1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com).
4    64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5    at Cygnus Support.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #include "config/vxworks-dummy.h"
24 
25 /* Note that some other tm.h files include this one and then override
26    whatever definitions are necessary.  */
27 
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29 
30 /* Specify this in a cover file to provide bi-architecture (32/64) support.  */
31 /* #define SPARC_BI_ARCH */
32 
33 /* Macro used later in this file to determine default architecture.  */
34 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
35 
36 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
37    architectures to compile for.  We allow targets to choose compile time or
38    runtime selection.  */
39 #ifdef IN_LIBGCC2
40 #if defined(__sparcv9) || defined(__arch64__)
41 #define TARGET_ARCH32 0
42 #else
43 #define TARGET_ARCH32 1
44 #endif /* sparc64 */
45 #else
46 #ifdef SPARC_BI_ARCH
47 #define TARGET_ARCH32 (!TARGET_64BIT)
48 #else
49 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
50 #endif /* SPARC_BI_ARCH */
51 #endif /* IN_LIBGCC2 */
52 #define TARGET_ARCH64 (!TARGET_ARCH32)
53 
54 /* Code model selection in 64-bit environment.
55 
56    The machine mode used for addresses is 32-bit wide:
57 
58    TARGET_CM_32:     32-bit address space.
59                      It is the code model used when generating 32-bit code.
60 
61    The machine mode used for addresses is 64-bit wide:
62 
63    TARGET_CM_MEDLOW: 32-bit address space.
64                      The executable must be in the low 32 bits of memory.
65                      This avoids generating %uhi and %ulo terms.  Programs
66                      can be statically or dynamically linked.
67 
68    TARGET_CM_MEDMID: 44-bit address space.
69                      The executable must be in the low 44 bits of memory,
70                      and the %[hml]44 terms are used.  The text and data
71                      segments have a maximum size of 2GB (31-bit span).
72                      The maximum offset from any instruction to the label
73                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
74 
75    TARGET_CM_MEDANY: 64-bit address space.
76                      The text and data segments have a maximum size of 2GB
77                      (31-bit span) and may be located anywhere in memory.
78                      The maximum offset from any instruction to the label
79                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
80 
81    TARGET_CM_EMBMEDANY: 64-bit address space.
82                      The text and data segments have a maximum size of 2GB
83                      (31-bit span) and may be located anywhere in memory.
84                      The global register %g4 contains the start address of
85                      the data segment.  Programs are statically linked and
86                      PIC is not supported.
87 
88    Different code models are not supported in 32-bit environment.  */
89 
90 enum cmodel {
91   CM_32,
92   CM_MEDLOW,
93   CM_MEDMID,
94   CM_MEDANY,
95   CM_EMBMEDANY
96 };
97 
98 /* One of CM_FOO.  */
99 extern enum cmodel sparc_cmodel;
100 
101 /* V9 code model selection.  */
102 #define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
103 #define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
104 #define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
105 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
106 
107 #define SPARC_DEFAULT_CMODEL CM_32
108 
109 /* Do not use the .note.GNU-stack convention by default.  */
110 #define NEED_INDICATE_EXEC_STACK 0
111 
112 /* This is call-clobbered in the normal ABI, but is reserved in the
113    home grown (aka upward compatible) embedded ABI.  */
114 #define EMBMEDANY_BASE_REG "%g4"
115 
116 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
117    and specified by the user via --with-cpu=foo.
118    This specifies the cpu implementation, not the architecture size.  */
119 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
120    capable cpu's.  */
121 #define TARGET_CPU_sparc	0
122 #define TARGET_CPU_v7		0	/* alias */
123 #define TARGET_CPU_cypress	0       /* alias */
124 #define TARGET_CPU_v8		1	/* generic v8 implementation */
125 #define TARGET_CPU_supersparc	2
126 #define TARGET_CPU_hypersparc	3
127 #define TARGET_CPU_leon		4
128 #define TARGET_CPU_leon3	5
129 #define TARGET_CPU_leon3v7	6
130 #define TARGET_CPU_sparclite	7
131 #define TARGET_CPU_f930		7       /* alias */
132 #define TARGET_CPU_f934		7       /* alias */
133 #define TARGET_CPU_sparclite86x	8
134 #define TARGET_CPU_sparclet	9
135 #define TARGET_CPU_tsc701	9       /* alias */
136 #define TARGET_CPU_v9		10	/* generic v9 implementation */
137 #define TARGET_CPU_sparcv9	10	/* alias */
138 #define TARGET_CPU_sparc64	10	/* alias */
139 #define TARGET_CPU_ultrasparc	11
140 #define TARGET_CPU_ultrasparc3	12
141 #define TARGET_CPU_niagara	13
142 #define TARGET_CPU_niagara2	14
143 #define TARGET_CPU_niagara3	15
144 #define TARGET_CPU_niagara4	16
145 #define TARGET_CPU_niagara7	19
146 #define TARGET_CPU_m8		20
147 
148 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
149  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
150  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
151  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
152  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
153  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
154  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4 \
155  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara7 \
156  || TARGET_CPU_DEFAULT == TARGET_CPU_m8
157 
158 #define CPP_CPU32_DEFAULT_SPEC ""
159 #define ASM_CPU32_DEFAULT_SPEC ""
160 
161 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
162 /* ??? What does Sun's CC pass?  */
163 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
164 /* ??? It's not clear how other assemblers will handle this, so by default
165    use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
166    is handled in sol2.h.  */
167 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
168 #endif
169 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
170 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
171 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
172 #endif
173 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
174 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
175 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
176 #endif
177 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
178 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
179 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
180 #endif
181 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
182 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
183 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
184 #endif
185 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
186 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
187 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
188 #endif
189 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
190 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
191 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
192 #endif
193 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara7
194 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
195 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA7_FLAG
196 #endif
197 #if TARGET_CPU_DEFAULT == TARGET_CPU_m8
198 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
199 #define ASM_CPU64_DEFAULT_SPEC AS_M8_FLAG
200 #endif
201 
202 #else
203 
204 #define CPP_CPU64_DEFAULT_SPEC ""
205 #define ASM_CPU64_DEFAULT_SPEC ""
206 
207 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
208  || TARGET_CPU_DEFAULT == TARGET_CPU_v8
209 #define CPP_CPU32_DEFAULT_SPEC ""
210 #define ASM_CPU32_DEFAULT_SPEC ""
211 #endif
212 
213 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
214 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
215 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
216 #endif
217 
218 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
219 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
220 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
221 #endif
222 
223 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
224 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
225 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
226 #endif
227 
228 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
229 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
230 #define ASM_CPU32_DEFAULT_SPEC ""
231 #endif
232 
233 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
234 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
235 #define ASM_CPU32_DEFAULT_SPEC ""
236 #endif
237 
238 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
239  || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
240 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
241 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
242 #endif
243 
244 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
245 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
246 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
247 #endif
248 
249 #endif
250 
251 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
252  #error Unrecognized value in TARGET_CPU_DEFAULT.
