1@c Copyright (C) 1988-2018 Free Software Foundation, Inc.
2@c This is part of the GCC manual.
3@c For copying conditions, see the file gcc.texi.
4
5@ignore
6@c man begin INCLUDE
7@include gcc-vers.texi
8@c man end
9
10@c man begin COPYRIGHT
11Copyright @copyright{} 1988-2018 Free Software Foundation, Inc.
12
13Permission is granted to copy, distribute and/or modify this document
14under the terms of the GNU Free Documentation License, Version 1.3 or
15any later version published by the Free Software Foundation; with the
16Invariant Sections being ``GNU General Public License'' and ``Funding
17Free Software'', the Front-Cover texts being (a) (see below), and with
18the Back-Cover Texts being (b) (see below).  A copy of the license is
19included in the gfdl(7) man page.
20
21(a) The FSF's Front-Cover Text is:
22
23     A GNU Manual
24
25(b) The FSF's Back-Cover Text is:
26
27     You have freedom to copy and modify this GNU Manual, like GNU
28     software.  Copies published by the Free Software Foundation raise
29     funds for GNU development.
30@c man end
31@c Set file name and title for the man page.
32@setfilename gcc
33@settitle GNU project C and C++ compiler
34@c man begin SYNOPSIS
35gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36    [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37    [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38    [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39    [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40    [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41    [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43Only the most useful options are listed here; see below for the
44remainder.  @command{g++} accepts mostly the same options as @command{gcc}.
45@c man end
46@c man begin SEEALSO
47gpl(7), gfdl(7), fsf-funding(7),
48cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50@file{ld}, @file{binutils} and @file{gdb}.
51@c man end
52@c man begin BUGS
53For instructions on reporting bugs, see
54@w{@value{BUGURL}}.
55@c man end
56@c man begin AUTHOR
57See the Info entry for @command{gcc}, or
58@w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59for contributors to GCC@.
60@c man end
61@end ignore
62
63@node Invoking GCC
64@chapter GCC Command Options
65@cindex GCC command options
66@cindex command options
67@cindex options, GCC command
68
69@c man begin DESCRIPTION
70When you invoke GCC, it normally does preprocessing, compilation,
71assembly and linking.  The ``overall options'' allow you to stop this
72process at an intermediate stage.  For example, the @option{-c} option
73says not to run the linker.  Then the output consists of object files
74output by the assembler.
75@xref{Overall Options,,Options Controlling the Kind of Output}.
76
77Other options are passed on to one or more stages of processing.  Some options
78control the preprocessor and others the compiler itself.  Yet other
79options control the assembler and linker; most of these are not
80documented here, since you rarely need to use any of them.
81
82@cindex C compilation options
83Most of the command-line options that you can use with GCC are useful
84for C programs; when an option is only useful with another language
85(usually C++), the explanation says so explicitly.  If the description
86for a particular option does not mention a source language, you can use
87that option with all supported languages.
88
89@cindex cross compiling
90@cindex specifying machine version
91@cindex specifying compiler version and target machine
92@cindex compiler version, specifying
93@cindex target machine, specifying
94The usual way to run GCC is to run the executable called @command{gcc}, or
95@command{@var{machine}-gcc} when cross-compiling, or
96@command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97When you compile C++ programs, you should invoke GCC as @command{g++}
98instead.  @xref{Invoking G++,,Compiling C++ Programs},
99for information about the differences in behavior between @command{gcc}
100and @code{g++} when compiling C++ programs.
101
102@cindex grouping options
103@cindex options, grouping
104The @command{gcc} program accepts options and file names as operands.  Many
105options have multi-letter names; therefore multiple single-letter options
106may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107-v}}.
108
109@cindex order of options
110@cindex options, order
111You can mix options and other arguments.  For the most part, the order
112you use doesn't matter.  Order does matter when you use several
113options of the same kind; for example, if you specify @option{-L} more
114than once, the directories are searched in the order specified.  Also,
115the placement of the @option{-l} option is significant.
116
117Many options have long names starting with @samp{-f} or with
118@samp{-W}---for example,
119@option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
120these have both positive and negative forms; the negative form of
121@option{-ffoo} is @option{-fno-foo}.  This manual documents
122only one of these two forms, whichever one is not the default.
123
124@c man end
125
126@xref{Option Index}, for an index to GCC's options.
127
128@menu
129* Option Summary::      Brief list of all options, without explanations.
130* Overall Options::     Controlling the kind of output:
131                        an executable, object files, assembler files,
132                        or preprocessed source.
133* Invoking G++::        Compiling C++ programs.
134* C Dialect Options::   Controlling the variant of C language compiled.
135* C++ Dialect Options:: Variations on C++.
136* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137                        and Objective-C++.
138* Diagnostic Message Formatting Options:: Controlling how diagnostics should
139                        be formatted.
140* Warning Options::     How picky should the compiler be?
141* Debugging Options::   Producing debuggable code.
142* Optimize Options::    How much optimization?
143* Instrumentation Options:: Enabling profiling and extra run-time error checking.
144* Preprocessor Options:: Controlling header files and macro definitions.
145                         Also, getting dependency information for Make.
146* Assembler Options::   Passing options to the assembler.
147* Link Options::        Specifying libraries and so on.
148* Directory Options::   Where to find header files and libraries.
149                        Where to find the compiler executable files.
150* Code Gen Options::    Specifying conventions for function calls, data layout
151                        and register usage.
152* Developer Options::   Printing GCC configuration info, statistics, and
153                        debugging dumps.
154* Submodel Options::    Target-specific options, such as compiling for a
155                        specific processor variant.
156* Spec Files::          How to pass switches to sub-processes.
157* Environment Variables:: Env vars that affect GCC.
158* Precompiled Headers:: Compiling a header once, and using it many times.
159@end menu
160
161@c man begin OPTIONS
162
163@node Option Summary
164@section Option Summary
165
166Here is a summary of all the options, grouped by type.  Explanations are
167in the following sections.
168
169@table @emph
170@item Overall Options
171@xref{Overall Options,,Options Controlling the Kind of Output}.
172@gccoptlist{-c  -S  -E  -o @var{file}  -x @var{language}  @gol
173-v  -###  --help@r{[}=@var{class}@r{[},@dots{}@r{]]}  --target-help  --version @gol
174-pass-exit-codes  -pipe  -specs=@var{file}  -wrapper  @gol
175@@@var{file}  -ffile-prefix-map=@var{old}=@var{new}  @gol
176-fplugin=@var{file}  -fplugin-arg-@var{name}=@var{arg}  @gol
177-fdump-ada-spec@r{[}-slim@r{]}  -fada-spec-parent=@var{unit}  -fdump-go-spec=@var{file}}
178
179@item C Language Options
180@xref{C Dialect Options,,Options Controlling C Dialect}.
181@gccoptlist{-ansi  -std=@var{standard}  -fgnu89-inline @gol
182-fpermitted-flt-eval-methods=@var{standard} @gol
183-aux-info @var{filename}  -fallow-parameterless-variadic-functions @gol
184-fno-asm  -fno-builtin  -fno-builtin-@var{function}  -fgimple@gol
185-fhosted  -ffreestanding  -fopenacc  -fopenmp  -fopenmp-simd @gol
186-fms-extensions  -fplan9-extensions  -fsso-struct=@var{endianness} @gol
187-fallow-single-precision  -fcond-mismatch  -flax-vector-conversions @gol
188-fsigned-bitfields  -fsigned-char @gol
189-funsigned-bitfields  -funsigned-char}
190
191@item C++ Language Options
192@xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
193@gccoptlist{-fabi-version=@var{n}  -fno-access-control @gol
194-faligned-new=@var{n}  -fargs-in-order=@var{n}  -fcheck-new @gol
195-fconstexpr-depth=@var{n}  -fconstexpr-loop-limit=@var{n} @gol
196-ffriend-injection @gol
197-fno-elide-constructors @gol
198-fno-enforce-eh-specs @gol
199-ffor-scope  -fno-for-scope  -fno-gnu-keywords @gol
200-fno-implicit-templates @gol
201-fno-implicit-inline-templates @gol
202-fno-implement-inlines  -fms-extensions @gol
203-fnew-inheriting-ctors @gol
204-fnew-ttp-matching @gol
205-fno-nonansi-builtins  -fnothrow-opt  -fno-operator-names @gol
206-fno-optional-diags  -fpermissive @gol
207-fno-pretty-templates @gol
208-frepo  -fno-rtti  -fsized-deallocation @gol
209-ftemplate-backtrace-limit=@var{n} @gol
210-ftemplate-depth=@var{n} @gol
211-fno-threadsafe-statics  -fuse-cxa-atexit @gol
212-fno-weak  -nostdinc++ @gol
213-fvisibility-inlines-hidden @gol
214-fvisibility-ms-compat @gol
215-fext-numeric-literals @gol
216-Wabi=@var{n}  -Wabi-tag  -Wconversion-null  -Wctor-dtor-privacy @gol
217-Wdelete-non-virtual-dtor  -Wliteral-suffix  -Wmultiple-inheritance @gol
218-Wnamespaces  -Wnarrowing @gol
219-Wnoexcept  -Wnoexcept-type  -Wclass-memaccess @gol
220-Wnon-virtual-dtor  -Wreorder  -Wregister @gol
221-Weffc++  -Wstrict-null-sentinel  -Wtemplates @gol
222-Wno-non-template-friend  -Wold-style-cast @gol
223-Woverloaded-virtual  -Wno-pmf-conversions @gol
224-Wsign-promo  -Wvirtual-inheritance}
225
226@item Objective-C and Objective-C++ Language Options
227@xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
228Objective-C and Objective-C++ Dialects}.
229@gccoptlist{-fconstant-string-class=@var{class-name} @gol
230-fgnu-runtime  -fnext-runtime @gol
231-fno-nil-receivers @gol
232-fobjc-abi-version=@var{n} @gol
233-fobjc-call-cxx-cdtors @gol
234-fobjc-direct-dispatch @gol
235-fobjc-exceptions @gol
236-fobjc-gc @gol
237-fobjc-nilcheck @gol
238-fobjc-std=objc1 @gol
239-fno-local-ivars @gol
240-fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
241-freplace-objc-classes @gol
242-fzero-link @gol
243-gen-decls @gol
244-Wassign-intercept @gol
245-Wno-protocol  -Wselector @gol
246-Wstrict-selector-match @gol
247-Wundeclared-selector}
248
249@item Diagnostic Message Formatting Options
250@xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
251@gccoptlist{-fmessage-length=@var{n}  @gol
252-fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}  @gol
253-fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
254-fno-diagnostics-show-option  -fno-diagnostics-show-caret @gol
255-fdiagnostics-parseable-fixits  -fdiagnostics-generate-patch @gol
256-fdiagnostics-show-template-tree -fno-elide-type @gol
257-fno-show-column}
258
259@item Warning Options
260@xref{Warning Options,,Options to Request or Suppress Warnings}.
261@gccoptlist{-fsyntax-only  -fmax-errors=@var{n}  -Wpedantic @gol
262-pedantic-errors @gol
263-w  -Wextra  -Wall  -Waddress  -Waggregate-return  -Waligned-new @gol
264-Walloc-zero  -Walloc-size-larger-than=@var{n}
265-Walloca  -Walloca-larger-than=@var{n} @gol
266-Wno-aggressive-loop-optimizations  -Warray-bounds  -Warray-bounds=@var{n} @gol
267-Wno-attributes  -Wbool-compare  -Wbool-operation @gol
268-Wno-builtin-declaration-mismatch @gol
269-Wno-builtin-macro-redefined  -Wc90-c99-compat  -Wc99-c11-compat @gol
270-Wc++-compat  -Wc++11-compat  -Wc++14-compat  @gol
271-Wcast-align  -Wcast-align=strict  -Wcast-function-type  -Wcast-qual  @gol
272-Wchar-subscripts  -Wchkp  -Wcatch-value  -Wcatch-value=@var{n} @gol
273-Wclobbered  -Wcomment  -Wconditionally-supported @gol
274-Wconversion  -Wcoverage-mismatch  -Wno-cpp  -Wdangling-else  -Wdate-time @gol
275-Wdelete-incomplete @gol
276-Wno-deprecated  -Wno-deprecated-declarations  -Wno-designated-init @gol
277-Wdisabled-optimization @gol
278-Wno-discarded-qualifiers  -Wno-discarded-array-qualifiers @gol
279-Wno-div-by-zero  -Wdouble-promotion @gol
280-Wduplicated-branches  -Wduplicated-cond @gol
281-Wempty-body  -Wenum-compare  -Wno-endif-labels  -Wexpansion-to-defined @gol
282-Werror  -Werror=*  -Wextra-semi  -Wfatal-errors @gol
283-Wfloat-equal  -Wformat  -Wformat=2 @gol
284-Wno-format-contains-nul  -Wno-format-extra-args  @gol
285-Wformat-nonliteral -Wformat-overflow=@var{n} @gol
286-Wformat-security  -Wformat-signedness  -Wformat-truncation=@var{n} @gol
287-Wformat-y2k  -Wframe-address @gol
288-Wframe-larger-than=@var{len}  -Wno-free-nonheap-object  -Wjump-misses-init @gol
289-Wif-not-aligned @gol
290-Wignored-qualifiers  -Wignored-attributes  -Wincompatible-pointer-types @gol
291-Wimplicit  -Wimplicit-fallthrough  -Wimplicit-fallthrough=@var{n} @gol
292-Wimplicit-function-declaration  -Wimplicit-int @gol
293-Winit-self  -Winline  -Wno-int-conversion  -Wint-in-bool-context @gol
294-Wno-int-to-pointer-cast  -Winvalid-memory-model  -Wno-invalid-offsetof @gol
295-Winvalid-pch  -Wlarger-than=@var{len} @gol
296-Wlogical-op  -Wlogical-not-parentheses  -Wlong-long @gol
297-Wmain  -Wmaybe-uninitialized  -Wmemset-elt-size  -Wmemset-transposed-args @gol
298-Wmisleading-indentation  -Wmissing-attributes -Wmissing-braces @gol
299-Wmissing-field-initializers  -Wmissing-include-dirs @gol
300-Wno-multichar  -Wmultistatement-macros  -Wnonnull  -Wnonnull-compare @gol
301-Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
302-Wnull-dereference  -Wodr  -Wno-overflow  -Wopenmp-simd  @gol
303-Woverride-init-side-effects  -Woverlength-strings @gol
304-Wpacked  -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
305-Wparentheses  -Wno-pedantic-ms-format @gol
306-Wplacement-new  -Wplacement-new=@var{n} @gol
307-Wpointer-arith  -Wpointer-compare  -Wno-pointer-to-int-cast @gol
308-Wno-pragmas  -Wredundant-decls  -Wrestrict  -Wno-return-local-addr @gol
309-Wreturn-type  -Wsequence-point  -Wshadow  -Wno-shadow-ivar @gol
310-Wshadow=global,  -Wshadow=local,  -Wshadow=compatible-local @gol
311-Wshift-overflow  -Wshift-overflow=@var{n} @gol
312-Wshift-count-negative  -Wshift-count-overflow  -Wshift-negative-value @gol
313-Wsign-compare  -Wsign-conversion  -Wfloat-conversion @gol
314-Wno-scalar-storage-order  -Wsizeof-pointer-div @gol
315-Wsizeof-pointer-memaccess  -Wsizeof-array-argument @gol
316-Wstack-protector  -Wstack-usage=@var{len}  -Wstrict-aliasing @gol
317-Wstrict-aliasing=n  -Wstrict-overflow  -Wstrict-overflow=@var{n} @gol
318-Wstringop-overflow=@var{n} -Wstringop-truncation @gol
319-Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
320-Wsuggest-final-types @gol  -Wsuggest-final-methods  -Wsuggest-override @gol
321-Wmissing-format-attribute  -Wsubobject-linkage @gol
322-Wswitch  -Wswitch-bool  -Wswitch-default  -Wswitch-enum @gol
323-Wswitch-unreachable  -Wsync-nand @gol
324-Wsystem-headers  -Wtautological-compare  -Wtrampolines  -Wtrigraphs @gol
325-Wtype-limits  -Wundef @gol
326-Wuninitialized  -Wunknown-pragmas @gol
327-Wunsuffixed-float-constants  -Wunused  -Wunused-function @gol
328-Wunused-label  -Wunused-local-typedefs  -Wunused-macros @gol
329-Wunused-parameter  -Wno-unused-result @gol
330-Wunused-value  -Wunused-variable @gol
331-Wunused-const-variable  -Wunused-const-variable=@var{n} @gol
332-Wunused-but-set-parameter  -Wunused-but-set-variable @gol
333-Wuseless-cast  -Wvariadic-macros  -Wvector-operation-performance @gol
334-Wvla  -Wvla-larger-than=@var{n}  -Wvolatile-register-var  -Wwrite-strings @gol
335-Wzero-as-null-pointer-constant  -Whsa}
336
337@item C and Objective-C-only Warning Options
338@gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
339-Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs @gol
340-Wold-style-declaration  -Wold-style-definition @gol
341-Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion @gol
342-Wdeclaration-after-statement  -Wpointer-sign}
343
344@item Debugging Options
345@xref{Debugging Options,,Options for Debugging Your Program}.
346@gccoptlist{-g  -g@var{level}  -gdwarf  -gdwarf-@var{version} @gol
347-ggdb  -grecord-gcc-switches  -gno-record-gcc-switches @gol
348-gstabs  -gstabs+  -gstrict-dwarf  -gno-strict-dwarf @gol
349-gas-loc-support  -gno-as-loc-support @gol
350-gas-locview-support  -gno-as-locview-support @gol
351-gcolumn-info  -gno-column-info @gol
352-gstatement-frontiers  -gno-statement-frontiers @gol
353-gvariable-location-views  -gno-variable-location-views @gol
354-ginternal-reset-location-views  -gno-internal-reset-location-views @gol
355-ginline-points  -gno-inline-points @gol
356-gvms  -gxcoff  -gxcoff+  -gz@r{[}=@var{type}@r{]} @gol
357-fdebug-prefix-map=@var{old}=@var{new}  -fdebug-types-section @gol
358-fno-eliminate-unused-debug-types @gol
359-femit-struct-debug-baseonly  -femit-struct-debug-reduced @gol
360-femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
361-feliminate-unused-debug-symbols  -femit-class-debug-always @gol
362-fno-merge-debug-strings  -fno-dwarf2-cfi-asm @gol
363-fvar-tracking  -fvar-tracking-assignments}
364
365@item Optimization Options
366@xref{Optimize Options,,Options that Control Optimization}.
367@gccoptlist{-faggressive-loop-optimizations  -falign-functions[=@var{n}] @gol
368-falign-jumps[=@var{n}] @gol
369-falign-labels[=@var{n}]  -falign-loops[=@var{n}] @gol
370-fassociative-math  -fauto-profile  -fauto-profile[=@var{path}] @gol
371-fauto-inc-dec  -fbranch-probabilities @gol
372-fbranch-target-load-optimize  -fbranch-target-load-optimize2 @gol
373-fbtr-bb-exclusive  -fcaller-saves @gol
374-fcombine-stack-adjustments  -fconserve-stack @gol
375-fcompare-elim  -fcprop-registers  -fcrossjumping @gol
376-fcse-follow-jumps  -fcse-skip-blocks  -fcx-fortran-rules @gol
377-fcx-limited-range @gol
378-fdata-sections  -fdce  -fdelayed-branch @gol
379-fdelete-null-pointer-checks  -fdevirtualize  -fdevirtualize-speculatively @gol
380-fdevirtualize-at-ltrans  -fdse @gol
381-fearly-inlining  -fipa-sra  -fexpensive-optimizations  -ffat-lto-objects @gol
382-ffast-math  -ffinite-math-only  -ffloat-store  -fexcess-precision=@var{style} @gol
383-fforward-propagate  -ffp-contract=@var{style}  -ffunction-sections @gol
384-fgcse  -fgcse-after-reload  -fgcse-las  -fgcse-lm  -fgraphite-identity @gol
385-fgcse-sm  -fhoist-adjacent-loads  -fif-conversion @gol
386-fif-conversion2  -findirect-inlining @gol
387-finline-functions  -finline-functions-called-once  -finline-limit=@var{n} @gol
388-finline-small-functions  -fipa-cp  -fipa-cp-clone @gol
389-fipa-bit-cp -fipa-vrp @gol
390-fipa-pta  -fipa-profile  -fipa-pure-const  -fipa-reference  -fipa-icf @gol
391-fira-algorithm=@var{algorithm} @gol
392-fira-region=@var{region}  -fira-hoist-pressure @gol
393-fira-loop-pressure  -fno-ira-share-save-slots @gol
394-fno-ira-share-spill-slots @gol
395-fisolate-erroneous-paths-dereference  -fisolate-erroneous-paths-attribute @gol
396-fivopts  -fkeep-inline-functions  -fkeep-static-functions @gol
397-fkeep-static-consts  -flimit-function-alignment  -flive-range-shrinkage @gol
398-floop-block  -floop-interchange  -floop-strip-mine @gol
399-floop-unroll-and-jam  -floop-nest-optimize @gol
400-floop-parallelize-all  -flra-remat  -flto  -flto-compression-level @gol
401-flto-partition=@var{alg}  -fmerge-all-constants @gol
402-fmerge-constants  -fmodulo-sched  -fmodulo-sched-allow-regmoves @gol
403-fmove-loop-invariants  -fno-branch-count-reg @gol
404-fno-defer-pop  -fno-fp-int-builtin-inexact  -fno-function-cse @gol
405-fno-guess-branch-probability  -fno-inline  -fno-math-errno  -fno-peephole @gol
406-fno-peephole2  -fno-printf-return-value  -fno-sched-interblock @gol
407-fno-sched-spec  -fno-signed-zeros @gol
408-fno-toplevel-reorder  -fno-trapping-math  -fno-zero-initialized-in-bss @gol
409-fomit-frame-pointer  -foptimize-sibling-calls @gol
410-fpartial-inlining  -fpeel-loops  -fpredictive-commoning @gol
411-fprefetch-loop-arrays @gol
412-fprofile-correction @gol
413-fprofile-use  -fprofile-use=@var{path}  -fprofile-values @gol
414-fprofile-reorder-functions @gol
415-freciprocal-math  -free  -frename-registers  -freorder-blocks @gol
416-freorder-blocks-algorithm=@var{algorithm} @gol
417-freorder-blocks-and-partition  -freorder-functions @gol
418-frerun-cse-after-loop  -freschedule-modulo-scheduled-loops @gol
419-frounding-math  -fsched2-use-superblocks  -fsched-pressure @gol
420-fsched-spec-load  -fsched-spec-load-dangerous @gol
421-fsched-stalled-insns-dep[=@var{n}]  -fsched-stalled-insns[=@var{n}] @gol
422-fsched-group-heuristic  -fsched-critical-path-heuristic @gol
423-fsched-spec-insn-heuristic  -fsched-rank-heuristic @gol
424-fsched-last-insn-heuristic  -fsched-dep-count-heuristic @gol
425-fschedule-fusion @gol
426-fschedule-insns  -fschedule-insns2  -fsection-anchors @gol
427-fselective-scheduling  -fselective-scheduling2 @gol
428-fsel-sched-pipelining  -fsel-sched-pipelining-outer-loops @gol
429-fsemantic-interposition  -fshrink-wrap  -fshrink-wrap-separate @gol
430-fsignaling-nans @gol
431-fsingle-precision-constant  -fsplit-ivs-in-unroller  -fsplit-loops@gol
432-fsplit-paths @gol
433-fsplit-wide-types  -fssa-backprop  -fssa-phiopt @gol
434-fstdarg-opt  -fstore-merging  -fstrict-aliasing @gol
435-fthread-jumps  -ftracer  -ftree-bit-ccp @gol
436-ftree-builtin-call-dce  -ftree-ccp  -ftree-ch @gol
437-ftree-coalesce-vars  -ftree-copy-prop  -ftree-dce  -ftree-dominator-opts @gol
438-ftree-dse  -ftree-forwprop  -ftree-fre  -fcode-hoisting @gol
439-ftree-loop-if-convert  -ftree-loop-im @gol
440-ftree-phiprop  -ftree-loop-distribution  -ftree-loop-distribute-patterns @gol
441-ftree-loop-ivcanon  -ftree-loop-linear  -ftree-loop-optimize @gol
442-ftree-loop-vectorize @gol
443-ftree-parallelize-loops=@var{n}  -ftree-pre  -ftree-partial-pre  -ftree-pta @gol
444-ftree-reassoc  -ftree-sink  -ftree-slsr  -ftree-sra @gol
445-ftree-switch-conversion  -ftree-tail-merge @gol
446-ftree-ter  -ftree-vectorize  -ftree-vrp  -funconstrained-commons @gol
447-funit-at-a-time  -funroll-all-loops  -funroll-loops @gol
448-funsafe-math-optimizations  -funswitch-loops @gol
449-fipa-ra  -fvariable-expansion-in-unroller  -fvect-cost-model  -fvpt @gol
450-fweb  -fwhole-program  -fwpa  -fuse-linker-plugin @gol
451--param @var{name}=@var{value}
452-O  -O0  -O1  -O2  -O3  -Os  -Ofast  -Og}
453
454@item Program Instrumentation Options
455@xref{Instrumentation Options,,Program Instrumentation Options}.
456@gccoptlist{-p  -pg  -fprofile-arcs  --coverage  -ftest-coverage @gol
457-fprofile-abs-path @gol
458-fprofile-dir=@var{path}  -fprofile-generate  -fprofile-generate=@var{path} @gol
459-fsanitize=@var{style}  -fsanitize-recover  -fsanitize-recover=@var{style} @gol
460-fasan-shadow-offset=@var{number}  -fsanitize-sections=@var{s1},@var{s2},... @gol
461-fsanitize-undefined-trap-on-error  -fbounds-check @gol
462-fcheck-pointer-bounds  -fchkp-check-incomplete-type @gol
463-fchkp-first-field-has-own-bounds  -fchkp-narrow-bounds @gol
464-fchkp-narrow-to-innermost-array  -fchkp-optimize @gol
465-fchkp-use-fast-string-functions  -fchkp-use-nochk-string-functions @gol
466-fchkp-use-static-bounds  -fchkp-use-static-const-bounds @gol
467-fchkp-treat-zero-dynamic-size-as-infinite  -fchkp-check-read @gol
468-fchkp-check-read  -fchkp-check-write  -fchkp-store-bounds @gol
469-fchkp-instrument-calls  -fchkp-instrument-marked-only @gol
470-fchkp-use-wrappers  -fchkp-flexible-struct-trailing-arrays@gol
471-fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
472-fstack-protector  -fstack-protector-all  -fstack-protector-strong @gol
473-fstack-protector-explicit  -fstack-check @gol
474-fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
475-fno-stack-limit  -fsplit-stack @gol
476-fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
477-fvtv-counts  -fvtv-debug @gol
478-finstrument-functions @gol
479-finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
480-finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
481
482@item Preprocessor Options
483@xref{Preprocessor Options,,Options Controlling the Preprocessor}.
484@gccoptlist{-A@var{question}=@var{answer} @gol
485-A-@var{question}@r{[}=@var{answer}@r{]} @gol
486-C  -CC  -D@var{macro}@r{[}=@var{defn}@r{]} @gol
487-dD  -dI  -dM  -dN  -dU @gol
488-fdebug-cpp  -fdirectives-only  -fdollars-in-identifiers  @gol
489-fexec-charset=@var{charset}  -fextended-identifiers  @gol
490-finput-charset=@var{charset} -fmacro-prefix-map=@var{old}=@var{new}  @gol
491-fno-canonical-system-headers @gol -fpch-deps  -fpch-preprocess  @gol
492-fpreprocessed -ftabstop=@var{width}  -ftrack-macro-expansion  @gol
493-fwide-exec-charset=@var{charset}  -fworking-directory @gol
494-H  -imacros @var{file}  -include @var{file} @gol
495-M  -MD  -MF  -MG  -MM  -MMD  -MP  -MQ  -MT @gol
496-no-integrated-cpp  -P  -pthread  -remap @gol
497-traditional  -traditional-cpp  -trigraphs @gol
498-U@var{macro}  -undef  @gol
499-Wp,@var{option}  -Xpreprocessor @var{option}}
500
501@item Assembler Options
502@xref{Assembler Options,,Passing Options to the Assembler}.
503@gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
504
505@item Linker Options
506@xref{Link Options,,Options for Linking}.
507@gccoptlist{@var{object-file-name}  -fuse-ld=@var{linker}  -l@var{library} @gol
508-nostartfiles  -nodefaultlibs  -nostdlib  -pie  -pthread  -rdynamic @gol
509-s  -static -static-pie -static-libgcc  -static-libstdc++ @gol
510-static-libasan  -static-libtsan  -static-liblsan  -static-libubsan @gol
511-static-libmpx  -static-libmpxwrappers @gol
512-shared  -shared-libgcc  -symbolic @gol
513-T @var{script}  -Wl,@var{option}  -Xlinker @var{option} @gol
514-u @var{symbol}  -z @var{keyword}}
515
516@item Directory Options
517@xref{Directory Options,,Options for Directory Search}.
518@gccoptlist{-B@var{prefix}  -I@var{dir}  -I- @gol
519-idirafter @var{dir} @gol
520-imacros @var{file}  -imultilib @var{dir} @gol
521-iplugindir=@var{dir}  -iprefix @var{file} @gol
522-iquote @var{dir}  -isysroot @var{dir}  -isystem @var{dir} @gol
523-iwithprefix @var{dir}  -iwithprefixbefore @var{dir}  @gol
524-L@var{dir}  -no-canonical-prefixes  --no-sysroot-suffix @gol
525-nostdinc  -nostdinc++  --sysroot=@var{dir}}
526
527@item Code Generation Options
528@xref{Code Gen Options,,Options for Code Generation Conventions}.
529@gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
530-ffixed-@var{reg}  -fexceptions @gol
531-fnon-call-exceptions  -fdelete-dead-exceptions  -funwind-tables @gol
532-fasynchronous-unwind-tables @gol
533-fno-gnu-unique @gol
534-finhibit-size-directive  -fno-common  -fno-ident @gol
535-fpcc-struct-return  -fpic  -fPIC  -fpie  -fPIE  -fno-plt @gol
536-fno-jump-tables @gol
537-frecord-gcc-switches @gol
538-freg-struct-return  -fshort-enums  -fshort-wchar @gol
539-fverbose-asm  -fpack-struct[=@var{n}]  @gol
540-fleading-underscore  -ftls-model=@var{model} @gol
541-fstack-reuse=@var{reuse_level} @gol
542-ftrampolines  -ftrapv  -fwrapv @gol
543-fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
544-fstrict-volatile-bitfields  -fsync-libcalls}
545
546@item Developer Options
547@xref{Developer Options,,GCC Developer Options}.
