decl)->local;
1603 
1604       /* The mode and signedness of the argument before any promotions happen
1605          (equal to the mode of the pseudo holding it at that stage).  */
1606       mode1 = TYPE_MODE (TREE_TYPE (arg));
1607       uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1608 
1609       /* The mode and signedness of the argument after any source language and
1610          TARGET_PROMOTE_PROTOTYPES-driven promotions.  */
1611       mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1612       uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1613 
1614       /* The mode and signedness of the argument as it is actually passed,
1615          see assign_parm_setup_reg in function.c.  */
1616       mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1617 				     TREE_TYPE (cfun->decl), 0);
1618 
1619       /* The mode of the register in which the argument is being passed.  */
1620       mode4 = GET_MODE (reg);
1621 
1622       /* Eliminate sign extensions in the callee when:
1623 	 (a) A mode promotion has occurred;  */
1624       if (mode1 == mode3)
1625 	continue;
1626       /* (b) The mode of the register is the same as the mode of
1627 	     the argument as it is passed; */
1628       if (mode3 != mode4)
1629 	continue;
1630       /* (c) There's no language level extension;  */
1631       if (mode1 == mode2)
1632 	;
1633       /* (c.1) All callers are from the current compilation unit.  If that's
1634 	 the case we don't have to rely on an ABI, we only have to know
1635 	 what we're generating right now, and we know that we will do the
1636 	 mode1 to mode2 promotion with the given sign.  */
1637       else if (!strictly_local)
1638 	continue;
1639       /* (c.2) The combination of the two promotions is useful.  This is
1640 	 true when the signs match, or if the first promotion is unsigned.
1641 	 In the later case, (sign_extend (zero_extend x)) is the same as
1642 	 (zero_extend (zero_extend x)), so make sure to force UNS3 true.  */
1643       else if (uns1)
1644 	uns3 = true;
1645       else if (uns3)
1646 	continue;
1647 
1648       /* Record that the value was promoted from mode1 to mode3,
1649 	 so that any sign extension at the head of the current
1650 	 function may be eliminated.  */
1651       x = gen_rtx_CLOBBER (mode1, const0_rtx);
1652       x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1653       record_value_for_reg (reg, first, x);
1654     }
1655 }
1656 
1657 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1658    that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1659    because some machines (maybe most) will actually do the sign-extension and
1660    this is the conservative approach.
1661 
1662    ??? For 2.5, try to tighten up the MD files in this regard instead of this
1663    kludge.  */
1664 
1665 static rtx
sign_extend_short_imm(rtx src,machine_mode mode,unsigned int prec)1666 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1667 {
1668   scalar_int_mode int_mode;
1669   if (CONST_INT_P (src)
1670       && is_a <scalar_int_mode> (mode, &int_mode)
1671       && GET_MODE_PRECISION (int_mode) < prec
1672       && INTVAL (src) > 0
1673       && val_signbit_known_set_p (int_mode, INTVAL (src)))
1674     src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1675 
1676   return src;
1677 }
1678 
1679 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1680    and SET.  */
1681 
1682 static void
update_rsp_from_reg_equal(reg_stat_type * rsp,rtx_insn * insn,const_rtx set,rtx x)1683 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1684 			   rtx x)
1685 {
1686   rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1687   unsigned HOST_WIDE_INT bits = 0;
1688   rtx reg_equal = NULL, src = SET_SRC (set);
1689   unsigned int num = 0;
1690 
1691   if (reg_equal_note)
1692     reg_equal = XEXP (reg_equal_note, 0);
1693 
1694   if (SHORT_IMMEDIATES_SIGN_EXTEND)
1695     {
1696       src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1697       if (reg_equal)
1698 	reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1699     }
1700 
1701   /* Don't call nonzero_bits if it cannot change anything.  */
1702   if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1703     {
1704       bits = nonzero_bits (src, nonzero_bits_mode);
1705       if (reg_equal && bits)
1706 	bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1707       rsp->nonzero_bits |= bits;
1708     }
1709 
1710   /* Don't call num_sign_bit_copies if it cannot change anything.  */
1711   if (rsp->sign_bit_copies != 1)
1712     {
1713       num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1714       if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1715 	{
1716 	  unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1717 	  if (num == 0 || numeq > num)
1718 	    num = numeq;
1719 	}
1720       if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1721 	rsp->sign_bit_copies = num;
1722     }
1723 }
1724 
1725 /* Called via note_stores.  If X is a pseudo that is narrower than
1726    HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1727 
1728    If we are setting only a portion of X and we can't figure out what
1729    portion, assume all bits will be used since we don't know what will
1730    be happening.
1731 
1732    Similarly, set how many bits of X are known to be copies of the sign bit
1733    at all locations in the function.  This is the smallest number implied
1734    by any set of X.  */
1735 
1736 static void
set_nonzero_bits_and_sign_copies(rtx x,const_rtx set,void * data)1737 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1738 {
1739   rtx_insn *insn = (rtx_insn *) data;
1740   scalar_int_mode mode;
1741 
1742   if (REG_P (x)
1743       && REGNO (x) >= FIRST_PSEUDO_REGISTER
1744       /* If this register is undefined at the start of the file, we can't
1745 	 say what its contents were.  */
1746       && ! REGNO_REG_SET_P
1747 	   (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1748       && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1749       && HWI_COMPUTABLE_MODE_P (mode))
1750     {
1751       reg_stat_type *rsp = &reg_stat[REGNO (x)];
1752 
1753       if (set == 0 || GET_CODE (set) == CLOBBER)
1754 	{
1755 	  rsp->nonzero_bits = GET_MODE_MASK (mode);
1756 	  rsp->sign_bit_copies = 1;
1757 	  return;
1758 	}
1759 
1760       /* If this register is being initialized using itself, and the
1761 	 register is uninitialized in this basic block, and there are
1762 	 no LOG_LINKS which set the register, then part of the
1763 	 register is uninitialized.  In that case we can't assume
1764 	 anything about the number of nonzero bits.
1765 
1766 	 ??? We could do better if we checked this in
1767 	 reg_{nonzero_bits,num_sign_bit_copies}_for_combine.  Then we
1768 	 could avoid making assumptions about the insn which initially
1769 	 sets the register, while still using the information in other
1770 	 insns.  We would have to be careful to check every insn
1771 	 involved in the combination.  */
1772 
1773       if (insn
1774 	  && reg_referenced_p (x, PATTERN (insn))
1775 	  && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1776 			       REGNO (x)))
1777 	{
1778 	  struct insn_link *link;
1779 
1780 	  FOR_EACH_LOG_LINK (link, insn)
1781 	    if (dead_or_set_p (link->insn, x))
1782 	      break;
1783 	  if (!link)
1784 	    {
1785 	      rsp->nonzero_bits = GET_MODE_MASK (mode);
1786 	      rsp->sign_bit_copies = 1;
1787 	      return;
1788 	    }
1789 	}
1790 
1791       /* If this is a complex assignment, see if we can convert it into a
1792 	 simple assignment.  */
1793       set = expand_field_assignment (set);
1794 
1795       /* If this is a simple assignment, or we have a paradoxical SUBREG,
1796 	 set what we know about X.  */
1797 
1798       if (SET_DEST (set) == x
1799 	  || (paradoxical_subreg_p (SET_DEST (set))
1800 	      && SUBREG_REG (SET_DEST (set)) == x))
1801 	update_rsp_from_reg_equal (rsp, insn, set, x);
1802       else
1803 	{
1804 	  rsp->nonzero_bits = GET_MODE_MASK (mode);
1805 	  rsp->sign_bit_copies = 1;
1806 	}
1807     }
1808 }
1809 
1810 /* See if INSN can be combined into I3.  PRED, PRED2, SUCC and SUCC2 are
1811    optionally insns that were previously combined into I3 or that will be
1812    combined into the merger of INSN and I3.  The order is PRED, PRED2,
1813    INSN, SUCC, SUCC2, I3.
1814 
1815    Return 0 if the combination is not allowed for any reason.
1816 
1817    If the combination is allowed, *PDEST will be set to the single
1818    destination of INSN and *PSRC to the single source, and this function
1819    will return 1.  */
1820 
1821 static int
can_combine_p(rtx_insn * insn,rtx_insn * i3,rtx_insn * pred ATTRIBUTE_UNUSED,rtx_insn * pred2 ATTRIBUTE_UNUSED,rtx_insn * succ,rtx_insn * succ2,rtx * pdest,rtx * psrc)1822 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1823 	       rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1824 	       rtx *pdest, rtx *psrc)
1825 {
1826   int i;
1827   const_rtx set = 0;
1828   rtx src, dest;
1829   rtx_insn *p;
1830   rtx link;
1831   bool all_adjacent = true;
1832   int (*is_volatile_p) (const_rtx);
1833 
1834   if (succ)
1835     {
1836       if (succ2)
1837 	{
1838 	  if (next_active_insn (succ2) != i3)
1839 	    all_adjacent = false;
1840 	  if (next_active_insn (succ) != succ2)
1841 	    all_adjacent = false;
1842 	}
1843       else if (next_active_insn (succ) != i3)
1844 	all_adjacent = false;
1845       if (next_active_insn (insn) != succ)
1846 	all_adjacent = false;
1847     }
1848   else if (next_active_insn (insn) != i3)
1849     all_adjacent = false;
1850 
1851   /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1852      or a PARALLEL consisting of such a SET and CLOBBERs.
1853 
1854      If INSN has CLOBBER parallel parts, ignore them for our processing.
1855      By definition, these happen during the execution of the insn.  When it
1856      is merged with another insn, all bets are off.  If they are, in fact,
1857      needed and aren't also supplied in I3, they may be added by
1858      recog_for_combine.  Otherwise, it won't match.
1859 
1860      We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1861      note.
1862 
1863      Get the source and destination of INSN.  If more than one, can't
1864      combine.  */
1865 
1866   if (GET_CODE (PATTERN (insn)) == SET)
1867     set = PATTERN (insn);
1868   else if (GET_CODE (PATTERN (insn)) == PARALLEL
1869 	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1870     {
1871       for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1872 	{
1873 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
1874 
1875 	  switch (GET_CODE (elt))
1876 	    {
1877 	    /* This is important to combine floating point insns
1878 	       for the SH4 port.  */
1879 	    case USE:
1880 	      /* Combining an isolated USE doesn't make sense.
1881 		 We depend here on combinable_i3pat to reject them.  */
1882 	      /* The code below this loop only verifies that the inputs of
1883 		 the SET in INSN do not change.  We call reg_set_between_p
1884 		 to verify that the REG in the USE does not change between
1885 		 I3 and INSN.
1886 		 If the USE in INSN was for a pseudo register, the matching
1887 		 insn pattern will likely match any register; combining this
1888 		 with any other USE would only be safe if we knew that the
1889 		 used registers have identical values, or if there was
1890 		 something to tell them apart, e.g. different modes.  For
1891 		 now, we forgo such complicated tests and simply disallow
1892 		 combining of USES of pseudo registers with any other USE.  */
1893 	      if (REG_P (XEXP (elt, 0))
1894 		  && GET_CODE (PATTERN (i3)) == PARALLEL)
1895 		{
1896 		  rtx i3pat = PATTERN (i3);
1897 		  int i = XVECLEN (i3pat, 0) - 1;
1898 		  unsigned int regno = REGNO (XEXP (elt, 0));
1899 
1900 		  do
1901 		    {
1902 		      rtx i3elt = XVECEXP (i3pat, 0, i);
1903 
1904 		      if (GET_CODE (i3elt) == USE
1905 			  && REG_P (XEXP (i3elt, 0))
1906 			  && (REGNO (XEXP (i3elt, 0)) == regno
1907 			      ? reg_set_between_p (XEXP (elt, 0),
1908 						   PREV_INSN (insn), i3)
1909 			      : regno >= FIRST_PSEUDO_REGISTER))
1910 			return 0;
1911 		    }
1912 		  while (--i >= 0);
1913 		}
1914 	      break;
1915 
1916 	      /* We can ignore CLOBBERs.  */
1917 	    case CLOBBER:
1918 	      break;
1919 
1920 	    case SET:
1921 	      /* Ignore SETs whose result isn't used but not those that
1922 		 have side-effects.  */
1923 	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1924 		  && insn_nothrow_p (insn)
1925 		  && !side_effects_p (elt))
1926 		break;
1927 
1928 	      /* If we have already found a SET, this is a second one and
1929 		 so we cannot combine with this insn.  */
1930 	      if (set)
1931 		return 0;
1932 
1933 	      set = elt;
1934 	      break;
1935 
1936 	    default:
1937 	      /* Anything else means we can't combine.  */
1938 	      return 0;
1939 	    }
1940 	}
1941 
1942       if (set == 0
1943 	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1944 	     so don't do anything with it.  */
1945 	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1946 	return 0;
1947     }
1948   else
1949     return 0;
1950 
1951   if (set == 0)
1952     return 0;
1953 
1954   /* The simplification in expand_field_assignment may call back to
1955      get_last_value, so set safe guard here.  */
1956   subst_low_luid = DF_INSN_LUID (insn);
1957 
1958   set = expand_field_assignment (set);
1959   src = SET_SRC (set), dest = SET_DEST (set);
1960 
1961   /* Do not eliminate user-specified register if it is in an
1962      asm input because we may break the register asm usage defined
1963      in GCC manual if allow to do so.
1964      Be aware that this may cover more cases than we expect but this
1965      should be harmless.  */
1966   if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1967       && extract_asm_operands (PATTERN (i3)))
1968     return 0;
1969 
1970   /* Don't eliminate a store in the stack pointer.  */
1971   if (dest == stack_pointer_rtx
1972       /* Don't combine with an insn that sets a register to itself if it has
1973 	 a REG_EQUAL note.  This may be part of a LIBCALL sequence.  */
1974       || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1975       /* Can't merge an ASM_OPERANDS.  */
1976       || GET_CODE (src) == ASM_OPERANDS
1977       /* Can't merge a function call.  */
1978       || GET_CODE (src) == CALL
1979       /* Don't eliminate a function call argument.  */
1980       || (CALL_P (i3)
1981 	  && (find_reg_fusage (i3, USE, dest)
1982 	      || (REG_P (dest)
1983 		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1984 		  && global_regs[REGNO (dest)])))
1985       /* Don't substitute into an incremented register.  */
1986       || FIND_REG_INC_NOTE (i3, dest)
1987       || (succ && FIND_REG_INC_NOTE (succ, dest))
1988       || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1989       /* Don't substitute into a non-local goto, this confuses CFG.  */
1990       || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1991       /* Make sure that DEST is not used after INSN but before SUCC, or
1992 	 after SUCC and before SUCC2, or after SUCC2 but before I3.  */
1993       || (!all_adjacent
1994 	  && ((succ2
1995 	       && (reg_used_between_p (dest, succ2, i3)
1996 		   || reg_used_between_p (dest, succ, succ2)))
1997 	      || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1998 	      || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1999 	      || (succ
2000 		  /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2001 		     that case SUCC is not in the insn stream, so use SUCC2
2002 		     instead for this test.  */
2003 		  && reg_used_between_p (dest, insn,
2004 					 succ2
2005 					 && INSN_UID (succ) == INSN_UID (succ2)
2006 					 ? succ2 : succ))))
2007       /* Make sure that the value that is to be substituted for the register
2008 	 does not use any registers whose values alter in between.  However,
2009 	 If the insns are adjacent, a use can't cross a set even though we
2010 	 think it might (this can happen for a sequence of insns each setting
2011 	 the same destination; last_set of that register might point to
2012 	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
2013 	 equivalent to the memory so the substitution is valid even if there
2014 	 are intervening stores.  Also, don't move a volatile asm or
2015 	 UNSPEC_VOLATILE across any other insns.  */
2016       || (! all_adjacent
2017 	  && (((!MEM_P (src)
2018 		|| ! find_reg_note (insn, REG_EQUIV, src))
2019 	       && modified_between_p (src, insn, i3))
2020 	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2021 	      || GET_CODE (src) == UNSPEC_VOLATILE))
2022       /* Don't combine across a CALL_INSN, because that would possibly
2023 	 change whether the life span of some REGs crosses calls or not,
2024 	 and it is a pain to update that information.
2025 	 Exception: if source is a constant, moving it later can't hurt.
2026 	 Accept that as a special case.  */
2027       || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2028     return 0;
2029 
2030   /* DEST must either be a REG or CC0.  */
2031   if (REG_P (dest))
2032     {
2033       /* If register alignment is being enforced for multi-word items in all
2034 	 cases except for parameters, it is possible to have a register copy
2035 	 insn referencing a hard register that is not allowed to contain the
2036 	 mode being copied and which would not be valid as an operand of most
2037 	 insns.  Eliminate this problem by not combining with such an insn.
2038 
2039 	 Also, on some machines we don't want to extend the life of a hard
2040 	 register.  */
2041 
2042       if (REG_P (src)
2043 	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2044 	       && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2045 	      /* Don't extend the life of a hard register unless it is
2046 		 user variable (if we have few registers) or it can't
2047 		 fit into the desired register (meaning something special
2048 		 is going on).
2049 		 Also avoid substituting a return register into I3, because
2050 		 reload can't handle a conflict with constraints of other
2051 		 inputs.  */
2052 	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
2053 		  && !targetm.hard_regno_mode_ok (REGNO (src),
2054 						  GET_MODE (src)))))
2055 	return 0;
2056     }
2057   else if (GET_CODE (dest) != CC0)
2058     return 0;
2059 
2060 
2061   if (GET_CODE (PATTERN (i3)) == PARALLEL)
2062     for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2063       if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2064 	{
2065 	  rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2066 
2067 	  /* If the clobber represents an earlyclobber operand, we must not
2068 	     substitute an expression containing the clobbered register.
2069 	     As we do not analyze the constraint strings here, we have to
2070 	     make the conservative assumption.  However, if the register is
2071 	     a fixed hard reg, the clobber cannot represent any operand;
2072 	     we leave it up to the machine description to either accept or
2073 	     reject use-and-clobber patterns.  */
2074 	  if (!REG_P (reg)
2075 	      || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2076 	      || !fixed_regs[REGNO (reg)])
2077 	    if (reg_overlap_mentioned_p (reg, src))
2078 	      return 0;
2079 	}
2080 
2081   /* If INSN contains anything volatile, or is an `asm' (whether volatile
2082      or not), reject, unless nothing volatile comes between it and I3 */
2083 
2084   if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2085     {
2086       /* Make sure neither succ nor succ2 contains a volatile reference.  */
2087       if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2088 	return 0;
2089       if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2090 	return 0;
2091       /* We'll check insns between INSN and I3 below.  */
2092     }
2093 
2094   /* If INSN is an asm, and DEST is a hard register, reject, since it has
2095      to be an explicit register variable, and was chosen for a reason.  */
2096 
2097   if (GET_CODE (src) == ASM_OPERANDS
2098       && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2099     return 0;
2100 
2101   /* If INSN contains volatile references (specifically volatile MEMs),
2102      we cannot combine across any other volatile references.
2103      Even if INSN doesn't contain volatile references, any intervening
2104      volatile insn might affect machine state.  */
2105 
2106   is_volatile_p = volatile_refs_p (PATTERN (insn))
2107     ? volatile_refs_p
2108     : volatile_insn_p;
2109 
2110   for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2111     if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2112       return 0;
2113 
2114   /* If INSN contains an autoincrement or autodecrement, make sure that
2115      register is not used between there and I3, and not already used in
2116      I3 either.  Neither must it be used in PRED or SUCC, if they exist.
2117      Also insist that I3 not be a jump; if it were one
2118      and the incremented register were spilled, we would lose.  */
2119 
2120   if (AUTO_INC_DEC)
2121     for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2122       if (REG_NOTE_KIND (link) == REG_INC
2123 	  && (JUMP_P (i3)
2124 	      || reg_used_between_p (XEXP (link, 0), insn, i3)
2125 	      || (pred != NULL_RTX
2126 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2127 	      || (pred2 != NULL_RTX
2128 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2129 	      || (succ != NULL_RTX
2130 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2131 	      || (succ2 != NULL_RTX
2132 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2133 	      || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2134 	return 0;
2135 
2136   /* Don't combine an insn that follows a CC0-setting insn.
2137      An insn that uses CC0 must not be separated from the one that sets it.
2138      We do, however, allow I2 to follow a CC0-setting insn if that insn
2139      is passed as I1; in that case it will be deleted also.
2140      We also allow combining in this case if all the insns are adjacent
2141      because that would leave the two CC0 insns adjacent as well.
2142      It would be more logical to test whether CC0 occurs inside I1 or I2,
2143      but that would be much slower, and this ought to be equivalent.  */
2144 
2145   if (HAVE_cc0)
2146     {
2147       p = prev_nonnote_insn (insn);
2148       if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2149 	  && ! all_adjacent)
2150 	return 0;
2151     }
2152 
2153   /* If we get here, we have passed all the tests and the combination is
2154      to be allowed.  */
2155 
2156   *pdest = dest;
2157   *psrc = src;
2158 
2159   return 1;
2160 }
2161 
2162 /* LOC is the location within I3 that contains its pattern or the component
2163    of a PARALLEL of the pattern.  We validate that it is valid for combining.
2164 
2165    One problem is if I3 modifies its output, as opposed to replacing it
2166    entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2167    doing so would produce an insn that is not equivalent to the original insns.
2168 
2169    Consider:
2170 
2171 	 (set (reg:DI 101) (reg:DI 100))
2172 	 (set (subreg:SI (reg:DI 101) 0) <foo>)
2173 
2174    This is NOT equivalent to:
2175 
2176 	 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2177 		    (set (reg:DI 101) (reg:DI 100))])
2178 
2179    Not only does this modify 100 (in which case it might still be valid
2180    if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2181 
2182    We can also run into a problem if I2 sets a register that I1
2183    uses and I1 gets directly substituted into I3 (not via I2).  In that
2184    case, we would be getting the wrong value of I2DEST into I3, so we
2185    must reject the combination.  This case occurs when I2 and I1 both
2186    feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2187    If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2188    of a SET must prevent combination from occurring.  The same situation
2189    can occur for I0, in which case I0_NOT_IN_SRC is set.
2190 
2191    Before doing the above check, we first try to expand a field assignment
2192    into a set of logical operations.
2193 
2194    If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2195    we place a register that is both set and used within I3.  If more than one
2196    such register is detected, we fail.
2197 
2198    Return 1 if the combination is valid, zero otherwise.  */
2199 
2200 static int
combinable_i3pat(rtx_insn * i3,rtx * loc,rtx i2dest,rtx i1dest,rtx i0dest,int i1_not_in_src,int i0_not_in_src,rtx * pi3dest_killed)2201 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2202 		  int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2203 {
2204   rtx x = *loc;
2205 
2206   if (GET_CODE (x) == SET)
2207     {
2208       rtx set = x ;
2209       rtx dest = SET_DEST (set);
2210       rtx src = SET_SRC (set);
2211       rtx inner_dest = dest;
2212       rtx subdest;
2213 
2214       while (GET_CODE (inner_dest) == STRICT_LOW_PART
2215 	     || GET_CODE (inner_dest) == SUBREG
2216 	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
2217 	inner_dest = XEXP (inner_dest, 0);
2218 
2219       /* Check for the case where I3 modifies its output, as discussed
2220 	 above.  We don't want to prevent pseudos from being combined
2221 	 into the address of a MEM, so only prevent the combination if
2222 	 i1 or i2 set the same MEM.  */
2223       if ((inner_dest != dest &&
2224 	   (!MEM_P (inner_dest)
2225 	    || rtx_equal_p (i2dest, inner_dest)
2226 	    || (i1dest && rtx_equal_p (i1dest, inner_dest))
2227 	    || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2228 	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
2229 	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2230 	       || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2231 
2232 	  /* This is the same test done in can_combine_p except we can't test
2233 	     all_adjacent; we don't have to, since this instruction will stay
2234 	     in place, thus we are not considering increasing the lifetime of
2235 	     INNER_DEST.
2236 
2237 	     Also, if this insn sets a function argument, combining it with
2238 	     something that might need a spill could clobber a previous
2239 	     function argument; the all_adjacent test in can_combine_p also
2240 	     checks this; here, we do a more specific test for this case.  */
2241 
2242 	  || (REG_P (inner_dest)
2243 	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2244 	      && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2245 					      GET_MODE (inner_dest)))
2246 	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2247 	  || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2248 	return 0;
2249 
2250       /* If DEST is used in I3, it is being killed in this insn, so
2251 	 record that for later.  We have to consider paradoxical
2252 	 subregs here, since they kill the whole register, but we
2253 	 ignore partial subregs, STRICT_LOW_PART, etc.
2254 	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2255 	 STACK_POINTER_REGNUM, since these are always considered to be
2256 	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
2257       subdest = dest;
2258       if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2259 	subdest = SUBREG_REG (subdest);
2260       if (pi3dest_killed
2261 	  && REG_P (subdest)
2262 	  && reg_referenced_p (subdest, PATTERN (i3))
2263 	  && REGNO (subdest) != FRAME_POINTER_REGNUM
2264 	  && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2265 	      || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2266 	  && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2267 	      || (REGNO (subdest) != ARG_POINTER_REGNUM
2268 		  || ! fixed_regs [REGNO (subdest)]))
2269 	  && REGNO (subdest) != STACK_POINTER_REGNUM)
2270 	{
2271 	  if (*pi3dest_killed)
2272 	    return 0;
2273 
2274 	  *pi3dest_killed = subdest;
2275 	}
2276     }
2277 
2278   else if (GET_CODE (x) == PARALLEL)
2279     {
2280       int i;
2281 
2282       for (i = 0; i < XVECLEN (x, 0); i++)
2283 	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2284 				i1_not_in_src, i0_not_in_src, pi3dest_killed))
2285 	  return 0;
2286     }
2287 
2288   return 1;
2289 }
2290 
2291 /* Return 1 if X is an arithmetic expression that contains a multiplication
2292    and division.  We don't count multiplications by powers of two here.  */
2293 
2294 static int
contains_muldiv(rtx x)2295 contains_muldiv (rtx x)
2296 {
2297   switch (GET_CODE (x))
2298     {
2299     case MOD:  case DIV:  case UMOD:  case UDIV:
2300       return 1;
2301 
2302     case MULT:
2303       return ! (CONST_INT_P (XEXP (x, 1))
2304 		&& pow2p_hwi (UINTVAL (XEXP (x, 1))));
2305     default:
2306       if (BINARY_P (x))
2307 	return contains_muldiv (XEXP (x, 0))
2308 	    || contains_muldiv (XEXP (x, 1));
2309 
2310       if (UNARY_P (x))
2311 	return contains_muldiv (XEXP (x, 0));
2312 
2313       return 0;
2314     }
2315 }
2316 
2317 /* Determine whether INSN can be used in a combination.  Return nonzero if
2318    not.  This is used in try_combine to detect early some cases where we
2319    can't perform combinations.  */
2320 
2321 static int
cant_combine_insn_p(rtx_insn * insn)2322 cant_combine_insn_p (rtx_insn *insn)
2323 {
2324   rtx set;
2325   rtx src, dest;
2326 
2327   /* If this isn't really an insn, we can't do anything.
2328      This can occur when flow deletes an insn that it has merged into an
2329      auto-increment address.  */
2330   if (!NONDEBUG_INSN_P (insn))
2331     return 1;
2332 
2333   /* Never combine loads and stores involving hard regs that are likely
2334      to be spilled.  The register allocator can usually handle such
2335      reg-reg moves by tying.  If we allow the combiner to make
2336      substitutions of likely-spilled regs, reload might die.
2337      As an exception, we allow combinations involving fixed regs; these are
2338      not available to the register allocator so there's no risk involved.  */
2339 
2340   set = single_set (insn);
2341   if (! set)
2342     return 0;
2343   src = SET_SRC (set);
2344   dest = SET_DEST (set);
2345   if (GET_CODE (src) == SUBREG)
2346     src = SUBREG_REG (src);
2347   if (GET_CODE (dest) == SUBREG)
2348     dest = SUBREG_REG (dest);
2349   if (REG_P (src) && REG_P (dest)
2350       && ((HARD_REGISTER_P (src)
2351 	   && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2352 	   && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2353 	  || (HARD_REGISTER_P (dest)
2354 	      && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2355 	      && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2356     return 1;
2357 
2358   return 0;
2359 }
2360 
2361 struct likely_spilled_retval_info
2362 {
2363   unsigned regno, nregs;
2364   unsigned mask;
2365 };
2366 
2367 /* Called via note_stores by likely_spilled_retval_p.  Remove from info->mask
2368    hard registers that are known to be written to / clobbered in full.  */
2369 static void
likely_spilled_retval_1(rtx x,const_rtx set,void * data)2370 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2371 {
2372   struct likely_spilled_retval_info *const info =
2373     (struct likely_spilled_retval_info *) data;
2374   unsigned regno, nregs;
2375   unsigned new_mask;
2376 
2377   if (!REG_P (XEXP (set, 0)))
2378     return;
2379   regno = REGNO (x);
2380   if (regno >= info->regno + info->nregs)
2381     return;
2382   nregs = REG_NREGS (x);
2383   if (regno + nregs <= info->regno)
2384     return;
2385   new_mask = (2U << (nregs - 1)) - 1;
2386   if (regno < info->regno)
2387     new_mask >>= info->regno - regno;
2388   else
2389     new_mask <<= regno - info->regno;
2390   info->mask &= ~new_mask;
2391 }
2392 
2393 /* Return nonzero iff part of the return value is live during INSN, and
2394    it is likely spilled.  This can happen when more than one insn is needed
2395    to copy the return value, e.g. when we consider to combine into the
2396    second copy insn for a complex value.  */
2397 
2398 static int
likely_spilled_retval_p(rtx_insn * insn)2399 likely_spilled_retval_p (rtx_insn *insn)
2400 {
2401   rtx_insn *use = BB_END (this_basic_block);
2402   rtx reg;
2403   rtx_insn *p;
2404   unsigned regno, nregs;
2405   /* We assume here that no machine mode needs more than
2406      32 hard registers when the value overlaps with a register
2407      for which TARGET_FUNCTION_VALUE_REGNO_P is true.  */
2408   unsigned mask;
2409   struct likely_spilled_retval_info info;
2410 
2411   if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2412     return 0;
2413   reg = XEXP (PATTERN (use), 0);
2414   if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2415     return 0;
2416   regno = REGNO (reg);
2417   nregs = REG_NREGS (reg);
2418   if (nregs == 1)
2419     return 0;
2420   mask = (2U << (nregs - 1)) - 1;
2421 
2422   /* Disregard parts of the return value that are set later.  */
2423   info.regno = regno;
2424   info.nregs = nregs;
2425   info.mask = mask;
2426   for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2427     if (INSN_P (p))
2428       note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2429   mask = info.mask;
2430 
2431   /* Check if any of the (probably) live return value registers is
2432      likely spilled.  */
2433   nregs --;
2434   do
2435     {
2436       if ((mask & 1 << nregs)
2437 	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2438 	return 1;
2439     } while (nregs--);
2440   return 0;
2441 }
2442 
2443 /* Adjust INSN after we made a change to its destination.
2444 
2445    Changing the destination can invalidate notes that say something about
2446    the results of the insn and a LOG_LINK pointing to the insn.  */
2447 
2448 static void
adjust_for_new_dest(rtx_insn * insn)2449 adjust_for_new_dest (rtx_insn *insn)
2450 {
2451   /* For notes, be conservative and simply remove them.  */
2452   remove_reg_equal_equiv_notes (insn);
2453 
2454   /* The new insn will have a destination that was previously the destination
2455      of an insn just above it.  Call distribute_links to make a LOG_LINK from
2456      the next use of that destination.  */
2457 
2458   rtx set = single_set (insn);
2459   gcc_assert (set);
2460 
2461   rtx reg = SET_DEST (set);
2462 
2463   while (GET_CODE (reg) == ZERO_EXTRACT
2464 	 || GET_CODE (reg) == STRICT_LOW_PART
2465 	 || GET_CODE (reg) == SUBREG)
2466     reg = XEXP (reg, 0);
2467   gcc_assert (REG_P (reg));
2468 
2469   distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2470 
2471   df_insn_rescan (insn);
2472 }
2473 
2474 /* Return TRUE if combine can reuse reg X in mode MODE.
2475    ADDED_SETS is nonzero if the original set is still required.  */
2476 static bool
can_change_dest_mode(rtx x,int added_sets,machine_mode mode)2477 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2478 {
2479   unsigned int regno;
2480 
2481   if (!REG_P (x))
2482     return false;
2483 
2484   /* Don't change between modes with different underlying register sizes,
2485      since this could lead to invalid subregs.  */
2486   if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2487 		REGMODE_NATURAL_SIZE (GET_MODE (x))))
2488     return false;
2489 
2490   regno = REGNO (x);
2491   /* Allow hard registers if the new mode is legal, and occupies no more
2492      registers than the old mode.  */
2493   if (regno < FIRST_PSEUDO_REGISTER)
2494     return (targetm.hard_regno_mode_ok (regno, mode)
2495 	    && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2496 
2497   /* Or a pseudo that is only used once.  */
2498   return (regno < reg_n_sets_max
2499 	  && REG_N_SETS (regno) == 1
2500 	  && !added_sets
2501 	  && !REG_USERVAR_P (x));
2502 }
2503 
2504 
2505 /* Check whether X, the destination of a set, refers to part of
2506    the register specified by REG.  */
2507 
2508 static bool
reg_subword_p(rtx x,rtx reg)2509 reg_subword_p (rtx x, rtx reg)
2510 {
2511   /* Check that reg is an integer mode register.  */
2512   if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2513     return false;
2514 
2515   if (GET_CODE (x) == STRICT_LOW_PART
2516       || GET_CODE (x) == ZERO_EXTRACT)
2517     x = XEXP (x, 0);
2518 
2519   return GET_CODE (x) == SUBREG
2520 	 && SUBREG_REG (x) == reg
2521 	 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2522 }
2523 
2524 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2525    Note that the INSN should be deleted *after* removing dead edges, so
2526    that the kept edge is the fallthrough edge for a (set (pc) (pc))
2527    but not for a (set (pc) (label_ref FOO)).  */
2528 
2529 static void
update_cfg_for_uncondjump(rtx_insn * insn)2530 update_cfg_for_uncondjump (rtx_insn *insn)
2531 {
2532   basic_block bb = BLOCK_FOR_INSN (insn);
2533   gcc_assert (BB_END (bb) == insn);
2534 
2535   purge_dead_edges (bb);
2536 
2537   delete_insn (insn);
2538   if (EDGE_COUNT (bb->succs) == 1)
2539     {
2540       rtx_insn *insn;
2541 
2542       single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2543 
2544       /* Remove barriers from the footer if there are any.  */
2545       for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2546 	if (BARRIER_P (insn))
2547 	  {
2548 	    if (PREV_INSN (insn))
2549 	      SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2550 	    else
2551 	      BB_FOOTER (bb) = NEXT_INSN (insn);
2552 	    if (NEXT_INSN (insn))
2553 	      SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2554 	  }
2555 	else if (LABEL_P (insn))
2556 	  break;
2557     }
2558 }
2559 
2560 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2561    by an arbitrary number of CLOBBERs.  */
2562 static bool
is_parallel_of_n_reg_sets(rtx pat,int n)2563 is_parallel_of_n_reg_sets (rtx pat, int n)
2564 {
2565   if (GET_CODE (pat) != PARALLEL)
2566     return false;
2567 
2568   int len = XVECLEN (pat, 0);
2569   if (len < n)
2570     return false;
2571 
2572   int i;
2573   for (i = 0; i < n; i++)
2574     if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2575 	|| !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2576       return false;
2577   for ( ; i < len; i++)
2578     if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2579 	|| XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2580       return false;
2581 
2582   return true;
2583 }
2584 
2585 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2586    CLOBBERs), can be split into individual SETs in that order, without
2587    changing semantics.  */
2588 static bool
can_split_parallel_of_n_reg_sets(rtx_insn * insn,int n)2589 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2590 {
2591   if (!insn_nothrow_p (insn))
2592     return false;
2593 
2594   rtx pat = PATTERN (insn);
2595 
2596   int i, j;
2597   for (i = 0; i < n; i++)
2598     {
2599       if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2600 	return false;
2601 
2602       rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2603 
2604       for (j = i + 1; j < n; j++)
2605 	if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2606 	  return false;
2607     }
2608 
2609   return true;
2610 }
2611 
2612 /* Try to combine the insns I0, I1 and I2 into I3.
2613    Here I0, I1 and I2 appear earlier than I3.
2614    I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2615    I3.
2616 
2617    If we are combining more than two insns and the resulting insn is not
2618    recognized, try splitting it into two insns.  If that happens, I2 and I3
2619    are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2620    Otherwise, I0, I1 and I2 are pseudo-deleted.
2621 
2622    Return 0 if the combination does not work.  Then nothing is changed.
2623    If we did the combination, return the insn at which combine should
2624    resume scanning.
2625 
2626    Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2627    new direct jump instruction.
2628 
2629    LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2630    been I3 passed to an earlier try_combine within the same basic
2631    block.  */
2632 
2633 static rtx_insn *
try_combine(rtx_insn * i3,rtx_insn * i2,rtx_insn * i1,rtx_insn * i0,int * new_direct_jump_p,rtx_insn * last_combined_insn)2634 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2635 	     int *new_direct_jump_p, rtx_insn *last_combined_insn)
2636 {
2637   /* New patterns for I3 and I2, respectively.  */
2638   rtx newpat, newi2pat = 0;
2639   rtvec newpat_vec_with_clobbers = 0;
2640   int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2641   /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2642      dead.  */
2643   int added_sets_0, added_sets_1, added_sets_2;
2644   /* Total number of SETs to put into I3.  */
2645   int total_sets;
2646   /* Nonzero if I2's or I1's body now appears in I3.  */
2647   int i2_is_used = 0, i1_is_used = 0;
2648   /* INSN_CODEs for new I3, new I2, and user of condition code.  */
2649   int insn_code_number, i2_code_number = 0, other_code_number = 0;
2650   /* Contains I3 if the destination of I3 is used in its source, which means
2651      that the old life of I3 is being killed.  If that usage is placed into
2652      I2 and not in I3, a REG_DEAD note must be made.  */
2653   rtx i3dest_killed = 0;
2654   /* SET_DEST and SET_SRC of I2, I1 and I0.  */
2655   rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2656   /* Copy of SET_SRC of I1 and I0, if needed.  */
2657   rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2658   /* Set if I2DEST was reused as a scratch register.  */
2659   bool i2scratch = false;
2660   /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases.  */
2661   rtx i0pat = 0, i1pat = 0, i2pat = 0;
2662   /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
2663   int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2664   int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2665   int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2666   int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2667   /* Notes that must be added to REG_NOTES in I3 and I2.  */
2668   rtx new_i3_notes, new_i2_notes;
2669   /* Notes that we substituted I3 into I2 instead of the normal case.  */
2670   int i3_subst_into_i2 = 0;
2671   /* Notes that I1, I2 or I3 is a MULT operation.  */
2672   int have_mult = 0;
2673   int swap_i2i3 = 0;
2674   int split_i2i3 = 0;
2675   int changed_i3_dest = 0;
2676 
2677   int maxreg;
2678   rtx_insn *temp_insn;
2679   rtx temp_expr;
2680   struct insn_link *link;
2681   rtx other_pat = 0;
2682   rtx new_other_notes;
2683   int i;
2684   scalar_int_mode dest_mode, temp_mode;
2685 
2686   /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2687      never be).  */
2688   if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2689     return 0;
2690 
2691   /* Only try four-insn combinations when there's high likelihood of
2692      success.  Look for simple insns, such as loads of constants or
2693      binary operations involving a constant.  */
2694   if (i0)
2695     {
2696       int i;
2697       int ngood = 0;
2698       int nshift = 0;
2699       rtx set0, set3;
2700 
2701       if (!flag_expensive_optimizations)
2702 	return 0;
2703 
2704       for (i = 0; i < 4; i++)
2705 	{
2706 	  rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2707 	  rtx set = single_set (insn);
2708 	  rtx src;
2709 	  if (!set)
2710 	    continue;
2711 	  src = SET_SRC (set);
2712 	  if (CONSTANT_P (src))
2713 	    {
2714 	      ngood += 2;
2715 	      break;
2716 	    }
2717 	  else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2718 	    ngood++;
2719 	  else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2720 		   || GET_CODE (src) == LSHIFTRT)
2721 	    nshift++;
2722 	}
2723 
2724       /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2725 	 are likely manipulating its value.  Ideally we'll be able to combine
2726 	 all four insns into a bitfield insertion of some kind.
2727 
2728 	 Note the source in I0 might be inside a sign/zero extension and the
2729 	 memory modes in I0 and I3 might be different.  So extract the address
2730 	 from the destination of I3 and search for it in the source of I0.
2731 
2732 	 In the event that there's a match but the source/dest do not actually
2733 	 refer to the same memory, the worst that happens is we try some
2734 	 combinations that we wouldn't have otherwise.  */
2735       if ((set0 = single_set (i0))
2736 	  /* Ensure the source of SET0 is a MEM, possibly buried inside
2737 	     an extension.  */
2738 	  && (GET_CODE (SET_SRC (set0)) == MEM
2739 	      || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2740 		   || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2741 		  && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2742 	  && (set3 = single_set (i3))
2743 	  /* Ensure the destination of SET3 is a MEM.  */
2744 	  && GET_CODE (SET_DEST (set3)) == MEM
2745 	  /* Would it be better to extract the base address for the MEM
2746 	     in SET3 and look for that?  I don't have cases where it matters
2747 	     but I could envision such cases.  */
2748 	  && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2749 	ngood += 2;
2750 
2751       if (ngood < 2 && nshift < 2)
2752 	return 0;
2753     }
2754 
2755   /* Exit early if one of the insns involved can't be used for
2756      combinations.  */
2757   if (CALL_P (i2)
2758       || (i1 && CALL_P (i1))
2759       || (i0 && CALL_P (i0))
2760       || cant_combine_insn_p (i3)
2761       || cant_combine_insn_p (i2)
2762       || (i1 && cant_combine_insn_p (i1))
2763       || (i0 && cant_combine_insn_p (i0))
2764       || likely_spilled_retval_p (i3))
2765     return 0;
2766 
2767   combine_attempts++;
2768   undobuf.other_insn = 0;
2769 
2770   /* Reset the hard register usage information.  */
2771   CLEAR_HARD_REG_SET (newpat_used_regs);
2772 
2773   if (dump_file && (dump_flags & TDF_DETAILS))
2774     {
2775       if (i0)
2776 	fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2777 		 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2778       else if (i1)
2779 	fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2780 		 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2781       else
2782 	fprintf (dump_file, "\nTrying %d -> %d:\n",
2783 		 INSN_UID (i2), INSN_UID (i3));
2784 
2785       if (i0)
2786 	dump_insn_slim (dump_file, i0);
2787       if (i1)
2788 	dump_insn_slim (dump_file, i1);
2789       dump_insn_slim (dump_file, i2);
2790       dump_insn_slim (dump_file, i3);
2791     }
2792 
2793   /* If multiple insns feed into one of I2 or I3, they can be in any
2794      order.  To simplify the code below, reorder them in sequence.  */
2795   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2796     std::swap (i0, i2);
2797   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2798     std::swap (i0, i1);
2799   if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2800     std::swap (i1, i2);
2801 
2802   added_links_insn = 0;
2803   added_notes_insn = 0;
2804 
2805   /* First check for one important special case that the code below will
2806      not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
2807      and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
2808      we may be able to replace that destination with the destination of I3.
2809      This occurs in the common code where we compute both a quotient and
2810      remainder into a structure, in which case we want to do the computation
2811      directly into the structure to avoid register-register copies.
2812 
2813      Note that this case handles both multiple sets in I2 and also cases
2814      where I2 has a number of CLOBBERs inside the PARALLEL.
2815 
2816      We make very conservative checks below and only try to handle the
2817      most common cases of this.  For example, we only handle the case
2818      where I2 and I3 are adjacent to avoid making difficult register
2819      usage tests.  */
2820 
2821   if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2822       && REG_P (SET_SRC (PATTERN (i3)))
2823       && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2824       && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2825       && GET_CODE (PATTERN (i2)) == PARALLEL
2826       && ! side_effects_p (SET_DEST (PATTERN (i3)))
2827       /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2828 	 below would need to check what is inside (and reg_overlap_mentioned_p
2829 	 doesn't support those codes anyway).  Don't allow those destinations;
2830 	 the resulting insn isn't likely to be recognized anyway.  */
2831       && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2832       && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2833       && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2834 				    SET_DEST (PATTERN (i3)))
2835       && next_active_insn (i2) == i3)
2836     {
2837       rtx p2 = PATTERN (i2);
2838 
2839       /* Make sure that the destination of I3,
2840 	 which we are going to substitute into one output of I2,
2841 	 is not used within another output of I2.  We must avoid making this:
2842 	 (parallel [(set (mem (reg 69)) ...)
2843 		    (set (reg 69) ...)])
2844 	 which is not well-defined as to order of actions.
2845 	 (Besides, reload can't handle output reloads for this.)
2846 
2847 	 The problem can also happen if the dest of I3 is a memory ref,
2848 	 if another dest in I2 is an indirect memory ref.
2849 
2850 	 Neither can this PARALLEL be an asm.  We do not allow combining
2851 	 that usually (see can_combine_p), so do not here either.  */
2852       bool ok = true;
2853       for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2854 	{
2855 	  if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2856 	       || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2857 	      && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2858 					  SET_DEST (XVECEXP (p2, 0, i))))
2859 	    ok = false;
2860 	  else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2861 		   && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2862 	    ok = false;
2863 	}
2864 
2865       if (ok)
2866 	for (i = 0; i < XVECLEN (p2, 0); i++)
2867 	  if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2868 	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2869 	    {
2870 	      combine_merges++;
2871 
2872 	      subst_insn = i3;
2873 	      subst_low_luid = DF_INSN_LUID (i2);
2874 
2875 	      added_sets_2 = added_sets_1 = added_sets_0 = 0;
2876 	      i2src = SET_SRC (XVECEXP (p2, 0, i));
2877 	      i2dest = SET_DEST (XVECEXP (p2, 0, i));
2878 	      i2dest_killed = dead_or_set_p (i2, i2dest);
2879 
2880 	      /* Replace the dest in I2 with our dest and make the resulting
2881 		 insn the new pattern for I3.  Then skip to where we validate
2882 		 the pattern.  Everything was set up above.  */
2883 	      SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2884 	      newpat = p2;
2885 	      i3_subst_into_i2 = 1;
2886 	      goto validate_replacement;
2887 	    }
2888     }
2889 
2890   /* If I2 is setting a pseudo to a constant and I3 is setting some
2891      sub-part of it to another constant, merge them by making a new
2892      constant.  */
2893   if (i1 == 0
2894       && (temp_expr = single_set (i2)) != 0
2895       && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2896       && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2897       && GET_CODE (PATTERN (i3)) == SET
2898       && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2899       && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2900     {
2901       rtx dest = SET_DEST (PATTERN (i3));
2902       rtx temp_dest = SET_DEST (temp_expr);
2903       int offset = -1;
2904       int width = 0;
2905 
2906       if (GET_CODE (dest) == ZERO_EXTRACT)
2907 	{
2908 	  if (CONST_INT_P (XEXP (dest, 1))
2909 	      && CONST_INT_P (XEXP (dest, 2))
2910 	      && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2911 					 &dest_mode))
2912 	    {
2913 	      width = INTVAL (XEXP (dest, 1));
2914 	      offset = INTVAL (XEXP (dest, 2));
2915 	      dest = XEXP (dest, 0);
2916 	      if (BITS_BIG_ENDIAN)
2917 		offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2918 	    }
2919 	}
2920       else
2921 	{
2922 	  if (GET_CODE (dest) == STRICT_LOW_PART)
2923 	    dest = XEXP (dest, 0);
2924 	  if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2925 	    {
2926 	      width = GET_MODE_PRECISION (dest_mode);
2927 	      offset = 0;
2928 	    }
2929 	}
2930 
2931       if (offset >= 0)
2932 	{
2933 	  /* If this is the low part, we're done.  */
2934 	  if (subreg_lowpart_p (dest))
2935 	    ;
2936 	  /* Handle the case where inner is twice the size of outer.  */
2937 	  else if (GET_MODE_PRECISION (temp_mode)
2938 		   == 2 * GET_MODE_PRECISION (dest_mode))
2939 	    offset += GET_MODE_PRECISION (dest_mode);
2940 	  /* Otherwise give up for now.  */
2941 	  else
2942 	    offset = -1;
2943 	}
2944 
2945       if (offset >= 0)
2946 	{
2947 	  rtx inner = SET_SRC (PATTERN (i3));
2948 	  rtx outer = SET_SRC (temp_expr);
2949 
2950 	  wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2951 				   rtx_mode_t (inner, dest_mode),
2952 				   offset, width);
2953 
2954 	  combine_merges++;
2955 	  subst_insn = i3;
2956 	  subst_low_luid = DF_INSN_LUID (i2);
2957 	  added_sets_2 = added_sets_1 = added_sets_0 = 0;
2958 	  i2dest = temp_dest;
2959 	  i2dest_killed = dead_or_set_p (i2, i2dest);
2960 
2961 	  /* Replace the source in I2 with the new constant and make the
2962 	     resulting insn the new pattern for I3.  Then skip to where we
2963 	     validate the pattern.  Everything was set up above.  */
2964 	  SUBST (SET_SRC (temp_expr),
2965 		 immed_wide_int_const (o, temp_mode));
2966 
2967 	  newpat = PATTERN (i2);
2968 
2969           /* The dest of I3 has been replaced with the dest of I2.  */
2970           changed_i3_dest = 1;
2971 	  goto validate_replacement;
2972 	}
2973     }
2974 
2975   /* If we have no I1 and I2 looks like:
2976 	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2977 		   (set Y OP)])
2978      make up a dummy I1 that is
2979 	(set Y OP)
2980      and change I2 to be
2981 	(set (reg:CC X) (compare:CC Y (const_int 0)))
2982 
2983      (We can ignore any trailing CLOBBERs.)
2984 
2985      This undoes a previous combination and allows us to match a branch-and-
2986      decrement insn.  */
2987 
2988   if (!HAVE_cc0 && i1 == 0
2989       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2990       && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2991 	  == MODE_CC)
2992       && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2993       && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2994       && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2995 		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2996       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2997       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2998     {
2999       /* We make I1 with the same INSN_UID as I2.  This gives it
3000 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
3001 	 never appear in the insn stream so giving it the same INSN_UID
3002 	 as I2 will not cause a problem.  */
3003 
3004       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3005 			 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3006 			 -1, NULL_RTX);
3007       INSN_UID (i1) = INSN_UID (i2);
3008 
3009       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3010       SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3011 	     SET_DEST (PATTERN (i1)));
3012       unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3013       SUBST_LINK (LOG_LINKS (i2),
3014 		  alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3015     }
3016 
3017   /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3018      make those two SETs separate I1 and I2 insns, and make an I0 that is
3019      the original I1.  */
3020   if (!HAVE_cc0 && i0 == 0
3021       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3022       && can_split_parallel_of_n_reg_sets (i2, 2)
3023       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3024       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3025       && !reg_set_between_p  (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3026       && !reg_set_between_p  (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3027     {
3028       /* If there is no I1, there is no I0 either.  */
3029       i0 = i1;
3030 
3031       /* We make I1 with the same INSN_UID as I2.  This gives it
3032 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
3033 	 never appear in the insn stream so giving it the same INSN_UID
3034 	 as I2 will not cause a problem.  */
3035 
3036       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3037 			 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3038 			 -1, NULL_RTX);
3039       INSN_UID (i1) = INSN_UID (i2);
3040 
3041       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3042     }
3043 
3044   /* Verify that I2 and maybe I1 and I0 can be combined into I3.  */
3045   if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3046     {
3047       if (dump_file)
3048 	fprintf (dump_file, "Can't combine i2 into i3\n");
3049       undo_all ();
3050       return 0;
3051     }
3052   if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3053     {
3054       if (dump_file)
3055 	fprintf (dump_file, "Can't combine i1 into i3\n");
3056       undo_all ();
3057       return 0;
3058     }
3059   if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3060     {
3061       if (dump_file)
3062 	fprintf (dump_file, "Can't combine i0 into i3\n");
3063       undo_all ();
3064       return 0;
3065     }
3066 
3067   /* Record whether I2DEST is used in I2SRC and similarly for the other
3068      cases.  Knowing this will help in register status updating below.  */
3069   i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3070   i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3071   i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3072   i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3073   i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3074   i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3075   i2dest_killed = dead_or_set_p (i2, i2dest);
3076   i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3077   i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3078 
3079   /* For the earlier insns, determine which of the subsequent ones they
3080      feed.  */
3081   i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3082   i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3083   i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3084 			  : (!reg_overlap_mentioned_p (i1dest, i0dest)
3085 			     && reg_overlap_mentioned_p (i0dest, i2src))));
3086 
3087   /* Ensure that I3's pattern can be the destination of combines.  */
3088   if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3089 			  i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3090 			  i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3091 				 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3092 			  &i3dest_killed))
3093     {
3094       undo_all ();
3095       return 0;
3096     }
3097 
3098   /* See if any of the insns is a MULT operation.  Unless one is, we will
3099      reject a combination that is, since it must be slower.  Be conservative
3100      here.  */
3101   if (GET_CODE (i2src) == MULT
3102       || (i1 != 0 && GET_CODE (i1src) == MULT)
3103       || (i0 != 0 && GET_CODE (i0src) == MULT)
3104       || (GET_CODE (PATTERN (i3)) == SET
3105 	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3106     have_mult = 1;
3107 
3108   /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3109      We used to do this EXCEPT in one case: I3 has a post-inc in an
3110      output operand.  However, that exception can give rise to insns like
3111 	mov r3,(r3)+
3112      which is a famous insn on the PDP-11 where the value of r3 used as the
3113      source was model-dependent.  Avoid this sort of thing.  */
3114 
3115 #if 0
3116   if (!(GET_CODE (PATTERN (i3)) == SET
3117 	&& REG_P (SET_SRC (PATTERN (i3)))
3118 	&& MEM_P (SET_DEST (PATTERN (i3)))
3119 	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3120 	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3121     /* It's not the exception.  */
3122 #endif
3123     if (AUTO_INC_DEC)
3124       {
3125 	rtx link;
3126 	for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3127 	  if (REG_NOTE_KIND (link) == REG_INC
3128 	      && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3129 		  || (i1 != 0
3130 		      && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3131 	    {
3132 	      undo_all ();
3133 	      return 0;
3134 	    }
3135       }
3136 
3137   /* See if the SETs in I1 or I2 need to be kept around in the merged
3138      instruction: whenever the value set there is still needed past I3.
3139      For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3140 
3141      For the SET in I1, we have two cases: if I1 and I2 independently feed
3142      into I3, the set in I1 needs to be kept around unless I1DEST dies
3143      or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
3144      in I1 needs to be kept around unless I1DEST dies or is set in either
3145      I2 or I3.  The same considerations apply to I0.  */
3146 
3147   added_sets_2 = !dead_or_set_p (i3, i2dest);
3148 
3149   if (i1)
3150     added_sets_1 = !(dead_or_set_p (i3, i1dest)
3151 		     || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3152   else
3153     added_sets_1 = 0;
3154 
3155   if (i0)
3156     added_sets_0 =  !(dead_or_set_p (i3, i0dest)
3157 		      || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3158 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3159 			  && dead_or_set_p (i2, i0dest)));
3160   else
3161     added_sets_0 = 0;
3162 
3163   /* We are about to copy insns for the case where they need to be kept
3164      around.  Check that they can be copied in the merged instruction.  */
3165 
3166   if (targetm.cannot_copy_insn_p
3167       && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3168 	  || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3169 	  || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3170     {
3171       undo_all ();
3172       return 0;
3173     }
3174 
3175   /* If the set in I2 needs to be kept around, we must make a copy of
3176      PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3177      PATTERN (I2), we are only substituting for the original I1DEST, not into
3178      an already-substituted copy.  This also prevents making self-referential
3179      rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3180      I2DEST.  */
3181 
3182   if (added_sets_2)
3183     {
3184       if (GET_CODE (PATTERN (i2)) == PARALLEL)
3185 	i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3186       else
3187 	i2pat = copy_rtx (PATTERN (i2));
3188     }
3189 
3190   if (added_sets_1)
3191     {
3192       if (GET_CODE (PATTERN (i1)) == PARALLEL)
3193 	i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3194       else
3195 	i1pat = copy_rtx (PATTERN (i1));
3196     }
3197 
3198   if (added_sets_0)
3199     {
3200       if (GET_CODE (PATTERN (i0)) == PARALLEL)
3201 	i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3202       else
3203 	i0pat = copy_rtx (PATTERN (i0));
3204     }
3205 
3206   combine_merges++;
3207 
3208   /* Substitute in the latest insn for the regs set by the earlier ones.  */
3209 
3210   maxreg = max_reg_num ();
3211 
3212   subst_insn = i3;
3213 
3214   /* Many machines that don't use CC0 have insns that can both perform an
3215      arithmetic operation and set the condition code.  These operations will
3216      be represented as a PARALLEL with the first element of the vector
3217      being a COMPARE of an arithmetic operation with the constant zero.