253 #endif
254 
255 #ifdef SPARC_BI_ARCH
256 
257 #define CPP_CPU_DEFAULT_SPEC \
258 (DEFAULT_ARCH32_P ? "\
259 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
260 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
261 " : "\
262 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
263 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
264 ")
265 #define ASM_CPU_DEFAULT_SPEC \
266 (DEFAULT_ARCH32_P ? "\
267 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
268 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
269 " : "\
270 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
271 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
272 ")
273 
274 #else /* !SPARC_BI_ARCH */
275 
276 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
277 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
278 
279 #endif /* !SPARC_BI_ARCH */
280 
281 /* Define macros to distinguish architectures.  */
282 
283 /* Common CPP definitions used by CPP_SPEC amongst the various targets
284    for handling -mcpu=xxx switches.  */
285 #define CPP_CPU_SPEC "\
286 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
287 %{mcpu=sparclite:-D__sparclite__} \
288 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
289 %{mcpu=sparclite86x:-D__sparclite86x__} \
290 %{mcpu=v8:-D__sparc_v8__} \
291 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
292 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
293 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
294 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
295 %{mcpu=leon3v7:-D__leon__} \
296 %{mcpu=v9:-D__sparc_v9__} \
297 %{mcpu=ultrasparc:-D__sparc_v9__} \
298 %{mcpu=ultrasparc3:-D__sparc_v9__} \
299 %{mcpu=niagara:-D__sparc_v9__} \
300 %{mcpu=niagara2:-D__sparc_v9__} \
301 %{mcpu=niagara3:-D__sparc_v9__} \
302 %{mcpu=niagara4:-D__sparc_v9__} \
303 %{mcpu=niagara7:-D__sparc_v9__} \
304 %{mcpu=m8:-D__sparc_v9__} \
305 %{!mcpu*:%(cpp_cpu_default)} \
306 "
307 #define CPP_ARCH32_SPEC ""
308 #define CPP_ARCH64_SPEC "-D__arch64__"
309 
310 #define CPP_ARCH_DEFAULT_SPEC \
311 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
312 
313 #define CPP_ARCH_SPEC "\
314 %{m32:%(cpp_arch32)} \
315 %{m64:%(cpp_arch64)} \
316 %{!m32:%{!m64:%(cpp_arch_default)}} \
317 "
318 
319 /* Macros to distinguish the endianness, window model and FP support.  */
320 #define CPP_OTHER_SPEC "\
321 %{mflat:-D_FLAT} \
322 %{msoft-float:-D_SOFT_FLOAT} \
323 "
324 
325 /* Macros to distinguish the particular subtarget.  */
326 #define CPP_SUBTARGET_SPEC ""
327 
328 #define CPP_SPEC \
329   "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
330 
331 /* This used to translate -dalign to -malign, but that is no good
332    because it can't turn off the usual meaning of making debugging dumps.  */
333 
334 #define CC1_SPEC ""
335 
336 /* Override in target specific files.  */
337 #define ASM_CPU_SPEC "\
338 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
339 %{mcpu=sparclite:-Asparclite} \
340 %{mcpu=sparclite86x:-Asparclite} \
341 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
342 %{mcpu=v8:-Av8} \
343 %{mcpu=supersparc:-Av8} \
344 %{mcpu=hypersparc:-Av8} \
345 %{mcpu=leon:" AS_LEON_FLAG "} \
346 %{mcpu=leon3:" AS_LEON_FLAG "} \
347 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
348 %{mv8plus:-Av8plus} \
349 %{mcpu=v9:-Av9} \
350 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
351 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
352 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
353 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
354 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
355 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
356 %{mcpu=niagara7:%{!mv8plus:" AS_NIAGARA7_FLAG "}} \
357 %{mcpu=m8:%{!mv8plus:" AS_M8_FLAG "}} \
358 %{!mcpu*:%(asm_cpu_default)} \
359 "
360 
361 /* Word size selection, among other things.
362    This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
363 
364 #define ASM_ARCH32_SPEC "-32"
365 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
366 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
367 #else
368 #define ASM_ARCH64_SPEC "-64"
369 #endif
370 #define ASM_ARCH_DEFAULT_SPEC \
371 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
372 
373 #define ASM_ARCH_SPEC "\
374 %{m32:%(asm_arch32)} \
375 %{m64:%(asm_arch64)} \
376 %{!m32:%{!m64:%(asm_arch_default)}} \
377 "
378 
379 #ifdef HAVE_AS_RELAX_OPTION
380 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
381 #else
382 #define ASM_RELAX_SPEC ""
383 #endif
384 
385 /* Special flags to the Sun-4 assembler when using pipe for input.  */
386 
387 #define ASM_SPEC "\
388 %{!pg:%{!p:%{" FPIE_OR_FPIC_SPEC ":-k}}} %{keep-local-as-symbols:-L} \
389 %(asm_cpu) %(asm_relax)"
390 
391 /* This macro defines names of additional specifications to put in the specs
392    that can be used in various specifications like CC1_SPEC.  Its definition
393    is an initializer with a subgrouping for each command option.
394 
395    Each subgrouping contains a string constant, that defines the
396    specification name, and a string constant that used by the GCC driver
397    program.
398 
399    Do not define this macro if it does not need to do anything.  */
400 
401 #define EXTRA_SPECS \
402   { "cpp_cpu",		CPP_CPU_SPEC },		\
403   { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },	\
404   { "cpp_arch32",	CPP_ARCH32_SPEC },	\
405   { "cpp_arch64",	CPP_ARCH64_SPEC },	\
406   { "cpp_arch_default",	CPP_ARCH_DEFAULT_SPEC },\
407   { "cpp_arch",		CPP_ARCH_SPEC },	\
408   { "cpp_other",	CPP_OTHER_SPEC },	\
409   { "cpp_subtarget",	CPP_SUBTARGET_SPEC },	\
410   { "asm_cpu",		ASM_CPU_SPEC },		\
411   { "asm_cpu_default",	ASM_CPU_DEFAULT_SPEC },	\
412   { "asm_arch32",	ASM_ARCH32_SPEC },	\
413   { "asm_arch64",	ASM_ARCH64_SPEC },	\
414   { "asm_relax",	ASM_RELAX_SPEC },	\
415   { "asm_arch_default",	ASM_ARCH_DEFAULT_SPEC },\
416   { "asm_arch",		ASM_ARCH_SPEC },	\
417   SUBTARGET_EXTRA_SPECS
418 
419 #define SUBTARGET_EXTRA_SPECS
420 
421 /* Because libgcc can generate references back to libc (via .umul etc.) we have
422    to list libc again after the second libgcc.  */
423 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
424 
425 
426 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
427 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
428 
429 /* ??? This should be 32 bits for v9 but what can we do?  */
430 #define WCHAR_TYPE "short unsigned int"
431 #define WCHAR_TYPE_SIZE 16
432 
433 /* Mask of all CPU selection flags.  */
434 #define MASK_ISA						\
435   (MASK_SPARCLITE + MASK_SPARCLET + MASK_LEON + MASK_LEON3	\
436    + MASK_V8 + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
437 
438 /* Mask of all CPU feature flags.  */
439 #define MASK_FEATURES						\
440   (MASK_FPU + MASK_HARD_QUAD + MASK_VIS + MASK_VIS2 + MASK_VIS3	\
441    + MASK_VIS4 + MASK_CBCOND + MASK_FMAF + MASK_FSMULD		\
442    + MASK_POPC + MASK_SUBXC)
443 
444 /* TARGET_HARD_MUL: Use 32-bit hardware multiply instructions but not %y.  */
445 #define TARGET_HARD_MUL				\
446   (TARGET_SPARCLITE || TARGET_SPARCLET		\
447    || TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
448 
449 /* TARGET_HARD_MUL32: Use 32-bit hardware multiply instructions with %y
450    to get high 32 bits.  False in 64-bit or V8+ because multiply stores
451    a 64-bit result in a register.  */
452 #define TARGET_HARD_MUL32 \
453   (TARGET_HARD_MUL && TARGET_ARCH32 && !TARGET_V8PLUS)
454 
455 /* MASK_APP_REGS must always be the default because that's what
456    FIXED_REGISTERS is set to and -ffixed- is processed before
457    TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
458    -mno-app-regs).  */
459 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
460 
461 /* Recast the cpu class to be the cpu attribute.
462    Every file includes us, but not every file includes insn-attr.h.  */
463 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
464 
465 /* Support for a compile-time default CPU, et cetera.  The rules are:
466    --with-cpu is ignored if -mcpu is specified.
467    --with-tune is ignored if -mtune is specified.