548@gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
549-dumpfullversion  -fchecking  -fchecking=@var{n}  -fdbg-cnt-list @gol
550-fdbg-cnt=@var{counter-value-list} @gol
551-fdisable-ipa-@var{pass_name} @gol
552-fdisable-rtl-@var{pass_name} @gol
553-fdisable-rtl-@var{pass-name}=@var{range-list} @gol
554-fdisable-tree-@var{pass_name} @gol
555-fdisable-tree-@var{pass-name}=@var{range-list} @gol
556-fdump-noaddr  -fdump-unnumbered  -fdump-unnumbered-links @gol
557-fdump-final-insns@r{[}=@var{file}@r{]} @gol
558-fdump-ipa-all  -fdump-ipa-cgraph  -fdump-ipa-inline @gol
559-fdump-lang-all @gol
560-fdump-lang-@var{switch} @gol
561-fdump-lang-@var{switch}-@var{options} @gol
562-fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
563-fdump-passes @gol
564-fdump-rtl-@var{pass}  -fdump-rtl-@var{pass}=@var{filename} @gol
565-fdump-statistics @gol
566-fdump-tree-all @gol
567-fdump-tree-@var{switch} @gol
568-fdump-tree-@var{switch}-@var{options} @gol
569-fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
570-fcompare-debug@r{[}=@var{opts}@r{]}  -fcompare-debug-second @gol
571-fenable-@var{kind}-@var{pass} @gol
572-fenable-@var{kind}-@var{pass}=@var{range-list} @gol
573-fira-verbose=@var{n} @gol
574-flto-report  -flto-report-wpa  -fmem-report-wpa @gol
575-fmem-report  -fpre-ipa-mem-report  -fpost-ipa-mem-report @gol
576-fopt-info  -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
577-fprofile-report @gol
578-frandom-seed=@var{string}  -fsched-verbose=@var{n} @gol
579-fsel-sched-verbose  -fsel-sched-dump-cfg  -fsel-sched-pipelining-verbose @gol
580-fstats  -fstack-usage  -ftime-report  -ftime-report-details @gol
581-fvar-tracking-assignments-toggle  -gtoggle @gol
582-print-file-name=@var{library}  -print-libgcc-file-name @gol
583-print-multi-directory  -print-multi-lib  -print-multi-os-directory @gol
584-print-prog-name=@var{program}  -print-search-dirs  -Q @gol
585-print-sysroot  -print-sysroot-headers-suffix @gol
586-save-temps  -save-temps=cwd  -save-temps=obj  -time@r{[}=@var{file}@r{]}}
587
588@item Machine-Dependent Options
589@xref{Submodel Options,,Machine-Dependent Options}.
590@c This list is ordered alphanumerically by subsection name.
591@c Try and put the significant identifier (CPU or system) first,
592@c so users have a clue at guessing where the ones they want will be.
593
594@emph{AArch64 Options}
595@gccoptlist{-mabi=@var{name}  -mbig-endian  -mlittle-endian @gol
596-mgeneral-regs-only @gol
597-mcmodel=tiny  -mcmodel=small  -mcmodel=large @gol
598-mstrict-align @gol
599-momit-leaf-frame-pointer @gol
600-mtls-dialect=desc  -mtls-dialect=traditional @gol
601-mtls-size=@var{size} @gol
602-mfix-cortex-a53-835769  -mfix-cortex-a53-843419 @gol
603-mlow-precision-recip-sqrt  -mlow-precision-sqrt  -mlow-precision-div @gol
604-mpc-relative-literal-loads @gol
605-msign-return-address=@var{scope} @gol
606-march=@var{name}  -mcpu=@var{name}  -mtune=@var{name}  @gol
607-moverride=@var{string}  -mverbose-cost-dump}
608
609@emph{Adapteva Epiphany Options}
610@gccoptlist{-mhalf-reg-file  -mprefer-short-insn-regs @gol
611-mbranch-cost=@var{num}  -mcmove  -mnops=@var{num}  -msoft-cmpsf @gol
612-msplit-lohi  -mpost-inc  -mpost-modify  -mstack-offset=@var{num} @gol
613-mround-nearest  -mlong-calls  -mshort-calls  -msmall16 @gol
614-mfp-mode=@var{mode}  -mvect-double  -max-vect-align=@var{num} @gol
615-msplit-vecmove-early  -m1reg-@var{reg}}
616
617@emph{ARC Options}
618@gccoptlist{-mbarrel-shifter -mjli-always @gol
619-mcpu=@var{cpu}  -mA6  -mARC600  -mA7  -mARC700 @gol
620-mdpfp  -mdpfp-compact  -mdpfp-fast  -mno-dpfp-lrsr @gol
621-mea  -mno-mpy  -mmul32x16  -mmul64  -matomic @gol
622-mnorm  -mspfp  -mspfp-compact  -mspfp-fast  -msimd  -msoft-float  -mswap @gol
623-mcrc  -mdsp-packa  -mdvbf  -mlock  -mmac-d16  -mmac-24  -mrtsc  -mswape @gol
624-mtelephony  -mxy  -misize  -mannotate-align  -marclinux  -marclinux_prof @gol
625-mlong-calls  -mmedium-calls  -msdata -mirq-ctrl-saved @gol
626-mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
627-mvolatile-cache  -mtp-regno=@var{regno} @gol
628-malign-call  -mauto-modify-reg  -mbbit-peephole  -mno-brcc @gol
629-mcase-vector-pcrel  -mcompact-casesi  -mno-cond-exec  -mearly-cbranchsi @gol
630-mexpand-adddi  -mindexed-loads  -mlra  -mlra-priority-none @gol
631-mlra-priority-compact mlra-priority-noncompact  -mno-millicode @gol
632-mmixed-code  -mq-class  -mRcq  -mRcw  -msize-level=@var{level} @gol
633-mtune=@var{cpu}  -mmultcost=@var{num} @gol
634-munalign-prob-threshold=@var{probability}  -mmpy-option=@var{multo} @gol
635-mdiv-rem  -mcode-density  -mll64  -mfpu=@var{fpu} -mrf16}
636
637@emph{ARM Options}
638@gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
639-mabi=@var{name} @gol
640-mapcs-stack-check  -mno-apcs-stack-check @gol
641-mapcs-reentrant  -mno-apcs-reentrant @gol
642-msched-prolog  -mno-sched-prolog @gol
643-mlittle-endian  -mbig-endian @gol
644-mbe8 -mbe32 @gol
645-mfloat-abi=@var{name} @gol
646-mfp16-format=@var{name}
647-mthumb-interwork  -mno-thumb-interwork @gol
648-mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
649-mtune=@var{name}  -mprint-tune-info @gol
650-mstructure-size-boundary=@var{n} @gol
651-mabort-on-noreturn @gol
652-mlong-calls  -mno-long-calls @gol
653-msingle-pic-base  -mno-single-pic-base @gol
654-mpic-register=@var{reg} @gol
655-mnop-fun-dllimport @gol
656-mpoke-function-name @gol
657-mthumb  -marm  -mflip-thumb @gol
658-mtpcs-frame  -mtpcs-leaf-frame @gol
659-mcaller-super-interworking  -mcallee-super-interworking @gol
660-mtp=@var{name}  -mtls-dialect=@var{dialect} @gol
661-mword-relocations @gol
662-mfix-cortex-m3-ldrd @gol
663-munaligned-access @gol
664-mneon-for-64bits @gol
665-mslow-flash-data @gol
666-masm-syntax-unified @gol
667-mrestrict-it @gol
668-mverbose-cost-dump @gol
669-mpure-code @gol
670-mcmse}
671
672@emph{AVR Options}
673@gccoptlist{-mmcu=@var{mcu}  -mabsdata  -maccumulate-args @gol
674-mbranch-cost=@var{cost} @gol
675-mcall-prologues  -mgas-isr-prologues  -mint8 @gol
676-mn_flash=@var{size}  -mno-interrupts @gol
677-mmain-is-OS_task -mrelax  -mrmw  -mstrict-X  -mtiny-stack @gol
678-mfract-convert-truncate @gol
679-mshort-calls -nodevicelib  -nodevicespecs @gol
680-Waddr-space-convert  -Wmisspelled-isr}
681
682@emph{Blackfin Options}
683@gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
684-msim  -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
685-mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly @gol
686-mlow-64k  -mno-low64k  -mstack-check-l1  -mid-shared-library @gol
687-mno-id-shared-library  -mshared-library-id=@var{n} @gol
688-mleaf-id-shared-library  -mno-leaf-id-shared-library @gol
689-msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls @gol
690-mfast-fp  -minline-plt  -mmulticore  -mcorea  -mcoreb  -msdram @gol
691-micplb}
692
693@emph{C6X Options}
694@gccoptlist{-mbig-endian  -mlittle-endian  -march=@var{cpu} @gol
695-msim  -msdata=@var{sdata-type}}
696
697@emph{CRIS Options}
698@gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
699-mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
700-metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
701-mstack-align  -mdata-align  -mconst-align @gol
702-m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
703-melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
704-mmul-bug-workaround  -mno-mul-bug-workaround}
705
706@emph{CR16 Options}
707@gccoptlist{-mmac @gol
708-mcr16cplus  -mcr16c @gol
709-msim  -mint32  -mbit-ops
710-mdata-model=@var{model}}
711
712@emph{Darwin Options}
713@gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
714-arch_only  -bind_at_load  -bundle  -bundle_loader @gol
715-client_name  -compatibility_version  -current_version @gol
716-dead_strip @gol
717-dependency-file  -dylib_file  -dylinker_install_name @gol
718-dynamic  -dynamiclib  -exported_symbols_list @gol
719-filelist  -flat_namespace  -force_cpusubtype_ALL @gol
720-force_flat_namespace  -headerpad_max_install_names @gol
721-iframework @gol
722-image_base  -init  -install_name  -keep_private_externs @gol
723-multi_module  -multiply_defined  -multiply_defined_unused @gol
724-noall_load   -no_dead_strip_inits_and_terms @gol
725-nofixprebinding  -nomultidefs  -noprebind  -noseglinkedit @gol
726-pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
727-private_bundle  -read_only_relocs  -sectalign @gol
728-sectobjectsymbols  -whyload  -seg1addr @gol
729-sectcreate  -sectobjectsymbols  -sectorder @gol
730-segaddr  -segs_read_only_addr  -segs_read_write_addr @gol
731-seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
732-segprot  -segs_read_only_addr  -segs_read_write_addr @gol
733-single_module  -static  -sub_library  -sub_umbrella @gol
734-twolevel_namespace  -umbrella  -undefined @gol
735-unexported_symbols_list  -weak_reference_mismatches @gol
736-whatsloaded  -F  -gused  -gfull  -mmacosx-version-min=@var{version} @gol
737-mkernel  -mone-byte-bool}
738
739@emph{DEC Alpha Options}
740@gccoptlist{-mno-fp-regs  -msoft-float @gol
741-mieee  -mieee-with-inexact  -mieee-conformant @gol
742-mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
743-mtrap-precision=@var{mode}  -mbuild-constants @gol
744-mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
745-mbwx  -mmax  -mfix  -mcix @gol
746-mfloat-vax  -mfloat-ieee @gol
747-mexplicit-relocs  -msmall-data  -mlarge-data @gol
748-msmall-text  -mlarge-text @gol
749-mmemory-latency=@var{time}}
750
751@emph{FR30 Options}
752@gccoptlist{-msmall-model  -mno-lsim}
753
754@emph{FT32 Options}
755@gccoptlist{-msim  -mlra  -mnodiv  -mft32b  -mcompress  -mnopm}
756
757@emph{FRV Options}
758@gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
759-mhard-float  -msoft-float @gol
760-malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
761-mdouble  -mno-double @gol
762-mmedia  -mno-media  -mmuladd  -mno-muladd @gol
763-mfdpic  -minline-plt  -mgprel-ro  -multilib-library-pic @gol
764-mlinked-fp  -mlong-calls  -malign-labels @gol
765-mlibrary-pic  -macc-4  -macc-8 @gol
766-mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
767-moptimize-membar  -mno-optimize-membar @gol
768-mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
769-mvliw-branch  -mno-vliw-branch @gol
770-mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
771-mno-nested-cond-exec  -mtomcat-stats @gol
772-mTLS  -mtls @gol
773-mcpu=@var{cpu}}
774
775@emph{GNU/Linux Options}
776@gccoptlist{-mglibc  -muclibc  -mmusl  -mbionic  -mandroid @gol
777-tno-android-cc  -tno-android-ld}
778
779@emph{H8/300 Options}
780@gccoptlist{-mrelax  -mh  -ms  -mn  -mexr  -mno-exr  -mint32  -malign-300}
781
782@emph{HPPA Options}
783@gccoptlist{-march=@var{architecture-type} @gol
784-mcaller-copies  -mdisable-fpregs  -mdisable-indexing @gol
785-mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
786-mfixed-range=@var{register-range} @gol
787-mjump-in-delay  -mlinker-opt  -mlong-calls @gol
788-mlong-load-store  -mno-disable-fpregs @gol
789-mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
790-mno-jump-in-delay  -mno-long-load-store @gol
791-mno-portable-runtime  -mno-soft-float @gol
792-mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
793-mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
794-mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
795-munix=@var{unix-std}  -nolibdld  -static  -threads}
796
797@emph{IA-64 Options}
798@gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
799-mvolatile-asm-stop  -mregister-names  -msdata  -mno-sdata @gol
800-mconstant-gp  -mauto-pic  -mfused-madd @gol
801-minline-float-divide-min-latency @gol
802-minline-float-divide-max-throughput @gol
803-mno-inline-float-divide @gol
804-minline-int-divide-min-latency @gol
805-minline-int-divide-max-throughput  @gol
806-mno-inline-int-divide @gol
807-minline-sqrt-min-latency  -minline-sqrt-max-throughput @gol
808-mno-inline-sqrt @gol
809-mdwarf2-asm  -mearly-stop-bits @gol
810-mfixed-range=@var{register-range}  -mtls-size=@var{tls-size} @gol
811-mtune=@var{cpu-type}  -milp32  -mlp64 @gol
812-msched-br-data-spec  -msched-ar-data-spec  -msched-control-spec @gol
813-msched-br-in-data-spec  -msched-ar-in-data-spec  -msched-in-control-spec @gol
814-msched-spec-ldc  -msched-spec-control-ldc @gol
815-msched-prefer-non-data-spec-insns  -msched-prefer-non-control-spec-insns @gol
816-msched-stop-bits-after-every-cycle  -msched-count-spec-in-critical-path @gol
817-msel-sched-dont-check-control-spec  -msched-fp-mem-deps-zero-cost @gol
818-msched-max-memory-insns-hard-limit  -msched-max-memory-insns=@var{max-insns}}
819
820@emph{LM32 Options}
821@gccoptlist{-mbarrel-shift-enabled  -mdivide-enabled  -mmultiply-enabled @gol
822-msign-extend-enabled  -muser-enabled}
823
824@emph{M32R/D Options}
825@gccoptlist{-m32r2  -m32rx  -m32r @gol
826-mdebug @gol
827-malign-loops  -mno-align-loops @gol
828-missue-rate=@var{number} @gol
829-mbranch-cost=@var{number} @gol
830-mmodel=@var{code-size-model-type} @gol
831-msdata=@var{sdata-type} @gol
832-mno-flush-func  -mflush-func=@var{name} @gol
833-mno-flush-trap  -mflush-trap=@var{number} @gol
834-G @var{num}}
835
836@emph{M32C Options}
837@gccoptlist{-mcpu=@var{cpu}  -msim  -memregs=@var{number}}
838
839@emph{M680x0 Options}
840@gccoptlist{-march=@var{arch}  -mcpu=@var{cpu}  -mtune=@var{tune} @gol
841-m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
842-m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 @gol
843-mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 @gol
844-mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort @gol
845-mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel @gol
846-malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
847-mshared-library-id=n  -mid-shared-library  -mno-id-shared-library @gol
848-mxgot  -mno-xgot  -mlong-jump-table-offsets}
849
850@emph{MCore Options}
851@gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
852-mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
853-m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
854-mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
855-mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
856
857@emph{MeP Options}
858@gccoptlist{-mabsdiff  -mall-opts  -maverage  -mbased=@var{n}  -mbitops @gol
859-mc=@var{n}  -mclip  -mconfig=@var{name}  -mcop  -mcop32  -mcop64  -mivc2 @gol
860-mdc  -mdiv  -meb  -mel  -mio-volatile  -ml  -mleadz  -mm  -mminmax @gol
861-mmult  -mno-opts  -mrepeat  -ms  -msatur  -msdram  -msim  -msimnovec  -mtf @gol
862-mtiny=@var{n}}
863
864@emph{MicroBlaze Options}
865@gccoptlist{-msoft-float  -mhard-float  -msmall-divides  -mcpu=@var{cpu} @gol
866-mmemcpy  -mxl-soft-mul  -mxl-soft-div  -mxl-barrel-shift @gol
867-mxl-pattern-compare  -mxl-stack-check  -mxl-gp-opt  -mno-clearbss @gol
868-mxl-multiply-high  -mxl-float-convert  -mxl-float-sqrt @gol
869-mbig-endian  -mlittle-endian  -mxl-reorder  -mxl-mode-@var{app-model}}
870
871@emph{MIPS Options}
872@gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
873-mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips32r3  -mips32r5 @gol
874-mips32r6  -mips64  -mips64r2  -mips64r3  -mips64r5  -mips64r6 @gol
875-mips16  -mno-mips16  -mflip-mips16 @gol
876-minterlink-compressed  -mno-interlink-compressed @gol
877-minterlink-mips16  -mno-interlink-mips16 @gol
878-mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
879-mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot @gol
880-mgp32  -mgp64  -mfp32  -mfpxx  -mfp64  -mhard-float  -msoft-float @gol
881-mno-float  -msingle-float  -mdouble-float @gol
882-modd-spreg  -mno-odd-spreg @gol
883-mabs=@var{mode}  -mnan=@var{encoding} @gol
884-mdsp  -mno-dsp  -mdspr2  -mno-dspr2 @gol
885-mmcu  -mmno-mcu @gol
886-meva  -mno-eva @gol
887-mvirt  -mno-virt @gol
888-mxpa  -mno-xpa @gol
889-mmicromips  -mno-micromips @gol
890-mmsa  -mno-msa @gol
891-mfpu=@var{fpu-type} @gol
892-msmartmips  -mno-smartmips @gol
893-mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx @gol
894-mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc @gol
895-mlong64  -mlong32  -msym32  -mno-sym32 @gol
896-G@var{num}  -mlocal-sdata  -mno-local-sdata @gol
897-mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt @gol
898-membedded-data  -mno-embedded-data @gol
899-muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
900-mcode-readable=@var{setting} @gol
901-msplit-addresses  -mno-split-addresses @gol
902-mexplicit-relocs  -mno-explicit-relocs @gol
903-mcheck-zero-division  -mno-check-zero-division @gol
904-mdivide-traps  -mdivide-breaks @gol
905-mload-store-pairs  -mno-load-store-pairs @gol
906-mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
907-mmad  -mno-mad  -mimadd  -mno-imadd  -mfused-madd  -mno-fused-madd  -nocpp @gol
908-mfix-24k  -mno-fix-24k @gol
909-mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
910-mfix-r10000  -mno-fix-r10000  -mfix-rm7000  -mno-fix-rm7000 @gol
911-mfix-vr4120  -mno-fix-vr4120 @gol
912-mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 @gol
913-mflush-func=@var{func}  -mno-flush-func @gol
914-mbranch-cost=@var{num}  -mbranch-likely  -mno-branch-likely @gol
915-mcompact-branches=@var{policy} @gol
916-mfp-exceptions  -mno-fp-exceptions @gol
917-mvr4130-align  -mno-vr4130-align  -msynci  -mno-synci @gol
918-mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
919-mrelax-pic-calls  -mno-relax-pic-calls  -mmcount-ra-address @gol
920-mframe-header-opt  -mno-frame-header-opt}
921
922@emph{MMIX Options}
923@gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
924-mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
925-melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
926-mno-base-addresses  -msingle-exit  -mno-single-exit}
927
928@emph{MN10300 Options}
929@gccoptlist{-mmult-bug  -mno-mult-bug @gol
930-mno-am33  -mam33  -mam33-2  -mam34 @gol
931-mtune=@var{cpu-type} @gol
932-mreturn-pointer-on-d0 @gol
933-mno-crt0  -mrelax  -mliw  -msetlb}
934
935@emph{Moxie Options}
936@gccoptlist{-meb  -mel  -mmul.x  -mno-crt0}
937
938@emph{MSP430 Options}
939@gccoptlist{-msim  -masm-hex  -mmcu=  -mcpu=  -mlarge  -msmall  -mrelax @gol
940-mwarn-mcu @gol
941-mcode-region=  -mdata-region= @gol
942-msilicon-errata=  -msilicon-errata-warn= @gol
943-mhwmult=  -minrt}
944
945@emph{NDS32 Options}
946@gccoptlist{-mbig-endian  -mlittle-endian @gol
947-mreduced-regs  -mfull-regs @gol
948-mcmov  -mno-cmov @gol
949-mext-perf  -mno-ext-perf @gol
950-mext-perf2  -mno-ext-perf2 @gol
951-mext-string  -mno-ext-string @gol
952-mv3push  -mno-v3push @gol
953-m16bit  -mno-16bit @gol
954-misr-vector-size=@var{num} @gol
955-mcache-block-size=@var{num} @gol
956-march=@var{arch} @gol
957-mcmodel=@var{code-model} @gol
958-mctor-dtor  -mrelax}
959
960@emph{Nios II Options}
961@gccoptlist{-G @var{num}  -mgpopt=@var{option}  -mgpopt  -mno-gpopt @gol
962-mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
963-mel  -meb @gol
964-mno-bypass-cache  -mbypass-cache @gol
965-mno-cache-volatile  -mcache-volatile @gol
966-mno-fast-sw-div  -mfast-sw-div @gol
967-mhw-mul  -mno-hw-mul  -mhw-mulx  -mno-hw-mulx  -mno-hw-div  -mhw-div @gol
968-mcustom-@var{insn}=@var{N}  -mno-custom-@var{insn} @gol
969-mcustom-fpu-cfg=@var{name} @gol
970-mhal  -msmallc  -msys-crt0=@var{name}  -msys-lib=@var{name} @gol
971-march=@var{arch}  -mbmx  -mno-bmx  -mcdx  -mno-cdx}
972
973@emph{Nvidia PTX Options}
974@gccoptlist{-m32  -m64  -mmainkernel  -moptimize}
975
976@emph{PDP-11 Options}
977@gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
978-mbcopy  -mbcopy-builtin  -mint32  -mno-int16 @gol
979-mint16  -mno-int32  -mfloat32  -mno-float64 @gol
980-mfloat64  -mno-float32  -mabshi  -mno-abshi @gol
981-mbranch-expensive  -mbranch-cheap @gol
982-munix-asm  -mdec-asm}
983
984@emph{picoChip Options}
985@gccoptlist{-mae=@var{ae_type}  -mvliw-lookahead=@var{N} @gol
986-msymbol-as-address  -mno-inefficient-warnings}
987
988@emph{PowerPC Options}
989See RS/6000 and PowerPC Options.
990
991@emph{PowerPC SPE Options}
992@gccoptlist{-mcpu=@var{cpu-type} @gol
993-mtune=@var{cpu-type} @gol
994-mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb @gol
995-mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
996-m32  -mxl-compat  -mno-xl-compat @gol
997-malign-power  -malign-natural @gol
998-msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
999-msingle-float  -mdouble-float @gol
1000-mupdate  -mno-update @gol
1001-mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
1002-mstrict-align  -mno-strict-align  -mrelocatable @gol
1003-mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
1004-mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
1005-msingle-pic-base @gol
1006-mprioritize-restricted-insns=@var{priority} @gol
1007-msched-costly-dep=@var{dependence_type} @gol
1008-minsert-sched-nops=@var{scheme} @gol
1009-mcall-sysv  -mcall-netbsd @gol
1010-maix-struct-return  -msvr4-struct-return @gol
1011-mabi=@var{abi-type}  -msecure-plt  -mbss-plt @gol
1012-mblock-move-inline-limit=@var{num} @gol
1013-misel  -mno-isel @gol
1014-misel=yes  -misel=no @gol
1015-mspe  -mno-spe @gol
1016-mspe=yes  -mspe=no @gol
1017-mfloat-gprs=yes  -mfloat-gprs=no  -mfloat-gprs=single  -mfloat-gprs=double @gol
1018-mprototype  -mno-prototype @gol
1019-msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
1020-msdata=@var{opt}  -mvxworks  -G @var{num} @gol
1021-mrecip  -mrecip=@var{opt}  -mno-recip  -mrecip-precision @gol
1022-mno-recip-precision @gol
1023-mpointers-to-nested-functions  -mno-pointers-to-nested-functions @gol
1024-msave-toc-indirect  -mno-save-toc-indirect @gol
1025-mcompat-align-parm  -mno-compat-align-parm @gol
1026-mfloat128  -mno-float128 @gol
1027-mgnu-attribute  -mno-gnu-attribute @gol
1028-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1029-mstack-protector-guard-offset=@var{offset}}
1030
1031@emph{RISC-V Options}
1032@gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1033-mplt  -mno-plt @gol
1034-mabi=@var{ABI-string} @gol
1035-mfdiv  -mno-fdiv @gol
1036-mdiv  -mno-div @gol
1037-march=@var{ISA-string} @gol
1038-mtune=@var{processor-string} @gol
1039-mpreferred-stack-boundary=@var{num} @gol
1040-msmall-data-limit=@var{N-bytes} @gol
1041-msave-restore  -mno-save-restore @gol
1042-mstrict-align -mno-strict-align @gol
1043-mcmodel=medlow -mcmodel=medany @gol
1044-mexplicit-relocs  -mno-explicit-relocs @gol
1045-mrelax -mno-relax @gol}
1046
1047@emph{RL78 Options}
1048@gccoptlist{-msim  -mmul=none  -mmul=g13  -mmul=g14  -mallregs @gol
1049-mcpu=g10  -mcpu=g13  -mcpu=g14  -mg10  -mg13  -mg14 @gol
1050-m64bit-doubles  -m32bit-doubles  -msave-mduc-in-interrupts}
1051
1052@emph{RS/6000 and PowerPC Options}
1053@gccoptlist{-mcpu=@var{cpu-type} @gol
1054-mtune=@var{cpu-type} @gol
1055-mcmodel=@var{code-model} @gol
1056-mpowerpc64 @gol
1057-maltivec  -mno-altivec @gol
1058-mpowerpc-gpopt  -mno-powerpc-gpopt @gol
1059-mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
1060-mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb  -mpopcntd  -mno-popcntd @gol
1061-mfprnd  -mno-fprnd @gol
1062-mcmpb  -mno-cmpb  -mmfpgpr  -mno-mfpgpr  -mhard-dfp  -mno-hard-dfp @gol
1063-mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
1064-m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
1065-malign-power  -malign-natural @gol
1066-msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
1067-msingle-float  -mdouble-float  -msimple-fpu @gol
1068-mupdate  -mno-update @gol
1069-mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
1070-mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
1071-mstrict-align  -mno-strict-align  -mrelocatable @gol
1072-mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
1073-mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
1074-mdynamic-no-pic  -maltivec  -mswdiv  -msingle-pic-base @gol
1075-mprioritize-restricted-insns=@var{priority} @gol
1076-msched-costly-dep=@var{dependence_type} @gol
1077-minsert-sched-nops=@var{scheme} @gol
1078-mcall-aixdesc  -mcall-eabi  -mcall-freebsd  @gol
1079-mcall-linux  -mcall-netbsd  -mcall-openbsd  @gol
1080-mcall-sysv  -mcall-sysv-eabi  -mcall-sysv-noeabi @gol
1081-mtraceback=@var{traceback_type} @gol
1082-maix-struct-return  -msvr4-struct-return @gol
1083-mabi=@var{abi-type}  -msecure-plt  -mbss-plt @gol
1084-mblock-move-inline-limit=@var{num} @gol
1085-mblock-compare-inline-limit=@var{num} @gol
1086-mblock-compare-inline-loop-limit=@var{num} @gol
1087-mstring-compare-inline-limit=@var{num} @gol
1088-misel  -mno-isel @gol
1089-misel=yes  -misel=no @gol
1090-mpaired @gol
1091-mvrsave  -mno-vrsave @gol
1092-mmulhw  -mno-mulhw @gol
1093-mdlmzb  -mno-dlmzb @gol
1094-mprototype  -mno-prototype @gol
1095-msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
1096-msdata=@var{opt}  -mreadonly-in-sdata  -mvxworks  -G @var{num} @gol
1097-mrecip  -mrecip=@var{opt}  -mno-recip  -mrecip-precision @gol
1098-mno-recip-precision @gol
1099-mveclibabi=@var{type}  -mfriz  -mno-friz @gol
1100-mpointers-to-nested-functions  -mno-pointers-to-nested-functions @gol
1101-msave-toc-indirect  -mno-save-toc-indirect @gol
1102-mpower8-fusion  -mno-mpower8-fusion  -mpower8-vector  -mno-power8-vector @gol
1103-mcrypto  -mno-crypto  -mhtm  -mno-htm @gol
1104-mquad-memory  -mno-quad-memory @gol
1105-mquad-memory-atomic  -mno-quad-memory-atomic @gol
1106-mcompat-align-parm  -mno-compat-align-parm @gol
1107-mfloat128  -mno-float128  -mfloat128-hardware  -mno-float128-hardware @gol
1108-mgnu-attribute  -mno-gnu-attribute @gol
1109-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1110-mstack-protector-guard-offset=@var{offset}}
1111
1112@emph{RX Options}
1113@gccoptlist{-m64bit-doubles  -m32bit-doubles  -fpu  -nofpu@gol
1114-mcpu=@gol
1115-mbig-endian-data  -mlittle-endian-data @gol
1116-msmall-data @gol
1117-msim  -mno-sim@gol
1118-mas100-syntax  -mno-as100-syntax@gol
1119-mrelax@gol
1120-mmax-constant-size=@gol
1121-mint-register=@gol
1122-mpid@gol
1123-mallow-string-insns  -mno-allow-string-insns@gol
1124-mjsr@gol
1125-mno-warn-multiple-fast-interrupts@gol
1126-msave-acc-in-interrupts}
1127
1128@emph{S/390 and zSeries Options}
1129@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1130-mhard-float  -msoft-float  -mhard-dfp  -mno-hard-dfp @gol
1131-mlong-double-64  -mlong-double-128 @gol
1132-mbackchain  -mno-backchain  -mpacked-stack  -mno-packed-stack @gol
1133-msmall-exec  -mno-small-exec  -mmvcle  -mno-mvcle @gol
1134-m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
1135-mhtm  -mvx  -mzvector @gol
1136-mtpf-trace  -mno-tpf-trace  -mfused-madd  -mno-fused-madd @gol
1137-mwarn-framesize  -mwarn-dynamicstack  -mstack-size  -mstack-guard @gol
1138-mhotpatch=@var{halfwords},@var{halfwords}}
1139
1140@emph{Score Options}
1141@gccoptlist{-meb  -mel @gol
1142-mnhwloop @gol
1143-muls @gol
1144-mmac @gol
1145-mscore5  -mscore5u  -mscore7  -mscore7d}
1146
1147@emph{SH Options}
1148@gccoptlist{-m1  -m2  -m2e @gol
1149-m2a-nofpu  -m2a-single-only  -m2a-single  -m2a @gol
1150-m3  -m3e @gol
1151-m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
1152-m4a-nofpu  -m4a-single-only  -m4a-single  -m4a  -m4al @gol
1153-mb  -ml  -mdalign  -mrelax @gol
1154-mbigtable  -mfmovd  -mrenesas  -mno-renesas  -mnomacsave @gol
1155-mieee  -mno-ieee  -mbitops  -misize  -minline-ic_invalidate  -mpadstruct @gol
1156-mprefergot  -musermode  -multcost=@var{number}  -mdiv=@var{strategy} @gol
1157-mdivsi3_libfunc=@var{name}  -mfixed-range=@var{register-range} @gol
1158-maccumulate-outgoing-args @gol
1159-matomic-model=@var{atomic-model} @gol
1160-mbranch-cost=@var{num}  -mzdcbranch  -mno-zdcbranch @gol
1161-mcbranch-force-delay-slot @gol
1162-mfused-madd  -mno-fused-madd  -mfsca  -mno-fsca  -mfsrra  -mno-fsrra @gol
1163-mpretend-cmove  -mtas}
1164
1165@emph{Solaris 2 Options}
1166@gccoptlist{-mclear-hwcap  -mno-clear-hwcap  -mimpure-text  -mno-impure-text @gol
1167-pthreads}
1168
1169@emph{SPARC Options}
1170@gccoptlist{-mcpu=@var{cpu-type} @gol
1171-mtune=@var{cpu-type} @gol
1172-mcmodel=@var{code-model} @gol
1173-mmemory-model=@var{mem-model} @gol
1174-m32  -m64  -mapp-regs  -mno-app-regs @gol
1175-mfaster-structs  -mno-faster-structs  -mflat  -mno-flat @gol
1176-mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1177-mhard-quad-float  -msoft-quad-float @gol
1178-mstack-bias  -mno-stack-bias @gol
1179-mstd-struct-return  -mno-std-struct-return @gol
1180-munaligned-doubles  -mno-unaligned-doubles @gol
1181-muser-mode  -mno-user-mode @gol
1182-mv8plus  -mno-v8plus  -mvis  -mno-vis @gol
1183-mvis2  -mno-vis2  -mvis3  -mno-vis3 @gol
1184-mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1185-mcbcond  -mno-cbcond  -mfmaf  -mno-fmaf  -mfsmuld  -mno-fsmuld  @gol
1186-mpopc  -mno-popc  -msubxc  -mno-subxc @gol
1187-mfix-at697f  -mfix-ut699  -mfix-ut700  -mfix-gr712rc @gol
1188-mlra  -mno-lra}
1189
1190@emph{SPU Options}
1191@gccoptlist{-mwarn-reloc  -merror-reloc @gol
1192-msafe-dma  -munsafe-dma @gol
1193-mbranch-hints @gol
1194-msmall-mem  -mlarge-mem  -mstdmain @gol
1195-mfixed-range=@var{register-range} @gol
1196-mea32  -mea64 @gol
1197-maddress-space-conversion  -mno-address-space-conversion @gol
1198-mcache-size=@var{cache-size} @gol
1199-matomic-updates  -mno-atomic-updates}
1200
1201@emph{System V Options}
1202@gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
1203
1204@emph{TILE-Gx Options}
1205@gccoptlist{-mcpu=CPU  -m32  -m64  -mbig-endian  -mlittle-endian @gol
1206-mcmodel=@var{code-model}}
1207
1208@emph{TILEPro Options}
1209@gccoptlist{-mcpu=@var{cpu}  -m32}
1210
1211@emph{V850 Options}
1212@gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
1213-mprolog-function  -mno-prolog-function  -mspace @gol
1214-mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
1215-mapp-regs  -mno-app-regs @gol
1216-mdisable-callt  -mno-disable-callt @gol
1217-mv850e2v3  -mv850e2  -mv850e1  -mv850es @gol
1218-mv850e  -mv850  -mv850e3v5 @gol
1219-mloop @gol
1220-mrelax @gol
1221-mlong-jumps @gol
1222-msoft-float @gol
1223-mhard-float @gol
1224-mgcc-abi @gol
1225-mrh850-abi @gol
1226-mbig-switch}
1227
1228@emph{VAX Options}
1229@gccoptlist{-mg  -mgnu  -munix}
1230
1231@emph{Visium Options}
1232@gccoptlist{-mdebug  -msim  -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1233-mcpu=@var{cpu-type}  -mtune=@var{cpu-type}  -msv-mode  -muser-mode}
1234
1235@emph{VMS Options}
1236@gccoptlist{-mvms-return-codes  -mdebug-main=@var{prefix}  -mmalloc64 @gol
1237-mpointer-size=@var{size}}
1238
1239@emph{VxWorks Options}
1240@gccoptlist{-mrtp  -non-static  -Bstatic  -Bdynamic @gol
1241-Xbind-lazy  -Xbind-now}
1242
1243@emph{x86 Options}
1244@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1245-mtune-ctrl=@var{feature-list}  -mdump-tune-features  -mno-default @gol
1246-mfpmath=@var{unit} @gol
1247-masm=@var{dialect}  -mno-fancy-math-387 @gol
1248-mno-fp-ret-in-387  -m80387  -mhard-float  -msoft-float @gol
1249-mno-wide-multiply  -mrtd  -malign-double @gol
1250-mpreferred-stack-boundary=@var{num} @gol
1251-mincoming-stack-boundary=@var{num} @gol
1252-mcld  -mcx16  -msahf  -mmovbe  -mcrc32 @gol
1253-mrecip  -mrecip=@var{opt} @gol
1254-mvzeroupper  -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1255-mmmx  -msse  -msse2  -msse3  -mssse3  -msse4.1  -msse4.2  -msse4  -mavx @gol
1256-mavx2  -mavx512f  -mavx512pf  -mavx512er  -mavx512cd  -mavx512vl @gol
1257-mavx512bw  -mavx512dq  -mavx512ifma  -mavx512vbmi  -msha  -maes @gol
1258-mpclmul  -mfsgsbase  -mrdrnd  -mf16c  -mfma -mpconfig -mwbnoinvd @gol
1259-mprefetchwt1  -mclflushopt  -mclwb  -mxsavec  -mxsaves @gol
1260-msse4a  -m3dnow  -m3dnowa  -mpopcnt  -mabm  -mbmi  -mtbm  -mfma4  -mxop @gol
1261-madx  -mlzcnt  -mbmi2  -mfxsr  -mxsave  -mxsaveopt  -mrtm  -mlwp  -mmpx  @gol
1262-mmwaitx  -mclzero  -mpku  -mthreads -mgfni  -mvaes  @gol
1263-mshstk -mforce-indirect-call -mavx512vbmi2 @gol
1264-mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq @gol
1265-mavx5124fmaps  -mavx512vnni  -mavx5124vnniw  -mprfchw  -mrdpid @gol
1266-mrdseed  -msgx @gol
1267-mms-bitfields  -mno-align-stringops  -minline-all-stringops @gol
1268-minline-stringops-dynamically  -mstringop-strategy=@var{alg} @gol
1269-mmemcpy-strategy=@var{strategy}  -mmemset-strategy=@var{strategy} @gol
1270-mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
1271-m96bit-long-double  -mlong-double-64  -mlong-double-80  -mlong-double-128 @gol
1272-mregparm=@var{num}  -msseregparm @gol
1273-mveclibabi=@var{type}  -mvect8-ret-in-mem @gol
1274-mpc32  -mpc64  -mpc80  -mstackrealign @gol
1275-momit-leaf-frame-pointer  -mno-red-zone  -mno-tls-direct-seg-refs @gol
1276-mcmodel=@var{code-model}  -mabi=@var{name}  -maddress-mode=@var{mode} @gol
1277-m32  -m64  -mx32  -m16  -miamcu  -mlarge-data-threshold=@var{num} @gol
1278-msse2avx  -mfentry  -mrecord-mcount  -mnop-mcount  -m8bit-idiv @gol
1279-mavx256-split-unaligned-load  -mavx256-split-unaligned-store @gol
1280-malign-data=@var{type}  -mstack-protector-guard=@var{guard} @gol
1281-mstack-protector-guard-reg=@var{reg} @gol
1282-mstack-protector-guard-offset=@var{offset} @gol
1283-mstack-protector-guard-symbol=@var{symbol} -mmitigate-rop @gol
1284-mgeneral-regs-only -mcall-ms2sysv-xlogues @gol
1285-mindirect-branch=@var{choice} -mfunction-return=@var{choice} @gol
1286-mindirect-branch-register}
1287
1288@emph{x86 Windows Options}
1289@gccoptlist{-mconsole  -mcygwin  -mno-cygwin  -mdll @gol
1290-mnop-fun-dllimport  -mthread @gol
1291-municode  -mwin32  -mwindows  -fno-set-stack-executable}
1292
1293@emph{Xstormy16 Options}
1294@gccoptlist{-msim}
1295
1296@emph{Xtensa Options}
1297@gccoptlist{-mconst16  -mno-const16 @gol
1298-mfused-madd  -mno-fused-madd @gol
1299-mforce-no-pic @gol
1300-mserialize-volatile  -mno-serialize-volatile @gol
1301-mtext-section-literals  -mno-text-section-literals @gol
1302-mauto-litpools  -mno-auto-litpools @gol
1303-mtarget-align  -mno-target-align @gol
1304-mlongcalls  -mno-longcalls}
1305
1306@emph{zSeries Options}
1307See S/390 and zSeries Options.