3218      The second element of the vector will set some pseudo to the result
3219      of the same arithmetic operation.  If we simplify the COMPARE, we won't
3220      match such a pattern and so will generate an extra insn.   Here we test
3221      for this case, where both the comparison and the operation result are
3222      needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3223      I2SRC.  Later we will make the PARALLEL that contains I2.  */
3224 
3225   if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3226       && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3227       && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3228       && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3229     {
3230       rtx newpat_dest;
3231       rtx *cc_use_loc = NULL;
3232       rtx_insn *cc_use_insn = NULL;
3233       rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3234       machine_mode compare_mode, orig_compare_mode;
3235       enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3236       scalar_int_mode mode;
3237 
3238       newpat = PATTERN (i3);
3239       newpat_dest = SET_DEST (newpat);
3240       compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3241 
3242       if (undobuf.other_insn == 0
3243 	  && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3244 					    &cc_use_insn)))
3245 	{
3246 	  compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3247 	  if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3248 	    compare_code = simplify_compare_const (compare_code, mode,
3249 						   op0, &op1);
3250 	  target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3251 	}
3252 
3253       /* Do the rest only if op1 is const0_rtx, which may be the
3254 	 result of simplification.  */
3255       if (op1 == const0_rtx)
3256 	{
3257 	  /* If a single use of the CC is found, prepare to modify it
3258 	     when SELECT_CC_MODE returns a new CC-class mode, or when
3259 	     the above simplify_compare_const() returned a new comparison
3260 	     operator.  undobuf.other_insn is assigned the CC use insn
3261 	     when modifying it.  */
3262 	  if (cc_use_loc)
3263 	    {
3264 #ifdef SELECT_CC_MODE
3265 	      machine_mode new_mode
3266 		= SELECT_CC_MODE (compare_code, op0, op1);
3267 	      if (new_mode != orig_compare_mode
3268 		  && can_change_dest_mode (SET_DEST (newpat),
3269 					   added_sets_2, new_mode))
3270 		{
3271 		  unsigned int regno = REGNO (newpat_dest);
3272 		  compare_mode = new_mode;
3273 		  if (regno < FIRST_PSEUDO_REGISTER)
3274 		    newpat_dest = gen_rtx_REG (compare_mode, regno);
3275 		  else
3276 		    {
3277 		      SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3278 		      newpat_dest = regno_reg_rtx[regno];
3279 		    }
3280 		}
3281 #endif
3282 	      /* Cases for modifying the CC-using comparison.  */
3283 	      if (compare_code != orig_compare_code
3284 		  /* ??? Do we need to verify the zero rtx?  */
3285 		  && XEXP (*cc_use_loc, 1) == const0_rtx)
3286 		{
3287 		  /* Replace cc_use_loc with entire new RTX.  */
3288 		  SUBST (*cc_use_loc,
3289 			 gen_rtx_fmt_ee (compare_code, compare_mode,
3290 					 newpat_dest, const0_rtx));
3291 		  undobuf.other_insn = cc_use_insn;
3292 		}
3293 	      else if (compare_mode != orig_compare_mode)
3294 		{
3295 		  /* Just replace the CC reg with a new mode.  */
3296 		  SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3297 		  undobuf.other_insn = cc_use_insn;
3298 		}
3299 	    }
3300 
3301 	  /* Now we modify the current newpat:
3302 	     First, SET_DEST(newpat) is updated if the CC mode has been
3303 	     altered. For targets without SELECT_CC_MODE, this should be
3304 	     optimized away.  */
3305 	  if (compare_mode != orig_compare_mode)
3306 	    SUBST (SET_DEST (newpat), newpat_dest);
3307 	  /* This is always done to propagate i2src into newpat.  */
3308 	  SUBST (SET_SRC (newpat),
3309 		 gen_rtx_COMPARE (compare_mode, op0, op1));
3310 	  /* Create new version of i2pat if needed; the below PARALLEL
3311 	     creation needs this to work correctly.  */
3312 	  if (! rtx_equal_p (i2src, op0))
3313 	    i2pat = gen_rtx_SET (i2dest, op0);
3314 	  i2_is_used = 1;
3315 	}
3316     }
3317 
3318   if (i2_is_used == 0)
3319     {
3320       /* It is possible that the source of I2 or I1 may be performing
3321 	 an unneeded operation, such as a ZERO_EXTEND of something
3322 	 that is known to have the high part zero.  Handle that case
3323 	 by letting subst look at the inner insns.
3324 
3325 	 Another way to do this would be to have a function that tries
3326 	 to simplify a single insn instead of merging two or more
3327 	 insns.  We don't do this because of the potential of infinite
3328 	 loops and because of the potential extra memory required.
3329 	 However, doing it the way we are is a bit of a kludge and
3330 	 doesn't catch all cases.
3331 
3332 	 But only do this if -fexpensive-optimizations since it slows
3333 	 things down and doesn't usually win.
3334 
3335 	 This is not done in the COMPARE case above because the
3336 	 unmodified I2PAT is used in the PARALLEL and so a pattern
3337 	 with a modified I2SRC would not match.  */
3338 
3339       if (flag_expensive_optimizations)
3340 	{
3341 	  /* Pass pc_rtx so no substitutions are done, just
3342 	     simplifications.  */
3343 	  if (i1)
3344 	    {
3345 	      subst_low_luid = DF_INSN_LUID (i1);
3346 	      i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3347 	    }
3348 
3349 	  subst_low_luid = DF_INSN_LUID (i2);
3350 	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3351 	}
3352 
3353       n_occurrences = 0;		/* `subst' counts here */
3354       subst_low_luid = DF_INSN_LUID (i2);
3355 
3356       /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3357 	 copy of I2SRC each time we substitute it, in order to avoid creating
3358 	 self-referential RTL when we will be substituting I1SRC for I1DEST
3359 	 later.  Likewise if I0 feeds into I2, either directly or indirectly
3360 	 through I1, and I0DEST is in I0SRC.  */
3361       newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3362 		      (i1_feeds_i2_n && i1dest_in_i1src)
3363 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3364 			  && i0dest_in_i0src));
3365       substed_i2 = 1;
3366 
3367       /* Record whether I2's body now appears within I3's body.  */
3368       i2_is_used = n_occurrences;
3369     }
3370 
3371   /* If we already got a failure, don't try to do more.  Otherwise, try to
3372      substitute I1 if we have it.  */
3373 
3374   if (i1 && GET_CODE (newpat) != CLOBBER)
3375     {
3376       /* Check that an autoincrement side-effect on I1 has not been lost.
3377 	 This happens if I1DEST is mentioned in I2 and dies there, and
3378 	 has disappeared from the new pattern.  */
3379       if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3380 	   && i1_feeds_i2_n
3381 	   && dead_or_set_p (i2, i1dest)
3382 	   && !reg_overlap_mentioned_p (i1dest, newpat))
3383 	   /* Before we can do this substitution, we must redo the test done
3384 	      above (see detailed comments there) that ensures I1DEST isn't
3385 	      mentioned in any SETs in NEWPAT that are field assignments.  */
3386 	  || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3387 				0, 0, 0))
3388 	{
3389 	  undo_all ();
3390 	  return 0;
3391 	}
3392 
3393       n_occurrences = 0;
3394       subst_low_luid = DF_INSN_LUID (i1);
3395 
3396       /* If the following substitution will modify I1SRC, make a copy of it
3397 	 for the case where it is substituted for I1DEST in I2PAT later.  */
3398       if (added_sets_2 && i1_feeds_i2_n)
3399 	i1src_copy = copy_rtx (i1src);
3400 
3401       /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3402 	 copy of I1SRC each time we substitute it, in order to avoid creating
3403 	 self-referential RTL when we will be substituting I0SRC for I0DEST
3404 	 later.  */
3405       newpat = subst (newpat, i1dest, i1src, 0, 0,
3406 		      i0_feeds_i1_n && i0dest_in_i0src);
3407       substed_i1 = 1;
3408 
3409       /* Record whether I1's body now appears within I3's body.  */
3410       i1_is_used = n_occurrences;
3411     }
3412 
3413   /* Likewise for I0 if we have it.  */
3414 
3415   if (i0 && GET_CODE (newpat) != CLOBBER)
3416     {
3417       if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3418 	   && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3419 	       || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3420 	   && !reg_overlap_mentioned_p (i0dest, newpat))
3421 	  || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3422 				0, 0, 0))
3423 	{
3424 	  undo_all ();
3425 	  return 0;
3426 	}
3427 
3428       /* If the following substitution will modify I0SRC, make a copy of it
3429 	 for the case where it is substituted for I0DEST in I1PAT later.  */
3430       if (added_sets_1 && i0_feeds_i1_n)
3431 	i0src_copy = copy_rtx (i0src);
3432       /* And a copy for I0DEST in I2PAT substitution.  */
3433       if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3434 			   || (i0_feeds_i2_n)))
3435 	i0src_copy2 = copy_rtx (i0src);
3436 
3437       n_occurrences = 0;
3438       subst_low_luid = DF_INSN_LUID (i0);
3439       newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3440       substed_i0 = 1;
3441     }
3442 
3443   /* Fail if an autoincrement side-effect has been duplicated.  Be careful
3444      to count all the ways that I2SRC and I1SRC can be used.  */
3445   if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3446        && i2_is_used + added_sets_2 > 1)
3447       || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3448 	  && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3449 	      > 1))
3450       || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3451 	  && (n_occurrences + added_sets_0
3452 	      + (added_sets_1 && i0_feeds_i1_n)
3453 	      + (added_sets_2 && i0_feeds_i2_n)
3454 	      > 1))
3455       /* Fail if we tried to make a new register.  */
3456       || max_reg_num () != maxreg
3457       /* Fail if we couldn't do something and have a CLOBBER.  */
3458       || GET_CODE (newpat) == CLOBBER
3459       /* Fail if this new pattern is a MULT and we didn't have one before
3460 	 at the outer level.  */
3461       || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3462 	  && ! have_mult))
3463     {
3464       undo_all ();
3465       return 0;
3466     }
3467 
3468   /* If the actions of the earlier insns must be kept
3469      in addition to substituting them into the latest one,
3470      we must make a new PARALLEL for the latest insn
3471      to hold additional the SETs.  */
3472 
3473   if (added_sets_0 || added_sets_1 || added_sets_2)
3474     {
3475       int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3476       combine_extras++;
3477 
3478       if (GET_CODE (newpat) == PARALLEL)
3479 	{
3480 	  rtvec old = XVEC (newpat, 0);
3481 	  total_sets = XVECLEN (newpat, 0) + extra_sets;
3482 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3483 	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3484 		  sizeof (old->elem[0]) * old->num_elem);
3485 	}
3486       else
3487 	{
3488 	  rtx old = newpat;
3489 	  total_sets = 1 + extra_sets;
3490 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3491 	  XVECEXP (newpat, 0, 0) = old;
3492 	}
3493 
3494       if (added_sets_0)
3495 	XVECEXP (newpat, 0, --total_sets) = i0pat;
3496 
3497       if (added_sets_1)
3498 	{
3499 	  rtx t = i1pat;
3500 	  if (i0_feeds_i1_n)
3501 	    t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3502 
3503 	  XVECEXP (newpat, 0, --total_sets) = t;
3504 	}
3505       if (added_sets_2)
3506 	{
3507 	  rtx t = i2pat;
3508 	  if (i1_feeds_i2_n)
3509 	    t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3510 		       i0_feeds_i1_n && i0dest_in_i0src);
3511 	  if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3512 	    t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3513 
3514 	  XVECEXP (newpat, 0, --total_sets) = t;
3515 	}
3516     }
3517 
3518  validate_replacement:
3519 
3520   /* Note which hard regs this insn has as inputs.  */
3521   mark_used_regs_combine (newpat);
3522 
3523   /* If recog_for_combine fails, it strips existing clobbers.  If we'll
3524      consider splitting this pattern, we might need these clobbers.  */
3525   if (i1 && GET_CODE (newpat) == PARALLEL
3526       && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3527     {
3528       int len = XVECLEN (newpat, 0);
3529 
3530       newpat_vec_with_clobbers = rtvec_alloc (len);
3531       for (i = 0; i < len; i++)
3532 	RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3533     }
3534 
3535   /* We have recognized nothing yet.  */
3536   insn_code_number = -1;
3537 
3538   /* See if this is a PARALLEL of two SETs where one SET's destination is
3539      a register that is unused and this isn't marked as an instruction that
3540      might trap in an EH region.  In that case, we just need the other SET.
3541      We prefer this over the PARALLEL.
3542 
3543      This can occur when simplifying a divmod insn.  We *must* test for this
3544      case here because the code below that splits two independent SETs doesn't
3545      handle this case correctly when it updates the register status.
3546 
3547      It's pointless doing this if we originally had two sets, one from
3548      i3, and one from i2.  Combining then splitting the parallel results
3549      in the original i2 again plus an invalid insn (which we delete).
3550      The net effect is only to move instructions around, which makes
3551      debug info less accurate.
3552 
3553      If the remaining SET came from I2 its destination should not be used
3554      between I2 and I3.  See PR82024.  */
3555 
3556   if (!(added_sets_2 && i1 == 0)
3557       && is_parallel_of_n_reg_sets (newpat, 2)
3558       && asm_noperands (newpat) < 0)
3559     {
3560       rtx set0 = XVECEXP (newpat, 0, 0);
3561       rtx set1 = XVECEXP (newpat, 0, 1);
3562       rtx oldpat = newpat;
3563 
3564       if (((REG_P (SET_DEST (set1))
3565 	    && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3566 	   || (GET_CODE (SET_DEST (set1)) == SUBREG
3567 	       && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3568 	  && insn_nothrow_p (i3)
3569 	  && !side_effects_p (SET_SRC (set1)))
3570 	{
3571 	  newpat = set0;
3572 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3573 	}
3574 
3575       else if (((REG_P (SET_DEST (set0))
3576 		 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3577 		|| (GET_CODE (SET_DEST (set0)) == SUBREG
3578 		    && find_reg_note (i3, REG_UNUSED,
3579 				      SUBREG_REG (SET_DEST (set0)))))
3580 	       && insn_nothrow_p (i3)
3581 	       && !side_effects_p (SET_SRC (set0)))
3582 	{
3583 	  rtx dest = SET_DEST (set1);
3584 	  if (GET_CODE (dest) == SUBREG)
3585 	    dest = SUBREG_REG (dest);
3586 	  if (!reg_used_between_p (dest, i2, i3))
3587 	    {
3588 	      newpat = set1;
3589 	      insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3590 
3591 	      if (insn_code_number >= 0)
3592 		changed_i3_dest = 1;
3593 	    }
3594 	}
3595 
3596       if (insn_code_number < 0)
3597 	newpat = oldpat;
3598     }
3599 
3600   /* Is the result of combination a valid instruction?  */
3601   if (insn_code_number < 0)
3602     insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3603 
3604   /* If we were combining three insns and the result is a simple SET
3605      with no ASM_OPERANDS that wasn't recognized, try to split it into two
3606      insns.  There are two ways to do this.  It can be split using a
3607      machine-specific method (like when you have an addition of a large
3608      constant) or by combine in the function find_split_point.  */
3609 
3610   if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3611       && asm_noperands (newpat) < 0)
3612     {
3613       rtx parallel, *split;
3614       rtx_insn *m_split_insn;
3615 
3616       /* See if the MD file can split NEWPAT.  If it can't, see if letting it
3617 	 use I2DEST as a scratch register will help.  In the latter case,
3618 	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
3619 
3620       m_split_insn = combine_split_insns (newpat, i3);
3621 
3622       /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3623 	 inputs of NEWPAT.  */
3624 
3625       /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3626 	 possible to try that as a scratch reg.  This would require adding
3627 	 more code to make it work though.  */
3628 
3629       if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3630 	{
3631 	  machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3632 
3633 	  /* ??? Reusing i2dest without resetting the reg_stat entry for it
3634 	     (temporarily, until we are committed to this instruction
3635 	     combination) does not work: for example, any call to nonzero_bits
3636 	     on the register (from a splitter in the MD file, for example)
3637 	     will get the old information, which is invalid.
3638 
3639 	     Since nowadays we can create registers during combine just fine,
3640 	     we should just create a new one here, not reuse i2dest.  */
3641 
3642 	  /* First try to split using the original register as a
3643 	     scratch register.  */
3644 	  parallel = gen_rtx_PARALLEL (VOIDmode,
3645 				       gen_rtvec (2, newpat,
3646 						  gen_rtx_CLOBBER (VOIDmode,
3647 								   i2dest)));
3648 	  m_split_insn = combine_split_insns (parallel, i3);
3649 
3650 	  /* If that didn't work, try changing the mode of I2DEST if
3651 	     we can.  */
3652 	  if (m_split_insn == 0
3653 	      && new_mode != GET_MODE (i2dest)
3654 	      && new_mode != VOIDmode
3655 	      && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3656 	    {
3657 	      machine_mode old_mode = GET_MODE (i2dest);
3658 	      rtx ni2dest;
3659 
3660 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3661 		ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3662 	      else
3663 		{
3664 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3665 		  ni2dest = regno_reg_rtx[REGNO (i2dest)];
3666 		}
3667 
3668 	      parallel = (gen_rtx_PARALLEL
3669 			  (VOIDmode,
3670 			   gen_rtvec (2, newpat,
3671 				      gen_rtx_CLOBBER (VOIDmode,
3672 						       ni2dest))));
3673 	      m_split_insn = combine_split_insns (parallel, i3);
3674 
3675 	      if (m_split_insn == 0
3676 		  && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3677 		{
3678 		  struct undo *buf;
3679 
3680 		  adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3681 		  buf = undobuf.undos;
3682 		  undobuf.undos = buf->next;
3683 		  buf->next = undobuf.frees;
3684 		  undobuf.frees = buf;
3685 		}
3686 	    }
3687 
3688 	  i2scratch = m_split_insn != 0;
3689 	}
3690 
3691       /* If recog_for_combine has discarded clobbers, try to use them
3692 	 again for the split.  */
3693       if (m_split_insn == 0 && newpat_vec_with_clobbers)
3694 	{
3695 	  parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3696 	  m_split_insn = combine_split_insns (parallel, i3);
3697 	}
3698 
3699       if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3700 	{
3701 	  rtx m_split_pat = PATTERN (m_split_insn);
3702 	  insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3703 	  if (insn_code_number >= 0)
3704 	    newpat = m_split_pat;
3705 	}
3706       else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3707 	       && (next_nonnote_nondebug_insn (i2) == i3
3708 		   || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3709 	{
3710 	  rtx i2set, i3set;
3711 	  rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3712 	  newi2pat = PATTERN (m_split_insn);
3713 
3714 	  i3set = single_set (NEXT_INSN (m_split_insn));
3715 	  i2set = single_set (m_split_insn);
3716 
3717 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3718 
3719 	  /* If I2 or I3 has multiple SETs, we won't know how to track
3720 	     register status, so don't use these insns.  If I2's destination
3721 	     is used between I2 and I3, we also can't use these insns.  */
3722 
3723 	  if (i2_code_number >= 0 && i2set && i3set
3724 	      && (next_nonnote_nondebug_insn (i2) == i3
3725 		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3726 	    insn_code_number = recog_for_combine (&newi3pat, i3,
3727 						  &new_i3_notes);
3728 	  if (insn_code_number >= 0)
3729 	    newpat = newi3pat;
3730 
3731 	  /* It is possible that both insns now set the destination of I3.
3732 	     If so, we must show an extra use of it.  */
3733 
3734 	  if (insn_code_number >= 0)
3735 	    {
3736 	      rtx new_i3_dest = SET_DEST (i3set);
3737 	      rtx new_i2_dest = SET_DEST (i2set);
3738 
3739 	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3740 		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3741 		     || GET_CODE (new_i3_dest) == SUBREG)
3742 		new_i3_dest = XEXP (new_i3_dest, 0);
3743 
3744 	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3745 		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3746 		     || GET_CODE (new_i2_dest) == SUBREG)
3747 		new_i2_dest = XEXP (new_i2_dest, 0);
3748 
3749 	      if (REG_P (new_i3_dest)
3750 		  && REG_P (new_i2_dest)
3751 		  && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3752 		  && REGNO (new_i2_dest) < reg_n_sets_max)
3753 		INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3754 	    }
3755 	}
3756 
3757       /* If we can split it and use I2DEST, go ahead and see if that
3758 	 helps things be recognized.  Verify that none of the registers
3759 	 are set between I2 and I3.  */
3760       if (insn_code_number < 0
3761           && (split = find_split_point (&newpat, i3, false)) != 0
3762 	  && (!HAVE_cc0 || REG_P (i2dest))
3763 	  /* We need I2DEST in the proper mode.  If it is a hard register
3764 	     or the only use of a pseudo, we can change its mode.
3765 	     Make sure we don't change a hard register to have a mode that
3766 	     isn't valid for it, or change the number of registers.  */
3767 	  && (GET_MODE (*split) == GET_MODE (i2dest)
3768 	      || GET_MODE (*split) == VOIDmode
3769 	      || can_change_dest_mode (i2dest, added_sets_2,
3770 				       GET_MODE (*split)))
3771 	  && (next_nonnote_nondebug_insn (i2) == i3
3772 	      || !modified_between_p (*split, i2, i3))
3773 	  /* We can't overwrite I2DEST if its value is still used by
3774 	     NEWPAT.  */
3775 	  && ! reg_referenced_p (i2dest, newpat))
3776 	{
3777 	  rtx newdest = i2dest;
3778 	  enum rtx_code split_code = GET_CODE (*split);
3779 	  machine_mode split_mode = GET_MODE (*split);
3780 	  bool subst_done = false;
3781 	  newi2pat = NULL_RTX;
3782 
3783 	  i2scratch = true;
3784 
3785 	  /* *SPLIT may be part of I2SRC, so make sure we have the
3786 	     original expression around for later debug processing.
3787 	     We should not need I2SRC any more in other cases.  */
3788 	  if (MAY_HAVE_DEBUG_BIND_INSNS)
3789 	    i2src = copy_rtx (i2src);
3790 	  else
3791 	    i2src = NULL;
3792 
3793 	  /* Get NEWDEST as a register in the proper mode.  We have already
3794 	     validated that we can do this.  */
3795 	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3796 	    {
3797 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3798 		newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3799 	      else
3800 		{
3801 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3802 		  newdest = regno_reg_rtx[REGNO (i2dest)];
3803 		}
3804 	    }
3805 
3806 	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3807 	     an ASHIFT.  This can occur if it was inside a PLUS and hence
3808 	     appeared to be a memory address.  This is a kludge.  */
3809 	  if (split_code == MULT
3810 	      && CONST_INT_P (XEXP (*split, 1))
3811 	      && INTVAL (XEXP (*split, 1)) > 0
3812 	      && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3813 	    {
3814 	      rtx i_rtx = gen_int_shift_amount (split_mode, i);
3815 	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
3816 					     XEXP (*split, 0), i_rtx));
3817 	      /* Update split_code because we may not have a multiply
3818 		 anymore.  */
3819 	      split_code = GET_CODE (*split);
3820 	    }
3821 
3822 	  /* Similarly for (plus (mult FOO (const_int pow2))).  */
3823 	  if (split_code == PLUS
3824 	      && GET_CODE (XEXP (*split, 0)) == MULT
3825 	      && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3826 	      && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3827 	      && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3828 	    {
3829 	      rtx nsplit = XEXP (*split, 0);
3830 	      rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3831 	      SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3832 						       XEXP (nsplit, 0),
3833 						       i_rtx));
3834 	      /* Update split_code because we may not have a multiply
3835 		 anymore.  */
3836 	      split_code = GET_CODE (*split);
3837 	    }
3838 
3839 #ifdef INSN_SCHEDULING
3840 	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3841 	     be written as a ZERO_EXTEND.  */
3842 	  if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3843 	    {
3844 	      /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3845 		 what it really is.  */
3846 	      if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3847 		  == SIGN_EXTEND)
3848 		SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3849 						    SUBREG_REG (*split)));
3850 	      else
3851 		SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3852 						    SUBREG_REG (*split)));
3853 	    }
3854 #endif
3855 
3856 	  /* Attempt to split binary operators using arithmetic identities.  */
3857 	  if (BINARY_P (SET_SRC (newpat))
3858 	      && split_mode == GET_MODE (SET_SRC (newpat))
3859 	      && ! side_effects_p (SET_SRC (newpat)))
3860 	    {
3861 	      rtx setsrc = SET_SRC (newpat);
3862 	      machine_mode mode = GET_MODE (setsrc);
3863 	      enum rtx_code code = GET_CODE (setsrc);
3864 	      rtx src_op0 = XEXP (setsrc, 0);
3865 	      rtx src_op1 = XEXP (setsrc, 1);
3866 
3867 	      /* Split "X = Y op Y" as "Z = Y; X = Z op Z".  */
3868 	      if (rtx_equal_p (src_op0, src_op1))
3869 		{
3870 		  newi2pat = gen_rtx_SET (newdest, src_op0);
3871 		  SUBST (XEXP (setsrc, 0), newdest);
3872 		  SUBST (XEXP (setsrc, 1), newdest);
3873 		  subst_done = true;
3874 		}
3875 	      /* Split "((P op Q) op R) op S" where op is PLUS or MULT.  */
3876 	      else if ((code == PLUS || code == MULT)
3877 		       && GET_CODE (src_op0) == code
3878 		       && GET_CODE (XEXP (src_op0, 0)) == code
3879 		       && (INTEGRAL_MODE_P (mode)
3880 			   || (FLOAT_MODE_P (mode)
3881 			       && flag_unsafe_math_optimizations)))
3882 		{
3883 		  rtx p = XEXP (XEXP (src_op0, 0), 0);
3884 		  rtx q = XEXP (XEXP (src_op0, 0), 1);
3885 		  rtx r = XEXP (src_op0, 1);
3886 		  rtx s = src_op1;
3887 
3888 		  /* Split both "((X op Y) op X) op Y" and
3889 		     "((X op Y) op Y) op X" as "T op T" where T is
3890 		     "X op Y".  */
3891 		  if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3892 		       || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3893 		    {
3894 		      newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3895 		      SUBST (XEXP (setsrc, 0), newdest);
3896 		      SUBST (XEXP (setsrc, 1), newdest);
3897 		      subst_done = true;
3898 		    }
3899 		  /* Split "((X op X) op Y) op Y)" as "T op T" where
3900 		     T is "X op Y".  */
3901 		  else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3902 		    {
3903 		      rtx tmp = simplify_gen_binary (code, mode, p, r);
3904 		      newi2pat = gen_rtx_SET (newdest, tmp);
3905 		      SUBST (XEXP (setsrc, 0), newdest);
3906 		      SUBST (XEXP (setsrc, 1), newdest);
3907 		      subst_done = true;
3908 		    }
3909 		}
3910 	    }
3911 
3912 	  if (!subst_done)
3913 	    {
3914 	      newi2pat = gen_rtx_SET (newdest, *split);
3915 	      SUBST (*split, newdest);
3916 	    }
3917 
3918 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3919 
3920 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
3921 	     Make sure NEWPAT does not depend on the clobbered regs.  */
3922 	  if (GET_CODE (newi2pat) == PARALLEL)
3923 	    for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3924 	      if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3925 		{
3926 		  rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3927 		  if (reg_overlap_mentioned_p (reg, newpat))
3928 		    {
3929 		      undo_all ();
3930 		      return 0;
3931 		    }
3932 		}
3933 
3934 	  /* If the split point was a MULT and we didn't have one before,
3935 	     don't use one now.  */
3936 	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3937 	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3938 	}
3939     }
3940 
3941   /* Check for a case where we loaded from memory in a narrow mode and
3942      then sign extended it, but we need both registers.  In that case,
3943      we have a PARALLEL with both loads from the same memory location.
3944      We can split this into a load from memory followed by a register-register
3945      copy.  This saves at least one insn, more if register allocation can
3946      eliminate the copy.
3947 
3948      We cannot do this if the destination of the first assignment is a
3949      condition code register or cc0.  We eliminate this case by making sure
3950      the SET_DEST and SET_SRC have the same mode.
3951 
3952      We cannot do this if the destination of the second assignment is
3953      a register that we have already assumed is zero-extended.  Similarly
3954      for a SUBREG of such a register.  */
3955 
3956   else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3957 	   && GET_CODE (newpat) == PARALLEL
3958 	   && XVECLEN (newpat, 0) == 2
3959 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3960 	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3961 	   && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3962 	       == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3963 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3964 	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3965 			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3966 	   && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3967 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3968 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3969 	   && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3970 		 (REG_P (temp_expr)
3971 		  && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3972 		  && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3973 			       BITS_PER_WORD)
3974 		  && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3975 			       HOST_BITS_PER_INT)
3976 		  && (reg_stat[REGNO (temp_expr)].nonzero_bits
3977 		      != GET_MODE_MASK (word_mode))))
3978 	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3979 		 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3980 		     (REG_P (temp_expr)
3981 		      && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3982 		      && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3983 				   BITS_PER_WORD)
3984 		      && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3985 				   HOST_BITS_PER_INT)
3986 		      && (reg_stat[REGNO (temp_expr)].nonzero_bits
3987 			  != GET_MODE_MASK (word_mode)))))
3988 	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3989 					 SET_SRC (XVECEXP (newpat, 0, 1)))
3990 	   && ! find_reg_note (i3, REG_UNUSED,
3991 			       SET_DEST (XVECEXP (newpat, 0, 0))))
3992     {
3993       rtx ni2dest;
3994 
3995       newi2pat = XVECEXP (newpat, 0, 0);
3996       ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3997       newpat = XVECEXP (newpat, 0, 1);
3998       SUBST (SET_SRC (newpat),
3999 	     gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4000       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4001 
4002       if (i2_code_number >= 0)
4003 	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4004 
4005       if (insn_code_number >= 0)
4006 	swap_i2i3 = 1;
4007     }
4008 
4009   /* Similarly, check for a case where we have a PARALLEL of two independent
4010      SETs but we started with three insns.  In this case, we can do the sets
4011      as two separate insns.  This case occurs when some SET allows two
4012      other insns to combine, but the destination of that SET is still live.
4013 
4014      Also do this if we started with two insns and (at least) one of the
4015      resulting sets is a noop; this noop will be deleted later.
4016 
4017      Also do this if we started with two insns neither of which was a simple
4018      move.  */
4019 
4020   else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4021 	   && GET_CODE (newpat) == PARALLEL
4022 	   && XVECLEN (newpat, 0) == 2
4023 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4024 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4025 	   && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
4026 		  || set_noop_p (XVECEXP (newpat, 0, 1)))
4027 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4028 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4029 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4030 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4031 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4032 				  XVECEXP (newpat, 0, 0))
4033 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4034 				  XVECEXP (newpat, 0, 1))
4035 	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4036 		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4037     {
4038       rtx set0 = XVECEXP (newpat, 0, 0);
4039       rtx set1 = XVECEXP (newpat, 0, 1);
4040 
4041       /* Normally, it doesn't matter which of the two is done first,
4042 	 but the one that references cc0 can't be the second, and
4043 	 one which uses any regs/memory set in between i2 and i3 can't
4044 	 be first.  The PARALLEL might also have been pre-existing in i3,
4045 	 so we need to make sure that we won't wrongly hoist a SET to i2
4046 	 that would conflict with a death note present in there, or would
4047 	 have its dest modified between i2 and i3.  */
4048       if (!modified_between_p (SET_SRC (set1), i2, i3)
4049 	  && !(REG_P (SET_DEST (set1))
4050 	       && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4051 	  && !(GET_CODE (SET_DEST (set1)) == SUBREG
4052 	       && find_reg_note (i2, REG_DEAD,
4053 				 SUBREG_REG (SET_DEST (set1))))
4054 	  && !modified_between_p (SET_DEST (set1), i2, i3)
4055 	  && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4056 	  /* If I3 is a jump, ensure that set0 is a jump so that
4057 	     we do not create invalid RTL.  */
4058 	  && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4059 	 )
4060 	{
4061 	  newi2pat = set1;
4062 	  newpat = set0;
4063 	}
4064       else if (!modified_between_p (SET_SRC (set0), i2, i3)
4065 	       && !(REG_P (SET_DEST (set0))
4066 		    && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4067 	       && !(GET_CODE (SET_DEST (set0)) == SUBREG
4068 		    && find_reg_note (i2, REG_DEAD,
4069 				      SUBREG_REG (SET_DEST (set0))))
4070 	       && !modified_between_p (SET_DEST (set0), i2, i3)
4071 	       && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4072 	       /* If I3 is a jump, ensure that set1 is a jump so that
4073 		  we do not create invalid RTL.  */
4074 	       && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4075 	      )
4076 	{
4077 	  newi2pat = set0;
4078 	  newpat = set1;
4079 	}
4080       else
4081 	{
4082 	  undo_all ();
4083 	  return 0;
4084 	}
4085 
4086       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4087 
4088       if (i2_code_number >= 0)
4089 	{
4090 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
4091 	     Make sure NEWPAT does not depend on the clobbered regs.  */
4092 	  if (GET_CODE (newi2pat) == PARALLEL)
4093 	    {
4094 	      for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4095 		if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4096 		  {
4097 		    rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4098 		    if (reg_overlap_mentioned_p (reg, newpat))
4099 		      {
4100 			undo_all ();
4101 			return 0;
4102 		      }
4103 		  }
4104 	    }
4105 
4106 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4107 
4108 	  if (insn_code_number >= 0)
4109 	    split_i2i3 = 1;
4110 	}
4111     }
4112 
4113   /* If it still isn't recognized, fail and change things back the way they
4114      were.  */
4115   if ((insn_code_number < 0
4116        /* Is the result a reasonable ASM_OPERANDS?  */
4117        && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4118     {
4119       undo_all ();
4120       return 0;
4121     }
4122 
4123   /* If we had to change another insn, make sure it is valid also.  */
4124   if (undobuf.other_insn)
4125     {
4126       CLEAR_HARD_REG_SET (newpat_used_regs);
4127 
4128       other_pat = PATTERN (undobuf.other_insn);
4129       other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4130 					     &new_other_notes);
4131 
4132       if (other_code_number < 0 && ! check_asm_operands (other_pat))
4133 	{
4134 	  undo_all ();
4135 	  return 0;
4136 	}
4137     }
4138 
4139   /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4140      they are adjacent to each other or not.  */
4141   if (HAVE_cc0)
4142     {
4143       rtx_insn *p = prev_nonnote_insn (i3);
4144       if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4145 	  && sets_cc0_p (newi2pat))
4146 	{
4147 	  undo_all ();
4148 	  return 0;
4149 	}
4150     }
4151 
4152   /* Only allow this combination if insn_cost reports that the
4153      replacement instructions are cheaper than the originals.  */
4154   if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4155     {
4156       undo_all ();
4157       return 0;
4158     }
4159 
4160   if (MAY_HAVE_DEBUG_BIND_INSNS)
4161     {
4162       struct undo *undo;
4163 
4164       for (undo = undobuf.undos; undo; undo = undo->next)
4165 	if (undo->kind == UNDO_MODE)
4166 	  {
4167 	    rtx reg = *undo->where.r;
4168 	    machine_mode new_mode = GET_MODE (reg);
4169 	    machine_mode old_mode = undo->old_contents.m;
4170 
4171 	    /* Temporarily revert mode back.  */
4172 	    adjust_reg_mode (reg, old_mode);
4173 
4174 	    if (reg == i2dest && i2scratch)
4175 	      {
4176 		/* If we used i2dest as a scratch register with a
4177 		   different mode, substitute it for the original
4178 		   i2src while its original mode is temporarily
4179 		   restored, and then clear i2scratch so that we don't
4180 		   do it again later.  */
4181 		propagate_for_debug (i2, last_combined_insn, reg, i2src,
4182 				     this_basic_block);
4183 		i2scratch = false;
4184 		/* Put back the new mode.  */
4185 		adjust_reg_mode (reg, new_mode);
4186 	      }
4187 	    else
4188 	      {
4189 		rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4190 		rtx_insn *first, *last;
4191 
4192 		if (reg == i2dest)
4193 		  {
4194 		    first = i2;
4195 		    last = last_combined_insn;
4196 		  }
4197 		else
4198 		  {
4199 		    first = i3;
4200 		    last = undobuf.other_insn;
4201 		    gcc_assert (last);
4202 		    if (DF_INSN_LUID (last)
4203 			< DF_INSN_LUID (last_combined_insn))
4204 		      last = last_combined_insn;
4205 		  }
4206 
4207 		/* We're dealing with a reg that changed mode but not
4208 		   meaning, so we want to turn it into a subreg for
4209 		   the new mode.  However, because of REG sharing and
4210 		   because its mode had already changed, we have to do
4211 		   it in two steps.  First, replace any debug uses of
4212 		   reg, with its original mode temporarily restored,
4213 		   with this copy we have created; then, replace the
4214 		   copy with the SUBREG of the original shared reg,
4215 		   once again changed to the new mode.  */
4216 		propagate_for_debug (first, last, reg, tempreg,
4217 				     this_basic_block);
4218 		adjust_reg_mode (reg, new_mode);
4219 		propagate_for_debug (first, last, tempreg,
4220 				     lowpart_subreg (old_mode, reg, new_mode),
4221 				     this_basic_block);
4222 	      }
4223 	  }
4224     }
4225 
4226   /* If we will be able to accept this, we have made a
4227      change to the destination of I3.  This requires us to
4228      do a few adjustments.  */
4229 
4230   if (changed_i3_dest)
4231     {
4232       PATTERN (i3) = newpat;
4233       adjust_for_new_dest (i3);
4234     }
4235 
4236   /* We now know that we can do this combination.  Merge the insns and
4237      update the status of registers and LOG_LINKS.  */
4238 
4239   if (undobuf.other_insn)
4240     {
4241       rtx note, next;
4242 
4243       PATTERN (undobuf.other_insn) = other_pat;
4244 
4245       /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4246 	 ensure that they are still valid.  Then add any non-duplicate
4247 	 notes added by recog_for_combine.  */
4248       for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4249 	{
4250 	  next = XEXP (note, 1);
4251 
4252 	  if ((REG_NOTE_KIND (note) == REG_DEAD
4253 	       && !reg_referenced_p (XEXP (note, 0),
4254 				     PATTERN (undobuf.other_insn)))
4255 	      ||(REG_NOTE_KIND (note) == REG_UNUSED
4256 		 && !reg_set_p (XEXP (note, 0),
4257 				PATTERN (undobuf.other_insn)))
4258 	      /* Simply drop equal note since it may be no longer valid
4259 		 for other_insn.  It may be possible to record that CC
4260 		 register is changed and only discard those notes, but
4261 		 in practice it's unnecessary complication and doesn't
4262 		 give any meaningful improvement.
4263 
4264 		 See PR78559.  */
4265 	      || REG_NOTE_KIND (note) == REG_EQUAL
4266 	      || REG_NOTE_KIND (note) == REG_EQUIV)
4267 	    remove_note (undobuf.other_insn, note);
4268 	}
4269 
4270       distribute_notes  (new_other_notes, undobuf.other_insn,
4271 			undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4272 			NULL_RTX);
4273     }
4274 
4275   if (swap_i2i3)
4276     {
4277       /* I3 now uses what used to be its destination and which is now
4278 	 I2's destination.  This requires us to do a few adjustments.  */
4279       PATTERN (i3) = newpat;
4280       adjust_for_new_dest (i3);
4281     }
4282 
4283   if (swap_i2i3 || split_i2i3)
4284     {
4285       /* We might need a LOG_LINK from I3 to I2.  But then we used to
4286 	 have one, so we still will.
4287 
4288 	 However, some later insn might be using I2's dest and have
4289 	 a LOG_LINK pointing at I3.  We should change it to point at
4290 	 I2 instead.  */
4291 
4292       /* newi2pat is usually a SET here; however, recog_for_combine might
4293 	 have added some clobbers.  */
4294       rtx x = newi2pat;
4295       if (GET_CODE (x) == PARALLEL)
4296 	x = XVECEXP (newi2pat, 0, 0);
4297 
4298       /* It can only be a SET of a REG or of a SUBREG of a REG.  */
4299       unsigned int regno = reg_or_subregno (SET_DEST (x));
4300 
4301       bool done = false;
4302       for (rtx_insn *insn = NEXT_INSN (i3);
4303 	   !done
4304 	   && insn
4305 	   && NONDEBUG_INSN_P (insn)
4306 	   && BLOCK_FOR_INSN (insn) == this_basic_block;
4307 	   insn = NEXT_INSN (insn))
4308 	{
4309 	  struct insn_link *link;
4310 	  FOR_EACH_LOG_LINK (link, insn)
4311 	    if (link->insn == i3 && link->regno == regno)
4312 	      {
4313 		link->insn = i2;
4314 		done = true;
4315 		break;
4316 	      }
4317 	}
4318     }
4319 
4320   {
4321     rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4322     struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4323     rtx midnotes = 0;
4324     int from_luid;
4325     /* Compute which registers we expect to eliminate.  newi2pat may be setting
4326        either i3dest or i2dest, so we must check it.  */
4327     rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4328 		   || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4329 		   || !i2dest_killed
4330 		   ? 0 : i2dest);
4331     /* For i1, we need to compute both local elimination and global
4332        elimination information with respect to newi2pat because i1dest
4333        may be the same as i3dest, in which case newi2pat may be setting
4334        i1dest.  Global information is used when distributing REG_DEAD
4335        note for i2 and i3, in which case it does matter if newi2pat sets
4336        i1dest or not.
4337 
4338        Local information is used when distributing REG_DEAD note for i1,
4339        in which case it doesn't matter if newi2pat sets i1dest or not.
4340        See PR62151, if we have four insns combination:
4341 	   i0: r0 <- i0src
4342 	   i1: r1 <- i1src (using r0)
4343 		     REG_DEAD (r0)
4344 	   i2: r0 <- i2src (using r1)
4345 	   i3: r3 <- i3src (using r0)
4346 	   ix: using r0
4347        From i1's point of view, r0 is eliminated, no matter if it is set
4348        by newi2pat or not.  In other words, REG_DEAD info for r0 in i1
4349        should be discarded.
4350 
4351        Note local information only affects cases in forms like "I1->I2->I3",
4352        "I0->I1->I2->I3" or "I0&I1->I2, I2->I3".  For other cases like
4353        "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4354        i0dest anyway.  */
4355     rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4356 			 || !i1dest_killed
4357 			 ? 0 : i1dest);
4358     rtx elim_i1 = (local_elim_i1 == 0
4359 		   || (newi2pat && reg_set_p (i1dest, newi2pat))
4360 		   ? 0 : i1dest);
4361     /* Same case as i1.  */
4362     rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4363 			 ? 0 : i0dest);
4364     rtx elim_i0 = (local_elim_i0 == 0
4365 		   || (newi2pat && reg_set_p (i0dest, newi2pat))
4366 		   ? 0 : i0dest);
4367 
4368     /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4369        clear them.  */
4370     i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4371     i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4372     if (i1)
4373       i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4374     if (i0)
4375       i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4376 
4377     /* Ensure that we do not have something that should not be shared but
4378        occurs multiple times in the new insns.  Check this by first
4379        resetting all the `used' flags and then copying anything is shared.  */
4380 
4381     reset_used_flags (i3notes);
4382     reset_used_flags (i2notes);
4383     reset_used_flags (i1notes);
4384     reset_used_flags (i0notes);
4385     reset_used_flags (newpat);
4386     reset_used_flags (newi2pat);
4387     if (undobuf.other_insn)
4388       reset_used_flags (PATTERN (undobuf.other_insn));
4389 
4390     i3notes = copy_rtx_if_shared (i3notes);
4391     i2notes = copy_rtx_if_shared (i2notes);
4392     i1notes = copy_rtx_if_shared (i1notes);
4393     i0notes = copy_rtx_if_shared (i0notes);
4394     newpat = copy_rtx_if_shared (newpat);
4395     newi2pat = copy_rtx_if_shared (newi2pat);
4396     if (undobuf.other_insn)
4397       reset_used_flags (PATTERN (undobuf.other_insn));
4398 
4399     INSN_CODE (i3) = insn_code_number;
4400     PATTERN (i3) = newpat;
4401 
4402     if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4403       {
4404 	for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4405 	     link = XEXP (link, 1))
4406 	  {
4407 	    if (substed_i2)
4408 	      {
4409 		/* I2SRC must still be meaningful at this point.  Some
4410 		   splitting operations can invalidate I2SRC, but those
4411 		   operations do not apply to calls.  */
4412 		gcc_assert (i2src);
4413 		XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4414 						       i2dest, i2src);
4415 	      }
4416 	    if (substed_i1)
4417 	      XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4418 						     i1dest, i1src);
4419 	    if (substed_i0)
4420 	      XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4421 						     i0dest, i0src);
4422 	  }
4423       }
4424 
4425     if (undobuf.other_insn)
4426       INSN_CODE (undobuf.other_insn) = other_code_number;
4427 
4428     /* We had one special case above where I2 had more than one set and
4429        we replaced a destination of one of those sets with the destination
4430        of I3.  In that case, we have to update LOG_LINKS of insns later
4431        in this basic block.  Note that this (expensive) case is rare.
4432 
4433        Also, in this case, we must pretend that all REG_NOTEs for I2
4434        actually came from I3, so that REG_UNUSED notes from I2 will be
4435        properly handled.  */
4436 
4437     if (i3_subst_into_i2)
4438       {
4439 	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4440 	  if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4441 	       || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4442 	      && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4443 	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4444 	      && ! find_reg_note (i2, REG_UNUSED,
4445 				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4446 	    for (temp_insn = NEXT_INSN (i2);
4447 		 temp_insn
4448 		 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4449 		     || BB_HEAD (this_basic_block) != temp_insn);
4450 		 temp_insn = NEXT_INSN (temp_insn))
4451 	      if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4452 		FOR_EACH_LOG_LINK (link, temp_insn)
4453 		  if (link->insn == i2)
4454 		    link->insn = i3;
4455 
4456 	if (i3notes)
4457 	  {
4458 	    rtx link = i3notes;
4459 	    while (XEXP (link, 1))
4460 	      link = XEXP (link, 1);
4461 	    XEXP (link, 1) = i2notes;
4462 	  }
4463 	else
4464 	  i3notes = i2notes;
4465 	i2notes = 0;
4466       }
4467 
4468     LOG_LINKS (i3) = NULL;
4469     REG_NOTES (i3) = 0;
4470     LOG_LINKS (i2) = NULL;
4471     REG_NOTES (i2) = 0;
4472 
4473     if (newi2pat)
4474       {
4475 	if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4476 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4477 			       this_basic_block);
4478 	INSN_CODE (i2) = i2_code_number;
4479 	PATTERN (i2) = newi2pat;
4480       }
4481     else
4482       {
4483 	if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4484 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4485 			       this_basic_block);
4486 	SET_INSN_DELETED (i2);
4487       }
4488 
4489     if (i1)
4490       {
4491 	LOG_LINKS (i1) = NULL;
4492 	REG_NOTES (i1) = 0;
4493 	if (MAY_HAVE_DEBUG_BIND_INSNS)
4494 	  propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4495 			       this_basic_block);
4496 	SET_INSN_DELETED (i1);
4497       }
4498 
4499     if (i0)
4500       {
4501 	LOG_LINKS (i0) = NULL;
4502 	REG_NOTES (i0) = 0;
4503 	if (MAY_HAVE_DEBUG_BIND_INSNS)
4504 	  propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4505 			       this_basic_block);
4506 	SET_INSN_DELETED (i0);
4507       }
4508 
4509     /* Get death notes for everything that is now used in either I3 or
4510        I2 and used to die in a previous insn.  If we built two new
4511        patterns, move from I1 to I2 then I2 to I3 so that we get the
4512        proper movement on registers that I2 modifies.  */
4513 
4514     if (i0)
4515       from_luid = DF_INSN_LUID (i0);
4516     else if (i1)
4517       from_luid = DF_INSN_LUID (i1);
4518     else
4519       from_luid = DF_INSN_LUID (i2);
4520     if (newi2pat)
4521       move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4522     move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4523 
4524     /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
4525     if (i3notes)
4526       distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4527 			elim_i2, elim_i1, elim_i0);
4528     if (i2notes)
4529       distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4530 			elim_i2, elim_i1, elim_i0);
4531     if (i1notes)
4532       distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4533 			elim_i2, local_elim_i1, local_elim_i0);
4534     if (i0notes)
4535       distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4536 			elim_i2, elim_i1, local_elim_i0);
4537     if (midnotes)
4538       distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4539 			elim_i2, elim_i1, elim_i0);
4540 
4541     /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
4542        know these are REG_UNUSED and want them to go to the desired insn,
4543        so we always pass it as i3.  */
4544 
4545     if (newi2pat && new_i2_notes)
4546       distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4547 			NULL_RTX);
4548 
4549     if (new_i3_notes)
4550       distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4551 			NULL_RTX);
4552 
4553     /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
4554        put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
4555        I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
4556        in that case, it might delete I2.  Similarly for I2 and I1.
4557        Show an additional death due to the REG_DEAD note we make here.  If
4558        we discard it in distribute_notes, we will decrement it again.  */
4559 
4560     if (i3dest_killed)
4561       {
4562 	rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4563 	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4564 	  distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4565 			    elim_i1, elim_i0);
4566 	else
4567 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4568 			    elim_i2, elim_i1, elim_i0);
4569       }
4570 
4571     if (i2dest_in_i2src)
4572       {
4573 	rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4574 	if (newi2pat && reg_set_p (i2dest, newi2pat))
4575 	  distribute_notes (new_note,  NULL, i2, NULL, NULL_RTX,
4576 			    NULL_RTX, NULL_RTX);
4577 	else
4578 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4579 			    NULL_RTX, NULL_RTX, NULL_RTX);
4580       }
4581 
4582     if (i1dest_in_i1src)
4583       {
4584 	rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4585 	if (newi2pat && reg_set_p (i1dest, newi2pat))
4586 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4587 			    NULL_RTX, NULL_RTX);
4588 	else
4589 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4590 			    NULL_RTX, NULL_RTX, NULL_RTX);
4591       }
4592 
4593     if (i0dest_in_i0src)
4594       {
4595 	rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4596 	if (newi2pat && reg_set_p (i0dest, newi2pat))
4597 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4598 			    NULL_RTX, NULL_RTX);
4599 	else
4600 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4601 			    NULL_RTX, NULL_RTX, NULL_RTX);
4602       }
4603 
4604     distribute_links (i3links);
4605     distribute_links (i2links);
4606     distribute_links (i1links);
4607     distribute_links (i0links);
4608 
4609     if (REG_P (i2dest))
4610       {
4611 	struct insn_link *link;
4612 	rtx_insn *i2_insn = 0;
4613 	rtx i2_val = 0, set;
4614 
4615 	/* The insn that used to set this register doesn't exist, and
4616 	   this life of the register may not exist either.  See if one of
4617 	   I3's links points to an insn that sets I2DEST.  If it does,
4618 	   that is now the last known value for I2DEST. If we don't update
4619 	   this and I2 set the register to a value that depended on its old
4620 	   contents, we will get confused.  If this insn is used, thing
4621 	   will be set correctly in combine_instructions.  */
4622 	FOR_EACH_LOG_LINK (link, i3)
4623 	  if ((set = single_set (link->insn)) != 0
4624 	      && rtx_equal_p (i2dest, SET_DEST (set)))
4625 	    i2_insn = link->insn, i2_val = SET_SRC (set);
4626 
4627 	record_value_for_reg (i2dest, i2_insn, i2_val);
4628 
4629 	/* If the reg formerly set in I2 died only once and that was in I3,
4630 	   zero its use count so it won't make `reload' do any work.  */
4631 	if (! added_sets_2
4632 	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4633 	    && ! i2dest_in_i2src
4634 	    && REGNO (i2dest) < reg_n_sets_max)
4635 	  INC_REG_N_SETS (REGNO (i2dest), -1);
4636       }
4637 
4638     if (i1 && REG_P (i1dest))
4639       {
4640 	struct insn_link *link;
4641 	rtx_insn *i1_insn = 0;
4642 	rtx i1_val = 0, set;
4643 
4644 	FOR_EACH_LOG_LINK (link, i3)
4645 	  if ((set = single_set (link->insn)) != 0
4646 	      && rtx_equal_p (i1dest, SET_DEST (set)))
4647 	    i1_insn = link->insn, i1_val = SET_SRC (set);
4648 
4649 	record_value_for_reg (i1dest, i1_insn, i1_val);
4650 
4651 	if (! added_sets_1
4652 	    && ! i1dest_in_i1src
4653 	    && REGNO (i1dest) < reg_n_sets_max)
4654 	  INC_REG_N_SETS (REGNO (i1dest), -1);
4655       }
4656 
4657     if (i0 && REG_P (i0dest))
4658       {
4659 	struct insn_link *link;
4660 	rtx_insn *i0_insn = 0;
4661 	rtx i0_val = 0, set;
4662 
4663 	FOR_EACH_LOG_LINK (link, i3)
4664 	  if ((set = single_set (link->insn)) != 0
4665 	      && rtx_equal_p (i0dest, SET_DEST (set)))
4666 	    i0_insn = link->insn, i0_val = SET_SRC (set);
4667 
4668 	record_value_for_reg (i0dest, i0_insn, i0_val);
4669 
4670 	if (! added_sets_0
4671 	    && ! i0dest_in_i0src
4672 	    && REGNO (i0dest) < reg_n_sets_max)
4673 	  INC_REG_N_SETS (REGNO (i0dest), -1);
4674       }
4675 
4676     /* Update reg_stat[].nonzero_bits et al for any changes that may have
4677        been made to this insn.  The order is important, because newi2pat
4678        can affect nonzero_bits of newpat.  */
4679     if (newi2pat)
4680       note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4681     note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4682   }
4683 
4684   if (undobuf.other_insn != NULL_RTX)
4685     {
4686       if (dump_file)
4687 	{
4688 	  fprintf (dump_file, "modifying other_insn ");
4689 	  dump_insn_slim (dump_file, undobuf.other_insn);
4690 	}
4691       df_insn_rescan (undobuf.other_insn);
4692     }
4693 
4694   if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4695     {
4696       if (dump_file)
4697 	{
4698 	  fprintf (dump_file, "modifying insn i0 ");
4699 	  dump_insn_slim (dump_file, i0);
4700 	}
4701       df_insn_rescan (i0);
4702     }
4703 
4704   if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4705     {
4706       if (dump_file)
4707 	{
4708 	  fprintf (dump_file, "modifying insn i1 ");
4709 	  dump_insn_slim (dump_file, i1);
4710 	}
4711       df_insn_rescan (i1);
4712     }
4713 
4714   if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4715     {
4716       if (dump_file)
4717 	{
4718 	  fprintf (dump_file, "modifying insn i2 ");
4719 	  dump_insn_slim (dump_file, i2);
4720 	}
4721       df_insn_rescan (i2);
4722     }
4723 
4724   if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4725     {
4726       if (dump_file)
4727 	{
4728 	  fprintf (dump_file, "modifying insn i3 ");
4729 	  dump_insn_slim (dump_file, i3);
4730 	}
4731       df_insn_rescan (i3);
4732     }
4733 
4734   /* Set new_direct_jump_p if a new return or simple jump instruction
4735      has been created.  Adjust the CFG accordingly.  */
4736   if (returnjump_p (i3) || any_uncondjump_p (i3))
4737     {
4738       *new_direct_jump_p = 1;
4739       mark_jump_label (PATTERN (i3), i3, 0);
4740       update_cfg_for_uncondjump (i3);
4741     }
4742 
4743   if (undobuf.other_insn != NULL_RTX
4744       && (returnjump_p (undobuf.other_insn)
4745 	  || any_uncondjump_p (undobuf.other_insn)))
4746     {
4747       *new_direct_jump_p = 1;
4748       update_cfg_for_uncondjump (undobuf.other_insn);
4749     }
4750 
4751   if (GET_CODE (PATTERN (i3)) == TRAP_IF
4752       && XEXP (PATTERN (i3), 0) == const1_rtx)
4753     {
4754       basic_block bb = BLOCK_FOR_INSN (i3);
4755       gcc_assert (bb);
4756       remove_edge (split_block (bb, i3));
4757       emit_barrier_after_bb (bb);
4758       *new_direct_jump_p = 1;
4759     }
4760 
4761   if (undobuf.other_insn
4762       && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4763       && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4764     {
4765       basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4766       gcc_assert (bb);
4767       remove_edge (split_block (bb, undobuf.other_insn));
4768       emit_barrier_after_bb (bb);
4769       *new_direct_jump_p = 1;
4770     }
4771 
4772   /* A noop might also need cleaning up of CFG, if it comes from the
4773      simplification of a jump.  */
4774   if (JUMP_P (i3)
4775       && GET_CODE (newpat) == SET
4776       && SET_SRC (newpat) == pc_rtx
4777       && SET_DEST (newpat) == pc_rtx)
4778     {
4779       *new_direct_jump_p = 1;
4780       update_cfg_for_uncondjump (i3);
4781     }
4782 
4783   if (undobuf.other_insn != NULL_RTX
4784       && JUMP_P (undobuf.other_insn)
4785       && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4786       && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4787       && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4788     {
4789       *new_direct_jump_p = 1;
4790       update_cfg_for_uncondjump (undobuf.other_insn);
4791     }
4792 
4793   combine_successes++;
4794   undo_commit ();
4795 
4796   rtx_insn *ret = newi2pat ? i2 : i3;
4797   if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4798     ret = added_links_insn;
4799   if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4800     ret = added_notes_insn;
4801 
4802   return ret;
4803 }
4804 
4805 /* Get a marker for undoing to the current state.  */
4806 
4807 static void *
get_undo_marker(void)4808 get_undo_marker (void)
4809 {
4810   return undobuf.undos;
4811 }
4812 
4813 /* Undo the modifications up to the marker.  */
4814 
4815 static void
undo_to_marker(void * marker)4816 undo_to_marker (void *marker)
4817 {
4818   struct undo *undo, *next;
4819 
4820   for (undo = undobuf.undos; undo != marker; undo = next)
4821     {
4822       gcc_assert (undo);
4823 
4824       next = undo->next;
4825       switch (undo->kind)
4826 	{
4827 	case UNDO_RTX:
4828 	  *undo->where.r = undo->old_contents.r;
4829 	  break;
4830 	case UNDO_INT:
4831 	  *undo->where.i = undo->old_contents.i;
4832 	  break;
4833 	case UNDO_MODE:
4834 	  adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4835 	  break;
4836 	case UNDO_LINKS:
4837 	  *undo->where.l = undo->old_contents.l;
4838 	  break;
4839 	default:
4840 	  gcc_unreachable ();
4841 	}
4842 
4843       undo->next = undobuf.frees;
4844       undobuf.frees = undo;
4845     }
4846 
4847   undobuf.undos = (struct undo *) marker;
4848 }
4849 
4850 /* Undo all the modifications recorded in undobuf.  */
4851 
4852 static void
undo_all(void)4853 undo_all (void)
4854 {
4855   undo_to_marker (0);
4856 }
4857 
4858 /* We've committed to accepting the changes we made.  Move all
4859    of the undos to the free list.  */
4860 
4861 static void
undo_commit(void)4862 undo_commit (void)
4863 {
4864   struct undo *undo, *next;
4865 
4866   for (undo = undobuf.undos; undo; undo = next)
4867     {
4868       next = undo->next;
4869       undo->next = undobuf.frees;
4870       undobuf.frees = undo;
4871     }
4872   undobuf.undos = 0;
4873 }
4874 
4875 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4876    where we have an arithmetic expression and return that point.  LOC will
4877    be inside INSN.