468    --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
469      are specified.  */
470 #define OPTION_DEFAULT_SPECS \
471   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
472   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
473   {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
474 
475 /* target machine storage layout */
476 
477 /* Define this if most significant bit is lowest numbered
478    in instructions that operate on numbered bit-fields.  */
479 #define BITS_BIG_ENDIAN 1
480 
481 /* Define this if most significant byte of a word is the lowest numbered.  */
482 #define BYTES_BIG_ENDIAN 1
483 
484 /* Define this if most significant word of a multiword number is the lowest
485    numbered.  */
486 #define WORDS_BIG_ENDIAN 1
487 
488 #define MAX_BITS_PER_WORD	64
489 
490 /* Width of a word, in units (bytes).  */
491 #define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
492 #ifdef IN_LIBGCC2
493 #define MIN_UNITS_PER_WORD	UNITS_PER_WORD
494 #else
495 #define MIN_UNITS_PER_WORD	4
496 #endif
497 
498 /* Now define the sizes of the C data types.  */
499 #define SHORT_TYPE_SIZE		16
500 #define INT_TYPE_SIZE		32
501 #define LONG_TYPE_SIZE		(TARGET_ARCH64 ? 64 : 32)
502 #define LONG_LONG_TYPE_SIZE	64
503 #define FLOAT_TYPE_SIZE		32
504 #define DOUBLE_TYPE_SIZE	64
505 
506 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
507    SPARC ABI says that it is 128-bit wide.  */
508 /* #define LONG_DOUBLE_TYPE_SIZE	128 */
509 
510 /* The widest floating-point format really supported by the hardware.  */
511 #define WIDEST_HARDWARE_FP_SIZE 64
512 
513 /* Width in bits of a pointer.  This is the size of ptr_mode.  */
514 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
515 
516 /* This is the machine mode used for addresses.  */
517 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
518 
519 /* If we have to extend pointers (only when TARGET_ARCH64 and not
520    TARGET_PTR64), we want to do it unsigned.   This macro does nothing
521    if ptr_mode and Pmode are the same.  */
522 #define POINTERS_EXTEND_UNSIGNED 1
523 
524 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
525 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
526 
527 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
528 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
529    then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
530 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
531 
532 /* Temporary hack until the FIXME above is fixed.  */
533 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
534 
535 /* ALIGN FRAMES on double word boundaries */
536 #define SPARC_STACK_ALIGN(LOC) ROUND_UP ((LOC), UNITS_PER_WORD * 2)
537 
538 /* Allocation boundary (in *bits*) for the code of a function.  */
539 #define FUNCTION_BOUNDARY 32
540 
541 /* Alignment of field after `int : 0' in a structure.  */
542 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
543 
544 /* Every structure's size must be a multiple of this.  */
545 #define STRUCTURE_SIZE_BOUNDARY 8
546 
547 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
548 #define PCC_BITFIELD_TYPE_MATTERS 1
549 
550 /* No data type wants to be aligned rounder than this.  */
551 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
552 
553 /* The best alignment to use in cases where we have a choice.  */
554 #define FASTEST_ALIGNMENT 64
555 
556 /* Define this macro as an expression for the alignment of a structure
557    (given by STRUCT as a tree node) if the alignment computed in the
558    usual way is COMPUTED and the alignment explicitly specified was
559    SPECIFIED.
560 
561    The default is to use SPECIFIED if it is larger; otherwise, use
562    the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
563 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)	\
564  (TARGET_FASTER_STRUCTS ?				\
565   ((TREE_CODE (STRUCT) == RECORD_TYPE			\
566     || TREE_CODE (STRUCT) == UNION_TYPE                 \
567     || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
568    && TYPE_FIELDS (STRUCT) != 0                         \
569      ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
570      : MAX ((COMPUTED), (SPECIFIED)))			\
571    :  MAX ((COMPUTED), (SPECIFIED)))
572 
573 /* An integer expression for the size in bits of the largest integer machine
574    mode that should actually be used.  We allow pairs of registers.  */
575 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
576 
577 /* We need 2 words, so we can save the stack pointer and the return register
578    of the function containing a non-local goto target.  */
579 #define STACK_SAVEAREA_MODE(LEVEL) \
580   ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
581 
582 /* Make arrays of chars word-aligned for the same reasons.  */
583 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
584   (TREE_CODE (TYPE) == ARRAY_TYPE		\
585    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
586    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
587 
588 /* Make local arrays of chars word-aligned for the same reasons.  */
589 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
590 
591 /* Set this nonzero if move instructions will actually fail to work
592    when given unaligned data.  */
593 #define STRICT_ALIGNMENT 1
594 
595 /* Things that must be doubleword aligned cannot go in the text section,
596    because the linker fails to align the text section enough!
597    Put them in the data section.  This macro is only used in this file.  */
598 #define MAX_TEXT_ALIGN 32
599 
600 /* Standard register usage.  */
601 
602 /* Number of actual hardware registers.
603    The hardware registers are assigned numbers for the compiler
604    from 0 to just below FIRST_PSEUDO_REGISTER.
605    All registers that the compiler knows about must be given numbers,
606    even those that are not normally considered general registers.
607 
608    SPARC has 32 integer registers and 32 floating point registers.
609    64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
610    accessible.  We still account for them to simplify register computations
611    (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
612    32+32+32+4 == 100.
613    Register 100 is used as the integer condition code register.
614    Register 101 is used as the soft frame pointer register.
615    Register 102 is used as the general status register by VIS instructions.  */
616 
617 #define FIRST_PSEUDO_REGISTER 103
618 
619 #define SPARC_FIRST_INT_REG     0
620 #define SPARC_LAST_INT_REG     31
621 #define SPARC_FIRST_FP_REG     32
622 /* Additional V9 fp regs.  */
623 #define SPARC_FIRST_V9_FP_REG  64
624 #define SPARC_LAST_V9_FP_REG   95
625 /* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
626 #define SPARC_FIRST_V9_FCC_REG 96
627 #define SPARC_LAST_V9_FCC_REG  99
628 /* V8 fcc reg.  */
629 #define SPARC_FCC_REG 96
630 /* Integer CC reg.  We don't distinguish %icc from %xcc.  */
631 #define SPARC_ICC_REG 100
632 #define SPARC_GSR_REG 102
633 
634 /* Nonzero if REGNO is an fp reg.  */
635 #define SPARC_FP_REG_P(REGNO) \
636 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
637 
638 /* Nonzero if REGNO is an int reg.  */
639 #define SPARC_INT_REG_P(REGNO) \
640 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
641 
642 /* Argument passing regs.  */
643 #define SPARC_OUTGOING_INT_ARG_FIRST 8
644 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
645 #define SPARC_FP_ARG_FIRST           32
646 
647 /* 1 for registers that have pervasive standard uses
648    and are not available for the register allocator.
649 
650    On non-v9 systems:
651    g1 is free to use as temporary.
652    g2-g4 are reserved for applications.  Gcc normally uses them as
653    temporaries, but this can be disabled via the -mno-app-regs option.
654    g5 through g7 are reserved for the operating system.
655 
656    On v9 systems:
657    g1,g5 are free to use as temporaries, and are free to use between calls
658    if the call is to an external function via the PLT.
659    g4 is free to use as a temporary in the non-embedded case.
660    g4 is reserved in the embedded case.
661    g2-g3 are reserved for applications.  Gcc normally uses them as
662    temporaries, but this can be disabled via the -mno-app-regs option.
663    g6-g7 are reserved for the operating system (or application in
664    embedded case).
665    ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
666    currently be a fixed register until this pattern is rewritten.
667    Register 1 is also used when restoring call-preserved registers in large
668    stack frames.
669 
670    Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
671    TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
672 */
673 
674 #define FIXED_REGISTERS  \
675  {1, 0, 2, 2, 2, 2, 1, 1,	\
676   0, 0, 0, 0, 0, 0, 1, 0,	\
677   0, 0, 0, 0, 0, 0, 0, 0,	\
678   0, 0, 0, 0, 0, 0, 0, 1,	\
679 				\
680   0, 0, 0, 0, 0, 0, 0, 0,	\
681   0, 0, 0, 0, 0, 0, 0, 0,	\
682   0, 0, 0, 0, 0, 0, 0, 0,	\
683   0, 0, 0, 0, 0, 0, 0, 0,	\
684 				\
685   0, 0, 0, 0, 0, 0, 0, 0,	\
686   0, 0, 0, 0, 0, 0, 0, 0,	\
687   0, 0, 0, 0, 0, 0, 0, 0,	\
688   0, 0, 0, 0, 0, 0, 0, 0,	\
689 				\
690   0, 0, 0, 0, 1, 1, 1}
691 
692 /* 1 for registers not available across function calls.
693    These must include the FIXED_REGISTERS and also any
694    registers that can be used without being saved.