1308@end table
1309
1310
1311@node Overall Options
1312@section Options Controlling the Kind of Output
1313
1314Compilation can involve up to four stages: preprocessing, compilation
1315proper, assembly and linking, always in that order.  GCC is capable of
1316preprocessing and compiling several files either into several
1317assembler input files, or into one assembler input file; then each
1318assembler input file produces an object file, and linking combines all
1319the object files (those newly compiled, and those specified as input)
1320into an executable file.
1321
1322@cindex file name suffix
1323For any given input file, the file name suffix determines what kind of
1324compilation is done:
1325
1326@table @gcctabopt
1327@item @var{file}.c
1328C source code that must be preprocessed.
1329
1330@item @var{file}.i
1331C source code that should not be preprocessed.
1332
1333@item @var{file}.ii
1334C++ source code that should not be preprocessed.
1335
1336@item @var{file}.m
1337Objective-C source code.  Note that you must link with the @file{libobjc}
1338library to make an Objective-C program work.
1339
1340@item @var{file}.mi
1341Objective-C source code that should not be preprocessed.
1342
1343@item @var{file}.mm
1344@itemx @var{file}.M
1345Objective-C++ source code.  Note that you must link with the @file{libobjc}
1346library to make an Objective-C++ program work.  Note that @samp{.M} refers
1347to a literal capital M@.
1348
1349@item @var{file}.mii
1350Objective-C++ source code that should not be preprocessed.
1351
1352@item @var{file}.h
1353C, C++, Objective-C or Objective-C++ header file to be turned into a
1354precompiled header (default), or C, C++ header file to be turned into an
1355Ada spec (via the @option{-fdump-ada-spec} switch).
1356
1357@item @var{file}.cc
1358@itemx @var{file}.cp
1359@itemx @var{file}.cxx
1360@itemx @var{file}.cpp
1361@itemx @var{file}.CPP
1362@itemx @var{file}.c++
1363@itemx @var{file}.C
1364C++ source code that must be preprocessed.  Note that in @samp{.cxx},
1365the last two letters must both be literally @samp{x}.  Likewise,
1366@samp{.C} refers to a literal capital C@.
1367
1368@item @var{file}.mm
1369@itemx @var{file}.M
1370Objective-C++ source code that must be preprocessed.
1371
1372@item @var{file}.mii
1373Objective-C++ source code that should not be preprocessed.
1374
1375@item @var{file}.hh
1376@itemx @var{file}.H
1377@itemx @var{file}.hp
1378@itemx @var{file}.hxx
1379@itemx @var{file}.hpp
1380@itemx @var{file}.HPP
1381@itemx @var{file}.h++
1382@itemx @var{file}.tcc
1383C++ header file to be turned into a precompiled header or Ada spec.
1384
1385@item @var{file}.f
1386@itemx @var{file}.for
1387@itemx @var{file}.ftn
1388Fixed form Fortran source code that should not be preprocessed.
1389
1390@item @var{file}.F
1391@itemx @var{file}.FOR
1392@itemx @var{file}.fpp
1393@itemx @var{file}.FPP
1394@itemx @var{file}.FTN
1395Fixed form Fortran source code that must be preprocessed (with the traditional
1396preprocessor).
1397
1398@item @var{file}.f90
1399@itemx @var{file}.f95
1400@itemx @var{file}.f03
1401@itemx @var{file}.f08
1402Free form Fortran source code that should not be preprocessed.
1403
1404@item @var{file}.F90
1405@itemx @var{file}.F95
1406@itemx @var{file}.F03
1407@itemx @var{file}.F08
1408Free form Fortran source code that must be preprocessed (with the
1409traditional preprocessor).
1410
1411@item @var{file}.go
1412Go source code.
1413
1414@item @var{file}.brig
1415BRIG files (binary representation of HSAIL).
1416
1417@item @var{file}.ads
1418Ada source code file that contains a library unit declaration (a
1419declaration of a package, subprogram, or generic, or a generic
1420instantiation), or a library unit renaming declaration (a package,
1421generic, or subprogram renaming declaration).  Such files are also
1422called @dfn{specs}.
1423
1424@item @var{file}.adb
1425Ada source code file containing a library unit body (a subprogram or
1426package body).  Such files are also called @dfn{bodies}.
1427
1428@c GCC also knows about some suffixes for languages not yet included:
1429@c Pascal:
1430@c @var{file}.p
1431@c @var{file}.pas
1432@c Ratfor:
1433@c @var{file}.r
1434
1435@item @var{file}.s
1436Assembler code.
1437
1438@item @var{file}.S
1439@itemx @var{file}.sx
1440Assembler code that must be preprocessed.
1441
1442@item @var{other}
1443An object file to be fed straight into linking.
1444Any file name with no recognized suffix is treated this way.
1445@end table
1446
1447@opindex x
1448You can specify the input language explicitly with the @option{-x} option:
1449
1450@table @gcctabopt
1451@item -x @var{language}
1452Specify explicitly the @var{language} for the following input files
1453(rather than letting the compiler choose a default based on the file
1454name suffix).  This option applies to all following input files until
1455the next @option{-x} option.  Possible values for @var{language} are:
1456@smallexample
1457c  c-header  cpp-output
1458c++  c++-header  c++-cpp-output
1459objective-c  objective-c-header  objective-c-cpp-output
1460objective-c++ objective-c++-header objective-c++-cpp-output
1461assembler  assembler-with-cpp
1462ada
1463f77  f77-cpp-input f95  f95-cpp-input
1464go
1465brig
1466@end smallexample
1467
1468@item -x none
1469Turn off any specification of a language, so that subsequent files are
1470handled according to their file name suffixes (as they are if @option{-x}
1471has not been used at all).
1472@end table
1473
1474If you only want some of the stages of compilation, you can use
1475@option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1476one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1477@command{gcc} is to stop.  Note that some combinations (for example,
1478@samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1479
1480@table @gcctabopt
1481@item -c
1482@opindex c
1483Compile or assemble the source files, but do not link.  The linking
1484stage simply is not done.  The ultimate output is in the form of an
1485object file for each source file.
1486
1487By default, the object file name for a source file is made by replacing
1488the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1489
1490Unrecognized input files, not requiring compilation or assembly, are
1491ignored.
1492
1493@item -S
1494@opindex S
1495Stop after the stage of compilation proper; do not assemble.  The output
1496is in the form of an assembler code file for each non-assembler input
1497file specified.
1498
1499By default, the assembler file name for a source file is made by
1500replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1501
1502Input files that don't require compilation are ignored.
1503
1504@item -E
1505@opindex E
1506Stop after the preprocessing stage; do not run the compiler proper.  The
1507output is in the form of preprocessed source code, which is sent to the
1508standard output.
1509
1510Input files that don't require preprocessing are ignored.
1511
1512@cindex output file option
1513@item -o @var{file}
1514@opindex o
1515Place output in file @var{file}.  This applies to whatever
1516sort of output is being produced, whether it be an executable file,
1517an object file, an assembler file or preprocessed C code.
1518
1519If @option{-o} is not specified, the default is to put an executable
1520file in @file{a.out}, the object file for
1521@file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1522assembler file in @file{@var{source}.s}, a precompiled header file in
1523@file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1524standard output.
1525
1526@item -v
1527@opindex v
1528Print (on standard error output) the commands executed to run the stages
1529of compilation.  Also print the version number of the compiler driver
1530program and of the preprocessor and the compiler proper.
1531
1532@item -###
1533@opindex ###
1534Like @option{-v} except the commands are not executed and arguments
1535are quoted unless they contain only alphanumeric characters or @code{./-_}.
1536This is useful for shell scripts to capture the driver-generated command lines.
1537
1538@item --help
1539@opindex help
1540Print (on the standard output) a description of the command-line options
1541understood by @command{gcc}.  If the @option{-v} option is also specified
1542then @option{--help} is also passed on to the various processes
1543invoked by @command{gcc}, so that they can display the command-line options
1544they accept.  If the @option{-Wextra} option has also been specified
1545(prior to the @option{--help} option), then command-line options that
1546have no documentation associated with them are also displayed.
1547
1548@item --target-help
1549@opindex target-help
1550Print (on the standard output) a description of target-specific command-line
1551options for each tool.  For some targets extra target-specific
1552information may also be printed.
1553
1554@item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1555Print (on the standard output) a description of the command-line
1556options understood by the compiler that fit into all specified classes
1557and qualifiers.  These are the supported classes:
1558
1559@table @asis
1560@item @samp{optimizers}
1561Display all of the optimization options supported by the
1562compiler.
1563
1564@item @samp{warnings}
1565Display all of the options controlling warning messages
1566produced by the compiler.
1567
1568@item @samp{target}
1569Display target-specific options.  Unlike the
1570@option{--target-help} option however, target-specific options of the
1571linker and assembler are not displayed.  This is because those
1572tools do not currently support the extended @option{--help=} syntax.
1573
1574@item @samp{params}
1575Display the values recognized by the @option{--param}
1576option.
1577
1578@item @var{language}
1579Display the options supported for @var{language}, where
1580@var{language} is the name of one of the languages supported in this
1581version of GCC@.
1582
1583@item @samp{common}
1584Display the options that are common to all languages.
1585@end table
1586
1587These are the supported qualifiers:
1588
1589@table @asis
1590@item @samp{undocumented}
1591Display only those options that are undocumented.
1592
1593@item @samp{joined}
1594Display options taking an argument that appears after an equal
1595sign in the same continuous piece of text, such as:
1596@samp{--help=target}.
1597
1598@item @samp{separate}
1599Display options taking an argument that appears as a separate word
1600following the original option, such as: @samp{-o output-file}.
1601@end table
1602
1603Thus for example to display all the undocumented target-specific
1604switches supported by the compiler, use:
1605
1606@smallexample
1607--help=target,undocumented
1608@end smallexample
1609
1610The sense of a qualifier can be inverted by prefixing it with the
1611@samp{^} character, so for example to display all binary warning
1612options (i.e., ones that are either on or off and that do not take an
1613argument) that have a description, use:
1614
1615@smallexample
1616--help=warnings,^joined,^undocumented
1617@end smallexample
1618
1619The argument to @option{--help=} should not consist solely of inverted
1620qualifiers.
1621
1622Combining several classes is possible, although this usually
1623restricts the output so much that there is nothing to display.  One
1624case where it does work, however, is when one of the classes is
1625@var{target}.  For example, to display all the target-specific
1626optimization options, use:
1627
1628@smallexample
1629--help=target,optimizers
1630@end smallexample
1631
1632The @option{--help=} option can be repeated on the command line.  Each
1633successive use displays its requested class of options, skipping
1634those that have already been displayed.
1635
1636If the @option{-Q} option appears on the command line before the
1637@option{--help=} option, then the descriptive text displayed by
1638@option{--help=} is changed.  Instead of describing the displayed
1639options, an indication is given as to whether the option is enabled,
1640disabled or set to a specific value (assuming that the compiler
1641knows this at the point where the @option{--help=} option is used).
1642
1643Here is a truncated example from the ARM port of @command{gcc}:
1644
1645@smallexample
1646  % gcc -Q -mabi=2 --help=target -c
1647  The following options are target specific:
1648  -mabi=                                2
1649  -mabort-on-noreturn                   [disabled]
1650  -mapcs                                [disabled]
1651@end smallexample
1652
1653The output is sensitive to the effects of previous command-line
1654options, so for example it is possible to find out which optimizations
1655are enabled at @option{-O2} by using:
1656
1657@smallexample
1658-Q -O2 --help=optimizers
1659@end smallexample
1660
1661Alternatively you can discover which binary optimizations are enabled
1662by @option{-O3} by using:
1663
1664@smallexample
1665gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1666gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1667diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1668@end smallexample
1669
1670@item --version
1671@opindex version
1672Display the version number and copyrights of the invoked GCC@.
1673
1674@item -pass-exit-codes
1675@opindex pass-exit-codes
1676Normally the @command{gcc} program exits with the code of 1 if any
1677phase of the compiler returns a non-success return code.  If you specify
1678@option{-pass-exit-codes}, the @command{gcc} program instead returns with
1679the numerically highest error produced by any phase returning an error
1680indication.  The C, C++, and Fortran front ends return 4 if an internal
1681compiler error is encountered.
1682
1683@item -pipe
1684@opindex pipe
1685Use pipes rather than temporary files for communication between the
1686various stages of compilation.  This fails to work on some systems where
1687the assembler is unable to read from a pipe; but the GNU assembler has
1688no trouble.
1689
1690@item -specs=@var{file}
1691@opindex specs
1692Process @var{file} after the compiler reads in the standard @file{specs}
1693file, in order to override the defaults which the @command{gcc} driver
1694program uses when determining what switches to pass to @command{cc1},
1695@command{cc1plus}, @command{as}, @command{ld}, etc.  More than one
1696@option{-specs=@var{file}} can be specified on the command line, and they
1697are processed in order, from left to right.  @xref{Spec Files}, for
1698information about the format of the @var{file}.
1699
1700@item -wrapper
1701@opindex wrapper
1702Invoke all subcommands under a wrapper program.  The name of the
1703wrapper program and its parameters are passed as a comma separated
1704list.
1705
1706@smallexample
1707gcc -c t.c -wrapper gdb,--args
1708@end smallexample
1709
1710@noindent
1711This invokes all subprograms of @command{gcc} under
1712@samp{gdb --args}, thus the invocation of @command{cc1} is
1713@samp{gdb --args cc1 @dots{}}.
1714
1715@item -ffile-prefix-map=@var{old}=@var{new}
1716@opindex ffile-prefix-map
1717When compiling files residing in directory @file{@var{old}}, record
1718any references to them in the result of the compilation as if the
1719files resided in directory @file{@var{new}} instead.  Specifying this
1720option is equivalent to specifying all the individual
1721@option{-f*-prefix-map} options.  This can be used to make reproducible
1722builds that are location independent.  See also
1723@option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1724
1725@item -fplugin=@var{name}.so
1726@opindex fplugin
1727Load the plugin code in file @var{name}.so, assumed to be a
1728shared object to be dlopen'd by the compiler.  The base name of
1729the shared object file is used to identify the plugin for the
1730purposes of argument parsing (See
1731@option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1732Each plugin should define the callback functions specified in the
1733Plugins API.
1734
1735@item -fplugin-arg-@var{name}-@var{key}=@var{value}
1736@opindex fplugin-arg
1737Define an argument called @var{key} with a value of @var{value}
1738for the plugin called @var{name}.
1739
1740@item -fdump-ada-spec@r{[}-slim@r{]}
1741@opindex fdump-ada-spec
1742For C and C++ source and include files, generate corresponding Ada specs.
1743@xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1744GNAT User's Guide}, which provides detailed documentation on this feature.
1745
1746@item -fada-spec-parent=@var{unit}
1747@opindex fada-spec-parent
1748In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1749Ada specs as child units of parent @var{unit}.
1750
1751@item -fdump-go-spec=@var{file}
1752@opindex fdump-go-spec
1753For input files in any language, generate corresponding Go
1754declarations in @var{file}.  This generates Go @code{const},
1755@code{type}, @code{var}, and @code{func} declarations which may be a
1756useful way to start writing a Go interface to code written in some
1757other language.
1758
1759@include @value{srcdir}/../libiberty/at-file.texi
1760@end table
1761
1762@node Invoking G++
1763@section Compiling C++ Programs
1764
1765@cindex suffixes for C++ source
1766@cindex C++ source file suffixes
1767C++ source files conventionally use one of the suffixes @samp{.C},
1768@samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1769@samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1770@samp{.H}, or (for shared template code) @samp{.tcc}; and
1771preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
1772files with these names and compiles them as C++ programs even if you
1773call the compiler the same way as for compiling C programs (usually
1774with the name @command{gcc}).
1775
1776@findex g++
1777@findex c++
1778However, the use of @command{gcc} does not add the C++ library.
1779@command{g++} is a program that calls GCC and automatically specifies linking
1780against the C++ library.  It treats @samp{.c},
1781@samp{.h} and @samp{.i} files as C++ source files instead of C source
1782files unless @option{-x} is used.  This program is also useful when
1783precompiling a C header file with a @samp{.h} extension for use in C++
1784compilations.  On many systems, @command{g++} is also installed with
1785the name @command{c++}.
1786
1787@cindex invoking @command{g++}
1788When you compile C++ programs, you may specify many of the same
1789command-line options that you use for compiling programs in any
1790language; or command-line options meaningful for C and related
1791languages; or options that are meaningful only for C++ programs.
1792@xref{C Dialect Options,,Options Controlling C Dialect}, for
1793explanations of options for languages related to C@.
1794@xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1795explanations of options that are meaningful only for C++ programs.
1796
1797@node C Dialect Options
1798@section Options Controlling C Dialect
1799@cindex dialect options
1800@cindex language dialect options
1801@cindex options, dialect
1802
1803The following options control the dialect of C (or languages derived
1804from C, such as C++, Objective-C and Objective-C++) that the compiler
1805accepts:
1806
1807@table @gcctabopt
1808@cindex ANSI support
1809@cindex ISO support
1810@item -ansi
1811@opindex ansi
1812In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1813equivalent to @option{-std=c++98}.
1814
1815This turns off certain features of GCC that are incompatible with ISO
1816C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1817such as the @code{asm} and @code{typeof} keywords, and
1818predefined macros such as @code{unix} and @code{vax} that identify the
1819type of system you are using.  It also enables the undesirable and
1820rarely used ISO trigraph feature.  For the C compiler,
1821it disables recognition of C++ style @samp{//} comments as well as
1822the @code{inline} keyword.
1823
1824The alternate keywords @code{__asm__}, @code{__extension__},
1825@code{__inline__} and @code{__typeof__} continue to work despite
1826@option{-ansi}.  You would not want to use them in an ISO C program, of
1827course, but it is useful to put them in header files that might be included
1828in compilations done with @option{-ansi}.  Alternate predefined macros
1829such as @code{__unix__} and @code{__vax__} are also available, with or
1830without @option{-ansi}.
1831
1832The @option{-ansi} option does not cause non-ISO programs to be
1833rejected gratuitously.  For that, @option{-Wpedantic} is required in
1834addition to @option{-ansi}.  @xref{Warning Options}.
1835
1836The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1837option is used.  Some header files may notice this macro and refrain
1838from declaring certain functions or defining certain macros that the
1839ISO standard doesn't call for; this is to avoid interfering with any
1840programs that might use these names for other things.
1841
1842Functions that are normally built in but do not have semantics
1843defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1844functions when @option{-ansi} is used.  @xref{Other Builtins,,Other
1845built-in functions provided by GCC}, for details of the functions
1846affected.
1847
1848@item -std=
1849@opindex std
1850Determine the language standard. @xref{Standards,,Language Standards
1851Supported by GCC}, for details of these standard versions.  This option
1852is currently only supported when compiling C or C++.
1853
1854The compiler can accept several base standards, such as @samp{c90} or
1855@samp{c++98}, and GNU dialects of those standards, such as
1856@samp{gnu90} or @samp{gnu++98}.  When a base standard is specified, the
1857compiler accepts all programs following that standard plus those
1858using GNU extensions that do not contradict it.  For example,
1859@option{-std=c90} turns off certain features of GCC that are
1860incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1861keywords, but not other GNU extensions that do not have a meaning in
1862ISO C90, such as omitting the middle term of a @code{?:}
1863expression. On the other hand, when a GNU dialect of a standard is
1864specified, all features supported by the compiler are enabled, even when
1865those features change the meaning of the base standard.  As a result, some
1866strict-conforming programs may be rejected.  The particular standard
1867is used by @option{-Wpedantic} to identify which features are GNU
1868extensions given that version of the standard. For example
1869@option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1870comments, while @option{-std=gnu99 -Wpedantic} does not.
1871
1872A value for this option must be provided; possible values are
1873
1874@table @samp
1875@item c90
1876@itemx c89
1877@itemx iso9899:1990
1878Support all ISO C90 programs (certain GNU extensions that conflict
1879with ISO C90 are disabled). Same as @option{-ansi} for C code.
1880
1881@item iso9899:199409
1882ISO C90 as modified in amendment 1.
1883
1884@item c99
1885@itemx c9x
1886@itemx iso9899:1999
1887@itemx iso9899:199x
1888ISO C99.  This standard is substantially completely supported, modulo
1889bugs and floating-point issues
1890(mainly but not entirely relating to optional C99 features from
1891Annexes F and G).  See
1892@w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
1893names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1894
1895@item c11
1896@itemx c1x
1897@itemx iso9899:2011
1898ISO C11, the 2011 revision of the ISO C standard.  This standard is
1899substantially completely supported, modulo bugs, floating-point issues
1900(mainly but not entirely relating to optional C11 features from
1901Annexes F and G) and the optional Annexes K (Bounds-checking
1902interfaces) and L (Analyzability).  The name @samp{c1x} is deprecated.
1903
1904@item c17
1905@itemx c18
1906@itemx iso9899:2017
1907@itemx iso9899:2018
1908ISO C17, the 2017 revision of the ISO C standard (expected to be
1909published in 2018).  This standard is
1910same as C11 except for corrections of defects (all of which are also
1911applied with @option{-std=c11}) and a new value of
1912@code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1913
1914@item gnu90
1915@itemx gnu89
1916GNU dialect of ISO C90 (including some C99 features).
1917
1918@item gnu99
1919@itemx gnu9x
1920GNU dialect of ISO C99.  The name @samp{gnu9x} is deprecated.
1921
1922@item gnu11
1923@itemx gnu1x
1924GNU dialect of ISO C11.
1925The name @samp{gnu1x} is deprecated.
1926
1927@item gnu17
1928@itemx gnu18
1929GNU dialect of ISO C17.  This is the default for C code.
1930
1931@item c++98
1932@itemx c++03
1933The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1934additional defect reports. Same as @option{-ansi} for C++ code.
1935
1936@item gnu++98
1937@itemx gnu++03
1938GNU dialect of @option{-std=c++98}.
1939
1940@item c++11
1941@itemx c++0x
1942The 2011 ISO C++ standard plus amendments.
1943The name @samp{c++0x} is deprecated.
1944
1945@item gnu++11
1946@itemx gnu++0x
1947GNU dialect of @option{-std=c++11}.
1948The name @samp{gnu++0x} is deprecated.
1949
1950@item c++14
1951@itemx c++1y
1952The 2014 ISO C++ standard plus amendments.
1953The name @samp{c++1y} is deprecated.
1954
1955@item gnu++14
1956@itemx gnu++1y
1957GNU dialect of @option{-std=c++14}.
1958This is the default for C++ code.
1959The name @samp{gnu++1y} is deprecated.
1960
1961@item c++17
1962@itemx c++1z
1963The 2017 ISO C++ standard plus amendments.
1964The name @samp{c++1z} is deprecated.
1965
1966@item gnu++17
1967@itemx gnu++1z
1968GNU dialect of @option{-std=c++17}.
1969The name @samp{gnu++1z} is deprecated.