4878 
4879    try_combine will call this function to see if an insn can be split into
4880    two insns.  */
4881 
4882 static rtx *
find_split_point(rtx * loc,rtx_insn * insn,bool set_src)4883 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4884 {
4885   rtx x = *loc;
4886   enum rtx_code code = GET_CODE (x);
4887   rtx *split;
4888   unsigned HOST_WIDE_INT len = 0;
4889   HOST_WIDE_INT pos = 0;
4890   int unsignedp = 0;
4891   rtx inner = NULL_RTX;
4892   scalar_int_mode mode, inner_mode;
4893 
4894   /* First special-case some codes.  */
4895   switch (code)
4896     {
4897     case SUBREG:
4898 #ifdef INSN_SCHEDULING
4899       /* If we are making a paradoxical SUBREG invalid, it becomes a split
4900 	 point.  */
4901       if (MEM_P (SUBREG_REG (x)))
4902 	return loc;
4903 #endif
4904       return find_split_point (&SUBREG_REG (x), insn, false);
4905 
4906     case MEM:
4907       /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4908 	 using LO_SUM and HIGH.  */
4909       if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4910 			  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4911 	{
4912 	  machine_mode address_mode = get_address_mode (x);
4913 
4914 	  SUBST (XEXP (x, 0),
4915 		 gen_rtx_LO_SUM (address_mode,
4916 				 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4917 				 XEXP (x, 0)));
4918 	  return &XEXP (XEXP (x, 0), 0);
4919 	}
4920 
4921       /* If we have a PLUS whose second operand is a constant and the
4922 	 address is not valid, perhaps will can split it up using
4923 	 the machine-specific way to split large constants.  We use
4924 	 the first pseudo-reg (one of the virtual regs) as a placeholder;
4925 	 it will not remain in the result.  */
4926       if (GET_CODE (XEXP (x, 0)) == PLUS
4927 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4928 	  && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4929 					    MEM_ADDR_SPACE (x)))
4930 	{
4931 	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4932 	  rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4933 					       subst_insn);
4934 
4935 	  /* This should have produced two insns, each of which sets our
4936 	     placeholder.  If the source of the second is a valid address,
4937 	     we can make put both sources together and make a split point
4938 	     in the middle.  */
4939 
4940 	  if (seq
4941 	      && NEXT_INSN (seq) != NULL_RTX
4942 	      && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4943 	      && NONJUMP_INSN_P (seq)
4944 	      && GET_CODE (PATTERN (seq)) == SET
4945 	      && SET_DEST (PATTERN (seq)) == reg
4946 	      && ! reg_mentioned_p (reg,
4947 				    SET_SRC (PATTERN (seq)))
4948 	      && NONJUMP_INSN_P (NEXT_INSN (seq))
4949 	      && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4950 	      && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4951 	      && memory_address_addr_space_p
4952 		   (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4953 		    MEM_ADDR_SPACE (x)))
4954 	    {
4955 	      rtx src1 = SET_SRC (PATTERN (seq));
4956 	      rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4957 
4958 	      /* Replace the placeholder in SRC2 with SRC1.  If we can
4959 		 find where in SRC2 it was placed, that can become our
4960 		 split point and we can replace this address with SRC2.
4961 		 Just try two obvious places.  */
4962 
4963 	      src2 = replace_rtx (src2, reg, src1);
4964 	      split = 0;
4965 	      if (XEXP (src2, 0) == src1)
4966 		split = &XEXP (src2, 0);
4967 	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4968 		       && XEXP (XEXP (src2, 0), 0) == src1)
4969 		split = &XEXP (XEXP (src2, 0), 0);
4970 
4971 	      if (split)
4972 		{
4973 		  SUBST (XEXP (x, 0), src2);
4974 		  return split;
4975 		}
4976 	    }
4977 
4978 	  /* If that didn't work, perhaps the first operand is complex and
4979 	     needs to be computed separately, so make a split point there.
4980 	     This will occur on machines that just support REG + CONST
4981 	     and have a constant moved through some previous computation.  */
4982 
4983 	  else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4984 		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4985 			 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4986 	    return &XEXP (XEXP (x, 0), 0);
4987 	}
4988 
4989       /* If we have a PLUS whose first operand is complex, try computing it
4990          separately by making a split there.  */
4991       if (GET_CODE (XEXP (x, 0)) == PLUS
4992           && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4993 					    MEM_ADDR_SPACE (x))
4994           && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4995           && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4996                 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4997         return &XEXP (XEXP (x, 0), 0);
4998       break;
4999 
5000     case SET:
5001       /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5002 	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5003 	 we need to put the operand into a register.  So split at that
5004 	 point.  */
5005 
5006       if (SET_DEST (x) == cc0_rtx
5007 	  && GET_CODE (SET_SRC (x)) != COMPARE
5008 	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5009 	  && !OBJECT_P (SET_SRC (x))
5010 	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
5011 		&& OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5012 	return &SET_SRC (x);
5013 
5014       /* See if we can split SET_SRC as it stands.  */
5015       split = find_split_point (&SET_SRC (x), insn, true);
5016       if (split && split != &SET_SRC (x))
5017 	return split;
5018 
5019       /* See if we can split SET_DEST as it stands.  */
5020       split = find_split_point (&SET_DEST (x), insn, false);
5021       if (split && split != &SET_DEST (x))
5022 	return split;
5023 
5024       /* See if this is a bitfield assignment with everything constant.  If
5025 	 so, this is an IOR of an AND, so split it into that.  */
5026       if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5027 	  && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5028 				     &inner_mode)
5029 	  && HWI_COMPUTABLE_MODE_P (inner_mode)
5030 	  && CONST_INT_P (XEXP (SET_DEST (x), 1))
5031 	  && CONST_INT_P (XEXP (SET_DEST (x), 2))
5032 	  && CONST_INT_P (SET_SRC (x))
5033 	  && ((INTVAL (XEXP (SET_DEST (x), 1))
5034 	       + INTVAL (XEXP (SET_DEST (x), 2)))
5035 	      <= GET_MODE_PRECISION (inner_mode))
5036 	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5037 	{
5038 	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5039 	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5040 	  rtx dest = XEXP (SET_DEST (x), 0);
5041 	  unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5042 	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5043 	  rtx or_mask;
5044 
5045 	  if (BITS_BIG_ENDIAN)
5046 	    pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5047 
5048 	  or_mask = gen_int_mode (src << pos, inner_mode);
5049 	  if (src == mask)
5050 	    SUBST (SET_SRC (x),
5051 		   simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5052 	  else
5053 	    {
5054 	      rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5055 	      SUBST (SET_SRC (x),
5056 		     simplify_gen_binary (IOR, inner_mode,
5057 					  simplify_gen_binary (AND, inner_mode,
5058 							       dest, negmask),
5059 					  or_mask));
5060 	    }
5061 
5062 	  SUBST (SET_DEST (x), dest);
5063 
5064 	  split = find_split_point (&SET_SRC (x), insn, true);
5065 	  if (split && split != &SET_SRC (x))
5066 	    return split;
5067 	}
5068 
5069       /* Otherwise, see if this is an operation that we can split into two.
5070 	 If so, try to split that.  */
5071       code = GET_CODE (SET_SRC (x));
5072 
5073       switch (code)
5074 	{
5075 	case AND:
5076 	  /* If we are AND'ing with a large constant that is only a single
5077 	     bit and the result is only being used in a context where we
5078 	     need to know if it is zero or nonzero, replace it with a bit
5079 	     extraction.  This will avoid the large constant, which might
5080 	     have taken more than one insn to make.  If the constant were
5081 	     not a valid argument to the AND but took only one insn to make,
5082 	     this is no worse, but if it took more than one insn, it will
5083 	     be better.  */
5084 
5085 	  if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5086 	      && REG_P (XEXP (SET_SRC (x), 0))
5087 	      && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5088 	      && REG_P (SET_DEST (x))
5089 	      && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5090 	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5091 	      && XEXP (*split, 0) == SET_DEST (x)
5092 	      && XEXP (*split, 1) == const0_rtx)
5093 	    {
5094 	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5095 						XEXP (SET_SRC (x), 0),
5096 						pos, NULL_RTX, 1, 1, 0, 0);
5097 	      if (extraction != 0)
5098 		{
5099 		  SUBST (SET_SRC (x), extraction);
5100 		  return find_split_point (loc, insn, false);
5101 		}
5102 	    }
5103 	  break;
5104 
5105 	case NE:
5106 	  /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5107 	     is known to be on, this can be converted into a NEG of a shift.  */
5108 	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5109 	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5110 	      && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5111 						   GET_MODE (XEXP (SET_SRC (x),
5112 							     0))))) >= 1))
5113 	    {
5114 	      machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5115 	      rtx pos_rtx = gen_int_shift_amount (mode, pos);
5116 	      SUBST (SET_SRC (x),
5117 		     gen_rtx_NEG (mode,
5118 				  gen_rtx_LSHIFTRT (mode,
5119 						    XEXP (SET_SRC (x), 0),
5120 						    pos_rtx)));
5121 
5122 	      split = find_split_point (&SET_SRC (x), insn, true);
5123 	      if (split && split != &SET_SRC (x))
5124 		return split;
5125 	    }
5126 	  break;
5127 
5128 	case SIGN_EXTEND:
5129 	  inner = XEXP (SET_SRC (x), 0);
5130 
5131 	  /* We can't optimize if either mode is a partial integer
5132 	     mode as we don't know how many bits are significant
5133 	     in those modes.  */
5134 	  if (!is_int_mode (GET_MODE (inner), &inner_mode)
5135 	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5136 	    break;
5137 
5138 	  pos = 0;
5139 	  len = GET_MODE_PRECISION (inner_mode);
5140 	  unsignedp = 0;
5141 	  break;
5142 
5143 	case SIGN_EXTRACT:
5144 	case ZERO_EXTRACT:
5145 	  if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5146 				      &inner_mode)
5147 	      && CONST_INT_P (XEXP (SET_SRC (x), 1))
5148 	      && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5149 	    {
5150 	      inner = XEXP (SET_SRC (x), 0);
5151 	      len = INTVAL (XEXP (SET_SRC (x), 1));
5152 	      pos = INTVAL (XEXP (SET_SRC (x), 2));
5153 
5154 	      if (BITS_BIG_ENDIAN)
5155 		pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5156 	      unsignedp = (code == ZERO_EXTRACT);
5157 	    }
5158 	  break;
5159 
5160 	default:
5161 	  break;
5162 	}
5163 
5164       if (len
5165 	  && known_subrange_p (pos, len,
5166 			       0, GET_MODE_PRECISION (GET_MODE (inner)))
5167 	  && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5168 	{
5169 	  /* For unsigned, we have a choice of a shift followed by an
5170 	     AND or two shifts.  Use two shifts for field sizes where the
5171 	     constant might be too large.  We assume here that we can
5172 	     always at least get 8-bit constants in an AND insn, which is
5173 	     true for every current RISC.  */
5174 
5175 	  if (unsignedp && len <= 8)
5176 	    {
5177 	      unsigned HOST_WIDE_INT mask
5178 		= (HOST_WIDE_INT_1U << len) - 1;
5179 	      rtx pos_rtx = gen_int_shift_amount (mode, pos);
5180 	      SUBST (SET_SRC (x),
5181 		     gen_rtx_AND (mode,
5182 				  gen_rtx_LSHIFTRT
5183 				  (mode, gen_lowpart (mode, inner), pos_rtx),
5184 				  gen_int_mode (mask, mode)));
5185 
5186 	      split = find_split_point (&SET_SRC (x), insn, true);
5187 	      if (split && split != &SET_SRC (x))
5188 		return split;
5189 	    }
5190 	  else
5191 	    {
5192 	      int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5193 	      int right_bits = GET_MODE_PRECISION (mode) - len;
5194 	      SUBST (SET_SRC (x),
5195 		     gen_rtx_fmt_ee
5196 		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5197 		      gen_rtx_ASHIFT (mode,
5198 				      gen_lowpart (mode, inner),
5199 				      gen_int_shift_amount (mode, left_bits)),
5200 		      gen_int_shift_amount (mode, right_bits)));
5201 
5202 	      split = find_split_point (&SET_SRC (x), insn, true);
5203 	      if (split && split != &SET_SRC (x))
5204 		return split;
5205 	    }
5206 	}
5207 
5208       /* See if this is a simple operation with a constant as the second
5209 	 operand.  It might be that this constant is out of range and hence
5210 	 could be used as a split point.  */
5211       if (BINARY_P (SET_SRC (x))
5212 	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
5213 	  && (OBJECT_P (XEXP (SET_SRC (x), 0))
5214 	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5215 		  && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5216 	return &XEXP (SET_SRC (x), 1);
5217 
5218       /* Finally, see if this is a simple operation with its first operand
5219 	 not in a register.  The operation might require this operand in a
5220 	 register, so return it as a split point.  We can always do this
5221 	 because if the first operand were another operation, we would have
5222 	 already found it as a split point.  */
5223       if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5224 	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5225 	return &XEXP (SET_SRC (x), 0);
5226 
5227       return 0;
5228 
5229     case AND:
5230     case IOR:
5231       /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5232 	 it is better to write this as (not (ior A B)) so we can split it.
5233 	 Similarly for IOR.  */
5234       if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5235 	{
5236 	  SUBST (*loc,
5237 		 gen_rtx_NOT (GET_MODE (x),
5238 			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5239 					      GET_MODE (x),
5240 					      XEXP (XEXP (x, 0), 0),
5241 					      XEXP (XEXP (x, 1), 0))));
5242 	  return find_split_point (loc, insn, set_src);
5243 	}
5244 
5245       /* Many RISC machines have a large set of logical insns.  If the
5246 	 second operand is a NOT, put it first so we will try to split the
5247 	 other operand first.  */
5248       if (GET_CODE (XEXP (x, 1)) == NOT)
5249 	{
5250 	  rtx tem = XEXP (x, 0);
5251 	  SUBST (XEXP (x, 0), XEXP (x, 1));
5252 	  SUBST (XEXP (x, 1), tem);
5253 	}
5254       break;
5255 
5256     case PLUS:
5257     case MINUS:
5258       /* Canonicalization can produce (minus A (mult B C)), where C is a
5259 	 constant.  It may be better to try splitting (plus (mult B -C) A)
5260 	 instead if this isn't a multiply by a power of two.  */
5261       if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5262 	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5263 	  && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5264 	{
5265 	  machine_mode mode = GET_MODE (x);
5266 	  unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5267 	  HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5268 	  SUBST (*loc, gen_rtx_PLUS (mode,
5269 				     gen_rtx_MULT (mode,
5270 						   XEXP (XEXP (x, 1), 0),
5271 						   gen_int_mode (other_int,
5272 								 mode)),
5273 				     XEXP (x, 0)));
5274 	  return find_split_point (loc, insn, set_src);
5275 	}
5276 
5277       /* Split at a multiply-accumulate instruction.  However if this is
5278          the SET_SRC, we likely do not have such an instruction and it's
5279          worthless to try this split.  */
5280       if (!set_src
5281 	  && (GET_CODE (XEXP (x, 0)) == MULT
5282 	      || (GET_CODE (XEXP (x, 0)) == ASHIFT
5283 		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5284         return loc;
5285 
5286     default:
5287       break;
5288     }
5289 
5290   /* Otherwise, select our actions depending on our rtx class.  */
5291   switch (GET_RTX_CLASS (code))
5292     {
5293     case RTX_BITFIELD_OPS:		/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
5294     case RTX_TERNARY:
5295       split = find_split_point (&XEXP (x, 2), insn, false);
5296       if (split)
5297 	return split;
5298       /* fall through */
5299     case RTX_BIN_ARITH:
5300     case RTX_COMM_ARITH:
5301     case RTX_COMPARE:
5302     case RTX_COMM_COMPARE:
5303       split = find_split_point (&XEXP (x, 1), insn, false);
5304       if (split)
5305 	return split;
5306       /* fall through */
5307     case RTX_UNARY:
5308       /* Some machines have (and (shift ...) ...) insns.  If X is not
5309 	 an AND, but XEXP (X, 0) is, use it as our split point.  */
5310       if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5311 	return &XEXP (x, 0);
5312 
5313       split = find_split_point (&XEXP (x, 0), insn, false);
5314       if (split)
5315 	return split;
5316       return loc;
5317 
5318     default:
5319       /* Otherwise, we don't have a split point.  */
5320       return 0;
5321     }
5322 }
5323 
5324 /* Throughout X, replace FROM with TO, and return the result.
5325    The result is TO if X is FROM;
5326    otherwise the result is X, but its contents may have been modified.
5327    If they were modified, a record was made in undobuf so that
5328    undo_all will (among other things) return X to its original state.
5329 
5330    If the number of changes necessary is too much to record to undo,
5331    the excess changes are not made, so the result is invalid.
5332    The changes already made can still be undone.
5333    undobuf.num_undo is incremented for such changes, so by testing that
5334    the caller can tell whether the result is valid.
5335 
5336    `n_occurrences' is incremented each time FROM is replaced.
5337 
5338    IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5339 
5340    IN_COND is nonzero if we are at the top level of a condition.
5341 
5342    UNIQUE_COPY is nonzero if each substitution must be unique.  We do this
5343    by copying if `n_occurrences' is nonzero.  */
5344 
5345 static rtx
subst(rtx x,rtx from,rtx to,int in_dest,int in_cond,int unique_copy)5346 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5347 {
5348   enum rtx_code code = GET_CODE (x);
5349   machine_mode op0_mode = VOIDmode;
5350   const char *fmt;
5351   int len, i;
5352   rtx new_rtx;
5353 
5354 /* Two expressions are equal if they are identical copies of a shared
5355    RTX or if they are both registers with the same register number
5356    and mode.  */
5357 
5358 #define COMBINE_RTX_EQUAL_P(X,Y)			\
5359   ((X) == (Y)						\
5360    || (REG_P (X) && REG_P (Y)	\
5361        && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5362 
5363   /* Do not substitute into clobbers of regs -- this will never result in
5364      valid RTL.  */
5365   if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5366     return x;
5367 
5368   if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5369     {
5370       n_occurrences++;
5371       return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5372     }
5373 
5374   /* If X and FROM are the same register but different modes, they
5375      will not have been seen as equal above.  However, the log links code
5376      will make a LOG_LINKS entry for that case.  If we do nothing, we
5377      will try to rerecognize our original insn and, when it succeeds,
5378      we will delete the feeding insn, which is incorrect.
5379 
5380      So force this insn not to match in this (rare) case.  */
5381   if (! in_dest && code == REG && REG_P (from)
5382       && reg_overlap_mentioned_p (x, from))
5383     return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5384 
5385   /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5386      of which may contain things that can be combined.  */
5387   if (code != MEM && code != LO_SUM && OBJECT_P (x))
5388     return x;
5389 
5390   /* It is possible to have a subexpression appear twice in the insn.
5391      Suppose that FROM is a register that appears within TO.
5392      Then, after that subexpression has been scanned once by `subst',
5393      the second time it is scanned, TO may be found.  If we were
5394      to scan TO here, we would find FROM within it and create a
5395      self-referent rtl structure which is completely wrong.  */
5396   if (COMBINE_RTX_EQUAL_P (x, to))
5397     return to;
5398 
5399   /* Parallel asm_operands need special attention because all of the
5400      inputs are shared across the arms.  Furthermore, unsharing the
5401      rtl results in recognition failures.  Failure to handle this case
5402      specially can result in circular rtl.
5403 
5404      Solve this by doing a normal pass across the first entry of the
5405      parallel, and only processing the SET_DESTs of the subsequent
5406      entries.  Ug.  */
5407 
5408   if (code == PARALLEL
5409       && GET_CODE (XVECEXP (x, 0, 0)) == SET
5410       && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5411     {
5412       new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5413 
5414       /* If this substitution failed, this whole thing fails.  */
5415       if (GET_CODE (new_rtx) == CLOBBER
5416 	  && XEXP (new_rtx, 0) == const0_rtx)
5417 	return new_rtx;
5418 
5419       SUBST (XVECEXP (x, 0, 0), new_rtx);
5420 
5421       for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5422 	{
5423 	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
5424 
5425 	  if (!REG_P (dest)
5426 	      && GET_CODE (dest) != CC0
5427 	      && GET_CODE (dest) != PC)
5428 	    {
5429 	      new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5430 
5431 	      /* If this substitution failed, this whole thing fails.  */
5432 	      if (GET_CODE (new_rtx) == CLOBBER
5433 		  && XEXP (new_rtx, 0) == const0_rtx)
5434 		return new_rtx;
5435 
5436 	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5437 	    }
5438 	}
5439     }
5440   else
5441     {
5442       len = GET_RTX_LENGTH (code);
5443       fmt = GET_RTX_FORMAT (code);
5444 
5445       /* We don't need to process a SET_DEST that is a register, CC0,
5446 	 or PC, so set up to skip this common case.  All other cases
5447 	 where we want to suppress replacing something inside a
5448 	 SET_SRC are handled via the IN_DEST operand.  */
5449       if (code == SET
5450 	  && (REG_P (SET_DEST (x))
5451 	      || GET_CODE (SET_DEST (x)) == CC0
5452 	      || GET_CODE (SET_DEST (x)) == PC))
5453 	fmt = "ie";
5454 
5455       /* Trying to simplify the operands of a widening MULT is not likely
5456 	 to create RTL matching a machine insn.  */
5457       if (code == MULT
5458 	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5459 	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5460 	  && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5461 	      || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5462 	  && REG_P (XEXP (XEXP (x, 0), 0))
5463 	  && REG_P (XEXP (XEXP (x, 1), 0))
5464 	  && from == to)
5465 	return x;
5466 
5467 
5468       /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5469 	 constant.  */
5470       if (fmt[0] == 'e')
5471 	op0_mode = GET_MODE (XEXP (x, 0));
5472 
5473       for (i = 0; i < len; i++)
5474 	{
5475 	  if (fmt[i] == 'E')
5476 	    {
5477 	      int j;
5478 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5479 		{
5480 		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5481 		    {
5482 		      new_rtx = (unique_copy && n_occurrences
5483 			     ? copy_rtx (to) : to);
5484 		      n_occurrences++;
5485 		    }
5486 		  else
5487 		    {
5488 		      new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5489 				       unique_copy);
5490 
5491 		      /* If this substitution failed, this whole thing
5492 			 fails.  */
5493 		      if (GET_CODE (new_rtx) == CLOBBER
5494 			  && XEXP (new_rtx, 0) == const0_rtx)
5495 			return new_rtx;
5496 		    }
5497 
5498 		  SUBST (XVECEXP (x, i, j), new_rtx);
5499 		}
5500 	    }
5501 	  else if (fmt[i] == 'e')
5502 	    {
5503 	      /* If this is a register being set, ignore it.  */
5504 	      new_rtx = XEXP (x, i);
5505 	      if (in_dest
5506 		  && i == 0
5507 		  && (((code == SUBREG || code == ZERO_EXTRACT)
5508 		       && REG_P (new_rtx))
5509 		      || code == STRICT_LOW_PART))
5510 		;
5511 
5512 	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5513 		{
5514 		  /* In general, don't install a subreg involving two
5515 		     modes not tieable.  It can worsen register
5516 		     allocation, and can even make invalid reload
5517 		     insns, since the reg inside may need to be copied
5518 		     from in the outside mode, and that may be invalid
5519 		     if it is an fp reg copied in integer mode.
5520 
5521 		     We allow two exceptions to this: It is valid if
5522 		     it is inside another SUBREG and the mode of that
5523 		     SUBREG and the mode of the inside of TO is
5524 		     tieable and it is valid if X is a SET that copies
5525 		     FROM to CC0.  */
5526 
5527 		  if (GET_CODE (to) == SUBREG
5528 		      && !targetm.modes_tieable_p (GET_MODE (to),
5529 						   GET_MODE (SUBREG_REG (to)))
5530 		      && ! (code == SUBREG
5531 			    && (targetm.modes_tieable_p
5532 				(GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5533 		      && (!HAVE_cc0
5534 			  || (! (code == SET
5535 				 && i == 1
5536 				 && XEXP (x, 0) == cc0_rtx))))
5537 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5538 
5539 		  if (code == SUBREG
5540 		      && REG_P (to)
5541 		      && REGNO (to) < FIRST_PSEUDO_REGISTER
5542 		      && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5543 						SUBREG_BYTE (x),
5544 						GET_MODE (x)) < 0)
5545 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5546 
5547 		  new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5548 		  n_occurrences++;
5549 		}
5550 	      else
5551 		/* If we are in a SET_DEST, suppress most cases unless we
5552 		   have gone inside a MEM, in which case we want to
5553 		   simplify the address.  We assume here that things that
5554 		   are actually part of the destination have their inner
5555 		   parts in the first expression.  This is true for SUBREG,
5556 		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5557 		   things aside from REG and MEM that should appear in a
5558 		   SET_DEST.  */
5559 		new_rtx = subst (XEXP (x, i), from, to,
5560 			     (((in_dest
5561 				&& (code == SUBREG || code == STRICT_LOW_PART
5562 				    || code == ZERO_EXTRACT))
5563 			       || code == SET)
5564 			      && i == 0),
5565 				 code == IF_THEN_ELSE && i == 0,
5566 				 unique_copy);
5567 
5568 	      /* If we found that we will have to reject this combination,
5569 		 indicate that by returning the CLOBBER ourselves, rather than
5570 		 an expression containing it.  This will speed things up as
5571 		 well as prevent accidents where two CLOBBERs are considered
5572 		 to be equal, thus producing an incorrect simplification.  */
5573 
5574 	      if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5575 		return new_rtx;
5576 
5577 	      if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5578 		{
5579 		  machine_mode mode = GET_MODE (x);
5580 
5581 		  x = simplify_subreg (GET_MODE (x), new_rtx,
5582 				       GET_MODE (SUBREG_REG (x)),
5583 				       SUBREG_BYTE (x));
5584 		  if (! x)
5585 		    x = gen_rtx_CLOBBER (mode, const0_rtx);
5586 		}
5587 	      else if (CONST_SCALAR_INT_P (new_rtx)
5588 		       && (GET_CODE (x) == ZERO_EXTEND
5589 			   || GET_CODE (x) == FLOAT
5590 			   || GET_CODE (x) == UNSIGNED_FLOAT))
5591 		{
5592 		  x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5593 						new_rtx,
5594 						GET_MODE (XEXP (x, 0)));
5595 		  if (!x)
5596 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5597 		}
5598 	      else
5599 		SUBST (XEXP (x, i), new_rtx);
5600 	    }
5601 	}
5602     }
5603 
5604   /* Check if we are loading something from the constant pool via float
5605      extension; in this case we would undo compress_float_constant
5606      optimization and degenerate constant load to an immediate value.  */
5607   if (GET_CODE (x) == FLOAT_EXTEND
5608       && MEM_P (XEXP (x, 0))
5609       && MEM_READONLY_P (XEXP (x, 0)))
5610     {
5611       rtx tmp = avoid_constant_pool_reference (x);
5612       if (x != tmp)
5613         return x;
5614     }
5615 
5616   /* Try to simplify X.  If the simplification changed the code, it is likely
5617      that further simplification will help, so loop, but limit the number
5618      of repetitions that will be performed.  */
5619 
5620   for (i = 0; i < 4; i++)
5621     {
5622       /* If X is sufficiently simple, don't bother trying to do anything
5623 	 with it.  */
5624       if (code != CONST_INT && code != REG && code != CLOBBER)
5625 	x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5626 
5627       if (GET_CODE (x) == code)
5628 	break;
5629 
5630       code = GET_CODE (x);
5631 
5632       /* We no longer know the original mode of operand 0 since we
5633 	 have changed the form of X)  */
5634       op0_mode = VOIDmode;
5635     }
5636 
5637   return x;
5638 }
5639 
5640 /* If X is a commutative operation whose operands are not in the canonical
5641    order, use substitutions to swap them.  */
5642 
5643 static void
maybe_swap_commutative_operands(rtx x)5644 maybe_swap_commutative_operands (rtx x)
5645 {
5646   if (COMMUTATIVE_ARITH_P (x)
5647       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5648     {
5649       rtx temp = XEXP (x, 0);
5650       SUBST (XEXP (x, 0), XEXP (x, 1));
5651       SUBST (XEXP (x, 1), temp);
5652     }
5653 }
5654 
5655 /* Simplify X, a piece of RTL.  We just operate on the expression at the
5656    outer level; call `subst' to simplify recursively.  Return the new
5657    expression.
5658 
5659    OP0_MODE is the original mode of XEXP (x, 0).  IN_DEST is nonzero
5660    if we are inside a SET_DEST.  IN_COND is nonzero if we are at the top level
5661    of a condition.  */
5662 
5663 static rtx
combine_simplify_rtx(rtx x,machine_mode op0_mode,int in_dest,int in_cond)5664 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5665 		      int in_cond)
5666 {
5667   enum rtx_code code = GET_CODE (x);
5668   machine_mode mode = GET_MODE (x);
5669   scalar_int_mode int_mode;
5670   rtx temp;
5671   int i;
5672 
5673   /* If this is a commutative operation, put a constant last and a complex
5674      expression first.  We don't need to do this for comparisons here.  */
5675   maybe_swap_commutative_operands (x);
5676 
5677   /* Try to fold this expression in case we have constants that weren't
5678      present before.  */
5679   temp = 0;
5680   switch (GET_RTX_CLASS (code))
5681     {
5682     case RTX_UNARY:
5683       if (op0_mode == VOIDmode)
5684 	op0_mode = GET_MODE (XEXP (x, 0));
5685       temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5686       break;
5687     case RTX_COMPARE:
5688     case RTX_COMM_COMPARE:
5689       {
5690 	machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5691 	if (cmp_mode == VOIDmode)
5692 	  {
5693 	    cmp_mode = GET_MODE (XEXP (x, 1));
5694 	    if (cmp_mode == VOIDmode)
5695 	      cmp_mode = op0_mode;
5696 	  }
5697 	temp = simplify_relational_operation (code, mode, cmp_mode,
5698 					      XEXP (x, 0), XEXP (x, 1));
5699       }
5700       break;
5701     case RTX_COMM_ARITH:
5702     case RTX_BIN_ARITH:
5703       temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5704       break;
5705     case RTX_BITFIELD_OPS:
5706     case RTX_TERNARY:
5707       temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5708 					 XEXP (x, 1), XEXP (x, 2));
5709       break;
5710     default:
5711       break;
5712     }
5713 
5714   if (temp)
5715     {
5716       x = temp;
5717       code = GET_CODE (temp);
5718       op0_mode = VOIDmode;
5719       mode = GET_MODE (temp);
5720     }
5721 
5722   /* If this is a simple operation applied to an IF_THEN_ELSE, try
5723      applying it to the arms of the IF_THEN_ELSE.  This often simplifies
5724      things.  Check for cases where both arms are testing the same
5725      condition.
5726 
5727      Don't do anything if all operands are very simple.  */
5728 
5729   if ((BINARY_P (x)
5730        && ((!OBJECT_P (XEXP (x, 0))
5731 	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5732 		  && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5733 	   || (!OBJECT_P (XEXP (x, 1))
5734 	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5735 		     && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5736       || (UNARY_P (x)
5737 	  && (!OBJECT_P (XEXP (x, 0))
5738 	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5739 		     && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5740     {
5741       rtx cond, true_rtx, false_rtx;
5742 
5743       cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5744       if (cond != 0
5745 	  /* If everything is a comparison, what we have is highly unlikely
5746 	     to be simpler, so don't use it.  */
5747 	  && ! (COMPARISON_P (x)
5748 		&& (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5749 	  /* Similarly, if we end up with one of the expressions the same
5750 	     as the original, it is certainly not simpler.  */
5751 	  && ! rtx_equal_p (x, true_rtx)
5752 	  && ! rtx_equal_p (x, false_rtx))
5753 	{
5754 	  rtx cop1 = const0_rtx;
5755 	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5756 
5757 	  if (cond_code == NE && COMPARISON_P (cond))
5758 	    return x;
5759 
5760 	  /* Simplify the alternative arms; this may collapse the true and
5761 	     false arms to store-flag values.  Be careful to use copy_rtx
5762 	     here since true_rtx or false_rtx might share RTL with x as a
5763 	     result of the if_then_else_cond call above.  */
5764 	  true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5765 	  false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5766 
5767 	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
5768 	     is unlikely to be simpler.  */
5769 	  if (general_operand (true_rtx, VOIDmode)
5770 	      && general_operand (false_rtx, VOIDmode))
5771 	    {
5772 	      enum rtx_code reversed;
5773 
5774 	      /* Restarting if we generate a store-flag expression will cause
5775 		 us to loop.  Just drop through in this case.  */
5776 
5777 	      /* If the result values are STORE_FLAG_VALUE and zero, we can
5778 		 just make the comparison operation.  */
5779 	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5780 		x = simplify_gen_relational (cond_code, mode, VOIDmode,
5781 					     cond, cop1);
5782 	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5783 		       && ((reversed = reversed_comparison_code_parts
5784 					(cond_code, cond, cop1, NULL))
5785 			   != UNKNOWN))
5786 		x = simplify_gen_relational (reversed, mode, VOIDmode,
5787 					     cond, cop1);
5788 
5789 	      /* Likewise, we can make the negate of a comparison operation
5790 		 if the result values are - STORE_FLAG_VALUE and zero.  */
5791 	      else if (CONST_INT_P (true_rtx)
5792 		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5793 		       && false_rtx == const0_rtx)
5794 		x = simplify_gen_unary (NEG, mode,
5795 					simplify_gen_relational (cond_code,
5796 								 mode, VOIDmode,
5797 								 cond, cop1),
5798 					mode);
5799 	      else if (CONST_INT_P (false_rtx)
5800 		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5801 		       && true_rtx == const0_rtx
5802 		       && ((reversed = reversed_comparison_code_parts
5803 					(cond_code, cond, cop1, NULL))
5804 			   != UNKNOWN))
5805 		x = simplify_gen_unary (NEG, mode,
5806 					simplify_gen_relational (reversed,
5807 								 mode, VOIDmode,
5808 								 cond, cop1),
5809 					mode);
5810 	      else
5811 		return gen_rtx_IF_THEN_ELSE (mode,
5812 					     simplify_gen_relational (cond_code,
5813 								      mode,
5814 								      VOIDmode,
5815 								      cond,
5816 								      cop1),
5817 					     true_rtx, false_rtx);
5818 
5819 	      code = GET_CODE (x);
5820 	      op0_mode = VOIDmode;
5821 	    }
5822 	}
5823     }
5824 
5825   /* First see if we can apply the inverse distributive law.  */
5826   if (code == PLUS || code == MINUS
5827       || code == AND || code == IOR || code == XOR)
5828     {
5829       x = apply_distributive_law (x);
5830       code = GET_CODE (x);
5831       op0_mode = VOIDmode;
5832     }
5833 
5834   /* If CODE is an associative operation not otherwise handled, see if we
5835      can associate some operands.  This can win if they are constants or
5836      if they are logically related (i.e. (a & b) & a).  */
5837   if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5838        || code == AND || code == IOR || code == XOR
5839        || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5840       && ((INTEGRAL_MODE_P (mode) && code != DIV)
5841 	  || (flag_associative_math && FLOAT_MODE_P (mode))))
5842     {
5843       if (GET_CODE (XEXP (x, 0)) == code)
5844 	{
5845 	  rtx other = XEXP (XEXP (x, 0), 0);
5846 	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5847 	  rtx inner_op1 = XEXP (x, 1);
5848 	  rtx inner;
5849 
5850 	  /* Make sure we pass the constant operand if any as the second
5851 	     one if this is a commutative operation.  */
5852 	  if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5853 	    std::swap (inner_op0, inner_op1);
5854 	  inner = simplify_binary_operation (code == MINUS ? PLUS
5855 					     : code == DIV ? MULT
5856 					     : code,
5857 					     mode, inner_op0, inner_op1);
5858 
5859 	  /* For commutative operations, try the other pair if that one
5860 	     didn't simplify.  */
5861 	  if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5862 	    {
5863 	      other = XEXP (XEXP (x, 0), 1);
5864 	      inner = simplify_binary_operation (code, mode,
5865 						 XEXP (XEXP (x, 0), 0),
5866 						 XEXP (x, 1));
5867 	    }
5868 
5869 	  if (inner)
5870 	    return simplify_gen_binary (code, mode, other, inner);
5871 	}
5872     }
5873 
5874   /* A little bit of algebraic simplification here.  */
5875   switch (code)
5876     {
5877     case MEM:
5878       /* Ensure that our address has any ASHIFTs converted to MULT in case
5879 	 address-recognizing predicates are called later.  */
5880       temp = make_compound_operation (XEXP (x, 0), MEM);
5881       SUBST (XEXP (x, 0), temp);
5882       break;
5883 
5884     case SUBREG:
5885       if (op0_mode == VOIDmode)
5886 	op0_mode = GET_MODE (SUBREG_REG (x));
5887 
5888       /* See if this can be moved to simplify_subreg.  */
5889       if (CONSTANT_P (SUBREG_REG (x))
5890 	  && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5891 	     /* Don't call gen_lowpart if the inner mode
5892 		is VOIDmode and we cannot simplify it, as SUBREG without
5893 		inner mode is invalid.  */
5894 	  && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5895 	      || gen_lowpart_common (mode, SUBREG_REG (x))))
5896 	return gen_lowpart (mode, SUBREG_REG (x));
5897 
5898       if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5899 	break;
5900       {
5901 	rtx temp;
5902 	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5903 				SUBREG_BYTE (x));
5904 	if (temp)
5905 	  return temp;
5906 
5907 	/* If op is known to have all lower bits zero, the result is zero.  */
5908 	scalar_int_mode int_mode, int_op0_mode;
5909 	if (!in_dest
5910 	    && is_a <scalar_int_mode> (mode, &int_mode)
5911 	    && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5912 	    && (GET_MODE_PRECISION (int_mode)
5913 		< GET_MODE_PRECISION (int_op0_mode))
5914 	    && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5915 			 SUBREG_BYTE (x))
5916 	    && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5917 	    && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5918 		 & GET_MODE_MASK (int_mode)) == 0)
5919 	    && !side_effects_p (SUBREG_REG (x)))
5920 	  return CONST0_RTX (int_mode);
5921       }
5922 
5923       /* Don't change the mode of the MEM if that would change the meaning
5924 	 of the address.  */
5925       if (MEM_P (SUBREG_REG (x))
5926 	  && (MEM_VOLATILE_P (SUBREG_REG (x))
5927 	      || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5928 					   MEM_ADDR_SPACE (SUBREG_REG (x)))))
5929 	return gen_rtx_CLOBBER (mode, const0_rtx);
5930 
5931       /* Note that we cannot do any narrowing for non-constants since
5932 	 we might have been counting on using the fact that some bits were
5933 	 zero.  We now do this in the SET.  */
5934 
5935       break;
5936 
5937     case NEG:
5938       temp = expand_compound_operation (XEXP (x, 0));
5939 
5940       /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5941 	 replaced by (lshiftrt X C).  This will convert
5942 	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
5943 
5944       if (GET_CODE (temp) == ASHIFTRT
5945 	  && CONST_INT_P (XEXP (temp, 1))
5946 	  && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5947 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5948 				     INTVAL (XEXP (temp, 1)));
5949 
5950       /* If X has only a single bit that might be nonzero, say, bit I, convert
5951 	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5952 	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
5953 	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
5954 	 or a SUBREG of one since we'd be making the expression more
5955 	 complex if it was just a register.  */
5956 
5957       if (!REG_P (temp)
5958 	  && ! (GET_CODE (temp) == SUBREG
5959 		&& REG_P (SUBREG_REG (temp)))
5960 	  && is_a <scalar_int_mode> (mode, &int_mode)
5961 	  && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5962 	{
5963 	  rtx temp1 = simplify_shift_const
5964 	    (NULL_RTX, ASHIFTRT, int_mode,
5965 	     simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5966 				   GET_MODE_PRECISION (int_mode) - 1 - i),
5967 	     GET_MODE_PRECISION (int_mode) - 1 - i);
5968 
5969 	  /* If all we did was surround TEMP with the two shifts, we
5970 	     haven't improved anything, so don't use it.  Otherwise,
5971 	     we are better off with TEMP1.  */
5972 	  if (GET_CODE (temp1) != ASHIFTRT
5973 	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5974 	      || XEXP (XEXP (temp1, 0), 0) != temp)
5975 	    return temp1;
5976 	}
5977       break;
5978 
5979     case TRUNCATE:
5980       /* We can't handle truncation to a partial integer mode here
5981 	 because we don't know the real bitsize of the partial
5982 	 integer mode.  */
5983       if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5984 	break;
5985 
5986       if (HWI_COMPUTABLE_MODE_P (mode))
5987 	SUBST (XEXP (x, 0),
5988 	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5989 			      GET_MODE_MASK (mode), 0));
5990 
5991       /* We can truncate a constant value and return it.  */
5992       if (CONST_INT_P (XEXP (x, 0)))
5993 	return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5994 
5995       /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5996 	 whose value is a comparison can be replaced with a subreg if
5997 	 STORE_FLAG_VALUE permits.  */
5998       if (HWI_COMPUTABLE_MODE_P (mode)
5999 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6000 	  && (temp = get_last_value (XEXP (x, 0)))
6001 	  && COMPARISON_P (temp))
6002 	return gen_lowpart (mode, XEXP (x, 0));
6003       break;
6004 
6005     case CONST:
6006       /* (const (const X)) can become (const X).  Do it this way rather than
6007 	 returning the inner CONST since CONST can be shared with a
6008 	 REG_EQUAL note.  */
6009       if (GET_CODE (XEXP (x, 0)) == CONST)
6010 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6011       break;
6012 
6013     case LO_SUM:
6014       /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
6015 	 can add in an offset.  find_split_point will split this address up
6016 	 again if it doesn't match.  */
6017       if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6018 	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6019 	return XEXP (x, 1);
6020       break;
6021 
6022     case PLUS:
6023       /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6024 	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6025 	 bit-field and can be replaced by either a sign_extend or a
6026 	 sign_extract.  The `and' may be a zero_extend and the two
6027 	 <c>, -<c> constants may be reversed.  */
6028       if (GET_CODE (XEXP (x, 0)) == XOR
6029 	  && is_a <scalar_int_mode> (mode, &int_mode)
6030 	  && CONST_INT_P (XEXP (x, 1))
6031 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6032 	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6033 	  && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6034 	      || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6035 	  && HWI_COMPUTABLE_MODE_P (int_mode)
6036 	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6037 	       && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6038 	       && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6039 		   == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6040 	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6041 		  && known_eq ((GET_MODE_PRECISION
6042 				(GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6043 			       (unsigned int) i + 1))))
6044 	return simplify_shift_const
6045 	  (NULL_RTX, ASHIFTRT, int_mode,
6046 	   simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6047 				 XEXP (XEXP (XEXP (x, 0), 0), 0),
6048 				 GET_MODE_PRECISION (int_mode) - (i + 1)),
6049 	   GET_MODE_PRECISION (int_mode) - (i + 1));
6050 
6051       /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6052 	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6053 	 the bitsize of the mode - 1.  This allows simplification of
6054 	 "a = (b & 8) == 0;"  */
6055       if (XEXP (x, 1) == constm1_rtx
6056 	  && !REG_P (XEXP (x, 0))
6057 	  && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6058 		&& REG_P (SUBREG_REG (XEXP (x, 0))))
6059 	  && is_a <scalar_int_mode> (mode, &int_mode)
6060 	  && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6061 	return simplify_shift_const
6062 	  (NULL_RTX, ASHIFTRT, int_mode,
6063 	   simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6064 				 gen_rtx_XOR (int_mode, XEXP (x, 0),
6065 					      const1_rtx),
6066 				 GET_MODE_PRECISION (int_mode) - 1),
6067 	   GET_MODE_PRECISION (int_mode) - 1);
6068 
6069       /* If we are adding two things that have no bits in common, convert
6070 	 the addition into an IOR.  This will often be further simplified,
6071 	 for example in cases like ((a & 1) + (a & 2)), which can
6072 	 become a & 3.  */
6073 
6074       if (HWI_COMPUTABLE_MODE_P (mode)
6075 	  && (nonzero_bits (XEXP (x, 0), mode)
6076 	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
6077 	{
6078 	  /* Try to simplify the expression further.  */
6079 	  rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6080 	  temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6081 
6082 	  /* If we could, great.  If not, do not go ahead with the IOR
6083 	     replacement, since PLUS appears in many special purpose
6084 	     address arithmetic instructions.  */
6085 	  if (GET_CODE (temp) != CLOBBER
6086 	      && (GET_CODE (temp) != IOR
6087 		  || ((XEXP (temp, 0) != XEXP (x, 0)
6088 		       || XEXP (temp, 1) != XEXP (x, 1))
6089 		      && (XEXP (temp, 0) != XEXP (x, 1)
6090 			  || XEXP (temp, 1) != XEXP (x, 0)))))
6091 	    return temp;
6092 	}
6093 
6094       /* Canonicalize x + x into x << 1.  */
6095       if (GET_MODE_CLASS (mode) == MODE_INT
6096 	  && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6097 	  && !side_effects_p (XEXP (x, 0)))
6098 	return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6099 
6100       break;
6101 
6102     case MINUS:
6103       /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6104 	 (and <foo> (const_int pow2-1))  */
6105       if (is_a <scalar_int_mode> (mode, &int_mode)
6106 	  && GET_CODE (XEXP (x, 1)) == AND
6107 	  && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6108 	  && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6109 	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6110 	return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6111 				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6112       break;
6113 
6114     case MULT:
6115       /* If we have (mult (plus A B) C), apply the distributive law and then
6116 	 the inverse distributive law to see if things simplify.  This
6117 	 occurs mostly in addresses, often when unrolling loops.  */
6118 
6119       if (GET_CODE (XEXP (x, 0)) == PLUS)
6120 	{
6121 	  rtx result = distribute_and_simplify_rtx (x, 0);
6122 	  if (result)
6123 	    return result;
6124 	}
6125 
6126       /* Try simplify a*(b/c) as (a*b)/c.  */
6127       if (FLOAT_MODE_P (mode) && flag_associative_math
6128 	  && GET_CODE (XEXP (x, 0)) == DIV)
6129 	{
6130 	  rtx tem = simplify_binary_operation (MULT, mode,
6131 					       XEXP (XEXP (x, 0), 0),
6132 					       XEXP (x, 1));
6133 	  if (tem)
6134 	    return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6135 	}
6136       break;
6137 
6138     case UDIV:
6139       /* If this is a divide by a power of two, treat it as a shift if
6140 	 its first operand is a shift.  */
6141       if (is_a <scalar_int_mode> (mode, &int_mode)
6142 	  && CONST_INT_P (XEXP (x, 1))
6143 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6144 	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
6145 	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6146 	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6147 	      || GET_CODE (XEXP (x, 0)) == ROTATE
6148 	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
6149 	return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6150 				     XEXP (x, 0), i);
6151       break;
6152 
6153     case EQ:  case NE:
6154     case GT:  case GTU:  case GE:  case GEU:
6155     case LT:  case LTU:  case LE:  case LEU:
6156     case UNEQ:  case LTGT:
6157     case UNGT:  case UNGE:
6158     case UNLT:  case UNLE:
6159     case UNORDERED: case ORDERED:
6160       /* If the first operand is a condition code, we can't do anything
6161 	 with it.  */
6162       if (GET_CODE (XEXP (x, 0)) == COMPARE
6163 	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6164 	      && ! CC0_P (XEXP (x, 0))))
6165 	{
6166 	  rtx op0 = XEXP (x, 0);
6167 	  rtx op1 = XEXP (x, 1);
6168 	  enum rtx_code new_code;
6169 
6170 	  if (GET_CODE (op0) == COMPARE)
6171 	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6172 
6173 	  /* Simplify our comparison, if possible.  */
6174 	  new_code = simplify_comparison (code, &op0, &op1);
6175 
6176 	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6177 	     if only the low-order bit is possibly nonzero in X (such as when
6178 	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
6179 	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
6180 	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
6181 	     (plus X 1).
6182 
6183 	     Remove any ZERO_EXTRACT we made when thinking this was a
6184 	     comparison.  It may now be simpler to use, e.g., an AND.  If a
6185 	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
6186 	     the call to make_compound_operation in the SET case.
6187 
6188 	     Don't apply these optimizations if the caller would
6189 	     prefer a comparison rather than a value.
6190 	     E.g., for the condition in an IF_THEN_ELSE most targets need
6191 	     an explicit comparison.  */
6192 
6193 	  if (in_cond)
6194 	    ;
6195 
6196 	  else if (STORE_FLAG_VALUE == 1
6197 		   && new_code == NE
6198 		   && is_int_mode (mode, &int_mode)
6199 		   && op1 == const0_rtx
6200 		   && int_mode == GET_MODE (op0)
6201 		   && nonzero_bits (op0, int_mode) == 1)
6202 	    return gen_lowpart (int_mode,
6203 				expand_compound_operation (op0));
6204 
6205 	  else if (STORE_FLAG_VALUE == 1
6206 		   && new_code == NE
6207 		   && is_int_mode (mode, &int_mode)
6208 		   && op1 == const0_rtx
6209 		   && int_mode == GET_MODE (op0)
6210 		   && (num_sign_bit_copies (op0, int_mode)
6211 		       == GET_MODE_PRECISION (int_mode)))
6212 	    {
6213 	      op0 = expand_compound_operation (op0);
6214 	      return simplify_gen_unary (NEG, int_mode,
6215 					 gen_lowpart (int_mode, op0),
6216 					 int_mode);
6217 	    }
6218 
6219 	  else if (STORE_FLAG_VALUE == 1
6220 		   && new_code == EQ
6221 		   && is_int_mode (mode, &int_mode)
6222 		   && op1 == const0_rtx
6223 		   && int_mode == GET_MODE (op0)
6224 		   && nonzero_bits (op0, int_mode) == 1)
6225 	    {
6226 	      op0 = expand_compound_operation (op0);
6227 	      return simplify_gen_binary (XOR, int_mode,
6228 					  gen_lowpart (int_mode, op0),
6229 					  const1_rtx);
6230 	    }
6231 
6232 	  else if (STORE_FLAG_VALUE == 1
6233 		   && new_code == EQ
6234 		   && is_int_mode (mode, &int_mode)
6235 		   && op1 == const0_rtx
6236 		   && int_mode == GET_MODE (op0)
6237 		   && (num_sign_bit_copies (op0, int_mode)
6238 		       == GET_MODE_PRECISION (int_mode)))
6239 	    {
6240 	      op0 = expand_compound_operation (op0);
6241 	      return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6242 	    }
6243 
6244 	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
6245 	     those above.  */
6246 	  if (in_cond)
6247 	    ;
6248 
6249 	  else if (STORE_FLAG_VALUE == -1
6250 		   && new_code == NE
6251 		   && is_int_mode (mode, &int_mode)
6252 		   && op1 == const0_rtx
6253 		   && int_mode == GET_MODE (op0)
6254 		   && (num_sign_bit_copies (op0, int_mode)
6255 		       == GET_MODE_PRECISION (int_mode)))
6256 	    return gen_lowpart (int_mode, expand_compound_operation (op0));
6257 
6258 	  else if (STORE_FLAG_VALUE == -1
6259 		   && new_code == NE
6260 		   && is_int_mode (mode, &int_mode)
6261 		   && op1 == const0_rtx
6262 		   && int_mode == GET_MODE (op0)
6263 		   && nonzero_bits (op0, int_mode) == 1)
6264 	    {
6265 	      op0 = expand_compound_operation (op0);
6266 	      return simplify_gen_unary (NEG, int_mode,
6267 					 gen_lowpart (int_mode, op0),
6268 					 int_mode);
6269 	    }
6270 
6271 	  else if (STORE_FLAG_VALUE == -1
6272 		   && new_code == EQ
6273 		   && is_int_mode (mode, &int_mode)
6274 		   && op1 == const0_rtx
6275 		   && int_mode == GET_MODE (op0)
6276 		   && (num_sign_bit_copies (op0, int_mode)
6277 		       == GET_MODE_PRECISION (int_mode)))
6278 	    {
6279 	      op0 = expand_compound_operation (op0);
6280 	      return simplify_gen_unary (NOT, int_mode,
6281 					 gen_lowpart (int_mode, op0),
6282 					 int_mode);
6283 	    }
6284 
6285 	  /* If X is 0/1, (eq X 0) is X-1.  */
6286 	  else if (STORE_FLAG_VALUE == -1
6287 		   && new_code == EQ
6288 		   && is_int_mode (mode, &int_mode)
6289 		   && op1 == const0_rtx
6290 		   && int_mode == GET_MODE (op0)
6291 		   && nonzero_bits (op0, int_mode) == 1)
6292 	    {
6293 	      op0 = expand_compound_operation (op0);
6294 	      return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6295 	    }
6296 
6297 	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6298 	     one bit that might be nonzero, we can convert (ne x 0) to
6299 	     (ashift x c) where C puts the bit in the sign bit.  Remove any
6300 	     AND with STORE_FLAG_VALUE when we are done, since we are only
6301 	     going to test the sign bit.  */
6302 	  if (new_code == NE
6303 	      && is_int_mode (mode, &int_mode)
6304 	      && HWI_COMPUTABLE_MODE_P (int_mode)
6305 	      && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6306 	      && op1 == const0_rtx
6307 	      && int_mode == GET_MODE (op0)
6308 	      && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6309 	    {
6310 	      x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6311 					expand_compound_operation (op0),
6312 					GET_MODE_PRECISION (int_mode) - 1 - i);
6313 	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6314 		return XEXP (x, 0);
6315 	      else
6316 		return x;
6317 	    }
6318 
6319 	  /* If the code changed, return a whole new comparison.
6320 	     We also need to avoid using SUBST in cases where
6321 	     simplify_comparison has widened a comparison with a CONST_INT,
6322 	     since in that case the wider CONST_INT may fail the sanity
6323 	     checks in do_SUBST.  */
6324 	  if (new_code != code
6325 	      || (CONST_INT_P (op1)
6326 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6327 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6328 	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6329 
6330 	  /* Otherwise, keep this operation, but maybe change its operands.