695    The latter must include the registers where values are returned
696    and the register where structure-value addresses are passed.
697    Aside from that, you can include as many other registers as you like.  */
698 
699 #define CALL_USED_REGISTERS  \
700  {1, 1, 1, 1, 1, 1, 1, 1,	\
701   1, 1, 1, 1, 1, 1, 1, 1,	\
702   0, 0, 0, 0, 0, 0, 0, 0,	\
703   0, 0, 0, 0, 0, 0, 0, 1,	\
704 				\
705   1, 1, 1, 1, 1, 1, 1, 1,	\
706   1, 1, 1, 1, 1, 1, 1, 1,	\
707   1, 1, 1, 1, 1, 1, 1, 1,	\
708   1, 1, 1, 1, 1, 1, 1, 1,	\
709 				\
710   1, 1, 1, 1, 1, 1, 1, 1,	\
711   1, 1, 1, 1, 1, 1, 1, 1,	\
712   1, 1, 1, 1, 1, 1, 1, 1,	\
713   1, 1, 1, 1, 1, 1, 1, 1,	\
714 				\
715   1, 1, 1, 1, 1, 1, 1}
716 
717 /* 1 for registers not available across function calls.
718    Unlike the above, this need not include the FIXED_REGISTERS, but any
719    registers that can be used without being saved.
720    The latter must include the registers where values are returned
721    and the register where structure-value addresses are passed.
722    Aside from that, you can include as many other registers as you like.  */
723 
724 #define CALL_REALLY_USED_REGISTERS  \
725  {1, 1, 1, 1, 1, 1, 1, 1,	\
726   1, 1, 1, 1, 1, 1, 1, 1,	\
727   0, 0, 0, 0, 0, 0, 0, 0,	\
728   0, 0, 0, 0, 0, 0, 0, 0,	\
729 				\
730   1, 1, 1, 1, 1, 1, 1, 1,	\
731   1, 1, 1, 1, 1, 1, 1, 1,	\
732   1, 1, 1, 1, 1, 1, 1, 1,	\
733   1, 1, 1, 1, 1, 1, 1, 1,	\
734 				\
735   1, 1, 1, 1, 1, 1, 1, 1,	\
736   1, 1, 1, 1, 1, 1, 1, 1,	\
737   1, 1, 1, 1, 1, 1, 1, 1,	\
738   1, 1, 1, 1, 1, 1, 1, 1,	\
739 				\
740   1, 1, 1, 1, 1, 1, 1}
741 
742 /* Due to the ARCH64 discrepancy above we must override this next
743    macro too.  */
744 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
745 
746 /* Value is 1 if it is OK to rename a hard register FROM to another hard
747    register TO.  We cannot rename %g1 as it may be used before the save
748    register window instruction in the prologue.  */
749 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
750 
751 /* Select a register mode required for caller save of hard regno REGNO.
752    Contrary to what is documented, the default is not the smallest suitable
753    mode but the largest suitable mode for the given (REGNO, NREGS) pair and
754    it quickly creates paradoxical subregs that can be problematic.  */
755 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
756   ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, false) : (MODE))
757 
758 /* Specify the registers used for certain standard purposes.
759    The values of these macros are register numbers.  */
760 
761 /* Register to use for pushing function arguments.  */
762 #define STACK_POINTER_REGNUM 14
763 
764 /* The stack bias (amount by which the hardware register is offset by).  */
765 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
766 
767 /* Actual top-of-stack address is 92/176 greater than the contents of the
768    stack pointer register for !v9/v9.  That is:
769    - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
770      address, and 6*4 bytes for the 6 register parameters.
771    - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
772      parameter regs.  */
773 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
774 
775 /* Base register for access to local variables of the function.  */
776 #define HARD_FRAME_POINTER_REGNUM 30
777 
778 /* The soft frame pointer does not have the stack bias applied.  */
779 #define FRAME_POINTER_REGNUM 101
780 
781 #define INIT_EXPANDERS							 \
782   do {									 \
783     if (crtl->emit.regno_pointer_align)					 \
784       {									 \
785 	/* The biased stack pointer is only aligned on BITS_PER_UNIT.  */\
786 	if (SPARC_STACK_BIAS)						 \
787 	  {								 \
788 	    REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM)			 \
789 	      = BITS_PER_UNIT;	 					 \
790 	    REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM)		 \
791 	      = BITS_PER_UNIT;						 \
792 	  }								 \
793 									 \
794 	/* In 32-bit mode, not everything is double-word aligned.  */	 \
795 	if (TARGET_ARCH32)						 \
796 	  {								 \
797 	    REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM)		 \
798 	      = BITS_PER_WORD;						 \
799 	    REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM)		 \
800 	      = BITS_PER_WORD;						 \
801 	    REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM)		 \
802 	      = BITS_PER_WORD;						 \
803 	  }								 \
804       }									 \
805   } while (0)
806 
807 /* Base register for access to arguments of the function.  */
808 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
809 
810 /* Register in which static-chain is passed to a function.  This must
811    not be a register used by the prologue.  */
812 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
813 
814 /* Register which holds the global offset table, if any.  */
815 #define GLOBAL_OFFSET_TABLE_REGNUM 23
816 
817 /* Register which holds offset table for position-independent data references.
818    The original SPARC ABI imposes no requirement on the choice of the register
819    so we use a pseudo-register to make sure it is properly saved and restored
820    around calls to setjmp.  Now the ABI of VxWorks RTP makes it live on entry
821    to PLT entries so we use the canonical GOT register in this case.  */
822 #define PIC_OFFSET_TABLE_REGNUM \
823   (TARGET_VXWORKS_RTP && flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
824 
825 /* Pick a default value we can notice from override_options:
826    !v9: Default is on.
827    v9: Default is off.
828    Originally it was -1, but later on the container of options changed to
829    unsigned byte, so we decided to pick 127 as default value, which does
830    reflect an undefined default value in case of 0/1.  */
831 #define DEFAULT_PCC_STRUCT_RETURN 127
832 
833 /* Functions which return large structures get the address
834    to place the wanted value at offset 64 from the frame.
835    Must reserve 64 bytes for the in and local registers.
836    v9: Functions which return large structures get the address to place the
837    wanted value from an invisible first argument.  */
838 #define STRUCT_VALUE_OFFSET 64
839 
840 /* Define the classes of registers for register constraints in the
841    machine description.  Also define ranges of constants.
842 
843    One of the classes must always be named ALL_REGS and include all hard regs.
844    If there is more than one class, another class must be named NO_REGS
845    and contain no registers.
846 
847    The name GENERAL_REGS must be the name of a class (or an alias for
848    another name such as ALL_REGS).  This is the class of registers
849    that is allowed by "g" or "r" in a register constraint.
850    Also, registers outside this class are allocated only when
851    instructions express preferences for them.
852 
853    The classes must be numbered in nondecreasing order; that is,
854    a larger-numbered class must never be contained completely
855    in a smaller-numbered class.
856 
857    For any two classes, it is very desirable that there be another
858    class that represents their union.  */
859 
860 /* The SPARC has various kinds of registers: general, floating point,
861    and condition codes [well, it has others as well, but none that we
862    care directly about].
863 
864    For v9 we must distinguish between the upper and lower floating point
865    registers because the upper ones can't hold SFmode values.
866    TARGET_HARD_REGNO_MODE_OK won't help here because reload assumes that
867    register(s) satisfying a group need for a class will also satisfy a
868    single need for that class.  EXTRA_FP_REGS is a bit of a misnomer as
869    it covers all 64 fp regs.
870 
871    It is important that one class contains all the general and all the standard
872    fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
873    because reg_class_record() will bias the selection in favor of fp regs,
874    because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
875    because FP_REGS > GENERAL_REGS.
876 
877    It is also important that one class contain all the general and all
878    the fp regs.  Otherwise when spilling a DFmode reg, it may be from
879    EXTRA_FP_REGS but find_reloads() may use class
880    GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
881    because the compiler thinks it doesn't have a spill reg when in
882    fact it does.