1970
1971@item c++2a
1972The next revision of the ISO C++ standard, tentatively planned for
19732020.  Support is highly experimental, and will almost certainly
1974change in incompatible ways in future releases.
1975
1976@item gnu++2a
1977GNU dialect of @option{-std=c++2a}.  Support is highly experimental,
1978and will almost certainly change in incompatible ways in future
1979releases.
1980@end table
1981
1982@item -fgnu89-inline
1983@opindex fgnu89-inline
1984The option @option{-fgnu89-inline} tells GCC to use the traditional
1985GNU semantics for @code{inline} functions when in C99 mode.
1986@xref{Inline,,An Inline Function is As Fast As a Macro}.
1987Using this option is roughly equivalent to adding the
1988@code{gnu_inline} function attribute to all inline functions
1989(@pxref{Function Attributes}).
1990
1991The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1992C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1993specifies the default behavior).
1994This option is not supported in @option{-std=c90} or
1995@option{-std=gnu90} mode.
1996
1997The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1998@code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1999in effect for @code{inline} functions.  @xref{Common Predefined
2000Macros,,,cpp,The C Preprocessor}.
2001
2002@item -fpermitted-flt-eval-methods=@var{style}
2003@opindex fpermitted-flt-eval-methods
2004@opindex fpermitted-flt-eval-methods=c11
2005@opindex fpermitted-flt-eval-methods=ts-18661-3
2006ISO/IEC TS 18661-3 defines new permissible values for
2007@code{FLT_EVAL_METHOD} that indicate that operations and constants with
2008a semantic type that is an interchange or extended format should be
2009evaluated to the precision and range of that type.  These new values are
2010a superset of those permitted under C99/C11, which does not specify the
2011meaning of other positive values of @code{FLT_EVAL_METHOD}.  As such, code
2012conforming to C11 may not have been written expecting the possibility of
2013the new values.
2014
2015@option{-fpermitted-flt-eval-methods} specifies whether the compiler
2016should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2017or the extended set of values specified in ISO/IEC TS 18661-3.
2018
2019@var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2020
2021The default when in a standards compliant mode (@option{-std=c11} or similar)
2022is @option{-fpermitted-flt-eval-methods=c11}.  The default when in a GNU
2023dialect (@option{-std=gnu11} or similar) is
2024@option{-fpermitted-flt-eval-methods=ts-18661-3}.
2025
2026@item -aux-info @var{filename}
2027@opindex aux-info
2028Output to the given filename prototyped declarations for all functions
2029declared and/or defined in a translation unit, including those in header
2030files.  This option is silently ignored in any language other than C@.
2031
2032Besides declarations, the file indicates, in comments, the origin of
2033each declaration (source file and line), whether the declaration was
2034implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2035@samp{O} for old, respectively, in the first character after the line
2036number and the colon), and whether it came from a declaration or a
2037definition (@samp{C} or @samp{F}, respectively, in the following
2038character).  In the case of function definitions, a K&R-style list of
2039arguments followed by their declarations is also provided, inside
2040comments, after the declaration.
2041
2042@item -fallow-parameterless-variadic-functions
2043@opindex fallow-parameterless-variadic-functions
2044Accept variadic functions without named parameters.
2045
2046Although it is possible to define such a function, this is not very
2047useful as it is not possible to read the arguments.  This is only
2048supported for C as this construct is allowed by C++.
2049
2050@item -fno-asm
2051@opindex fno-asm
2052Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2053keyword, so that code can use these words as identifiers.  You can use
2054the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2055instead.  @option{-ansi} implies @option{-fno-asm}.
2056
2057In C++, this switch only affects the @code{typeof} keyword, since
2058@code{asm} and @code{inline} are standard keywords.  You may want to
2059use the @option{-fno-gnu-keywords} flag instead, which has the same
2060effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2061switch only affects the @code{asm} and @code{typeof} keywords, since
2062@code{inline} is a standard keyword in ISO C99.
2063
2064@item -fno-builtin
2065@itemx -fno-builtin-@var{function}
2066@opindex fno-builtin
2067@cindex built-in functions
2068Don't recognize built-in functions that do not begin with
2069@samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
2070functions provided by GCC}, for details of the functions affected,
2071including those which are not built-in functions when @option{-ansi} or
2072@option{-std} options for strict ISO C conformance are used because they
2073do not have an ISO standard meaning.
2074
2075GCC normally generates special code to handle certain built-in functions
2076more efficiently; for instance, calls to @code{alloca} may become single
2077instructions which adjust the stack directly, and calls to @code{memcpy}
2078may become inline copy loops.  The resulting code is often both smaller
2079and faster, but since the function calls no longer appear as such, you
2080cannot set a breakpoint on those calls, nor can you change the behavior
2081of the functions by linking with a different library.  In addition,
2082when a function is recognized as a built-in function, GCC may use
2083information about that function to warn about problems with calls to
2084that function, or to generate more efficient code, even if the
2085resulting code still contains calls to that function.  For example,
2086warnings are given with @option{-Wformat} for bad calls to
2087@code{printf} when @code{printf} is built in and @code{strlen} is
2088known not to modify global memory.
2089
2090With the @option{-fno-builtin-@var{function}} option
2091only the built-in function @var{function} is
2092disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
2093function is named that is not built-in in this version of GCC, this
2094option is ignored.  There is no corresponding
2095@option{-fbuiltin-@var{function}} option; if you wish to enable
2096built-in functions selectively when using @option{-fno-builtin} or
2097@option{-ffreestanding}, you may define macros such as:
2098
2099@smallexample
2100#define abs(n)          __builtin_abs ((n))
2101#define strcpy(d, s)    __builtin_strcpy ((d), (s))
2102@end smallexample
2103
2104@item -fgimple
2105@opindex fgimple
2106
2107Enable parsing of function definitions marked with @code{__GIMPLE}.
2108This is an experimental feature that allows unit testing of GIMPLE
2109passes.
2110
2111@item -fhosted
2112@opindex fhosted
2113@cindex hosted environment
2114
2115Assert that compilation targets a hosted environment.  This implies
2116@option{-fbuiltin}.  A hosted environment is one in which the
2117entire standard library is available, and in which @code{main} has a return
2118type of @code{int}.  Examples are nearly everything except a kernel.
2119This is equivalent to @option{-fno-freestanding}.
2120
2121@item -ffreestanding
2122@opindex ffreestanding
2123@cindex hosted environment
2124
2125Assert that compilation targets a freestanding environment.  This
2126implies @option{-fno-builtin}.  A freestanding environment
2127is one in which the standard library may not exist, and program startup may
2128not necessarily be at @code{main}.  The most obvious example is an OS kernel.
2129This is equivalent to @option{-fno-hosted}.
2130
2131@xref{Standards,,Language Standards Supported by GCC}, for details of
2132freestanding and hosted environments.
2133
2134@item -fopenacc
2135@opindex fopenacc
2136@cindex OpenACC accelerator programming
2137Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2138@code{!$acc} in Fortran.  When @option{-fopenacc} is specified, the
2139compiler generates accelerated code according to the OpenACC Application
2140Programming Interface v2.0 @w{@uref{https://www.openacc.org}}.  This option
2141implies @option{-pthread}, and thus is only supported on targets that
2142have support for @option{-pthread}.
2143
2144@item -fopenacc-dim=@var{geom}
2145@opindex fopenacc-dim
2146@cindex OpenACC accelerator programming
2147Specify default compute dimensions for parallel offload regions that do
2148not explicitly specify.  The @var{geom} value is a triple of
2149':'-separated sizes, in order 'gang', 'worker' and, 'vector'.  A size
2150can be omitted, to use a target-specific default value.
2151
2152@item -fopenmp
2153@opindex fopenmp
2154@cindex OpenMP parallel
2155Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2156@code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
2157compiler generates parallel code according to the OpenMP Application
2158Program Interface v4.5 @w{@uref{http://www.openmp.org/}}.  This option
2159implies @option{-pthread}, and thus is only supported on targets that
2160have support for @option{-pthread}. @option{-fopenmp} implies
2161@option{-fopenmp-simd}.
2162
2163@item -fopenmp-simd
2164@opindex fopenmp-simd
2165@cindex OpenMP SIMD
2166@cindex SIMD
2167Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2168in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2169are ignored.
2170
2171@item -fgnu-tm
2172@opindex fgnu-tm
2173When the option @option{-fgnu-tm} is specified, the compiler
2174generates code for the Linux variant of Intel's current Transactional
2175Memory ABI specification document (Revision 1.1, May 6 2009).  This is
2176an experimental feature whose interface may change in future versions
2177of GCC, as the official specification changes.  Please note that not
2178all architectures are supported for this feature.
2179
2180For more information on GCC's support for transactional memory,
2181@xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2182Transactional Memory Library}.
2183
2184Note that the transactional memory feature is not supported with
2185non-call exceptions (@option{-fnon-call-exceptions}).
2186
2187@item -fms-extensions
2188@opindex fms-extensions
2189Accept some non-standard constructs used in Microsoft header files.
2190
2191In C++ code, this allows member names in structures to be similar
2192to previous types declarations.
2193
2194@smallexample
2195typedef int UOW;
2196struct ABC @{
2197  UOW UOW;
2198@};
2199@end smallexample
2200
2201Some cases of unnamed fields in structures and unions are only
2202accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
2203fields within structs/unions}, for details.
2204
2205Note that this option is off for all targets but x86
2206targets using ms-abi.
2207
2208@item -fplan9-extensions
2209@opindex fplan9-extensions
2210Accept some non-standard constructs used in Plan 9 code.
2211
2212This enables @option{-fms-extensions}, permits passing pointers to
2213structures with anonymous fields to functions that expect pointers to
2214elements of the type of the field, and permits referring to anonymous
2215fields declared using a typedef.  @xref{Unnamed Fields,,Unnamed
2216struct/union fields within structs/unions}, for details.  This is only
2217supported for C, not C++.
2218
2219@item -fcond-mismatch
2220@opindex fcond-mismatch
2221Allow conditional expressions with mismatched types in the second and
2222third arguments.  The value of such an expression is void.  This option
2223is not supported for C++.
2224
2225@item -flax-vector-conversions
2226@opindex flax-vector-conversions
2227Allow implicit conversions between vectors with differing numbers of
2228elements and/or incompatible element types.  This option should not be
2229used for new code.
2230
2231@item -funsigned-char
2232@opindex funsigned-char
2233Let the type @code{char} be unsigned, like @code{unsigned char}.
2234
2235Each kind of machine has a default for what @code{char} should
2236be.  It is either like @code{unsigned char} by default or like
2237@code{signed char} by default.
2238
2239Ideally, a portable program should always use @code{signed char} or
2240@code{unsigned char} when it depends on the signedness of an object.
2241But many programs have been written to use plain @code{char} and
2242expect it to be signed, or expect it to be unsigned, depending on the
2243machines they were written for.  This option, and its inverse, let you
2244make such a program work with the opposite default.
2245
2246The type @code{char} is always a distinct type from each of
2247@code{signed char} or @code{unsigned char}, even though its behavior
2248is always just like one of those two.
2249
2250@item -fsigned-char
2251@opindex fsigned-char
2252Let the type @code{char} be signed, like @code{signed char}.
2253
2254Note that this is equivalent to @option{-fno-unsigned-char}, which is
2255the negative form of @option{-funsigned-char}.  Likewise, the option
2256@option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2257
2258@item -fsigned-bitfields
2259@itemx -funsigned-bitfields
2260@itemx -fno-signed-bitfields
2261@itemx -fno-unsigned-bitfields
2262@opindex fsigned-bitfields
2263@opindex funsigned-bitfields
2264@opindex fno-signed-bitfields
2265@opindex fno-unsigned-bitfields
2266These options control whether a bit-field is signed or unsigned, when the
2267declaration does not use either @code{signed} or @code{unsigned}.  By
2268default, such a bit-field is signed, because this is consistent: the
2269basic integer types such as @code{int} are signed types.
2270
2271@item -fsso-struct=@var{endianness}
2272@opindex fsso-struct
2273Set the default scalar storage order of structures and unions to the
2274specified endianness.  The accepted values are @samp{big-endian},
2275@samp{little-endian} and @samp{native} for the native endianness of
2276the target (the default).  This option is not supported for C++.
2277
2278@strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2279code that is not binary compatible with code generated without it if the
2280specified endianness is not the native endianness of the target.
2281@end table
2282
2283@node C++ Dialect Options
2284@section Options Controlling C++ Dialect
2285
2286@cindex compiler options, C++
2287@cindex C++ options, command-line
2288@cindex options, C++
2289This section describes the command-line options that are only meaningful
2290for C++ programs.  You can also use most of the GNU compiler options
2291regardless of what language your program is in.  For example, you
2292might compile a file @file{firstClass.C} like this:
2293
2294@smallexample
2295g++ -g -fstrict-enums -O -c firstClass.C
2296@end smallexample
2297
2298@noindent
2299In this example, only @option{-fstrict-enums} is an option meant
2300only for C++ programs; you can use the other options with any
2301language supported by GCC@.
2302
2303Some options for compiling C programs, such as @option{-std}, are also
2304relevant for C++ programs.
2305@xref{C Dialect Options,,Options Controlling C Dialect}.
2306
2307Here is a list of options that are @emph{only} for compiling C++ programs:
2308
2309@table @gcctabopt
2310
2311@item -fabi-version=@var{n}
2312@opindex fabi-version
2313Use version @var{n} of the C++ ABI@.  The default is version 0.
2314
2315Version 0 refers to the version conforming most closely to
2316the C++ ABI specification.  Therefore, the ABI obtained using version 0
2317will change in different versions of G++ as ABI bugs are fixed.
2318
2319Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2320
2321Version 2 is the version of the C++ ABI that first appeared in G++
23223.4, and was the default through G++ 4.9.
2323
2324Version 3 corrects an error in mangling a constant address as a
2325template argument.
2326
2327Version 4, which first appeared in G++ 4.5, implements a standard
2328mangling for vector types.
2329
2330Version 5, which first appeared in G++ 4.6, corrects the mangling of
2331attribute const/volatile on function pointer types, decltype of a
2332plain decl, and use of a function parameter in the declaration of
2333another parameter.
2334
2335Version 6, which first appeared in G++ 4.7, corrects the promotion
2336behavior of C++11 scoped enums and the mangling of template argument
2337packs, const/static_cast, prefix ++ and --, and a class scope function
2338used as a template argument.
2339
2340Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2341builtin type and corrects the mangling of lambdas in default argument
2342scope.
2343
2344Version 8, which first appeared in G++ 4.9, corrects the substitution
2345behavior of function types with function-cv-qualifiers.
2346
2347Version 9, which first appeared in G++ 5.2, corrects the alignment of
2348@code{nullptr_t}.
2349
2350Version 10, which first appeared in G++ 6.1, adds mangling of
2351attributes that affect type identity, such as ia32 calling convention
2352attributes (e.g. @samp{stdcall}).
2353
2354Version 11, which first appeared in G++ 7, corrects the mangling of
2355sizeof... expressions and operator names.  For multiple entities with
2356the same name within a function, that are declared in different scopes,
2357the mangling now changes starting with the twelfth occurrence.  It also
2358implies @option{-fnew-inheriting-ctors}.
2359
2360Version 12, which first appeared in G++ 8, corrects the calling
2361conventions for empty classes on the x86_64 target and for classes
2362with only deleted copy/move constructors.  It accidentally changes the
2363calling convention for classes with a deleted copy constructor and a
2364trivial move constructor.
2365
2366Version 13, which first appeared in G++ 8.2, fixes the accidental
2367change in version 12.
2368
2369See also @option{-Wabi}.
2370
2371@item -fabi-compat-version=@var{n}
2372@opindex fabi-compat-version
2373On targets that support strong aliases, G++
2374works around mangling changes by creating an alias with the correct
2375mangled name when defining a symbol with an incorrect mangled name.
2376This switch specifies which ABI version to use for the alias.
2377
2378With @option{-fabi-version=0} (the default), this defaults to 11 (GCC 7
2379compatibility).  If another ABI version is explicitly selected, this
2380defaults to 0.  For compatibility with GCC versions 3.2 through 4.9,
2381use @option{-fabi-compat-version=2}.
2382
2383If this option is not provided but @option{-Wabi=@var{n}} is, that
2384version is used for compatibility aliases.  If this option is provided
2385along with @option{-Wabi} (without the version), the version from this
2386option is used for the warning.
2387
2388@item -fno-access-control
2389@opindex fno-access-control
2390Turn off all access checking.  This switch is mainly useful for working
2391around bugs in the access control code.
2392
2393@item -faligned-new
2394@opindex faligned-new
2395Enable support for C++17 @code{new} of types that require more
2396alignment than @code{void* ::operator new(std::size_t)} provides.  A
2397numeric argument such as @code{-faligned-new=32} can be used to
2398specify how much alignment (in bytes) is provided by that function,
2399but few users will need to override the default of
2400@code{alignof(std::max_align_t)}.
2401
2402This flag is enabled by default for @option{-std=c++17}.
2403
2404@item -fcheck-new
2405@opindex fcheck-new
2406Check that the pointer returned by @code{operator new} is non-null
2407before attempting to modify the storage allocated.  This check is
2408normally unnecessary because the C++ standard specifies that
2409@code{operator new} only returns @code{0} if it is declared
2410@code{throw()}, in which case the compiler always checks the
2411return value even without this option.  In all other cases, when
2412@code{operator new} has a non-empty exception specification, memory
2413exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
2414@samp{new (nothrow)}.
2415
2416@item -fconcepts
2417@opindex fconcepts
2418Enable support for the C++ Extensions for Concepts Technical
2419Specification, ISO 19217 (2015), which allows code like
2420
2421@smallexample
2422template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2423template <Addable T> T add (T a, T b) @{ return a + b; @}
2424@end smallexample
2425
2426@item -fconstexpr-depth=@var{n}
2427@opindex fconstexpr-depth
2428Set the maximum nested evaluation depth for C++11 constexpr functions
2429to @var{n}.  A limit is needed to detect endless recursion during
2430constant expression evaluation.  The minimum specified by the standard
2431is 512.
2432
2433@item -fconstexpr-loop-limit=@var{n}
2434@opindex fconstexpr-loop-limit
2435Set the maximum number of iterations for a loop in C++14 constexpr functions
2436to @var{n}.  A limit is needed to detect infinite loops during
2437constant expression evaluation.  The default is 262144 (1<<18).
2438
2439@item -fdeduce-init-list
2440@opindex fdeduce-init-list
2441Enable deduction of a template type parameter as
2442@code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2443
2444@smallexample
2445template <class T> auto forward(T t) -> decltype (realfn (t))
2446@{
2447  return realfn (t);
2448@}
2449
2450void f()
2451@{
2452  forward(@{1,2@}); // call forward<std::initializer_list<int>>
2453@}
2454@end smallexample
2455
2456This deduction was implemented as a possible extension to the
2457originally proposed semantics for the C++11 standard, but was not part
2458of the final standard, so it is disabled by default.  This option is
2459deprecated, and may be removed in a future version of G++.
2460
2461@item -ffriend-injection
2462@opindex ffriend-injection
2463Inject friend functions into the enclosing namespace, so that they are
2464visible outside the scope of the class in which they are declared.
2465Friend functions were documented to work this way in the old Annotated
2466C++ Reference Manual.
2467However, in ISO C++ a friend function that is not declared
2468in an enclosing scope can only be found using argument dependent
2469lookup.  GCC defaults to the standard behavior.
2470
2471This option is deprecated and will be removed.
2472
2473@item -fno-elide-constructors
2474@opindex fno-elide-constructors
2475The C++ standard allows an implementation to omit creating a temporary
2476that is only used to initialize another object of the same type.
2477Specifying this option disables that optimization, and forces G++ to
2478call the copy constructor in all cases.  This option also causes G++
2479to call trivial member functions which otherwise would be expanded inline.
2480
2481In C++17, the compiler is required to omit these temporaries, but this
2482option still affects trivial member functions.
2483
2484@item -fno-enforce-eh-specs
2485@opindex fno-enforce-eh-specs
2486Don't generate code to check for violation of exception specifications
2487at run time.  This option violates the C++ standard, but may be useful
2488for reducing code size in production builds, much like defining
2489@code{NDEBUG}.  This does not give user code permission to throw
2490exceptions in violation of the exception specifications; the compiler
2491still optimizes based on the specifications, so throwing an
2492unexpected exception results in undefined behavior at run time.
2493
2494@item -fextern-tls-init
2495@itemx -fno-extern-tls-init
2496@opindex fextern-tls-init
2497@opindex fno-extern-tls-init
2498The C++11 and OpenMP standards allow @code{thread_local} and
2499@code{threadprivate} variables to have dynamic (runtime)
2500initialization.  To support this, any use of such a variable goes
2501through a wrapper function that performs any necessary initialization.
2502When the use and definition of the variable are in the same
2503translation unit, this overhead can be optimized away, but when the
2504use is in a different translation unit there is significant overhead
2505even if the variable doesn't actually need dynamic initialization.  If
2506the programmer can be sure that no use of the variable in a
2507non-defining TU needs to trigger dynamic initialization (either
2508because the variable is statically initialized, or a use of the
2509variable in the defining TU will be executed before any uses in
2510another TU), they can avoid this overhead with the
2511@option{-fno-extern-tls-init} option.
2512
2513On targets that support symbol aliases, the default is
2514@option{-fextern-tls-init}.  On targets that do not support symbol
2515aliases, the default is @option{-fno-extern-tls-init}.
2516
2517@item -ffor-scope
2518@itemx -fno-for-scope
2519@opindex ffor-scope
2520@opindex fno-for-scope
2521If @option{-ffor-scope} is specified, the scope of variables declared in
2522a @i{for-init-statement} is limited to the @code{for} loop itself,
2523as specified by the C++ standard.
2524If @option{-fno-for-scope} is specified, the scope of variables declared in
2525a @i{for-init-statement} extends to the end of the enclosing scope,
2526as was the case in old versions of G++, and other (traditional)
2527implementations of C++.
2528
2529This option is deprecated and the associated non-standard
2530functionality will be removed.
2531
2532@item -fno-gnu-keywords
2533@opindex fno-gnu-keywords
2534Do not recognize @code{typeof} as a keyword, so that code can use this
2535word as an identifier.  You can use the keyword @code{__typeof__} instead.
2536This option is implied by the strict ISO C++ dialects: @option{-ansi},
2537@option{-std=c++98}, @option{-std=c++11}, etc.
2538
2539@item -fno-implicit-templates
2540@opindex fno-implicit-templates
2541Never emit code for non-inline templates that are instantiated
2542implicitly (i.e.@: by use); only emit code for explicit instantiations.
2543@xref{Template Instantiation}, for more information.
2544
2545@item -fno-implicit-inline-templates
2546@opindex fno-implicit-inline-templates
2547Don't emit code for implicit instantiations of inline templates, either.
2548The default is to handle inlines differently so that compiles with and
2549without optimization need the same set of explicit instantiations.
2550
2551@item -fno-implement-inlines
2552@opindex fno-implement-inlines
2553To save space, do not emit out-of-line copies of inline functions
2554controlled by @code{#pragma implementation}.  This causes linker
2555errors if these functions are not inlined everywhere they are called.
2556
2557@item -fms-extensions
2558@opindex fms-extensions
2559Disable Wpedantic warnings about constructs used in MFC, such as implicit
2560int and getting a pointer to member function via non-standard syntax.
2561
2562@item -fnew-inheriting-ctors
2563@opindex fnew-inheriting-ctors
2564Enable the P0136 adjustment to the semantics of C++11 constructor
2565inheritance.  This is part of C++17 but also considered to be a Defect
2566Report against C++11 and C++14.  This flag is enabled by default
2567unless @option{-fabi-version=10} or lower is specified.
2568
2569@item -fnew-ttp-matching
2570@opindex fnew-ttp-matching
2571Enable the P0522 resolution to Core issue 150, template template
2572parameters and default arguments: this allows a template with default
2573template arguments as an argument for a template template parameter
2574with fewer template parameters.  This flag is enabled by default for
2575@option{-std=c++17}.
2576
2577@item -fno-nonansi-builtins
2578@opindex fno-nonansi-builtins
2579Disable built-in declarations of functions that are not mandated by
2580ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
2581@code{index}, @code{bzero}, @code{conjf}, and other related functions.
2582
2583@item -fnothrow-opt
2584@opindex fnothrow-opt
2585Treat a @code{throw()} exception specification as if it were a
2586@code{noexcept} specification to reduce or eliminate the text size
2587overhead relative to a function with no exception specification.  If
2588the function has local variables of types with non-trivial
2589destructors, the exception specification actually makes the
2590function smaller because the EH cleanups for those variables can be
2591optimized away.  The semantic effect is that an exception thrown out of
2592a function with such an exception specification results in a call
2593to @code{terminate} rather than @code{unexpected}.
2594
2595@item -fno-operator-names
2596@opindex fno-operator-names
2597Do not treat the operator name keywords @code{and}, @code{bitand},
2598@code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2599synonyms as keywords.
2600
2601@item -fno-optional-diags
2602@opindex fno-optional-diags
2603Disable diagnostics that the standard says a compiler does not need to
2604issue.  Currently, the only such diagnostic issued by G++ is the one for
2605a name having multiple meanings within a class.
2606
2607@item -fpermissive
2608@opindex fpermissive
2609Downgrade some diagnostics about nonconformant code from errors to
2610warnings.  Thus, using @option{-fpermissive} allows some
2611nonconforming code to compile.
2612
2613@item -fno-pretty-templates
2614@opindex fno-pretty-templates
2615When an error message refers to a specialization of a function
2616template, the compiler normally prints the signature of the
2617template followed by the template arguments and any typedefs or
2618typenames in the signature (e.g. @code{void f(T) [with T = int]}
2619rather than @code{void f(int)}) so that it's clear which template is
2620involved.  When an error message refers to a specialization of a class
2621template, the compiler omits any template arguments that match
2622the default template arguments for that template.  If either of these
2623behaviors make it harder to understand the error message rather than
2624easier, you can use @option{-fno-pretty-templates} to disable them.
2625
2626@item -frepo
2627@opindex frepo
2628Enable automatic template instantiation at link time.  This option also
2629implies @option{-fno-implicit-templates}.  @xref{Template
2630Instantiation}, for more information.
2631
2632@item -fno-rtti
2633@opindex fno-rtti
2634Disable generation of information about every class with virtual
2635functions for use by the C++ run-time type identification features
2636(@code{dynamic_cast} and @code{typeid}).  If you don't use those parts
2637of the language, you can save some space by using this flag.  Note that
2638exception handling uses the same information, but G++ generates it as
2639needed. The @code{dynamic_cast} operator can still be used for casts that
2640do not require run-time type information, i.e.@: casts to @code{void *} or to
2641unambiguous base classes.
2642
2643@item -fsized-deallocation
2644@opindex fsized-deallocation
2645Enable the built-in global declarations
2646@smallexample
2647void operator delete (void *, std::size_t) noexcept;
2648void operator delete[] (void *, std::size_t) noexcept;
2649@end smallexample
2650as introduced in C++14.  This is useful for user-defined replacement
2651deallocation functions that, for example, use the size of the object
2652to make deallocation faster.  Enabled by default under
2653@option{-std=c++14} and above.  The flag @option{-Wsized-deallocation}
2654warns about places that might want to add a definition.
2655
2656@item -fstrict-enums
2657@opindex fstrict-enums
2658Allow the compiler to optimize using the assumption that a value of
2659enumerated type can only be one of the values of the enumeration (as
2660defined in the C++ standard; basically, a value that can be
2661represented in the minimum number of bits needed to represent all the
2662enumerators).  This assumption may not be valid if the program uses a
2663cast to convert an arbitrary integer value to the enumerated type.
2664
2665@item -fstrong-eval-order
2666@opindex fstrong-eval-order
2667Evaluate member access, array subscripting, and shift expressions in
2668left-to-right order, and evaluate assignment in right-to-left order,
2669as adopted for C++17.  Enabled by default with @option{-std=c++17}.
2670@option{-fstrong-eval-order=some} enables just the ordering of member
2671access and shift expressions, and is the default without
2672@option{-std=c++17}.
2673
2674@item -ftemplate-backtrace-limit=@var{n}
2675@opindex ftemplate-backtrace-limit
2676Set the maximum number of template instantiation notes for a single
2677warning or error to @var{n}.  The default value is 10.
2678
2679@item -ftemplate-depth=@var{n}
2680@opindex ftemplate-depth
2681Set the maximum instantiation depth for template classes to @var{n}.
2682A limit on the template instantiation depth is needed to detect
2683endless recursions during template class instantiation.  ANSI/ISO C++
2684conforming programs must not rely on a maximum depth greater than 17
2685(changed to 1024 in C++11).  The default value is 900, as the compiler
2686can run out of stack space before hitting 1024 in some situations.
2687
2688@item -fno-threadsafe-statics
2689@opindex fno-threadsafe-statics
2690Do not emit the extra code to use the routines specified in the C++
2691ABI for thread-safe initialization of local statics.  You can use this
2692option to reduce code size slightly in code that doesn't need to be
2693thread-safe.
2694
2695@item -fuse-cxa-atexit
2696@opindex fuse-cxa-atexit
2697Register destructors for objects with static storage duration with the
2698@code{__cxa_atexit} function rather than the @code{atexit} function.
2699This option is required for fully standards-compliant handling of static
2700destructors, but only works if your C library supports
2701@code{__cxa_atexit}.
2702
2703@item -fno-use-cxa-get-exception-ptr
2704@opindex fno-use-cxa-get-exception-ptr
2705Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
2706causes @code{std::uncaught_exception} to be incorrect, but is necessary
2707if the runtime routine is not available.
2708
2709@item -fvisibility-inlines-hidden
2710@opindex fvisibility-inlines-hidden
2711This switch declares that the user does not attempt to compare
2712pointers to inline functions or methods where the addresses of the two functions
2713are taken in different shared objects.
2714
2715The effect of this is that GCC may, effectively, mark inline methods with
2716@code{__attribute__ ((visibility ("hidden")))} so that they do not
2717appear in the export table of a DSO and do not require a PLT indirection
2718when used within the DSO@.  Enabling this option can have a dramatic effect
2719on load and link times of a DSO as it massively reduces the size of the
2720dynamic export table when the library makes heavy use of templates.
2721
2722The behavior of this switch is not quite the same as marking the
2723methods as hidden directly, because it does not affect static variables
2724local to the function or cause the compiler to deduce that
2725the function is defined in only one shared object.
2726
2727You may mark a method as having a visibility explicitly to negate the
2728effect of the switch for that method.  For example, if you do want to
2729compare pointers to a particular inline method, you might mark it as
2730having default visibility.  Marking the enclosing class with explicit
2731visibility has no effect.
2732
2733Explicitly instantiated inline methods are unaffected by this option
2734as their linkage might otherwise cross a shared library boundary.
2735@xref{Template Instantiation}.
2736
2737@item -fvisibility-ms-compat
2738@opindex fvisibility-ms-compat
2739This flag attempts to use visibility settings to make GCC's C++
2740linkage model compatible with that of Microsoft Visual Studio.
2741
2742The flag makes these changes to GCC's linkage model:
2743
2744@enumerate
2745@item
2746It sets the default visibility to @code{hidden}, like
2747@option{-fvisibility=hidden}.
2748
2749@item
2750Types, but not their members, are not hidden by default.
2751
2752@item
2753The One Definition Rule is relaxed for types without explicit
2754visibility specifications that are defined in more than one
2755shared object: those declarations are permitted if they are
2756permitted when this option is not used.