6331 	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
6332 	  SUBST (XEXP (x, 0), op0);
6333 	  SUBST (XEXP (x, 1), op1);
6334 	}
6335       break;
6336 
6337     case IF_THEN_ELSE:
6338       return simplify_if_then_else (x);
6339 
6340     case ZERO_EXTRACT:
6341     case SIGN_EXTRACT:
6342     case ZERO_EXTEND:
6343     case SIGN_EXTEND:
6344       /* If we are processing SET_DEST, we are done.  */
6345       if (in_dest)
6346 	return x;
6347 
6348       return expand_compound_operation (x);
6349 
6350     case SET:
6351       return simplify_set (x);
6352 
6353     case AND:
6354     case IOR:
6355       return simplify_logical (x);
6356 
6357     case ASHIFT:
6358     case LSHIFTRT:
6359     case ASHIFTRT:
6360     case ROTATE:
6361     case ROTATERT:
6362       /* If this is a shift by a constant amount, simplify it.  */
6363       if (CONST_INT_P (XEXP (x, 1)))
6364 	return simplify_shift_const (x, code, mode, XEXP (x, 0),
6365 				     INTVAL (XEXP (x, 1)));
6366 
6367       else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6368 	SUBST (XEXP (x, 1),
6369 	       force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6370 			      (HOST_WIDE_INT_1U
6371 			       << exact_log2 (GET_MODE_UNIT_BITSIZE
6372 					      (GET_MODE (x))))
6373 			      - 1,
6374 			      0));
6375       break;
6376 
6377     default:
6378       break;
6379     }
6380 
6381   return x;
6382 }
6383 
6384 /* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
6385 
6386 static rtx
simplify_if_then_else(rtx x)6387 simplify_if_then_else (rtx x)
6388 {
6389   machine_mode mode = GET_MODE (x);
6390   rtx cond = XEXP (x, 0);
6391   rtx true_rtx = XEXP (x, 1);
6392   rtx false_rtx = XEXP (x, 2);
6393   enum rtx_code true_code = GET_CODE (cond);
6394   int comparison_p = COMPARISON_P (cond);
6395   rtx temp;
6396   int i;
6397   enum rtx_code false_code;
6398   rtx reversed;
6399   scalar_int_mode int_mode, inner_mode;
6400 
6401   /* Simplify storing of the truth value.  */
6402   if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6403     return simplify_gen_relational (true_code, mode, VOIDmode,
6404 				    XEXP (cond, 0), XEXP (cond, 1));
6405 
6406   /* Also when the truth value has to be reversed.  */
6407   if (comparison_p
6408       && true_rtx == const0_rtx && false_rtx == const_true_rtx
6409       && (reversed = reversed_comparison (cond, mode)))
6410     return reversed;
6411 
6412   /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6413      in it is being compared against certain values.  Get the true and false
6414      comparisons and see if that says anything about the value of each arm.  */
6415 
6416   if (comparison_p
6417       && ((false_code = reversed_comparison_code (cond, NULL))
6418 	  != UNKNOWN)
6419       && REG_P (XEXP (cond, 0)))
6420     {
6421       HOST_WIDE_INT nzb;
6422       rtx from = XEXP (cond, 0);
6423       rtx true_val = XEXP (cond, 1);
6424       rtx false_val = true_val;
6425       int swapped = 0;
6426 
6427       /* If FALSE_CODE is EQ, swap the codes and arms.  */
6428 
6429       if (false_code == EQ)
6430 	{
6431 	  swapped = 1, true_code = EQ, false_code = NE;
6432 	  std::swap (true_rtx, false_rtx);
6433 	}
6434 
6435       scalar_int_mode from_mode;
6436       if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6437 	{
6438 	  /* If we are comparing against zero and the expression being
6439 	     tested has only a single bit that might be nonzero, that is
6440 	     its value when it is not equal to zero.  Similarly if it is
6441 	     known to be -1 or 0.  */
6442 	  if (true_code == EQ
6443 	      && true_val == const0_rtx
6444 	      && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6445 	    {
6446 	      false_code = EQ;
6447 	      false_val = gen_int_mode (nzb, from_mode);
6448 	    }
6449 	  else if (true_code == EQ
6450 		   && true_val == const0_rtx
6451 		   && (num_sign_bit_copies (from, from_mode)
6452 		       == GET_MODE_PRECISION (from_mode)))
6453 	    {
6454 	      false_code = EQ;
6455 	      false_val = constm1_rtx;
6456 	    }
6457 	}
6458 
6459       /* Now simplify an arm if we know the value of the register in the
6460 	 branch and it is used in the arm.  Be careful due to the potential
6461 	 of locally-shared RTL.  */
6462 
6463       if (reg_mentioned_p (from, true_rtx))
6464 	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6465 				      from, true_val),
6466 			  pc_rtx, pc_rtx, 0, 0, 0);
6467       if (reg_mentioned_p (from, false_rtx))
6468 	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6469 				       from, false_val),
6470 			   pc_rtx, pc_rtx, 0, 0, 0);
6471 
6472       SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6473       SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6474 
6475       true_rtx = XEXP (x, 1);
6476       false_rtx = XEXP (x, 2);
6477       true_code = GET_CODE (cond);
6478     }
6479 
6480   /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6481      reversed, do so to avoid needing two sets of patterns for
6482      subtract-and-branch insns.  Similarly if we have a constant in the true
6483      arm, the false arm is the same as the first operand of the comparison, or
6484      the false arm is more complicated than the true arm.  */
6485 
6486   if (comparison_p
6487       && reversed_comparison_code (cond, NULL) != UNKNOWN
6488       && (true_rtx == pc_rtx
6489 	  || (CONSTANT_P (true_rtx)
6490 	      && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6491 	  || true_rtx == const0_rtx
6492 	  || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6493 	  || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6494 	      && !OBJECT_P (false_rtx))
6495 	  || reg_mentioned_p (true_rtx, false_rtx)
6496 	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6497     {
6498       true_code = reversed_comparison_code (cond, NULL);
6499       SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6500       SUBST (XEXP (x, 1), false_rtx);
6501       SUBST (XEXP (x, 2), true_rtx);
6502 
6503       std::swap (true_rtx, false_rtx);
6504       cond = XEXP (x, 0);
6505 
6506       /* It is possible that the conditional has been simplified out.  */
6507       true_code = GET_CODE (cond);
6508       comparison_p = COMPARISON_P (cond);
6509     }
6510 
6511   /* If the two arms are identical, we don't need the comparison.  */
6512 
6513   if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6514     return true_rtx;
6515 
6516   /* Convert a == b ? b : a to "a".  */
6517   if (true_code == EQ && ! side_effects_p (cond)
6518       && !HONOR_NANS (mode)
6519       && rtx_equal_p (XEXP (cond, 0), false_rtx)
6520       && rtx_equal_p (XEXP (cond, 1), true_rtx))
6521     return false_rtx;
6522   else if (true_code == NE && ! side_effects_p (cond)
6523 	   && !HONOR_NANS (mode)
6524 	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
6525 	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
6526     return true_rtx;
6527 
6528   /* Look for cases where we have (abs x) or (neg (abs X)).  */
6529 
6530   if (GET_MODE_CLASS (mode) == MODE_INT
6531       && comparison_p
6532       && XEXP (cond, 1) == const0_rtx
6533       && GET_CODE (false_rtx) == NEG
6534       && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6535       && rtx_equal_p (true_rtx, XEXP (cond, 0))
6536       && ! side_effects_p (true_rtx))
6537     switch (true_code)
6538       {
6539       case GT:
6540       case GE:
6541 	return simplify_gen_unary (ABS, mode, true_rtx, mode);
6542       case LT:
6543       case LE:
6544 	return
6545 	  simplify_gen_unary (NEG, mode,
6546 			      simplify_gen_unary (ABS, mode, true_rtx, mode),
6547 			      mode);
6548       default:
6549 	break;
6550       }
6551 
6552   /* Look for MIN or MAX.  */
6553 
6554   if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6555       && comparison_p
6556       && rtx_equal_p (XEXP (cond, 0), true_rtx)
6557       && rtx_equal_p (XEXP (cond, 1), false_rtx)
6558       && ! side_effects_p (cond))
6559     switch (true_code)
6560       {
6561       case GE:
6562       case GT:
6563 	return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6564       case LE:
6565       case LT:
6566 	return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6567       case GEU:
6568       case GTU:
6569 	return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6570       case LEU:
6571       case LTU:
6572 	return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6573       default:
6574 	break;
6575       }
6576 
6577   /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6578      second operand is zero, this can be done as (OP Z (mult COND C2)) where
6579      C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6580      SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6581      We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6582      neither 1 or -1, but it isn't worth checking for.  */
6583 
6584   if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6585       && comparison_p
6586       && is_int_mode (mode, &int_mode)
6587       && ! side_effects_p (x))
6588     {
6589       rtx t = make_compound_operation (true_rtx, SET);
6590       rtx f = make_compound_operation (false_rtx, SET);
6591       rtx cond_op0 = XEXP (cond, 0);
6592       rtx cond_op1 = XEXP (cond, 1);
6593       enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6594       scalar_int_mode m = int_mode;
6595       rtx z = 0, c1 = NULL_RTX;
6596 
6597       if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6598 	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6599 	   || GET_CODE (t) == ASHIFT
6600 	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6601 	  && rtx_equal_p (XEXP (t, 0), f))
6602 	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6603 
6604       /* If an identity-zero op is commutative, check whether there
6605 	 would be a match if we swapped the operands.  */
6606       else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6607 		|| GET_CODE (t) == XOR)
6608 	       && rtx_equal_p (XEXP (t, 1), f))
6609 	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6610       else if (GET_CODE (t) == SIGN_EXTEND
6611 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6612 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6613 		   || GET_CODE (XEXP (t, 0)) == MINUS
6614 		   || GET_CODE (XEXP (t, 0)) == IOR
6615 		   || GET_CODE (XEXP (t, 0)) == XOR
6616 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6617 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6618 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6619 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6620 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6621 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6622 	       && (num_sign_bit_copies (f, GET_MODE (f))
6623 		   > (unsigned int)
6624 		     (GET_MODE_PRECISION (int_mode)
6625 		      - GET_MODE_PRECISION (inner_mode))))
6626 	{
6627 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6628 	  extend_op = SIGN_EXTEND;
6629 	  m = inner_mode;
6630 	}
6631       else if (GET_CODE (t) == SIGN_EXTEND
6632 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6633 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6634 		   || GET_CODE (XEXP (t, 0)) == IOR
6635 		   || GET_CODE (XEXP (t, 0)) == XOR)
6636 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6637 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6638 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6639 	       && (num_sign_bit_copies (f, GET_MODE (f))
6640 		   > (unsigned int)
6641 		     (GET_MODE_PRECISION (int_mode)
6642 		      - GET_MODE_PRECISION (inner_mode))))
6643 	{
6644 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6645 	  extend_op = SIGN_EXTEND;
6646 	  m = inner_mode;
6647 	}
6648       else if (GET_CODE (t) == ZERO_EXTEND
6649 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6650 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6651 		   || GET_CODE (XEXP (t, 0)) == MINUS
6652 		   || GET_CODE (XEXP (t, 0)) == IOR
6653 		   || GET_CODE (XEXP (t, 0)) == XOR
6654 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6655 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6656 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6657 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6658 	       && HWI_COMPUTABLE_MODE_P (int_mode)
6659 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6660 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6661 	       && ((nonzero_bits (f, GET_MODE (f))
6662 		    & ~GET_MODE_MASK (inner_mode))
6663 		   == 0))
6664 	{
6665 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6666 	  extend_op = ZERO_EXTEND;
6667 	  m = inner_mode;
6668 	}
6669       else if (GET_CODE (t) == ZERO_EXTEND
6670 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6671 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6672 		   || GET_CODE (XEXP (t, 0)) == IOR
6673 		   || GET_CODE (XEXP (t, 0)) == XOR)
6674 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6675 	       && HWI_COMPUTABLE_MODE_P (int_mode)
6676 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6677 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6678 	       && ((nonzero_bits (f, GET_MODE (f))
6679 		    & ~GET_MODE_MASK (inner_mode))
6680 		   == 0))
6681 	{
6682 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6683 	  extend_op = ZERO_EXTEND;
6684 	  m = inner_mode;
6685 	}
6686 
6687       if (z)
6688 	{
6689 	  machine_mode cm = m;
6690 	  if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6691 	      && GET_MODE (c1) != VOIDmode)
6692 	    cm = GET_MODE (c1);
6693 	  temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6694 						 cond_op0, cond_op1),
6695 			pc_rtx, pc_rtx, 0, 0, 0);
6696 	  temp = simplify_gen_binary (MULT, cm, temp,
6697 				      simplify_gen_binary (MULT, cm, c1,
6698 							   const_true_rtx));
6699 	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6700 	  temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6701 
6702 	  if (extend_op != UNKNOWN)
6703 	    temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6704 
6705 	  return temp;
6706 	}
6707     }
6708 
6709   /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6710      1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6711      negation of a single bit, we can convert this operation to a shift.  We
6712      can actually do this more generally, but it doesn't seem worth it.  */
6713 
6714   if (true_code == NE
6715       && is_a <scalar_int_mode> (mode, &int_mode)
6716       && XEXP (cond, 1) == const0_rtx
6717       && false_rtx == const0_rtx
6718       && CONST_INT_P (true_rtx)
6719       && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6720 	   && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6721 	  || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6722 	       == GET_MODE_PRECISION (int_mode))
6723 	      && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6724     return
6725       simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6726 			    gen_lowpart (int_mode, XEXP (cond, 0)), i);
6727 
6728   /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6729      non-zero bit in A is C1.  */
6730   if (true_code == NE && XEXP (cond, 1) == const0_rtx
6731       && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6732       && is_a <scalar_int_mode> (mode, &int_mode)
6733       && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6734       && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6735 	  == nonzero_bits (XEXP (cond, 0), inner_mode)
6736       && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6737     {
6738       rtx val = XEXP (cond, 0);
6739       if (inner_mode == int_mode)
6740         return val;
6741       else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6742         return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6743     }
6744 
6745   return x;
6746 }
6747 
6748 /* Simplify X, a SET expression.  Return the new expression.  */
6749 
6750 static rtx
simplify_set(rtx x)6751 simplify_set (rtx x)
6752 {
6753   rtx src = SET_SRC (x);
6754   rtx dest = SET_DEST (x);
6755   machine_mode mode
6756     = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6757   rtx_insn *other_insn;
6758   rtx *cc_use;
6759   scalar_int_mode int_mode;
6760 
6761   /* (set (pc) (return)) gets written as (return).  */
6762   if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6763     return src;
6764 
6765   /* Now that we know for sure which bits of SRC we are using, see if we can
6766      simplify the expression for the object knowing that we only need the
6767      low-order bits.  */
6768 
6769   if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6770     {
6771       src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6772       SUBST (SET_SRC (x), src);
6773     }
6774 
6775   /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6776      the comparison result and try to simplify it unless we already have used
6777      undobuf.other_insn.  */
6778   if ((GET_MODE_CLASS (mode) == MODE_CC
6779        || GET_CODE (src) == COMPARE
6780        || CC0_P (dest))
6781       && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6782       && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6783       && COMPARISON_P (*cc_use)
6784       && rtx_equal_p (XEXP (*cc_use, 0), dest))
6785     {
6786       enum rtx_code old_code = GET_CODE (*cc_use);
6787       enum rtx_code new_code;
6788       rtx op0, op1, tmp;
6789       int other_changed = 0;
6790       rtx inner_compare = NULL_RTX;
6791       machine_mode compare_mode = GET_MODE (dest);
6792 
6793       if (GET_CODE (src) == COMPARE)
6794 	{
6795 	  op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6796 	  if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6797 	    {
6798 	      inner_compare = op0;
6799 	      op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6800 	    }
6801 	}
6802       else
6803 	op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6804 
6805       tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6806 					   op0, op1);
6807       if (!tmp)
6808 	new_code = old_code;
6809       else if (!CONSTANT_P (tmp))
6810 	{
6811 	  new_code = GET_CODE (tmp);
6812 	  op0 = XEXP (tmp, 0);
6813 	  op1 = XEXP (tmp, 1);
6814 	}
6815       else
6816 	{
6817 	  rtx pat = PATTERN (other_insn);
6818 	  undobuf.other_insn = other_insn;
6819 	  SUBST (*cc_use, tmp);
6820 
6821 	  /* Attempt to simplify CC user.  */
6822 	  if (GET_CODE (pat) == SET)
6823 	    {
6824 	      rtx new_rtx = simplify_rtx (SET_SRC (pat));
6825 	      if (new_rtx != NULL_RTX)
6826 		SUBST (SET_SRC (pat), new_rtx);
6827 	    }
6828 
6829 	  /* Convert X into a no-op move.  */
6830 	  SUBST (SET_DEST (x), pc_rtx);
6831 	  SUBST (SET_SRC (x), pc_rtx);
6832 	  return x;
6833 	}
6834 
6835       /* Simplify our comparison, if possible.  */
6836       new_code = simplify_comparison (new_code, &op0, &op1);
6837 
6838 #ifdef SELECT_CC_MODE
6839       /* If this machine has CC modes other than CCmode, check to see if we
6840 	 need to use a different CC mode here.  */
6841       if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6842 	compare_mode = GET_MODE (op0);
6843       else if (inner_compare
6844 	       && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6845 	       && new_code == old_code
6846 	       && op0 == XEXP (inner_compare, 0)
6847 	       && op1 == XEXP (inner_compare, 1))
6848 	compare_mode = GET_MODE (inner_compare);
6849       else
6850 	compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6851 
6852       /* If the mode changed, we have to change SET_DEST, the mode in the
6853 	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
6854 	 a hard register, just build new versions with the proper mode.  If it
6855 	 is a pseudo, we lose unless it is only time we set the pseudo, in
6856 	 which case we can safely change its mode.  */
6857       if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6858 	{
6859 	  if (can_change_dest_mode (dest, 0, compare_mode))
6860 	    {
6861 	      unsigned int regno = REGNO (dest);
6862 	      rtx new_dest;
6863 
6864 	      if (regno < FIRST_PSEUDO_REGISTER)
6865 		new_dest = gen_rtx_REG (compare_mode, regno);
6866 	      else
6867 		{
6868 		  SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6869 		  new_dest = regno_reg_rtx[regno];
6870 		}
6871 
6872 	      SUBST (SET_DEST (x), new_dest);
6873 	      SUBST (XEXP (*cc_use, 0), new_dest);
6874 	      other_changed = 1;
6875 
6876 	      dest = new_dest;
6877 	    }
6878 	}
6879 #endif  /* SELECT_CC_MODE */
6880 
6881       /* If the code changed, we have to build a new comparison in
6882 	 undobuf.other_insn.  */
6883       if (new_code != old_code)
6884 	{
6885 	  int other_changed_previously = other_changed;
6886 	  unsigned HOST_WIDE_INT mask;
6887 	  rtx old_cc_use = *cc_use;
6888 
6889 	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6890 					  dest, const0_rtx));
6891 	  other_changed = 1;
6892 
6893 	  /* If the only change we made was to change an EQ into an NE or
6894 	     vice versa, OP0 has only one bit that might be nonzero, and OP1
6895 	     is zero, check if changing the user of the condition code will
6896 	     produce a valid insn.  If it won't, we can keep the original code
6897 	     in that insn by surrounding our operation with an XOR.  */
6898 
6899 	  if (((old_code == NE && new_code == EQ)
6900 	       || (old_code == EQ && new_code == NE))
6901 	      && ! other_changed_previously && op1 == const0_rtx
6902 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6903 	      && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6904 	    {
6905 	      rtx pat = PATTERN (other_insn), note = 0;
6906 
6907 	      if ((recog_for_combine (&pat, other_insn, &note) < 0
6908 		   && ! check_asm_operands (pat)))
6909 		{
6910 		  *cc_use = old_cc_use;
6911 		  other_changed = 0;
6912 
6913 		  op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6914 					     gen_int_mode (mask,
6915 							   GET_MODE (op0)));
6916 		}
6917 	    }
6918 	}
6919 
6920       if (other_changed)
6921 	undobuf.other_insn = other_insn;
6922 
6923       /* Don't generate a compare of a CC with 0, just use that CC.  */
6924       if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6925 	{
6926 	  SUBST (SET_SRC (x), op0);
6927 	  src = SET_SRC (x);
6928 	}
6929       /* Otherwise, if we didn't previously have the same COMPARE we
6930 	 want, create it from scratch.  */
6931       else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6932 	       || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6933 	{
6934 	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6935 	  src = SET_SRC (x);
6936 	}
6937     }
6938   else
6939     {
6940       /* Get SET_SRC in a form where we have placed back any
6941 	 compound expressions.  Then do the checks below.  */
6942       src = make_compound_operation (src, SET);
6943       SUBST (SET_SRC (x), src);
6944     }
6945 
6946   /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6947      and X being a REG or (subreg (reg)), we may be able to convert this to
6948      (set (subreg:m2 x) (op)).
6949 
6950      We can always do this if M1 is narrower than M2 because that means that
6951      we only care about the low bits of the result.
6952 
6953      However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6954      perform a narrower operation than requested since the high-order bits will
6955      be undefined.  On machine where it is defined, this transformation is safe
6956      as long as M1 and M2 have the same number of words.  */
6957 
6958   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6959       && !OBJECT_P (SUBREG_REG (src))
6960       && (known_equal_after_align_up
6961 	  (GET_MODE_SIZE (GET_MODE (src)),
6962 	   GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6963 	   UNITS_PER_WORD))
6964       && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6965       && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6966 	    && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6967 				       GET_MODE (SUBREG_REG (src)),
6968 				       GET_MODE (src)))
6969       && (REG_P (dest)
6970 	  || (GET_CODE (dest) == SUBREG
6971 	      && REG_P (SUBREG_REG (dest)))))
6972     {
6973       SUBST (SET_DEST (x),
6974 	     gen_lowpart (GET_MODE (SUBREG_REG (src)),
6975 				      dest));
6976       SUBST (SET_SRC (x), SUBREG_REG (src));
6977 
6978       src = SET_SRC (x), dest = SET_DEST (x);
6979     }
6980 
6981   /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6982      in SRC.  */
6983   if (dest == cc0_rtx
6984       && partial_subreg_p (src)
6985       && subreg_lowpart_p (src))
6986     {
6987       rtx inner = SUBREG_REG (src);
6988       machine_mode inner_mode = GET_MODE (inner);
6989 
6990       /* Here we make sure that we don't have a sign bit on.  */
6991       if (val_signbit_known_clear_p (GET_MODE (src),
6992 				     nonzero_bits (inner, inner_mode)))
6993 	{
6994 	  SUBST (SET_SRC (x), inner);
6995 	  src = SET_SRC (x);
6996 	}
6997     }
6998 
6999   /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7000      would require a paradoxical subreg.  Replace the subreg with a
7001      zero_extend to avoid the reload that would otherwise be required.
7002      Don't do this unless we have a scalar integer mode, otherwise the
7003      transformation is incorrect.  */
7004 
7005   enum rtx_code extend_op;
7006   if (paradoxical_subreg_p (src)
7007       && MEM_P (SUBREG_REG (src))
7008       && SCALAR_INT_MODE_P (GET_MODE (src))
7009       && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7010     {
7011       SUBST (SET_SRC (x),
7012 	     gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7013 
7014       src = SET_SRC (x);
7015     }
7016 
7017   /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7018      are comparing an item known to be 0 or -1 against 0, use a logical
7019      operation instead. Check for one of the arms being an IOR of the other
7020      arm with some value.  We compute three terms to be IOR'ed together.  In
7021      practice, at most two will be nonzero.  Then we do the IOR's.  */
7022 
7023   if (GET_CODE (dest) != PC
7024       && GET_CODE (src) == IF_THEN_ELSE
7025       && is_int_mode (GET_MODE (src), &int_mode)
7026       && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7027       && XEXP (XEXP (src, 0), 1) == const0_rtx
7028       && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7029       && (!HAVE_conditional_move
7030 	  || ! can_conditionally_move_p (int_mode))
7031       && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7032 	  == GET_MODE_PRECISION (int_mode))
7033       && ! side_effects_p (src))
7034     {
7035       rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7036 		      ? XEXP (src, 1) : XEXP (src, 2));
7037       rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7038 		   ? XEXP (src, 2) : XEXP (src, 1));
7039       rtx term1 = const0_rtx, term2, term3;
7040 
7041       if (GET_CODE (true_rtx) == IOR
7042 	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7043 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7044       else if (GET_CODE (true_rtx) == IOR
7045 	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7046 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7047       else if (GET_CODE (false_rtx) == IOR
7048 	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7049 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7050       else if (GET_CODE (false_rtx) == IOR
7051 	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7052 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7053 
7054       term2 = simplify_gen_binary (AND, int_mode,
7055 				   XEXP (XEXP (src, 0), 0), true_rtx);
7056       term3 = simplify_gen_binary (AND, int_mode,
7057 				   simplify_gen_unary (NOT, int_mode,
7058 						       XEXP (XEXP (src, 0), 0),
7059 						       int_mode),
7060 				   false_rtx);
7061 
7062       SUBST (SET_SRC (x),
7063 	     simplify_gen_binary (IOR, int_mode,
7064 				  simplify_gen_binary (IOR, int_mode,
7065 						       term1, term2),
7066 				  term3));
7067 
7068       src = SET_SRC (x);
7069     }
7070 
7071   /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7072      whole thing fail.  */
7073   if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7074     return src;
7075   else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7076     return dest;
7077   else
7078     /* Convert this into a field assignment operation, if possible.  */
7079     return make_field_assignment (x);
7080 }
7081 
7082 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7083    result.  */
7084 
7085 static rtx
simplify_logical(rtx x)7086 simplify_logical (rtx x)
7087 {
7088   rtx op0 = XEXP (x, 0);
7089   rtx op1 = XEXP (x, 1);
7090   scalar_int_mode mode;
7091 
7092   switch (GET_CODE (x))
7093     {
7094     case AND:
7095       /* We can call simplify_and_const_int only if we don't lose
7096 	 any (sign) bits when converting INTVAL (op1) to
7097 	 "unsigned HOST_WIDE_INT".  */
7098       if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7099 	  && CONST_INT_P (op1)
7100 	  && (HWI_COMPUTABLE_MODE_P (mode)
7101 	      || INTVAL (op1) > 0))
7102 	{
7103 	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7104 	  if (GET_CODE (x) != AND)
7105 	    return x;
7106 
7107 	  op0 = XEXP (x, 0);
7108 	  op1 = XEXP (x, 1);
7109 	}
7110 
7111       /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7112 	 apply the distributive law and then the inverse distributive
7113 	 law to see if things simplify.  */
7114       if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7115 	{
7116 	  rtx result = distribute_and_simplify_rtx (x, 0);
7117 	  if (result)
7118 	    return result;
7119 	}
7120       if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7121 	{
7122 	  rtx result = distribute_and_simplify_rtx (x, 1);
7123 	  if (result)
7124 	    return result;
7125 	}
7126       break;
7127 
7128     case IOR:
7129       /* If we have (ior (and A B) C), apply the distributive law and then
7130 	 the inverse distributive law to see if things simplify.  */
7131 
7132       if (GET_CODE (op0) == AND)
7133 	{
7134 	  rtx result = distribute_and_simplify_rtx (x, 0);
7135 	  if (result)
7136 	    return result;
7137 	}
7138 
7139       if (GET_CODE (op1) == AND)
7140 	{
7141 	  rtx result = distribute_and_simplify_rtx (x, 1);
7142 	  if (result)
7143 	    return result;
7144 	}
7145       break;
7146 
7147     default:
7148       gcc_unreachable ();
7149     }
7150 
7151   return x;
7152 }
7153 
7154 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7155    operations" because they can be replaced with two more basic operations.
7156    ZERO_EXTEND is also considered "compound" because it can be replaced with
7157    an AND operation, which is simpler, though only one operation.
7158 
7159    The function expand_compound_operation is called with an rtx expression
7160    and will convert it to the appropriate shifts and AND operations,
7161    simplifying at each stage.
7162 
7163    The function make_compound_operation is called to convert an expression
7164    consisting of shifts and ANDs into the equivalent compound expression.
7165    It is the inverse of this function, loosely speaking.  */
7166 
7167 static rtx
expand_compound_operation(rtx x)7168 expand_compound_operation (rtx x)
7169 {
7170   unsigned HOST_WIDE_INT pos = 0, len;
7171   int unsignedp = 0;
7172   unsigned int modewidth;
7173   rtx tem;
7174   scalar_int_mode inner_mode;
7175 
7176   switch (GET_CODE (x))
7177     {
7178     case ZERO_EXTEND:
7179       unsignedp = 1;
7180       /* FALLTHRU */
7181     case SIGN_EXTEND:
7182       /* We can't necessarily use a const_int for a multiword mode;
7183 	 it depends on implicitly extending the value.
7184 	 Since we don't know the right way to extend it,
7185 	 we can't tell whether the implicit way is right.
7186 
7187 	 Even for a mode that is no wider than a const_int,
7188 	 we can't win, because we need to sign extend one of its bits through
7189 	 the rest of it, and we don't know which bit.  */
7190       if (CONST_INT_P (XEXP (x, 0)))
7191 	return x;
7192 
7193       /* Reject modes that aren't scalar integers because turning vector
7194 	 or complex modes into shifts causes problems.  */
7195       if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7196 	return x;
7197 
7198       /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7199 	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
7200 	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7201 	 reloaded. If not for that, MEM's would very rarely be safe.
7202 
7203 	 Reject modes bigger than a word, because we might not be able
7204 	 to reference a two-register group starting with an arbitrary register
7205 	 (and currently gen_lowpart might crash for a SUBREG).  */
7206 
7207       if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7208 	return x;
7209 
7210       len = GET_MODE_PRECISION (inner_mode);
7211       /* If the inner object has VOIDmode (the only way this can happen
7212 	 is if it is an ASM_OPERANDS), we can't do anything since we don't
7213 	 know how much masking to do.  */
7214       if (len == 0)
7215 	return x;
7216 
7217       break;
7218 
7219     case ZERO_EXTRACT:
7220       unsignedp = 1;
7221 
7222       /* fall through */
7223 
7224     case SIGN_EXTRACT:
7225       /* If the operand is a CLOBBER, just return it.  */
7226       if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7227 	return XEXP (x, 0);
7228 
7229       if (!CONST_INT_P (XEXP (x, 1))
7230 	  || !CONST_INT_P (XEXP (x, 2)))
7231 	return x;
7232 
7233       /* Reject modes that aren't scalar integers because turning vector
7234 	 or complex modes into shifts causes problems.  */
7235       if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7236 	return x;
7237 
7238       len = INTVAL (XEXP (x, 1));
7239       pos = INTVAL (XEXP (x, 2));
7240 
7241       /* This should stay within the object being extracted, fail otherwise.  */
7242       if (len + pos > GET_MODE_PRECISION (inner_mode))
7243 	return x;
7244 
7245       if (BITS_BIG_ENDIAN)
7246 	pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7247 
7248       break;
7249 
7250     default:
7251       return x;
7252     }
7253 
7254   /* We've rejected non-scalar operations by now.  */
7255   scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7256 
7257   /* Convert sign extension to zero extension, if we know that the high
7258      bit is not set, as this is easier to optimize.  It will be converted
7259      back to cheaper alternative in make_extraction.  */
7260   if (GET_CODE (x) == SIGN_EXTEND
7261       && HWI_COMPUTABLE_MODE_P (mode)
7262       && ((nonzero_bits (XEXP (x, 0), inner_mode)
7263 	   & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7264 	  == 0))
7265     {
7266       rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7267       rtx temp2 = expand_compound_operation (temp);
7268 
7269       /* Make sure this is a profitable operation.  */
7270       if (set_src_cost (x, mode, optimize_this_for_speed_p)
7271           > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7272        return temp2;
7273       else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7274                > set_src_cost (temp, mode, optimize_this_for_speed_p))
7275        return temp;
7276       else
7277        return x;
7278     }
7279 
7280   /* We can optimize some special cases of ZERO_EXTEND.  */
7281   if (GET_CODE (x) == ZERO_EXTEND)
7282     {
7283       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7284 	 know that the last value didn't have any inappropriate bits
7285 	 set.  */
7286       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7287 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7288 	  && HWI_COMPUTABLE_MODE_P (mode)
7289 	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7290 	      & ~GET_MODE_MASK (inner_mode)) == 0)
7291 	return XEXP (XEXP (x, 0), 0);
7292 
7293       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7294       if (GET_CODE (XEXP (x, 0)) == SUBREG
7295 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7296 	  && subreg_lowpart_p (XEXP (x, 0))
7297 	  && HWI_COMPUTABLE_MODE_P (mode)
7298 	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7299 	      & ~GET_MODE_MASK (inner_mode)) == 0)
7300 	return SUBREG_REG (XEXP (x, 0));
7301 
7302       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7303 	 is a comparison and STORE_FLAG_VALUE permits.  This is like
7304 	 the first case, but it works even when MODE is larger
7305 	 than HOST_WIDE_INT.  */
7306       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7307 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7308 	  && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7309 	  && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7310 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7311 	return XEXP (XEXP (x, 0), 0);
7312 
7313       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7314       if (GET_CODE (XEXP (x, 0)) == SUBREG
7315 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7316 	  && subreg_lowpart_p (XEXP (x, 0))
7317 	  && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7318 	  && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7319 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7320 	return SUBREG_REG (XEXP (x, 0));
7321 
7322     }
7323 
7324   /* If we reach here, we want to return a pair of shifts.  The inner
7325      shift is a left shift of BITSIZE - POS - LEN bits.  The outer
7326      shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
7327      logical depending on the value of UNSIGNEDP.
7328 
7329      If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7330      converted into an AND of a shift.
7331 
7332      We must check for the case where the left shift would have a negative
7333      count.  This can happen in a case like (x >> 31) & 255 on machines
7334      that can't shift by a constant.  On those machines, we would first
7335      combine the shift with the AND to produce a variable-position
7336      extraction.  Then the constant of 31 would be substituted in
7337      to produce such a position.  */
7338 
7339   modewidth = GET_MODE_PRECISION (mode);
7340   if (modewidth >= pos + len)
7341     {
7342       tem = gen_lowpart (mode, XEXP (x, 0));
7343       if (!tem || GET_CODE (tem) == CLOBBER)
7344 	return x;
7345       tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7346 				  tem, modewidth - pos - len);
7347       tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7348 				  mode, tem, modewidth - len);
7349     }
7350   else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7351     tem = simplify_and_const_int (NULL_RTX, mode,
7352 				  simplify_shift_const (NULL_RTX, LSHIFTRT,
7353 							mode, XEXP (x, 0),
7354 							pos),
7355 				  (HOST_WIDE_INT_1U << len) - 1);
7356   else
7357     /* Any other cases we can't handle.  */
7358     return x;
7359 
7360   /* If we couldn't do this for some reason, return the original
7361      expression.  */
7362   if (GET_CODE (tem) == CLOBBER)
7363     return x;
7364 
7365   return tem;
7366 }
7367 
7368 /* X is a SET which contains an assignment of one object into
7369    a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7370    or certain SUBREGS). If possible, convert it into a series of
7371    logical operations.
7372 
7373    We half-heartedly support variable positions, but do not at all
7374    support variable lengths.  */
7375 
7376 static const_rtx
expand_field_assignment(const_rtx x)7377 expand_field_assignment (const_rtx x)
7378 {
7379   rtx inner;
7380   rtx pos;			/* Always counts from low bit.  */
7381   int len, inner_len;
7382   rtx mask, cleared, masked;
7383   scalar_int_mode compute_mode;
7384 
7385   /* Loop until we find something we can't simplify.  */
7386   while (1)
7387     {
7388       if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7389 	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7390 	{
7391 	  rtx x0 = XEXP (SET_DEST (x), 0);
7392 	  if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7393 	    break;
7394 	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7395 	  pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7396 			      MAX_MODE_INT);
7397 	}
7398       else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7399 	       && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7400 	{
7401 	  inner = XEXP (SET_DEST (x), 0);
7402 	  if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7403 	    break;
7404 
7405 	  len = INTVAL (XEXP (SET_DEST (x), 1));
7406 	  pos = XEXP (SET_DEST (x), 2);
7407 
7408 	  /* A constant position should stay within the width of INNER.  */
7409 	  if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7410 	    break;
7411 
7412 	  if (BITS_BIG_ENDIAN)
7413 	    {
7414 	      if (CONST_INT_P (pos))
7415 		pos = GEN_INT (inner_len - len - INTVAL (pos));
7416 	      else if (GET_CODE (pos) == MINUS
7417 		       && CONST_INT_P (XEXP (pos, 1))
7418 		       && INTVAL (XEXP (pos, 1)) == inner_len - len)
7419 		/* If position is ADJUST - X, new position is X.  */
7420 		pos = XEXP (pos, 0);
7421 	      else
7422 		pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7423 					   gen_int_mode (inner_len - len,
7424 							 GET_MODE (pos)),
7425 					   pos);
7426 	    }
7427 	}
7428 
7429       /* If the destination is a subreg that overwrites the whole of the inner
7430 	 register, we can move the subreg to the source.  */
7431       else if (GET_CODE (SET_DEST (x)) == SUBREG
7432 	       /* We need SUBREGs to compute nonzero_bits properly.  */
7433 	       && nonzero_sign_valid
7434 	       && !read_modify_subreg_p (SET_DEST (x)))
7435 	{
7436 	  x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7437 			   gen_lowpart
7438 			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
7439 			    SET_SRC (x)));
7440 	  continue;
7441 	}
7442       else
7443 	break;
7444 
7445       while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7446 	inner = SUBREG_REG (inner);
7447 
7448       /* Don't attempt bitwise arithmetic on non scalar integer modes.  */
7449       if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7450 	{
7451 	  /* Don't do anything for vector or complex integral types.  */
7452 	  if (! FLOAT_MODE_P (GET_MODE (inner)))
7453 	    break;
7454 
7455 	  /* Try to find an integral mode to pun with.  */
7456 	  if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7457 	      .exists (&compute_mode))
7458 	    break;
7459 
7460 	  inner = gen_lowpart (compute_mode, inner);
7461 	}
7462 
7463       /* Compute a mask of LEN bits, if we can do this on the host machine.  */
7464       if (len >= HOST_BITS_PER_WIDE_INT)
7465 	break;
7466 
7467       /* Don't try to compute in too wide unsupported modes.  */
7468       if (!targetm.scalar_mode_supported_p (compute_mode))
7469 	break;
7470 
7471       /* Now compute the equivalent expression.  Make a copy of INNER
7472 	 for the SET_DEST in case it is a MEM into which we will substitute;
7473 	 we don't want shared RTL in that case.  */
7474       mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7475 			   compute_mode);
7476       cleared = simplify_gen_binary (AND, compute_mode,
7477 				     simplify_gen_unary (NOT, compute_mode,
7478 				       simplify_gen_binary (ASHIFT,
7479 							    compute_mode,
7480 							    mask, pos),
7481 				       compute_mode),
7482 				     inner);
7483       masked = simplify_gen_binary (ASHIFT, compute_mode,
7484 				    simplify_gen_binary (
7485 				      AND, compute_mode,
7486 				      gen_lowpart (compute_mode, SET_SRC (x)),
7487 				      mask),
7488 				    pos);
7489 
7490       x = gen_rtx_SET (copy_rtx (inner),
7491 		       simplify_gen_binary (IOR, compute_mode,
7492 					    cleared, masked));
7493     }
7494 
7495   return x;
7496 }
7497 
7498 /* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
7499    it is an RTX that represents the (variable) starting position; otherwise,
7500    POS is the (constant) starting bit position.  Both are counted from the LSB.
7501 
7502    UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7503 
7504    IN_DEST is nonzero if this is a reference in the destination of a SET.
7505    This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If nonzero,
7506    a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7507    be used.
7508 
7509    IN_COMPARE is nonzero if we are in a COMPARE.  This means that a
7510    ZERO_EXTRACT should be built even for bits starting at bit 0.
7511 
7512    MODE is the desired mode of the result (if IN_DEST == 0).
7513 
7514    The result is an RTX for the extraction or NULL_RTX if the target
7515    can't handle it.  */
7516 
7517 static rtx
make_extraction(machine_mode mode,rtx inner,HOST_WIDE_INT pos,rtx pos_rtx,unsigned HOST_WIDE_INT len,int unsignedp,int in_dest,int in_compare)7518 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7519 		 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7520 		 int in_dest, int in_compare)
7521 {
7522   /* This mode describes the size of the storage area
7523      to fetch the overall value from.  Within that, we
7524      ignore the POS lowest bits, etc.  */
7525   machine_mode is_mode = GET_MODE (inner);
7526   machine_mode inner_mode;
7527   scalar_int_mode wanted_inner_mode;
7528   scalar_int_mode wanted_inner_reg_mode = word_mode;
7529   scalar_int_mode pos_mode = word_mode;
7530   machine_mode extraction_mode = word_mode;
7531   rtx new_rtx = 0;
7532   rtx orig_pos_rtx = pos_rtx;
7533   HOST_WIDE_INT orig_pos;
7534 
7535   if (pos_rtx && CONST_INT_P (pos_rtx))
7536     pos = INTVAL (pos_rtx), pos_rtx = 0;
7537 
7538   if (GET_CODE (inner) == SUBREG
7539       && subreg_lowpart_p (inner)
7540       && (paradoxical_subreg_p (inner)
7541 	  /* If trying or potentionally trying to extract
7542 	     bits outside of is_mode, don't look through
7543 	     non-paradoxical SUBREGs.  See PR82192.  */
7544 	  || (pos_rtx == NULL_RTX
7545 	      && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7546     {
7547       /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7548 	 consider just the QI as the memory to extract from.
7549 	 The subreg adds or removes high bits; its mode is
7550 	 irrelevant to the meaning of this extraction,
7551 	 since POS and LEN count from the lsb.  */
7552       if (MEM_P (SUBREG_REG (inner)))
7553 	is_mode = GET_MODE (SUBREG_REG (inner));
7554       inner = SUBREG_REG (inner);
7555     }
7556   else if (GET_CODE (inner) == ASHIFT
7557 	   && CONST_INT_P (XEXP (inner, 1))
7558 	   && pos_rtx == 0 && pos == 0
7559 	   && len > UINTVAL (XEXP (inner, 1)))
7560     {
7561       /* We're extracting the least significant bits of an rtx
7562 	 (ashift X (const_int C)), where LEN > C.  Extract the
7563 	 least significant (LEN - C) bits of X, giving an rtx
7564 	 whose mode is MODE, then shift it left C times.  */
7565       new_rtx = make_extraction (mode, XEXP (inner, 0),
7566 			     0, 0, len - INTVAL (XEXP (inner, 1)),
7567 			     unsignedp, in_dest, in_compare);
7568       if (new_rtx != 0)
7569 	return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7570     }
7571   else if (GET_CODE (inner) == TRUNCATE
7572 	   /* If trying or potentionally trying to extract
7573 	      bits outside of is_mode, don't look through
7574 	      TRUNCATE.  See PR82192.  */
7575 	   && pos_rtx == NULL_RTX
7576 	   && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7577     inner = XEXP (inner, 0);
7578 
7579   inner_mode = GET_MODE (inner);
7580 
7581   /* See if this can be done without an extraction.  We never can if the
7582      width of the field is not the same as that of some integer mode. For
7583      registers, we can only avoid the extraction if the position is at the
7584      low-order bit and this is either not in the destination or we have the
7585      appropriate STRICT_LOW_PART operation available.
7586 
7587      For MEM, we can avoid an extract if the field starts on an appropriate
7588      boundary and we can change the mode of the memory reference.  */
7589 
7590   scalar_int_mode tmode;
7591   if (int_mode_for_size (len, 1).exists (&tmode)
7592       && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7593 	   && !MEM_P (inner)
7594 	   && (pos == 0 || REG_P (inner))
7595 	   && (inner_mode == tmode
7596 	       || !REG_P (inner)
7597 	       || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7598 	       || reg_truncated_to_mode (tmode, inner))
7599 	   && (! in_dest
7600 	       || (REG_P (inner)
7601 		   && have_insn_for (STRICT_LOW_PART, tmode))))
7602 	  || (MEM_P (inner) && pos_rtx == 0
7603 	      && (pos
7604 		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7605 		     : BITS_PER_UNIT)) == 0
7606 	      /* We can't do this if we are widening INNER_MODE (it
7607 		 may not be aligned, for one thing).  */
7608 	      && !paradoxical_subreg_p (tmode, inner_mode)
7609 	      && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7610 	      && (inner_mode == tmode
7611 		  || (! mode_dependent_address_p (XEXP (inner, 0),
7612 						  MEM_ADDR_SPACE (inner))
7613 		      && ! MEM_VOLATILE_P (inner))))))
7614     {
7615       /* If INNER is a MEM, make a new MEM that encompasses just the desired
7616 	 field.  If the original and current mode are the same, we need not
7617 	 adjust the offset.  Otherwise, we do if bytes big endian.
7618 
7619 	 If INNER is not a MEM, get a piece consisting of just the field
7620 	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
7621 
7622       if (MEM_P (inner))
7623 	{
7624 	  poly_int64 offset;
7625 
7626 	  /* POS counts from lsb, but make OFFSET count in memory order.  */
7627 	  if (BYTES_BIG_ENDIAN)
7628 	    offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7629 					       - len - pos);
7630 	  else
7631 	    offset = pos / BITS_PER_UNIT;
7632 
7633 	  new_rtx = adjust_address_nv (inner, tmode, offset);
7634 	}
7635       else if (REG_P (inner))
7636 	{
7637 	  if (tmode != inner_mode)
7638 	    {
7639 	      /* We can't call gen_lowpart in a DEST since we
7640 		 always want a SUBREG (see below) and it would sometimes
7641 		 return a new hard register.  */
7642 	      if (pos || in_dest)
7643 		{
7644 		  poly_uint64 offset
7645 		    = subreg_offset_from_lsb (tmode, inner_mode, pos);
7646 
7647 		  /* Avoid creating invalid subregs, for example when
7648 		     simplifying (x>>32)&255.  */
7649 		  if (!validate_subreg (tmode, inner_mode, inner, offset))
7650 		    return NULL_RTX;
7651 
7652 		  new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7653 		}
7654 	      else
7655 		new_rtx = gen_lowpart (tmode, inner);
7656 	    }
7657 	  else
7658 	    new_rtx = inner;
7659 	}
7660       else
7661 	new_rtx = force_to_mode (inner, tmode,
7662 				 len >= HOST_BITS_PER_WIDE_INT
7663 				 ? HOST_WIDE_INT_M1U
7664 				 : (HOST_WIDE_INT_1U << len) - 1, 0);
7665 
7666       /* If this extraction is going into the destination of a SET,
7667 	 make a STRICT_LOW_PART unless we made a MEM.  */
7668 
7669       if (in_dest)
7670 	return (MEM_P (new_rtx) ? new_rtx
7671 		: (GET_CODE (new_rtx) != SUBREG
7672 		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
7673 		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7674 
7675       if (mode == tmode)
7676 	return new_rtx;
7677 
7678       if (CONST_SCALAR_INT_P (new_rtx))
7679 	return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7680 					 mode, new_rtx, tmode);
7681 
7682       /* If we know that no extraneous bits are set, and that the high
7683 	 bit is not set, convert the extraction to the cheaper of
7684 	 sign and zero extension, that are equivalent in these cases.  */
7685       if (flag_expensive_optimizations
7686 	  && (HWI_COMPUTABLE_MODE_P (tmode)
7687 	      && ((nonzero_bits (new_rtx, tmode)
7688 		   & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7689 		  == 0)))
7690 	{
7691 	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7692 	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7693 
7694 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7695 	     backends.  */
7696 	  if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7697 	      <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7698 	    return temp;
7699 	  return temp1;
7700 	}
7701 
7702       /* Otherwise, sign- or zero-extend unless we already are in the
7703 	 proper mode.  */
7704 
7705       return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7706 			     mode, new_rtx));
7707     }
7708 
7709   /* Unless this is a COMPARE or we have a funny memory reference,
7710      don't do anything with zero-extending field extracts starting at
7711      the low-order bit since they are simple AND operations.  */
7712   if (pos_rtx == 0 && pos == 0 && ! in_dest
7713       && ! in_compare && unsignedp)
7714     return 0;
7715 
7716   /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7717      if the position is not a constant and the length is not 1.  In all
7718      other cases, we would only be going outside our object in cases when
7719      an original shift would have been undefined.  */
7720   if (MEM_P (inner)
7721       && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7722 	  || (pos_rtx != 0 && len != 1)))
7723     return 0;
7724 
7725   enum extraction_pattern pattern = (in_dest ? EP_insv
7726 				     : unsignedp ? EP_extzv : EP_extv);
7727 
7728   /* If INNER is not from memory, we want it to have the mode of a register
7729      extraction pattern's structure operand, or word_mode if there is no
7730      such pattern.  The same applies to extraction_mode and pos_mode
7731      and their respective operands.
7732 
7733      For memory, assume that the desired extraction_mode and pos_mode
7734      are the same as for a register operation, since at present we don't
7735      have named patterns for aligned memory structures.  */
7736   struct extraction_insn insn;
7737   unsigned int inner_size;
7738   if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7739       && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7740     {
7741       wanted_inner_reg_mode = insn.struct_mode.require ();
7742       pos_mode = insn.pos_mode;
7743       extraction_mode = insn.field_mode;
7744     }
7745 
7746   /* Never narrow an object, since that might not be safe.  */
7747 
7748   if (mode != VOIDmode
7749       && partial_subreg_p (extraction_mode, mode))
7750     extraction_mode = mode;
7751 
7752   /* Punt if len is too large for extraction_mode.  */
7753   if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7754     return NULL_RTX;
7755 
7756   if (!MEM_P (inner))
7757     wanted_inner_mode = wanted_inner_reg_mode;
7758   else
7759     {
7760       /* Be careful not to go beyond the extracted object and maintain the
7761 	 natural alignment of the memory.  */
7762       wanted_inner_mode = smallest_int_mode_for_size (len);
7763       while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7764 	     > GET_MODE_BITSIZE (wanted_inner_mode))
7765 	wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7766     }
7767 
7768   orig_pos = pos;
7769 
7770   if (BITS_BIG_ENDIAN)
7771     {
7772       /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7773 	 BITS_BIG_ENDIAN style.  If position is constant, compute new
7774 	 position.  Otherwise, build subtraction.
7775 	 Note that POS is relative to the mode of the original argument.
7776 	 If it's a MEM we need to recompute POS relative to that.
7777 	 However, if we're extracting from (or inserting into) a register,
7778 	 we want to recompute POS relative to wanted_inner_mode.  */
7779       int width;
7780       if (!MEM_P (inner))
7781 	width = GET_MODE_BITSIZE (wanted_inner_mode);
7782       else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7783 	return NULL_RTX;
7784 
7785       if (pos_rtx == 0)
7786 	pos = width - len - pos;
7787       else
7788 	pos_rtx
7789 	  = gen_rtx_MINUS (GET_MODE (pos_rtx),
7790 			   gen_int_mode (width - len, GET_MODE (pos_rtx)),
7791 			   pos_rtx);
7792       /* POS may be less than 0 now, but we check for that below.
7793 	 Note that it can only be less than 0 if !MEM_P (inner).  */
7794     }
7795 
7796   /* If INNER has a wider mode, and this is a constant extraction, try to
7797      make it smaller and adjust the byte to point to the byte containing
7798      the value.  */
7799   if (wanted_inner_mode != VOIDmode
7800       && inner_mode != wanted_inner_mode
7801       && ! pos_rtx
7802       && partial_subreg_p (wanted_inner_mode, is_mode)
7803       && MEM_P (inner)
7804       && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7805       && ! MEM_VOLATILE_P (inner))
7806     {
7807       poly_int64 offset = 0;
7808 
7809       /* The computations below will be correct if the machine is big
7810 	 endian in both bits and bytes or little endian in bits and bytes.
7811 	 If it is mixed, we must adjust.  */
7812 
7813       /* If bytes are big endian and we had a paradoxical SUBREG, we must
7814 	 adjust OFFSET to compensate.  */
7815       if (BYTES_BIG_ENDIAN
7816 	  && paradoxical_subreg_p (is_mode, inner_mode))
7817 	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7818 
7819       /* We can now move to the desired byte.  */
7820       offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7821 		* GET_MODE_SIZE (wanted_inner_mode);
7822       pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7823 
7824       if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7825 	  && is_mode != wanted_inner_mode)
7826 	offset = (GET_MODE_SIZE (is_mode)
7827 		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
7828 
7829       inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7830     }
7831 
7832   /* If INNER is not memory, get it into the proper mode.  If we are changing
7833      its mode, POS must be a constant and smaller than the size of the new
7834      mode.  */
7835   else if (!MEM_P (inner))
7836     {
7837       /* On the LHS, don't create paradoxical subregs implicitely truncating
7838 	 the register unless TARGET_TRULY_NOOP_TRUNCATION.  */
7839       if (in_dest
7840 	  && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7841 					     wanted_inner_mode))
7842 	return NULL_RTX;
7843 
7844       if (GET_MODE (inner) != wanted_inner_mode
7845 	  && (pos_rtx != 0
7846 	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7847 	return NULL_RTX;
7848 
7849       if (orig_pos < 0)
7850 	return NULL_RTX;
7851 
7852       inner = force_to_mode (inner, wanted_inner_mode,
7853 			     pos_rtx
7854 			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7855 			     ? HOST_WIDE_INT_M1U
7856 			     : (((HOST_WIDE_INT_1U << len) - 1)
7857 				<< orig_pos),
7858 			     0);
7859     }
7860 
7861   /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
7862      have to zero extend.  Otherwise, we can just use a SUBREG.
7863 
7864      We dealt with constant rtxes earlier, so pos_rtx cannot
7865      have VOIDmode at this point.  */
7866   if (pos_rtx != 0
7867       && (GET_MODE_SIZE (pos_mode)
7868 	  > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7869     {
7870       rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7871 				     GET_MODE (pos_rtx));
7872 
7873       /* If we know that no extraneous bits are set, and that the high
7874 	 bit is not set, convert extraction to cheaper one - either
7875 	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7876 	 cases.  */
7877       if (flag_expensive_optimizations
7878 	  && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7879 	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7880 		   & ~(((unsigned HOST_WIDE_INT)
7881 			GET_MODE_MASK (GET_MODE (pos_rtx)))
7882 		       >> 1))
7883 		  == 0)))
7884 	{
7885 	  rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7886 					  GET_MODE (pos_rtx));
7887 
7888 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7889 	     backends.  */
7890 	  if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7891 	      < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7892 	    temp = temp1;
7893 	}
7894       pos_rtx = temp;
7895     }
7896 
7897   /* Make POS_RTX unless we already have it and it is correct.  If we don't
7898      have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7899      be a CONST_INT.  */
7900   if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7901     pos_rtx = orig_pos_rtx;
7902 
7903   else if (pos_rtx == 0)
7904     pos_rtx = GEN_INT (pos);
7905 
7906   /* Make the required operation.  See if we can use existing rtx.  */
7907   new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7908 			 extraction_mode, inner, GEN_INT (len), pos_rtx);
7909   if (! in_dest)
7910     new_rtx = gen_lowpart (mode, new_rtx);
7911 
7912   return new_rtx;
7913 }
7914 
7915 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7916    can be commuted with any other operations in X.  Return X without
7917    that shift if so.  */
7918 
7919 static rtx
extract_left_shift(scalar_int_mode mode,rtx x,int count)7920 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7921 {
7922   enum rtx_code code = GET_CODE (x);
7923   rtx tem;
7924 
7925   switch (code)
7926     {
7927     case ASHIFT:
7928       /* This is the shift itself.  If it is wide enough, we will return
7929 	 either the value being shifted if the shift count is equal to
7930 	 COUNT or a shift for the difference.  */
7931       if (CONST_INT_P (XEXP (x, 1))
7932 	  && INTVAL (XEXP (x, 1)) >= count)
7933 	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7934 				     INTVAL (XEXP (x, 1)) - count);
7935       break;
7936 
7937     case NEG:  case NOT:
7938       if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7939 	return simplify_gen_unary (code, mode, tem, mode);
7940 
7941       break;
7942 
7943     case PLUS:  case IOR:  case XOR:  case AND:
7944       /* If we can safely shift this constant and we find the inner shift,
7945 	 make a new operation.  */
7946       if (CONST_INT_P (XEXP (x, 1))
7947 	  && (UINTVAL (XEXP (x, 1))
7948 	      & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7949 	  && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7950 	{
7951 	  HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7952 	  return simplify_gen_binary (code, mode, tem,
7953 				      gen_int_mode (val, mode));
7954 	}
7955       break;
7956 
7957     default:
7958       break;
7959     }
7960 
7961   return 0;
7962 }
7963 
7964 /* Subroutine of make_compound_operation.  *X_PTR is the rtx at the current
7965    level of the expression and MODE is its mode.  IN_CODE is as for
7966    make_compound_operation.  *NEXT_CODE_PTR is the value of IN_CODE
7967    that should be used when recursing on operands of *X_PTR.
7968 
7969    There are two possible actions:
7970 
7971    - Return null.  This tells the caller to recurse on *X_PTR with IN_CODE
7972      equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7973 
7974    - Return a new rtx, which the caller returns directly.  */
7975 
7976 static rtx
make_compound_operation_int(scalar_int_mode mode,rtx * x_ptr,enum rtx_code in_code,enum rtx_code * next_code_ptr)7977 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7978 			     enum rtx_code in_code,
7979 			     enum rtx_code *next_code_ptr)
7980 {
7981   rtx x = *x_ptr;
7982   enum rtx_code next_code = *next_code_ptr;
7983   enum rtx_code code = GET_CODE (x);
7984   int mode_width = GET_MODE_PRECISION (mode);
7985   rtx rhs, lhs;
7986   rtx new_rtx = 0;
7987   int i;
7988   rtx tem;
7989   scalar_int_mode inner_mode;
7990   bool equality_comparison = false;
7991 
7992   if (in_code == EQ)
7993     {
7994       equality_comparison = true;
7995       in_code = COMPARE;
7996     }
7997 
7998   /* Process depending on the code of this operation.  If NEW is set
7999      nonzero, it will be returned.  */
8000 
8001   switch (code)
8002     {
8003     case ASHIFT:
8004       /* Convert shifts by constants into multiplications if inside
8005 	 an address.  */
8006       if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8007 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8008 	  && INTVAL (XEXP (x, 1)) >= 0)
8009 	{
8010 	  HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8011 	  HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8012 
8013 	  new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8014 	  if (GET_CODE (new_rtx) == NEG)
8015 	    {
8016 	      new_rtx = XEXP (new_rtx, 0);
8017 	      multval = -multval;
8018 	    }
8019 	  multval = trunc_int_for_mode (multval, mode);
8020 	  new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8021 	}
8022       break;
8023 
8024     case PLUS:
8025       lhs = XEXP (x, 0);
8026       rhs = XEXP (x, 1);
8027       lhs = make_compound_operation (lhs, next_code);
8028       rhs = make_compound_operation (rhs, next_code);
8029       if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8030 	{
8031 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8032 				     XEXP (lhs, 1));
8033 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8034 	}
8035       else if (GET_CODE (lhs) == MULT
8036 	       && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8037 	{
8038 	  tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8039 				     simplify_gen_unary (NEG, mode,
8040 							 XEXP (lhs, 1),
8041 							 mode));
8042 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8043 	}
8044       else
8045 	{
8046 	  SUBST (XEXP (x, 0), lhs);
8047 	  SUBST (XEXP (x, 1), rhs);
8048 	}
8049       maybe_swap_commutative_operands (x);
8050       return x;
8051 
8052     case MINUS:
8053       lhs = XEXP (x, 0);
8054       rhs = XEXP (x, 1);
8055       lhs = make_compound_operation (lhs, next_code);
8056       rhs = make_compound_operation (rhs, next_code);
8057       if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8058 	{
8059 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8060 				     XEXP (rhs, 1));
8061 	  return simplify_gen_binary (PLUS, mode, tem, lhs);
8062 	}
8063       else if (GET_CODE (rhs) == MULT
8064 	       && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8065 	{
8066 	  tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8067 				     simplify_gen_unary (NEG, mode,
8068 							 XEXP (rhs, 1),
8069 							 mode));
8070 	  return simplify_gen_binary (PLUS, mode, tem, lhs);
8071 	}
8072       else
8073 	{
8074 	  SUBST (XEXP (x, 0), lhs);
8075 	  SUBST (XEXP (x, 1), rhs);
8076 	  return x;
8077 	}
8078 
8079     case AND:
8080       /* If the second operand is not a constant, we can't do anything
8081 	 with it.  */
8082       if (!CONST_INT_P (XEXP (x, 1)))
8083 	break;
8084 
8085       /* If the constant is a power of two minus one and the first operand
8086 	 is a logical right shift, make an extraction.  */
8087       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8088 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8089 	{
8090 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8091 	  new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8092 				     i, 1, 0, in_code == COMPARE);
8093 	}
8094 
8095       /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
8096       else if (GET_CODE (XEXP (x, 0)) == SUBREG
8097 	       && subreg_lowpart_p (XEXP (x, 0))
8098 	       && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8099 					  &inner_mode)
8100 	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8101 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8102 	{
8103 	  rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8104 	  new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8105 	  new_rtx = make_extraction (inner_mode, new_rtx, 0,
8106 				     XEXP (inner_x0, 1),
8107 				     i, 1, 0, in_code == COMPARE);
8108 
8109 	  /* If we narrowed the mode when dropping the subreg, then we lose.  */
8110 	  if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8111 	    new_rtx = NULL;
8112 
8113 	  /* If that didn't give anything, see if the AND simplifies on
8114 	     its own.  */
8115 	  if (!new_rtx && i >= 0)
8116 	    {
8117 	      new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8118 	      new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8119 					 0, in_code == COMPARE);
8120 	    }
8121 	}
8122       /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
8123       else if ((GET_CODE (XEXP (x, 0)) == XOR
8124 		|| GET_CODE (XEXP (x, 0)) == IOR)
8125 	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8126 	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8127 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8128 	{
8129 	  /* Apply the distributive law, and then try to make extractions.  */
8130 	  new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8131 				    gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8132 						 XEXP (x, 1)),
8133 				    gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8134 						 XEXP (x, 1)));
8135 	  new_rtx = make_compound_operation (new_rtx, in_code);
8136 	}
8137 
8138       /* If we are have (and (rotate X C) M) and C is larger than the number
8139 	 of bits in M, this is an extraction.  */
8140 
8141       else if (GET_CODE (XEXP (x, 0)) == ROTATE
8142 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8143 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8144 	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8145 	{
8146 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8147 	  new_rtx = make_extraction (mode, new_rtx,
8148 				     (GET_MODE_PRECISION (mode)
8149 				      - INTVAL (XEXP (XEXP (x, 0), 1))),
8150 				     NULL_RTX, i, 1, 0, in_code == COMPARE);
8151 	}
8152 
8153       /* On machines without logical shifts, if the operand of the AND is
8154 	 a logical shift and our mask turns off all the propagated sign
8155 	 bits, we can replace the logical shift with an arithmetic shift.  */
8156       else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8157 	       && !have_insn_for (LSHIFTRT, mode)
8158 	       && have_insn_for (ASHIFTRT, mode)
8159 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8160 	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8161 	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8162 	       && mode_width <= HOST_BITS_PER_WIDE_INT)
8163 	{
8164 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8165 
8166 	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8167 	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8168 	    SUBST (XEXP (x, 0),
8169 		   gen_rtx_ASHIFTRT (mode,
8170 				     make_compound_operation (XEXP (XEXP (x,
8171 									  0),
8172 								    0),
8173 							      next_code),
8174 				     XEXP (XEXP (x, 0), 1)));
8175 	}
8176 
8177       /* If the constant is one less than a power of two, this might be
8178 	 representable by an extraction even if no shift is present.