883 
884    v9 also has 4 floating point condition code registers.  Since we don't
885    have a class that is the union of FPCC_REGS with either of the others,
886    it is important that it appear first.  Otherwise the compiler will die
887    trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
888    constraints.  */
889 
890 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
891 		 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
892 		 ALL_REGS, LIM_REG_CLASSES };
893 
894 #define N_REG_CLASSES (int) LIM_REG_CLASSES
895 
896 /* Give names of register classes as strings for dump file.  */
897 
898 #define REG_CLASS_NAMES \
899   { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",	\
900      "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS",	\
901      "ALL_REGS" }
902 
903 /* Define which registers fit in which classes.
904    This is an initializer for a vector of HARD_REG_SET
905    of length N_REG_CLASSES.  */
906 
907 #define REG_CLASS_CONTENTS				\
908   {{0, 0, 0, 0},	/* NO_REGS */			\
909    {0, 0, 0, 0xf},	/* FPCC_REGS */			\
910    {0xffff, 0, 0, 0},	/* I64_REGS */			\
911    {-1, 0, 0, 0x20},	/* GENERAL_REGS */		\
912    {0, -1, 0, 0},	/* FP_REGS */			\
913    {0, -1, -1, 0},	/* EXTRA_FP_REGS */		\
914    {-1, -1, 0, 0x20},	/* GENERAL_OR_FP_REGS */	\
915    {-1, -1, -1, 0x20},	/* GENERAL_OR_EXTRA_FP_REGS */	\
916    {-1, -1, -1, 0x7f}}	/* ALL_REGS */
917 
918 /* The same information, inverted:
919    Return the class number of the smallest class containing
920    reg number REGNO.  This could be a conditional expression
921    or could index an array.  */
922 
923 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
924 
925 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
926 
927 /* This is the order in which to allocate registers normally.
928 
929    We put %f0-%f7 last among the float registers, so as to make it more
930    likely that a pseudo-register which dies in the float return register
931    area will get allocated to the float return register, thus saving a move
932    instruction at the end of the function.
933 
934    Similarly for integer return value registers.
935 
936    We know in this case that we will not end up with a leaf function.
937 
938    The register allocator is given the global and out registers first
939    because these registers are call clobbered and thus less useful to
940    global register allocation.
941 
942    Next we list the local and in registers.  They are not call clobbered
943    and thus very useful for global register allocation.  We list the input
944    registers before the locals so that it is more likely the incoming
945    arguments received in those registers can just stay there and not be
946    reloaded.  */
947 
948 #define REG_ALLOC_ORDER \
949 { 1, 2, 3, 4, 5, 6, 7,			/* %g1-%g7 */	\
950   13, 12, 11, 10, 9, 8, 		/* %o5-%o0 */	\
951   15,					/* %o7 */	\
952   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */ 	\
953   29, 28, 27, 26, 25, 24, 31,		/* %i5-%i0,%i7 */\
954   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
955   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
956   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
957   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
958   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
959   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
960   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
961   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */   \
962   96, 97, 98, 99,			/* %fcc0-3 */   \
963   100, 0, 14, 30, 101, 102 }		/* %icc, %g0, %o6, %i6, %sfp, %gsr */
964 
965 /* This is the order in which to allocate registers for
966    leaf functions.  If all registers can fit in the global and
967    output registers, then we have the possibility of having a leaf
968    function.
969 
970    The macro actually mentioned the input registers first,
971    because they get renumbered into the output registers once
972    we know really do have a leaf function.
973 
974    To be more precise, this register allocation order is used
975    when %o7 is found to not be clobbered right before register
976    allocation.  Normally, the reason %o7 would be clobbered is
977    due to a call which could not be transformed into a sibling
978    call.
979 
980    As a consequence, it is possible to use the leaf register
981    allocation order and not end up with a leaf function.  We will
982    not get suboptimal register allocation in that case because by
983    definition of being potentially leaf, there were no function
984    calls.  Therefore, allocation order within the local register
985    window is not critical like it is when we do have function calls.  */
986 
987 #define REG_LEAF_ALLOC_ORDER \
988 { 1, 2, 3, 4, 5, 6, 7, 			/* %g1-%g7 */	\
989   29, 28, 27, 26, 25, 24,		/* %i5-%i0 */	\
990   15,					/* %o7 */	\
991   13, 12, 11, 10, 9, 8,			/* %o5-%o0 */	\
992   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */	\
993   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */	\
994   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */	\
995   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */	\
996   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */	\
997   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */	\
998   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */	\
999   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */	\
1000   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */	\
1001   96, 97, 98, 99,			/* %fcc0-3 */	\
1002   100, 0, 14, 30, 31, 101, 102 }	/* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1003 
1004 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1005 
1006 extern char sparc_leaf_regs[];
1007 #define LEAF_REGISTERS sparc_leaf_regs
1008 
1009 extern char leaf_reg_remap[];
1010 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1011 
1012 /* The class value for index registers, and the one for base regs.  */
1013 #define INDEX_REG_CLASS GENERAL_REGS
1014 #define BASE_REG_CLASS GENERAL_REGS
1015 
1016 /* Local macro to handle the two v9 classes of FP regs.  */
1017 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1018 
1019 /* Predicate for 2-bit and 5-bit unsigned constants.  */
1020 #define SPARC_IMM2_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x3) == 0)
1021 #define SPARC_IMM5_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x1F)	== 0)
1022 
1023 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants.  */
1024 #define SPARC_SIMM5_P(X)  ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
1025 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1026 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1027 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1028 
1029 /* 10- and 11-bit immediates are only used for a few specific insns.
1030    SMALL_INT is used throughout the port so we continue to use it.  */
1031 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1032 
1033 /* Predicate for constants that can be loaded with a sethi instruction.
1034    This is the general, 64-bit aware, bitwise version that ensures that
1035    only constants whose representation fits in the mask
1036 
1037      0x00000000fffffc00
1038 
1039    are accepted.  It will reject, for example, negative SImode constants
1040    on 64-bit hosts, so correct handling is to mask the value beforehand
1041    according to the mode of the instruction.  */
1042 #define SPARC_SETHI_P(X) \
1043   (((unsigned HOST_WIDE_INT) (X) \
1044     & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1045 
1046 /* Version of the above predicate for SImode constants and below.  */
1047 #define SPARC_SETHI32_P(X) \
1048   (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1049 
1050 /* Return the maximum number of consecutive registers
1051    needed to represent mode MODE in a register of class CLASS.  */
1052 /* On SPARC, this is the size of MODE in words.  */
1053 #define CLASS_MAX_NREGS(CLASS, MODE)	\
1054   (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1055    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1056 
1057 /* Stack layout; function entry, exit and calling.  */
1058 
1059 /* Define this if pushing a word on the stack
1060    makes the stack pointer a smaller address.  */
1061 #define STACK_GROWS_DOWNWARD 1
1062 
1063 /* Define this to nonzero if the nominal address of the stack frame
1064    is at the high-address end of the local variables;
1065    that is, each additional local variable allocated
1066    goes at a more negative offset in the frame.  */
1067 #define FRAME_GROWS_DOWNWARD 1
1068 
1069 /* Offset of first parameter from the argument pointer register value.
1070    !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1071    even if this function isn't going to use it.
1072    v9: This is 128 for the ins and locals.  */
1073 #define FIRST_PARM_OFFSET(FNDECL) \
1074   (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1075 
1076 /* Offset from the argument pointer register value to the CFA.
1077    This is different from FIRST_PARM_OFFSET because the register window
1078    comes between the CFA and the arguments.  */
1079 #define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1080 
1081 /* When a parameter is passed in a register, stack space is still
1082    allocated for it.
1083    !v9: All 6 possible integer registers have backing store allocated.
1084    v9: Only space for the arguments passed is allocated.  */
1085 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1086    meaning to the backend.  Further, we need to be able to detect if a
1087    varargs/unprototyped function is called, as they may want to spill more
1088    registers than we've provided space.  Ugly, ugly.  So for now we retain
1089    all 6 slots even for v9.  */
1090 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1091 
1092 /* Definitions for register elimination.  */
1093 
1094 #define ELIMINABLE_REGS \
1095   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1096    { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1097 
1098 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) 		\
1099   do								\
1100     {								\
1101       (OFFSET) = sparc_initial_elimination_offset ((TO));	\
1102     }								\
1103   while (0)
1104 
1105 /* Keep the stack pointer constant throughout the function.