2757@end enumerate
2758
2759In new code it is better to use @option{-fvisibility=hidden} and
2760export those classes that are intended to be externally visible.
2761Unfortunately it is possible for code to rely, perhaps accidentally,
2762on the Visual Studio behavior.
2763
2764Among the consequences of these changes are that static data members
2765of the same type with the same name but defined in different shared
2766objects are different, so changing one does not change the other;
2767and that pointers to function members defined in different shared
2768objects may not compare equal.  When this flag is given, it is a
2769violation of the ODR to define types with the same name differently.
2770
2771@item -fno-weak
2772@opindex fno-weak
2773Do not use weak symbol support, even if it is provided by the linker.
2774By default, G++ uses weak symbols if they are available.  This
2775option exists only for testing, and should not be used by end-users;
2776it results in inferior code and has no benefits.  This option may
2777be removed in a future release of G++.
2778
2779@item -nostdinc++
2780@opindex nostdinc++
2781Do not search for header files in the standard directories specific to
2782C++, but do still search the other standard directories.  (This option
2783is used when building the C++ library.)
2784@end table
2785
2786In addition, these optimization, warning, and code generation options
2787have meanings only for C++ programs:
2788
2789@table @gcctabopt
2790@item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2791@opindex Wabi
2792@opindex Wno-abi
2793Warn when G++ it generates code that is probably not compatible with
2794the vendor-neutral C++ ABI@.  Since G++ now defaults to updating the
2795ABI with each major release, normally @option{-Wabi} will warn only if
2796there is a check added later in a release series for an ABI issue
2797discovered since the initial release.  @option{-Wabi} will warn about
2798more things if an older ABI version is selected (with
2799@option{-fabi-version=@var{n}}).
2800
2801@option{-Wabi} can also be used with an explicit version number to
2802warn about compatibility with a particular @option{-fabi-version}
2803level, e.g. @option{-Wabi=2} to warn about changes relative to
2804@option{-fabi-version=2}.
2805
2806If an explicit version number is provided and
2807@option{-fabi-compat-version} is not specified, the version number
2808from this option is used for compatibility aliases.  If no explicit
2809version number is provided with this option, but
2810@option{-fabi-compat-version} is specified, that version number is
2811used for ABI warnings.
2812
2813Although an effort has been made to warn about
2814all such cases, there are probably some cases that are not warned about,
2815even though G++ is generating incompatible code.  There may also be
2816cases where warnings are emitted even though the code that is generated
2817is compatible.
2818
2819You should rewrite your code to avoid these warnings if you are
2820concerned about the fact that code generated by G++ may not be binary
2821compatible with code generated by other compilers.
2822
2823Known incompatibilities in @option{-fabi-version=2} (which was the
2824default from GCC 3.4 to 4.9) include:
2825
2826@itemize @bullet
2827
2828@item
2829A template with a non-type template parameter of reference type was
2830mangled incorrectly:
2831@smallexample
2832extern int N;
2833template <int &> struct S @{@};
2834void n (S<N>) @{2@}
2835@end smallexample
2836
2837This was fixed in @option{-fabi-version=3}.
2838
2839@item
2840SIMD vector types declared using @code{__attribute ((vector_size))} were
2841mangled in a non-standard way that does not allow for overloading of
2842functions taking vectors of different sizes.
2843
2844The mangling was changed in @option{-fabi-version=4}.
2845
2846@item
2847@code{__attribute ((const))} and @code{noreturn} were mangled as type
2848qualifiers, and @code{decltype} of a plain declaration was folded away.
2849
2850These mangling issues were fixed in @option{-fabi-version=5}.
2851
2852@item
2853Scoped enumerators passed as arguments to a variadic function are
2854promoted like unscoped enumerators, causing @code{va_arg} to complain.
2855On most targets this does not actually affect the parameter passing
2856ABI, as there is no way to pass an argument smaller than @code{int}.
2857
2858Also, the ABI changed the mangling of template argument packs,
2859@code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2860a class scope function used as a template argument.
2861
2862These issues were corrected in @option{-fabi-version=6}.
2863
2864@item
2865Lambdas in default argument scope were mangled incorrectly, and the
2866ABI changed the mangling of @code{nullptr_t}.
2867
2868These issues were corrected in @option{-fabi-version=7}.
2869
2870@item
2871When mangling a function type with function-cv-qualifiers, the
2872un-qualified function type was incorrectly treated as a substitution
2873candidate.
2874
2875This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2876
2877@item
2878@code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2879unaligned accesses.  Note that this did not affect the ABI of a
2880function with a @code{nullptr_t} parameter, as parameters have a
2881minimum alignment.
2882
2883This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2884
2885@item
2886Target-specific attributes that affect the identity of a type, such as
2887ia32 calling conventions on a function type (stdcall, regparm, etc.),
2888did not affect the mangled name, leading to name collisions when
2889function pointers were used as template arguments.
2890
2891This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2892
2893@end itemize
2894
2895It also warns about psABI-related changes.  The known psABI changes at this
2896point include:
2897
2898@itemize @bullet
2899
2900@item
2901For SysV/x86-64, unions with @code{long double} members are
2902passed in memory as specified in psABI.  For example:
2903
2904@smallexample
2905union U @{
2906  long double ld;
2907  int i;
2908@};
2909@end smallexample
2910
2911@noindent
2912@code{union U} is always passed in memory.
2913
2914@end itemize
2915
2916@item -Wabi-tag @r{(C++ and Objective-C++ only)}
2917@opindex Wabi-tag
2918@opindex -Wabi-tag
2919Warn when a type with an ABI tag is used in a context that does not
2920have that ABI tag.  See @ref{C++ Attributes} for more information
2921about ABI tags.
2922
2923@item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2924@opindex Wctor-dtor-privacy
2925@opindex Wno-ctor-dtor-privacy
2926Warn when a class seems unusable because all the constructors or
2927destructors in that class are private, and it has neither friends nor
2928public static member functions.  Also warn if there are no non-private
2929methods, and there's at least one private member function that isn't
2930a constructor or destructor.
2931
2932@item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2933@opindex Wdelete-non-virtual-dtor
2934@opindex Wno-delete-non-virtual-dtor
2935Warn when @code{delete} is used to destroy an instance of a class that
2936has virtual functions and non-virtual destructor. It is unsafe to delete
2937an instance of a derived class through a pointer to a base class if the
2938base class does not have a virtual destructor.  This warning is enabled
2939by @option{-Wall}.
2940
2941@item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2942@opindex Wliteral-suffix
2943@opindex Wno-literal-suffix
2944Warn when a string or character literal is followed by a ud-suffix which does
2945not begin with an underscore.  As a conforming extension, GCC treats such
2946suffixes as separate preprocessing tokens in order to maintain backwards
2947compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2948For example:
2949
2950@smallexample
2951#define __STDC_FORMAT_MACROS
2952#include <inttypes.h>
2953#include <stdio.h>
2954
2955int main() @{
2956  int64_t i64 = 123;
2957  printf("My int64: %" PRId64"\n", i64);
2958@}
2959@end smallexample
2960
2961In this case, @code{PRId64} is treated as a separate preprocessing token.
2962
2963Additionally, warn when a user-defined literal operator is declared with
2964a literal suffix identifier that doesn't begin with an underscore. Literal
2965suffix identifiers that don't begin with an underscore are reserved for
2966future standardization.
2967
2968This warning is enabled by default.
2969
2970@item -Wlto-type-mismatch
2971@opindex Wlto-type-mismatch
2972@opindex Wno-lto-type-mismatch
2973
2974During the link-time optimization warn about type mismatches in
2975global declarations from different compilation units.
2976Requires @option{-flto} to be enabled.  Enabled by default.
2977
2978@item -Wno-narrowing @r{(C++ and Objective-C++ only)}
2979@opindex Wnarrowing
2980@opindex Wno-narrowing
2981For C++11 and later standards, narrowing conversions are diagnosed by default,
2982as required by the standard.  A narrowing conversion from a constant produces
2983an error, and a narrowing conversion from a non-constant produces a warning,
2984but @option{-Wno-narrowing} suppresses the diagnostic.
2985Note that this does not affect the meaning of well-formed code;
2986narrowing conversions are still considered ill-formed in SFINAE contexts.
2987
2988With @option{-Wnarrowing} in C++98, warn when a narrowing
2989conversion prohibited by C++11 occurs within
2990@samp{@{ @}}, e.g.
2991
2992@smallexample
2993int i = @{ 2.2 @}; // error: narrowing from double to int
2994@end smallexample
2995
2996This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2997
2998@item -Wnoexcept @r{(C++ and Objective-C++ only)}
2999@opindex Wnoexcept
3000@opindex Wno-noexcept
3001Warn when a noexcept-expression evaluates to false because of a call
3002to a function that does not have a non-throwing exception
3003specification (i.e. @code{throw()} or @code{noexcept}) but is known by
3004the compiler to never throw an exception.
3005
3006@item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
3007@opindex Wnoexcept-type
3008@opindex Wno-noexcept-type
3009Warn if the C++17 feature making @code{noexcept} part of a function
3010type changes the mangled name of a symbol relative to C++14.  Enabled
3011by @option{-Wabi} and @option{-Wc++17-compat}.
3012
3013As an example:
3014
3015@smallexample
3016template <class T> void f(T t) @{ t(); @};
3017void g() noexcept;
3018void h() @{ f(g); @}
3019@end smallexample
3020
3021@noindent
3022In C++14, @code{f} calls @code{f<void(*)()>}, but in
3023C++17 it calls @code{f<void(*)()noexcept>}.
3024
3025@item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3026@opindex Wclass-memaccess
3027Warn when the destination of a call to a raw memory function such as
3028@code{memset} or @code{memcpy} is an object of class type, and when writing
3029into such an object might bypass the class non-trivial or deleted constructor
3030or copy assignment, violate const-correctness or encapsulation, or corrupt
3031virtual table pointers.  Modifying the representation of such objects may
3032violate invariants maintained by member functions of the class.  For example,
3033the call to @code{memset} below is undefined because it modifies a non-trivial
3034class object and is, therefore, diagnosed.  The safe way to either initialize
3035or clear the storage of objects of such types is by using the appropriate
3036constructor or assignment operator, if one is available.
3037@smallexample
3038std::string str = "abc";
3039memset (&str, 0, sizeof str);
3040@end smallexample
3041The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3042Explicitly casting the pointer to the class object to @code{void *} or
3043to a type that can be safely accessed by the raw memory function suppresses
3044the warning.
3045
3046@item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3047@opindex Wnon-virtual-dtor
3048@opindex Wno-non-virtual-dtor
3049Warn when a class has virtual functions and an accessible non-virtual
3050destructor itself or in an accessible polymorphic base class, in which
3051case it is possible but unsafe to delete an instance of a derived
3052class through a pointer to the class itself or base class.  This
3053warning is automatically enabled if @option{-Weffc++} is specified.
3054
3055@item -Wregister @r{(C++ and Objective-C++ only)}
3056@opindex Wregister
3057@opindex Wno-register
3058Warn on uses of the @code{register} storage class specifier, except
3059when it is part of the GNU @ref{Explicit Register Variables} extension.
3060The use of the @code{register} keyword as storage class specifier has
3061been deprecated in C++11 and removed in C++17.
3062Enabled by default with @option{-std=c++17}.
3063
3064@item -Wreorder @r{(C++ and Objective-C++ only)}
3065@opindex Wreorder
3066@opindex Wno-reorder
3067@cindex reordering, warning
3068@cindex warning for reordering of member initializers
3069Warn when the order of member initializers given in the code does not
3070match the order in which they must be executed.  For instance:
3071
3072@smallexample
3073struct A @{
3074  int i;
3075  int j;
3076  A(): j (0), i (1) @{ @}
3077@};
3078@end smallexample
3079
3080@noindent
3081The compiler rearranges the member initializers for @code{i}
3082and @code{j} to match the declaration order of the members, emitting
3083a warning to that effect.  This warning is enabled by @option{-Wall}.
3084
3085@item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3086@opindex fext-numeric-literals
3087@opindex fno-ext-numeric-literals
3088Accept imaginary, fixed-point, or machine-defined
3089literal number suffixes as GNU extensions.
3090When this option is turned off these suffixes are treated
3091as C++11 user-defined literal numeric suffixes.
3092This is on by default for all pre-C++11 dialects and all GNU dialects:
3093@option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3094@option{-std=gnu++14}.
3095This option is off by default
3096for ISO C++11 onwards (@option{-std=c++11}, ...).
3097@end table
3098
3099The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3100
3101@table @gcctabopt
3102@item -Weffc++ @r{(C++ and Objective-C++ only)}
3103@opindex Weffc++
3104@opindex Wno-effc++
3105Warn about violations of the following style guidelines from Scott Meyers'
3106@cite{Effective C++} series of books:
3107
3108@itemize @bullet
3109@item
3110Define a copy constructor and an assignment operator for classes
3111with dynamically-allocated memory.
3112
3113@item
3114Prefer initialization to assignment in constructors.
3115
3116@item
3117Have @code{operator=} return a reference to @code{*this}.
3118
3119@item
3120Don't try to return a reference when you must return an object.
3121
3122@item
3123Distinguish between prefix and postfix forms of increment and
3124decrement operators.
3125
3126@item
3127Never overload @code{&&}, @code{||}, or @code{,}.
3128
3129@end itemize
3130
3131This option also enables @option{-Wnon-virtual-dtor}, which is also
3132one of the effective C++ recommendations.  However, the check is
3133extended to warn about the lack of virtual destructor in accessible
3134non-polymorphic bases classes too.
3135
3136When selecting this option, be aware that the standard library
3137headers do not obey all of these guidelines; use @samp{grep -v}
3138to filter out those warnings.
3139
3140@item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3141@opindex Wstrict-null-sentinel
3142@opindex Wno-strict-null-sentinel
3143Warn about the use of an uncasted @code{NULL} as sentinel.  When
3144compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3145to @code{__null}.  Although it is a null pointer constant rather than a
3146null pointer, it is guaranteed to be of the same size as a pointer.
3147But this use is not portable across different compilers.
3148
3149@item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3150@opindex Wno-non-template-friend
3151@opindex Wnon-template-friend
3152Disable warnings when non-template friend functions are declared
3153within a template.  In very old versions of GCC that predate implementation
3154of the ISO standard, declarations such as
3155@samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3156could be interpreted as a particular specialization of a template
3157function; the warning exists to diagnose compatibility problems,
3158and is enabled by default.
3159
3160@item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3161@opindex Wold-style-cast
3162@opindex Wno-old-style-cast
3163Warn if an old-style (C-style) cast to a non-void type is used within
3164a C++ program.  The new-style casts (@code{dynamic_cast},
3165@code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3166less vulnerable to unintended effects and much easier to search for.
3167
3168@item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3169@opindex Woverloaded-virtual
3170@opindex Wno-overloaded-virtual
3171@cindex overloaded virtual function, warning
3172@cindex warning for overloaded virtual function
3173Warn when a function declaration hides virtual functions from a
3174base class.  For example, in:
3175
3176@smallexample
3177struct A @{
3178  virtual void f();
3179@};
3180
3181struct B: public A @{
3182  void f(int);
3183@};
3184@end smallexample
3185
3186the @code{A} class version of @code{f} is hidden in @code{B}, and code
3187like:
3188
3189@smallexample
3190B* b;
3191b->f();
3192@end smallexample
3193
3194@noindent
3195fails to compile.
3196
3197@item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3198@opindex Wno-pmf-conversions
3199@opindex Wpmf-conversions
3200Disable the diagnostic for converting a bound pointer to member function
3201to a plain pointer.
3202
3203@item -Wsign-promo @r{(C++ and Objective-C++ only)}
3204@opindex Wsign-promo
3205@opindex Wno-sign-promo
3206Warn when overload resolution chooses a promotion from unsigned or
3207enumerated type to a signed type, over a conversion to an unsigned type of
3208the same size.  Previous versions of G++ tried to preserve
3209unsignedness, but the standard mandates the current behavior.
3210
3211@item -Wtemplates @r{(C++ and Objective-C++ only)}
3212@opindex Wtemplates
3213Warn when a primary template declaration is encountered.  Some coding
3214rules disallow templates, and this may be used to enforce that rule.
3215The warning is inactive inside a system header file, such as the STL, so
3216one can still use the STL.  One may also instantiate or specialize
3217templates.
3218
3219@item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3220@opindex Wmultiple-inheritance
3221Warn when a class is defined with multiple direct base classes.  Some
3222coding rules disallow multiple inheritance, and this may be used to
3223enforce that rule.  The warning is inactive inside a system header file,
3224such as the STL, so one can still use the STL.  One may also define
3225classes that indirectly use multiple inheritance.
3226
3227@item -Wvirtual-inheritance
3228@opindex Wvirtual-inheritance
3229Warn when a class is defined with a virtual direct base class.  Some
3230coding rules disallow multiple inheritance, and this may be used to
3231enforce that rule.  The warning is inactive inside a system header file,
3232such as the STL, so one can still use the STL.  One may also define
3233classes that indirectly use virtual inheritance.
3234
3235@item -Wnamespaces
3236@opindex Wnamespaces
3237Warn when a namespace definition is opened.  Some coding rules disallow
3238namespaces, and this may be used to enforce that rule.  The warning is
3239inactive inside a system header file, such as the STL, so one can still
3240use the STL.  One may also use using directives and qualified names.
3241
3242@item -Wno-terminate @r{(C++ and Objective-C++ only)}
3243@opindex Wterminate
3244@opindex Wno-terminate
3245Disable the warning about a throw-expression that will immediately
3246result in a call to @code{terminate}.
3247@end table
3248
3249@node Objective-C and Objective-C++ Dialect Options
3250@section Options Controlling Objective-C and Objective-C++ Dialects
3251
3252@cindex compiler options, Objective-C and Objective-C++
3253@cindex Objective-C and Objective-C++ options, command-line
3254@cindex options, Objective-C and Objective-C++
3255(NOTE: This manual does not describe the Objective-C and Objective-C++
3256languages themselves.  @xref{Standards,,Language Standards
3257Supported by GCC}, for references.)
3258
3259This section describes the command-line options that are only meaningful
3260for Objective-C and Objective-C++ programs.  You can also use most of
3261the language-independent GNU compiler options.
3262For example, you might compile a file @file{some_class.m} like this:
3263
3264@smallexample
3265gcc -g -fgnu-runtime -O -c some_class.m
3266@end smallexample
3267
3268@noindent
3269In this example, @option{-fgnu-runtime} is an option meant only for
3270Objective-C and Objective-C++ programs; you can use the other options with
3271any language supported by GCC@.
3272
3273Note that since Objective-C is an extension of the C language, Objective-C
3274compilations may also use options specific to the C front-end (e.g.,
3275@option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
3276C++-specific options (e.g., @option{-Wabi}).
3277
3278Here is a list of options that are @emph{only} for compiling Objective-C
3279and Objective-C++ programs:
3280
3281@table @gcctabopt
3282@item -fconstant-string-class=@var{class-name}
3283@opindex fconstant-string-class
3284Use @var{class-name} as the name of the class to instantiate for each
3285literal string specified with the syntax @code{@@"@dots{}"}.  The default
3286class name is @code{NXConstantString} if the GNU runtime is being used, and
3287@code{NSConstantString} if the NeXT runtime is being used (see below).  The
3288@option{-fconstant-cfstrings} option, if also present, overrides the
3289@option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3290to be laid out as constant CoreFoundation strings.
3291
3292@item -fgnu-runtime
3293@opindex fgnu-runtime
3294Generate object code compatible with the standard GNU Objective-C
3295runtime.  This is the default for most types of systems.
3296
3297@item -fnext-runtime
3298@opindex fnext-runtime
3299Generate output compatible with the NeXT runtime.  This is the default
3300for NeXT-based systems, including Darwin and Mac OS X@.  The macro
3301@code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3302used.
3303
3304@item -fno-nil-receivers
3305@opindex fno-nil-receivers
3306Assume that all Objective-C message dispatches (@code{[receiver
3307message:arg]}) in this translation unit ensure that the receiver is
3308not @code{nil}.  This allows for more efficient entry points in the
3309runtime to be used.  This option is only available in conjunction with
3310the NeXT runtime and ABI version 0 or 1.
3311
3312@item -fobjc-abi-version=@var{n}
3313@opindex fobjc-abi-version
3314Use version @var{n} of the Objective-C ABI for the selected runtime.
3315This option is currently supported only for the NeXT runtime.  In that
3316case, Version 0 is the traditional (32-bit) ABI without support for
3317properties and other Objective-C 2.0 additions.  Version 1 is the
3318traditional (32-bit) ABI with support for properties and other
3319Objective-C 2.0 additions.  Version 2 is the modern (64-bit) ABI.  If
3320nothing is specified, the default is Version 0 on 32-bit target
3321machines, and Version 2 on 64-bit target machines.
3322
3323@item -fobjc-call-cxx-cdtors
3324@opindex fobjc-call-cxx-cdtors
3325For each Objective-C class, check if any of its instance variables is a
3326C++ object with a non-trivial default constructor.  If so, synthesize a
3327special @code{- (id) .cxx_construct} instance method which runs
3328non-trivial default constructors on any such instance variables, in order,
3329and then return @code{self}.  Similarly, check if any instance variable
3330is a C++ object with a non-trivial destructor, and if so, synthesize a
3331special @code{- (void) .cxx_destruct} method which runs
3332all such default destructors, in reverse order.
3333
3334The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3335methods thusly generated only operate on instance variables
3336declared in the current Objective-C class, and not those inherited
3337from superclasses.  It is the responsibility of the Objective-C
3338runtime to invoke all such methods in an object's inheritance
3339hierarchy.  The @code{- (id) .cxx_construct} methods are invoked
3340by the runtime immediately after a new object instance is allocated;
3341the @code{- (void) .cxx_destruct} methods are invoked immediately
3342before the runtime deallocates an object instance.
3343
3344As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3345support for invoking the @code{- (id) .cxx_construct} and
3346@code{- (void) .cxx_destruct} methods.
3347
3348@item -fobjc-direct-dispatch
3349@opindex fobjc-direct-dispatch
3350Allow fast jumps to the message dispatcher.  On Darwin this is
3351accomplished via the comm page.
3352
3353@item -fobjc-exceptions
3354@opindex fobjc-exceptions
3355Enable syntactic support for structured exception handling in
3356Objective-C, similar to what is offered by C++.  This option
3357is required to use the Objective-C keywords @code{@@try},
3358@code{@@throw}, @code{@@catch}, @code{@@finally} and
3359@code{@@synchronized}.  This option is available with both the GNU
3360runtime and the NeXT runtime (but not available in conjunction with
3361the NeXT runtime on Mac OS X 10.2 and earlier).
3362
3363@item -fobjc-gc
3364@opindex fobjc-gc
3365Enable garbage collection (GC) in Objective-C and Objective-C++
3366programs.  This option is only available with the NeXT runtime; the
3367GNU runtime has a different garbage collection implementation that
3368does not require special compiler flags.
3369
3370@item -fobjc-nilcheck
3371@opindex fobjc-nilcheck
3372For the NeXT runtime with version 2 of the ABI, check for a nil
3373receiver in method invocations before doing the actual method call.
3374This is the default and can be disabled using
3375@option{-fno-objc-nilcheck}.  Class methods and super calls are never
3376checked for nil in this way no matter what this flag is set to.
3377Currently this flag does nothing when the GNU runtime, or an older
3378version of the NeXT runtime ABI, is used.
3379
3380@item -fobjc-std=objc1
3381@opindex fobjc-std
3382Conform to the language syntax of Objective-C 1.0, the language
3383recognized by GCC 4.0.  This only affects the Objective-C additions to
3384the C/C++ language; it does not affect conformance to C/C++ standards,
3385which is controlled by the separate C/C++ dialect option flags.  When
3386this option is used with the Objective-C or Objective-C++ compiler,
3387any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3388This is useful if you need to make sure that your Objective-C code can
3389be compiled with older versions of GCC@.
3390
3391@item -freplace-objc-classes
3392@opindex freplace-objc-classes
3393Emit a special marker instructing @command{ld(1)} not to statically link in
3394the resulting object file, and allow @command{dyld(1)} to load it in at
3395run time instead.  This is used in conjunction with the Fix-and-Continue
3396debugging mode, where the object file in question may be recompiled and
3397dynamically reloaded in the course of program execution, without the need
3398to restart the program itself.  Currently, Fix-and-Continue functionality
3399is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3400and later.
3401
3402@item -fzero-link
3403@opindex fzero-link
3404When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3405to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3406compile time) with static class references that get initialized at load time,
3407which improves run-time performance.  Specifying the @option{-fzero-link} flag
3408suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3409to be retained.  This is useful in Zero-Link debugging mode, since it allows
3410for individual class implementations to be modified during program execution.
3411The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3412regardless of command-line options.
3413
3414@item -fno-local-ivars
3415@opindex fno-local-ivars
3416@opindex flocal-ivars
3417By default instance variables in Objective-C can be accessed as if
3418they were local variables from within the methods of the class they're
3419declared in.  This can lead to shadowing between instance variables
3420and other variables declared either locally inside a class method or
3421globally with the same name.  Specifying the @option{-fno-local-ivars}
3422flag disables this behavior thus avoiding variable shadowing issues.
3423
3424@item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3425@opindex fivar-visibility
3426Set the default instance variable visibility to the specified option
3427so that instance variables declared outside the scope of any access
3428modifier directives default to the specified visibility.
3429
3430@item -gen-decls
3431@opindex gen-decls
3432Dump interface declarations for all classes seen in the source file to a
3433file named @file{@var{sourcename}.decl}.
3434
3435@item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3436@opindex Wassign-intercept
3437@opindex Wno-assign-intercept
3438Warn whenever an Objective-C assignment is being intercepted by the
3439garbage collector.
3440
3441@item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3442@opindex Wno-protocol
3443@opindex Wprotocol
3444If a class is declared to implement a protocol, a warning is issued for
3445every method in the protocol that is not implemented by the class.  The
3446default behavior is to issue a warning for every method not explicitly
3447implemented in the class, even if a method implementation is inherited
3448from the superclass.  If you use the @option{-Wno-protocol} option, then
3449methods inherited from the superclass are considered to be implemented,
3450and no warning is issued for them.
3451
3452@item -Wselector @r{(Objective-C and Objective-C++ only)}
3453@opindex Wselector
3454@opindex Wno-selector
3455Warn if multiple methods of different types for the same selector are
3456found during compilation.  The check is performed on the list of methods
3457in the final stage of compilation.  Additionally, a check is performed
3458for each selector appearing in a @code{@@selector(@dots{})}
3459expression, and a corresponding method for that selector has been found
3460during compilation.  Because these checks scan the method table only at
3461the end of compilation, these warnings are not produced if the final
3462stage of compilation is not reached, for example because an error is
3463found during compilation, or because the @option{-fsyntax-only} option is
3464being used.
3465
3466@item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3467@opindex Wstrict-selector-match
3468@opindex Wno-strict-selector-match
3469Warn if multiple methods with differing argument and/or return types are
3470found for a given selector when attempting to send a message using this
3471selector to a receiver of type @code{id} or @code{Class}.  When this flag
3472is off (which is the default behavior), the compiler omits such warnings
3473if any differences found are confined to types that share the same size
3474and alignment.
3475
3476@item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3477@opindex Wundeclared-selector
3478@opindex Wno-undeclared-selector
3479Warn if a @code{@@selector(@dots{})} expression referring to an
3480undeclared selector is found.  A selector is considered undeclared if no
3481method with that name has been declared before the
3482@code{@@selector(@dots{})} expression, either explicitly in an
3483@code{@@interface} or @code{@@protocol} declaration, or implicitly in
3484an @code{@@implementation} section.  This option always performs its
3485checks as soon as a @code{@@selector(@dots{})} expression is found,
3486while @option{-Wselector} only performs its checks in the final stage of
3487compilation.  This also enforces the coding style convention
3488that methods and selectors must be declared before being used.
3489
3490@item -print-objc-runtime-info
3491@opindex print-objc-runtime-info
3492Generate C header describing the largest structure that is passed by
3493value, if any.
3494
3495@end table
3496
3497@node Diagnostic Message Formatting Options
3498@section Options to Control Diagnostic Messages Formatting
3499@cindex options to control diagnostics formatting
3500@cindex diagnostic messages
3501@cindex message formatting
3502
3503Traditionally, diagnostic messages have been formatted irrespective of
3504the output device's aspect (e.g.@: its width, @dots{}).  You can use the
3505options described below
3506to control the formatting algorithm for diagnostic messages,
3507e.g.@: how many characters per line, how often source location
3508information should be reported.  Note that some language front ends may not
3509honor these options.
3510
3511@table @gcctabopt
3512@item -fmessage-length=@var{n}
3513@opindex fmessage-length
3514Try to format error messages so that they fit on lines of about
3515@var{n} characters.  If @var{n} is zero, then no line-wrapping is
3516done; each error message appears on a single line.  This is the
3517default for all front ends.
3518
3519@item -fdiagnostics-show-location=once
3520@opindex fdiagnostics-show-location
3521Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
3522reporter to emit source location information @emph{once}; that is, in
3523case the message is too long to fit on a single physical line and has to
3524be wrapped, the source location won't be emitted (as prefix) again,
3525over and over, in subsequent continuation lines.  This is the default
3526behavior.
3527
3528@item -fdiagnostics-show-location=every-line
3529Only meaningful in line-wrapping mode.  Instructs the diagnostic
3530messages reporter to emit the same source location information (as
3531prefix) for physical lines that result from the process of breaking
3532a message which is too long to fit on a single line.
3533
3534@item -fdiagnostics-color[=@var{WHEN}]
3535@itemx -fno-diagnostics-color
3536@opindex fdiagnostics-color
3537@cindex highlight, color
3538@vindex GCC_COLORS @r{environment variable}
3539Use color in diagnostics.  @var{WHEN} is @samp{never}, @samp{always},
3540or @samp{auto}.  The default depends on how the compiler has been configured,
3541it can be any of the above @var{WHEN} options or also @samp{never}
3542if @env{GCC_COLORS} environment variable isn't present in the environment,
3543and @samp{auto} otherwise.
3544@samp{auto} means to use color only when the standard error is a terminal.
3545The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3546aliases for @option{-fdiagnostics-color=always} and
3547@option{-fdiagnostics-color=never}, respectively.
3548
3549The colors are defined by the environment variable @env{GCC_COLORS}.
3550Its value is a colon-separated list of capabilities and Select Graphic
3551Rendition (SGR) substrings. SGR commands are interpreted by the
3552terminal or terminal emulator.  (See the section in the documentation
3553of your text terminal for permitted values and their meanings as
3554character attributes.)  These substring values are integers in decimal
3555representation and can be concatenated with semicolons.
3556Common values to concatenate include
3557@samp{1} for bold,
3558@samp{4} for underline,
3559@samp{5} for blink,
3560@samp{7} for inverse,
3561@samp{39} for default foreground color,
3562@samp{30} to @samp{37} for foreground colors,
3563@samp{90} to @samp{97} for 16-color mode foreground colors,
3564@samp{38;5;0} to @samp{38;5;255}
3565for 88-color and 256-color modes foreground colors,
3566@samp{49} for default background color,
3567@samp{40} to @samp{47} for background colors,
3568@samp{100} to @samp{107} for 16-color mode background colors,
3569and @samp{48;5;0} to @samp{48;5;255}
3570for 88-color and 256-color modes background colors.
3571
3572The default @env{GCC_COLORS} is
3573@smallexample
3574error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3575quote=01:fixit-insert=32:fixit-delete=31:\
3576diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3577type-diff=01;32
3578@end smallexample
3579@noindent
3580where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3581@samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3582@samp{01} is bold, and @samp{31} is red.