8179 	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8180 	 we are in a COMPARE.  */
8181       else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8182 	new_rtx = make_extraction (mode,
8183 				   make_compound_operation (XEXP (x, 0),
8184 							    next_code),
8185 				   0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8186 
8187       /* If we are in a comparison and this is an AND with a power of two,
8188 	 convert this into the appropriate bit extract.  */
8189       else if (in_code == COMPARE
8190 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8191 	       && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8192 	new_rtx = make_extraction (mode,
8193 				   make_compound_operation (XEXP (x, 0),
8194 							    next_code),
8195 				   i, NULL_RTX, 1, 1, 0, 1);
8196 
8197       /* If the one operand is a paradoxical subreg of a register or memory and
8198 	 the constant (limited to the smaller mode) has only zero bits where
8199 	 the sub expression has known zero bits, this can be expressed as
8200 	 a zero_extend.  */
8201       else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8202 	{
8203 	  rtx sub;
8204 
8205 	  sub = XEXP (XEXP (x, 0), 0);
8206 	  machine_mode sub_mode = GET_MODE (sub);
8207 	  int sub_width;
8208 	  if ((REG_P (sub) || MEM_P (sub))
8209 	      && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8210 	      && sub_width < mode_width)
8211 	    {
8212 	      unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8213 	      unsigned HOST_WIDE_INT mask;
8214 
8215 	      /* original AND constant with all the known zero bits set */
8216 	      mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8217 	      if ((mask & mode_mask) == mode_mask)
8218 		{
8219 		  new_rtx = make_compound_operation (sub, next_code);
8220 		  new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8221 					     1, 0, in_code == COMPARE);
8222 		}
8223 	    }
8224 	}
8225 
8226       break;
8227 
8228     case LSHIFTRT:
8229       /* If the sign bit is known to be zero, replace this with an
8230 	 arithmetic shift.  */
8231       if (have_insn_for (ASHIFTRT, mode)
8232 	  && ! have_insn_for (LSHIFTRT, mode)
8233 	  && mode_width <= HOST_BITS_PER_WIDE_INT
8234 	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8235 	{
8236 	  new_rtx = gen_rtx_ASHIFTRT (mode,
8237 				      make_compound_operation (XEXP (x, 0),
8238 							       next_code),
8239 				      XEXP (x, 1));
8240 	  break;
8241 	}
8242 
8243       /* fall through */
8244 
8245     case ASHIFTRT:
8246       lhs = XEXP (x, 0);
8247       rhs = XEXP (x, 1);
8248 
8249       /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8250 	 this is a SIGN_EXTRACT.  */
8251       if (CONST_INT_P (rhs)
8252 	  && GET_CODE (lhs) == ASHIFT
8253 	  && CONST_INT_P (XEXP (lhs, 1))
8254 	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8255 	  && INTVAL (XEXP (lhs, 1)) >= 0
8256 	  && INTVAL (rhs) < mode_width)
8257 	{
8258 	  new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8259 	  new_rtx = make_extraction (mode, new_rtx,
8260 				     INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8261 				     NULL_RTX, mode_width - INTVAL (rhs),
8262 				     code == LSHIFTRT, 0, in_code == COMPARE);
8263 	  break;
8264 	}
8265 
8266       /* See if we have operations between an ASHIFTRT and an ASHIFT.
8267 	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
8268 	 also do this for some cases of SIGN_EXTRACT, but it doesn't
8269 	 seem worth the effort; the case checked for occurs on Alpha.  */
8270 
8271       if (!OBJECT_P (lhs)
8272 	  && ! (GET_CODE (lhs) == SUBREG
8273 		&& (OBJECT_P (SUBREG_REG (lhs))))
8274 	  && CONST_INT_P (rhs)
8275 	  && INTVAL (rhs) >= 0
8276 	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8277 	  && INTVAL (rhs) < mode_width
8278 	  && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8279 	new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8280 								  next_code),
8281 				   0, NULL_RTX, mode_width - INTVAL (rhs),
8282 				   code == LSHIFTRT, 0, in_code == COMPARE);
8283 
8284       break;
8285 
8286     case SUBREG:
8287       /* Call ourselves recursively on the inner expression.  If we are
8288 	 narrowing the object and it has a different RTL code from
8289 	 what it originally did, do this SUBREG as a force_to_mode.  */
8290       {
8291 	rtx inner = SUBREG_REG (x), simplified;
8292 	enum rtx_code subreg_code = in_code;
8293 
8294 	/* If the SUBREG is masking of a logical right shift,
8295 	   make an extraction.  */
8296 	if (GET_CODE (inner) == LSHIFTRT
8297 	    && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8298 	    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8299 	    && CONST_INT_P (XEXP (inner, 1))
8300 	    && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8301 	    && subreg_lowpart_p (x))
8302 	  {
8303 	    new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8304 	    int width = GET_MODE_PRECISION (inner_mode)
8305 			- INTVAL (XEXP (inner, 1));
8306 	    if (width > mode_width)
8307 	      width = mode_width;
8308 	    new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8309 				       width, 1, 0, in_code == COMPARE);
8310 	    break;
8311 	  }
8312 
8313 	/* If in_code is COMPARE, it isn't always safe to pass it through
8314 	   to the recursive make_compound_operation call.  */
8315 	if (subreg_code == COMPARE
8316 	    && (!subreg_lowpart_p (x)
8317 		|| GET_CODE (inner) == SUBREG
8318 		/* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8319 		   is (const_int 0), rather than
8320 		   (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8321 		   Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8322 		   for non-equality comparisons against 0 is not equivalent
8323 		   to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0).  */
8324 		|| (GET_CODE (inner) == AND
8325 		    && CONST_INT_P (XEXP (inner, 1))
8326 		    && partial_subreg_p (x)
8327 		    && exact_log2 (UINTVAL (XEXP (inner, 1)))
8328 		       >= GET_MODE_BITSIZE (mode) - 1)))
8329 	  subreg_code = SET;
8330 
8331 	tem = make_compound_operation (inner, subreg_code);
8332 
8333 	simplified
8334 	  = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8335 	if (simplified)
8336 	  tem = simplified;
8337 
8338 	if (GET_CODE (tem) != GET_CODE (inner)
8339 	    && partial_subreg_p (x)
8340 	    && subreg_lowpart_p (x))
8341 	  {
8342 	    rtx newer
8343 	      = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8344 
8345 	    /* If we have something other than a SUBREG, we might have
8346 	       done an expansion, so rerun ourselves.  */
8347 	    if (GET_CODE (newer) != SUBREG)
8348 	      newer = make_compound_operation (newer, in_code);
8349 
8350 	    /* force_to_mode can expand compounds.  If it just re-expanded
8351 	       the compound, use gen_lowpart to convert to the desired
8352 	       mode.  */
8353 	    if (rtx_equal_p (newer, x)
8354 		/* Likewise if it re-expanded the compound only partially.
8355 		   This happens for SUBREG of ZERO_EXTRACT if they extract
8356 		   the same number of bits.  */
8357 		|| (GET_CODE (newer) == SUBREG
8358 		    && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8359 			|| GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8360 		    && GET_CODE (inner) == AND
8361 		    && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8362 	      return gen_lowpart (GET_MODE (x), tem);
8363 
8364 	    return newer;
8365 	  }
8366 
8367 	if (simplified)
8368 	  return tem;
8369       }
8370       break;
8371 
8372     default:
8373       break;
8374     }
8375 
8376   if (new_rtx)
8377     *x_ptr = gen_lowpart (mode, new_rtx);
8378   *next_code_ptr = next_code;
8379   return NULL_RTX;
8380 }
8381 
8382 /* Look at the expression rooted at X.  Look for expressions
8383    equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8384    Form these expressions.
8385 
8386    Return the new rtx, usually just X.
8387 
8388    Also, for machines like the VAX that don't have logical shift insns,
8389    try to convert logical to arithmetic shift operations in cases where
8390    they are equivalent.  This undoes the canonicalizations to logical
8391    shifts done elsewhere.
8392 
8393    We try, as much as possible, to re-use rtl expressions to save memory.
8394 
8395    IN_CODE says what kind of expression we are processing.  Normally, it is
8396    SET.  In a memory address it is MEM.  When processing the arguments of
8397    a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8398    precisely it is an equality comparison against zero.  */
8399 
8400 rtx
make_compound_operation(rtx x,enum rtx_code in_code)8401 make_compound_operation (rtx x, enum rtx_code in_code)
8402 {
8403   enum rtx_code code = GET_CODE (x);
8404   const char *fmt;
8405   int i, j;
8406   enum rtx_code next_code;
8407   rtx new_rtx, tem;
8408 
8409   /* Select the code to be used in recursive calls.  Once we are inside an
8410      address, we stay there.  If we have a comparison, set to COMPARE,
8411      but once inside, go back to our default of SET.  */
8412 
8413   next_code = (code == MEM ? MEM
8414 	       : ((code == COMPARE || COMPARISON_P (x))
8415 		  && XEXP (x, 1) == const0_rtx) ? COMPARE
8416 	       : in_code == COMPARE || in_code == EQ ? SET : in_code);
8417 
8418   scalar_int_mode mode;
8419   if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8420     {
8421       rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8422 						 &next_code);
8423       if (new_rtx)
8424 	return new_rtx;
8425       code = GET_CODE (x);
8426     }
8427 
8428   /* Now recursively process each operand of this operation.  We need to
8429      handle ZERO_EXTEND specially so that we don't lose track of the
8430      inner mode.  */
8431   if (code == ZERO_EXTEND)
8432     {
8433       new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8434       tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8435 					    new_rtx, GET_MODE (XEXP (x, 0)));
8436       if (tem)
8437 	return tem;
8438       SUBST (XEXP (x, 0), new_rtx);
8439       return x;
8440     }
8441 
8442   fmt = GET_RTX_FORMAT (code);
8443   for (i = 0; i < GET_RTX_LENGTH (code); i++)
8444     if (fmt[i] == 'e')
8445       {
8446 	new_rtx = make_compound_operation (XEXP (x, i), next_code);
8447 	SUBST (XEXP (x, i), new_rtx);
8448       }
8449     else if (fmt[i] == 'E')
8450       for (j = 0; j < XVECLEN (x, i); j++)
8451 	{
8452 	  new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8453 	  SUBST (XVECEXP (x, i, j), new_rtx);
8454 	}
8455 
8456   maybe_swap_commutative_operands (x);
8457   return x;
8458 }
8459 
8460 /* Given M see if it is a value that would select a field of bits
8461    within an item, but not the entire word.  Return -1 if not.
8462    Otherwise, return the starting position of the field, where 0 is the
8463    low-order bit.
8464 
8465    *PLEN is set to the length of the field.  */
8466 
8467 static int
get_pos_from_mask(unsigned HOST_WIDE_INT m,unsigned HOST_WIDE_INT * plen)8468 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8469 {
8470   /* Get the bit number of the first 1 bit from the right, -1 if none.  */
8471   int pos = m ? ctz_hwi (m) : -1;
8472   int len = 0;
8473 
8474   if (pos >= 0)
8475     /* Now shift off the low-order zero bits and see if we have a
8476        power of two minus 1.  */
8477     len = exact_log2 ((m >> pos) + 1);
8478 
8479   if (len <= 0)
8480     pos = -1;
8481 
8482   *plen = len;
8483   return pos;
8484 }
8485 
8486 /* If X refers to a register that equals REG in value, replace these
8487    references with REG.  */
8488 static rtx
canon_reg_for_combine(rtx x,rtx reg)8489 canon_reg_for_combine (rtx x, rtx reg)
8490 {
8491   rtx op0, op1, op2;
8492   const char *fmt;
8493   int i;
8494   bool copied;
8495 
8496   enum rtx_code code = GET_CODE (x);
8497   switch (GET_RTX_CLASS (code))
8498     {
8499     case RTX_UNARY:
8500       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8501       if (op0 != XEXP (x, 0))
8502 	return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8503 				   GET_MODE (reg));
8504       break;
8505 
8506     case RTX_BIN_ARITH:
8507     case RTX_COMM_ARITH:
8508       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8509       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8510       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8511 	return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8512       break;
8513 
8514     case RTX_COMPARE:
8515     case RTX_COMM_COMPARE:
8516       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8517       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8518       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8519 	return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8520 					GET_MODE (op0), op0, op1);
8521       break;
8522 
8523     case RTX_TERNARY:
8524     case RTX_BITFIELD_OPS:
8525       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8526       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8527       op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8528       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8529 	return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8530 				     GET_MODE (op0), op0, op1, op2);
8531       /* FALLTHRU */
8532 
8533     case RTX_OBJ:
8534       if (REG_P (x))
8535 	{
8536 	  if (rtx_equal_p (get_last_value (reg), x)
8537 	      || rtx_equal_p (reg, get_last_value (x)))
8538 	    return reg;
8539 	  else
8540 	    break;
8541 	}
8542 
8543       /* fall through */
8544 
8545     default:
8546       fmt = GET_RTX_FORMAT (code);
8547       copied = false;
8548       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8549 	if (fmt[i] == 'e')
8550 	  {
8551 	    rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8552 	    if (op != XEXP (x, i))
8553 	      {
8554 		if (!copied)
8555 		  {
8556 		    copied = true;
8557 		    x = copy_rtx (x);
8558 		  }
8559 		XEXP (x, i) = op;
8560 	      }
8561 	  }
8562 	else if (fmt[i] == 'E')
8563 	  {
8564 	    int j;
8565 	    for (j = 0; j < XVECLEN (x, i); j++)
8566 	      {
8567 		rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8568 		if (op != XVECEXP (x, i, j))
8569 		  {
8570 		    if (!copied)
8571 		      {
8572 			copied = true;
8573 			x = copy_rtx (x);
8574 		      }
8575 		    XVECEXP (x, i, j) = op;
8576 		  }
8577 	      }
8578 	  }
8579 
8580       break;
8581     }
8582 
8583   return x;
8584 }
8585 
8586 /* Return X converted to MODE.  If the value is already truncated to
8587    MODE we can just return a subreg even though in the general case we
8588    would need an explicit truncation.  */
8589 
8590 static rtx
gen_lowpart_or_truncate(machine_mode mode,rtx x)8591 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8592 {
8593   if (!CONST_INT_P (x)
8594       && partial_subreg_p (mode, GET_MODE (x))
8595       && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8596       && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8597     {
8598       /* Bit-cast X into an integer mode.  */
8599       if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8600 	x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8601       x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8602 			      x, GET_MODE (x));
8603     }
8604 
8605   return gen_lowpart (mode, x);
8606 }
8607 
8608 /* See if X can be simplified knowing that we will only refer to it in
8609    MODE and will only refer to those bits that are nonzero in MASK.
8610    If other bits are being computed or if masking operations are done
8611    that select a superset of the bits in MASK, they can sometimes be
8612    ignored.
8613 
8614    Return a possibly simplified expression, but always convert X to
8615    MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
8616 
8617    If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8618    are all off in X.  This is used when X will be complemented, by either
8619    NOT, NEG, or XOR.  */
8620 
8621 static rtx
force_to_mode(rtx x,machine_mode mode,unsigned HOST_WIDE_INT mask,int just_select)8622 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8623 	       int just_select)
8624 {
8625   enum rtx_code code = GET_CODE (x);
8626   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8627   machine_mode op_mode;
8628   unsigned HOST_WIDE_INT nonzero;
8629 
8630   /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
8631      code below will do the wrong thing since the mode of such an
8632      expression is VOIDmode.
8633 
8634      Also do nothing if X is a CLOBBER; this can happen if X was
8635      the return value from a call to gen_lowpart.  */
8636   if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8637     return x;
8638 
8639   /* We want to perform the operation in its present mode unless we know
8640      that the operation is valid in MODE, in which case we do the operation
8641      in MODE.  */
8642   op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8643 	      && have_insn_for (code, mode))
8644 	     ? mode : GET_MODE (x));
8645 
8646   /* It is not valid to do a right-shift in a narrower mode
8647      than the one it came in with.  */
8648   if ((code == LSHIFTRT || code == ASHIFTRT)
8649       && partial_subreg_p (mode, GET_MODE (x)))
8650     op_mode = GET_MODE (x);
8651 
8652   /* Truncate MASK to fit OP_MODE.  */
8653   if (op_mode)
8654     mask &= GET_MODE_MASK (op_mode);
8655 
8656   /* Determine what bits of X are guaranteed to be (non)zero.  */
8657   nonzero = nonzero_bits (x, mode);
8658 
8659   /* If none of the bits in X are needed, return a zero.  */
8660   if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8661     x = const0_rtx;
8662 
8663   /* If X is a CONST_INT, return a new one.  Do this here since the
8664      test below will fail.  */
8665   if (CONST_INT_P (x))
8666     {
8667       if (SCALAR_INT_MODE_P (mode))
8668 	return gen_int_mode (INTVAL (x) & mask, mode);
8669       else
8670 	{
8671 	  x = GEN_INT (INTVAL (x) & mask);
8672 	  return gen_lowpart_common (mode, x);
8673 	}
8674     }
8675 
8676   /* If X is narrower than MODE and we want all the bits in X's mode, just
8677      get X in the proper mode.  */
8678   if (paradoxical_subreg_p (mode, GET_MODE (x))
8679       && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8680     return gen_lowpart (mode, x);
8681 
8682   /* We can ignore the effect of a SUBREG if it narrows the mode or
8683      if the constant masks to zero all the bits the mode doesn't have.  */
8684   if (GET_CODE (x) == SUBREG
8685       && subreg_lowpart_p (x)
8686       && (partial_subreg_p (x)
8687 	  || (mask
8688 	      & GET_MODE_MASK (GET_MODE (x))
8689 	      & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8690     return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8691 
8692   scalar_int_mode int_mode, xmode;
8693   if (is_a <scalar_int_mode> (mode, &int_mode)
8694       && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8695     /* OP_MODE is either MODE or XMODE, so it must be a scalar
8696        integer too.  */
8697     return force_int_to_mode (x, int_mode, xmode,
8698 			      as_a <scalar_int_mode> (op_mode),
8699 			      mask, just_select);
8700 
8701   return gen_lowpart_or_truncate (mode, x);
8702 }
8703 
8704 /* Subroutine of force_to_mode that handles cases in which both X and
8705    the result are scalar integers.  MODE is the mode of the result,
8706    XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8707    is preferred for simplified versions of X.  The other arguments
8708    are as for force_to_mode.  */
8709 
8710 static rtx
force_int_to_mode(rtx x,scalar_int_mode mode,scalar_int_mode xmode,scalar_int_mode op_mode,unsigned HOST_WIDE_INT mask,int just_select)8711 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8712 		   scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8713 		   int just_select)
8714 {
8715   enum rtx_code code = GET_CODE (x);
8716   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8717   unsigned HOST_WIDE_INT fuller_mask;
8718   rtx op0, op1, temp;
8719 
8720   /* When we have an arithmetic operation, or a shift whose count we
8721      do not know, we need to assume that all bits up to the highest-order
8722      bit in MASK will be needed.  This is how we form such a mask.  */
8723   if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8724     fuller_mask = HOST_WIDE_INT_M1U;
8725   else
8726     fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8727 		   - 1);
8728 
8729   switch (code)
8730     {
8731     case CLOBBER:
8732       /* If X is a (clobber (const_int)), return it since we know we are
8733 	 generating something that won't match.  */
8734       return x;
8735 
8736     case SIGN_EXTEND:
8737     case ZERO_EXTEND:
8738     case ZERO_EXTRACT:
8739     case SIGN_EXTRACT:
8740       x = expand_compound_operation (x);
8741       if (GET_CODE (x) != code)
8742 	return force_to_mode (x, mode, mask, next_select);
8743       break;
8744 
8745     case TRUNCATE:
8746       /* Similarly for a truncate.  */
8747       return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8748 
8749     case AND:
8750       /* If this is an AND with a constant, convert it into an AND
8751 	 whose constant is the AND of that constant with MASK.  If it
8752 	 remains an AND of MASK, delete it since it is redundant.  */
8753 
8754       if (CONST_INT_P (XEXP (x, 1)))
8755 	{
8756 	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8757 				      mask & INTVAL (XEXP (x, 1)));
8758 	  xmode = op_mode;
8759 
8760 	  /* If X is still an AND, see if it is an AND with a mask that
8761 	     is just some low-order bits.  If so, and it is MASK, we don't
8762 	     need it.  */
8763 
8764 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8765 	      && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8766 	    x = XEXP (x, 0);
8767 
8768 	  /* If it remains an AND, try making another AND with the bits
8769 	     in the mode mask that aren't in MASK turned on.  If the
8770 	     constant in the AND is wide enough, this might make a
8771 	     cheaper constant.  */
8772 
8773 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8774 	      && GET_MODE_MASK (xmode) != mask
8775 	      && HWI_COMPUTABLE_MODE_P (xmode))
8776 	    {
8777 	      unsigned HOST_WIDE_INT cval
8778 		= UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8779 	      rtx y;
8780 
8781 	      y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8782 				       gen_int_mode (cval, xmode));
8783 	      if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8784 		  < set_src_cost (x, xmode, optimize_this_for_speed_p))
8785 		x = y;
8786 	    }
8787 
8788 	  break;
8789 	}
8790 
8791       goto binop;
8792 
8793     case PLUS:
8794       /* In (and (plus FOO C1) M), if M is a mask that just turns off
8795 	 low-order bits (as in an alignment operation) and FOO is already
8796 	 aligned to that boundary, mask C1 to that boundary as well.
8797 	 This may eliminate that PLUS and, later, the AND.  */
8798 
8799       {
8800 	unsigned int width = GET_MODE_PRECISION (mode);
8801 	unsigned HOST_WIDE_INT smask = mask;
8802 
8803 	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8804 	   number, sign extend it.  */
8805 
8806 	if (width < HOST_BITS_PER_WIDE_INT
8807 	    && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8808 	  smask |= HOST_WIDE_INT_M1U << width;
8809 
8810 	if (CONST_INT_P (XEXP (x, 1))
8811 	    && pow2p_hwi (- smask)
8812 	    && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8813 	    && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8814 	  return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8815 					       (INTVAL (XEXP (x, 1)) & smask)),
8816 				mode, smask, next_select);
8817       }
8818 
8819       /* fall through */
8820 
8821     case MULT:
8822       /* Substituting into the operands of a widening MULT is not likely to
8823 	 create RTL matching a machine insn.  */
8824       if (code == MULT
8825 	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8826 	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8827 	  && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8828 	      || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8829 	  && REG_P (XEXP (XEXP (x, 0), 0))
8830 	  && REG_P (XEXP (XEXP (x, 1), 0)))
8831 	return gen_lowpart_or_truncate (mode, x);
8832 
8833       /* For PLUS, MINUS and MULT, we need any bits less significant than the
8834 	 most significant bit in MASK since carries from those bits will
8835 	 affect the bits we are interested in.  */
8836       mask = fuller_mask;
8837       goto binop;
8838 
8839     case MINUS:
8840       /* If X is (minus C Y) where C's least set bit is larger than any bit
8841 	 in the mask, then we may replace with (neg Y).  */
8842       if (CONST_INT_P (XEXP (x, 0))
8843 	  && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8844 	{
8845 	  x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8846 	  return force_to_mode (x, mode, mask, next_select);
8847 	}
8848 
8849       /* Similarly, if C contains every bit in the fuller_mask, then we may
8850 	 replace with (not Y).  */
8851       if (CONST_INT_P (XEXP (x, 0))
8852 	  && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8853 	{
8854 	  x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8855 	  return force_to_mode (x, mode, mask, next_select);
8856 	}
8857 
8858       mask = fuller_mask;
8859       goto binop;
8860 
8861     case IOR:
8862     case XOR:
8863       /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8864 	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8865 	 operation which may be a bitfield extraction.  Ensure that the
8866 	 constant we form is not wider than the mode of X.  */
8867 
8868       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8869 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8870 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8871 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8872 	  && CONST_INT_P (XEXP (x, 1))
8873 	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
8874 	       + floor_log2 (INTVAL (XEXP (x, 1))))
8875 	      < GET_MODE_PRECISION (xmode))
8876 	  && (UINTVAL (XEXP (x, 1))
8877 	      & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8878 	{
8879 	  temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8880 			       << INTVAL (XEXP (XEXP (x, 0), 1)),
8881 			       xmode);
8882 	  temp = simplify_gen_binary (GET_CODE (x), xmode,
8883 				      XEXP (XEXP (x, 0), 0), temp);
8884 	  x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8885 				   XEXP (XEXP (x, 0), 1));
8886 	  return force_to_mode (x, mode, mask, next_select);
8887 	}
8888 
8889     binop:
8890       /* For most binary operations, just propagate into the operation and
8891 	 change the mode if we have an operation of that mode.  */
8892 
8893       op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8894       op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8895 
8896       /* If we ended up truncating both operands, truncate the result of the
8897 	 operation instead.  */
8898       if (GET_CODE (op0) == TRUNCATE
8899 	  && GET_CODE (op1) == TRUNCATE)
8900 	{
8901 	  op0 = XEXP (op0, 0);
8902 	  op1 = XEXP (op1, 0);
8903 	}
8904 
8905       op0 = gen_lowpart_or_truncate (op_mode, op0);
8906       op1 = gen_lowpart_or_truncate (op_mode, op1);
8907 
8908       if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8909 	{
8910 	  x = simplify_gen_binary (code, op_mode, op0, op1);
8911 	  xmode = op_mode;
8912 	}
8913       break;
8914 
8915     case ASHIFT:
8916       /* For left shifts, do the same, but just for the first operand.
8917 	 However, we cannot do anything with shifts where we cannot
8918 	 guarantee that the counts are smaller than the size of the mode
8919 	 because such a count will have a different meaning in a
8920 	 wider mode.  */
8921 
8922       if (! (CONST_INT_P (XEXP (x, 1))
8923 	     && INTVAL (XEXP (x, 1)) >= 0
8924 	     && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8925 	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8926 		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8927 		    < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8928 	break;
8929 
8930       /* If the shift count is a constant and we can do arithmetic in
8931 	 the mode of the shift, refine which bits we need.  Otherwise, use the
8932 	 conservative form of the mask.  */
8933       if (CONST_INT_P (XEXP (x, 1))
8934 	  && INTVAL (XEXP (x, 1)) >= 0
8935 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8936 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8937 	mask >>= INTVAL (XEXP (x, 1));
8938       else
8939 	mask = fuller_mask;
8940 
8941       op0 = gen_lowpart_or_truncate (op_mode,
8942 				     force_to_mode (XEXP (x, 0), mode,
8943 						    mask, next_select));
8944 
8945       if (op_mode != xmode || op0 != XEXP (x, 0))
8946 	{
8947 	  x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8948 	  xmode = op_mode;
8949 	}
8950       break;
8951 
8952     case LSHIFTRT:
8953       /* Here we can only do something if the shift count is a constant,
8954 	 this shift constant is valid for the host, and we can do arithmetic
8955 	 in OP_MODE.  */
8956 
8957       if (CONST_INT_P (XEXP (x, 1))
8958 	  && INTVAL (XEXP (x, 1)) >= 0
8959 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8960 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8961 	{
8962 	  rtx inner = XEXP (x, 0);
8963 	  unsigned HOST_WIDE_INT inner_mask;
8964 
8965 	  /* Select the mask of the bits we need for the shift operand.  */
8966 	  inner_mask = mask << INTVAL (XEXP (x, 1));
8967 
8968 	  /* We can only change the mode of the shift if we can do arithmetic
8969 	     in the mode of the shift and INNER_MASK is no wider than the
8970 	     width of X's mode.  */
8971 	  if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8972 	    op_mode = xmode;
8973 
8974 	  inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8975 
8976 	  if (xmode != op_mode || inner != XEXP (x, 0))
8977 	    {
8978 	      x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8979 	      xmode = op_mode;
8980 	    }
8981 	}
8982 
8983       /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8984 	 shift and AND produces only copies of the sign bit (C2 is one less
8985 	 than a power of two), we can do this with just a shift.  */
8986 
8987       if (GET_CODE (x) == LSHIFTRT
8988 	  && CONST_INT_P (XEXP (x, 1))
8989 	  /* The shift puts one of the sign bit copies in the least significant
8990 	     bit.  */
8991 	  && ((INTVAL (XEXP (x, 1))
8992 	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8993 	      >= GET_MODE_PRECISION (xmode))
8994 	  && pow2p_hwi (mask + 1)
8995 	  /* Number of bits left after the shift must be more than the mask
8996 	     needs.  */
8997 	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8998 	      <= GET_MODE_PRECISION (xmode))
8999 	  /* Must be more sign bit copies than the mask needs.  */
9000 	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9001 	      >= exact_log2 (mask + 1)))
9002 	{
9003 	  int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9004 	  x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9005 				   gen_int_shift_amount (xmode, nbits));
9006 	}
9007       goto shiftrt;
9008 
9009     case ASHIFTRT:
9010       /* If we are just looking for the sign bit, we don't need this shift at
9011 	 all, even if it has a variable count.  */
9012       if (val_signbit_p (xmode, mask))
9013 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9014 
9015       /* If this is a shift by a constant, get a mask that contains those bits
9016 	 that are not copies of the sign bit.  We then have two cases:  If
9017 	 MASK only includes those bits, this can be a logical shift, which may
9018 	 allow simplifications.  If MASK is a single-bit field not within
9019 	 those bits, we are requesting a copy of the sign bit and hence can
9020 	 shift the sign bit to the appropriate location.  */
9021 
9022       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9023 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9024 	{
9025 	  unsigned HOST_WIDE_INT nonzero;
9026 	  int i;
9027 
9028 	  /* If the considered data is wider than HOST_WIDE_INT, we can't
9029 	     represent a mask for all its bits in a single scalar.
9030 	     But we only care about the lower bits, so calculate these.  */
9031 
9032 	  if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9033 	    {
9034 	      nonzero = HOST_WIDE_INT_M1U;
9035 
9036 	      /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9037 		 is the number of bits a full-width mask would have set.
9038 		 We need only shift if these are fewer than nonzero can
9039 		 hold.  If not, we must keep all bits set in nonzero.  */
9040 
9041 	      if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9042 		  < HOST_BITS_PER_WIDE_INT)
9043 		nonzero >>= INTVAL (XEXP (x, 1))
9044 			    + HOST_BITS_PER_WIDE_INT
9045 			    - GET_MODE_PRECISION (xmode);
9046 	    }
9047 	  else
9048 	    {
9049 	      nonzero = GET_MODE_MASK (xmode);
9050 	      nonzero >>= INTVAL (XEXP (x, 1));
9051 	    }
9052 
9053 	  if ((mask & ~nonzero) == 0)
9054 	    {
9055 	      x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9056 					XEXP (x, 0), INTVAL (XEXP (x, 1)));
9057 	      if (GET_CODE (x) != ASHIFTRT)
9058 		return force_to_mode (x, mode, mask, next_select);
9059 	    }
9060 
9061 	  else if ((i = exact_log2 (mask)) >= 0)
9062 	    {
9063 	      x = simplify_shift_const
9064 		  (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9065 		   GET_MODE_PRECISION (xmode) - 1 - i);
9066 
9067 	      if (GET_CODE (x) != ASHIFTRT)
9068 		return force_to_mode (x, mode, mask, next_select);
9069 	    }
9070 	}
9071 
9072       /* If MASK is 1, convert this to an LSHIFTRT.  This can be done
9073 	 even if the shift count isn't a constant.  */
9074       if (mask == 1)
9075 	x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9076 
9077     shiftrt:
9078 
9079       /* If this is a zero- or sign-extension operation that just affects bits
9080 	 we don't care about, remove it.  Be sure the call above returned
9081 	 something that is still a shift.  */
9082 
9083       if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9084 	  && CONST_INT_P (XEXP (x, 1))
9085 	  && INTVAL (XEXP (x, 1)) >= 0
9086 	  && (INTVAL (XEXP (x, 1))
9087 	      <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9088 	  && GET_CODE (XEXP (x, 0)) == ASHIFT
9089 	  && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9090 	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9091 			      next_select);
9092 
9093       break;
9094 
9095     case ROTATE:
9096     case ROTATERT:
9097       /* If the shift count is constant and we can do computations
9098 	 in the mode of X, compute where the bits we care about are.
9099 	 Otherwise, we can't do anything.  Don't change the mode of
9100 	 the shift or propagate MODE into the shift, though.  */
9101       if (CONST_INT_P (XEXP (x, 1))
9102 	  && INTVAL (XEXP (x, 1)) >= 0)
9103 	{
9104 	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9105 					    xmode, gen_int_mode (mask, xmode),
9106 					    XEXP (x, 1));
9107 	  if (temp && CONST_INT_P (temp))
9108 	    x = simplify_gen_binary (code, xmode,
9109 				     force_to_mode (XEXP (x, 0), xmode,
9110 						    INTVAL (temp), next_select),
9111 				     XEXP (x, 1));
9112 	}
9113       break;
9114 
9115     case NEG:
9116       /* If we just want the low-order bit, the NEG isn't needed since it
9117 	 won't change the low-order bit.  */
9118       if (mask == 1)
9119 	return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9120 
9121       /* We need any bits less significant than the most significant bit in
9122 	 MASK since carries from those bits will affect the bits we are
9123 	 interested in.  */
9124       mask = fuller_mask;
9125       goto unop;
9126 
9127     case NOT:
9128       /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9129 	 same as the XOR case above.  Ensure that the constant we form is not
9130 	 wider than the mode of X.  */
9131 
9132       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9133 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9134 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9135 	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9136 	      < GET_MODE_PRECISION (xmode))
9137 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9138 	{
9139 	  temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9140 	  temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9141 	  x = simplify_gen_binary (LSHIFTRT, xmode,
9142 				   temp, XEXP (XEXP (x, 0), 1));
9143 
9144 	  return force_to_mode (x, mode, mask, next_select);
9145 	}
9146 
9147       /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9148 	 use the full mask inside the NOT.  */
9149       mask = fuller_mask;
9150 
9151     unop:
9152       op0 = gen_lowpart_or_truncate (op_mode,
9153 				     force_to_mode (XEXP (x, 0), mode, mask,
9154 						    next_select));
9155       if (op_mode != xmode || op0 != XEXP (x, 0))
9156 	{
9157 	  x = simplify_gen_unary (code, op_mode, op0, op_mode);
9158 	  xmode = op_mode;
9159 	}
9160       break;
9161 
9162     case NE:
9163       /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9164 	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9165 	 which is equal to STORE_FLAG_VALUE.  */
9166       if ((mask & ~STORE_FLAG_VALUE) == 0
9167 	  && XEXP (x, 1) == const0_rtx
9168 	  && GET_MODE (XEXP (x, 0)) == mode
9169 	  && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9170 	  && (nonzero_bits (XEXP (x, 0), mode)
9171 	      == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9172 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9173 
9174       break;
9175 
9176     case IF_THEN_ELSE:
9177       /* We have no way of knowing if the IF_THEN_ELSE can itself be
9178 	 written in a narrower mode.  We play it safe and do not do so.  */
9179 
9180       op0 = gen_lowpart_or_truncate (xmode,
9181 				     force_to_mode (XEXP (x, 1), mode,
9182 						    mask, next_select));
9183       op1 = gen_lowpart_or_truncate (xmode,
9184 				     force_to_mode (XEXP (x, 2), mode,
9185 						    mask, next_select));
9186       if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9187 	x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9188 				  GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9189 				  op0, op1);
9190       break;
9191 
9192     default:
9193       break;
9194     }
9195 
9196   /* Ensure we return a value of the proper mode.  */
9197   return gen_lowpart_or_truncate (mode, x);
9198 }
9199 
9200 /* Return nonzero if X is an expression that has one of two values depending on
9201    whether some other value is zero or nonzero.  In that case, we return the
9202    value that is being tested, *PTRUE is set to the value if the rtx being
9203    returned has a nonzero value, and *PFALSE is set to the other alternative.
9204 
9205    If we return zero, we set *PTRUE and *PFALSE to X.  */
9206 
9207 static rtx
if_then_else_cond(rtx x,rtx * ptrue,rtx * pfalse)9208 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9209 {
9210   machine_mode mode = GET_MODE (x);
9211   enum rtx_code code = GET_CODE (x);
9212   rtx cond0, cond1, true0, true1, false0, false1;
9213   unsigned HOST_WIDE_INT nz;
9214   scalar_int_mode int_mode;
9215 
9216   /* If we are comparing a value against zero, we are done.  */
9217   if ((code == NE || code == EQ)
9218       && XEXP (x, 1) == const0_rtx)
9219     {
9220       *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9221       *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9222       return XEXP (x, 0);
9223     }
9224 
9225   /* If this is a unary operation whose operand has one of two values, apply
9226      our opcode to compute those values.  */
9227   else if (UNARY_P (x)
9228 	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9229     {
9230       *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9231       *pfalse = simplify_gen_unary (code, mode, false0,
9232 				    GET_MODE (XEXP (x, 0)));
9233       return cond0;
9234     }
9235 
9236   /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9237      make can't possibly match and would suppress other optimizations.  */
9238   else if (code == COMPARE)
9239     ;
9240 
9241   /* If this is a binary operation, see if either side has only one of two
9242      values.  If either one does or if both do and they are conditional on
9243      the same value, compute the new true and false values.  */
9244   else if (BINARY_P (x))
9245     {
9246       rtx op0 = XEXP (x, 0);
9247       rtx op1 = XEXP (x, 1);
9248       cond0 = if_then_else_cond (op0, &true0, &false0);
9249       cond1 = if_then_else_cond (op1, &true1, &false1);
9250 
9251       if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9252 	  && (REG_P (op0) || REG_P (op1)))
9253 	{
9254 	  /* Try to enable a simplification by undoing work done by
9255 	     if_then_else_cond if it converted a REG into something more
9256 	     complex.  */
9257 	  if (REG_P (op0))
9258 	    {
9259 	      cond0 = 0;
9260 	      true0 = false0 = op0;
9261 	    }
9262 	  else
9263 	    {
9264 	      cond1 = 0;
9265 	      true1 = false1 = op1;
9266 	    }
9267 	}
9268 
9269       if ((cond0 != 0 || cond1 != 0)
9270 	  && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9271 	{
9272 	  /* If if_then_else_cond returned zero, then true/false are the
9273 	     same rtl.  We must copy one of them to prevent invalid rtl
9274 	     sharing.  */
9275 	  if (cond0 == 0)
9276 	    true0 = copy_rtx (true0);
9277 	  else if (cond1 == 0)
9278 	    true1 = copy_rtx (true1);
9279 
9280 	  if (COMPARISON_P (x))
9281 	    {
9282 	      *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9283 						true0, true1);
9284 	      *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9285 						 false0, false1);
9286 	     }
9287 	  else
9288 	    {
9289 	      *ptrue = simplify_gen_binary (code, mode, true0, true1);
9290 	      *pfalse = simplify_gen_binary (code, mode, false0, false1);
9291 	    }
9292 
9293 	  return cond0 ? cond0 : cond1;
9294 	}
9295 
9296       /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9297 	 operands is zero when the other is nonzero, and vice-versa,
9298 	 and STORE_FLAG_VALUE is 1 or -1.  */
9299 
9300       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9301 	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
9302 	      || code == UMAX)
9303 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9304 	{
9305 	  rtx op0 = XEXP (XEXP (x, 0), 1);
9306 	  rtx op1 = XEXP (XEXP (x, 1), 1);
9307 
9308 	  cond0 = XEXP (XEXP (x, 0), 0);
9309 	  cond1 = XEXP (XEXP (x, 1), 0);
9310 
9311 	  if (COMPARISON_P (cond0)
9312 	      && COMPARISON_P (cond1)
9313 	      && SCALAR_INT_MODE_P (mode)
9314 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9315 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9316 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9317 		  || ((swap_condition (GET_CODE (cond0))
9318 		       == reversed_comparison_code (cond1, NULL))
9319 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9320 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9321 	      && ! side_effects_p (x))
9322 	    {
9323 	      *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9324 	      *pfalse = simplify_gen_binary (MULT, mode,
9325 					     (code == MINUS
9326 					      ? simplify_gen_unary (NEG, mode,
9327 								    op1, mode)
9328 					      : op1),
9329 					      const_true_rtx);
9330 	      return cond0;
9331 	    }
9332 	}
9333 
9334       /* Similarly for MULT, AND and UMIN, except that for these the result
9335 	 is always zero.  */
9336       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9337 	  && (code == MULT || code == AND || code == UMIN)
9338 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9339 	{
9340 	  cond0 = XEXP (XEXP (x, 0), 0);
9341 	  cond1 = XEXP (XEXP (x, 1), 0);
9342 
9343 	  if (COMPARISON_P (cond0)
9344 	      && COMPARISON_P (cond1)
9345 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9346 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9347 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9348 		  || ((swap_condition (GET_CODE (cond0))
9349 		       == reversed_comparison_code (cond1, NULL))
9350 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9351 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9352 	      && ! side_effects_p (x))
9353 	    {
9354 	      *ptrue = *pfalse = const0_rtx;
9355 	      return cond0;
9356 	    }
9357 	}
9358     }
9359 
9360   else if (code == IF_THEN_ELSE)
9361     {
9362       /* If we have IF_THEN_ELSE already, extract the condition and
9363 	 canonicalize it if it is NE or EQ.  */
9364       cond0 = XEXP (x, 0);
9365       *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9366       if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9367 	return XEXP (cond0, 0);
9368       else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9369 	{
9370 	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9371 	  return XEXP (cond0, 0);
9372 	}
9373       else
9374 	return cond0;
9375     }
9376 
9377   /* If X is a SUBREG, we can narrow both the true and false values
9378      if the inner expression, if there is a condition.  */
9379   else if (code == SUBREG
9380 	   && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9381 					  &false0)) != 0)
9382     {
9383       true0 = simplify_gen_subreg (mode, true0,
9384 				   GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9385       false0 = simplify_gen_subreg (mode, false0,
9386 				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9387       if (true0 && false0)
9388 	{
9389 	  *ptrue = true0;
9390 	  *pfalse = false0;
9391 	  return cond0;
9392 	}
9393     }
9394 
9395   /* If X is a constant, this isn't special and will cause confusions
9396      if we treat it as such.  Likewise if it is equivalent to a constant.  */
9397   else if (CONSTANT_P (x)
9398 	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9399     ;
9400 
9401   /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9402      will be least confusing to the rest of the compiler.  */
9403   else if (mode == BImode)
9404     {
9405       *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9406       return x;
9407     }
9408 
9409   /* If X is known to be either 0 or -1, those are the true and
9410      false values when testing X.  */
9411   else if (x == constm1_rtx || x == const0_rtx
9412 	   || (is_a <scalar_int_mode> (mode, &int_mode)
9413 	       && (num_sign_bit_copies (x, int_mode)
9414 		   == GET_MODE_PRECISION (int_mode))))
9415     {
9416       *ptrue = constm1_rtx, *pfalse = const0_rtx;
9417       return x;
9418     }
9419 
9420   /* Likewise for 0 or a single bit.  */
9421   else if (HWI_COMPUTABLE_MODE_P (mode)
9422 	   && pow2p_hwi (nz = nonzero_bits (x, mode)))
9423     {
9424       *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9425       return x;
9426     }
9427 
9428   /* Otherwise fail; show no condition with true and false values the same.  */
9429   *ptrue = *pfalse = x;
9430   return 0;
9431 }
9432 
9433 /* Return the value of expression X given the fact that condition COND
9434    is known to be true when applied to REG as its first operand and VAL
9435    as its second.  X is known to not be shared and so can be modified in
9436    place.
9437 
9438    We only handle the simplest cases, and specifically those cases that
9439    arise with IF_THEN_ELSE expressions.  */
9440 
9441 static rtx
known_cond(rtx x,enum rtx_code cond,rtx reg,rtx val)9442 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9443 {
9444   enum rtx_code code = GET_CODE (x);
9445   const char *fmt;
9446   int i, j;
9447 
9448   if (side_effects_p (x))
9449     return x;
9450 
9451   /* If either operand of the condition is a floating point value,
9452      then we have to avoid collapsing an EQ comparison.  */
9453   if (cond == EQ
9454       && rtx_equal_p (x, reg)
9455       && ! FLOAT_MODE_P (GET_MODE (x))
9456       && ! FLOAT_MODE_P (GET_MODE (val)))
9457     return val;
9458 
9459   if (cond == UNEQ && rtx_equal_p (x, reg))
9460     return val;
9461 
9462   /* If X is (abs REG) and we know something about REG's relationship
9463      with zero, we may be able to simplify this.  */
9464 
9465   if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9466     switch (cond)
9467       {
9468       case GE:  case GT:  case EQ:
9469 	return XEXP (x, 0);
9470       case LT:  case LE:
9471 	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9472 				   XEXP (x, 0),
9473 				   GET_MODE (XEXP (x, 0)));
9474       default:
9475 	break;
9476       }
9477 
9478   /* The only other cases we handle are MIN, MAX, and comparisons if the
9479      operands are the same as REG and VAL.  */
9480 
9481   else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9482     {
9483       if (rtx_equal_p (XEXP (x, 0), val))
9484         {
9485 	  std::swap (val, reg);
9486 	  cond = swap_condition (cond);
9487         }
9488 
9489       if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9490 	{
9491 	  if (COMPARISON_P (x))
9492 	    {
9493 	      if (comparison_dominates_p (cond, code))
9494 		return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9495 
9496 	      code = reversed_comparison_code (x, NULL);
9497 	      if (code != UNKNOWN
9498 		  && comparison_dominates_p (cond, code))
9499 		return CONST0_RTX (GET_MODE (x));
9500 	      else
9501 		return x;
9502 	    }
9503 	  else if (code == SMAX || code == SMIN
9504 		   || code == UMIN || code == UMAX)
9505 	    {
9506 	      int unsignedp = (code == UMIN || code == UMAX);
9507 
9508 	      /* Do not reverse the condition when it is NE or EQ.
9509 		 This is because we cannot conclude anything about
9510 		 the value of 'SMAX (x, y)' when x is not equal to y,
9511 		 but we can when x equals y.  */
9512 	      if ((code == SMAX || code == UMAX)
9513 		  && ! (cond == EQ || cond == NE))
9514 		cond = reverse_condition (cond);
9515 
9516 	      switch (cond)
9517 		{
9518 		case GE:   case GT:
9519 		  return unsignedp ? x : XEXP (x, 1);
9520 		case LE:   case LT:
9521 		  return unsignedp ? x : XEXP (x, 0);
9522 		case GEU:  case GTU:
9523 		  return unsignedp ? XEXP (x, 1) : x;
9524 		case LEU:  case LTU:
9525 		  return unsignedp ? XEXP (x, 0) : x;
9526 		default:
9527 		  break;
9528 		}
9529 	    }
9530 	}
9531     }
9532   else if (code == SUBREG)
9533     {
9534       machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9535       rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9536 
9537       if (SUBREG_REG (x) != r)
9538 	{
9539 	  /* We must simplify subreg here, before we lose track of the
9540 	     original inner_mode.  */
9541 	  new_rtx = simplify_subreg (GET_MODE (x), r,
9542 				     inner_mode, SUBREG_BYTE (x));
9543 	  if (new_rtx)
9544 	    return new_rtx;
9545 	  else
9546 	    SUBST (SUBREG_REG (x), r);
9547 	}
9548 
9549       return x;
9550     }
9551   /* We don't have to handle SIGN_EXTEND here, because even in the
9552      case of replacing something with a modeless CONST_INT, a
9553      CONST_INT is already (supposed to be) a valid sign extension for
9554      its narrower mode, which implies it's already properly
9555      sign-extended for the wider mode.  Now, for ZERO_EXTEND, the
9556      story is different.  */
9557   else if (code == ZERO_EXTEND)
9558     {
9559       machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9560       rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9561 
9562       if (XEXP (x, 0) != r)
9563 	{
9564 	  /* We must simplify the zero_extend here, before we lose
9565 	     track of the original inner_mode.  */
9566 	  new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9567 					      r, inner_mode);
9568 	  if (new_rtx)
9569 	    return new_rtx;
9570 	  else
9571 	    SUBST (XEXP (x, 0), r);
9572 	}
9573 
9574       return x;
9575     }
9576 
9577   fmt = GET_RTX_FORMAT (code);
9578   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9579     {
9580       if (fmt[i] == 'e')
9581 	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9582       else if (fmt[i] == 'E')
9583 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9584 	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9585 						cond, reg, val));
9586     }
9587 
9588   return x;
9589 }
9590 
9591 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9592    assignment as a field assignment.  */
9593 
9594 static int
rtx_equal_for_field_assignment_p(rtx x,rtx y,bool widen_x)9595 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9596 {
9597   if (widen_x && GET_MODE (x) != GET_MODE (y))
9598     {
9599       if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9600 	return 0;
9601       if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9602 	return 0;
9603       x = adjust_address_nv (x, GET_MODE (y),
9604 			     byte_lowpart_offset (GET_MODE (y),
9605 						  GET_MODE (x)));
9606     }
9607 
9608   if (x == y || rtx_equal_p (x, y))
9609     return 1;
9610 
9611   if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9612     return 0;
9613 
9614   /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9615      Note that all SUBREGs of MEM are paradoxical; otherwise they
9616      would have been rewritten.  */
9617   if (MEM_P (x) && GET_CODE (y) == SUBREG
9618       && MEM_P (SUBREG_REG (y))
9619       && rtx_equal_p (SUBREG_REG (y),
9620 		      gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9621     return 1;
9622 
9623   if (MEM_P (y) && GET_CODE (x) == SUBREG
9624       && MEM_P (SUBREG_REG (x))
9625       && rtx_equal_p (SUBREG_REG (x),
9626 		      gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9627     return 1;
9628 
9629   /* We used to see if get_last_value of X and Y were the same but that's
9630      not correct.  In one direction, we'll cause the assignment to have
9631      the wrong destination and in the case, we'll import a register into this
9632      insn that might have already have been dead.   So fail if none of the
9633      above cases are true.  */
9634   return 0;
9635 }
9636 
9637 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9638    Return that assignment if so.
9639 
9640    We only handle the most common cases.  */
9641 
9642 static rtx
make_field_assignment(rtx x)9643 make_field_assignment (rtx x)
9644 {
9645   rtx dest = SET_DEST (x);
9646   rtx src = SET_SRC (x);
9647   rtx assign;
9648   rtx rhs, lhs;
9649   HOST_WIDE_INT c1;
9650   HOST_WIDE_INT pos;
9651   unsigned HOST_WIDE_INT len;
9652   rtx other;
9653 
9654   /* All the rules in this function are specific to scalar integers.  */
9655   scalar_int_mode mode;
9656   if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9657     return x;
9658 
9659   /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9660      a clear of a one-bit field.  We will have changed it to
9661      (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
9662      for a SUBREG.  */
9663 
9664   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9665       && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9666       && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9667       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9668     {
9669       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9670 				1, 1, 1, 0);
9671       if (assign != 0)
9672 	return gen_rtx_SET (assign, const0_rtx);
9673       return x;
9674     }
9675 
9676   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9677       && subreg_lowpart_p (XEXP (src, 0))
9678       && partial_subreg_p (XEXP (src, 0))
9679       && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9680       && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9681       && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9682       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9683     {
9684       assign = make_extraction (VOIDmode, dest, 0,
9685 				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9686 				1, 1, 1, 0);
9687       if (assign != 0)
9688 	return gen_rtx_SET (assign, const0_rtx);
9689       return x;
9690     }
9691 
9692   /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9693      one-bit field.  */
9694   if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9695       && XEXP (XEXP (src, 0), 0) == const1_rtx
9696       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9697     {
9698       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9699 				1, 1, 1, 0);
9700       if (assign != 0)
9701 	return gen_rtx_SET (assign, const1_rtx);
9702       return x;
9703     }
9704 
9705   /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9706      SRC is an AND with all bits of that field set, then we can discard
9707      the AND.  */
9708   if (GET_CODE (dest) == ZERO_EXTRACT
9709       && CONST_INT_P (XEXP (dest, 1))
9710       && GET_CODE (src) == AND
9711       && CONST_INT_P (XEXP (src, 1)))
9712     {
9713       HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9714       unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9715       unsigned HOST_WIDE_INT ze_mask;
9716 
9717       if (width >= HOST_BITS_PER_WIDE_INT)
9718 	ze_mask = -1;
9719       else
9720 	ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9721 
9722       /* Complete overlap.  We can remove the source AND.  */
9723       if ((and_mask & ze_mask) == ze_mask)
9724 	return gen_rtx_SET (dest, XEXP (src, 0));
9725 
9726       /* Partial overlap.  We can reduce the source AND.  */
9727       if ((and_mask & ze_mask) != and_mask)
9728 	{
9729 	  src = gen_rtx_AND (mode, XEXP (src, 0),
9730 			     gen_int_mode (and_mask & ze_mask, mode));
9731 	  return gen_rtx_SET (dest, src);
9732 	}
9733     }
9734 
9735   /* The other case we handle is assignments into a constant-position
9736      field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
9737      a mask that has all one bits except for a group of zero bits and
9738      OTHER is known to have zeros where C1 has ones, this is such an
9739      assignment.  Compute the position and length from C1.  Shift OTHER
9740      to the appropriate position, force it to the required mode, and
9741      make the extraction.  Check for the AND in both operands.  */
9742 
9743   /* One or more SUBREGs might obscure the constant-position field
9744      assignment.  The first one we are likely to encounter is an outer
9745      narrowing SUBREG, which we can just strip for the purposes of
9746      identifying the constant-field assignment.  */
9747   scalar_int_mode src_mode = mode;
9748   if (GET_CODE (src) == SUBREG
9749       && subreg_lowpart_p (src)
9750       && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9751     src = SUBREG_REG (src);
9752 
9753   if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9754     return x;
9755 
9756   rhs = expand_compound_operation (XEXP (src, 0));
9757   lhs = expand_compound_operation (XEXP (src, 1));
9758 
9759   if (GET_CODE (rhs) == AND
9760       && CONST_INT_P (XEXP (rhs, 1))
9761       && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9762     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9763   /* The second SUBREG that might get in the way is a paradoxical
9764      SUBREG around the first operand of the AND.  We want to
9765      pretend the operand is as wide as the destination here.   We
9766      do this by adjusting the MEM to wider mode for the sole
9767      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9768      note this trick only works for MEMs.  */
9769   else if (GET_CODE (rhs) == AND
9770 	   && paradoxical_subreg_p (XEXP (rhs, 0))
9771 	   && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9772 	   && CONST_INT_P (XEXP (rhs, 1))
9773 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9774 						dest, true))
9775     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9776   else if (GET_CODE (lhs) == AND
9777 	   && CONST_INT_P (XEXP (lhs, 1))
9778 	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9779     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9780   /* The second SUBREG that might get in the way is a paradoxical
9781      SUBREG around the first operand of the AND.  We want to
9782      pretend the operand is as wide as the destination here.   We
9783      do this by adjusting the MEM to wider mode for the sole
9784      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9785      note this trick only works for MEMs.  */
9786   else if (GET_CODE (lhs) == AND
9787 	   && paradoxical_subreg_p (XEXP (lhs, 0))
9788 	   && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9789 	   && CONST_INT_P (XEXP (lhs, 1))
9790 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9791 						dest, true))
9792     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9793   else
9794     return x;
9795 
9796   pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9797   if (pos < 0
9798       || pos + len > GET_MODE_PRECISION (mode)
9799       || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9800       || (c1 & nonzero_bits (other, mode)) != 0)
9801     return x;
9802 
9803   assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9804   if (assign == 0)
9805     return x;
9806 
9807   /* The mode to use for the source is the mode of the assignment, or of
9808      what is inside a possible STRICT_LOW_PART.  */
9809   machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9810 			   ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9811 
9812   /* Shift OTHER right POS places and make it the source, restricting it
9813      to the proper length and mode.  */
9814 
9815   src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9816 						     src_mode, other, pos),
9817 			       dest);
9818   src = force_to_mode (src, new_mode,
9819 		       len >= HOST_BITS_PER_WIDE_INT
9820 		       ? HOST_WIDE_INT_M1U
9821 		       : (HOST_WIDE_INT_1U << len) - 1,
9822 		       0);
9823 
9824   /* If SRC is masked by an AND that does not make a difference in
9825      the value being stored, strip it.  */
9826   if (GET_CODE (assign) == ZERO_EXTRACT
9827       && CONST_INT_P (XEXP (assign, 1))
9828       && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9829       && GET_CODE (src) == AND
9830       && CONST_INT_P (XEXP (src, 1))
9831       && UINTVAL (XEXP (src, 1))
9832 	 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9833     src = XEXP (src, 0);
9834 
9835   return gen_rtx_SET (assign, src);
9836 }
9837 
9838 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9839    if so.  */
9840 
9841 static rtx
apply_distributive_law(rtx x)9842 apply_distributive_law (rtx x)
9843 {
9844   enum rtx_code code = GET_CODE (x);
9845   enum rtx_code inner_code;
9846   rtx lhs, rhs, other;
9847   rtx tem;
9848 
9849   /* Distributivity is not true for floating point as it can change the
9850      value.  So we don't do it unless -funsafe-math-optimizations.  */
9851   if (FLOAT_MODE_P (GET_MODE (x))
9852       && ! flag_unsafe_math_optimizations)
9853     return x;
9854 
9855   /* The outer operation can only be one of the following:  */
9856   if (code != IOR && code != AND && code != XOR
9857       && code != PLUS && code != MINUS)
9858     return x;
9859 
9860   lhs = XEXP (x, 0);
9861   rhs = XEXP (x, 1);
9862 
9863   /* If either operand is a primitive we can't do anything, so get out
9864      fast.  */
9865   if (OBJECT_P (lhs) || OBJECT_P (rhs))
9866     return x;
9867 
9868   lhs = expand_compound_operation (lhs);
9869   rhs = expand_compound_operation (rhs);
9870   inner_code = GET_CODE (lhs);
9871   if (inner_code != GET_CODE (rhs))
9872     return x;
9873 
9874   /* See if the inner and outer operations distribute.  */
9875   switch (inner_code)
9876     {
9877     case LSHIFTRT:
9878     case ASHIFTRT:
9879     case AND:
9880     case IOR:
9881       /* These all distribute except over PLUS.  */
9882       if (code == PLUS || code == MINUS)
9883 	return x;
9884       break;
9885 
9886     case MULT:
9887       if (code != PLUS && code != MINUS)
9888 	return x;
9889       break;
9890 
9891     case ASHIFT:
9892       /* This is also a multiply, so it distributes over everything.  */
9893       break;
9894 
9895     /* This used to handle SUBREG, but this turned out to be counter-
9896        productive, since (subreg (op ...)) usually is not handled by
9897        insn patterns, and this "optimization" therefore transformed
9898        recognizable patterns into unrecognizable ones.  Therefore the
9899        SUBREG case was removed from here.
9900 
9901        It is possible that distributing SUBREG over arithmetic operations
9902        leads to an intermediate result than can then be optimized further,
9903        e.g. by moving the outer SUBREG to the other side of a SET as done
9904        in simplify_set.  This seems to have been the original intent of
9905        handling SUBREGs here.