1106    This is both an optimization and a necessity: longjmp
1107    doesn't behave itself when the stack pointer moves within
1108    the function!  */
1109 #define ACCUMULATE_OUTGOING_ARGS 1
1110 
1111 /* Define this macro if the target machine has "register windows".  This
1112    C expression returns the register number as seen by the called function
1113    corresponding to register number OUT as seen by the calling function.
1114    Return OUT if register number OUT is not an outbound register.  */
1115 
1116 #define INCOMING_REGNO(OUT) \
1117  ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1118 
1119 /* Define this macro if the target machine has "register windows".  This
1120    C expression returns the register number as seen by the calling function
1121    corresponding to register number IN as seen by the called function.
1122    Return IN if register number IN is not an inbound register.  */
1123 
1124 #define OUTGOING_REGNO(IN) \
1125  ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1126 
1127 /* Define this macro if the target machine has register windows.  This
1128    C expression returns true if the register is call-saved but is in the
1129    register window.  */
1130 
1131 #define LOCAL_REGNO(REGNO) \
1132   (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1133 
1134 /* Define the size of space to allocate for the return value of an
1135    untyped_call.  */
1136 
1137 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1138 
1139 /* 1 if N is a possible register number for function argument passing.
1140    On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1141 
1142 #define FUNCTION_ARG_REGNO_P(N) \
1143   (((N) >= 8 && (N) <= 13)	\
1144    || (TARGET_ARCH64 && TARGET_FPU && (N) >= 32 && (N) <= 63))
1145 
1146 /* Define a data type for recording info about an argument list
1147    during the scan of that argument list.  This data type should
1148    hold all necessary information about the function itself
1149    and about the args processed so far, enough to enable macros
1150    such as FUNCTION_ARG to determine where the next arg should go.
1151 
1152    On SPARC (!v9), this is a single integer, which is a number of words
1153    of arguments scanned so far (including the invisible argument,
1154    if any, which holds the structure-value-address).
1155    Thus 7 or more means all following args should go on the stack.
1156 
1157    For v9, we also need to know whether a prototype is present.  */
1158 
1159 struct sparc_args {
1160   int words;       /* number of words passed so far */
1161   int prototype_p; /* nonzero if a prototype is present */
1162   int libcall_p;   /* nonzero if a library call */
1163 };
1164 #define CUMULATIVE_ARGS struct sparc_args
1165 
1166 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1167    for a call to a function whose data type is FNTYPE.
1168    For a library call, FNTYPE is 0.  */
1169 
1170 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1171 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1172 
1173 
1174 /* Generate the special assembly code needed to tell the assembler whatever
1175    it might need to know about the return value of a function.
1176 
1177    For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1178    information to the assembler relating to peephole optimization (done in
1179    the assembler).  */
1180 
1181 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1182   fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1183 
1184 /* Output the special assembly code needed to tell the assembler some
1185    register is used as global register variable.
1186 
1187    SPARC 64bit psABI declares registers %g2 and %g3 as application
1188    registers and %g6 and %g7 as OS registers.  Any object using them
1189    should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1190    and how they are used (scratch or some global variable).
1191    Linker will then refuse to link together objects which use those
1192    registers incompatibly.
1193 
1194    Unless the registers are used for scratch, two different global
1195    registers cannot be declared to the same name, so in the unlikely
1196    case of a global register variable occupying more than one register
1197    we prefix the second and following registers with .gnu.part1. etc.  */
1198 
1199 extern GTY(()) char sparc_hard_reg_printed[8];
1200 
1201 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1202 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)		\
1203 do {									\
1204   if (TARGET_ARCH64)							\
1205     {									\
1206       int end = end_hard_regno (DECL_MODE (decl), REGNO);		\
1207       int reg;								\
1208       for (reg = (REGNO); reg < 8 && reg < end; reg++)			\
1209 	if ((reg & ~1) == 2 || (reg & ~1) == 6)				\
1210 	  {								\
1211 	    if (reg == (REGNO))						\
1212 	      fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1213 	    else							\
1214 	      fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",	\
1215 		       reg, reg - (REGNO), (NAME));			\
1216 	    sparc_hard_reg_printed[reg] = 1;				\
1217 	  }								\
1218     }									\
1219 } while (0)
1220 #endif
1221 
1222 
1223 /* Emit rtl for profiling.  */
1224 #define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1225 
1226 /* All the work done in PROFILE_HOOK, but still required.  */
1227 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1228 
1229 /* Set the name of the mcount function for the system.  */
1230 #define MCOUNT_FUNCTION "*mcount"
1231 
1232 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1233    the stack pointer does not matter.  The value is tested only in
1234    functions that have frame pointers.  */
1235 #define EXIT_IGNORE_STACK 1
1236 
1237 /* Length in units of the trampoline for entering a nested function.  */
1238 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1239 
1240 /* Alignment required for trampolines, in bits.  */
1241 #define TRAMPOLINE_ALIGNMENT 128
1242 
1243 /* Generate RTL to flush the register windows so as to make arbitrary frames
1244    available.  */
1245 #define SETUP_FRAME_ADDRESSES()			\
1246   do {						\
1247     if (!TARGET_FLAT)				\
1248       emit_insn (gen_flush_register_windows ());\
1249   } while (0)
1250 
1251 /* Given an rtx for the address of a frame,
1252    return an rtx for the address of the word in the frame
1253    that holds the dynamic chain--the previous frame's address.  */
1254 #define DYNAMIC_CHAIN_ADDRESS(frame)	\
1255   plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1256 
1257 /* Given an rtx for the frame pointer,
1258    return an rtx for the address of the frame.  */
1259 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1260 
1261 /* The return address isn't on the stack, it is in a register, so we can't
1262    access it from the current frame pointer.  We can access it from the
1263    previous frame pointer though by reading a value from the register window
1264    save area.  */
1265 #define RETURN_ADDR_IN_PREVIOUS_FRAME 1
1266 
1267 /* This is the offset of the return address to the true next instruction to be
1268    executed for the current function.  */
1269 #define RETURN_ADDR_OFFSET \
1270   (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1271 
1272 /* The current return address is in %i7.  The return address of anything
1273    farther back is in the register window save area at [%fp+60].  */
1274 /* ??? This ignores the fact that the actual return address is +8 for normal
1275    returns, and +12 for structure returns.  */
1276 #define RETURN_ADDR_REGNUM 31
1277 #define RETURN_ADDR_RTX(count, frame)		\
1278   ((count == -1)				\
1279    ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)			\
1280    : gen_rtx_MEM (Pmode,			\
1281 		  memory_address (Pmode, plus_constant (Pmode, frame, \
1282 							15 * UNITS_PER_WORD \
1283 							+ SPARC_STACK_BIAS))))
1284 
1285 /* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1286    +12, but always using +8 is close enough for frame unwind purposes.
1287    Actually, just using %o7 is close enough for unwinding, but %o7+8
1288    is something you can return to.  */
1289 #define INCOMING_RETURN_ADDR_REGNUM 15
1290 #define INCOMING_RETURN_ADDR_RTX \
1291   plus_constant (word_mode, \
1292 		 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1293 #define DWARF_FRAME_RETURN_COLUMN \
1294   DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1295 
1296 /* The offset from the incoming value of %sp to the top of the stack frame
1297    for the current function.  On sparc64, we have to account for the stack
1298    bias if present.  */
1299 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1300 
1301 /* Describe how we implement __builtin_eh_return.  */
1302 #define EH_RETURN_REGNUM 1
1303 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1304 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1305 
1306 /* Define registers used by the epilogue and return instruction.  */
1307 #define EPILOGUE_USES(REGNO)					\
1308   ((REGNO) == RETURN_ADDR_REGNUM				\
1309    || (TARGET_FLAT						\
1310        && epilogue_completed					\
1311        && (REGNO) == INCOMING_RETURN_ADDR_REGNUM)		\
1312    || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1313 
1314 /* Select a format to encode pointers in exception handling data.  CODE
1315    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1316    true if the symbol may be affected by dynamic relocations.