3583Setting @env{GCC_COLORS} to the empty string disables colors.
3584Supported capabilities are as follows.
3585
3586@table @code
3587@item error=
3588@vindex error GCC_COLORS @r{capability}
3589SGR substring for error: markers.
3590
3591@item warning=
3592@vindex warning GCC_COLORS @r{capability}
3593SGR substring for warning: markers.
3594
3595@item note=
3596@vindex note GCC_COLORS @r{capability}
3597SGR substring for note: markers.
3598
3599@item range1=
3600@vindex range1 GCC_COLORS @r{capability}
3601SGR substring for first additional range.
3602
3603@item range2=
3604@vindex range2 GCC_COLORS @r{capability}
3605SGR substring for second additional range.
3606
3607@item locus=
3608@vindex locus GCC_COLORS @r{capability}
3609SGR substring for location information, @samp{file:line} or
3610@samp{file:line:column} etc.
3611
3612@item quote=
3613@vindex quote GCC_COLORS @r{capability}
3614SGR substring for information printed within quotes.
3615
3616@item fixit-insert=
3617@vindex fixit-insert GCC_COLORS @r{capability}
3618SGR substring for fix-it hints suggesting text to
3619be inserted or replaced.
3620
3621@item fixit-delete=
3622@vindex fixit-delete GCC_COLORS @r{capability}
3623SGR substring for fix-it hints suggesting text to
3624be deleted.
3625
3626@item diff-filename=
3627@vindex diff-filename GCC_COLORS @r{capability}
3628SGR substring for filename headers within generated patches.
3629
3630@item diff-hunk=
3631@vindex diff-hunk GCC_COLORS @r{capability}
3632SGR substring for the starts of hunks within generated patches.
3633
3634@item diff-delete=
3635@vindex diff-delete GCC_COLORS @r{capability}
3636SGR substring for deleted lines within generated patches.
3637
3638@item diff-insert=
3639@vindex diff-insert GCC_COLORS @r{capability}
3640SGR substring for inserted lines within generated patches.
3641
3642@item type-diff=
3643@vindex type-diff GCC_COLORS @r{capability}
3644SGR substring for highlighting mismatching types within template
3645arguments in the C++ frontend.
3646@end table
3647
3648@item -fno-diagnostics-show-option
3649@opindex fno-diagnostics-show-option
3650@opindex fdiagnostics-show-option
3651By default, each diagnostic emitted includes text indicating the
3652command-line option that directly controls the diagnostic (if such an
3653option is known to the diagnostic machinery).  Specifying the
3654@option{-fno-diagnostics-show-option} flag suppresses that behavior.
3655
3656@item -fno-diagnostics-show-caret
3657@opindex fno-diagnostics-show-caret
3658@opindex fdiagnostics-show-caret
3659By default, each diagnostic emitted includes the original source line
3660and a caret @samp{^} indicating the column.  This option suppresses this
3661information.  The source line is truncated to @var{n} characters, if
3662the @option{-fmessage-length=n} option is given.  When the output is done
3663to the terminal, the width is limited to the width given by the
3664@env{COLUMNS} environment variable or, if not set, to the terminal width.
3665
3666@item -fdiagnostics-parseable-fixits
3667@opindex fdiagnostics-parseable-fixits
3668Emit fix-it hints in a machine-parseable format, suitable for consumption
3669by IDEs.  For each fix-it, a line will be printed after the relevant
3670diagnostic, starting with the string ``fix-it:''.  For example:
3671
3672@smallexample
3673fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3674@end smallexample
3675
3676The location is expressed as a half-open range, expressed as a count of
3677bytes, starting at byte 1 for the initial column.  In the above example,
3678bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3679given string:
3680
3681@smallexample
368200000000011111111112222222222
368312345678901234567890123456789
3684  gtk_widget_showall (dlg);
3685  ^^^^^^^^^^^^^^^^^^
3686  gtk_widget_show_all
3687@end smallexample
3688
3689The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3690newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3691(e.g. vertical tab as ``\013'').
3692
3693An empty replacement string indicates that the given range is to be removed.
3694An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3695be inserted at the given position.
3696
3697@item -fdiagnostics-generate-patch
3698@opindex fdiagnostics-generate-patch
3699Print fix-it hints to stderr in unified diff format, after any diagnostics
3700are printed.  For example:
3701
3702@smallexample
3703--- test.c
3704+++ test.c
3705@@ -42,5 +42,5 @@
3706
3707 void show_cb(GtkDialog *dlg)
3708 @{
3709-  gtk_widget_showall(dlg);
3710+  gtk_widget_show_all(dlg);
3711 @}
3712
3713@end smallexample
3714
3715The diff may or may not be colorized, following the same rules
3716as for diagnostics (see @option{-fdiagnostics-color}).
3717
3718@item -fdiagnostics-show-template-tree
3719@opindex fdiagnostics-show-template-tree
3720
3721In the C++ frontend, when printing diagnostics showing mismatching
3722template types, such as:
3723
3724@smallexample
3725  could not convert 'std::map<int, std::vector<double> >()'
3726    from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3727@end smallexample
3728
3729the @option{-fdiagnostics-show-template-tree} flag enables printing a
3730tree-like structure showing the common and differing parts of the types,
3731such as:
3732
3733@smallexample
3734  map<
3735    [...],
3736    vector<
3737      [double != float]>>
3738@end smallexample
3739
3740The parts that differ are highlighted with color (``double'' and
3741``float'' in this case).
3742
3743@item -fno-elide-type
3744@opindex fno-elide-type
3745@opindex felide-type
3746By default when the C++ frontend prints diagnostics showing mismatching
3747template types, common parts of the types are printed as ``[...]'' to
3748simplify the error message.  For example:
3749
3750@smallexample
3751  could not convert 'std::map<int, std::vector<double> >()'
3752    from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3753@end smallexample
3754
3755Specifying the @option{-fno-elide-type} flag suppresses that behavior.
3756This flag also affects the output of the
3757@option{-fdiagnostics-show-template-tree} flag.
3758
3759@item -fno-show-column
3760@opindex fno-show-column
3761Do not print column numbers in diagnostics.  This may be necessary if
3762diagnostics are being scanned by a program that does not understand the
3763column numbers, such as @command{dejagnu}.
3764
3765@end table
3766
3767@node Warning Options
3768@section Options to Request or Suppress Warnings
3769@cindex options to control warnings
3770@cindex warning messages
3771@cindex messages, warning
3772@cindex suppressing warnings
3773
3774Warnings are diagnostic messages that report constructions that
3775are not inherently erroneous but that are risky or suggest there
3776may have been an error.
3777
3778The following language-independent options do not enable specific
3779warnings but control the kinds of diagnostics produced by GCC@.
3780
3781@table @gcctabopt
3782@cindex syntax checking
3783@item -fsyntax-only
3784@opindex fsyntax-only
3785Check the code for syntax errors, but don't do anything beyond that.
3786
3787@item -fmax-errors=@var{n}
3788@opindex fmax-errors
3789Limits the maximum number of error messages to @var{n}, at which point
3790GCC bails out rather than attempting to continue processing the source
3791code.  If @var{n} is 0 (the default), there is no limit on the number
3792of error messages produced.  If @option{-Wfatal-errors} is also
3793specified, then @option{-Wfatal-errors} takes precedence over this
3794option.
3795
3796@item -w
3797@opindex w
3798Inhibit all warning messages.
3799
3800@item -Werror
3801@opindex Werror
3802@opindex Wno-error
3803Make all warnings into errors.
3804
3805@item -Werror=
3806@opindex Werror=
3807@opindex Wno-error=
3808Make the specified warning into an error.  The specifier for a warning
3809is appended; for example @option{-Werror=switch} turns the warnings
3810controlled by @option{-Wswitch} into errors.  This switch takes a
3811negative form, to be used to negate @option{-Werror} for specific
3812warnings; for example @option{-Wno-error=switch} makes
3813@option{-Wswitch} warnings not be errors, even when @option{-Werror}
3814is in effect.
3815
3816The warning message for each controllable warning includes the
3817option that controls the warning.  That option can then be used with
3818@option{-Werror=} and @option{-Wno-error=} as described above.
3819(Printing of the option in the warning message can be disabled using the
3820@option{-fno-diagnostics-show-option} flag.)
3821
3822Note that specifying @option{-Werror=}@var{foo} automatically implies
3823@option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
3824imply anything.
3825
3826@item -Wfatal-errors
3827@opindex Wfatal-errors
3828@opindex Wno-fatal-errors
3829This option causes the compiler to abort compilation on the first error
3830occurred rather than trying to keep going and printing further error
3831messages.
3832
3833@end table
3834
3835You can request many specific warnings with options beginning with
3836@samp{-W}, for example @option{-Wimplicit} to request warnings on
3837implicit declarations.  Each of these specific warning options also
3838has a negative form beginning @samp{-Wno-} to turn off warnings; for
3839example, @option{-Wno-implicit}.  This manual lists only one of the
3840two forms, whichever is not the default.  For further
3841language-specific options also refer to @ref{C++ Dialect Options} and
3842@ref{Objective-C and Objective-C++ Dialect Options}.
3843
3844Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3845options, such as @option{-Wunused}, which may turn on further options,
3846such as @option{-Wunused-value}. The combined effect of positive and
3847negative forms is that more specific options have priority over less
3848specific ones, independently of their position in the command-line. For
3849options of the same specificity, the last one takes effect. Options
3850enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3851as if they appeared at the end of the command-line.
3852
3853When an unrecognized warning option is requested (e.g.,
3854@option{-Wunknown-warning}), GCC emits a diagnostic stating
3855that the option is not recognized.  However, if the @option{-Wno-} form
3856is used, the behavior is slightly different: no diagnostic is
3857produced for @option{-Wno-unknown-warning} unless other diagnostics
3858are being produced.  This allows the use of new @option{-Wno-} options
3859with old compilers, but if something goes wrong, the compiler
3860warns that an unrecognized option is present.
3861
3862@table @gcctabopt
3863@item -Wpedantic
3864@itemx -pedantic
3865@opindex pedantic
3866@opindex Wpedantic
3867Issue all the warnings demanded by strict ISO C and ISO C++;
3868reject all programs that use forbidden extensions, and some other
3869programs that do not follow ISO C and ISO C++.  For ISO C, follows the
3870version of the ISO C standard specified by any @option{-std} option used.
3871
3872Valid ISO C and ISO C++ programs should compile properly with or without
3873this option (though a rare few require @option{-ansi} or a
3874@option{-std} option specifying the required version of ISO C)@.  However,
3875without this option, certain GNU extensions and traditional C and C++
3876features are supported as well.  With this option, they are rejected.
3877
3878@option{-Wpedantic} does not cause warning messages for use of the
3879alternate keywords whose names begin and end with @samp{__}.  Pedantic
3880warnings are also disabled in the expression that follows
3881@code{__extension__}.  However, only system header files should use
3882these escape routes; application programs should avoid them.
3883@xref{Alternate Keywords}.
3884
3885Some users try to use @option{-Wpedantic} to check programs for strict ISO
3886C conformance.  They soon find that it does not do quite what they want:
3887it finds some non-ISO practices, but not all---only those for which
3888ISO C @emph{requires} a diagnostic, and some others for which
3889diagnostics have been added.
3890
3891A feature to report any failure to conform to ISO C might be useful in
3892some instances, but would require considerable additional work and would
3893be quite different from @option{-Wpedantic}.  We don't have plans to
3894support such a feature in the near future.
3895
3896Where the standard specified with @option{-std} represents a GNU
3897extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3898corresponding @dfn{base standard}, the version of ISO C on which the GNU
3899extended dialect is based.  Warnings from @option{-Wpedantic} are given
3900where they are required by the base standard.  (It does not make sense
3901for such warnings to be given only for features not in the specified GNU
3902C dialect, since by definition the GNU dialects of C include all
3903features the compiler supports with the given option, and there would be
3904nothing to warn about.)
3905
3906@item -pedantic-errors
3907@opindex pedantic-errors
3908Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3909requires a diagnostic, in some cases where there is undefined behavior
3910at compile-time and in some other cases that do not prevent compilation
3911of programs that are valid according to the standard. This is not
3912equivalent to @option{-Werror=pedantic}, since there are errors enabled
3913by this option and not enabled by the latter and vice versa.
3914
3915@item -Wall
3916@opindex Wall
3917@opindex Wno-all
3918This enables all the warnings about constructions that some users
3919consider questionable, and that are easy to avoid (or modify to
3920prevent the warning), even in conjunction with macros.  This also
3921enables some language-specific warnings described in @ref{C++ Dialect
3922Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3923
3924@option{-Wall} turns on the following warning flags:
3925
3926@gccoptlist{-Waddress   @gol
3927-Warray-bounds=1 @r{(only with} @option{-O2}@r{)}  @gol
3928-Wbool-compare  @gol
3929-Wbool-operation  @gol
3930-Wc++11-compat  -Wc++14-compat  @gol
3931-Wcatch-value @r{(C++ and Objective-C++ only)}  @gol
3932-Wchar-subscripts  @gol
3933-Wcomment  @gol
3934-Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
3935-Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3936-Wformat   @gol
3937-Wint-in-bool-context  @gol
3938-Wimplicit @r{(C and Objective-C only)} @gol
3939-Wimplicit-int @r{(C and Objective-C only)} @gol
3940-Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3941-Winit-self @r{(only for C++)} @gol
3942-Wlogical-not-parentheses @gol
3943-Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}  @gol
3944-Wmaybe-uninitialized @gol
3945-Wmemset-elt-size @gol
3946-Wmemset-transposed-args @gol
3947-Wmisleading-indentation @r{(only for C/C++)} @gol
3948-Wmissing-attributes @gol
3949-Wmissing-braces @r{(only for C/ObjC)} @gol
3950-Wmultistatement-macros  @gol
3951-Wnarrowing @r{(only for C++)}  @gol
3952-Wnonnull  @gol
3953-Wnonnull-compare  @gol
3954-Wopenmp-simd @gol
3955-Wparentheses  @gol
3956-Wpointer-sign  @gol
3957-Wreorder   @gol
3958-Wrestrict   @gol
3959-Wreturn-type  @gol
3960-Wsequence-point  @gol
3961-Wsign-compare @r{(only in C++)}  @gol
3962-Wsizeof-pointer-div @gol
3963-Wsizeof-pointer-memaccess @gol
3964-Wstrict-aliasing  @gol
3965-Wstrict-overflow=1  @gol
3966-Wstringop-truncation  @gol
3967-Wswitch  @gol
3968-Wtautological-compare  @gol
3969-Wtrigraphs  @gol
3970-Wuninitialized  @gol
3971-Wunknown-pragmas  @gol
3972-Wunused-function  @gol
3973-Wunused-label     @gol
3974-Wunused-value     @gol
3975-Wunused-variable  @gol
3976-Wvolatile-register-var @gol
3977}
3978
3979Note that some warning flags are not implied by @option{-Wall}.  Some of
3980them warn about constructions that users generally do not consider
3981questionable, but which occasionally you might wish to check for;
3982others warn about constructions that are necessary or hard to avoid in
3983some cases, and there is no simple way to modify the code to suppress
3984the warning. Some of them are enabled by @option{-Wextra} but many of
3985them must be enabled individually.
3986
3987@item -Wextra
3988@opindex W
3989@opindex Wextra
3990@opindex Wno-extra
3991This enables some extra warning flags that are not enabled by
3992@option{-Wall}. (This option used to be called @option{-W}.  The older
3993name is still supported, but the newer name is more descriptive.)
3994
3995@gccoptlist{-Wclobbered  @gol
3996-Wcast-function-type  @gol
3997-Wempty-body  @gol
3998-Wignored-qualifiers @gol
3999-Wimplicit-fallthrough=3 @gol
4000-Wmissing-field-initializers  @gol
4001-Wmissing-parameter-type @r{(C only)}  @gol
4002-Wold-style-declaration @r{(C only)}  @gol
4003-Woverride-init  @gol
4004-Wsign-compare @r{(C only)} @gol
4005-Wtype-limits  @gol
4006-Wuninitialized  @gol
4007-Wshift-negative-value @r{(in C++03 and in C99 and newer)}  @gol
4008-Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
4009-Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}  @gol
4010}
4011
4012The option @option{-Wextra} also prints warning messages for the
4013following cases:
4014
4015@itemize @bullet
4016
4017@item
4018A pointer is compared against integer zero with @code{<}, @code{<=},
4019@code{>}, or @code{>=}.
4020
4021@item
4022(C++ only) An enumerator and a non-enumerator both appear in a
4023conditional expression.
4024
4025@item
4026(C++ only) Ambiguous virtual bases.
4027
4028@item
4029(C++ only) Subscripting an array that has been declared @code{register}.
4030
4031@item
4032(C++ only) Taking the address of a variable that has been declared
4033@code{register}.
4034
4035@item
4036(C++ only) A base class is not initialized in the copy constructor
4037of a derived class.
4038
4039@end itemize
4040
4041@item -Wchar-subscripts
4042@opindex Wchar-subscripts
4043@opindex Wno-char-subscripts
4044Warn if an array subscript has type @code{char}.  This is a common cause
4045of error, as programmers often forget that this type is signed on some
4046machines.
4047This warning is enabled by @option{-Wall}.
4048
4049@item -Wchkp
4050@opindex Wchkp
4051Warn about an invalid memory access that is found by Pointer Bounds Checker
4052(@option{-fcheck-pointer-bounds}).
4053
4054@item -Wno-coverage-mismatch
4055@opindex Wno-coverage-mismatch
4056Warn if feedback profiles do not match when using the
4057@option{-fprofile-use} option.
4058If a source file is changed between compiling with @option{-fprofile-gen} and
4059with @option{-fprofile-use}, the files with the profile feedback can fail
4060to match the source file and GCC cannot use the profile feedback
4061information.  By default, this warning is enabled and is treated as an
4062error.  @option{-Wno-coverage-mismatch} can be used to disable the
4063warning or @option{-Wno-error=coverage-mismatch} can be used to
4064disable the error.  Disabling the error for this warning can result in
4065poorly optimized code and is useful only in the
4066case of very minor changes such as bug fixes to an existing code-base.
4067Completely disabling the warning is not recommended.
4068
4069@item -Wno-cpp
4070@r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4071
4072Suppress warning messages emitted by @code{#warning} directives.
4073
4074@item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4075@opindex Wdouble-promotion
4076@opindex Wno-double-promotion
4077Give a warning when a value of type @code{float} is implicitly
4078promoted to @code{double}.  CPUs with a 32-bit ``single-precision''
4079floating-point unit implement @code{float} in hardware, but emulate
4080@code{double} in software.  On such a machine, doing computations
4081using @code{double} values is much more expensive because of the
4082overhead required for software emulation.
4083
4084It is easy to accidentally do computations with @code{double} because
4085floating-point literals are implicitly of type @code{double}.  For
4086example, in:
4087@smallexample
4088@group
4089float area(float radius)
4090@{
4091   return 3.14159 * radius * radius;
4092@}
4093@end group
4094@end smallexample
4095the compiler performs the entire computation with @code{double}
4096because the floating-point literal is a @code{double}.
4097
4098@item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4099@opindex Wduplicate-decl-specifier
4100@opindex Wno-duplicate-decl-specifier
4101Warn if a declaration has duplicate @code{const}, @code{volatile},
4102@code{restrict} or @code{_Atomic} specifier.  This warning is enabled by
4103@option{-Wall}.
4104
4105@item -Wformat
4106@itemx -Wformat=@var{n}
4107@opindex Wformat
4108@opindex Wno-format
4109@opindex ffreestanding
4110@opindex fno-builtin
4111@opindex Wformat=
4112Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4113the arguments supplied have types appropriate to the format string
4114specified, and that the conversions specified in the format string make
4115sense.  This includes standard functions, and others specified by format
4116attributes (@pxref{Function Attributes}), in the @code{printf},
4117@code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4118not in the C standard) families (or other target-specific families).
4119Which functions are checked without format attributes having been
4120specified depends on the standard version selected, and such checks of
4121functions without the attribute specified are disabled by
4122@option{-ffreestanding} or @option{-fno-builtin}.
4123
4124The formats are checked against the format features supported by GNU
4125libc version 2.2.  These include all ISO C90 and C99 features, as well
4126as features from the Single Unix Specification and some BSD and GNU
4127extensions.  Other library implementations may not support all these
4128features; GCC does not support warning about features that go beyond a
4129particular library's limitations.  However, if @option{-Wpedantic} is used
4130with @option{-Wformat}, warnings are given about format features not
4131in the selected standard version (but not for @code{strfmon} formats,
4132since those are not in any version of the C standard).  @xref{C Dialect
4133Options,,Options Controlling C Dialect}.
4134
4135@table @gcctabopt
4136@item -Wformat=1
4137@itemx -Wformat
4138@opindex Wformat
4139@opindex Wformat=1
4140Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4141@option{-Wno-format} is equivalent to @option{-Wformat=0}.  Since
4142@option{-Wformat} also checks for null format arguments for several
4143functions, @option{-Wformat} also implies @option{-Wnonnull}.  Some
4144aspects of this level of format checking can be disabled by the
4145options: @option{-Wno-format-contains-nul},
4146@option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4147@option{-Wformat} is enabled by @option{-Wall}.
4148
4149@item -Wno-format-contains-nul
4150@opindex Wno-format-contains-nul
4151@opindex Wformat-contains-nul
4152If @option{-Wformat} is specified, do not warn about format strings that
4153contain NUL bytes.
4154
4155@item -Wno-format-extra-args
4156@opindex Wno-format-extra-args
4157@opindex Wformat-extra-args
4158If @option{-Wformat} is specified, do not warn about excess arguments to a
4159@code{printf} or @code{scanf} format function.  The C standard specifies
4160that such arguments are ignored.
4161
4162Where the unused arguments lie between used arguments that are
4163specified with @samp{$} operand number specifications, normally
4164warnings are still given, since the implementation could not know what
4165type to pass to @code{va_arg} to skip the unused arguments.  However,
4166in the case of @code{scanf} formats, this option suppresses the
4167warning if the unused arguments are all pointers, since the Single
4168Unix Specification says that such unused arguments are allowed.
4169
4170@item -Wformat-overflow
4171@itemx -Wformat-overflow=@var{level}
4172@opindex Wformat-overflow
4173@opindex Wno-format-overflow
4174Warn about calls to formatted input/output functions such as @code{sprintf}
4175and @code{vsprintf} that might overflow the destination buffer.  When the
4176exact number of bytes written by a format directive cannot be determined
4177at compile-time it is estimated based on heuristics that depend on the
4178@var{level} argument and on optimization.  While enabling optimization
4179will in most cases improve the accuracy of the warning, it may also
4180result in false positives.
4181
4182@table @gcctabopt
4183@item -Wformat-overflow
4184@itemx -Wformat-overflow=1
4185@opindex Wformat-overflow
4186@opindex Wno-format-overflow
4187Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4188employs a conservative approach that warns only about calls that most
4189likely overflow the buffer.  At this level, numeric arguments to format
4190directives with unknown values are assumed to have the value of one, and
4191strings of unknown length to be empty.  Numeric arguments that are known
4192to be bounded to a subrange of their type, or string arguments whose output
4193is bounded either by their directive's precision or by a finite set of
4194string literals, are assumed to take on the value within the range that
4195results in the most bytes on output.  For example, the call to @code{sprintf}
4196below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4197the terminating NUL character (@code{'\0'}) appended by the function
4198to the destination buffer will be written past its end.  Increasing
4199the size of the buffer by a single byte is sufficient to avoid the
4200warning, though it may not be sufficient to avoid the overflow.
4201
4202@smallexample
4203void f (int a, int b)
4204@{
4205  char buf [13];
4206  sprintf (buf, "a = %i, b = %i\n", a, b);
4207@}
4208@end smallexample
4209
4210@item -Wformat-overflow=2
4211Level @var{2} warns also about calls that might overflow the destination
4212buffer given an argument of sufficient length or magnitude.  At level
4213@var{2}, unknown numeric arguments are assumed to have the minimum
4214representable value for signed types with a precision greater than 1, and
4215the maximum representable value otherwise.  Unknown string arguments whose
4216length cannot be assumed to be bounded either by the directive's precision,
4217or by a finite set of string literals they may evaluate to, or the character
4218array they may point to, are assumed to be 1 character long.
4219
4220At level @var{2}, the call in the example above is again diagnosed, but
4221this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4222@code{%i} directive will write some of its digits beyond the end of
4223the destination buffer.  To make the call safe regardless of the values
4224of the two variables, the size of the destination buffer must be increased
4225to at least 34 bytes.  GCC includes the minimum size of the buffer in
4226an informational note following the warning.
4227
4228An alternative to increasing the size of the destination buffer is to
4229constrain the range of formatted values.  The maximum length of string
4230arguments can be bounded by specifying the precision in the format
4231directive.  When numeric arguments of format directives can be assumed
4232to be bounded by less than the precision of their type, choosing
4233an appropriate length modifier to the format specifier will reduce
4234the required buffer size.  For example, if @var{a} and @var{b} in the
4235example above can be assumed to be within the precision of
4236the @code{short int} type then using either the @code{%hi} format
4237directive or casting the argument to @code{short} reduces the maximum
4238required size of the buffer to 24 bytes.
4239
4240@smallexample
4241void f (int a, int b)
4242@{
4243  char buf [23];
4244  sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4245@}
4246@end smallexample
4247@end table
4248
4249@item -Wno-format-zero-length
4250@opindex Wno-format-zero-length
4251@opindex Wformat-zero-length
4252If @option{-Wformat} is specified, do not warn about zero-length formats.
4253The C standard specifies that zero-length formats are allowed.
4254
4255
4256@item -Wformat=2
4257@opindex Wformat=2
4258Enable @option{-Wformat} plus additional format checks.  Currently
4259equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4260-Wformat-y2k}.
4261
4262@item -Wformat-nonliteral
4263@opindex Wformat-nonliteral
4264@opindex Wno-format-nonliteral
4265If @option{-Wformat} is specified, also warn if the format string is not a
4266string literal and so cannot be checked, unless the format function
4267takes its format arguments as a @code{va_list}.
4268
4269@item -Wformat-security
4270@opindex Wformat-security
4271@opindex Wno-format-security
4272If @option{-Wformat} is specified, also warn about uses of format
4273functions that represent possible security problems.  At present, this
4274warns about calls to @code{printf} and @code{scanf} functions where the
4275format string is not a string literal and there are no format arguments,
4276as in @code{printf (foo);}.  This may be a security hole if the format
4277string came from untrusted input and contains @samp{%n}.  (This is
4278currently a subset of what @option{-Wformat-nonliteral} warns about, but
4279in future warnings may be added to @option{-Wformat-security} that are not
4280included in @option{-Wformat-nonliteral}.)
4281
4282@item -Wformat-signedness
4283@opindex Wformat-signedness
4284@opindex Wno-format-signedness
4285If @option{-Wformat} is specified, also warn if the format string
4286requires an unsigned argument and the argument is signed and vice versa.
4287
4288@item -Wformat-truncation
4289@itemx -Wformat-truncation=@var{level}
4290@opindex Wformat-truncation
4291@opindex Wno-format-truncation
4292Warn about calls to formatted input/output functions such as @code{snprintf}
4293and @code{vsnprintf} that might result in output truncation.  When the exact
4294number of bytes written by a format directive cannot be determined at
4295compile-time it is estimated based on heuristics that depend on
4296the @var{level} argument and on optimization.  While enabling optimization
4297will in most cases improve the accuracy of the warning, it may also result
4298in false positives.  Except as noted otherwise, the option uses the same
4299logic @option{-Wformat-overflow}.
4300
4301@table @gcctabopt
4302@item -Wformat-truncation
4303@itemx -Wformat-truncation=1
4304@opindex Wformat-truncation
4305@opindex Wno-format-overflow
4306Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4307employs a conservative approach that warns only about calls to bounded
4308functions whose return value is unused and that will most likely result
4309in output truncation.
4310
4311@item -Wformat-truncation=2
4312Level @var{2} warns also about calls to bounded functions whose return
4313value is used and that might result in truncation given an argument of
4314sufficient length or magnitude.
4315@end table
4316
4317@item -Wformat-y2k
4318@opindex Wformat-y2k
4319@opindex Wno-format-y2k
4320If @option{-Wformat} is specified, also warn about @code{strftime}
4321formats that may yield only a two-digit year.
4322@end table
4323
4324@item -Wnonnull
4325@opindex Wnonnull
4326@opindex Wno-nonnull
4327Warn about passing a null pointer for arguments marked as
4328requiring a non-null value by the @code{nonnull} function attribute.
4329
4330@option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
4331can be disabled with the @option{-Wno-nonnull} option.
4332
4333@item -Wnonnull-compare
4334@opindex Wnonnull-compare
4335@opindex Wno-nonnull-compare
4336Warn when comparing an argument marked with the @code{nonnull}
4337function attribute against null inside the function.
4338
4339@option{-Wnonnull-compare} is included in @option{-Wall}.  It
4340can be disabled with the @option{-Wno-nonnull-compare} option.
4341
4342@item -Wnull-dereference
4343@opindex Wnull-dereference
4344@opindex Wno-null-dereference
4345Warn if the compiler detects paths that trigger erroneous or
4346undefined behavior due to dereferencing a null pointer.  This option
4347is only active when @option{-fdelete-null-pointer-checks} is active,
4348which is enabled by optimizations in most targets.  The precision of
4349the warnings depends on the optimization options used.
4350
4351@item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4352@opindex Winit-self
4353@opindex Wno-init-self
4354Warn about uninitialized variables that are initialized with themselves.
4355Note this option can only be used with the @option{-Wuninitialized} option.
4356
4357For example, GCC warns about @code{i} being uninitialized in the
4358following snippet only when @option{-Winit-self} has been specified:
4359@smallexample
4360@group
4361int f()
4362@{
4363  int i = i;
4364  return i;
4365@}
4366@end group
4367@end smallexample
4368
4369This warning is enabled by @option{-Wall} in C++.
4370
4371@item -Wimplicit-int @r{(C and Objective-C only)}
4372@opindex Wimplicit-int
4373@opindex Wno-implicit-int
4374Warn when a declaration does not specify a type.
4375This warning is enabled by @option{-Wall}.
4376
4377@item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4378@opindex Wimplicit-function-declaration
4379@opindex Wno-implicit-function-declaration
4380Give a warning whenever a function is used before being declared. In
4381C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4382enabled by default and it is made into an error by
4383@option{-pedantic-errors}. This warning is also enabled by
4384@option{-Wall}.
4385
4386@item -Wimplicit @r{(C and Objective-C only)}
4387@opindex Wimplicit
4388@opindex Wno-implicit
4389Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4390This warning is enabled by @option{-Wall}.
4391
4392@item -Wimplicit-fallthrough
4393@opindex Wimplicit-fallthrough
4394@opindex Wno-implicit-fallthrough
4395@option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4396and @option{-Wno-implicit-fallthrough} is the same as
4397@option{-Wimplicit-fallthrough=0}.