9906 
9907        However, with current GCC this does not appear to actually happen,
9908        at least on major platforms.  If some case is found where removing
9909        the SUBREG case here prevents follow-on optimizations, distributing
9910        SUBREGs ought to be re-added at that place, e.g. in simplify_set.  */
9911 
9912     default:
9913       return x;
9914     }
9915 
9916   /* Set LHS and RHS to the inner operands (A and B in the example
9917      above) and set OTHER to the common operand (C in the example).
9918      There is only one way to do this unless the inner operation is
9919      commutative.  */
9920   if (COMMUTATIVE_ARITH_P (lhs)
9921       && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9922     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9923   else if (COMMUTATIVE_ARITH_P (lhs)
9924 	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9925     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9926   else if (COMMUTATIVE_ARITH_P (lhs)
9927 	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9928     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9929   else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9930     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9931   else
9932     return x;
9933 
9934   /* Form the new inner operation, seeing if it simplifies first.  */
9935   tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9936 
9937   /* There is one exception to the general way of distributing:
9938      (a | c) ^ (b | c) -> (a ^ b) & ~c  */
9939   if (code == XOR && inner_code == IOR)
9940     {
9941       inner_code = AND;
9942       other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9943     }
9944 
9945   /* We may be able to continuing distributing the result, so call
9946      ourselves recursively on the inner operation before forming the
9947      outer operation, which we return.  */
9948   return simplify_gen_binary (inner_code, GET_MODE (x),
9949 			      apply_distributive_law (tem), other);
9950 }
9951 
9952 /* See if X is of the form (* (+ A B) C), and if so convert to
9953    (+ (* A C) (* B C)) and try to simplify.
9954 
9955    Most of the time, this results in no change.  However, if some of
9956    the operands are the same or inverses of each other, simplifications
9957    will result.
9958 
9959    For example, (and (ior A B) (not B)) can occur as the result of
9960    expanding a bit field assignment.  When we apply the distributive
9961    law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9962    which then simplifies to (and (A (not B))).
9963 
9964    Note that no checks happen on the validity of applying the inverse
9965    distributive law.  This is pointless since we can do it in the
9966    few places where this routine is called.
9967 
9968    N is the index of the term that is decomposed (the arithmetic operation,
9969    i.e. (+ A B) in the first example above).  !N is the index of the term that
9970    is distributed, i.e. of C in the first example above.  */
9971 static rtx
distribute_and_simplify_rtx(rtx x,int n)9972 distribute_and_simplify_rtx (rtx x, int n)
9973 {
9974   machine_mode mode;
9975   enum rtx_code outer_code, inner_code;
9976   rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9977 
9978   /* Distributivity is not true for floating point as it can change the
9979      value.  So we don't do it unless -funsafe-math-optimizations.  */
9980   if (FLOAT_MODE_P (GET_MODE (x))
9981       && ! flag_unsafe_math_optimizations)
9982     return NULL_RTX;
9983 
9984   decomposed = XEXP (x, n);
9985   if (!ARITHMETIC_P (decomposed))
9986     return NULL_RTX;
9987 
9988   mode = GET_MODE (x);
9989   outer_code = GET_CODE (x);
9990   distributed = XEXP (x, !n);
9991 
9992   inner_code = GET_CODE (decomposed);
9993   inner_op0 = XEXP (decomposed, 0);
9994   inner_op1 = XEXP (decomposed, 1);
9995 
9996   /* Special case (and (xor B C) (not A)), which is equivalent to
9997      (xor (ior A B) (ior A C))  */
9998   if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9999     {
10000       distributed = XEXP (distributed, 0);
10001       outer_code = IOR;
10002     }
10003 
10004   if (n == 0)
10005     {
10006       /* Distribute the second term.  */
10007       new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10008       new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10009     }
10010   else
10011     {
10012       /* Distribute the first term.  */
10013       new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10014       new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10015     }
10016 
10017   tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10018 						     new_op0, new_op1));
10019   if (GET_CODE (tmp) != outer_code
10020       && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10021 	  < set_src_cost (x, mode, optimize_this_for_speed_p)))
10022     return tmp;
10023 
10024   return NULL_RTX;
10025 }
10026 
10027 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10028    in MODE.  Return an equivalent form, if different from (and VAROP
10029    (const_int CONSTOP)).  Otherwise, return NULL_RTX.  */
10030 
10031 static rtx
simplify_and_const_int_1(scalar_int_mode mode,rtx varop,unsigned HOST_WIDE_INT constop)10032 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10033 			  unsigned HOST_WIDE_INT constop)
10034 {
10035   unsigned HOST_WIDE_INT nonzero;
10036   unsigned HOST_WIDE_INT orig_constop;
10037   rtx orig_varop;
10038   int i;
10039 
10040   orig_varop = varop;
10041   orig_constop = constop;
10042   if (GET_CODE (varop) == CLOBBER)
10043     return NULL_RTX;
10044 
10045   /* Simplify VAROP knowing that we will be only looking at some of the
10046      bits in it.
10047 
10048      Note by passing in CONSTOP, we guarantee that the bits not set in
10049      CONSTOP are not significant and will never be examined.  We must
10050      ensure that is the case by explicitly masking out those bits
10051      before returning.  */
10052   varop = force_to_mode (varop, mode, constop, 0);
10053 
10054   /* If VAROP is a CLOBBER, we will fail so return it.  */
10055   if (GET_CODE (varop) == CLOBBER)
10056     return varop;
10057 
10058   /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10059      to VAROP and return the new constant.  */
10060   if (CONST_INT_P (varop))
10061     return gen_int_mode (INTVAL (varop) & constop, mode);
10062 
10063   /* See what bits may be nonzero in VAROP.  Unlike the general case of
10064      a call to nonzero_bits, here we don't care about bits outside
10065      MODE.  */
10066 
10067   nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10068 
10069   /* Turn off all bits in the constant that are known to already be zero.
10070      Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10071      which is tested below.  */
10072 
10073   constop &= nonzero;
10074 
10075   /* If we don't have any bits left, return zero.  */
10076   if (constop == 0)
10077     return const0_rtx;
10078 
10079   /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10080      a power of two, we can replace this with an ASHIFT.  */
10081   if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10082       && (i = exact_log2 (constop)) >= 0)
10083     return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10084 
10085   /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10086      or XOR, then try to apply the distributive law.  This may eliminate
10087      operations if either branch can be simplified because of the AND.
10088      It may also make some cases more complex, but those cases probably
10089      won't match a pattern either with or without this.  */
10090 
10091   if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10092     {
10093       scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10094       return
10095 	gen_lowpart
10096 	  (mode,
10097 	   apply_distributive_law
10098 	   (simplify_gen_binary (GET_CODE (varop), varop_mode,
10099 				 simplify_and_const_int (NULL_RTX, varop_mode,
10100 							 XEXP (varop, 0),
10101 							 constop),
10102 				 simplify_and_const_int (NULL_RTX, varop_mode,
10103 							 XEXP (varop, 1),
10104 							 constop))));
10105     }
10106 
10107   /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10108      the AND and see if one of the operands simplifies to zero.  If so, we
10109      may eliminate it.  */
10110 
10111   if (GET_CODE (varop) == PLUS
10112       && pow2p_hwi (constop + 1))
10113     {
10114       rtx o0, o1;
10115 
10116       o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10117       o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10118       if (o0 == const0_rtx)
10119 	return o1;
10120       if (o1 == const0_rtx)
10121 	return o0;
10122     }
10123 
10124   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
10125   varop = gen_lowpart (mode, varop);
10126   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10127     return NULL_RTX;
10128 
10129   /* If we are only masking insignificant bits, return VAROP.  */
10130   if (constop == nonzero)
10131     return varop;
10132 
10133   if (varop == orig_varop && constop == orig_constop)
10134     return NULL_RTX;
10135 
10136   /* Otherwise, return an AND.  */
10137   return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10138 }
10139 
10140 
10141 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10142    in MODE.
10143 
10144    Return an equivalent form, if different from X.  Otherwise, return X.  If
10145    X is zero, we are to always construct the equivalent form.  */
10146 
10147 static rtx
simplify_and_const_int(rtx x,scalar_int_mode mode,rtx varop,unsigned HOST_WIDE_INT constop)10148 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10149 			unsigned HOST_WIDE_INT constop)
10150 {
10151   rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10152   if (tem)
10153     return tem;
10154 
10155   if (!x)
10156     x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10157 			     gen_int_mode (constop, mode));
10158   if (GET_MODE (x) != mode)
10159     x = gen_lowpart (mode, x);
10160   return x;
10161 }
10162 
10163 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10164    We don't care about bits outside of those defined in MODE.
10165 
10166    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10167    a shift, AND, or zero_extract, we can do better.  */
10168 
10169 static rtx
reg_nonzero_bits_for_combine(const_rtx x,scalar_int_mode xmode,scalar_int_mode mode,unsigned HOST_WIDE_INT * nonzero)10170 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10171 			      scalar_int_mode mode,
10172 			      unsigned HOST_WIDE_INT *nonzero)
10173 {
10174   rtx tem;
10175   reg_stat_type *rsp;
10176 
10177   /* If X is a register whose nonzero bits value is current, use it.
10178      Otherwise, if X is a register whose value we can find, use that
10179      value.  Otherwise, use the previously-computed global nonzero bits
10180      for this register.  */
10181 
10182   rsp = &reg_stat[REGNO (x)];
10183   if (rsp->last_set_value != 0
10184       && (rsp->last_set_mode == mode
10185 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10186 	      && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10187 	      && GET_MODE_CLASS (mode) == MODE_INT))
10188       && ((rsp->last_set_label >= label_tick_ebb_start
10189 	   && rsp->last_set_label < label_tick)
10190 	  || (rsp->last_set_label == label_tick
10191               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10192 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10193 	      && REGNO (x) < reg_n_sets_max
10194 	      && REG_N_SETS (REGNO (x)) == 1
10195 	      && !REGNO_REG_SET_P
10196 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10197 		   REGNO (x)))))
10198     {
10199       /* Note that, even if the precision of last_set_mode is lower than that
10200 	 of mode, record_value_for_reg invoked nonzero_bits on the register
10201 	 with nonzero_bits_mode (because last_set_mode is necessarily integral
10202 	 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10203 	 are all valid, hence in mode too since nonzero_bits_mode is defined
10204 	 to the largest HWI_COMPUTABLE_MODE_P mode.  */
10205       *nonzero &= rsp->last_set_nonzero_bits;
10206       return NULL;
10207     }
10208 
10209   tem = get_last_value (x);
10210   if (tem)
10211     {
10212       if (SHORT_IMMEDIATES_SIGN_EXTEND)
10213 	tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10214 
10215       return tem;
10216     }
10217 
10218   if (nonzero_sign_valid && rsp->nonzero_bits)
10219     {
10220       unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10221 
10222       if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10223 	/* We don't know anything about the upper bits.  */
10224 	mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10225 
10226       *nonzero &= mask;
10227     }
10228 
10229   return NULL;
10230 }
10231 
10232 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10233    end of X that are known to be equal to the sign bit.  X will be used
10234    in mode MODE; the returned value will always be between 1 and the
10235    number of bits in MODE.  */
10236 
10237 static rtx
reg_num_sign_bit_copies_for_combine(const_rtx x,scalar_int_mode xmode,scalar_int_mode mode,unsigned int * result)10238 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10239 				     scalar_int_mode mode,
10240 				     unsigned int *result)
10241 {
10242   rtx tem;
10243   reg_stat_type *rsp;
10244 
10245   rsp = &reg_stat[REGNO (x)];
10246   if (rsp->last_set_value != 0
10247       && rsp->last_set_mode == mode
10248       && ((rsp->last_set_label >= label_tick_ebb_start
10249 	   && rsp->last_set_label < label_tick)
10250 	  || (rsp->last_set_label == label_tick
10251               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10252 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10253 	      && REGNO (x) < reg_n_sets_max
10254 	      && REG_N_SETS (REGNO (x)) == 1
10255 	      && !REGNO_REG_SET_P
10256 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10257 		   REGNO (x)))))
10258     {
10259       *result = rsp->last_set_sign_bit_copies;
10260       return NULL;
10261     }
10262 
10263   tem = get_last_value (x);
10264   if (tem != 0)
10265     return tem;
10266 
10267   if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10268       && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10269     *result = rsp->sign_bit_copies;
10270 
10271   return NULL;
10272 }
10273 
10274 /* Return the number of "extended" bits there are in X, when interpreted
10275    as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
10276    unsigned quantities, this is the number of high-order zero bits.
10277    For signed quantities, this is the number of copies of the sign bit
10278    minus 1.  In both case, this function returns the number of "spare"
10279    bits.  For example, if two quantities for which this function returns
10280    at least 1 are added, the addition is known not to overflow.
10281 
10282    This function will always return 0 unless called during combine, which
10283    implies that it must be called from a define_split.  */
10284 
10285 unsigned int
extended_count(const_rtx x,machine_mode mode,int unsignedp)10286 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10287 {
10288   if (nonzero_sign_valid == 0)
10289     return 0;
10290 
10291   scalar_int_mode int_mode;
10292   return (unsignedp
10293 	  ? (is_a <scalar_int_mode> (mode, &int_mode)
10294 	     && HWI_COMPUTABLE_MODE_P (int_mode)
10295 	     ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10296 			       - floor_log2 (nonzero_bits (x, int_mode)))
10297 	     : 0)
10298 	  : num_sign_bit_copies (x, mode) - 1);
10299 }
10300 
10301 /* This function is called from `simplify_shift_const' to merge two
10302    outer operations.  Specifically, we have already found that we need
10303    to perform operation *POP0 with constant *PCONST0 at the outermost
10304    position.  We would now like to also perform OP1 with constant CONST1
10305    (with *POP0 being done last).
10306 
10307    Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10308    the resulting operation.  *PCOMP_P is set to 1 if we would need to
10309    complement the innermost operand, otherwise it is unchanged.
10310 
10311    MODE is the mode in which the operation will be done.  No bits outside
10312    the width of this mode matter.  It is assumed that the width of this mode
10313    is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10314 
10315    If *POP0 or OP1 are UNKNOWN, it means no operation is required.  Only NEG, PLUS,
10316    IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
10317    result is simply *PCONST0.
10318 
10319    If the resulting operation cannot be expressed as one operation, we
10320    return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
10321 
10322 static int
merge_outer_ops(enum rtx_code * pop0,HOST_WIDE_INT * pconst0,enum rtx_code op1,HOST_WIDE_INT const1,machine_mode mode,int * pcomp_p)10323 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10324 {
10325   enum rtx_code op0 = *pop0;
10326   HOST_WIDE_INT const0 = *pconst0;
10327 
10328   const0 &= GET_MODE_MASK (mode);
10329   const1 &= GET_MODE_MASK (mode);
10330 
10331   /* If OP0 is an AND, clear unimportant bits in CONST1.  */
10332   if (op0 == AND)
10333     const1 &= const0;
10334 
10335   /* If OP0 or OP1 is UNKNOWN, this is easy.  Similarly if they are the same or
10336      if OP0 is SET.  */
10337 
10338   if (op1 == UNKNOWN || op0 == SET)
10339     return 1;
10340 
10341   else if (op0 == UNKNOWN)
10342     op0 = op1, const0 = const1;
10343 
10344   else if (op0 == op1)
10345     {
10346       switch (op0)
10347 	{
10348 	case AND:
10349 	  const0 &= const1;
10350 	  break;
10351 	case IOR:
10352 	  const0 |= const1;
10353 	  break;
10354 	case XOR:
10355 	  const0 ^= const1;
10356 	  break;
10357 	case PLUS:
10358 	  const0 += const1;
10359 	  break;
10360 	case NEG:
10361 	  op0 = UNKNOWN;
10362 	  break;
10363 	default:
10364 	  break;
10365 	}
10366     }
10367 
10368   /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
10369   else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10370     return 0;
10371 
10372   /* If the two constants aren't the same, we can't do anything.  The
10373      remaining six cases can all be done.  */
10374   else if (const0 != const1)
10375     return 0;
10376 
10377   else
10378     switch (op0)
10379       {
10380       case IOR:
10381 	if (op1 == AND)
10382 	  /* (a & b) | b == b */
10383 	  op0 = SET;
10384 	else /* op1 == XOR */
10385 	  /* (a ^ b) | b == a | b */
10386 	  {;}
10387 	break;
10388 
10389       case XOR:
10390 	if (op1 == AND)
10391 	  /* (a & b) ^ b == (~a) & b */
10392 	  op0 = AND, *pcomp_p = 1;
10393 	else /* op1 == IOR */
10394 	  /* (a | b) ^ b == a & ~b */
10395 	  op0 = AND, const0 = ~const0;
10396 	break;
10397 
10398       case AND:
10399 	if (op1 == IOR)
10400 	  /* (a | b) & b == b */
10401 	op0 = SET;
10402 	else /* op1 == XOR */
10403 	  /* (a ^ b) & b) == (~a) & b */
10404 	  *pcomp_p = 1;
10405 	break;
10406       default:
10407 	break;
10408       }
10409 
10410   /* Check for NO-OP cases.  */
10411   const0 &= GET_MODE_MASK (mode);
10412   if (const0 == 0
10413       && (op0 == IOR || op0 == XOR || op0 == PLUS))
10414     op0 = UNKNOWN;
10415   else if (const0 == 0 && op0 == AND)
10416     op0 = SET;
10417   else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10418 	   && op0 == AND)
10419     op0 = UNKNOWN;
10420 
10421   *pop0 = op0;
10422 
10423   /* ??? Slightly redundant with the above mask, but not entirely.
10424      Moving this above means we'd have to sign-extend the mode mask
10425      for the final test.  */
10426   if (op0 != UNKNOWN && op0 != NEG)
10427     *pconst0 = trunc_int_for_mode (const0, mode);
10428 
10429   return 1;
10430 }
10431 
10432 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10433    the shift in.  The original shift operation CODE is performed on OP in
10434    ORIG_MODE.  Return the wider mode MODE if we can perform the operation
10435    in that mode.  Return ORIG_MODE otherwise.  We can also assume that the
10436    result of the shift is subject to operation OUTER_CODE with operand
10437    OUTER_CONST.  */
10438 
10439 static scalar_int_mode
try_widen_shift_mode(enum rtx_code code,rtx op,int count,scalar_int_mode orig_mode,scalar_int_mode mode,enum rtx_code outer_code,HOST_WIDE_INT outer_const)10440 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10441 		      scalar_int_mode orig_mode, scalar_int_mode mode,
10442 		      enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10443 {
10444   gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10445 
10446   /* In general we can't perform in wider mode for right shift and rotate.  */
10447   switch (code)
10448     {
10449     case ASHIFTRT:
10450       /* We can still widen if the bits brought in from the left are identical
10451 	 to the sign bit of ORIG_MODE.  */
10452       if (num_sign_bit_copies (op, mode)
10453 	  > (unsigned) (GET_MODE_PRECISION (mode)
10454 			- GET_MODE_PRECISION (orig_mode)))
10455 	return mode;
10456       return orig_mode;
10457 
10458     case LSHIFTRT:
10459       /* Similarly here but with zero bits.  */
10460       if (HWI_COMPUTABLE_MODE_P (mode)
10461 	  && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10462 	return mode;
10463 
10464       /* We can also widen if the bits brought in will be masked off.  This
10465 	 operation is performed in ORIG_MODE.  */
10466       if (outer_code == AND)
10467 	{
10468 	  int care_bits = low_bitmask_len (orig_mode, outer_const);
10469 
10470 	  if (care_bits >= 0
10471 	      && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10472 	    return mode;
10473 	}
10474       /* fall through */
10475 
10476     case ROTATE:
10477       return orig_mode;
10478 
10479     case ROTATERT:
10480       gcc_unreachable ();
10481 
10482     default:
10483       return mode;
10484     }
10485 }
10486 
10487 /* Simplify a shift of VAROP by ORIG_COUNT bits.  CODE says what kind
10488    of shift.  The result of the shift is RESULT_MODE.  Return NULL_RTX
10489    if we cannot simplify it.  Otherwise, return a simplified value.
10490 
10491    The shift is normally computed in the widest mode we find in VAROP, as
10492    long as it isn't a different number of words than RESULT_MODE.  Exceptions
10493    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
10494 
10495 static rtx
simplify_shift_const_1(enum rtx_code code,machine_mode result_mode,rtx varop,int orig_count)10496 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10497 			rtx varop, int orig_count)
10498 {
10499   enum rtx_code orig_code = code;
10500   rtx orig_varop = varop;
10501   int count, log2;
10502   machine_mode mode = result_mode;
10503   machine_mode shift_mode;
10504   scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10505   /* We form (outer_op (code varop count) (outer_const)).  */
10506   enum rtx_code outer_op = UNKNOWN;
10507   HOST_WIDE_INT outer_const = 0;
10508   int complement_p = 0;
10509   rtx new_rtx, x;
10510 
10511   /* Make sure and truncate the "natural" shift on the way in.  We don't
10512      want to do this inside the loop as it makes it more difficult to
10513      combine shifts.  */
10514   if (SHIFT_COUNT_TRUNCATED)
10515     orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10516 
10517   /* If we were given an invalid count, don't do anything except exactly
10518      what was requested.  */
10519 
10520   if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10521     return NULL_RTX;
10522 
10523   count = orig_count;
10524 
10525   /* Unless one of the branches of the `if' in this loop does a `continue',
10526      we will `break' the loop after the `if'.  */
10527 
10528   while (count != 0)
10529     {
10530       /* If we have an operand of (clobber (const_int 0)), fail.  */
10531       if (GET_CODE (varop) == CLOBBER)
10532 	return NULL_RTX;
10533 
10534       /* Convert ROTATERT to ROTATE.  */
10535       if (code == ROTATERT)
10536 	{
10537 	  unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10538 	  code = ROTATE;
10539 	  count = bitsize - count;
10540 	}
10541 
10542       shift_mode = result_mode;
10543       if (shift_mode != mode)
10544 	{
10545 	  /* We only change the modes of scalar shifts.  */
10546 	  int_mode = as_a <scalar_int_mode> (mode);
10547 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10548 	  shift_mode = try_widen_shift_mode (code, varop, count,
10549 					     int_result_mode, int_mode,
10550 					     outer_op, outer_const);
10551 	}
10552 
10553       scalar_int_mode shift_unit_mode
10554 	= as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10555 
10556       /* Handle cases where the count is greater than the size of the mode
10557 	 minus 1.  For ASHIFT, use the size minus one as the count (this can
10558 	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
10559 	 take the count modulo the size.  For other shifts, the result is
10560 	 zero.
10561 
10562 	 Since these shifts are being produced by the compiler by combining
10563 	 multiple operations, each of which are defined, we know what the
10564 	 result is supposed to be.  */
10565 
10566       if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10567 	{
10568 	  if (code == ASHIFTRT)
10569 	    count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10570 	  else if (code == ROTATE || code == ROTATERT)
10571 	    count %= GET_MODE_PRECISION (shift_unit_mode);
10572 	  else
10573 	    {
10574 	      /* We can't simply return zero because there may be an
10575 		 outer op.  */
10576 	      varop = const0_rtx;
10577 	      count = 0;
10578 	      break;
10579 	    }
10580 	}
10581 
10582       /* If we discovered we had to complement VAROP, leave.  Making a NOT
10583 	 here would cause an infinite loop.  */
10584       if (complement_p)
10585 	break;
10586 
10587       if (shift_mode == shift_unit_mode)
10588 	{
10589 	  /* An arithmetic right shift of a quantity known to be -1 or 0
10590 	     is a no-op.  */
10591 	  if (code == ASHIFTRT
10592 	      && (num_sign_bit_copies (varop, shift_unit_mode)
10593 		  == GET_MODE_PRECISION (shift_unit_mode)))
10594 	    {
10595 	      count = 0;
10596 	      break;
10597 	    }
10598 
10599 	  /* If we are doing an arithmetic right shift and discarding all but
10600 	     the sign bit copies, this is equivalent to doing a shift by the
10601 	     bitsize minus one.  Convert it into that shift because it will
10602 	     often allow other simplifications.  */
10603 
10604 	  if (code == ASHIFTRT
10605 	      && (count + num_sign_bit_copies (varop, shift_unit_mode)
10606 		  >= GET_MODE_PRECISION (shift_unit_mode)))
10607 	    count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10608 
10609 	  /* We simplify the tests below and elsewhere by converting
10610 	     ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10611 	     `make_compound_operation' will convert it to an ASHIFTRT for
10612 	     those machines (such as VAX) that don't have an LSHIFTRT.  */
10613 	  if (code == ASHIFTRT
10614 	      && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10615 	      && val_signbit_known_clear_p (shift_unit_mode,
10616 					    nonzero_bits (varop,
10617 							  shift_unit_mode)))
10618 	    code = LSHIFTRT;
10619 
10620 	  if (((code == LSHIFTRT
10621 		&& HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10622 		&& !(nonzero_bits (varop, shift_unit_mode) >> count))
10623 	       || (code == ASHIFT
10624 		   && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10625 		   && !((nonzero_bits (varop, shift_unit_mode) << count)
10626 			& GET_MODE_MASK (shift_unit_mode))))
10627 	      && !side_effects_p (varop))
10628 	    varop = const0_rtx;
10629 	}
10630 
10631       switch (GET_CODE (varop))
10632 	{
10633 	case SIGN_EXTEND:
10634 	case ZERO_EXTEND:
10635 	case SIGN_EXTRACT:
10636 	case ZERO_EXTRACT:
10637 	  new_rtx = expand_compound_operation (varop);
10638 	  if (new_rtx != varop)
10639 	    {
10640 	      varop = new_rtx;
10641 	      continue;
10642 	    }
10643 	  break;
10644 
10645 	case MEM:
10646 	  /* The following rules apply only to scalars.  */
10647 	  if (shift_mode != shift_unit_mode)
10648 	    break;
10649 	  int_mode = as_a <scalar_int_mode> (mode);
10650 
10651 	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10652 	     minus the width of a smaller mode, we can do this with a
10653 	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
10654 	  if ((code == ASHIFTRT || code == LSHIFTRT)
10655 	      && ! mode_dependent_address_p (XEXP (varop, 0),
10656 					     MEM_ADDR_SPACE (varop))
10657 	      && ! MEM_VOLATILE_P (varop)
10658 	      && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10659 		  .exists (&tmode)))
10660 	    {
10661 	      new_rtx = adjust_address_nv (varop, tmode,
10662 					   BYTES_BIG_ENDIAN ? 0
10663 					   : count / BITS_PER_UNIT);
10664 
10665 	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10666 				     : ZERO_EXTEND, int_mode, new_rtx);
10667 	      count = 0;
10668 	      continue;
10669 	    }
10670 	  break;
10671 
10672 	case SUBREG:
10673 	  /* The following rules apply only to scalars.  */
10674 	  if (shift_mode != shift_unit_mode)
10675 	    break;
10676 	  int_mode = as_a <scalar_int_mode> (mode);
10677 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10678 
10679 	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
10680 	     the same number of words as what we've seen so far.  Then store
10681 	     the widest mode in MODE.  */
10682 	  if (subreg_lowpart_p (varop)
10683 	      && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10684 	      && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10685 	      && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10686 		  == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10687 	      && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10688 	    {
10689 	      varop = SUBREG_REG (varop);
10690 	      if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10691 		mode = inner_mode;
10692 	      continue;
10693 	    }
10694 	  break;
10695 
10696 	case MULT:
10697 	  /* Some machines use MULT instead of ASHIFT because MULT
10698 	     is cheaper.  But it is still better on those machines to
10699 	     merge two shifts into one.  */
10700 	  if (CONST_INT_P (XEXP (varop, 1))
10701 	      && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10702 	    {
10703 	      rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10704 	      varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10705 					   XEXP (varop, 0), log2_rtx);
10706 	      continue;
10707 	    }
10708 	  break;
10709 
10710 	case UDIV:
10711 	  /* Similar, for when divides are cheaper.  */
10712 	  if (CONST_INT_P (XEXP (varop, 1))
10713 	      && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10714 	    {
10715 	      rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10716 	      varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10717 					   XEXP (varop, 0), log2_rtx);
10718 	      continue;
10719 	    }
10720 	  break;
10721 
10722 	case ASHIFTRT:
10723 	  /* If we are extracting just the sign bit of an arithmetic
10724 	     right shift, that shift is not needed.  However, the sign
10725 	     bit of a wider mode may be different from what would be
10726 	     interpreted as the sign bit in a narrower mode, so, if
10727 	     the result is narrower, don't discard the shift.  */
10728 	  if (code == LSHIFTRT
10729 	      && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10730 	      && (GET_MODE_UNIT_BITSIZE (result_mode)
10731 		  >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10732 	    {
10733 	      varop = XEXP (varop, 0);
10734 	      continue;
10735 	    }
10736 
10737 	  /* fall through */
10738 
10739 	case LSHIFTRT:
10740 	case ASHIFT:
10741 	case ROTATE:
10742 	  /* The following rules apply only to scalars.  */
10743 	  if (shift_mode != shift_unit_mode)
10744 	    break;
10745 	  int_mode = as_a <scalar_int_mode> (mode);
10746 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10747 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10748 
10749 	  /* Here we have two nested shifts.  The result is usually the
10750 	     AND of a new shift with a mask.  We compute the result below.  */
10751 	  if (CONST_INT_P (XEXP (varop, 1))
10752 	      && INTVAL (XEXP (varop, 1)) >= 0
10753 	      && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10754 	      && HWI_COMPUTABLE_MODE_P (int_result_mode)
10755 	      && HWI_COMPUTABLE_MODE_P (int_mode))
10756 	    {
10757 	      enum rtx_code first_code = GET_CODE (varop);
10758 	      unsigned int first_count = INTVAL (XEXP (varop, 1));
10759 	      unsigned HOST_WIDE_INT mask;
10760 	      rtx mask_rtx;
10761 
10762 	      /* We have one common special case.  We can't do any merging if
10763 		 the inner code is an ASHIFTRT of a smaller mode.  However, if
10764 		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10765 		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10766 		 we can convert it to
10767 		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10768 		 This simplifies certain SIGN_EXTEND operations.  */
10769 	      if (code == ASHIFT && first_code == ASHIFTRT
10770 		  && count == (GET_MODE_PRECISION (int_result_mode)
10771 			       - GET_MODE_PRECISION (int_varop_mode)))
10772 		{
10773 		  /* C3 has the low-order C1 bits zero.  */
10774 
10775 		  mask = GET_MODE_MASK (int_mode)
10776 			 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10777 
10778 		  varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10779 						  XEXP (varop, 0), mask);
10780 		  varop = simplify_shift_const (NULL_RTX, ASHIFT,
10781 						int_result_mode, varop, count);
10782 		  count = first_count;
10783 		  code = ASHIFTRT;
10784 		  continue;
10785 		}
10786 
10787 	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10788 		 than C1 high-order bits equal to the sign bit, we can convert
10789 		 this to either an ASHIFT or an ASHIFTRT depending on the
10790 		 two counts.
10791 
10792 		 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE.  */
10793 
10794 	      if (code == ASHIFTRT && first_code == ASHIFT
10795 		  && int_varop_mode == shift_unit_mode
10796 		  && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10797 		      > first_count))
10798 		{
10799 		  varop = XEXP (varop, 0);
10800 		  count -= first_count;
10801 		  if (count < 0)
10802 		    {
10803 		      count = -count;
10804 		      code = ASHIFT;
10805 		    }
10806 
10807 		  continue;
10808 		}
10809 
10810 	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
10811 		 we can only do this if FIRST_CODE is also ASHIFTRT.
10812 
10813 		 We can't do the case when CODE is ROTATE and FIRST_CODE is
10814 		 ASHIFTRT.
10815 
10816 		 If the mode of this shift is not the mode of the outer shift,
10817 		 we can't do this if either shift is a right shift or ROTATE.
10818 
10819 		 Finally, we can't do any of these if the mode is too wide
10820 		 unless the codes are the same.
10821 
10822 		 Handle the case where the shift codes are the same
10823 		 first.  */
10824 
10825 	      if (code == first_code)
10826 		{
10827 		  if (int_varop_mode != int_result_mode
10828 		      && (code == ASHIFTRT || code == LSHIFTRT
10829 			  || code == ROTATE))
10830 		    break;
10831 
10832 		  count += first_count;
10833 		  varop = XEXP (varop, 0);
10834 		  continue;
10835 		}
10836 
10837 	      if (code == ASHIFTRT
10838 		  || (code == ROTATE && first_code == ASHIFTRT)
10839 		  || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10840 		  || (int_varop_mode != int_result_mode
10841 		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
10842 			  || first_code == ROTATE
10843 			  || code == ROTATE)))
10844 		break;
10845 
10846 	      /* To compute the mask to apply after the shift, shift the
10847 		 nonzero bits of the inner shift the same way the
10848 		 outer shift will.  */
10849 
10850 	      mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10851 				       int_result_mode);
10852 	      rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10853 	      mask_rtx
10854 		= simplify_const_binary_operation (code, int_result_mode,
10855 						   mask_rtx, count_rtx);
10856 
10857 	      /* Give up if we can't compute an outer operation to use.  */
10858 	      if (mask_rtx == 0
10859 		  || !CONST_INT_P (mask_rtx)
10860 		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
10861 					INTVAL (mask_rtx),
10862 					int_result_mode, &complement_p))
10863 		break;
10864 
10865 	      /* If the shifts are in the same direction, we add the
10866 		 counts.  Otherwise, we subtract them.  */
10867 	      if ((code == ASHIFTRT || code == LSHIFTRT)
10868 		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10869 		count += first_count;
10870 	      else
10871 		count -= first_count;
10872 
10873 	      /* If COUNT is positive, the new shift is usually CODE,
10874 		 except for the two exceptions below, in which case it is
10875 		 FIRST_CODE.  If the count is negative, FIRST_CODE should
10876 		 always be used  */
10877 	      if (count > 0
10878 		  && ((first_code == ROTATE && code == ASHIFT)
10879 		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
10880 		code = first_code;
10881 	      else if (count < 0)
10882 		code = first_code, count = -count;
10883 
10884 	      varop = XEXP (varop, 0);
10885 	      continue;
10886 	    }
10887 
10888 	  /* If we have (A << B << C) for any shift, we can convert this to
10889 	     (A << C << B).  This wins if A is a constant.  Only try this if
10890 	     B is not a constant.  */
10891 
10892 	  else if (GET_CODE (varop) == code
10893 		   && CONST_INT_P (XEXP (varop, 0))
10894 		   && !CONST_INT_P (XEXP (varop, 1)))
10895 	    {
10896 	      /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10897 		 sure the result will be masked.  See PR70222.  */
10898 	      if (code == LSHIFTRT
10899 		  && int_mode != int_result_mode
10900 		  && !merge_outer_ops (&outer_op, &outer_const, AND,
10901 				       GET_MODE_MASK (int_result_mode)
10902 				       >> orig_count, int_result_mode,
10903 				       &complement_p))
10904 		break;
10905 	      /* For ((int) (cstLL >> count)) >> cst2 just give up.  Queuing
10906 		 up outer sign extension (often left and right shift) is
10907 		 hardly more efficient than the original.  See PR70429.  */
10908 	      if (code == ASHIFTRT && int_mode != int_result_mode)
10909 		break;
10910 
10911 	      rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10912 	      rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10913 							     XEXP (varop, 0),
10914 							     count_rtx);
10915 	      varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10916 	      count = 0;
10917 	      continue;
10918 	    }
10919 	  break;
10920 
10921 	case NOT:
10922 	  /* The following rules apply only to scalars.  */
10923 	  if (shift_mode != shift_unit_mode)
10924 	    break;
10925 
10926 	  /* Make this fit the case below.  */
10927 	  varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10928 	  continue;
10929 
10930 	case IOR:
10931 	case AND:
10932 	case XOR:
10933 	  /* The following rules apply only to scalars.  */
10934 	  if (shift_mode != shift_unit_mode)
10935 	    break;
10936 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10937 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10938 
10939 	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10940 	     with C the size of VAROP - 1 and the shift is logical if
10941 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10942 	     we have an (le X 0) operation.   If we have an arithmetic shift
10943 	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
10944 	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
10945 
10946 	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10947 	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10948 	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10949 	      && (code == LSHIFTRT || code == ASHIFTRT)
10950 	      && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10951 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10952 	    {
10953 	      count = 0;
10954 	      varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10955 				  const0_rtx);
10956 
10957 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10958 		varop = gen_rtx_NEG (int_varop_mode, varop);
10959 
10960 	      continue;
10961 	    }
10962 
10963 	  /* If we have (shift (logical)), move the logical to the outside
10964 	     to allow it to possibly combine with another logical and the
10965 	     shift to combine with another shift.  This also canonicalizes to
10966 	     what a ZERO_EXTRACT looks like.  Also, some machines have
10967 	     (and (shift)) insns.  */
10968 
10969 	  if (CONST_INT_P (XEXP (varop, 1))
10970 	      /* We can't do this if we have (ashiftrt (xor))  and the
10971 		 constant has its sign bit set in shift_unit_mode with
10972 		 shift_unit_mode wider than result_mode.  */
10973 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10974 		   && int_result_mode != shift_unit_mode
10975 		   && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10976 					  shift_unit_mode) < 0)
10977 	      && (new_rtx = simplify_const_binary_operation
10978 		  (code, int_result_mode,
10979 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10980 		   gen_int_shift_amount (int_result_mode, count))) != 0
10981 	      && CONST_INT_P (new_rtx)
10982 	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10983 				  INTVAL (new_rtx), int_result_mode,
10984 				  &complement_p))
10985 	    {
10986 	      varop = XEXP (varop, 0);
10987 	      continue;
10988 	    }
10989 
10990 	  /* If we can't do that, try to simplify the shift in each arm of the
10991 	     logical expression, make a new logical expression, and apply
10992 	     the inverse distributive law.  This also can't be done for
10993 	     (ashiftrt (xor)) where we've widened the shift and the constant
10994 	     changes the sign bit.  */
10995 	  if (CONST_INT_P (XEXP (varop, 1))
10996 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10997 		   && int_result_mode != shift_unit_mode
10998 		   && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10999 					  shift_unit_mode) < 0))
11000 	    {
11001 	      rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11002 					      XEXP (varop, 0), count);
11003 	      rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11004 					      XEXP (varop, 1), count);
11005 
11006 	      varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11007 					   lhs, rhs);
11008 	      varop = apply_distributive_law (varop);
11009 
11010 	      count = 0;
11011 	      continue;
11012 	    }
11013 	  break;
11014 
11015 	case EQ:
11016 	  /* The following rules apply only to scalars.  */
11017 	  if (shift_mode != shift_unit_mode)
11018 	    break;
11019 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11020 
11021 	  /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11022 	     says that the sign bit can be tested, FOO has mode MODE, C is
11023 	     GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11024 	     that may be nonzero.  */
11025 	  if (code == LSHIFTRT
11026 	      && XEXP (varop, 1) == const0_rtx
11027 	      && GET_MODE (XEXP (varop, 0)) == int_result_mode
11028 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11029 	      && HWI_COMPUTABLE_MODE_P (int_result_mode)
11030 	      && STORE_FLAG_VALUE == -1
11031 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11032 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11033 				  int_result_mode, &complement_p))
11034 	    {
11035 	      varop = XEXP (varop, 0);
11036 	      count = 0;
11037 	      continue;
11038 	    }
11039 	  break;
11040 
11041 	case NEG:
11042 	  /* The following rules apply only to scalars.  */
11043 	  if (shift_mode != shift_unit_mode)
11044 	    break;
11045 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11046 
11047 	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11048 	     than the number of bits in the mode is equivalent to A.  */
11049 	  if (code == LSHIFTRT
11050 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11051 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11052 	    {
11053 	      varop = XEXP (varop, 0);
11054 	      count = 0;
11055 	      continue;
11056 	    }
11057 
11058 	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
11059 	     NEG outside to allow shifts to combine.  */
11060 	  if (code == ASHIFT
11061 	      && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11062 				  int_result_mode, &complement_p))
11063 	    {
11064 	      varop = XEXP (varop, 0);
11065 	      continue;
11066 	    }
11067 	  break;
11068 
11069 	case PLUS:
11070 	  /* The following rules apply only to scalars.  */
11071 	  if (shift_mode != shift_unit_mode)
11072 	    break;
11073 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11074 
11075 	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11076 	     is one less than the number of bits in the mode is
11077 	     equivalent to (xor A 1).  */
11078 	  if (code == LSHIFTRT
11079 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11080 	      && XEXP (varop, 1) == constm1_rtx
11081 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11082 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11083 				  int_result_mode, &complement_p))
11084 	    {
11085 	      count = 0;
11086 	      varop = XEXP (varop, 0);
11087 	      continue;
11088 	    }
11089 
11090 	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11091 	     that might be nonzero in BAR are those being shifted out and those
11092 	     bits are known zero in FOO, we can replace the PLUS with FOO.
11093 	     Similarly in the other operand order.  This code occurs when
11094 	     we are computing the size of a variable-size array.  */
11095 
11096 	  if ((code == ASHIFTRT || code == LSHIFTRT)
11097 	      && count < HOST_BITS_PER_WIDE_INT
11098 	      && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11099 	      && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11100 		  & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11101 	    {
11102 	      varop = XEXP (varop, 0);
11103 	      continue;
11104 	    }
11105 	  else if ((code == ASHIFTRT || code == LSHIFTRT)
11106 		   && count < HOST_BITS_PER_WIDE_INT
11107 		   && HWI_COMPUTABLE_MODE_P (int_result_mode)
11108 		   && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11109 		       >> count) == 0
11110 		   && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11111 		       & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11112 	    {
11113 	      varop = XEXP (varop, 1);
11114 	      continue;
11115 	    }
11116 
11117 	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
11118 	  if (code == ASHIFT
11119 	      && CONST_INT_P (XEXP (varop, 1))
11120 	      && (new_rtx = simplify_const_binary_operation
11121 		  (ASHIFT, int_result_mode,
11122 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11123 		   gen_int_shift_amount (int_result_mode, count))) != 0
11124 	      && CONST_INT_P (new_rtx)
11125 	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
11126 				  INTVAL (new_rtx), int_result_mode,
11127 				  &complement_p))
11128 	    {
11129 	      varop = XEXP (varop, 0);
11130 	      continue;
11131 	    }
11132 
11133 	  /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11134 	     signbit', and attempt to change the PLUS to an XOR and move it to
11135 	     the outer operation as is done above in the AND/IOR/XOR case
11136 	     leg for shift(logical). See details in logical handling above
11137 	     for reasoning in doing so.  */
11138 	  if (code == LSHIFTRT
11139 	      && CONST_INT_P (XEXP (varop, 1))
11140 	      && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11141 	      && (new_rtx = simplify_const_binary_operation
11142 		  (code, int_result_mode,
11143 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11144 		   gen_int_shift_amount (int_result_mode, count))) != 0
11145 	      && CONST_INT_P (new_rtx)
11146 	      && merge_outer_ops (&outer_op, &outer_const, XOR,
11147 				  INTVAL (new_rtx), int_result_mode,
11148 				  &complement_p))
11149 	    {
11150 	      varop = XEXP (varop, 0);
11151 	      continue;
11152 	    }
11153 
11154 	  break;
11155 
11156 	case MINUS:
11157 	  /* The following rules apply only to scalars.  */
11158 	  if (shift_mode != shift_unit_mode)
11159 	    break;
11160 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11161 
11162 	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11163 	     with C the size of VAROP - 1 and the shift is logical if
11164 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11165 	     we have a (gt X 0) operation.  If the shift is arithmetic with
11166 	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11167 	     we have a (neg (gt X 0)) operation.  */
11168 
11169 	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11170 	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11171 	      && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11172 	      && (code == LSHIFTRT || code == ASHIFTRT)
11173 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11174 	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11175 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11176 	    {
11177 	      count = 0;
11178 	      varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11179 				  const0_rtx);
11180 
11181 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11182 		varop = gen_rtx_NEG (int_varop_mode, varop);
11183 
11184 	      continue;
11185 	    }
11186 	  break;
11187 
11188 	case TRUNCATE:
11189 	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11190 	     if the truncate does not affect the value.  */
11191 	  if (code == LSHIFTRT
11192 	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11193 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11194 	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
11195 		  >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11196 		      - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11197 	    {
11198 	      rtx varop_inner = XEXP (varop, 0);
11199 	      int new_count = count + INTVAL (XEXP (varop_inner, 1));
11200 	      rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11201 							new_count);
11202 	      varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11203 					      XEXP (varop_inner, 0),
11204 					      new_count_rtx);
11205 	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11206 	      count = 0;
11207 	      continue;
11208 	    }
11209 	  break;
11210 
11211 	default:
11212 	  break;
11213 	}
11214 
11215       break;
11216     }
11217 
11218   shift_mode = result_mode;
11219   if (shift_mode != mode)
11220     {
11221       /* We only change the modes of scalar shifts.  */
11222       int_mode = as_a <scalar_int_mode> (mode);
11223       int_result_mode = as_a <scalar_int_mode> (result_mode);
11224       shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11225 					 int_mode, outer_op, outer_const);
11226     }
11227 
11228   /* We have now finished analyzing the shift.  The result should be
11229      a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
11230      OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11231      to the result of the shift.  OUTER_CONST is the relevant constant,
11232      but we must turn off all bits turned off in the shift.  */
11233 
11234   if (outer_op == UNKNOWN
11235       && orig_code == code && orig_count == count
11236       && varop == orig_varop
11237       && shift_mode == GET_MODE (varop))
11238     return NULL_RTX;
11239 
11240   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
11241   varop = gen_lowpart (shift_mode, varop);
11242   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11243     return NULL_RTX;
11244 
11245   /* If we have an outer operation and we just made a shift, it is
11246      possible that we could have simplified the shift were it not
11247      for the outer operation.  So try to do the simplification
11248      recursively.  */
11249 
11250   if (outer_op != UNKNOWN)
11251     x = simplify_shift_const_1 (code, shift_mode, varop, count);
11252   else
11253     x = NULL_RTX;
11254 
11255   if (x == NULL_RTX)
11256     x = simplify_gen_binary (code, shift_mode, varop,
11257 			     gen_int_shift_amount (shift_mode, count));
11258 
11259   /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11260      turn off all the bits that the shift would have turned off.  */
11261   if (orig_code == LSHIFTRT && result_mode != shift_mode)
11262     /* We only change the modes of scalar shifts.  */
11263     x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11264 				x, GET_MODE_MASK (result_mode) >> orig_count);
11265 
11266   /* Do the remainder of the processing in RESULT_MODE.  */
11267   x = gen_lowpart_or_truncate (result_mode, x);
11268 
11269   /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11270      operation.  */
11271   if (complement_p)
11272     x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11273 
11274   if (outer_op != UNKNOWN)
11275     {
11276       int_result_mode = as_a <scalar_int_mode> (result_mode);
11277 
11278       if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11279 	  && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11280 	outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11281 
11282       if (outer_op == AND)
11283 	x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11284       else if (outer_op == SET)
11285 	{
11286 	  /* This means that we have determined that the result is
11287 	     equivalent to a constant.  This should be rare.  */
11288 	  if (!side_effects_p (x))
11289 	    x = GEN_INT (outer_const);
11290 	}
11291       else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11292 	x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11293       else
11294 	x = simplify_gen_binary (outer_op, int_result_mode, x,
11295 				 GEN_INT (outer_const));
11296     }
11297 
11298   return x;
11299 }
11300 
11301 /* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
11302    The result of the shift is RESULT_MODE.  If we cannot simplify it,
11303    return X or, if it is NULL, synthesize the expression with
11304    simplify_gen_binary.  Otherwise, return a simplified value.
11305 
11306    The shift is normally computed in the widest mode we find in VAROP, as
11307    long as it isn't a different number of words than RESULT_MODE.  Exceptions
11308    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
11309 
11310 static rtx
simplify_shift_const(rtx x,enum rtx_code code,machine_mode result_mode,rtx varop,int count)11311 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11312 		      rtx varop, int count)
11313 {
11314   rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11315   if (tem)
11316     return tem;
11317 
11318   if (!x)
11319     x = simplify_gen_binary (code, GET_MODE (varop), varop,
11320 			     gen_int_shift_amount (GET_MODE (varop), count));
11321   if (GET_MODE (x) != result_mode)
11322     x = gen_lowpart (result_mode, x);
11323   return x;
11324 }
11325 
11326 
11327 /* A subroutine of recog_for_combine.  See there for arguments and
11328    return value.  */
11329 
11330 static int
recog_for_combine_1(rtx * pnewpat,rtx_insn * insn,rtx * pnotes)11331 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11332 {
11333   rtx pat = *pnewpat;
11334   rtx pat_without_clobbers;
11335   int insn_code_number;
11336   int num_clobbers_to_add = 0;
11337   int i;
11338   rtx notes = NULL_RTX;
11339   rtx old_notes, old_pat;
11340   int old_icode;
11341 
11342   /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11343      we use to indicate that something didn't match.  If we find such a
11344      thing, force rejection.  */
11345   if (GET_CODE (pat) == PARALLEL)
11346     for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11347       if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11348 	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11349 	return -1;
11350 
11351   old_pat = PATTERN (insn);
11352   old_notes = REG_NOTES (insn);
11353   PATTERN (insn) = pat;
11354   REG_NOTES (insn) = NULL_RTX;
11355 
11356   insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11357   if (dump_file && (dump_flags & TDF_DETAILS))
11358     {
11359       if (insn_code_number < 0)
11360 	fputs ("Failed to match this instruction:\n", dump_file);
11361       else
11362 	fputs ("Successfully matched this instruction:\n", dump_file);
11363       print_rtl_single (dump_file, pat);
11364     }
11365 
11366   /* If it isn't, there is the possibility that we previously had an insn
11367      that clobbered some register as a side effect, but the combined
11368      insn doesn't need to do that.  So try once more without the clobbers
11369      unless this represents an ASM insn.  */
11370 
11371   if (insn_code_number < 0 && ! check_asm_operands (pat)
11372       && GET_CODE (pat) == PARALLEL)
11373     {
11374       int pos;
11375 
11376       for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11377 	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11378 	  {
11379 	    if (i != pos)
11380 	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11381 	    pos++;
11382 	  }
11383 
11384       SUBST_INT (XVECLEN (pat, 0), pos);
11385 
11386       if (pos == 1)
11387 	pat = XVECEXP (pat, 0, 0);
11388 
11389       PATTERN (insn) = pat;
11390       insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11391       if (dump_file && (dump_flags & TDF_DETAILS))
11392 	{
11393 	  if (insn_code_number < 0)
11394 	    fputs ("Failed to match this instruction:\n", dump_file);
11395 	  else
11396 	    fputs ("Successfully matched this instruction:\n", dump_file);
11397 	  print_rtl_single (dump_file, pat);
11398 	}
11399     }
11400 
11401   pat_without_clobbers = pat;
11402 
11403   PATTERN (insn) = old_pat;
11404   REG_NOTES (insn) = old_notes;
11405 
11406   /* Recognize all noop sets, these will be killed by followup pass.  */
11407   if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11408     insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11409 
11410   /* If we had any clobbers to add, make a new pattern than contains
11411      them.  Then check to make sure that all of them are dead.  */
11412   if (num_clobbers_to_add)
11413     {
11414       rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11415 				     rtvec_alloc (GET_CODE (pat) == PARALLEL
11416 						  ? (XVECLEN (pat, 0)
11417 						     + num_clobbers_to_add)
11418 						  : num_clobbers_to_add + 1));
11419 
11420       if (GET_CODE (pat) == PARALLEL)
11421 	for (i = 0; i < XVECLEN (pat, 0); i++)
11422 	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11423       else
11424 	XVECEXP (newpat, 0, 0) = pat;
11425 
11426       add_clobbers (newpat, insn_code_number);
11427 
11428       for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11429 	   i < XVECLEN (newpat, 0); i++)
11430 	{
11431 	  if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11432 	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11433 	    return -1;
11434 	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11435 	    {
11436 	      gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11437 	      notes = alloc_reg_note (REG_UNUSED,
11438 				      XEXP (XVECEXP (newpat, 0, i), 0), notes);
11439 	    }
11440 	}
11441       pat = newpat;
11442     }
11443 
11444   if (insn_code_number >= 0
11445       && insn_code_number != NOOP_MOVE_INSN_CODE)
11446     {
11447       old_pat = PATTERN (insn);
11448       old_notes = REG_NOTES (insn);
11449       old_icode = INSN_CODE (insn);
11450       PATTERN (insn) = pat;
11451       REG_NOTES (insn) = notes;
11452       INSN_CODE (insn) = insn_code_number;
11453 
11454       /* Allow targets to reject combined insn.  */
11455       if (!targetm.legitimate_combined_insn (insn))
11456 	{
11457 	  if (dump_file && (dump_flags & TDF_DETAILS))
11458 	    fputs ("Instruction not appropriate for target.",
11459 		   dump_file);
11460 
11461 	  /* Callers expect recog_for_combine to strip
11462 	     clobbers from the pattern on failure.  */
11463 	  pat = pat_without_clobbers;
11464 	  notes = NULL_RTX;
11465 
11466 	  insn_code_number = -1;
11467 	}
11468 
11469       PATTERN (insn) = old_pat;
11470       REG_NOTES (insn) = old_notes;
11471       INSN_CODE (insn) = old_icode;
11472     }
11473 
11474   *pnewpat = pat;
11475   *pnotes = notes;
11476 
11477   return insn_code_number;
11478 }
11479 
11480 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11481    expressed as an AND and maybe an LSHIFTRT, to that formulation.
11482    Return whether anything was so changed.  */
11483 
11484 static bool
change_zero_ext(rtx pat)11485 change_zero_ext (rtx pat)
11486 {
11487   bool changed = false;
11488   rtx *src = &SET_SRC (pat);
11489 
11490   subrtx_ptr_iterator::array_type array;
11491   FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11492     {
11493       rtx x = **iter;
11494       scalar_int_mode mode, inner_mode;
11495       if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11496 	continue;
11497       int size;
11498 
11499       if (GET_CODE (x) == ZERO_EXTRACT
11500 	  && CONST_INT_P (XEXP (x, 1))
11501 	  && CONST_INT_P (XEXP (x, 2))
11502 	  && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11503 	  && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11504 	{
11505 	  size = INTVAL (XEXP (x, 1));
11506 
11507 	  int start = INTVAL (XEXP (x, 2));
11508 	  if (BITS_BIG_ENDIAN)
11509 	    start = GET_MODE_PRECISION (inner_mode) - size - start;
11510 
11511 	  if (start != 0)
11512 	    x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11513 				  gen_int_shift_amount (inner_mode, start));
11514 	  else
11515 	    x = XEXP (x, 0);
11516 
11517 	  if (mode != inner_mode)
11518 	    {
11519 	      if (REG_P (x) && HARD_REGISTER_P (x)
11520 		  && !can_change_dest_mode (x, 0, mode))
11521 		continue;
11522 
11523 	      x = gen_lowpart_SUBREG (mode, x);
11524 	    }
11525 	}
11526       else if (GET_CODE (x) == ZERO_EXTEND
11527 	       && GET_CODE (XEXP (x, 0)) == SUBREG
11528 	       && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11529 	       && !paradoxical_subreg_p (XEXP (x, 0))
11530 	       && subreg_lowpart_p (XEXP (x, 0)))
11531 	{
11532 	  inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11533 	  size = GET_MODE_PRECISION (inner_mode);
11534 	  x = SUBREG_REG (XEXP (x, 0));
11535 	  if (GET_MODE (x) != mode)
11536 	    {
11537 	      if (REG_P (x) && HARD_REGISTER_P (x)
11538 		  && !can_change_dest_mode (x, 0, mode))
11539 		continue;
11540 
11541 	      x = gen_lowpart_SUBREG (mode, x);
11542 	    }
11543 	}
11544       else if (GET_CODE (x) == ZERO_EXTEND
11545 	       && REG_P (XEXP (x, 0))
11546 	       && HARD_REGISTER_P (XEXP (x, 0))
11547 	       && can_change_dest_mode (XEXP (x, 0), 0, mode))
11548 	{
11549 	  inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11550 	  size = GET_MODE_PRECISION (inner_mode);
11551 	  x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11552 	}
11553       else
11554 	continue;
11555 
11556       if (!(GET_CODE (x) == LSHIFTRT
11557 	    && CONST_INT_P (XEXP (x, 1))
11558 	    && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11559 	{
11560 	  wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11561 	  x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11562 	}
11563 
11564       SUBST (**iter, x);
11565       changed = true;
11566     }
11567 
11568   if (changed)
11569     FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11570       maybe_swap_commutative_operands (**iter);
11571 
11572   rtx *dst = &SET_DEST (pat);
11573   scalar_int_mode mode;
11574   if (GET_CODE (*dst) == ZERO_EXTRACT
11575       && REG_P (XEXP (*dst, 0))
11576       && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11577       && CONST_INT_P (XEXP (*dst, 1))
11578       && CONST_INT_P (XEXP (*dst, 2)))
11579     {
11580       rtx reg = XEXP (*dst, 0);
11581       int width = INTVAL (XEXP (*dst, 1));
11582       int offset = INTVAL (XEXP (*dst, 2));
11583       int reg_width = GET_MODE_PRECISION (mode);
11584       if (BITS_BIG_ENDIAN)
11585 	offset = reg_width - width - offset;
11586 
11587       rtx x, y, z, w;
11588       wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11589       wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11590       x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11591       if (offset)
11592 	y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11593       else
11594 	y = SET_SRC (pat);
11595       z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11596       w = gen_rtx_IOR (mode, x, z);
11597       SUBST (SET_DEST (pat), reg);
11598       SUBST (SET_SRC (pat), w);
11599 
11600       changed = true;
11601     }
11602 
11603   return changed;
11604 }
11605 
11606 /* Like recog, but we receive the address of a pointer to a new pattern.
11607    We try to match the rtx that the pointer points to.
11608    If that fails, we may try to modify or replace the pattern,
11609    storing the replacement into the same pointer object.
11610 
11611    Modifications include deletion or addition of CLOBBERs.  If the
11612    instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11613    to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11614    (and undo if that fails).
11615 
11616    PNOTES is a pointer to a location where any REG_UNUSED notes added for
11617    the CLOBBERs are placed.