1317 
1318    If assembler and linker properly support .uaword %r_disp32(foo),
1319    then use PC relative 32-bit relocations instead of absolute relocs
1320    for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1321    for binaries, to save memory.
1322 
1323    binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1324    symbol %r_disp32() is against was not local, but .hidden.  In that
1325    case, we have to use DW_EH_PE_absptr for pic personality.  */
1326 #ifdef HAVE_AS_SPARC_UA_PCREL
1327 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1328 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1329   (flag_pic								\
1330    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1331    : ((TARGET_ARCH64 && ! GLOBAL)					\
1332       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1333       : DW_EH_PE_absptr))
1334 #else
1335 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1336   (flag_pic								\
1337    ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))	\
1338    : ((TARGET_ARCH64 && ! GLOBAL)					\
1339       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1340       : DW_EH_PE_absptr))
1341 #endif
1342 
1343 /* Emit a PC-relative relocation.  */
1344 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1345   do {							\
1346     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1347     fprintf (FILE, "%%r_disp%d(", SIZE * 8);		\
1348     assemble_name (FILE, LABEL);			\
1349     fputc (')', FILE);					\
1350   } while (0)
1351 #endif
1352 
1353 /* Addressing modes, and classification of registers for them.  */
1354 
1355 /* Macros to check register numbers against specific register classes.  */
1356 
1357 /* These assume that REGNO is a hard or pseudo reg number.
1358    They give nonzero only if REGNO is a hard reg of the suitable class
1359    or a pseudo reg currently allocated to a suitable hard reg.
1360    Since they use reg_renumber, they are safe only once reg_renumber
1361    has been allocated, which happens in reginfo.c during register
1362    allocation.  */
1363 
1364 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1365 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1366  || (REGNO) == FRAME_POINTER_REGNUM				  \
1367  || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1368 
1369 #define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1370 
1371 #define REGNO_OK_FOR_FP_P(REGNO) \
1372   (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1373    || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1374 
1375 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1376  (TARGET_V9 \
1377   && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1378       || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1379 
1380 /* Maximum number of registers that can appear in a valid memory address.  */
1381 
1382 #define MAX_REGS_PER_ADDRESS 2
1383 
1384 /* Recognize any constant value that is a valid address.
1385    When PIC, we do not accept an address that would require a scratch reg
1386    to load into a register.  */
1387 
1388 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1389 
1390 /* Define this, so that when PIC, reload won't try to reload invalid
1391    addresses which require two reload registers.  */
1392 
1393 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1394 
1395 /* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1396 
1397 #ifdef HAVE_AS_OFFSETABLE_LO10
1398 #define USE_AS_OFFSETABLE_LO10 1
1399 #else
1400 #define USE_AS_OFFSETABLE_LO10 0
1401 #endif
1402 
1403 /* Try a machine-dependent way of reloading an illegitimate address
1404    operand.  If we find one, push the reload and jump to WIN.  This
1405    macro is used in only one place: `find_reloads_address' in reload.c.  */
1406 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	   \
1407 do {									   \
1408   int win;								   \
1409   (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM),		   \
1410 					 (int)(TYPE), (IND_LEVELS), &win); \
1411   if (win)								   \
1412     goto WIN;								   \
1413 } while (0)
1414 
1415 /* Specify the machine mode that this machine uses
1416    for the index in the tablejump instruction.  */
1417 /* If we ever implement any of the full models (such as CM_FULLANY),
1418    this has to be DImode in that case */
1419 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1420 #define CASE_VECTOR_MODE \
1421 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1422 #else
1423 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1424    we have to sign extend which slows things down.  */
1425 #define CASE_VECTOR_MODE \
1426 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1427 #endif
1428 
1429 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1430 #define DEFAULT_SIGNED_CHAR 1
1431 
1432 /* Max number of bytes we can move from memory to memory
1433    in one reasonably fast instruction.  */
1434 #define MOVE_MAX 8
1435 
1436 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1437    move-instruction pairs, we will do a movmem or libcall instead.  */
1438 
1439 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1440 
1441 /* Define if operations between registers always perform the operation
1442    on the full register even if a narrower mode is specified.  */
1443 #define WORD_REGISTER_OPERATIONS 1
1444 
1445 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1446    will either zero-extend or sign-extend.  The value of this macro should
1447    be the code that says which one of the two operations is implicitly
1448    done, UNKNOWN if none.  */
1449 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1450 
1451 /* Nonzero if access to memory by bytes is slow and undesirable.
1452    For RISC chips, it means that access to memory by bytes is no
1453    better than access by words when possible, so grab a whole word
1454    and maybe make use of that.  */
1455 #define SLOW_BYTE_ACCESS 1
1456 
1457 /* Define this to be nonzero if shift instructions ignore all but the low-order
1458    few bits.  */
1459 #define SHIFT_COUNT_TRUNCATED 1
1460 
1461 /* For SImode, we make sure the top 32-bits of the register are clear and
1462    then we subtract 32 from the lzd instruction result.  */
1463 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1464   ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1465 
1466 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1467    return the mode to be used for the comparison.  For floating-point,
1468    CCFP[E]mode is used.  CCNZmode should be used when the first operand
1469    is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1470    processing is needed.  */
1471 #define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1472 
1473 /* Return nonzero if MODE implies a floating point inequality can be
1474    reversed.  For SPARC this is always true because we have a full
1475    compliment of ordered and unordered comparisons, but until generic
1476    code knows how to reverse it correctly we keep the old definition.  */
1477 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1478 
1479 /* A function address in a call instruction for indexing purposes.  */
1480 #define FUNCTION_MODE Pmode
1481 
1482 /* Define this if addresses of constant functions
1483    shouldn't be put through pseudo regs where they can be cse'd.
1484    Desirable on machines where ordinary constants are expensive
1485    but a CALL with constant address is cheap.  */
1486 #define NO_FUNCTION_CSE 1
1487 
1488 /* The _Q_* comparison libcalls return booleans.  */
1489 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1490 
1491 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1492    that the inputs are fully consumed before the output memory is clobbered.  */
1493 
1494 #define TARGET_BUGGY_QP_LIB	0
1495 
1496 /* Assume by default that we do not have the Solaris-specific conversion
1497    routines nor 64-bit integer multiply and divide routines.  */
1498 
1499 #define SUN_CONVERSION_LIBFUNCS 	0
1500 #define DITF_CONVERSION_LIBFUNCS	0
1501 #define SUN_INTEGER_MULTIPLY_64 	0
1502 
1503 /* Provide the cost of a branch.  For pre-v9 processors we use
1504    a value of 3 to take into account the potential annulling of
1505    the delay slot (which ends up being a bubble in the pipeline slot)
1506    plus a cycle to take into consideration the instruction cache
1507    effects.
1508 
1509    On v9 and later, which have branch prediction facilities, we set
1510    it to the depth of the pipeline as that is the cost of a
1511    mispredicted branch.
1512 
1513    On Niagara, normal branches insert 3 bubbles into the pipe
1514    and annulled branches insert 4 bubbles.
1515 
1516    On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1517    a taken branch costs 6 cycles.
1518 
1519    The T4 Supplement specifies the branch latency at 2 cycles.
1520    The M7 Supplement specifies the branch latency at 1 cycle. */
1521 
1522 #define BRANCH_COST(speed_p, predictable_p) \
1523 	((sparc_cpu == PROCESSOR_V9 \
1524 	  || sparc_cpu == PROCESSOR_ULTRASPARC) \
1525 	 ? 7 \
1526          : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1527             ? 9 \
1528 	 : (sparc_cpu == PROCESSOR_NIAGARA \
1529 	    ? 4 \
1530 	 : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1531 	     || sparc_cpu == PROCESSOR_NIAGARA3) \
1532 	    ? 5 \
1533 	 : (sparc_cpu == PROCESSOR_NIAGARA4 \
1534 	    ? 2 \
1535 	 : (sparc_cpu == PROCESSOR_NIAGARA7 \
1536 	    ? 1 \
1537 	 : 3))))))
1538 
1539 /* Control the assembler format that we output.  */
1540 
1541 /* A C string constant describing how to begin a comment in the target
1542    assembler language.  The compiler assumes that the comment will end at
1543    the end of the line.  */
1544 
1545 #define ASM_COMMENT_START "!"