4398
4399@item -Wimplicit-fallthrough=@var{n}
4400@opindex Wimplicit-fallthrough=
4401Warn when a switch case falls through.  For example:
4402
4403@smallexample
4404@group
4405switch (cond)
4406  @{
4407  case 1:
4408    a = 1;
4409    break;
4410  case 2:
4411    a = 2;
4412  case 3:
4413    a = 3;
4414    break;
4415  @}
4416@end group
4417@end smallexample
4418
4419This warning does not warn when the last statement of a case cannot
4420fall through, e.g. when there is a return statement or a call to function
4421declared with the noreturn attribute.  @option{-Wimplicit-fallthrough=}
4422also takes into account control flow statements, such as ifs, and only
4423warns when appropriate.  E.g.@:
4424
4425@smallexample
4426@group
4427switch (cond)
4428  @{
4429  case 1:
4430    if (i > 3) @{
4431      bar (5);
4432      break;
4433    @} else if (i < 1) @{
4434      bar (0);
4435    @} else
4436      return;
4437  default:
4438    @dots{}
4439  @}
4440@end group
4441@end smallexample
4442
4443Since there are occasions where a switch case fall through is desirable,
4444GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4445to be used along with a null statement to suppress this warning that
4446would normally occur:
4447
4448@smallexample
4449@group
4450switch (cond)
4451  @{
4452  case 1:
4453    bar (0);
4454    __attribute__ ((fallthrough));
4455  default:
4456    @dots{}
4457  @}
4458@end group
4459@end smallexample
4460
4461C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4462warning using @code{[[fallthrough]];} instead of the GNU attribute.  In C++11
4463or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4464Instead of these attributes, it is also possible to add a fallthrough comment
4465to silence the warning.  The whole body of the C or C++ style comment should
4466match the given regular expressions listed below.  The option argument @var{n}
4467specifies what kind of comments are accepted:
4468
4469@itemize @bullet
4470
4471@item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4472
4473@item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4474expression, any comment is used as fallthrough comment.
4475
4476@item @option{-Wimplicit-fallthrough=2} case insensitively matches
4477@code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4478
4479@item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4480following regular expressions:
4481
4482@itemize @bullet
4483
4484@item @code{-fallthrough}
4485
4486@item @code{@@fallthrough@@}
4487
4488@item @code{lint -fallthrough[ \t]*}
4489
4490@item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4491
4492@item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4493
4494@item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4495
4496@end itemize
4497
4498@item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4499following regular expressions:
4500
4501@itemize @bullet
4502
4503@item @code{-fallthrough}
4504
4505@item @code{@@fallthrough@@}
4506
4507@item @code{lint -fallthrough[ \t]*}
4508
4509@item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4510
4511@end itemize
4512
4513@item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4514fallthrough comments, only attributes disable the warning.
4515
4516@end itemize
4517
4518The comment needs to be followed after optional whitespace and other comments
4519by @code{case} or @code{default} keywords or by a user label that precedes some
4520@code{case} or @code{default} label.
4521
4522@smallexample
4523@group
4524switch (cond)
4525  @{
4526  case 1:
4527    bar (0);
4528    /* FALLTHRU */
4529  default:
4530    @dots{}
4531  @}
4532@end group
4533@end smallexample
4534
4535The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4536
4537@item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
4538@opindex Wif-not-aligned
4539@opindex Wno-if-not-aligned
4540Control if warning triggered by the @code{warn_if_not_aligned} attribute
4541should be issued.  This is enabled by default.
4542Use @option{-Wno-if-not-aligned} to disable it.
4543
4544@item -Wignored-qualifiers @r{(C and C++ only)}
4545@opindex Wignored-qualifiers
4546@opindex Wno-ignored-qualifiers
4547Warn if the return type of a function has a type qualifier
4548such as @code{const}.  For ISO C such a type qualifier has no effect,
4549since the value returned by a function is not an lvalue.
4550For C++, the warning is only emitted for scalar types or @code{void}.
4551ISO C prohibits qualified @code{void} return types on function
4552definitions, so such return types always receive a warning
4553even without this option.
4554
4555This warning is also enabled by @option{-Wextra}.
4556
4557@item -Wignored-attributes @r{(C and C++ only)}
4558@opindex Wignored-attributes
4559@opindex Wno-ignored-attributes
4560Warn when an attribute is ignored.  This is different from the
4561@option{-Wattributes} option in that it warns whenever the compiler decides
4562to drop an attribute, not that the attribute is either unknown, used in a
4563wrong place, etc.  This warning is enabled by default.
4564
4565@item -Wmain
4566@opindex Wmain
4567@opindex Wno-main
4568Warn if the type of @code{main} is suspicious.  @code{main} should be
4569a function with external linkage, returning int, taking either zero
4570arguments, two, or three arguments of appropriate types.  This warning
4571is enabled by default in C++ and is enabled by either @option{-Wall}
4572or @option{-Wpedantic}.
4573
4574@item -Wmisleading-indentation @r{(C and C++ only)}
4575@opindex Wmisleading-indentation
4576@opindex Wno-misleading-indentation
4577Warn when the indentation of the code does not reflect the block structure.
4578Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
4579@code{for} clauses with a guarded statement that does not use braces,
4580followed by an unguarded statement with the same indentation.
4581
4582In the following example, the call to ``bar'' is misleadingly indented as
4583if it were guarded by the ``if'' conditional.
4584
4585@smallexample
4586  if (some_condition ())
4587    foo ();
4588    bar ();  /* Gotcha: this is not guarded by the "if".  */
4589@end smallexample
4590
4591In the case of mixed tabs and spaces, the warning uses the
4592@option{-ftabstop=} option to determine if the statements line up
4593(defaulting to 8).
4594
4595The warning is not issued for code involving multiline preprocessor logic
4596such as the following example.
4597
4598@smallexample
4599  if (flagA)
4600    foo (0);
4601#if SOME_CONDITION_THAT_DOES_NOT_HOLD
4602  if (flagB)
4603#endif
4604    foo (1);
4605@end smallexample
4606
4607The warning is not issued after a @code{#line} directive, since this
4608typically indicates autogenerated code, and no assumptions can be made
4609about the layout of the file that the directive references.
4610
4611This warning is enabled by @option{-Wall} in C and C++.
4612
4613@item -Wmissing-attributes
4614@opindex Wmissing-attributes
4615@opindex Wno-missing-attributes
4616Warn when a declaration of a function is missing one or more attributes
4617that a related function is declared with and whose absence may adversely
4618affect the correctness or efficiency of generated code.  For example, in
4619C++, the warning is issued when an explicit specialization of a primary
4620template declared with attribute @code{alloc_align}, @code{alloc_size},
4621@code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
4622or @code{nonnull} is declared without it.  Attributes @code{deprecated},
4623@code{error}, and @code{warning} suppress the warning.
4624(@pxref{Function Attributes}).
4625
4626@option{-Wmissing-attributes} is enabled by @option{-Wall}.
4627
4628For example, since the declaration of the primary function template
4629below makes use of both attribute @code{malloc} and @code{alloc_size}
4630the declaration of the explicit specialization of the template is
4631diagnosed because it is missing one of the attributes.
4632
4633@smallexample
4634template <class T>
4635T* __attribute__ ((malloc, alloc_size (1)))
4636allocate (size_t);
4637
4638template <>
4639void* __attribute__ ((malloc))   // missing alloc_size
4640allocate<void> (size_t);
4641@end smallexample
4642
4643@item -Wmissing-braces
4644@opindex Wmissing-braces
4645@opindex Wno-missing-braces
4646Warn if an aggregate or union initializer is not fully bracketed.  In
4647the following example, the initializer for @code{a} is not fully
4648bracketed, but that for @code{b} is fully bracketed.  This warning is
4649enabled by @option{-Wall} in C.
4650
4651@smallexample
4652int a[2][2] = @{ 0, 1, 2, 3 @};
4653int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
4654@end smallexample
4655
4656This warning is enabled by @option{-Wall}.
4657
4658@item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
4659@opindex Wmissing-include-dirs
4660@opindex Wno-missing-include-dirs
4661Warn if a user-supplied include directory does not exist.
4662
4663@item -Wmultistatement-macros
4664@opindex Wmultistatement-macros
4665@opindex Wno-multistatement-macros
4666Warn about unsafe multiple statement macros that appear to be guarded
4667by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
4668@code{while}, in which only the first statement is actually guarded after
4669the macro is expanded.
4670
4671For example:
4672
4673@smallexample
4674#define DOIT x++; y++
4675if (c)
4676  DOIT;
4677@end smallexample
4678
4679will increment @code{y} unconditionally, not just when @code{c} holds.
4680The can usually be fixed by wrapping the macro in a do-while loop:
4681@smallexample
4682#define DOIT do @{ x++; y++; @} while (0)
4683if (c)
4684  DOIT;
4685@end smallexample
4686
4687This warning is enabled by @option{-Wall} in C and C++.
4688
4689@item -Wparentheses
4690@opindex Wparentheses
4691@opindex Wno-parentheses
4692Warn if parentheses are omitted in certain contexts, such
4693as when there is an assignment in a context where a truth value
4694is expected, or when operators are nested whose precedence people
4695often get confused about.
4696
4697Also warn if a comparison like @code{x<=y<=z} appears; this is
4698equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
4699interpretation from that of ordinary mathematical notation.
4700
4701Also warn for dangerous uses of the GNU extension to
4702@code{?:} with omitted middle operand. When the condition
4703in the @code{?}: operator is a boolean expression, the omitted value is
4704always 1.  Often programmers expect it to be a value computed
4705inside the conditional expression instead.
4706
4707For C++ this also warns for some cases of unnecessary parentheses in
4708declarations, which can indicate an attempt at a function call instead
4709of a declaration:
4710@smallexample
4711@{
4712  // Declares a local variable called mymutex.
4713  std::unique_lock<std::mutex> (mymutex);
4714  // User meant std::unique_lock<std::mutex> lock (mymutex);
4715@}
4716@end smallexample
4717
4718This warning is enabled by @option{-Wall}.
4719
4720@item -Wsequence-point
4721@opindex Wsequence-point
4722@opindex Wno-sequence-point
4723Warn about code that may have undefined semantics because of violations
4724of sequence point rules in the C and C++ standards.
4725
4726The C and C++ standards define the order in which expressions in a C/C++
4727program are evaluated in terms of @dfn{sequence points}, which represent
4728a partial ordering between the execution of parts of the program: those
4729executed before the sequence point, and those executed after it.  These
4730occur after the evaluation of a full expression (one which is not part
4731of a larger expression), after the evaluation of the first operand of a
4732@code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4733function is called (but after the evaluation of its arguments and the
4734expression denoting the called function), and in certain other places.
4735Other than as expressed by the sequence point rules, the order of
4736evaluation of subexpressions of an expression is not specified.  All
4737these rules describe only a partial order rather than a total order,
4738since, for example, if two functions are called within one expression
4739with no sequence point between them, the order in which the functions
4740are called is not specified.  However, the standards committee have
4741ruled that function calls do not overlap.
4742
4743It is not specified when between sequence points modifications to the
4744values of objects take effect.  Programs whose behavior depends on this
4745have undefined behavior; the C and C++ standards specify that ``Between
4746the previous and next sequence point an object shall have its stored
4747value modified at most once by the evaluation of an expression.
4748Furthermore, the prior value shall be read only to determine the value
4749to be stored.''.  If a program breaks these rules, the results on any
4750particular implementation are entirely unpredictable.
4751
4752Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4753= b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
4754diagnosed by this option, and it may give an occasional false positive
4755result, but in general it has been found fairly effective at detecting
4756this sort of problem in programs.
4757
4758The C++17 standard will define the order of evaluation of operands in
4759more cases: in particular it requires that the right-hand side of an
4760assignment be evaluated before the left-hand side, so the above
4761examples are no longer undefined.  But this warning will still warn
4762about them, to help people avoid writing code that is undefined in C
4763and earlier revisions of C++.
4764
4765The standard is worded confusingly, therefore there is some debate
4766over the precise meaning of the sequence point rules in subtle cases.
4767Links to discussions of the problem, including proposed formal
4768definitions, may be found on the GCC readings page, at
4769@uref{http://gcc.gnu.org/@/readings.html}.
4770
4771This warning is enabled by @option{-Wall} for C and C++.
4772
4773@item -Wno-return-local-addr
4774@opindex Wno-return-local-addr
4775@opindex Wreturn-local-addr
4776Do not warn about returning a pointer (or in C++, a reference) to a
4777variable that goes out of scope after the function returns.
4778
4779@item -Wreturn-type
4780@opindex Wreturn-type
4781@opindex Wno-return-type
4782Warn whenever a function is defined with a return type that defaults
4783to @code{int}.  Also warn about any @code{return} statement with no
4784return value in a function whose return type is not @code{void}
4785(falling off the end of the function body is considered returning
4786without a value).
4787
4788For C only, warn about a @code{return} statement with an expression in a
4789function whose return type is @code{void}, unless the expression type is
4790also @code{void}.  As a GNU extension, the latter case is accepted
4791without a warning unless @option{-Wpedantic} is used.
4792
4793For C++, a function without return type always produces a diagnostic
4794message, even when @option{-Wno-return-type} is specified.  The only
4795exceptions are @code{main} and functions defined in system headers.
4796
4797This warning is enabled by default for C++ and is enabled by @option{-Wall}.
4798
4799@item -Wshift-count-negative
4800@opindex Wshift-count-negative
4801@opindex Wno-shift-count-negative
4802Warn if shift count is negative. This warning is enabled by default.
4803
4804@item -Wshift-count-overflow
4805@opindex Wshift-count-overflow
4806@opindex Wno-shift-count-overflow
4807Warn if shift count >= width of type. This warning is enabled by default.
4808
4809@item -Wshift-negative-value
4810@opindex Wshift-negative-value
4811@opindex Wno-shift-negative-value
4812Warn if left shifting a negative value.  This warning is enabled by
4813@option{-Wextra} in C99 and C++11 modes (and newer).
4814
4815@item -Wshift-overflow
4816@itemx -Wshift-overflow=@var{n}
4817@opindex Wshift-overflow
4818@opindex Wno-shift-overflow
4819Warn about left shift overflows.  This warning is enabled by
4820default in C99 and C++11 modes (and newer).
4821
4822@table @gcctabopt
4823@item -Wshift-overflow=1
4824This is the warning level of @option{-Wshift-overflow} and is enabled
4825by default in C99 and C++11 modes (and newer).  This warning level does
4826not warn about left-shifting 1 into the sign bit.  (However, in C, such
4827an overflow is still rejected in contexts where an integer constant expression
4828is required.)
4829
4830@item -Wshift-overflow=2
4831This warning level also warns about left-shifting 1 into the sign bit,
4832unless C++14 mode is active.
4833@end table
4834
4835@item -Wswitch
4836@opindex Wswitch
4837@opindex Wno-switch
4838Warn whenever a @code{switch} statement has an index of enumerated type
4839and lacks a @code{case} for one or more of the named codes of that
4840enumeration.  (The presence of a @code{default} label prevents this
4841warning.)  @code{case} labels outside the enumeration range also
4842provoke warnings when this option is used (even if there is a
4843@code{default} label).
4844This warning is enabled by @option{-Wall}.
4845
4846@item -Wswitch-default
4847@opindex Wswitch-default
4848@opindex Wno-switch-default
4849Warn whenever a @code{switch} statement does not have a @code{default}
4850case.
4851
4852@item -Wswitch-enum
4853@opindex Wswitch-enum
4854@opindex Wno-switch-enum
4855Warn whenever a @code{switch} statement has an index of enumerated type
4856and lacks a @code{case} for one or more of the named codes of that
4857enumeration.  @code{case} labels outside the enumeration range also
4858provoke warnings when this option is used.  The only difference
4859between @option{-Wswitch} and this option is that this option gives a
4860warning about an omitted enumeration code even if there is a
4861@code{default} label.
4862
4863@item -Wswitch-bool
4864@opindex Wswitch-bool
4865@opindex Wno-switch-bool
4866Warn whenever a @code{switch} statement has an index of boolean type
4867and the case values are outside the range of a boolean type.
4868It is possible to suppress this warning by casting the controlling
4869expression to a type other than @code{bool}.  For example:
4870@smallexample
4871@group
4872switch ((int) (a == 4))
4873  @{
4874  @dots{}
4875  @}
4876@end group
4877@end smallexample
4878This warning is enabled by default for C and C++ programs.
4879
4880@item -Wswitch-unreachable
4881@opindex Wswitch-unreachable
4882@opindex Wno-switch-unreachable
4883Warn whenever a @code{switch} statement contains statements between the
4884controlling expression and the first case label, which will never be
4885executed.  For example:
4886@smallexample
4887@group
4888switch (cond)
4889  @{
4890   i = 15;
4891  @dots{}
4892   case 5:
4893  @dots{}
4894  @}
4895@end group
4896@end smallexample
4897@option{-Wswitch-unreachable} does not warn if the statement between the
4898controlling expression and the first case label is just a declaration:
4899@smallexample
4900@group
4901switch (cond)
4902  @{
4903   int i;
4904  @dots{}
4905   case 5:
4906   i = 5;
4907  @dots{}
4908  @}
4909@end group
4910@end smallexample
4911This warning is enabled by default for C and C++ programs.
4912
4913@item -Wsync-nand @r{(C and C++ only)}
4914@opindex Wsync-nand
4915@opindex Wno-sync-nand
4916Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4917built-in functions are used.  These functions changed semantics in GCC 4.4.
4918
4919@item -Wunused-but-set-parameter
4920@opindex Wunused-but-set-parameter
4921@opindex Wno-unused-but-set-parameter
4922Warn whenever a function parameter is assigned to, but otherwise unused
4923(aside from its declaration).
4924
4925To suppress this warning use the @code{unused} attribute
4926(@pxref{Variable Attributes}).
4927
4928This warning is also enabled by @option{-Wunused} together with
4929@option{-Wextra}.
4930
4931@item -Wunused-but-set-variable
4932@opindex Wunused-but-set-variable
4933@opindex Wno-unused-but-set-variable
4934Warn whenever a local variable is assigned to, but otherwise unused
4935(aside from its declaration).
4936This warning is enabled by @option{-Wall}.
4937
4938To suppress this warning use the @code{unused} attribute
4939(@pxref{Variable Attributes}).
4940
4941This warning is also enabled by @option{-Wunused}, which is enabled
4942by @option{-Wall}.
4943
4944@item -Wunused-function
4945@opindex Wunused-function
4946@opindex Wno-unused-function
4947Warn whenever a static function is declared but not defined or a
4948non-inline static function is unused.
4949This warning is enabled by @option{-Wall}.
4950
4951@item -Wunused-label
4952@opindex Wunused-label
4953@opindex Wno-unused-label
4954Warn whenever a label is declared but not used.
4955This warning is enabled by @option{-Wall}.
4956
4957To suppress this warning use the @code{unused} attribute
4958(@pxref{Variable Attributes}).
4959
4960@item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4961@opindex Wunused-local-typedefs
4962Warn when a typedef locally defined in a function is not used.
4963This warning is enabled by @option{-Wall}.
4964
4965@item -Wunused-parameter
4966@opindex Wunused-parameter
4967@opindex Wno-unused-parameter
4968Warn whenever a function parameter is unused aside from its declaration.
4969
4970To suppress this warning use the @code{unused} attribute
4971(@pxref{Variable Attributes}).
4972
4973@item -Wno-unused-result
4974@opindex Wunused-result
4975@opindex Wno-unused-result
4976Do not warn if a caller of a function marked with attribute
4977@code{warn_unused_result} (@pxref{Function Attributes}) does not use
4978its return value. The default is @option{-Wunused-result}.
4979
4980@item -Wunused-variable
4981@opindex Wunused-variable
4982@opindex Wno-unused-variable
4983Warn whenever a local or static variable is unused aside from its
4984declaration. This option implies @option{-Wunused-const-variable=1} for C,
4985but not for C++. This warning is enabled by @option{-Wall}.
4986
4987To suppress this warning use the @code{unused} attribute
4988(@pxref{Variable Attributes}).
4989
4990@item -Wunused-const-variable
4991@itemx -Wunused-const-variable=@var{n}
4992@opindex Wunused-const-variable
4993@opindex Wno-unused-const-variable
4994Warn whenever a constant static variable is unused aside from its declaration.
4995@option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
4996for C, but not for C++. In C this declares variable storage, but in C++ this
4997is not an error since const variables take the place of @code{#define}s.
4998
4999To suppress this warning use the @code{unused} attribute
5000(@pxref{Variable Attributes}).
5001
5002@table @gcctabopt
5003@item -Wunused-const-variable=1
5004This is the warning level that is enabled by @option{-Wunused-variable} for
5005C.  It warns only about unused static const variables defined in the main
5006compilation unit, but not about static const variables declared in any
5007header included.
5008
5009@item -Wunused-const-variable=2
5010This warning level also warns for unused constant static variables in
5011headers (excluding system headers).  This is the warning level of
5012@option{-Wunused-const-variable} and must be explicitly requested since
5013in C++ this isn't an error and in C it might be harder to clean up all
5014headers included.
5015@end table
5016
5017@item -Wunused-value
5018@opindex Wunused-value
5019@opindex Wno-unused-value
5020Warn whenever a statement computes a result that is explicitly not
5021used. To suppress this warning cast the unused expression to
5022@code{void}. This includes an expression-statement or the left-hand
5023side of a comma expression that contains no side effects. For example,
5024an expression such as @code{x[i,j]} causes a warning, while
5025@code{x[(void)i,j]} does not.
5026
5027This warning is enabled by @option{-Wall}.
5028
5029@item -Wunused
5030@opindex Wunused
5031@opindex Wno-unused
5032All the above @option{-Wunused} options combined.
5033
5034In order to get a warning about an unused function parameter, you must
5035either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
5036@option{-Wunused}), or separately specify @option{-Wunused-parameter}.
5037
5038@item -Wuninitialized
5039@opindex Wuninitialized
5040@opindex Wno-uninitialized
5041Warn if an automatic variable is used without first being initialized
5042or if a variable may be clobbered by a @code{setjmp} call. In C++,
5043warn if a non-static reference or non-static @code{const} member
5044appears in a class without constructors.
5045
5046If you want to warn about code that uses the uninitialized value of the
5047variable in its own initializer, use the @option{-Winit-self} option.
5048
5049These warnings occur for individual uninitialized or clobbered
5050elements of structure, union or array variables as well as for
5051variables that are uninitialized or clobbered as a whole.  They do
5052not occur for variables or elements declared @code{volatile}.  Because
5053these warnings depend on optimization, the exact variables or elements
5054for which there are warnings depends on the precise optimization
5055options and version of GCC used.
5056
5057Note that there may be no warning about a variable that is used only
5058to compute a value that itself is never used, because such
5059computations may be deleted by data flow analysis before the warnings
5060are printed.
5061
5062@item -Winvalid-memory-model
5063@opindex Winvalid-memory-model
5064@opindex Wno-invalid-memory-model
5065Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
5066and the C11 atomic generic functions with a memory consistency argument
5067that is either invalid for the operation or outside the range of values
5068of the @code{memory_order} enumeration.  For example, since the
5069@code{__atomic_store} and @code{__atomic_store_n} built-ins are only
5070defined for the relaxed, release, and sequentially consistent memory
5071orders the following code is diagnosed:
5072
5073@smallexample
5074void store (int *i)
5075@{
5076  __atomic_store_n (i, 0, memory_order_consume);
5077@}
5078@end smallexample
5079
5080@option{-Winvalid-memory-model} is enabled by default.
5081
5082@item -Wmaybe-uninitialized
5083@opindex Wmaybe-uninitialized
5084@opindex Wno-maybe-uninitialized
5085For an automatic (i.e.@ local) variable, if there exists a path from the
5086function entry to a use of the variable that is initialized, but there exist
5087some other paths for which the variable is not initialized, the compiler
5088emits a warning if it cannot prove the uninitialized paths are not
5089executed at run time.
5090
5091These warnings are only possible in optimizing compilation, because otherwise
5092GCC does not keep track of the state of variables.
5093
5094These warnings are made optional because GCC may not be able to determine when
5095the code is correct in spite of appearing to have an error.  Here is one
5096example of how this can happen:
5097
5098@smallexample
5099@group
5100@{
5101  int x;
5102  switch (y)
5103    @{
5104    case 1: x = 1;
5105      break;
5106    case 2: x = 4;
5107      break;
5108    case 3: x = 5;
5109    @}
5110  foo (x);
5111@}
5112@end group
5113@end smallexample
5114
5115@noindent
5116If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5117always initialized, but GCC doesn't know this. To suppress the
5118warning, you need to provide a default case with assert(0) or
5119similar code.
5120
5121@cindex @code{longjmp} warnings
5122This option also warns when a non-volatile automatic variable might be
5123changed by a call to @code{longjmp}.
5124The compiler sees only the calls to @code{setjmp}.  It cannot know
5125where @code{longjmp} will be called; in fact, a signal handler could
5126call it at any point in the code.  As a result, you may get a warning
5127even when there is in fact no problem because @code{longjmp} cannot
5128in fact be called at the place that would cause a problem.
5129
5130Some spurious warnings can be avoided if you declare all the functions
5131you use that never return as @code{noreturn}.  @xref{Function
5132Attributes}.
5133
5134This warning is enabled by @option{-Wall} or @option{-Wextra}.
5135
5136@item -Wunknown-pragmas
5137@opindex Wunknown-pragmas
5138@opindex Wno-unknown-pragmas
5139@cindex warning for unknown pragmas
5140@cindex unknown pragmas, warning
5141@cindex pragmas, warning of unknown
5142Warn when a @code{#pragma} directive is encountered that is not understood by
5143GCC@.  If this command-line option is used, warnings are even issued
5144for unknown pragmas in system header files.  This is not the case if
5145the warnings are only enabled by the @option{-Wall} command-line option.
5146
5147@item -Wno-pragmas
5148@opindex Wno-pragmas
5149@opindex Wpragmas
5150Do not warn about misuses of pragmas, such as incorrect parameters,
5151invalid syntax, or conflicts between pragmas.  See also
5152@option{-Wunknown-pragmas}.
5153
5154@item -Wstrict-aliasing
5155@opindex Wstrict-aliasing
5156@opindex Wno-strict-aliasing
5157This option is only active when @option{-fstrict-aliasing} is active.
5158It warns about code that might break the strict aliasing rules that the
5159compiler is using for optimization.  The warning does not catch all
5160cases, but does attempt to catch the more common pitfalls.  It is
5161included in @option{-Wall}.
5162It is equivalent to @option{-Wstrict-aliasing=3}
5163
5164@item -Wstrict-aliasing=n
5165@opindex Wstrict-aliasing=n
5166This option is only active when @option{-fstrict-aliasing} is active.
5167It warns about code that might break the strict aliasing rules that the
5168compiler is using for optimization.
5169Higher levels correspond to higher accuracy (fewer false positives).
5170Higher levels also correspond to more effort, similar to the way @option{-O}
5171works.
5172@option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5173
5174Level 1: Most aggressive, quick, least accurate.
5175Possibly useful when higher levels
5176do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5177false negatives.  However, it has many false positives.
5178Warns for all pointer conversions between possibly incompatible types,
5179even if never dereferenced.  Runs in the front end only.
5180
5181Level 2: Aggressive, quick, not too precise.
5182May still have many false positives (not as many as level 1 though),
5183and few false negatives (but possibly more than level 1).
5184Unlike level 1, it only warns when an address is taken.  Warns about
5185incomplete types.  Runs in the front end only.
5186
5187Level 3 (default for @option{-Wstrict-aliasing}):
5188Should have very few false positives and few false
5189negatives.  Slightly slower than levels 1 or 2 when optimization is enabled.
5190Takes care of the common pun+dereference pattern in the front end:
5191@code{*(int*)&some_float}.
5192If optimization is enabled, it also runs in the back end, where it deals
5193with multiple statement cases using flow-sensitive points-to information.
5194Only warns when the converted pointer is dereferenced.
5195Does not warn about incomplete types.
5196
5197@item -Wstrict-overflow
5198@itemx -Wstrict-overflow=@var{n}
5199@opindex Wstrict-overflow
5200@opindex Wno-strict-overflow
5201This option is only active when signed overflow is undefined.
5202It warns about cases where the compiler optimizes based on the
5203assumption that signed overflow does not occur.  Note that it does not
5204warn about all cases where the code might overflow: it only warns
5205about cases where the compiler implements some optimization.  Thus
5206this warning depends on the optimization level.
5207
5208An optimization that assumes that signed overflow does not occur is
5209perfectly safe if the values of the variables involved are such that
5210overflow never does, in fact, occur.  Therefore this warning can
5211easily give a false positive: a warning about code that is not
5212actually a problem.  To help focus on important issues, several
5213warning levels are defined.  No warnings are issued for the use of
5214undefined signed overflow when estimating how many iterations a loop
5215requires, in particular when determining whether a loop will be
5216executed at all.
5217
5218@table @gcctabopt
5219@item -Wstrict-overflow=1
5220Warn about cases that are both questionable and easy to avoid.  For
5221example the compiler simplifies
5222@code{x + 1 > x} to @code{1}.  This level of
5223@option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5224are not, and must be explicitly requested.
5225
5226@item -Wstrict-overflow=2
5227Also warn about other cases where a comparison is simplified to a
5228constant.  For example: @code{abs (x) >= 0}.  This can only be
5229simplified when signed integer overflow is undefined, because
5230@code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5231zero.  @option{-Wstrict-overflow} (with no level) is the same as
5232@option{-Wstrict-overflow=2}.
5233
5234@item -Wstrict-overflow=3
5235Also warn about other cases where a comparison is simplified.  For
5236example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5237
5238@item -Wstrict-overflow=4
5239Also warn about other simplifications not covered by the above cases.
5240For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5241
5242@item -Wstrict-overflow=5
5243Also warn about cases where the compiler reduces the magnitude of a
5244constant involved in a comparison.  For example: @code{x + 2 > y} is
5245simplified to @code{x + 1 >= y}.  This is reported only at the
5246highest warning level because this simplification applies to many
5247comparisons, so this warning level gives a very large number of
5248false positives.
5249@end table
5250
5251@item -Wstringop-overflow
5252@itemx -Wstringop-overflow=@var{type}
5253@opindex Wstringop-overflow
5254@opindex Wno-stringop-overflow
5255Warn for calls to string manipulation functions such as @code{memcpy} and
5256@code{strcpy} that are determined to overflow the destination buffer.  The
5257optional argument is one greater than the type of Object Size Checking to
5258perform to determine the size of the destination.  @xref{Object Size Checking}.
5259The argument is meaningful only for functions that operate on character arrays
5260but not for raw memory functions like @code{memcpy} which always make use
5261of Object Size type-0.  The option also warns for calls that specify a size
5262in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5263The option produces the best results with optimization enabled but can detect
5264a small subset of simple buffer overflows even without optimization in
5265calls to the GCC built-in functions like @code{__builtin_memcpy} that
5266correspond to the standard functions.  In any case, the option warns about
5267just a subset of buffer overflows detected by the corresponding overflow
5268checking built-ins.  For example, the option will issue a warning for
5269the @code{strcpy} call below because it copies at least 5 characters
5270(the string @code{"blue"} including the terminating NUL) into the buffer
5271of size 4.
5272
5273@smallexample
5274enum Color @{ blue, purple, yellow @};
5275const char* f (enum Color clr)
5276@{
5277  static char buf [4];
5278  const char *str;
5279  switch (clr)
5280    @{
5281      case blue: str = "blue"; break;
5282      case purple: str = "purple"; break;
5283      case yellow: str = "yellow"; break;
5284    @}
5285
5286  return strcpy (buf, str);   // warning here
5287@}
5288@end smallexample
5289
5290Option @option{-Wstringop-overflow=2} is enabled by default.