11618 
11619    The value is the final insn code from the pattern ultimately matched,
11620    or -1.  */
11621 
11622 static int
recog_for_combine(rtx * pnewpat,rtx_insn * insn,rtx * pnotes)11623 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11624 {
11625   rtx pat = *pnewpat;
11626   int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11627   if (insn_code_number >= 0 || check_asm_operands (pat))
11628     return insn_code_number;
11629 
11630   void *marker = get_undo_marker ();
11631   bool changed = false;
11632 
11633   if (GET_CODE (pat) == SET)
11634     changed = change_zero_ext (pat);
11635   else if (GET_CODE (pat) == PARALLEL)
11636     {
11637       int i;
11638       for (i = 0; i < XVECLEN (pat, 0); i++)
11639 	{
11640 	  rtx set = XVECEXP (pat, 0, i);
11641 	  if (GET_CODE (set) == SET)
11642 	    changed |= change_zero_ext (set);
11643 	}
11644     }
11645 
11646   if (changed)
11647     {
11648       insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11649 
11650       if (insn_code_number < 0)
11651 	undo_to_marker (marker);
11652     }
11653 
11654   return insn_code_number;
11655 }
11656 
11657 /* Like gen_lowpart_general but for use by combine.  In combine it
11658    is not possible to create any new pseudoregs.  However, it is
11659    safe to create invalid memory addresses, because combine will
11660    try to recognize them and all they will do is make the combine
11661    attempt fail.
11662 
11663    If for some reason this cannot do its job, an rtx
11664    (clobber (const_int 0)) is returned.
11665    An insn containing that will not be recognized.  */
11666 
11667 static rtx
gen_lowpart_for_combine(machine_mode omode,rtx x)11668 gen_lowpart_for_combine (machine_mode omode, rtx x)
11669 {
11670   machine_mode imode = GET_MODE (x);
11671   rtx result;
11672 
11673   if (omode == imode)
11674     return x;
11675 
11676   /* We can only support MODE being wider than a word if X is a
11677      constant integer or has a mode the same size.  */
11678   if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11679       && ! (CONST_SCALAR_INT_P (x)
11680 	    || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11681     goto fail;
11682 
11683   /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
11684      won't know what to do.  So we will strip off the SUBREG here and
11685      process normally.  */
11686   if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11687     {
11688       x = SUBREG_REG (x);
11689 
11690       /* For use in case we fall down into the address adjustments
11691 	 further below, we need to adjust the known mode and size of
11692 	 x; imode and isize, since we just adjusted x.  */
11693       imode = GET_MODE (x);
11694 
11695       if (imode == omode)
11696 	return x;
11697     }
11698 
11699   result = gen_lowpart_common (omode, x);
11700 
11701   if (result)
11702     return result;
11703 
11704   if (MEM_P (x))
11705     {
11706       /* Refuse to work on a volatile memory ref or one with a mode-dependent
11707 	 address.  */
11708       if (MEM_VOLATILE_P (x)
11709 	  || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11710 	goto fail;
11711 
11712       /* If we want to refer to something bigger than the original memref,
11713 	 generate a paradoxical subreg instead.  That will force a reload
11714 	 of the original memref X.  */
11715       if (paradoxical_subreg_p (omode, imode))
11716 	return gen_rtx_SUBREG (omode, x, 0);
11717 
11718       poly_int64 offset = byte_lowpart_offset (omode, imode);
11719       return adjust_address_nv (x, omode, offset);
11720     }
11721 
11722   /* If X is a comparison operator, rewrite it in a new mode.  This
11723      probably won't match, but may allow further simplifications.  */
11724   else if (COMPARISON_P (x))
11725     return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11726 
11727   /* If we couldn't simplify X any other way, just enclose it in a
11728      SUBREG.  Normally, this SUBREG won't match, but some patterns may
11729      include an explicit SUBREG or we may simplify it further in combine.  */
11730   else
11731     {
11732       rtx res;
11733 
11734       if (imode == VOIDmode)
11735 	{
11736 	  imode = int_mode_for_mode (omode).require ();
11737 	  x = gen_lowpart_common (imode, x);
11738 	  if (x == NULL)
11739 	    goto fail;
11740 	}
11741       res = lowpart_subreg (omode, x, imode);
11742       if (res)
11743 	return res;
11744     }
11745 
11746  fail:
11747   return gen_rtx_CLOBBER (omode, const0_rtx);
11748 }
11749 
11750 /* Try to simplify a comparison between OP0 and a constant OP1,
11751    where CODE is the comparison code that will be tested, into a
11752    (CODE OP0 const0_rtx) form.
11753 
11754    The result is a possibly different comparison code to use.
11755    *POP1 may be updated.  */
11756 
11757 static enum rtx_code
simplify_compare_const(enum rtx_code code,machine_mode mode,rtx op0,rtx * pop1)11758 simplify_compare_const (enum rtx_code code, machine_mode mode,
11759 			rtx op0, rtx *pop1)
11760 {
11761   scalar_int_mode int_mode;
11762   HOST_WIDE_INT const_op = INTVAL (*pop1);
11763 
11764   /* Get the constant we are comparing against and turn off all bits
11765      not on in our mode.  */
11766   if (mode != VOIDmode)
11767     const_op = trunc_int_for_mode (const_op, mode);
11768 
11769   /* If we are comparing against a constant power of two and the value
11770      being compared can only have that single bit nonzero (e.g., it was
11771      `and'ed with that bit), we can replace this with a comparison
11772      with zero.  */
11773   if (const_op
11774       && (code == EQ || code == NE || code == GE || code == GEU
11775 	  || code == LT || code == LTU)
11776       && is_a <scalar_int_mode> (mode, &int_mode)
11777       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11778       && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11779       && (nonzero_bits (op0, int_mode)
11780 	  == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11781     {
11782       code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11783       const_op = 0;
11784     }
11785 
11786   /* Similarly, if we are comparing a value known to be either -1 or
11787      0 with -1, change it to the opposite comparison against zero.  */
11788   if (const_op == -1
11789       && (code == EQ || code == NE || code == GT || code == LE
11790 	  || code == GEU || code == LTU)
11791       && is_a <scalar_int_mode> (mode, &int_mode)
11792       && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11793     {
11794       code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11795       const_op = 0;
11796     }
11797 
11798   /* Do some canonicalizations based on the comparison code.  We prefer
11799      comparisons against zero and then prefer equality comparisons.
11800      If we can reduce the size of a constant, we will do that too.  */
11801   switch (code)
11802     {
11803     case LT:
11804       /* < C is equivalent to <= (C - 1) */
11805       if (const_op > 0)
11806 	{
11807 	  const_op -= 1;
11808 	  code = LE;
11809 	  /* ... fall through to LE case below.  */
11810 	  gcc_fallthrough ();
11811 	}
11812       else
11813 	break;
11814 
11815     case LE:
11816       /* <= C is equivalent to < (C + 1); we do this for C < 0  */
11817       if (const_op < 0)
11818 	{
11819 	  const_op += 1;
11820 	  code = LT;
11821 	}
11822 
11823       /* If we are doing a <= 0 comparison on a value known to have
11824 	 a zero sign bit, we can replace this with == 0.  */
11825       else if (const_op == 0
11826 	       && is_a <scalar_int_mode> (mode, &int_mode)
11827 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11828 	       && (nonzero_bits (op0, int_mode)
11829 		   & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11830 	       == 0)
11831 	code = EQ;
11832       break;
11833 
11834     case GE:
11835       /* >= C is equivalent to > (C - 1).  */
11836       if (const_op > 0)
11837 	{
11838 	  const_op -= 1;
11839 	  code = GT;
11840 	  /* ... fall through to GT below.  */
11841 	  gcc_fallthrough ();
11842 	}
11843       else
11844 	break;
11845 
11846     case GT:
11847       /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
11848       if (const_op < 0)
11849 	{
11850 	  const_op += 1;
11851 	  code = GE;
11852 	}
11853 
11854       /* If we are doing a > 0 comparison on a value known to have
11855 	 a zero sign bit, we can replace this with != 0.  */
11856       else if (const_op == 0
11857 	       && is_a <scalar_int_mode> (mode, &int_mode)
11858 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11859 	       && (nonzero_bits (op0, int_mode)
11860 		   & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11861 	       == 0)
11862 	code = NE;
11863       break;
11864 
11865     case LTU:
11866       /* < C is equivalent to <= (C - 1).  */
11867       if (const_op > 0)
11868 	{
11869 	  const_op -= 1;
11870 	  code = LEU;
11871 	  /* ... fall through ...  */
11872 	  gcc_fallthrough ();
11873 	}
11874       /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
11875       else if (is_a <scalar_int_mode> (mode, &int_mode)
11876 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11877 	       && ((unsigned HOST_WIDE_INT) const_op
11878 		   == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11879 	{
11880 	  const_op = 0;
11881 	  code = GE;
11882 	  break;
11883 	}
11884       else
11885 	break;
11886 
11887     case LEU:
11888       /* unsigned <= 0 is equivalent to == 0 */
11889       if (const_op == 0)
11890 	code = EQ;
11891       /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
11892       else if (is_a <scalar_int_mode> (mode, &int_mode)
11893 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11894 	       && ((unsigned HOST_WIDE_INT) const_op
11895 		   == ((HOST_WIDE_INT_1U
11896 			<< (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11897 	{
11898 	  const_op = 0;
11899 	  code = GE;
11900 	}
11901       break;
11902 
11903     case GEU:
11904       /* >= C is equivalent to > (C - 1).  */
11905       if (const_op > 1)
11906 	{
11907 	  const_op -= 1;
11908 	  code = GTU;
11909 	  /* ... fall through ...  */
11910 	  gcc_fallthrough ();
11911 	}
11912 
11913       /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
11914       else if (is_a <scalar_int_mode> (mode, &int_mode)
11915 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11916 	       && ((unsigned HOST_WIDE_INT) const_op
11917 		   == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11918 	{
11919 	  const_op = 0;
11920 	  code = LT;
11921 	  break;
11922 	}
11923       else
11924 	break;
11925 
11926     case GTU:
11927       /* unsigned > 0 is equivalent to != 0 */
11928       if (const_op == 0)
11929 	code = NE;
11930       /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
11931       else if (is_a <scalar_int_mode> (mode, &int_mode)
11932 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11933 	       && ((unsigned HOST_WIDE_INT) const_op
11934 		   == (HOST_WIDE_INT_1U
11935 		       << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11936 	{
11937 	  const_op = 0;
11938 	  code = LT;
11939 	}
11940       break;
11941 
11942     default:
11943       break;
11944     }
11945 
11946   *pop1 = GEN_INT (const_op);
11947   return code;
11948 }
11949 
11950 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11951    comparison code that will be tested.
11952 
11953    The result is a possibly different comparison code to use.  *POP0 and
11954    *POP1 may be updated.
11955 
11956    It is possible that we might detect that a comparison is either always
11957    true or always false.  However, we do not perform general constant
11958    folding in combine, so this knowledge isn't useful.  Such tautologies
11959    should have been detected earlier.  Hence we ignore all such cases.  */
11960 
11961 static enum rtx_code
simplify_comparison(enum rtx_code code,rtx * pop0,rtx * pop1)11962 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11963 {
11964   rtx op0 = *pop0;
11965   rtx op1 = *pop1;
11966   rtx tem, tem1;
11967   int i;
11968   scalar_int_mode mode, inner_mode, tmode;
11969   opt_scalar_int_mode tmode_iter;
11970 
11971   /* Try a few ways of applying the same transformation to both operands.  */
11972   while (1)
11973     {
11974       /* The test below this one won't handle SIGN_EXTENDs on these machines,
11975 	 so check specially.  */
11976       if (!WORD_REGISTER_OPERATIONS
11977 	  && code != GTU && code != GEU && code != LTU && code != LEU
11978 	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11979 	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
11980 	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
11981 	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11982 	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11983 	  && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11984 	  && (is_a <scalar_int_mode>
11985 	      (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11986 	  && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11987 	  && CONST_INT_P (XEXP (op0, 1))
11988 	  && XEXP (op0, 1) == XEXP (op1, 1)
11989 	  && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11990 	  && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11991 	  && (INTVAL (XEXP (op0, 1))
11992 	      == (GET_MODE_PRECISION (mode)
11993 		  - GET_MODE_PRECISION (inner_mode))))
11994 	{
11995 	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11996 	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11997 	}
11998 
11999       /* If both operands are the same constant shift, see if we can ignore the
12000 	 shift.  We can if the shift is a rotate or if the bits shifted out of
12001 	 this shift are known to be zero for both inputs and if the type of
12002 	 comparison is compatible with the shift.  */
12003       if (GET_CODE (op0) == GET_CODE (op1)
12004 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12005 	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12006 	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12007 		  && (code != GT && code != LT && code != GE && code != LE))
12008 	      || (GET_CODE (op0) == ASHIFTRT
12009 		  && (code != GTU && code != LTU
12010 		      && code != GEU && code != LEU)))
12011 	  && CONST_INT_P (XEXP (op0, 1))
12012 	  && INTVAL (XEXP (op0, 1)) >= 0
12013 	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12014 	  && XEXP (op0, 1) == XEXP (op1, 1))
12015 	{
12016 	  machine_mode mode = GET_MODE (op0);
12017 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12018 	  int shift_count = INTVAL (XEXP (op0, 1));
12019 
12020 	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12021 	    mask &= (mask >> shift_count) << shift_count;
12022 	  else if (GET_CODE (op0) == ASHIFT)
12023 	    mask = (mask & (mask << shift_count)) >> shift_count;
12024 
12025 	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12026 	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12027 	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12028 	  else
12029 	    break;
12030 	}
12031 
12032       /* If both operands are AND's of a paradoxical SUBREG by constant, the
12033 	 SUBREGs are of the same mode, and, in both cases, the AND would
12034 	 be redundant if the comparison was done in the narrower mode,
12035 	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12036 	 and the operand's possibly nonzero bits are 0xffffff01; in that case
12037 	 if we only care about QImode, we don't need the AND).  This case
12038 	 occurs if the output mode of an scc insn is not SImode and
12039 	 STORE_FLAG_VALUE == 1 (e.g., the 386).
12040 
12041 	 Similarly, check for a case where the AND's are ZERO_EXTEND
12042 	 operations from some narrower mode even though a SUBREG is not
12043 	 present.  */
12044 
12045       else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12046 	       && CONST_INT_P (XEXP (op0, 1))
12047 	       && CONST_INT_P (XEXP (op1, 1)))
12048 	{
12049 	  rtx inner_op0 = XEXP (op0, 0);
12050 	  rtx inner_op1 = XEXP (op1, 0);
12051 	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12052 	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12053 	  int changed = 0;
12054 
12055 	  if (paradoxical_subreg_p (inner_op0)
12056 	      && GET_CODE (inner_op1) == SUBREG
12057 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12058 	      && (GET_MODE (SUBREG_REG (inner_op0))
12059 		  == GET_MODE (SUBREG_REG (inner_op1)))
12060 	      && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12061 					GET_MODE (SUBREG_REG (inner_op0)))) == 0
12062 	      && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12063 					GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12064 	    {
12065 	      op0 = SUBREG_REG (inner_op0);
12066 	      op1 = SUBREG_REG (inner_op1);
12067 
12068 	      /* The resulting comparison is always unsigned since we masked
12069 		 off the original sign bit.  */
12070 	      code = unsigned_condition (code);
12071 
12072 	      changed = 1;
12073 	    }
12074 
12075 	  else if (c0 == c1)
12076 	    FOR_EACH_MODE_UNTIL (tmode,
12077 				 as_a <scalar_int_mode> (GET_MODE (op0)))
12078 	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12079 		{
12080 		  op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12081 		  op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12082 		  code = unsigned_condition (code);
12083 		  changed = 1;
12084 		  break;
12085 		}
12086 
12087 	  if (! changed)
12088 	    break;
12089 	}
12090 
12091       /* If both operands are NOT, we can strip off the outer operation
12092 	 and adjust the comparison code for swapped operands; similarly for
12093 	 NEG, except that this must be an equality comparison.  */
12094       else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12095 	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12096 		   && (code == EQ || code == NE)))
12097 	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12098 
12099       else
12100 	break;
12101     }
12102 
12103   /* If the first operand is a constant, swap the operands and adjust the
12104      comparison code appropriately, but don't do this if the second operand
12105      is already a constant integer.  */
12106   if (swap_commutative_operands_p (op0, op1))
12107     {
12108       std::swap (op0, op1);
12109       code = swap_condition (code);
12110     }
12111 
12112   /* We now enter a loop during which we will try to simplify the comparison.
12113      For the most part, we only are concerned with comparisons with zero,
12114      but some things may really be comparisons with zero but not start
12115      out looking that way.  */
12116 
12117   while (CONST_INT_P (op1))
12118     {
12119       machine_mode raw_mode = GET_MODE (op0);
12120       scalar_int_mode int_mode;
12121       int equality_comparison_p;
12122       int sign_bit_comparison_p;
12123       int unsigned_comparison_p;
12124       HOST_WIDE_INT const_op;
12125 
12126       /* We only want to handle integral modes.  This catches VOIDmode,
12127 	 CCmode, and the floating-point modes.  An exception is that we
12128 	 can handle VOIDmode if OP0 is a COMPARE or a comparison
12129 	 operation.  */
12130 
12131       if (GET_MODE_CLASS (raw_mode) != MODE_INT
12132 	  && ! (raw_mode == VOIDmode
12133 		&& (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12134 	break;
12135 
12136       /* Try to simplify the compare to constant, possibly changing the
12137 	 comparison op, and/or changing op1 to zero.  */
12138       code = simplify_compare_const (code, raw_mode, op0, &op1);
12139       const_op = INTVAL (op1);
12140 
12141       /* Compute some predicates to simplify code below.  */
12142 
12143       equality_comparison_p = (code == EQ || code == NE);
12144       sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12145       unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12146 			       || code == GEU);
12147 
12148       /* If this is a sign bit comparison and we can do arithmetic in
12149 	 MODE, say that we will only be needing the sign bit of OP0.  */
12150       if (sign_bit_comparison_p
12151 	  && is_a <scalar_int_mode> (raw_mode, &int_mode)
12152 	  && HWI_COMPUTABLE_MODE_P (int_mode))
12153 	op0 = force_to_mode (op0, int_mode,
12154 			     HOST_WIDE_INT_1U
12155 			     << (GET_MODE_PRECISION (int_mode) - 1),
12156 			     0);
12157 
12158       if (COMPARISON_P (op0))
12159 	{
12160 	  /* We can't do anything if OP0 is a condition code value, rather
12161 	     than an actual data value.  */
12162 	  if (const_op != 0
12163 	      || CC0_P (XEXP (op0, 0))
12164 	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12165 	    break;
12166 
12167 	  /* Get the two operands being compared.  */
12168 	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12169 	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12170 	  else
12171 	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12172 
12173 	  /* Check for the cases where we simply want the result of the
12174 	     earlier test or the opposite of that result.  */
12175 	  if (code == NE || code == EQ
12176 	      || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12177 		  && (code == LT || code == GE)))
12178 	    {
12179 	      enum rtx_code new_code;
12180 	      if (code == LT || code == NE)
12181 		new_code = GET_CODE (op0);
12182 	      else
12183 		new_code = reversed_comparison_code (op0, NULL);
12184 
12185 	      if (new_code != UNKNOWN)
12186 		{
12187 		  code = new_code;
12188 		  op0 = tem;
12189 		  op1 = tem1;
12190 		  continue;
12191 		}
12192 	    }
12193 	  break;
12194 	}
12195 
12196       if (raw_mode == VOIDmode)
12197 	break;
12198       scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12199 
12200       /* Now try cases based on the opcode of OP0.  If none of the cases
12201 	 does a "continue", we exit this loop immediately after the
12202 	 switch.  */
12203 
12204       unsigned int mode_width = GET_MODE_PRECISION (mode);
12205       unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12206       switch (GET_CODE (op0))
12207 	{
12208 	case ZERO_EXTRACT:
12209 	  /* If we are extracting a single bit from a variable position in
12210 	     a constant that has only a single bit set and are comparing it
12211 	     with zero, we can convert this into an equality comparison
12212 	     between the position and the location of the single bit.  */
12213 	  /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12214 	     have already reduced the shift count modulo the word size.  */
12215 	  if (!SHIFT_COUNT_TRUNCATED
12216 	      && CONST_INT_P (XEXP (op0, 0))
12217 	      && XEXP (op0, 1) == const1_rtx
12218 	      && equality_comparison_p && const_op == 0
12219 	      && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12220 	    {
12221 	      if (BITS_BIG_ENDIAN)
12222 		i = BITS_PER_WORD - 1 - i;
12223 
12224 	      op0 = XEXP (op0, 2);
12225 	      op1 = GEN_INT (i);
12226 	      const_op = i;
12227 
12228 	      /* Result is nonzero iff shift count is equal to I.  */
12229 	      code = reverse_condition (code);
12230 	      continue;
12231 	    }
12232 
12233 	  /* fall through */
12234 
12235 	case SIGN_EXTRACT:
12236 	  tem = expand_compound_operation (op0);
12237 	  if (tem != op0)
12238 	    {
12239 	      op0 = tem;
12240 	      continue;
12241 	    }
12242 	  break;
12243 
12244 	case NOT:
12245 	  /* If testing for equality, we can take the NOT of the constant.  */
12246 	  if (equality_comparison_p
12247 	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12248 	    {
12249 	      op0 = XEXP (op0, 0);
12250 	      op1 = tem;
12251 	      continue;
12252 	    }
12253 
12254 	  /* If just looking at the sign bit, reverse the sense of the
12255 	     comparison.  */
12256 	  if (sign_bit_comparison_p)
12257 	    {
12258 	      op0 = XEXP (op0, 0);
12259 	      code = (code == GE ? LT : GE);
12260 	      continue;
12261 	    }
12262 	  break;
12263 
12264 	case NEG:
12265 	  /* If testing for equality, we can take the NEG of the constant.  */
12266 	  if (equality_comparison_p
12267 	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12268 	    {
12269 	      op0 = XEXP (op0, 0);
12270 	      op1 = tem;
12271 	      continue;
12272 	    }
12273 
12274 	  /* The remaining cases only apply to comparisons with zero.  */
12275 	  if (const_op != 0)
12276 	    break;
12277 
12278 	  /* When X is ABS or is known positive,
12279 	     (neg X) is < 0 if and only if X != 0.  */
12280 
12281 	  if (sign_bit_comparison_p
12282 	      && (GET_CODE (XEXP (op0, 0)) == ABS
12283 		  || (mode_width <= HOST_BITS_PER_WIDE_INT
12284 		      && (nonzero_bits (XEXP (op0, 0), mode)
12285 			  & (HOST_WIDE_INT_1U << (mode_width - 1)))
12286 			 == 0)))
12287 	    {
12288 	      op0 = XEXP (op0, 0);
12289 	      code = (code == LT ? NE : EQ);
12290 	      continue;
12291 	    }
12292 
12293 	  /* If we have NEG of something whose two high-order bits are the
12294 	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
12295 	  if (num_sign_bit_copies (op0, mode) >= 2)
12296 	    {
12297 	      op0 = XEXP (op0, 0);
12298 	      code = swap_condition (code);
12299 	      continue;
12300 	    }
12301 	  break;
12302 
12303 	case ROTATE:
12304 	  /* If we are testing equality and our count is a constant, we
12305 	     can perform the inverse operation on our RHS.  */
12306 	  if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12307 	      && (tem = simplify_binary_operation (ROTATERT, mode,
12308 						   op1, XEXP (op0, 1))) != 0)
12309 	    {
12310 	      op0 = XEXP (op0, 0);
12311 	      op1 = tem;
12312 	      continue;
12313 	    }
12314 
12315 	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12316 	     a particular bit.  Convert it to an AND of a constant of that
12317 	     bit.  This will be converted into a ZERO_EXTRACT.  */
12318 	  if (const_op == 0 && sign_bit_comparison_p
12319 	      && CONST_INT_P (XEXP (op0, 1))
12320 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12321 	      && UINTVAL (XEXP (op0, 1)) < mode_width)
12322 	    {
12323 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12324 					    (HOST_WIDE_INT_1U
12325 					     << (mode_width - 1
12326 						 - INTVAL (XEXP (op0, 1)))));
12327 	      code = (code == LT ? NE : EQ);
12328 	      continue;
12329 	    }
12330 
12331 	  /* Fall through.  */
12332 
12333 	case ABS:
12334 	  /* ABS is ignorable inside an equality comparison with zero.  */
12335 	  if (const_op == 0 && equality_comparison_p)
12336 	    {
12337 	      op0 = XEXP (op0, 0);
12338 	      continue;
12339 	    }
12340 	  break;
12341 
12342 	case SIGN_EXTEND:
12343 	  /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12344 	     (compare FOO CONST) if CONST fits in FOO's mode and we
12345 	     are either testing inequality or have an unsigned
12346 	     comparison with ZERO_EXTEND or a signed comparison with
12347 	     SIGN_EXTEND.  But don't do it if we don't have a compare
12348 	     insn of the given mode, since we'd have to revert it
12349 	     later on, and then we wouldn't know whether to sign- or
12350 	     zero-extend.  */
12351 	  if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12352 	      && ! unsigned_comparison_p
12353 	      && HWI_COMPUTABLE_MODE_P (mode)
12354 	      && trunc_int_for_mode (const_op, mode) == const_op
12355 	      && have_insn_for (COMPARE, mode))
12356 	    {
12357 	      op0 = XEXP (op0, 0);
12358 	      continue;
12359 	    }
12360 	  break;
12361 
12362 	case SUBREG:
12363 	  /* Check for the case where we are comparing A - C1 with C2, that is
12364 
12365 	       (subreg:MODE (plus (A) (-C1))) op (C2)
12366 
12367 	     with C1 a constant, and try to lift the SUBREG, i.e. to do the
12368 	     comparison in the wider mode.  One of the following two conditions
12369 	     must be true in order for this to be valid:
12370 
12371 	       1. The mode extension results in the same bit pattern being added
12372 		  on both sides and the comparison is equality or unsigned.  As
12373 		  C2 has been truncated to fit in MODE, the pattern can only be
12374 		  all 0s or all 1s.
12375 
12376 	       2. The mode extension results in the sign bit being copied on
12377 		  each side.
12378 
12379 	     The difficulty here is that we have predicates for A but not for
12380 	     (A - C1) so we need to check that C1 is within proper bounds so
12381 	     as to perturbate A as little as possible.  */
12382 
12383 	  if (mode_width <= HOST_BITS_PER_WIDE_INT
12384 	      && subreg_lowpart_p (op0)
12385 	      && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12386 					 &inner_mode)
12387 	      && GET_MODE_PRECISION (inner_mode) > mode_width
12388 	      && GET_CODE (SUBREG_REG (op0)) == PLUS
12389 	      && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12390 	    {
12391 	      rtx a = XEXP (SUBREG_REG (op0), 0);
12392 	      HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12393 
12394 	      if ((c1 > 0
12395 		   && (unsigned HOST_WIDE_INT) c1
12396 		       < HOST_WIDE_INT_1U << (mode_width - 1)
12397 		   && (equality_comparison_p || unsigned_comparison_p)
12398 		   /* (A - C1) zero-extends if it is positive and sign-extends
12399 		      if it is negative, C2 both zero- and sign-extends.  */
12400 		   && (((nonzero_bits (a, inner_mode)
12401 			 & ~GET_MODE_MASK (mode)) == 0
12402 			&& const_op >= 0)
12403 		       /* (A - C1) sign-extends if it is positive and 1-extends
12404 			  if it is negative, C2 both sign- and 1-extends.  */
12405 		       || (num_sign_bit_copies (a, inner_mode)
12406 			   > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12407 					     - mode_width)
12408 			   && const_op < 0)))
12409 		  || ((unsigned HOST_WIDE_INT) c1
12410 		       < HOST_WIDE_INT_1U << (mode_width - 2)
12411 		      /* (A - C1) always sign-extends, like C2.  */
12412 		      && num_sign_bit_copies (a, inner_mode)
12413 			 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12414 					   - (mode_width - 1))))
12415 		{
12416 		  op0 = SUBREG_REG (op0);
12417 		  continue;
12418 		}
12419 	    }
12420 
12421 	  /* If the inner mode is narrower and we are extracting the low part,
12422 	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
12423 	  if (paradoxical_subreg_p (op0))
12424 	    ;
12425 	  else if (subreg_lowpart_p (op0)
12426 		   && GET_MODE_CLASS (mode) == MODE_INT
12427 		   && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12428 		   && (code == NE || code == EQ)
12429 		   && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12430 		   && !paradoxical_subreg_p (op0)
12431 		   && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12432 		       & ~GET_MODE_MASK (mode)) == 0)
12433 	    {
12434 	      /* Remove outer subregs that don't do anything.  */
12435 	      tem = gen_lowpart (inner_mode, op1);
12436 
12437 	      if ((nonzero_bits (tem, inner_mode)
12438 		   & ~GET_MODE_MASK (mode)) == 0)
12439 		{
12440 		  op0 = SUBREG_REG (op0);
12441 		  op1 = tem;
12442 		  continue;
12443 		}
12444 	      break;
12445 	    }
12446 	  else
12447 	    break;
12448 
12449 	  /* FALLTHROUGH */
12450 
12451 	case ZERO_EXTEND:
12452 	  if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12453 	      && (unsigned_comparison_p || equality_comparison_p)
12454 	      && HWI_COMPUTABLE_MODE_P (mode)
12455 	      && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12456 	      && const_op >= 0
12457 	      && have_insn_for (COMPARE, mode))
12458 	    {
12459 	      op0 = XEXP (op0, 0);
12460 	      continue;
12461 	    }
12462 	  break;
12463 
12464 	case PLUS:
12465 	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
12466 	     this for equality comparisons due to pathological cases involving
12467 	     overflows.  */
12468 	  if (equality_comparison_p
12469 	      && (tem = simplify_binary_operation (MINUS, mode,
12470 						   op1, XEXP (op0, 1))) != 0)
12471 	    {
12472 	      op0 = XEXP (op0, 0);
12473 	      op1 = tem;
12474 	      continue;
12475 	    }
12476 
12477 	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
12478 	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12479 	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12480 	    {
12481 	      op0 = XEXP (XEXP (op0, 0), 0);
12482 	      code = (code == LT ? EQ : NE);
12483 	      continue;
12484 	    }
12485 	  break;
12486 
12487 	case MINUS:
12488 	  /* We used to optimize signed comparisons against zero, but that
12489 	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
12490 	     arrive here as equality comparisons, or (GEU, LTU) are
12491 	     optimized away.  No need to special-case them.  */
12492 
12493 	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
12494 	     (eq B (minus A C)), whichever simplifies.  We can only do
12495 	     this for equality comparisons due to pathological cases involving
12496 	     overflows.  */
12497 	  if (equality_comparison_p
12498 	      && (tem = simplify_binary_operation (PLUS, mode,
12499 						   XEXP (op0, 1), op1)) != 0)
12500 	    {
12501 	      op0 = XEXP (op0, 0);
12502 	      op1 = tem;
12503 	      continue;
12504 	    }
12505 
12506 	  if (equality_comparison_p
12507 	      && (tem = simplify_binary_operation (MINUS, mode,
12508 						   XEXP (op0, 0), op1)) != 0)
12509 	    {
12510 	      op0 = XEXP (op0, 1);
12511 	      op1 = tem;
12512 	      continue;
12513 	    }
12514 
12515 	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12516 	     of bits in X minus 1, is one iff X > 0.  */
12517 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12518 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12519 	      && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12520 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12521 	    {
12522 	      op0 = XEXP (op0, 1);
12523 	      code = (code == GE ? LE : GT);
12524 	      continue;
12525 	    }
12526 	  break;
12527 
12528 	case XOR:
12529 	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
12530 	     if C is zero or B is a constant.  */
12531 	  if (equality_comparison_p
12532 	      && (tem = simplify_binary_operation (XOR, mode,
12533 						   XEXP (op0, 1), op1)) != 0)
12534 	    {
12535 	      op0 = XEXP (op0, 0);
12536 	      op1 = tem;
12537 	      continue;
12538 	    }
12539 	  break;
12540 
12541 
12542 	case IOR:
12543 	  /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12544 	     iff X <= 0.  */
12545 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12546 	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12547 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12548 	    {
12549 	      op0 = XEXP (op0, 1);
12550 	      code = (code == GE ? GT : LE);
12551 	      continue;
12552 	    }
12553 	  break;
12554 
12555 	case AND:
12556 	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
12557 	     will be converted to a ZERO_EXTRACT later.  */
12558 	  if (const_op == 0 && equality_comparison_p
12559 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12560 	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12561 	    {
12562 	      op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12563 				      XEXP (XEXP (op0, 0), 1));
12564 	      op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12565 	      continue;
12566 	    }
12567 
12568 	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12569 	     zero and X is a comparison and C1 and C2 describe only bits set
12570 	     in STORE_FLAG_VALUE, we can compare with X.  */
12571 	  if (const_op == 0 && equality_comparison_p
12572 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12573 	      && CONST_INT_P (XEXP (op0, 1))
12574 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12575 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12576 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12577 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12578 	    {
12579 	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12580 		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
12581 	      if ((~STORE_FLAG_VALUE & mask) == 0
12582 		  && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12583 		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12584 			  && COMPARISON_P (tem))))
12585 		{
12586 		  op0 = XEXP (XEXP (op0, 0), 0);
12587 		  continue;
12588 		}
12589 	    }
12590 
12591 	  /* If we are doing an equality comparison of an AND of a bit equal
12592 	     to the sign bit, replace this with a LT or GE comparison of
12593 	     the underlying value.  */
12594 	  if (equality_comparison_p
12595 	      && const_op == 0
12596 	      && CONST_INT_P (XEXP (op0, 1))
12597 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12598 	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12599 		  == HOST_WIDE_INT_1U << (mode_width - 1)))
12600 	    {
12601 	      op0 = XEXP (op0, 0);
12602 	      code = (code == EQ ? GE : LT);
12603 	      continue;
12604 	    }
12605 
12606 	  /* If this AND operation is really a ZERO_EXTEND from a narrower
12607 	     mode, the constant fits within that mode, and this is either an
12608 	     equality or unsigned comparison, try to do this comparison in
12609 	     the narrower mode.
12610 
12611 	     Note that in:
12612 
12613 	     (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12614 	     -> (ne:DI (reg:SI 4) (const_int 0))
12615 
12616 	     unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12617 	     known to hold a value of the required mode the
12618 	     transformation is invalid.  */
12619 	  if ((equality_comparison_p || unsigned_comparison_p)
12620 	      && CONST_INT_P (XEXP (op0, 1))
12621 	      && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12622 				   & GET_MODE_MASK (mode))
12623 				  + 1)) >= 0
12624 	      && const_op >> i == 0
12625 	      && int_mode_for_size (i, 1).exists (&tmode))
12626 	    {
12627 	      op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12628 	      continue;
12629 	    }
12630 
12631 	  /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12632 	     fits in both M1 and M2 and the SUBREG is either paradoxical
12633 	     or represents the low part, permute the SUBREG and the AND
12634 	     and try again.  */
12635 	  if (GET_CODE (XEXP (op0, 0)) == SUBREG
12636 	      && CONST_INT_P (XEXP (op0, 1)))
12637 	    {
12638 	      unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12639 	      /* Require an integral mode, to avoid creating something like
12640 		 (AND:SF ...).  */
12641 	      if ((is_a <scalar_int_mode>
12642 		   (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12643 		  /* It is unsafe to commute the AND into the SUBREG if the
12644 		     SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12645 		     not defined.  As originally written the upper bits
12646 		     have a defined value due to the AND operation.
12647 		     However, if we commute the AND inside the SUBREG then
12648 		     they no longer have defined values and the meaning of
12649 		     the code has been changed.
12650 		     Also C1 should not change value in the smaller mode,
12651 		     see PR67028 (a positive C1 can become negative in the
12652 		     smaller mode, so that the AND does no longer mask the
12653 		     upper bits).  */
12654 		  && ((WORD_REGISTER_OPERATIONS
12655 		       && mode_width > GET_MODE_PRECISION (tmode)
12656 		       && mode_width <= BITS_PER_WORD
12657 		       && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12658 		      || (mode_width <= GET_MODE_PRECISION (tmode)
12659 			  && subreg_lowpart_p (XEXP (op0, 0))))
12660 		  && mode_width <= HOST_BITS_PER_WIDE_INT
12661 		  && HWI_COMPUTABLE_MODE_P (tmode)
12662 		  && (c1 & ~mask) == 0
12663 		  && (c1 & ~GET_MODE_MASK (tmode)) == 0
12664 		  && c1 != mask
12665 		  && c1 != GET_MODE_MASK (tmode))
12666 		{
12667 		  op0 = simplify_gen_binary (AND, tmode,
12668 					     SUBREG_REG (XEXP (op0, 0)),
12669 					     gen_int_mode (c1, tmode));
12670 		  op0 = gen_lowpart (mode, op0);
12671 		  continue;
12672 		}
12673 	    }
12674 
12675 	  /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0).  */
12676 	  if (const_op == 0 && equality_comparison_p
12677 	      && XEXP (op0, 1) == const1_rtx
12678 	      && GET_CODE (XEXP (op0, 0)) == NOT)
12679 	    {
12680 	      op0 = simplify_and_const_int (NULL_RTX, mode,
12681 					    XEXP (XEXP (op0, 0), 0), 1);
12682 	      code = (code == NE ? EQ : NE);
12683 	      continue;
12684 	    }
12685 
12686 	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12687 	     (eq (and (lshiftrt X) 1) 0).
12688 	     Also handle the case where (not X) is expressed using xor.  */
12689 	  if (const_op == 0 && equality_comparison_p
12690 	      && XEXP (op0, 1) == const1_rtx
12691 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12692 	    {
12693 	      rtx shift_op = XEXP (XEXP (op0, 0), 0);
12694 	      rtx shift_count = XEXP (XEXP (op0, 0), 1);
12695 
12696 	      if (GET_CODE (shift_op) == NOT
12697 		  || (GET_CODE (shift_op) == XOR
12698 		      && CONST_INT_P (XEXP (shift_op, 1))
12699 		      && CONST_INT_P (shift_count)
12700 		      && HWI_COMPUTABLE_MODE_P (mode)
12701 		      && (UINTVAL (XEXP (shift_op, 1))
12702 			  == HOST_WIDE_INT_1U
12703 			       << INTVAL (shift_count))))
12704 		{
12705 		  op0
12706 		    = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12707 		  op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12708 		  code = (code == NE ? EQ : NE);
12709 		  continue;
12710 		}
12711 	    }
12712 	  break;
12713 
12714 	case ASHIFT:
12715 	  /* If we have (compare (ashift FOO N) (const_int C)) and
12716 	     the high order N bits of FOO (N+1 if an inequality comparison)
12717 	     are known to be zero, we can do this by comparing FOO with C
12718 	     shifted right N bits so long as the low-order N bits of C are
12719 	     zero.  */
12720 	  if (CONST_INT_P (XEXP (op0, 1))
12721 	      && INTVAL (XEXP (op0, 1)) >= 0
12722 	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12723 		  < HOST_BITS_PER_WIDE_INT)
12724 	      && (((unsigned HOST_WIDE_INT) const_op
12725 		   & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12726 		      - 1)) == 0)
12727 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12728 	      && (nonzero_bits (XEXP (op0, 0), mode)
12729 		  & ~(mask >> (INTVAL (XEXP (op0, 1))
12730 			       + ! equality_comparison_p))) == 0)
12731 	    {
12732 	      /* We must perform a logical shift, not an arithmetic one,
12733 		 as we want the top N bits of C to be zero.  */
12734 	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12735 
12736 	      temp >>= INTVAL (XEXP (op0, 1));
12737 	      op1 = gen_int_mode (temp, mode);
12738 	      op0 = XEXP (op0, 0);
12739 	      continue;
12740 	    }
12741 
12742 	  /* If we are doing a sign bit comparison, it means we are testing
12743 	     a particular bit.  Convert it to the appropriate AND.  */
12744 	  if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12745 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
12746 	    {
12747 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12748 					    (HOST_WIDE_INT_1U
12749 					     << (mode_width - 1
12750 						 - INTVAL (XEXP (op0, 1)))));
12751 	      code = (code == LT ? NE : EQ);
12752 	      continue;
12753 	    }
12754 
12755 	  /* If this an equality comparison with zero and we are shifting
12756 	     the low bit to the sign bit, we can convert this to an AND of the
12757 	     low-order bit.  */
12758 	  if (const_op == 0 && equality_comparison_p
12759 	      && CONST_INT_P (XEXP (op0, 1))
12760 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12761 	    {
12762 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12763 	      continue;
12764 	    }
12765 	  break;
12766 
12767 	case ASHIFTRT:
12768 	  /* If this is an equality comparison with zero, we can do this
12769 	     as a logical shift, which might be much simpler.  */
12770 	  if (equality_comparison_p && const_op == 0
12771 	      && CONST_INT_P (XEXP (op0, 1)))
12772 	    {
12773 	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12774 					  XEXP (op0, 0),
12775 					  INTVAL (XEXP (op0, 1)));
12776 	      continue;
12777 	    }
12778 
12779 	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12780 	     do the comparison in a narrower mode.  */
12781 	  if (! unsigned_comparison_p
12782 	      && CONST_INT_P (XEXP (op0, 1))
12783 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12784 	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12785 	      && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12786 		  .exists (&tmode))
12787 	      && (((unsigned HOST_WIDE_INT) const_op
12788 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12789 		  <= GET_MODE_MASK (tmode)))
12790 	    {
12791 	      op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12792 	      continue;
12793 	    }
12794 
12795 	  /* Likewise if OP0 is a PLUS of a sign extension with a
12796 	     constant, which is usually represented with the PLUS
12797 	     between the shifts.  */
12798 	  if (! unsigned_comparison_p
12799 	      && CONST_INT_P (XEXP (op0, 1))
12800 	      && GET_CODE (XEXP (op0, 0)) == PLUS
12801 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12802 	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12803 	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12804 	      && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12805 		  .exists (&tmode))
12806 	      && (((unsigned HOST_WIDE_INT) const_op
12807 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12808 		  <= GET_MODE_MASK (tmode)))
12809 	    {
12810 	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12811 	      rtx add_const = XEXP (XEXP (op0, 0), 1);
12812 	      rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12813 						   add_const, XEXP (op0, 1));
12814 
12815 	      op0 = simplify_gen_binary (PLUS, tmode,
12816 					 gen_lowpart (tmode, inner),
12817 					 new_const);
12818 	      continue;
12819 	    }
12820 
12821 	  /* FALLTHROUGH */
12822 	case LSHIFTRT:
12823 	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12824 	     the low order N bits of FOO are known to be zero, we can do this
12825 	     by comparing FOO with C shifted left N bits so long as no
12826 	     overflow occurs.  Even if the low order N bits of FOO aren't known
12827 	     to be zero, if the comparison is >= or < we can use the same
12828 	     optimization and for > or <= by setting all the low
12829 	     order N bits in the comparison constant.  */
12830 	  if (CONST_INT_P (XEXP (op0, 1))
12831 	      && INTVAL (XEXP (op0, 1)) > 0
12832 	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12833 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12834 	      && (((unsigned HOST_WIDE_INT) const_op
12835 		   + (GET_CODE (op0) != LSHIFTRT
12836 		      ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12837 			 + 1)
12838 		      : 0))
12839 		  <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12840 	    {
12841 	      unsigned HOST_WIDE_INT low_bits
12842 		= (nonzero_bits (XEXP (op0, 0), mode)
12843 		   & ((HOST_WIDE_INT_1U
12844 		       << INTVAL (XEXP (op0, 1))) - 1));
12845 	      if (low_bits == 0 || !equality_comparison_p)
12846 		{
12847 		  /* If the shift was logical, then we must make the condition
12848 		     unsigned.  */
12849 		  if (GET_CODE (op0) == LSHIFTRT)
12850 		    code = unsigned_condition (code);
12851 
12852 		  const_op = (unsigned HOST_WIDE_INT) const_op
12853 			      << INTVAL (XEXP (op0, 1));
12854 		  if (low_bits != 0
12855 		      && (code == GT || code == GTU
12856 			  || code == LE || code == LEU))
12857 		    const_op
12858 		      |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12859 		  op1 = GEN_INT (const_op);
12860 		  op0 = XEXP (op0, 0);
12861 		  continue;
12862 		}
12863 	    }
12864 
12865 	  /* If we are using this shift to extract just the sign bit, we
12866 	     can replace this with an LT or GE comparison.  */
12867 	  if (const_op == 0
12868 	      && (equality_comparison_p || sign_bit_comparison_p)
12869 	      && CONST_INT_P (XEXP (op0, 1))
12870 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12871 	    {
12872 	      op0 = XEXP (op0, 0);
12873 	      code = (code == NE || code == GT ? LT : GE);
12874 	      continue;
12875 	    }
12876 	  break;
12877 
12878 	default:
12879 	  break;
12880 	}
12881 
12882       break;
12883     }
12884 
12885   /* Now make any compound operations involved in this comparison.  Then,
12886      check for an outmost SUBREG on OP0 that is not doing anything or is
12887      paradoxical.  The latter transformation must only be performed when
12888      it is known that the "extra" bits will be the same in op0 and op1 or
12889      that they don't matter.  There are three cases to consider:
12890 
12891      1. SUBREG_REG (op0) is a register.  In this case the bits are don't
12892      care bits and we can assume they have any convenient value.  So
12893      making the transformation is safe.
12894 
12895      2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12896      In this case the upper bits of op0 are undefined.  We should not make
12897      the simplification in that case as we do not know the contents of
12898      those bits.
12899 
12900      3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12901      In that case we know those bits are zeros or ones.  We must also be
12902      sure that they are the same as the upper bits of op1.
12903 
12904      We can never remove a SUBREG for a non-equality comparison because
12905      the sign bit is in a different place in the underlying object.  */
12906 
12907   rtx_code op0_mco_code = SET;
12908   if (op1 == const0_rtx)
12909     op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12910 
12911   op0 = make_compound_operation (op0, op0_mco_code);
12912   op1 = make_compound_operation (op1, SET);
12913 
12914   if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12915       && is_int_mode (GET_MODE (op0), &mode)
12916       && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12917       && (code == NE || code == EQ))
12918     {
12919       if (paradoxical_subreg_p (op0))
12920 	{
12921 	  /* For paradoxical subregs, allow case 1 as above.  Case 3 isn't
12922 	     implemented.  */
12923 	  if (REG_P (SUBREG_REG (op0)))
12924 	    {
12925 	      op0 = SUBREG_REG (op0);
12926 	      op1 = gen_lowpart (inner_mode, op1);
12927 	    }
12928 	}
12929       else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12930 	       && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12931 		   & ~GET_MODE_MASK (mode)) == 0)
12932 	{
12933 	  tem = gen_lowpart (inner_mode, op1);
12934 
12935 	  if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12936 	    op0 = SUBREG_REG (op0), op1 = tem;
12937 	}
12938     }
12939 
12940   /* We now do the opposite procedure: Some machines don't have compare
12941      insns in all modes.  If OP0's mode is an integer mode smaller than a
12942      word and we can't do a compare in that mode, see if there is a larger
12943      mode for which we can do the compare.  There are a number of cases in
12944      which we can use the wider mode.  */
12945 
12946   if (is_int_mode (GET_MODE (op0), &mode)
12947       && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12948       && ! have_insn_for (COMPARE, mode))
12949     FOR_EACH_WIDER_MODE (tmode_iter, mode)
12950       {
12951 	tmode = tmode_iter.require ();
12952 	if (!HWI_COMPUTABLE_MODE_P (tmode))
12953 	  break;
12954 	if (have_insn_for (COMPARE, tmode))
12955 	  {
12956 	    int zero_extended;
12957 
12958 	    /* If this is a test for negative, we can make an explicit
12959 	       test of the sign bit.  Test this first so we can use
12960 	       a paradoxical subreg to extend OP0.  */
12961 
12962 	    if (op1 == const0_rtx && (code == LT || code == GE)
12963 		&& HWI_COMPUTABLE_MODE_P (mode))
12964 	      {
12965 		unsigned HOST_WIDE_INT sign
12966 		  = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12967 		op0 = simplify_gen_binary (AND, tmode,
12968 					   gen_lowpart (tmode, op0),
12969 					   gen_int_mode (sign, tmode));
12970 		code = (code == LT) ? NE : EQ;
12971 		break;
12972 	      }
12973 
12974 	    /* If the only nonzero bits in OP0 and OP1 are those in the
12975 	       narrower mode and this is an equality or unsigned comparison,
12976 	       we can use the wider mode.  Similarly for sign-extended
12977 	       values, in which case it is true for all comparisons.  */
12978 	    zero_extended = ((code == EQ || code == NE
12979 			      || code == GEU || code == GTU
12980 			      || code == LEU || code == LTU)
12981 			     && (nonzero_bits (op0, tmode)
12982 				 & ~GET_MODE_MASK (mode)) == 0
12983 			     && ((CONST_INT_P (op1)
12984 				  || (nonzero_bits (op1, tmode)
12985 				      & ~GET_MODE_MASK (mode)) == 0)));
12986 
12987 	    if (zero_extended
12988 		|| ((num_sign_bit_copies (op0, tmode)
12989 		     > (unsigned int) (GET_MODE_PRECISION (tmode)
12990 				       - GET_MODE_PRECISION (mode)))
12991 		    && (num_sign_bit_copies (op1, tmode)
12992 			> (unsigned int) (GET_MODE_PRECISION (tmode)
12993 					  - GET_MODE_PRECISION (mode)))))
12994 	      {
12995 		/* If OP0 is an AND and we don't have an AND in MODE either,
12996 		   make a new AND in the proper mode.  */
12997 		if (GET_CODE (op0) == AND
12998 		    && !have_insn_for (AND, mode))
12999 		  op0 = simplify_gen_binary (AND, tmode,
13000 					     gen_lowpart (tmode,
13001 							  XEXP (op0, 0)),
13002 					     gen_lowpart (tmode,
13003 							  XEXP (op0, 1)));
13004 		else
13005 		  {
13006 		    if (zero_extended)
13007 		      {
13008 			op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13009 						  op0, mode);
13010 			op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13011 						  op1, mode);
13012 		      }
13013 		    else
13014 		      {
13015 			op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13016 						  op0, mode);
13017 			op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13018 						  op1, mode);
13019 		      }
13020 		    break;
13021 		  }
13022 	      }
13023 	  }
13024       }
13025 
13026   /* We may have changed the comparison operands.  Re-canonicalize.  */
13027   if (swap_commutative_operands_p (op0, op1))
13028     {
13029       std::swap (op0, op1);
13030       code = swap_condition (code);
13031     }
13032 
13033   /* If this machine only supports a subset of valid comparisons, see if we
13034      can convert an unsupported one into a supported one.  */
13035   target_canonicalize_comparison (&code, &op0, &op1, 0);
13036 
13037   *pop0 = op0;
13038   *pop1 = op1;
13039 
13040   return code;
13041 }
13042 
13043 /* Utility function for record_value_for_reg.  Count number of
13044    rtxs in X.  */
13045 static int
count_rtxs(rtx x)13046 count_rtxs (rtx x)
13047 {
13048   enum rtx_code code = GET_CODE (x);
13049   const char *fmt;
13050   int i, j, ret = 1;
13051 
13052   if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13053       || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13054     {
13055       rtx x0 = XEXP (x, 0);
13056       rtx x1 = XEXP (x, 1);
13057 
13058       if (x0 == x1)
13059 	return 1 + 2 * count_rtxs (x0);
13060 
13061       if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13062 	   || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13063 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13064 	return 2 + 2 * count_rtxs (x0)
13065 	       + count_rtxs (x == XEXP (x1, 0)
13066 			     ? XEXP (x1, 1) : XEXP (x1, 0));
13067 
13068       if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13069 	   || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13070 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13071 	return 2 + 2 * count_rtxs (x1)
13072 	       + count_rtxs (x == XEXP (x0, 0)
13073 			     ? XEXP (x0, 1) : XEXP (x0, 0));
13074     }
13075 
13076   fmt = GET_RTX_FORMAT (code);
13077   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13078     if (fmt[i] == 'e')
13079       ret += count_rtxs (XEXP (x, i));
13080     else if (fmt[i] == 'E')
13081       for (j = 0; j < XVECLEN (x, i); j++)
13082 	ret += count_rtxs (XVECEXP (x, i, j));
13083 
13084   return ret;
13085 }
13086 
13087 /* Utility function for following routine.  Called when X is part of a value
13088    being stored into last_set_value.  Sets last_set_table_tick
13089    for each register mentioned.  Similar to mention_regs in cse.c  */
13090 
13091 static void
update_table_tick(rtx x)13092 update_table_tick (rtx x)
13093 {
13094   enum rtx_code code = GET_CODE (x);
13095   const char *fmt = GET_RTX_FORMAT (code);
13096   int i, j;
13097 
13098   if (code == REG)
13099     {
13100       unsigned int regno = REGNO (x);
13101       unsigned int endregno = END_REGNO (x);
13102       unsigned int r;
13103 
13104       for (r = regno; r < endregno; r++)
13105 	{
13106 	  reg_stat_type *rsp = &reg_stat[r];
13107 	  rsp->last_set_table_tick = label_tick;
13108 	}
13109 
13110       return;
13111     }
13112 
13113   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13114     if (fmt[i] == 'e')
13115       {
13116 	/* Check for identical subexpressions.  If x contains
13117 	   identical subexpression we only have to traverse one of
13118 	   them.  */
13119 	if (i == 0 && ARITHMETIC_P (x))
13120 	  {
13121 	    /* Note that at this point x1 has already been
13122 	       processed.  */
13123 	    rtx x0 = XEXP (x, 0);
13124 	    rtx x1 = XEXP (x, 1);
13125 
13126 	    /* If x0 and x1 are identical then there is no need to
13127 	       process x0.  */
13128 	    if (x0 == x1)
13129 	      break;
13130 
13131 	    /* If x0 is identical to a subexpression of x1 then while
13132 	       processing x1, x0 has already been processed.  Thus we
13133 	       are done with x.  */
13134 	    if (ARITHMETIC_P (x1)
13135 		&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13136 	      break;
13137 
13138 	    /* If x1 is identical to a subexpression of x0 then we
13139 	       still have to process the rest of x0.  */
13140 	    if (ARITHMETIC_P (x0)
13141 		&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13142 	      {
13143 		update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13144 		break;
13145 	      }
13146 	  }
13147 
13148 	update_table_tick (XEXP (x, i));
13149       }
13150     else if (fmt[i] == 'E')
13151       for (j = 0; j < XVECLEN (x, i); j++)
13152 	update_table_tick (XVECEXP (x, i, j));
13153 }
13154 
13155 /* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
13156    are saying that the register is clobbered and we no longer know its
13157    value.  If INSN is zero, don't update reg_stat[].last_set; this is
13158    only permitted with VALUE also zero and is used to invalidate the
13159    register.  */
13160 
13161 static void
record_value_for_reg(rtx reg,rtx_insn * insn,rtx value)13162 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13163 {
13164   unsigned int regno = REGNO (reg);
13165   unsigned int endregno = END_REGNO (reg);
13166   unsigned int i;
13167   reg_stat_type *rsp;
13168 
13169   /* If VALUE contains REG and we have a previous value for REG, substitute
13170      the previous value.  */
13171   if (value && insn && reg_overlap_mentioned_p (reg, value))
13172     {
13173       rtx tem;
13174 
13175       /* Set things up so get_last_value is allowed to see anything set up to
13176 	 our insn.  */
13177       subst_low_luid = DF_INSN_LUID (insn);
13178       tem = get_last_value (reg);
13179 
13180       /* If TEM is simply a binary operation with two CLOBBERs as operands,
13181 	 it isn't going to be useful and will take a lot of time to process,
13182 	 so just use the CLOBBER.  */
13183 
13184       if (tem)
13185 	{
13186 	  if (ARITHMETIC_P (tem)
13187 	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
13188 	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13189 	    tem = XEXP (tem, 0);
13190 	  else if (count_occurrences (value, reg, 1) >= 2)
13191 	    {
13192 	      /* If there are two or more occurrences of REG in VALUE,
13193 		 prevent the value from growing too much.  */
13194 	      if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13195 		tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13196 	    }
13197 
13198 	  value = replace_rtx (copy_rtx (value), reg, tem);
13199 	}
13200     }
13201 
13202   /* For each register modified, show we don't know its value, that
13203      we don't know about its bitwise content, that its value has been
13204      updated, and that we don't know the location of the death of the
13205      register.  */
13206   for (i = regno; i < endregno; i++)
13207     {
13208       rsp = &reg_stat[i];
13209 
13210       if (insn)
13211 	rsp->last_set = insn;
13212 
13213       rsp->last_set_value = 0;
13214       rsp->last_set_mode = VOIDmode;
13215       rsp->last_set_nonzero_bits = 0;
13216       rsp->last_set_sign_bit_copies = 0;
13217       rsp->last_death = 0;
13218       rsp->truncated_to_mode = VOIDmode;
13219     }
13220 
13221   /* Mark registers that are being referenced in this value.  */
13222   if (value)
13223     update_table_tick (value);
13224 
13225   /* Now update the status of each register being set.