1546 
1547 /* Output to assembler file text saying following lines
1548    may contain character constants, extra white space, comments, etc.  */
1549 
1550 #define ASM_APP_ON ""
1551 
1552 /* Output to assembler file text saying following lines
1553    no longer contain unusual constructs.  */
1554 
1555 #define ASM_APP_OFF ""
1556 
1557 /* How to refer to registers in assembler output.
1558    This sequence is indexed by compiler's hard-register-number (see above).  */
1559 
1560 #define REGISTER_NAMES \
1561 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
1562  "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
1563  "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
1564  "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
1565  "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
1566  "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
1567  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
1568  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
1569  "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
1570  "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
1571  "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
1572  "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
1573  "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1574 
1575 /* Define additional names for use in asm clobbers and asm declarations.  */
1576 
1577 #define ADDITIONAL_REGISTER_NAMES \
1578 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1579 
1580 /* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
1581    can run past this up to a continuation point.  Once we used 1500, but
1582    a single entry in C++ can run more than 500 bytes, due to the length of
1583    mangled symbol names.  dbxout.c should really be fixed to do
1584    continuations when they are actually needed instead of trying to
1585    guess...  */
1586 #define DBX_CONTIN_LENGTH 1000
1587 
1588 /* This is how to output a command to make the user-level label named NAME
1589    defined for reference from other files.  */
1590 
1591 /* Globalizing directive for a label.  */
1592 #define GLOBAL_ASM_OP "\t.global "
1593 
1594 /* The prefix to add to user-visible assembler symbols.  */
1595 
1596 #define USER_LABEL_PREFIX "_"
1597 
1598 /* This is how to store into the string LABEL
1599    the symbol_ref name of an internal numbered label where
1600    PREFIX is the class of label and NUM is the number within the class.
1601    This is suitable for output with `assemble_name'.  */
1602 
1603 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1604   sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1605 
1606 /* This is how we hook in and defer the case-vector until the end of
1607    the function.  */
1608 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1609   sparc_defer_case_vector ((LAB),(VEC), 0)
1610 
1611 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1612   sparc_defer_case_vector ((LAB),(VEC), 1)
1613 
1614 /* This is how to output an element of a case-vector that is absolute.  */
1615 
1616 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1617 do {									\
1618   char label[30];							\
1619   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
1620   if (CASE_VECTOR_MODE == SImode)					\
1621     fprintf (FILE, "\t.word\t");					\
1622   else									\
1623     fprintf (FILE, "\t.xword\t");					\
1624   assemble_name (FILE, label);						\
1625   fputc ('\n', FILE);							\
1626 } while (0)
1627 
1628 /* This is how to output an element of a case-vector that is relative.
1629    (SPARC uses such vectors only when generating PIC.)  */
1630 
1631 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
1632 do {									\
1633   char label[30];							\
1634   ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));			\
1635   if (CASE_VECTOR_MODE == SImode)					\
1636     fprintf (FILE, "\t.word\t");					\
1637   else									\
1638     fprintf (FILE, "\t.xword\t");					\
1639   assemble_name (FILE, label);						\
1640   ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));			\
1641   fputc ('-', FILE);							\
1642   assemble_name (FILE, label);						\
1643   fputc ('\n', FILE);							\
1644 } while (0)
1645 
1646 /* This is what to output before and after case-vector (both
1647    relative and absolute).  If .subsection -1 works, we put case-vectors
1648    at the beginning of the current section.  */
1649 
1650 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1651 
1652 #define ASM_OUTPUT_ADDR_VEC_START(FILE)					\
1653   fprintf(FILE, "\t.subsection\t-1\n")
1654 
1655 #define ASM_OUTPUT_ADDR_VEC_END(FILE)					\
1656   fprintf(FILE, "\t.previous\n")
1657 
1658 #endif
1659 
1660 /* This is how to output an assembler line
1661    that says to advance the location counter
1662    to a multiple of 2**LOG bytes.  */
1663 
1664 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1665   if ((LOG) != 0)			\
1666     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1667 
1668 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1669   fprintf (FILE, "\t.skip " HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1670 
1671 /* This says how to output an assembler line
1672    to define a global common symbol.  */
1673 
1674 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1675 ( fputs ("\t.common ", (FILE)),		\
1676   assemble_name ((FILE), (NAME)),		\
1677   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1678 
1679 /* This says how to output an assembler line to define a local common
1680    symbol.  */
1681 
1682 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
1683 ( fputs ("\t.reserve ", (FILE)),					\
1684   assemble_name ((FILE), (NAME)),					\
1685   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",	\
1686 	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1687 
1688 /* A C statement (sans semicolon) to output to the stdio stream
1689    FILE the assembler definition of uninitialized global DECL named
1690    NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1691    Try to use asm_output_aligned_bss to implement this macro.  */
1692 
1693 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)	\
1694   do {								\
1695     ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);		\
1696   } while (0)
1697 
1698 /* Output #ident as a .ident.  */
1699 
1700 #undef TARGET_ASM_OUTPUT_IDENT
1701 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1702 
1703 /* Prettify the assembly.  */
1704 
1705 extern int sparc_indent_opcode;
1706 
1707 #define ASM_OUTPUT_OPCODE(FILE, PTR)	\
1708   do {					\
1709     if (sparc_indent_opcode)		\
1710       {					\
1711 	putc (' ', FILE);		\
1712 	sparc_indent_opcode = 0;	\
1713       }					\
1714   } while (0)
1715 
1716 /* TLS support defaulting to original Sun flavor.  GNU extensions
1717    must be activated in separate configuration files.  */
1718 #ifdef HAVE_AS_TLS
1719 #define TARGET_TLS 1
1720 #else
1721 #define TARGET_TLS 0
1722 #endif
1723 
1724 #define TARGET_SUN_TLS TARGET_TLS
1725 #define TARGET_GNU_TLS 0
1726 
1727 #ifdef HAVE_AS_FMAF_HPC_VIS3
1728 #define AS_NIAGARA3_FLAG "d"
1729 #else
1730 #define AS_NIAGARA3_FLAG "b"
1731 #endif
1732 
1733 #ifdef HAVE_AS_SPARC4
1734 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1735 #else
1736 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1737 #endif
1738 
1739 #ifdef HAVE_AS_SPARC5_VIS4
1740 #define AS_NIAGARA7_FLAG "-xarch=sparc5"
1741 #else
1742 #define AS_NIAGARA7_FLAG AS_NIAGARA4_FLAG
1743 #endif
1744 
1745 #ifdef HAVE_AS_SPARC6
1746 #define AS_M8_FLAG "-xarch=sparc6"
1747 #else
1748 #define AS_M8_FLAG AS_NIAGARA7_FLAG
1749 #endif
1750 
1751 #ifdef HAVE_AS_LEON
1752 #define AS_LEON_FLAG "-Aleon"
1753 #define AS_LEONV7_FLAG "-Aleon"
1754 #else
1755 #define AS_LEON_FLAG "-Av8"
1756 #define AS_LEONV7_FLAG "-Av7"
1757 #endif
1758 
1759 /* We use gcc _mcount for profiling.  */
1760 #define NO_PROFILE_COUNTERS 0
1761 
1762 /* Debug support */
1763 #define MASK_DEBUG_OPTIONS		0x01	/* debug option handling */
1764 #define MASK_DEBUG_ALL			MASK_DEBUG_OPTIONS
1765 
1766 #define TARGET_DEBUG_OPTIONS		(sparc_debug & MASK_DEBUG_OPTIONS)
1767 
1768 /* By default, use the weakest memory model for the cpu.  */
1769 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1770 #define SUBTARGET_DEFAULT_MEMORY_MODEL	SMM_DEFAULT
1771 #endif
1772 
1773 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1.  */
1774 #define SPARC_LOW_FE_EXCEPT_VALUES 0
1775 
1776 #define TARGET_SUPPORTS_WIDE_INT 1
1777