13226      If someone is using this register in this block, set this register
13227      to invalid since we will get confused between the two lives in this
13228      basic block.  This makes using this register always invalid.  In cse, we
13229      scan the table to invalidate all entries using this register, but this
13230      is too much work for us.  */
13231 
13232   for (i = regno; i < endregno; i++)
13233     {
13234       rsp = &reg_stat[i];
13235       rsp->last_set_label = label_tick;
13236       if (!insn
13237 	  || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13238 	rsp->last_set_invalid = 1;
13239       else
13240 	rsp->last_set_invalid = 0;
13241     }
13242 
13243   /* The value being assigned might refer to X (like in "x++;").  In that
13244      case, we must replace it with (clobber (const_int 0)) to prevent
13245      infinite loops.  */
13246   rsp = &reg_stat[regno];
13247   if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13248     {
13249       value = copy_rtx (value);
13250       if (!get_last_value_validate (&value, insn, label_tick, 1))
13251 	value = 0;
13252     }
13253 
13254   /* For the main register being modified, update the value, the mode, the
13255      nonzero bits, and the number of sign bit copies.  */
13256 
13257   rsp->last_set_value = value;
13258 
13259   if (value)
13260     {
13261       machine_mode mode = GET_MODE (reg);
13262       subst_low_luid = DF_INSN_LUID (insn);
13263       rsp->last_set_mode = mode;
13264       if (GET_MODE_CLASS (mode) == MODE_INT
13265 	  && HWI_COMPUTABLE_MODE_P (mode))
13266 	mode = nonzero_bits_mode;
13267       rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13268       rsp->last_set_sign_bit_copies
13269 	= num_sign_bit_copies (value, GET_MODE (reg));
13270     }
13271 }
13272 
13273 /* Called via note_stores from record_dead_and_set_regs to handle one
13274    SET or CLOBBER in an insn.  DATA is the instruction in which the
13275    set is occurring.  */
13276 
13277 static void
record_dead_and_set_regs_1(rtx dest,const_rtx setter,void * data)13278 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13279 {
13280   rtx_insn *record_dead_insn = (rtx_insn *) data;
13281 
13282   if (GET_CODE (dest) == SUBREG)
13283     dest = SUBREG_REG (dest);
13284 
13285   if (!record_dead_insn)
13286     {
13287       if (REG_P (dest))
13288 	record_value_for_reg (dest, NULL, NULL_RTX);
13289       return;
13290     }
13291 
13292   if (REG_P (dest))
13293     {
13294       /* If we are setting the whole register, we know its value.  Otherwise
13295 	 show that we don't know the value.  We can handle a SUBREG if it's
13296 	 the low part, but we must be careful with paradoxical SUBREGs on
13297 	 RISC architectures because we cannot strip e.g. an extension around
13298 	 a load and record the naked load since the RTL middle-end considers
13299 	 that the upper bits are defined according to LOAD_EXTEND_OP.  */
13300       if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13301 	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13302       else if (GET_CODE (setter) == SET
13303 	       && GET_CODE (SET_DEST (setter)) == SUBREG
13304 	       && SUBREG_REG (SET_DEST (setter)) == dest
13305 	       && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13306 			    BITS_PER_WORD)
13307 	       && subreg_lowpart_p (SET_DEST (setter)))
13308 	record_value_for_reg (dest, record_dead_insn,
13309 			      WORD_REGISTER_OPERATIONS
13310 			      && word_register_operation_p (SET_SRC (setter))
13311 			      && paradoxical_subreg_p (SET_DEST (setter))
13312 			      ? SET_SRC (setter)
13313 			      : gen_lowpart (GET_MODE (dest),
13314 					     SET_SRC (setter)));
13315       else
13316 	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13317     }
13318   else if (MEM_P (dest)
13319 	   /* Ignore pushes, they clobber nothing.  */
13320 	   && ! push_operand (dest, GET_MODE (dest)))
13321     mem_last_set = DF_INSN_LUID (record_dead_insn);
13322 }
13323 
13324 /* Update the records of when each REG was most recently set or killed
13325    for the things done by INSN.  This is the last thing done in processing
13326    INSN in the combiner loop.
13327 
13328    We update reg_stat[], in particular fields last_set, last_set_value,
13329    last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13330    last_death, and also the similar information mem_last_set (which insn
13331    most recently modified memory) and last_call_luid (which insn was the
13332    most recent subroutine call).  */
13333 
13334 static void
record_dead_and_set_regs(rtx_insn * insn)13335 record_dead_and_set_regs (rtx_insn *insn)
13336 {
13337   rtx link;
13338   unsigned int i;
13339 
13340   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13341     {
13342       if (REG_NOTE_KIND (link) == REG_DEAD
13343 	  && REG_P (XEXP (link, 0)))
13344 	{
13345 	  unsigned int regno = REGNO (XEXP (link, 0));
13346 	  unsigned int endregno = END_REGNO (XEXP (link, 0));
13347 
13348 	  for (i = regno; i < endregno; i++)
13349 	    {
13350 	      reg_stat_type *rsp;
13351 
13352 	      rsp = &reg_stat[i];
13353 	      rsp->last_death = insn;
13354 	    }
13355 	}
13356       else if (REG_NOTE_KIND (link) == REG_INC)
13357 	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13358     }
13359 
13360   if (CALL_P (insn))
13361     {
13362       hard_reg_set_iterator hrsi;
13363       EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13364 	{
13365 	  reg_stat_type *rsp;
13366 
13367 	  rsp = &reg_stat[i];
13368 	  rsp->last_set_invalid = 1;
13369 	  rsp->last_set = insn;
13370 	  rsp->last_set_value = 0;
13371 	  rsp->last_set_mode = VOIDmode;
13372 	  rsp->last_set_nonzero_bits = 0;
13373 	  rsp->last_set_sign_bit_copies = 0;
13374 	  rsp->last_death = 0;
13375 	  rsp->truncated_to_mode = VOIDmode;
13376 	}
13377 
13378       last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13379 
13380       /* We can't combine into a call pattern.  Remember, though, that
13381 	 the return value register is set at this LUID.  We could
13382 	 still replace a register with the return value from the
13383 	 wrong subroutine call!  */
13384       note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13385     }
13386   else
13387     note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13388 }
13389 
13390 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13391    register present in the SUBREG, so for each such SUBREG go back and
13392    adjust nonzero and sign bit information of the registers that are
13393    known to have some zero/sign bits set.
13394 
13395    This is needed because when combine blows the SUBREGs away, the
13396    information on zero/sign bits is lost and further combines can be
13397    missed because of that.  */
13398 
13399 static void
record_promoted_value(rtx_insn * insn,rtx subreg)13400 record_promoted_value (rtx_insn *insn, rtx subreg)
13401 {
13402   struct insn_link *links;
13403   rtx set;
13404   unsigned int regno = REGNO (SUBREG_REG (subreg));
13405   machine_mode mode = GET_MODE (subreg);
13406 
13407   if (!HWI_COMPUTABLE_MODE_P (mode))
13408     return;
13409 
13410   for (links = LOG_LINKS (insn); links;)
13411     {
13412       reg_stat_type *rsp;
13413 
13414       insn = links->insn;
13415       set = single_set (insn);
13416 
13417       if (! set || !REG_P (SET_DEST (set))
13418 	  || REGNO (SET_DEST (set)) != regno
13419 	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13420 	{
13421 	  links = links->next;
13422 	  continue;
13423 	}
13424 
13425       rsp = &reg_stat[regno];
13426       if (rsp->last_set == insn)
13427 	{
13428 	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13429 	    rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13430 	}
13431 
13432       if (REG_P (SET_SRC (set)))
13433 	{
13434 	  regno = REGNO (SET_SRC (set));
13435 	  links = LOG_LINKS (insn);
13436 	}
13437       else
13438 	break;
13439     }
13440 }
13441 
13442 /* Check if X, a register, is known to contain a value already
13443    truncated to MODE.  In this case we can use a subreg to refer to
13444    the truncated value even though in the generic case we would need
13445    an explicit truncation.  */
13446 
13447 static bool
reg_truncated_to_mode(machine_mode mode,const_rtx x)13448 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13449 {
13450   reg_stat_type *rsp = &reg_stat[REGNO (x)];
13451   machine_mode truncated = rsp->truncated_to_mode;
13452 
13453   if (truncated == 0
13454       || rsp->truncation_label < label_tick_ebb_start)
13455     return false;
13456   if (!partial_subreg_p (mode, truncated))
13457     return true;
13458   if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13459     return true;
13460   return false;
13461 }
13462 
13463 /* If X is a hard reg or a subreg record the mode that the register is
13464    accessed in.  For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13465    able to turn a truncate into a subreg using this information.  Return true
13466    if traversing X is complete.  */
13467 
13468 static bool
record_truncated_value(rtx x)13469 record_truncated_value (rtx x)
13470 {
13471   machine_mode truncated_mode;
13472   reg_stat_type *rsp;
13473 
13474   if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13475     {
13476       machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13477       truncated_mode = GET_MODE (x);
13478 
13479       if (!partial_subreg_p (truncated_mode, original_mode))
13480 	return true;
13481 
13482       truncated_mode = GET_MODE (x);
13483       if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13484 	return true;
13485 
13486       x = SUBREG_REG (x);
13487     }
13488   /* ??? For hard-regs we now record everything.  We might be able to
13489      optimize this using last_set_mode.  */
13490   else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13491     truncated_mode = GET_MODE (x);
13492   else
13493     return false;
13494 
13495   rsp = &reg_stat[REGNO (x)];
13496   if (rsp->truncated_to_mode == 0
13497       || rsp->truncation_label < label_tick_ebb_start
13498       || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13499     {
13500       rsp->truncated_to_mode = truncated_mode;
13501       rsp->truncation_label = label_tick;
13502     }
13503 
13504   return true;
13505 }
13506 
13507 /* Callback for note_uses.  Find hardregs and subregs of pseudos and
13508    the modes they are used in.  This can help truning TRUNCATEs into
13509    SUBREGs.  */
13510 
13511 static void
record_truncated_values(rtx * loc,void * data ATTRIBUTE_UNUSED)13512 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13513 {
13514   subrtx_var_iterator::array_type array;
13515   FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13516     if (record_truncated_value (*iter))
13517       iter.skip_subrtxes ();
13518 }
13519 
13520 /* Scan X for promoted SUBREGs.  For each one found,
13521    note what it implies to the registers used in it.  */
13522 
13523 static void
check_promoted_subreg(rtx_insn * insn,rtx x)13524 check_promoted_subreg (rtx_insn *insn, rtx x)
13525 {
13526   if (GET_CODE (x) == SUBREG
13527       && SUBREG_PROMOTED_VAR_P (x)
13528       && REG_P (SUBREG_REG (x)))
13529     record_promoted_value (insn, x);
13530   else
13531     {
13532       const char *format = GET_RTX_FORMAT (GET_CODE (x));
13533       int i, j;
13534 
13535       for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13536 	switch (format[i])
13537 	  {
13538 	  case 'e':
13539 	    check_promoted_subreg (insn, XEXP (x, i));
13540 	    break;
13541 	  case 'V':
13542 	  case 'E':
13543 	    if (XVEC (x, i) != 0)
13544 	      for (j = 0; j < XVECLEN (x, i); j++)
13545 		check_promoted_subreg (insn, XVECEXP (x, i, j));
13546 	    break;
13547 	  }
13548     }
13549 }
13550 
13551 /* Verify that all the registers and memory references mentioned in *LOC are
13552    still valid.  *LOC was part of a value set in INSN when label_tick was
13553    equal to TICK.  Return 0 if some are not.  If REPLACE is nonzero, replace
13554    the invalid references with (clobber (const_int 0)) and return 1.  This
13555    replacement is useful because we often can get useful information about
13556    the form of a value (e.g., if it was produced by a shift that always
13557    produces -1 or 0) even though we don't know exactly what registers it
13558    was produced from.  */
13559 
13560 static int
get_last_value_validate(rtx * loc,rtx_insn * insn,int tick,int replace)13561 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13562 {
13563   rtx x = *loc;
13564   const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13565   int len = GET_RTX_LENGTH (GET_CODE (x));
13566   int i, j;
13567 
13568   if (REG_P (x))
13569     {
13570       unsigned int regno = REGNO (x);
13571       unsigned int endregno = END_REGNO (x);
13572       unsigned int j;
13573 
13574       for (j = regno; j < endregno; j++)
13575 	{
13576 	  reg_stat_type *rsp = &reg_stat[j];
13577 	  if (rsp->last_set_invalid
13578 	      /* If this is a pseudo-register that was only set once and not
13579 		 live at the beginning of the function, it is always valid.  */
13580 	      || (! (regno >= FIRST_PSEUDO_REGISTER
13581 		     && regno < reg_n_sets_max
13582 		     && REG_N_SETS (regno) == 1
13583 		     && (!REGNO_REG_SET_P
13584 			 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13585 			  regno)))
13586 		  && rsp->last_set_label > tick))
13587 	  {
13588 	    if (replace)
13589 	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13590 	    return replace;
13591 	  }
13592 	}
13593 
13594       return 1;
13595     }
13596   /* If this is a memory reference, make sure that there were no stores after
13597      it that might have clobbered the value.  We don't have alias info, so we
13598      assume any store invalidates it.  Moreover, we only have local UIDs, so
13599      we also assume that there were stores in the intervening basic blocks.  */
13600   else if (MEM_P (x) && !MEM_READONLY_P (x)
13601 	   && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13602     {
13603       if (replace)
13604 	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13605       return replace;
13606     }
13607 
13608   for (i = 0; i < len; i++)
13609     {
13610       if (fmt[i] == 'e')
13611 	{
13612 	  /* Check for identical subexpressions.  If x contains
13613 	     identical subexpression we only have to traverse one of
13614 	     them.  */
13615 	  if (i == 1 && ARITHMETIC_P (x))
13616 	    {
13617 	      /* Note that at this point x0 has already been checked
13618 		 and found valid.  */
13619 	      rtx x0 = XEXP (x, 0);
13620 	      rtx x1 = XEXP (x, 1);
13621 
13622 	      /* If x0 and x1 are identical then x is also valid.  */
13623 	      if (x0 == x1)
13624 		return 1;
13625 
13626 	      /* If x1 is identical to a subexpression of x0 then
13627 		 while checking x0, x1 has already been checked.  Thus
13628 		 it is valid and so as x.  */
13629 	      if (ARITHMETIC_P (x0)
13630 		  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13631 		return 1;
13632 
13633 	      /* If x0 is identical to a subexpression of x1 then x is
13634 		 valid iff the rest of x1 is valid.  */
13635 	      if (ARITHMETIC_P (x1)
13636 		  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13637 		return
13638 		  get_last_value_validate (&XEXP (x1,
13639 						  x0 == XEXP (x1, 0) ? 1 : 0),
13640 					   insn, tick, replace);
13641 	    }
13642 
13643 	  if (get_last_value_validate (&XEXP (x, i), insn, tick,
13644 				       replace) == 0)
13645 	    return 0;
13646 	}
13647       else if (fmt[i] == 'E')
13648 	for (j = 0; j < XVECLEN (x, i); j++)
13649 	  if (get_last_value_validate (&XVECEXP (x, i, j),
13650 				       insn, tick, replace) == 0)
13651 	    return 0;
13652     }
13653 
13654   /* If we haven't found a reason for it to be invalid, it is valid.  */
13655   return 1;
13656 }
13657 
13658 /* Get the last value assigned to X, if known.  Some registers
13659    in the value may be replaced with (clobber (const_int 0)) if their value
13660    is known longer known reliably.  */
13661 
13662 static rtx
get_last_value(const_rtx x)13663 get_last_value (const_rtx x)
13664 {
13665   unsigned int regno;
13666   rtx value;
13667   reg_stat_type *rsp;
13668 
13669   /* If this is a non-paradoxical SUBREG, get the value of its operand and
13670      then convert it to the desired mode.  If this is a paradoxical SUBREG,
13671      we cannot predict what values the "extra" bits might have.  */
13672   if (GET_CODE (x) == SUBREG
13673       && subreg_lowpart_p (x)
13674       && !paradoxical_subreg_p (x)
13675       && (value = get_last_value (SUBREG_REG (x))) != 0)
13676     return gen_lowpart (GET_MODE (x), value);
13677 
13678   if (!REG_P (x))
13679     return 0;
13680 
13681   regno = REGNO (x);
13682   rsp = &reg_stat[regno];
13683   value = rsp->last_set_value;
13684 
13685   /* If we don't have a value, or if it isn't for this basic block and
13686      it's either a hard register, set more than once, or it's a live
13687      at the beginning of the function, return 0.
13688 
13689      Because if it's not live at the beginning of the function then the reg
13690      is always set before being used (is never used without being set).
13691      And, if it's set only once, and it's always set before use, then all
13692      uses must have the same last value, even if it's not from this basic
13693      block.  */
13694 
13695   if (value == 0
13696       || (rsp->last_set_label < label_tick_ebb_start
13697 	  && (regno < FIRST_PSEUDO_REGISTER
13698 	      || regno >= reg_n_sets_max
13699 	      || REG_N_SETS (regno) != 1
13700 	      || REGNO_REG_SET_P
13701 		 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13702     return 0;
13703 
13704   /* If the value was set in a later insn than the ones we are processing,
13705      we can't use it even if the register was only set once.  */
13706   if (rsp->last_set_label == label_tick
13707       && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13708     return 0;
13709 
13710   /* If fewer bits were set than what we are asked for now, we cannot use
13711      the value.  */
13712   if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13713 		GET_MODE_PRECISION (GET_MODE (x))))
13714     return 0;
13715 
13716   /* If the value has all its registers valid, return it.  */
13717   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13718     return value;
13719 
13720   /* Otherwise, make a copy and replace any invalid register with
13721      (clobber (const_int 0)).  If that fails for some reason, return 0.  */
13722 
13723   value = copy_rtx (value);
13724   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13725     return value;
13726 
13727   return 0;
13728 }
13729 
13730 /* Define three variables used for communication between the following
13731    routines.  */
13732 
13733 static unsigned int reg_dead_regno, reg_dead_endregno;
13734 static int reg_dead_flag;
13735 
13736 /* Function called via note_stores from reg_dead_at_p.
13737 
13738    If DEST is within [reg_dead_regno, reg_dead_endregno), set
13739    reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
13740 
13741 static void
reg_dead_at_p_1(rtx dest,const_rtx x,void * data ATTRIBUTE_UNUSED)13742 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13743 {
13744   unsigned int regno, endregno;
13745 
13746   if (!REG_P (dest))
13747     return;
13748 
13749   regno = REGNO (dest);
13750   endregno = END_REGNO (dest);
13751   if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13752     reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13753 }
13754 
13755 /* Return nonzero if REG is known to be dead at INSN.
13756 
13757    We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
13758    referencing REG, it is dead.  If we hit a SET referencing REG, it is
13759    live.  Otherwise, see if it is live or dead at the start of the basic
13760    block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
13761    must be assumed to be always live.  */
13762 
13763 static int
reg_dead_at_p(rtx reg,rtx_insn * insn)13764 reg_dead_at_p (rtx reg, rtx_insn *insn)
13765 {
13766   basic_block block;
13767   unsigned int i;
13768 
13769   /* Set variables for reg_dead_at_p_1.  */
13770   reg_dead_regno = REGNO (reg);
13771   reg_dead_endregno = END_REGNO (reg);
13772 
13773   reg_dead_flag = 0;
13774 
13775   /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  For fixed registers
13776      we allow the machine description to decide whether use-and-clobber
13777      patterns are OK.  */
13778   if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13779     {
13780       for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13781 	if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13782 	  return 0;
13783     }
13784 
13785   /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13786      beginning of basic block.  */
13787   block = BLOCK_FOR_INSN (insn);
13788   for (;;)
13789     {
13790       if (INSN_P (insn))
13791         {
13792 	  if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13793 	    return 1;
13794 
13795 	  note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13796 	  if (reg_dead_flag)
13797 	    return reg_dead_flag == 1 ? 1 : 0;
13798 
13799 	  if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13800 	    return 1;
13801         }
13802 
13803       if (insn == BB_HEAD (block))
13804 	break;
13805 
13806       insn = PREV_INSN (insn);
13807     }
13808 
13809   /* Look at live-in sets for the basic block that we were in.  */
13810   for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13811     if (REGNO_REG_SET_P (df_get_live_in (block), i))
13812       return 0;
13813 
13814   return 1;
13815 }
13816 
13817 /* Note hard registers in X that are used.  */
13818 
13819 static void
mark_used_regs_combine(rtx x)13820 mark_used_regs_combine (rtx x)
13821 {
13822   RTX_CODE code = GET_CODE (x);
13823   unsigned int regno;
13824   int i;
13825 
13826   switch (code)
13827     {
13828     case LABEL_REF:
13829     case SYMBOL_REF:
13830     case CONST:
13831     CASE_CONST_ANY:
13832     case PC:
13833     case ADDR_VEC:
13834     case ADDR_DIFF_VEC:
13835     case ASM_INPUT:
13836     /* CC0 must die in the insn after it is set, so we don't need to take
13837        special note of it here.  */
13838     case CC0:
13839       return;
13840 
13841     case CLOBBER:
13842       /* If we are clobbering a MEM, mark any hard registers inside the
13843 	 address as used.  */
13844       if (MEM_P (XEXP (x, 0)))
13845 	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13846       return;
13847 
13848     case REG:
13849       regno = REGNO (x);
13850       /* A hard reg in a wide mode may really be multiple registers.
13851 	 If so, mark all of them just like the first.  */
13852       if (regno < FIRST_PSEUDO_REGISTER)
13853 	{
13854 	  /* None of this applies to the stack, frame or arg pointers.  */
13855 	  if (regno == STACK_POINTER_REGNUM
13856 	      || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13857 		  && regno == HARD_FRAME_POINTER_REGNUM)
13858 	      || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13859 		  && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13860 	      || regno == FRAME_POINTER_REGNUM)
13861 	    return;
13862 
13863 	  add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13864 	}
13865       return;
13866 
13867     case SET:
13868       {
13869 	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13870 	   the address.  */
13871 	rtx testreg = SET_DEST (x);
13872 
13873 	while (GET_CODE (testreg) == SUBREG
13874 	       || GET_CODE (testreg) == ZERO_EXTRACT
13875 	       || GET_CODE (testreg) == STRICT_LOW_PART)
13876 	  testreg = XEXP (testreg, 0);
13877 
13878 	if (MEM_P (testreg))
13879 	  mark_used_regs_combine (XEXP (testreg, 0));
13880 
13881 	mark_used_regs_combine (SET_SRC (x));
13882       }
13883       return;
13884 
13885     default:
13886       break;
13887     }
13888 
13889   /* Recursively scan the operands of this expression.  */
13890 
13891   {
13892     const char *fmt = GET_RTX_FORMAT (code);
13893 
13894     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13895       {
13896 	if (fmt[i] == 'e')
13897 	  mark_used_regs_combine (XEXP (x, i));
13898 	else if (fmt[i] == 'E')
13899 	  {
13900 	    int j;
13901 
13902 	    for (j = 0; j < XVECLEN (x, i); j++)
13903 	      mark_used_regs_combine (XVECEXP (x, i, j));
13904 	  }
13905       }
13906   }
13907 }
13908 
13909 /* Remove register number REGNO from the dead registers list of INSN.
13910 
13911    Return the note used to record the death, if there was one.  */
13912 
13913 rtx
remove_death(unsigned int regno,rtx_insn * insn)13914 remove_death (unsigned int regno, rtx_insn *insn)
13915 {
13916   rtx note = find_regno_note (insn, REG_DEAD, regno);
13917 
13918   if (note)
13919     remove_note (insn, note);
13920 
13921   return note;
13922 }
13923 
13924 /* For each register (hardware or pseudo) used within expression X, if its
13925    death is in an instruction with luid between FROM_LUID (inclusive) and
13926    TO_INSN (exclusive), put a REG_DEAD note for that register in the
13927    list headed by PNOTES.
13928 
13929    That said, don't move registers killed by maybe_kill_insn.
13930 
13931    This is done when X is being merged by combination into TO_INSN.  These
13932    notes will then be distributed as needed.  */
13933 
13934 static void
move_deaths(rtx x,rtx maybe_kill_insn,int from_luid,rtx_insn * to_insn,rtx * pnotes)13935 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13936 	     rtx *pnotes)
13937 {
13938   const char *fmt;
13939   int len, i;
13940   enum rtx_code code = GET_CODE (x);
13941 
13942   if (code == REG)
13943     {
13944       unsigned int regno = REGNO (x);
13945       rtx_insn *where_dead = reg_stat[regno].last_death;
13946 
13947       /* If we do not know where the register died, it may still die between
13948 	 FROM_LUID and TO_INSN.  If so, find it.  This is PR83304.  */
13949       if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
13950 	{
13951 	  rtx_insn *insn = prev_real_nondebug_insn (to_insn);
13952 	  while (insn
13953 		 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
13954 		 && DF_INSN_LUID (insn) >= from_luid)
13955 	    {
13956 	      if (dead_or_set_regno_p (insn, regno))
13957 		{
13958 		  if (find_regno_note (insn, REG_DEAD, regno))
13959 		    where_dead = insn;
13960 		  break;
13961 		}
13962 
13963 	      insn = prev_real_nondebug_insn (insn);
13964 	    }
13965 	}
13966 
13967       /* Don't move the register if it gets killed in between from and to.  */
13968       if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13969 	  && ! reg_referenced_p (x, maybe_kill_insn))
13970 	return;
13971 
13972       if (where_dead
13973 	  && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13974 	  && DF_INSN_LUID (where_dead) >= from_luid
13975 	  && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13976 	{
13977 	  rtx note = remove_death (regno, where_dead);
13978 
13979 	  /* It is possible for the call above to return 0.  This can occur
13980 	     when last_death points to I2 or I1 that we combined with.
13981 	     In that case make a new note.
13982 
13983 	     We must also check for the case where X is a hard register
13984 	     and NOTE is a death note for a range of hard registers
13985 	     including X.  In that case, we must put REG_DEAD notes for
13986 	     the remaining registers in place of NOTE.  */
13987 
13988 	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13989 	      && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13990 	    {
13991 	      unsigned int deadregno = REGNO (XEXP (note, 0));
13992 	      unsigned int deadend = END_REGNO (XEXP (note, 0));
13993 	      unsigned int ourend = END_REGNO (x);
13994 	      unsigned int i;
13995 
13996 	      for (i = deadregno; i < deadend; i++)
13997 		if (i < regno || i >= ourend)
13998 		  add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13999 	    }
14000 
14001 	  /* If we didn't find any note, or if we found a REG_DEAD note that
14002 	     covers only part of the given reg, and we have a multi-reg hard
14003 	     register, then to be safe we must check for REG_DEAD notes
14004 	     for each register other than the first.  They could have
14005 	     their own REG_DEAD notes lying around.  */
14006 	  else if ((note == 0
14007 		    || (note != 0
14008 			&& partial_subreg_p (GET_MODE (XEXP (note, 0)),
14009 					     GET_MODE (x))))
14010 		   && regno < FIRST_PSEUDO_REGISTER
14011 		   && REG_NREGS (x) > 1)
14012 	    {
14013 	      unsigned int ourend = END_REGNO (x);
14014 	      unsigned int i, offset;
14015 	      rtx oldnotes = 0;
14016 
14017 	      if (note)
14018 		offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14019 	      else
14020 		offset = 1;
14021 
14022 	      for (i = regno + offset; i < ourend; i++)
14023 		move_deaths (regno_reg_rtx[i],
14024 			     maybe_kill_insn, from_luid, to_insn, &oldnotes);
14025 	    }
14026 
14027 	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14028 	    {
14029 	      XEXP (note, 1) = *pnotes;
14030 	      *pnotes = note;
14031 	    }
14032 	  else
14033 	    *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14034 	}
14035 
14036       return;
14037     }
14038 
14039   else if (GET_CODE (x) == SET)
14040     {
14041       rtx dest = SET_DEST (x);
14042 
14043       move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14044 
14045       /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14046 	 that accesses one word of a multi-word item, some
14047 	 piece of everything register in the expression is used by
14048 	 this insn, so remove any old death.  */
14049       /* ??? So why do we test for equality of the sizes?  */
14050 
14051       if (GET_CODE (dest) == ZERO_EXTRACT
14052 	  || GET_CODE (dest) == STRICT_LOW_PART
14053 	  || (GET_CODE (dest) == SUBREG
14054 	      && !read_modify_subreg_p (dest)))
14055 	{
14056 	  move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14057 	  return;
14058 	}
14059 
14060       /* If this is some other SUBREG, we know it replaces the entire
14061 	 value, so use that as the destination.  */
14062       if (GET_CODE (dest) == SUBREG)
14063 	dest = SUBREG_REG (dest);
14064 
14065       /* If this is a MEM, adjust deaths of anything used in the address.
14066 	 For a REG (the only other possibility), the entire value is
14067 	 being replaced so the old value is not used in this insn.  */
14068 
14069       if (MEM_P (dest))
14070 	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14071 		     to_insn, pnotes);
14072       return;
14073     }
14074 
14075   else if (GET_CODE (x) == CLOBBER)
14076     return;
14077 
14078   len = GET_RTX_LENGTH (code);
14079   fmt = GET_RTX_FORMAT (code);
14080 
14081   for (i = 0; i < len; i++)
14082     {
14083       if (fmt[i] == 'E')
14084 	{
14085 	  int j;
14086 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14087 	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14088 			 to_insn, pnotes);
14089 	}
14090       else if (fmt[i] == 'e')
14091 	move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14092     }
14093 }
14094 
14095 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14096    pattern of an insn.  X must be a REG.  */
14097 
14098 static int
reg_bitfield_target_p(rtx x,rtx body)14099 reg_bitfield_target_p (rtx x, rtx body)
14100 {
14101   int i;
14102 
14103   if (GET_CODE (body) == SET)
14104     {
14105       rtx dest = SET_DEST (body);
14106       rtx target;
14107       unsigned int regno, tregno, endregno, endtregno;
14108 
14109       if (GET_CODE (dest) == ZERO_EXTRACT)
14110 	target = XEXP (dest, 0);
14111       else if (GET_CODE (dest) == STRICT_LOW_PART)
14112 	target = SUBREG_REG (XEXP (dest, 0));
14113       else
14114 	return 0;
14115 
14116       if (GET_CODE (target) == SUBREG)
14117 	target = SUBREG_REG (target);
14118 
14119       if (!REG_P (target))
14120 	return 0;
14121 
14122       tregno = REGNO (target), regno = REGNO (x);
14123       if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14124 	return target == x;
14125 
14126       endtregno = end_hard_regno (GET_MODE (target), tregno);
14127       endregno = end_hard_regno (GET_MODE (x), regno);
14128 
14129       return endregno > tregno && regno < endtregno;
14130     }
14131 
14132   else if (GET_CODE (body) == PARALLEL)
14133     for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14134       if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14135 	return 1;
14136 
14137   return 0;
14138 }
14139 
14140 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14141    as appropriate.  I3 and I2 are the insns resulting from the combination
14142    insns including FROM (I2 may be zero).
14143 
14144    ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14145    not need REG_DEAD notes because they are being substituted for.  This
14146    saves searching in the most common cases.
14147 
14148    Each note in the list is either ignored or placed on some insns, depending
14149    on the type of note.  */
14150 
14151 static void
distribute_notes(rtx notes,rtx_insn * from_insn,rtx_insn * i3,rtx_insn * i2,rtx elim_i2,rtx elim_i1,rtx elim_i0)14152 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14153 		  rtx elim_i2, rtx elim_i1, rtx elim_i0)
14154 {
14155   rtx note, next_note;
14156   rtx tem_note;
14157   rtx_insn *tem_insn;
14158 
14159   for (note = notes; note; note = next_note)
14160     {
14161       rtx_insn *place = 0, *place2 = 0;
14162 
14163       next_note = XEXP (note, 1);
14164       switch (REG_NOTE_KIND (note))
14165 	{
14166 	case REG_BR_PROB:
14167 	case REG_BR_PRED:
14168 	  /* Doesn't matter much where we put this, as long as it's somewhere.
14169 	     It is preferable to keep these notes on branches, which is most
14170 	     likely to be i3.  */
14171 	  place = i3;
14172 	  break;
14173 
14174 	case REG_NON_LOCAL_GOTO:
14175 	  if (JUMP_P (i3))
14176 	    place = i3;
14177 	  else
14178 	    {
14179 	      gcc_assert (i2 && JUMP_P (i2));
14180 	      place = i2;
14181 	    }
14182 	  break;
14183 
14184 	case REG_EH_REGION:
14185 	  /* These notes must remain with the call or trapping instruction.  */
14186 	  if (CALL_P (i3))
14187 	    place = i3;
14188 	  else if (i2 && CALL_P (i2))
14189 	    place = i2;
14190 	  else
14191 	    {
14192 	      gcc_assert (cfun->can_throw_non_call_exceptions);
14193 	      if (may_trap_p (i3))
14194 		place = i3;
14195 	      else if (i2 && may_trap_p (i2))
14196 		place = i2;
14197 	      /* ??? Otherwise assume we've combined things such that we
14198 		 can now prove that the instructions can't trap.  Drop the
14199 		 note in this case.  */
14200 	    }
14201 	  break;
14202 
14203 	case REG_ARGS_SIZE:
14204 	  /* ??? How to distribute between i3-i1.  Assume i3 contains the
14205 	     entire adjustment.  Assert i3 contains at least some adjust.  */
14206 	  if (!noop_move_p (i3))
14207 	    {
14208 	      poly_int64 old_size, args_size = get_args_size (note);
14209 	      /* fixup_args_size_notes looks at REG_NORETURN note,
14210 		 so ensure the note is placed there first.  */
14211 	      if (CALL_P (i3))
14212 		{
14213 		  rtx *np;
14214 		  for (np = &next_note; *np; np = &XEXP (*np, 1))
14215 		    if (REG_NOTE_KIND (*np) == REG_NORETURN)
14216 		      {
14217 			rtx n = *np;
14218 			*np = XEXP (n, 1);
14219 			XEXP (n, 1) = REG_NOTES (i3);
14220 			REG_NOTES (i3) = n;
14221 			break;
14222 		      }
14223 		}
14224 	      old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14225 	      /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14226 		 REG_ARGS_SIZE note to all noreturn calls, allow that here.  */
14227 	      gcc_assert (maybe_ne (old_size, args_size)
14228 			  || (CALL_P (i3)
14229 			      && !ACCUMULATE_OUTGOING_ARGS
14230 			      && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14231 	    }
14232 	  break;
14233 
14234 	case REG_NORETURN:
14235 	case REG_SETJMP:
14236 	case REG_TM:
14237 	case REG_CALL_DECL:
14238 	case REG_CALL_NOCF_CHECK:
14239 	  /* These notes must remain with the call.  It should not be
14240 	     possible for both I2 and I3 to be a call.  */
14241 	  if (CALL_P (i3))
14242 	    place = i3;
14243 	  else
14244 	    {
14245 	      gcc_assert (i2 && CALL_P (i2));
14246 	      place = i2;
14247 	    }
14248 	  break;
14249 
14250 	case REG_UNUSED:
14251 	  /* Any clobbers for i3 may still exist, and so we must process
14252 	     REG_UNUSED notes from that insn.
14253 
14254 	     Any clobbers from i2 or i1 can only exist if they were added by
14255 	     recog_for_combine.  In that case, recog_for_combine created the
14256 	     necessary REG_UNUSED notes.  Trying to keep any original
14257 	     REG_UNUSED notes from these insns can cause incorrect output
14258 	     if it is for the same register as the original i3 dest.
14259 	     In that case, we will notice that the register is set in i3,
14260 	     and then add a REG_UNUSED note for the destination of i3, which
14261 	     is wrong.  However, it is possible to have REG_UNUSED notes from
14262 	     i2 or i1 for register which were both used and clobbered, so
14263 	     we keep notes from i2 or i1 if they will turn into REG_DEAD
14264 	     notes.  */
14265 
14266 	  /* If this register is set or clobbered in I3, put the note there
14267 	     unless there is one already.  */
14268 	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14269 	    {
14270 	      if (from_insn != i3)
14271 		break;
14272 
14273 	      if (! (REG_P (XEXP (note, 0))
14274 		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14275 		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14276 		place = i3;
14277 	    }
14278 	  /* Otherwise, if this register is used by I3, then this register
14279 	     now dies here, so we must put a REG_DEAD note here unless there
14280 	     is one already.  */
14281 	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14282 		   && ! (REG_P (XEXP (note, 0))
14283 			 ? find_regno_note (i3, REG_DEAD,
14284 					    REGNO (XEXP (note, 0)))
14285 			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14286 	    {
14287 	      PUT_REG_NOTE_KIND (note, REG_DEAD);
14288 	      place = i3;
14289 	    }
14290 
14291 	  /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14292 	     but we can't tell which at this point.  We must reset any
14293 	     expectations we had about the value that was previously
14294 	     stored in the reg.  ??? Ideally, we'd adjust REG_N_SETS
14295 	     and, if appropriate, restore its previous value, but we
14296 	     don't have enough information for that at this point.  */
14297 	  else
14298 	    {
14299 	      record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14300 
14301 	      /* Otherwise, if this register is now referenced in i2
14302 		 then the register used to be modified in one of the
14303 		 original insns.  If it was i3 (say, in an unused
14304 		 parallel), it's now completely gone, so the note can
14305 		 be discarded.  But if it was modified in i2, i1 or i0
14306 		 and we still reference it in i2, then we're
14307 		 referencing the previous value, and since the
14308 		 register was modified and REG_UNUSED, we know that
14309 		 the previous value is now dead.  So, if we only
14310 		 reference the register in i2, we change the note to
14311 		 REG_DEAD, to reflect the previous value.  However, if
14312 		 we're also setting or clobbering the register as
14313 		 scratch, we know (because the register was not
14314 		 referenced in i3) that it's unused, just as it was
14315 		 unused before, and we place the note in i2.  */
14316 	      if (from_insn != i3 && i2 && INSN_P (i2)
14317 		  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14318 		{
14319 		  if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14320 		    PUT_REG_NOTE_KIND (note, REG_DEAD);
14321 		  if (! (REG_P (XEXP (note, 0))
14322 			 ? find_regno_note (i2, REG_NOTE_KIND (note),
14323 					    REGNO (XEXP (note, 0)))
14324 			 : find_reg_note (i2, REG_NOTE_KIND (note),
14325 					  XEXP (note, 0))))
14326 		    place = i2;
14327 		}
14328 	    }
14329 
14330 	  break;
14331 
14332 	case REG_EQUAL:
14333 	case REG_EQUIV:
14334 	case REG_NOALIAS:
14335 	  /* These notes say something about results of an insn.  We can
14336 	     only support them if they used to be on I3 in which case they
14337 	     remain on I3.  Otherwise they are ignored.
14338 
14339 	     If the note refers to an expression that is not a constant, we
14340 	     must also ignore the note since we cannot tell whether the
14341 	     equivalence is still true.  It might be possible to do
14342 	     slightly better than this (we only have a problem if I2DEST
14343 	     or I1DEST is present in the expression), but it doesn't
14344 	     seem worth the trouble.  */
14345 
14346 	  if (from_insn == i3
14347 	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14348 	    place = i3;
14349 	  break;
14350 
14351 	case REG_INC:
14352 	  /* These notes say something about how a register is used.  They must
14353 	     be present on any use of the register in I2 or I3.  */
14354 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14355 	    place = i3;
14356 
14357 	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14358 	    {
14359 	      if (place)
14360 		place2 = i2;
14361 	      else
14362 		place = i2;
14363 	    }
14364 	  break;
14365 
14366 	case REG_LABEL_TARGET:
14367 	case REG_LABEL_OPERAND:
14368 	  /* This can show up in several ways -- either directly in the
14369 	     pattern, or hidden off in the constant pool with (or without?)
14370 	     a REG_EQUAL note.  */
14371 	  /* ??? Ignore the without-reg_equal-note problem for now.  */
14372 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14373 	      || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14374 		  && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14375 		  && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14376 	    place = i3;
14377 
14378 	  if (i2
14379 	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14380 		  || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14381 		      && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14382 		      && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14383 	    {
14384 	      if (place)
14385 		place2 = i2;
14386 	      else
14387 		place = i2;
14388 	    }
14389 
14390 	  /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14391 	     as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14392 	     there.  */
14393 	  if (place && JUMP_P (place)
14394 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14395 	      && (JUMP_LABEL (place) == NULL
14396 		  || JUMP_LABEL (place) == XEXP (note, 0)))
14397 	    {
14398 	      rtx label = JUMP_LABEL (place);
14399 
14400 	      if (!label)
14401 		JUMP_LABEL (place) = XEXP (note, 0);
14402 	      else if (LABEL_P (label))
14403 		LABEL_NUSES (label)--;
14404 	    }
14405 
14406 	  if (place2 && JUMP_P (place2)
14407 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14408 	      && (JUMP_LABEL (place2) == NULL
14409 		  || JUMP_LABEL (place2) == XEXP (note, 0)))
14410 	    {
14411 	      rtx label = JUMP_LABEL (place2);
14412 
14413 	      if (!label)
14414 		JUMP_LABEL (place2) = XEXP (note, 0);
14415 	      else if (LABEL_P (label))
14416 		LABEL_NUSES (label)--;
14417 	      place2 = 0;
14418 	    }
14419 	  break;
14420 
14421 	case REG_NONNEG:
14422 	  /* This note says something about the value of a register prior
14423 	     to the execution of an insn.  It is too much trouble to see
14424 	     if the note is still correct in all situations.  It is better
14425 	     to simply delete it.  */
14426 	  break;
14427 
14428 	case REG_DEAD:
14429 	  /* If we replaced the right hand side of FROM_INSN with a
14430 	     REG_EQUAL note, the original use of the dying register
14431 	     will not have been combined into I3 and I2.  In such cases,
14432 	     FROM_INSN is guaranteed to be the first of the combined
14433 	     instructions, so we simply need to search back before
14434 	     FROM_INSN for the previous use or set of this register,
14435 	     then alter the notes there appropriately.
14436 
14437 	     If the register is used as an input in I3, it dies there.
14438 	     Similarly for I2, if it is nonzero and adjacent to I3.
14439 
14440 	     If the register is not used as an input in either I3 or I2
14441 	     and it is not one of the registers we were supposed to eliminate,
14442 	     there are two possibilities.  We might have a non-adjacent I2
14443 	     or we might have somehow eliminated an additional register
14444 	     from a computation.  For example, we might have had A & B where
14445 	     we discover that B will always be zero.  In this case we will
14446 	     eliminate the reference to A.
14447 
14448 	     In both cases, we must search to see if we can find a previous
14449 	     use of A and put the death note there.  */
14450 
14451 	  if (from_insn
14452 	      && from_insn == i2mod
14453 	      && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14454 	    tem_insn = from_insn;
14455 	  else
14456 	    {
14457 	      if (from_insn
14458 		  && CALL_P (from_insn)
14459 		  && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14460 		place = from_insn;
14461 	      else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14462 		{
14463 		  /* If the new I2 sets the same register that is marked
14464 		     dead in the note, we do not in general know where to
14465 		     put the note.  One important case we _can_ handle is
14466 		     when the note comes from I3.  */
14467 		  if (from_insn == i3)
14468 		    place = i3;
14469 		  else
14470 		    break;
14471 		}
14472 	      else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14473 		place = i3;
14474 	      else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14475 		       && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14476 		place = i2;
14477 	      else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14478 			&& !(i2mod
14479 			     && reg_overlap_mentioned_p (XEXP (note, 0),
14480 							 i2mod_old_rhs)))
14481 		       || rtx_equal_p (XEXP (note, 0), elim_i1)
14482 		       || rtx_equal_p (XEXP (note, 0), elim_i0))
14483 		break;
14484 	      tem_insn = i3;
14485 	    }
14486 
14487 	  if (place == 0)
14488 	    {
14489 	      basic_block bb = this_basic_block;
14490 
14491 	      for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14492 		{
14493 		  if (!NONDEBUG_INSN_P (tem_insn))
14494 		    {
14495 		      if (tem_insn == BB_HEAD (bb))
14496 			break;
14497 		      continue;
14498 		    }
14499 
14500 		  /* If the register is being set at TEM_INSN, see if that is all
14501 		     TEM_INSN is doing.  If so, delete TEM_INSN.  Otherwise, make this
14502 		     into a REG_UNUSED note instead. Don't delete sets to
14503 		     global register vars.  */
14504 		  if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14505 		       || !global_regs[REGNO (XEXP (note, 0))])
14506 		      && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14507 		    {
14508 		      rtx set = single_set (tem_insn);
14509 		      rtx inner_dest = 0;
14510 		      rtx_insn *cc0_setter = NULL;
14511 
14512 		      if (set != 0)
14513 			for (inner_dest = SET_DEST (set);
14514 			     (GET_CODE (inner_dest) == STRICT_LOW_PART
14515 			      || GET_CODE (inner_dest) == SUBREG
14516 			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
14517 			     inner_dest = XEXP (inner_dest, 0))
14518 			  ;
14519 
14520 		      /* Verify that it was the set, and not a clobber that
14521 			 modified the register.
14522 
14523 			 CC0 targets must be careful to maintain setter/user
14524 			 pairs.  If we cannot delete the setter due to side
14525 			 effects, mark the user with an UNUSED note instead
14526 			 of deleting it.  */
14527 
14528 		      if (set != 0 && ! side_effects_p (SET_SRC (set))
14529 			  && rtx_equal_p (XEXP (note, 0), inner_dest)
14530 			  && (!HAVE_cc0
14531 			      || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14532 				  || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14533 				      && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14534 			{
14535 			  /* Move the notes and links of TEM_INSN elsewhere.
14536 			     This might delete other dead insns recursively.
14537 			     First set the pattern to something that won't use
14538 			     any register.  */
14539 			  rtx old_notes = REG_NOTES (tem_insn);
14540 
14541 			  PATTERN (tem_insn) = pc_rtx;
14542 			  REG_NOTES (tem_insn) = NULL;
14543 
14544 			  distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14545 					    NULL_RTX, NULL_RTX, NULL_RTX);
14546 			  distribute_links (LOG_LINKS (tem_insn));
14547 
14548 			  unsigned int regno = REGNO (XEXP (note, 0));
14549 			  reg_stat_type *rsp = &reg_stat[regno];
14550 			  if (rsp->last_set == tem_insn)
14551 			    record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14552 
14553 			  SET_INSN_DELETED (tem_insn);
14554 			  if (tem_insn == i2)
14555 			    i2 = NULL;
14556 
14557 			  /* Delete the setter too.  */
14558 			  if (cc0_setter)
14559 			    {
14560 			      PATTERN (cc0_setter) = pc_rtx;
14561 			      old_notes = REG_NOTES (cc0_setter);
14562 			      REG_NOTES (cc0_setter) = NULL;
14563 
14564 			      distribute_notes (old_notes, cc0_setter,
14565 						cc0_setter, NULL,
14566 						NULL_RTX, NULL_RTX, NULL_RTX);
14567 			      distribute_links (LOG_LINKS (cc0_setter));
14568 
14569 			      SET_INSN_DELETED (cc0_setter);
14570 			      if (cc0_setter == i2)
14571 				i2 = NULL;
14572 			    }
14573 			}
14574 		      else
14575 			{
14576 			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
14577 
14578 			  /*  If there isn't already a REG_UNUSED note, put one
14579 			      here.  Do not place a REG_DEAD note, even if
14580 			      the register is also used here; that would not
14581 			      match the algorithm used in lifetime analysis
14582 			      and can cause the consistency check in the
14583 			      scheduler to fail.  */
14584 			  if (! find_regno_note (tem_insn, REG_UNUSED,
14585 						 REGNO (XEXP (note, 0))))
14586 			    place = tem_insn;
14587 			  break;
14588 			}
14589 		    }
14590 		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14591 			   || (CALL_P (tem_insn)
14592 			       && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14593 		    {
14594 		      place = tem_insn;
14595 
14596 		      /* If we are doing a 3->2 combination, and we have a
14597 			 register which formerly died in i3 and was not used
14598 			 by i2, which now no longer dies in i3 and is used in
14599 			 i2 but does not die in i2, and place is between i2
14600 			 and i3, then we may need to move a link from place to
14601 			 i2.  */
14602 		      if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14603 			  && from_insn
14604 			  && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14605 			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14606 			{
14607 			  struct insn_link *links = LOG_LINKS (place);
14608 			  LOG_LINKS (place) = NULL;
14609 			  distribute_links (links);
14610 			}
14611 		      break;
14612 		    }
14613 
14614 		  if (tem_insn == BB_HEAD (bb))
14615 		    break;
14616 		}
14617 
14618 	    }
14619 
14620 	  /* If the register is set or already dead at PLACE, we needn't do
14621 	     anything with this note if it is still a REG_DEAD note.
14622 	     We check here if it is set at all, not if is it totally replaced,
14623 	     which is what `dead_or_set_p' checks, so also check for it being
14624 	     set partially.  */
14625 
14626 	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
14627 	    {
14628 	      unsigned int regno = REGNO (XEXP (note, 0));
14629 	      reg_stat_type *rsp = &reg_stat[regno];
14630 
14631 	      if (dead_or_set_p (place, XEXP (note, 0))
14632 		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14633 		{
14634 		  /* Unless the register previously died in PLACE, clear
14635 		     last_death.  [I no longer understand why this is
14636 		     being done.] */
14637 		  if (rsp->last_death != place)
14638 		    rsp->last_death = 0;
14639 		  place = 0;
14640 		}
14641 	      else
14642 		rsp->last_death = place;
14643 
14644 	      /* If this is a death note for a hard reg that is occupying
14645 		 multiple registers, ensure that we are still using all
14646 		 parts of the object.  If we find a piece of the object
14647 		 that is unused, we must arrange for an appropriate REG_DEAD
14648 		 note to be added for it.  However, we can't just emit a USE
14649 		 and tag the note to it, since the register might actually
14650 		 be dead; so we recourse, and the recursive call then finds
14651 		 the previous insn that used this register.  */
14652 
14653 	      if (place && REG_NREGS (XEXP (note, 0)) > 1)
14654 		{
14655 		  unsigned int endregno = END_REGNO (XEXP (note, 0));
14656 		  bool all_used = true;
14657 		  unsigned int i;
14658 
14659 		  for (i = regno; i < endregno; i++)
14660 		    if ((! refers_to_regno_p (i, PATTERN (place))
14661 			 && ! find_regno_fusage (place, USE, i))
14662 			|| dead_or_set_regno_p (place, i))
14663 		      {
14664 			all_used = false;
14665 			break;
14666 		      }
14667 
14668 		  if (! all_used)
14669 		    {
14670 		      /* Put only REG_DEAD notes for pieces that are
14671 			 not already dead or set.  */
14672 
14673 		      for (i = regno; i < endregno;
14674 			   i += hard_regno_nregs (i, reg_raw_mode[i]))
14675 			{
14676 			  rtx piece = regno_reg_rtx[i];
14677 			  basic_block bb = this_basic_block;
14678 
14679 			  if (! dead_or_set_p (place, piece)
14680 			      && ! reg_bitfield_target_p (piece,
14681 							  PATTERN (place)))
14682 			    {
14683 			      rtx new_note = alloc_reg_note (REG_DEAD, piece,
14684 							     NULL_RTX);
14685 
14686 			      distribute_notes (new_note, place, place,
14687 						NULL, NULL_RTX, NULL_RTX,
14688 						NULL_RTX);
14689 			    }
14690 			  else if (! refers_to_regno_p (i, PATTERN (place))
14691 				   && ! find_regno_fusage (place, USE, i))
14692 			    for (tem_insn = PREV_INSN (place); ;
14693 				 tem_insn = PREV_INSN (tem_insn))
14694 			      {
14695 				if (!NONDEBUG_INSN_P (tem_insn))
14696 				  {
14697 				    if (tem_insn == BB_HEAD (bb))
14698 			 	      break;
14699 				    continue;
14700 				  }
14701 				if (dead_or_set_p (tem_insn, piece)
14702 				    || reg_bitfield_target_p (piece,
14703 							      PATTERN (tem_insn)))
14704 				  {
14705 				    add_reg_note (tem_insn, REG_UNUSED, piece);
14706 				    break;
14707 				  }
14708 			      }
14709 			}
14710 
14711 		      place = 0;
14712 		    }
14713 		}
14714 	    }
14715 	  break;
14716 
14717 	default:
14718 	  /* Any other notes should not be present at this point in the
14719 	     compilation.  */
14720 	  gcc_unreachable ();
14721 	}
14722 
14723       if (place)
14724 	{
14725 	  XEXP (note, 1) = REG_NOTES (place);
14726 	  REG_NOTES (place) = note;
14727 
14728 	  /* Set added_notes_insn to the earliest insn we added a note to.  */
14729 	  if (added_notes_insn == 0
14730 	      || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14731 	    added_notes_insn = place;
14732 	}
14733 
14734       if (place2)
14735 	{
14736 	  add_shallow_copy_of_reg_note (place2, note);
14737 
14738 	  /* Set added_notes_insn to the earliest insn we added a note to.  */
14739 	  if (added_notes_insn == 0
14740 	      || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14741 	    added_notes_insn = place2;
14742 	}
14743     }
14744 }
14745 
14746 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14747    I3, I2, and I1 to new locations.  This is also called to add a link
14748    pointing at I3 when I3's destination is changed.  */
14749 
14750 static void
distribute_links(struct insn_link * links)14751 distribute_links (struct insn_link *links)
14752 {
14753   struct insn_link *link, *next_link;
14754 
14755   for (link = links; link; link = next_link)
14756     {
14757       rtx_insn *place = 0;
14758       rtx_insn *insn;
14759       rtx set, reg;
14760 
14761       next_link = link->next;
14762 
14763       /* If the insn that this link points to is a NOTE, ignore it.  */
14764       if (NOTE_P (link->insn))
14765 	continue;
14766 
14767       set = 0;
14768       rtx pat = PATTERN (link->insn);
14769       if (GET_CODE (pat) == SET)
14770 	set = pat;
14771       else if (GET_CODE (pat) == PARALLEL)
14772 	{
14773 	  int i;
14774 	  for (i = 0; i < XVECLEN (pat, 0); i++)
14775 	    {
14776 	      set = XVECEXP (pat, 0, i);
14777 	      if (GET_CODE (set) != SET)
14778 		continue;
14779 
14780 	      reg = SET_DEST (set);
14781 	      while (GET_CODE (reg) == ZERO_EXTRACT
14782 		     || GET_CODE (reg) == STRICT_LOW_PART
14783 		     || GET_CODE (reg) == SUBREG)
14784 		reg = XEXP (reg, 0);
14785 
14786 	      if (!REG_P (reg))
14787 		continue;
14788 
14789 	      if (REGNO (reg) == link->regno)
14790 		break;
14791 	    }
14792 	  if (i == XVECLEN (pat, 0))
14793 	    continue;
14794 	}
14795       else
14796 	continue;
14797 
14798       reg = SET_DEST (set);
14799 
14800       while (GET_CODE (reg) == ZERO_EXTRACT
14801 	     || GET_CODE (reg) == STRICT_LOW_PART
14802 	     || GET_CODE (reg) == SUBREG)
14803 	reg = XEXP (reg, 0);
14804 
14805       if (reg == pc_rtx)
14806 	continue;
14807 
14808       /* A LOG_LINK is defined as being placed on the first insn that uses
14809 	 a register and points to the insn that sets the register.  Start
14810 	 searching at the next insn after the target of the link and stop
14811 	 when we reach a set of the register or the end of the basic block.
14812 
14813 	 Note that this correctly handles the link that used to point from
14814 	 I3 to I2.  Also note that not much searching is typically done here
14815 	 since most links don't point very far away.  */
14816 
14817       for (insn = NEXT_INSN (link->insn);
14818 	   (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14819 		     || BB_HEAD (this_basic_block->next_bb) != insn));
14820 	   insn = NEXT_INSN (insn))
14821 	if (DEBUG_INSN_P (insn))
14822 	  continue;
14823 	else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14824 	  {
14825 	    if (reg_referenced_p (reg, PATTERN (insn)))
14826 	      place = insn;
14827 	    break;
14828 	  }
14829 	else if (CALL_P (insn)
14830 		 && find_reg_fusage (insn, USE, reg))
14831 	  {
14832 	    place = insn;
14833 	    break;
14834 	  }
14835 	else if (INSN_P (insn) && reg_set_p (reg, insn))
14836 	  break;
14837 
14838       /* If we found a place to put the link, place it there unless there
14839 	 is already a link to the same insn as LINK at that point.  */
14840 
14841       if (place)
14842 	{
14843 	  struct insn_link *link2;
14844 
14845 	  FOR_EACH_LOG_LINK (link2, place)
14846 	    if (link2->insn == link->insn && link2->regno == link->regno)
14847 	      break;
14848 
14849 	  if (link2 == NULL)
14850 	    {
14851 	      link->next = LOG_LINKS (place);
14852 	      LOG_LINKS (place) = link;
14853 
14854 	      /* Set added_links_insn to the earliest insn we added a
14855 		 link to.  */
14856 	      if (added_links_insn == 0
14857 		  || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14858 		added_links_insn = place;
14859 	    }
14860 	}
14861     }
14862 }
14863 
14864 /* Check for any register or memory mentioned in EQUIV that is not
14865    mentioned in EXPR.  This is used to restrict EQUIV to "specializations"
14866    of EXPR where some registers may have been replaced by constants.  */
14867 
14868 static bool
unmentioned_reg_p(rtx equiv,rtx expr)14869 unmentioned_reg_p (rtx equiv, rtx expr)
14870 {
14871   subrtx_iterator::array_type array;
14872   FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14873     {
14874       const_rtx x = *iter;
14875       if ((REG_P (x) || MEM_P (x))
14876 	  && !reg_mentioned_p (x, expr))
14877 	return true;
14878     }
14879   return false;
14880 }
14881 
14882 DEBUG_FUNCTION void
dump_combine_stats(FILE * file)14883 dump_combine_stats (FILE *file)
14884 {
14885   fprintf
14886     (file,
14887      ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14888      combine_attempts, combine_merges, combine_extras, combine_successes);
14889 }
14890 
14891 void
dump_combine_total_stats(FILE * file)14892 dump_combine_total_stats (FILE *file)
14893 {
14894   fprintf
14895     (file,
14896      "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14897      total_attempts, total_merges, total_extras, total_successes);
14898 }
14899 
14900 /* Try combining insns through substitution.  */
14901 static unsigned int
rest_of_handle_combine(void)14902 rest_of_handle_combine (void)
14903 {
14904   int rebuild_jump_labels_after_combine;
14905 
14906   df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14907   df_note_add_problem ();
14908   df_analyze ();
14909 
14910   regstat_init_n_sets_and_refs ();
14911   reg_n_sets_max = max_reg_num ();
14912 
14913   rebuild_jump_labels_after_combine
14914     = combine_instructions (get_insns (), max_reg_num ());
14915 
14916   /* Combining insns may have turned an indirect jump into a
14917      direct jump.  Rebuild the JUMP_LABEL fields of jumping
14918      instructions.  */
14919   if (rebuild_jump_labels_after_combine)
14920     {
14921       if (dom_info_available_p (CDI_DOMINATORS))
14922 	free_dominance_info (CDI_DOMINATORS);
14923       timevar_push (TV_JUMP);
14924       rebuild_jump_labels (get_insns ());
14925       cleanup_cfg (0);
14926       timevar_pop (TV_JUMP);
14927     }
14928 
14929   regstat_free_n_sets_and_refs ();
14930   return 0;
14931 }
14932 
14933 namespace {
14934 
14935 const pass_data pass_data_combine =
14936 {
14937   RTL_PASS, /* type */
14938   "combine", /* name */
14939   OPTGROUP_NONE, /* optinfo_flags */
14940   TV_COMBINE, /* tv_id */
14941   PROP_cfglayout, /* properties_required */
14942   0, /* properties_provided */
14943   0, /* properties_destroyed */
14944   0, /* todo_flags_start */
14945   TODO_df_finish, /* todo_flags_finish */
14946 };
14947 
14948 class pass_combine : public rtl_opt_pass
14949 {
14950 public:
pass_combine(gcc::context * ctxt)14951   pass_combine (gcc::context *ctxt)
14952     : rtl_opt_pass (pass_data_combine, ctxt)
14953   {}
14954 
14955   /* opt_pass methods: */
gate(function *)14956   virtual bool gate (function *) { return (optimize > 0); }
execute(function *)14957   virtual unsigned int execute (function *)
14958     {
14959       return rest_of_handle_combine ();
14960     }
14961 
14962 }; // class pass_combine
14963 
14964 } // anon namespace
14965 
14966 rtl_opt_pass *
make_pass_combine(gcc::context * ctxt)14967 make_pass_combine (gcc::context *ctxt)
14968 {
14969   return new pass_combine (ctxt);
14970 }
14971