5291
5292@table @gcctabopt
5293@item -Wstringop-overflow
5294@itemx -Wstringop-overflow=1
5295@opindex Wstringop-overflow
5296@opindex Wno-stringop-overflow
5297The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5298to determine the sizes of destination objects.  This is the default setting
5299of the option.  At this setting the option will not warn for writes past
5300the end of subobjects of larger objects accessed by pointers unless the
5301size of the largest surrounding object is known.  When the destination may
5302be one of several objects it is assumed to be the largest one of them.  On
5303Linux systems, when optimization is enabled at this setting the option warns
5304for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5305a non-zero value.
5306
5307@item -Wstringop-overflow=2
5308The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5309to determine the sizes of destination objects.  At this setting the option
5310will warn about overflows when writing to members of the largest complete
5311objects whose exact size is known.  It will, however, not warn for excessive
5312writes to the same members of unknown objects referenced by pointers since
5313they may point to arrays containing unknown numbers of elements.
5314
5315@item -Wstringop-overflow=3
5316The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5317to determine the sizes of destination objects.  At this setting the option
5318warns about overflowing the smallest object or data member.  This is the
5319most restrictive setting of the option that may result in warnings for safe
5320code.
5321
5322@item -Wstringop-overflow=4
5323The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5324to determine the sizes of destination objects.  At this setting the option
5325will warn about overflowing any data members, and when the destination is
5326one of several objects it uses the size of the largest of them to decide
5327whether to issue a warning.  Similarly to @option{-Wstringop-overflow=3} this
5328setting of the option may result in warnings for benign code.
5329@end table
5330
5331@item -Wstringop-truncation
5332@opindex Wstringop-truncation
5333@opindex Wno-stringop-truncation
5334Warn for calls to bounded string manipulation functions such as @code{strncat},
5335@code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5336or leave the destination unchanged.
5337
5338In the following example, the call to @code{strncat} specifies a bound that
5339is less than the length of the source string.  As a result, the copy of
5340the source will be truncated and so the call is diagnosed.  To avoid the
5341warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5342
5343@smallexample
5344void append (char *buf, size_t bufsize)
5345@{
5346  strncat (buf, ".txt", 3);
5347@}
5348@end smallexample
5349
5350As another example, the following call to @code{strncpy} results in copying
5351to @code{d} just the characters preceding the terminating NUL, without
5352appending the NUL to the end.  Assuming the result of @code{strncpy} is
5353necessarily a NUL-terminated string is a common mistake, and so the call
5354is diagnosed.  To avoid the warning when the result is not expected to be
5355NUL-terminated, call @code{memcpy} instead.
5356
5357@smallexample
5358void copy (char *d, const char *s)
5359@{
5360  strncpy (d, s, strlen (s));
5361@}
5362@end smallexample
5363
5364In the following example, the call to @code{strncpy} specifies the size
5365of the destination buffer as the bound.  If the length of the source
5366string is equal to or greater than this size the result of the copy will
5367not be NUL-terminated.  Therefore, the call is also diagnosed.  To avoid
5368the warning, specify @code{sizeof buf - 1} as the bound and set the last
5369element of the buffer to @code{NUL}.
5370
5371@smallexample
5372void copy (const char *s)
5373@{
5374  char buf[80];
5375  strncpy (buf, s, sizeof buf);
5376  @dots{}
5377@}
5378@end smallexample
5379
5380In situations where a character array is intended to store a sequence
5381of bytes with no terminating @code{NUL} such an array may be annotated
5382with attribute @code{nonstring} to avoid this warning.  Such arrays,
5383however, are not suitable arguments to functions that expect
5384@code{NUL}-terminated strings.  To help detect accidental misuses of
5385such arrays GCC issues warnings unless it can prove that the use is
5386safe.  @xref{Common Variable Attributes}.
5387
5388Option @option{-Wstringop-truncation} is enabled by @option{-Wall}.
5389
5390@item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5391@opindex Wsuggest-attribute=
5392@opindex Wno-suggest-attribute=
5393Warn for cases where adding an attribute may be beneficial. The
5394attributes currently supported are listed below.
5395
5396@table @gcctabopt
5397@item -Wsuggest-attribute=pure
5398@itemx -Wsuggest-attribute=const
5399@itemx -Wsuggest-attribute=noreturn
5400@itemx -Wsuggest-attribute=malloc
5401@opindex Wsuggest-attribute=pure
5402@opindex Wno-suggest-attribute=pure
5403@opindex Wsuggest-attribute=const
5404@opindex Wno-suggest-attribute=const
5405@opindex Wsuggest-attribute=noreturn
5406@opindex Wno-suggest-attribute=noreturn
5407@opindex Wsuggest-attribute=malloc
5408@opindex Wno-suggest-attribute=malloc
5409
5410Warn about functions that might be candidates for attributes
5411@code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5412only warns for functions visible in other compilation units or (in the case of
5413@code{pure} and @code{const}) if it cannot prove that the function returns
5414normally. A function returns normally if it doesn't contain an infinite loop or
5415return abnormally by throwing, calling @code{abort} or trapping.  This analysis
5416requires option @option{-fipa-pure-const}, which is enabled by default at
5417@option{-O} and higher.  Higher optimization levels improve the accuracy
5418of the analysis.
5419
5420@item -Wsuggest-attribute=format
5421@itemx -Wmissing-format-attribute
5422@opindex Wsuggest-attribute=format
5423@opindex Wmissing-format-attribute
5424@opindex Wno-suggest-attribute=format
5425@opindex Wno-missing-format-attribute
5426@opindex Wformat
5427@opindex Wno-format
5428
5429Warn about function pointers that might be candidates for @code{format}
5430attributes.  Note these are only possible candidates, not absolute ones.
5431GCC guesses that function pointers with @code{format} attributes that
5432are used in assignment, initialization, parameter passing or return
5433statements should have a corresponding @code{format} attribute in the
5434resulting type.  I.e.@: the left-hand side of the assignment or
5435initialization, the type of the parameter variable, or the return type
5436of the containing function respectively should also have a @code{format}
5437attribute to avoid the warning.
5438
5439GCC also warns about function definitions that might be
5440candidates for @code{format} attributes.  Again, these are only
5441possible candidates.  GCC guesses that @code{format} attributes
5442might be appropriate for any function that calls a function like
5443@code{vprintf} or @code{vscanf}, but this might not always be the
5444case, and some functions for which @code{format} attributes are
5445appropriate may not be detected.
5446
5447@item -Wsuggest-attribute=cold
5448@opindex Wsuggest-attribute=cold
5449@opindex Wno-suggest-attribute=cold
5450
5451Warn about functions that might be candidates for @code{cold} attribute.  This
5452is based on static detection and generally will only warn about functions which
5453always leads to a call to another @code{cold} function such as wrappers of
5454C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
5455@end table
5456
5457@item -Wsuggest-final-types
5458@opindex Wno-suggest-final-types
5459@opindex Wsuggest-final-types
5460Warn about types with virtual methods where code quality would be improved
5461if the type were declared with the C++11 @code{final} specifier,
5462or, if possible,
5463declared in an anonymous namespace. This allows GCC to more aggressively
5464devirtualize the polymorphic calls. This warning is more effective with link
5465time optimization, where the information about the class hierarchy graph is
5466more complete.
5467
5468@item -Wsuggest-final-methods
5469@opindex Wno-suggest-final-methods
5470@opindex Wsuggest-final-methods
5471Warn about virtual methods where code quality would be improved if the method
5472were declared with the C++11 @code{final} specifier,
5473or, if possible, its type were
5474declared in an anonymous namespace or with the @code{final} specifier.
5475This warning is
5476more effective with link-time optimization, where the information about the
5477class hierarchy graph is more complete. It is recommended to first consider
5478suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5479annotations.
5480
5481@item -Wsuggest-override
5482Warn about overriding virtual functions that are not marked with the override
5483keyword.
5484
5485@item -Walloc-zero
5486@opindex Wno-alloc-zero
5487@opindex Walloc-zero
5488Warn about calls to allocation functions decorated with attribute
5489@code{alloc_size} that specify zero bytes, including those to the built-in
5490forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5491@code{malloc}, and @code{realloc}.  Because the behavior of these functions
5492when called with a zero size differs among implementations (and in the case
5493of @code{realloc} has been deprecated) relying on it may result in subtle
5494portability bugs and should be avoided.
5495
5496@item -Walloc-size-larger-than=@var{n}
5497Warn about calls to functions decorated with attribute @code{alloc_size}
5498that attempt to allocate objects larger than the specified number of bytes,
5499or where the result of the size computation in an integer type with infinite
5500precision would exceed @code{SIZE_MAX / 2}.  The option argument @var{n}
5501may end in one of the standard suffixes designating a multiple of bytes
5502such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
5503@code{MB} and @code{MiB} for megabyte and mebibyte, and so on.
5504@option{-Walloc-size-larger-than=}@var{PTRDIFF_MAX} is enabled by default.
5505Warnings controlled by the option can be disabled by specifying @var{n}
5506of @var{SIZE_MAX} or more.
5507@xref{Function Attributes}.
5508
5509@item -Walloca
5510@opindex Wno-alloca
5511@opindex Walloca
5512This option warns on all uses of @code{alloca} in the source.
5513
5514@item -Walloca-larger-than=@var{n}
5515This option warns on calls to @code{alloca} that are not bounded by a
5516controlling predicate limiting its argument of integer type to at most
5517@var{n} bytes, or calls to @code{alloca} where the bound is unknown.
5518Arguments of non-integer types are considered unbounded even if they
5519appear to be constrained to the expected range.
5520
5521For example, a bounded case of @code{alloca} could be:
5522
5523@smallexample
5524void func (size_t n)
5525@{
5526  void *p;
5527  if (n <= 1000)
5528    p = alloca (n);
5529  else
5530    p = malloc (n);
5531  f (p);
5532@}
5533@end smallexample
5534
5535In the above example, passing @code{-Walloca-larger-than=1000} would not
5536issue a warning because the call to @code{alloca} is known to be at most
55371000 bytes.  However, if @code{-Walloca-larger-than=500} were passed,
5538the compiler would emit a warning.
5539
5540Unbounded uses, on the other hand, are uses of @code{alloca} with no
5541controlling predicate constraining its integer argument.  For example:
5542
5543@smallexample
5544void func ()
5545@{
5546  void *p = alloca (n);
5547  f (p);
5548@}
5549@end smallexample
5550
5551If @code{-Walloca-larger-than=500} were passed, the above would trigger
5552a warning, but this time because of the lack of bounds checking.
5553
5554Note, that even seemingly correct code involving signed integers could
5555cause a warning:
5556
5557@smallexample
5558void func (signed int n)
5559@{
5560  if (n < 500)
5561    @{
5562      p = alloca (n);
5563      f (p);
5564    @}
5565@}
5566@end smallexample
5567
5568In the above example, @var{n} could be negative, causing a larger than
5569expected argument to be implicitly cast into the @code{alloca} call.
5570
5571This option also warns when @code{alloca} is used in a loop.
5572
5573This warning is not enabled by @option{-Wall}, and is only active when
5574@option{-ftree-vrp} is active (default for @option{-O2} and above).
5575
5576See also @option{-Wvla-larger-than=@var{n}}.
5577
5578@item -Warray-bounds
5579@itemx -Warray-bounds=@var{n}
5580@opindex Wno-array-bounds
5581@opindex Warray-bounds
5582This option is only active when @option{-ftree-vrp} is active
5583(default for @option{-O2} and above). It warns about subscripts to arrays
5584that are always out of bounds. This warning is enabled by @option{-Wall}.
5585
5586@table @gcctabopt
5587@item -Warray-bounds=1
5588This is the warning level of @option{-Warray-bounds} and is enabled
5589by @option{-Wall}; higher levels are not, and must be explicitly requested.
5590
5591@item -Warray-bounds=2
5592This warning level also warns about out of bounds access for
5593arrays at the end of a struct and for arrays accessed through
5594pointers. This warning level may give a larger number of
5595false positives and is deactivated by default.
5596@end table
5597
5598@item -Wattribute-alias
5599Warn about declarations using the @code{alias} and similar attributes whose
5600target is incompatible with the type of the alias.  @xref{Function Attributes,
5601,Declaring Attributes of Functions}.
5602
5603@item -Wbool-compare
5604@opindex Wno-bool-compare
5605@opindex Wbool-compare
5606Warn about boolean expression compared with an integer value different from
5607@code{true}/@code{false}.  For instance, the following comparison is
5608always false:
5609@smallexample
5610int n = 5;
5611@dots{}
5612if ((n > 1) == 2) @{ @dots{} @}
5613@end smallexample
5614This warning is enabled by @option{-Wall}.
5615
5616@item -Wbool-operation
5617@opindex Wno-bool-operation
5618@opindex Wbool-operation
5619Warn about suspicious operations on expressions of a boolean type.  For
5620instance, bitwise negation of a boolean is very likely a bug in the program.
5621For C, this warning also warns about incrementing or decrementing a boolean,
5622which rarely makes sense.  (In C++, decrementing a boolean is always invalid.
5623Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
5624
5625This warning is enabled by @option{-Wall}.
5626
5627@item -Wduplicated-branches
5628@opindex Wno-duplicated-branches
5629@opindex Wduplicated-branches
5630Warn when an if-else has identical branches.  This warning detects cases like
5631@smallexample
5632if (p != NULL)
5633  return 0;
5634else
5635  return 0;
5636@end smallexample
5637It doesn't warn when both branches contain just a null statement.  This warning
5638also warn for conditional operators:
5639@smallexample
5640  int i = x ? *p : *p;
5641@end smallexample
5642
5643@item -Wduplicated-cond
5644@opindex Wno-duplicated-cond
5645@opindex Wduplicated-cond
5646Warn about duplicated conditions in an if-else-if chain.  For instance,
5647warn for the following code:
5648@smallexample
5649if (p->q != NULL) @{ @dots{} @}
5650else if (p->q != NULL) @{ @dots{} @}
5651@end smallexample
5652
5653@item -Wframe-address
5654@opindex Wno-frame-address
5655@opindex Wframe-address
5656Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
5657is called with an argument greater than 0.  Such calls may return indeterminate
5658values or crash the program.  The warning is included in @option{-Wall}.
5659
5660@item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
5661@opindex Wno-discarded-qualifiers
5662@opindex Wdiscarded-qualifiers
5663Do not warn if type qualifiers on pointers are being discarded.
5664Typically, the compiler warns if a @code{const char *} variable is
5665passed to a function that takes a @code{char *} parameter.  This option
5666can be used to suppress such a warning.
5667
5668@item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
5669@opindex Wno-discarded-array-qualifiers
5670@opindex Wdiscarded-array-qualifiers
5671Do not warn if type qualifiers on arrays which are pointer targets
5672are being discarded. Typically, the compiler warns if a
5673@code{const int (*)[]} variable is passed to a function that
5674takes a @code{int (*)[]} parameter.  This option can be used to
5675suppress such a warning.
5676
5677@item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
5678@opindex Wno-incompatible-pointer-types
5679@opindex Wincompatible-pointer-types
5680Do not warn when there is a conversion between pointers that have incompatible
5681types.  This warning is for cases not covered by @option{-Wno-pointer-sign},
5682which warns for pointer argument passing or assignment with different
5683signedness.
5684
5685@item -Wno-int-conversion @r{(C and Objective-C only)}
5686@opindex Wno-int-conversion
5687@opindex Wint-conversion
5688Do not warn about incompatible integer to pointer and pointer to integer
5689conversions.  This warning is about implicit conversions; for explicit
5690conversions the warnings @option{-Wno-int-to-pointer-cast} and
5691@option{-Wno-pointer-to-int-cast} may be used.
5692
5693@item -Wno-div-by-zero
5694@opindex Wno-div-by-zero
5695@opindex Wdiv-by-zero
5696Do not warn about compile-time integer division by zero.  Floating-point
5697division by zero is not warned about, as it can be a legitimate way of
5698obtaining infinities and NaNs.
5699
5700@item -Wsystem-headers
5701@opindex Wsystem-headers
5702@opindex Wno-system-headers
5703@cindex warnings from system headers
5704@cindex system headers, warnings from
5705Print warning messages for constructs found in system header files.
5706Warnings from system headers are normally suppressed, on the assumption
5707that they usually do not indicate real problems and would only make the
5708compiler output harder to read.  Using this command-line option tells
5709GCC to emit warnings from system headers as if they occurred in user
5710code.  However, note that using @option{-Wall} in conjunction with this
5711option does @emph{not} warn about unknown pragmas in system
5712headers---for that, @option{-Wunknown-pragmas} must also be used.
5713
5714@item -Wtautological-compare
5715@opindex Wtautological-compare
5716@opindex Wno-tautological-compare
5717Warn if a self-comparison always evaluates to true or false.  This
5718warning detects various mistakes such as:
5719@smallexample
5720int i = 1;
5721@dots{}
5722if (i > i) @{ @dots{} @}
5723@end smallexample
5724
5725This warning also warns about bitwise comparisons that always evaluate
5726to true or false, for instance:
5727@smallexample
5728if ((a & 16) == 10) @{ @dots{} @}
5729@end smallexample
5730will always be false.
5731
5732This warning is enabled by @option{-Wall}.
5733
5734@item -Wtrampolines
5735@opindex Wtrampolines
5736@opindex Wno-trampolines
5737Warn about trampolines generated for pointers to nested functions.
5738A trampoline is a small piece of data or code that is created at run
5739time on the stack when the address of a nested function is taken, and is
5740used to call the nested function indirectly.  For some targets, it is
5741made up of data only and thus requires no special treatment.  But, for
5742most targets, it is made up of code and thus requires the stack to be
5743made executable in order for the program to work properly.
5744
5745@item -Wfloat-equal
5746@opindex Wfloat-equal
5747@opindex Wno-float-equal
5748Warn if floating-point values are used in equality comparisons.
5749
5750The idea behind this is that sometimes it is convenient (for the
5751programmer) to consider floating-point values as approximations to
5752infinitely precise real numbers.  If you are doing this, then you need
5753to compute (by analyzing the code, or in some other way) the maximum or
5754likely maximum error that the computation introduces, and allow for it
5755when performing comparisons (and when producing output, but that's a
5756different problem).  In particular, instead of testing for equality, you
5757should check to see whether the two values have ranges that overlap; and
5758this is done with the relational operators, so equality comparisons are
5759probably mistaken.
5760
5761@item -Wtraditional @r{(C and Objective-C only)}
5762@opindex Wtraditional
5763@opindex Wno-traditional
5764Warn about certain constructs that behave differently in traditional and
5765ISO C@.  Also warn about ISO C constructs that have no traditional C
5766equivalent, and/or problematic constructs that should be avoided.
5767
5768@itemize @bullet
5769@item
5770Macro parameters that appear within string literals in the macro body.
5771In traditional C macro replacement takes place within string literals,
5772but in ISO C it does not.
5773
5774@item
5775In traditional C, some preprocessor directives did not exist.
5776Traditional preprocessors only considered a line to be a directive
5777if the @samp{#} appeared in column 1 on the line.  Therefore
5778@option{-Wtraditional} warns about directives that traditional C
5779understands but ignores because the @samp{#} does not appear as the
5780first character on the line.  It also suggests you hide directives like
5781@code{#pragma} not understood by traditional C by indenting them.  Some
5782traditional implementations do not recognize @code{#elif}, so this option
5783suggests avoiding it altogether.
5784
5785@item
5786A function-like macro that appears without arguments.
5787
5788@item
5789The unary plus operator.
5790
5791@item
5792The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
5793constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
5794constants.)  Note, these suffixes appear in macros defined in the system
5795headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
5796Use of these macros in user code might normally lead to spurious
5797warnings, however GCC's integrated preprocessor has enough context to
5798avoid warning in these cases.
5799
5800@item
5801A function declared external in one block and then used after the end of
5802the block.
5803
5804@item
5805A @code{switch} statement has an operand of type @code{long}.
5806
5807@item
5808A non-@code{static} function declaration follows a @code{static} one.
5809This construct is not accepted by some traditional C compilers.
5810
5811@item
5812The ISO type of an integer constant has a different width or
5813signedness from its traditional type.  This warning is only issued if
5814the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
5815typically represent bit patterns, are not warned about.
5816
5817@item
5818Usage of ISO string concatenation is detected.
5819
5820@item
5821Initialization of automatic aggregates.
5822
5823@item
5824Identifier conflicts with labels.  Traditional C lacks a separate
5825namespace for labels.
5826
5827@item
5828Initialization of unions.  If the initializer is zero, the warning is
5829omitted.  This is done under the assumption that the zero initializer in
5830user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
5831initializer warnings and relies on default initialization to zero in the
5832traditional C case.
5833
5834@item
5835Conversions by prototypes between fixed/floating-point values and vice
5836versa.  The absence of these prototypes when compiling with traditional
5837C causes serious problems.  This is a subset of the possible
5838conversion warnings; for the full set use @option{-Wtraditional-conversion}.
5839
5840@item
5841Use of ISO C style function definitions.  This warning intentionally is
5842@emph{not} issued for prototype declarations or variadic functions
5843because these ISO C features appear in your code when using
5844libiberty's traditional C compatibility macros, @code{PARAMS} and
5845@code{VPARAMS}.  This warning is also bypassed for nested functions
5846because that feature is already a GCC extension and thus not relevant to
5847traditional C compatibility.
5848@end itemize
5849
5850@item -Wtraditional-conversion @r{(C and Objective-C only)}
5851@opindex Wtraditional-conversion
5852@opindex Wno-traditional-conversion
5853Warn if a prototype causes a type conversion that is different from what
5854would happen to the same argument in the absence of a prototype.  This
5855includes conversions of fixed point to floating and vice versa, and
5856conversions changing the width or signedness of a fixed-point argument
5857except when the same as the default promotion.
5858
5859@item -Wdeclaration-after-statement @r{(C and Objective-C only)}
5860@opindex Wdeclaration-after-statement
5861@opindex Wno-declaration-after-statement
5862Warn when a declaration is found after a statement in a block.  This
5863construct, known from C++, was introduced with ISO C99 and is by default
5864allowed in GCC@.  It is not supported by ISO C90.  @xref{Mixed Declarations}.
5865
5866@item -Wshadow
5867@opindex Wshadow
5868@opindex Wno-shadow
5869Warn whenever a local variable or type declaration shadows another
5870variable, parameter, type, class member (in C++), or instance variable
5871(in Objective-C) or whenever a built-in function is shadowed. Note
5872that in C++, the compiler warns if a local variable shadows an
5873explicit typedef, but not if it shadows a struct/class/enum.
5874Same as @option{-Wshadow=global}.
5875
5876@item -Wno-shadow-ivar @r{(Objective-C only)}
5877@opindex Wno-shadow-ivar
5878@opindex Wshadow-ivar
5879Do not warn whenever a local variable shadows an instance variable in an
5880Objective-C method.
5881
5882@item -Wshadow=global
5883@opindex Wshadow=local
5884The default for @option{-Wshadow}. Warns for any (global) shadowing.
5885
5886@item -Wshadow=local
5887@opindex Wshadow=local
5888Warn when a local variable shadows another local variable or parameter.
5889This warning is enabled by @option{-Wshadow=global}.
5890
5891@item -Wshadow=compatible-local
5892@opindex Wshadow=compatible-local
5893Warn when a local variable shadows another local variable or parameter
5894whose type is compatible with that of the shadowing variable. In C++,
5895type compatibility here means the type of the shadowing variable can be
5896converted to that of the shadowed variable. The creation of this flag
5897(in addition to @option{-Wshadow=local}) is based on the idea that when
5898a local variable shadows another one of incompatible type, it is most
5899likely intentional, not a bug or typo, as shown in the following example:
5900
5901@smallexample
5902@group
5903for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
5904@{
5905  for (int i = 0; i < N; ++i)
5906  @{
5907    ...
5908  @}
5909  ...
5910@}
5911@end group
5912@end smallexample
5913
5914Since the two variable @code{i} in the example above have incompatible types,
5915enabling only @option{-Wshadow=compatible-local} will not emit a warning.
5916Because their types are incompatible, if a programmer accidentally uses one
5917in place of the other, type checking will catch that and emit an error or
5918warning. So not warning (about shadowing) in this case will not lead to
5919undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
5920possibly reduce the number of warnings triggered by intentional shadowing.
5921
5922This warning is enabled by @option{-Wshadow=local}.
5923
5924@item -Wlarger-than=@var{len}
5925@opindex Wlarger-than=@var{len}
5926@opindex Wlarger-than-@var{len}
5927Warn whenever an object of larger than @var{len} bytes is defined.
5928
5929@item -Wframe-larger-than=@var{len}
5930@opindex Wframe-larger-than
5931Warn if the size of a function frame is larger than @var{len} bytes.
5932The computation done to determine the stack frame size is approximate
5933and not conservative.
5934The actual requirements may be somewhat greater than @var{len}
5935even if you do not get a warning.  In addition, any space allocated
5936via @code{alloca}, variable-length arrays, or related constructs
5937is not included by the compiler when determining
5938whether or not to issue a warning.
5939
5940@item -Wno-free-nonheap-object
5941@opindex Wno-free-nonheap-object
5942@opindex Wfree-nonheap-object
5943Do not warn when attempting to free an object that was not allocated
5944on the heap.
5945
5946@item -Wstack-usage=@var{len}
5947@opindex Wstack-usage
5948Warn if the stack usage of a function might be larger than @var{len} bytes.
5949The computation done to determine the stack usage is conservative.
5950Any space allocated via @code{alloca}, variable-length arrays, or related
5951constructs is included by the compiler when determining whether or not to
5952issue a warning.
5953
5954The message is in keeping with the output of @option{-fstack-usage}.
5955
5956@itemize
5957@item
5958If the stack usage is fully static but exceeds the specified amount, it's:
5959
5960@smallexample
5961  warning: stack usage is 1120 bytes
5962@end smallexample
5963@item
5964If the stack usage is (partly) dynamic but bounded, it's:
5965
5966@smallexample
5967  warning: stack usage might be 1648 bytes
5968@end smallexample
5969@item
5970If the stack usage is (partly) dynamic and not bounded, it's:
5971
5972@smallexample
5973  warning: stack usage might be unbounded
5974@end smallexample
5975@end itemize
5976
5977@item -Wno-pedantic-ms-format @r{(MinGW targets only)}
5978@opindex Wno-pedantic-ms-format
5979@opindex Wpedantic-ms-format
5980When used in combination with @option{-Wformat}
5981and @option{-pedantic} without GNU extensions, this option
5982disables the warnings about non-ISO @code{printf} / @code{scanf} format
5983width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
5984which depend on the MS runtime.
5985
5986@item -Waligned-new
5987@opindex Waligned-new
5988@opindex Wno-aligned-new
5989Warn about a new-expression of a type that requires greater alignment
5990than the @code{alignof(std::max_align_t)} but uses an allocation
5991function without an explicit alignment parameter. This option is
5992enabled by @option{-Wall}.
5993
5994Normally this only warns about global allocation functions, but
5995@option{-Waligned-new=all} also warns about class member allocation
5996functions.
5997
5998@item -Wplacement-new
5999@itemx -Wplacement-new=@var{n}
6000@opindex Wplacement-new
6001@opindex Wno-placement-new
6002Warn about placement new expressions with undefined behavior, such as
6003constructing an object in a buffer that is smaller than the type of
6004the object.  For example, the placement new expression below is diagnosed
6005because it attempts to construct an array of 64 integers in a buffer only
600664 bytes large.
6007@smallexample
6008char buf [64];
6009new (buf) int[64];
6010@end smallexample
6011This warning is enabled by default.
6012
6013@table @gcctabopt
6014@item -Wplacement-new=1
6015This is the default warning level of @option{-Wplacement-new}.  At this
6016level the warning is not issued for some strictly undefined constructs that
6017GCC allows as extensions for compatibility with legacy code.  For example,
6018the following @code{new} expression is not diagnosed at this level even
6019though it has undefined behavior according to the C++ standard because
6020it writes past the end of the one-element array.
6021@smallexample
6022struct S @{ int n, a[1]; @};
6023S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
6024new (s->a)int [32]();
6025@end smallexample
6026
6027@item -Wplacement-new=2
6028At this level, in addition to diagnosing all the same constructs as at level
60291, a diagnostic is also issued for placement new expressions that construct
6030an object in the last member of structure whose type is an array of a single
6031element and whose size is less than the size of the object being constructed.
6032While the previous example would be diagnosed, the following construct makes
6033use of the flexible member array extension to avoid the warning at level 2.
6034@smallexample
6035struct S @{ int n, a[]; @};
6036S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
6037new (s->a)int [32]();
6038@end smallexample
6039
6040@end table
6041
6042@item -Wpointer-arith
6043@opindex Wpointer-arith
6044@opindex Wno-pointer-arith
6045Warn about anything that depends on the ``size of'' a function type or
6046of @code{void}.  GNU C assigns these types a size of 1, for
6047convenience in calculations with @code{void *} pointers and pointers
6048to functions.  In C++, warn also when an arithmetic operation involves
6049@code{NULL}.  This warning is also enabled by @option{-Wpedantic}.
6050
6051@item -Wpointer-compare
6052@opindex Wpointer-compare
6053@opindex Wno-pointer-compare
6054Warn if a pointer is compared with a zero character constant.  This usually
6055means that the pointer was meant to be dereferenced.  For example:
6056
6057@smallexample
6058const char *p = foo ();
6059if (p == '\0')
6060  return 42;
6061@end smallexample
6062
6063Note that the code above is invalid in C++11.
6064
6065This warning is enabled by default.
6066
6067@item -Wtype-limits
6068@opindex Wtype-limits
6069@opindex Wno-type-limits
6070Warn if a comparison is always true or always false due to the limited
6071range of the data type, but do not warn for constant expressions.  For
6072example, warn if an unsigned variable is compared against zero with
6073@code{<} or @code{>=}.  This warning is also enabled by
6074@option{-Wextra}.
6075
6076@include cppwarnopts.texi
6077
6078@item -Wbad-function-cast @r{(C and Objective-C only)}
6079@opindex Wbad-function-cast
6080@opindex Wno-bad-function-cast
6081Warn when a function call is cast to a non-matching type.
6082For example, warn if a call to a function returning an integer type
6083is cast to a pointer type.
6084
6085@item -Wc90-c99-compat @r{(C and Objective-C only)}
6086@opindex Wc90-c99-compat
6087@opindex Wno-c90-c99-compat
6088Warn about features not present in ISO C90, but present in ISO C99.
6089For instance, warn about use of variable length arrays, @code{long long}
6090type, @code{bool} type, compound literals, designated initializers, and so
6091on.  This option is independent of the standards mode.  Warnings are disabled
6092in the expression that follows @code{__extension__}.
6093
6094@item -Wc99-c11-compat @r{(C and Objective-C only)}
6095@opindex Wc99-c11-compat
6096@opindex Wno-c99-c11-compat
6097Warn about features not present in ISO C99, but present in ISO C11.
6098For instance, warn about use of anonymous structures and unions,
6099@code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6100@code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6101and so on.  This option is independent of the standards mode.  Warnings are
6102disabled in the expression that follows @code{__extension__}.
6103
6104@item -Wc++-compat @r{(C and Objective-C only)}
6105@opindex Wc++-compat
6106Warn about ISO C constructs that are outside of the common subset of
6107ISO C and ISO C++, e.g.@: request for implicit conversion from
6108@code{void *} to a pointer to non-@code{void} type.
6109
6110@item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6111@opindex Wc++11-compat
6112Warn about C++ constructs whose meaning differs between ISO C++ 1998
6113and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6114in ISO C++ 2011.  This warning turns on @option{-Wnarrowing} and is
6115enabled by @option{-Wall}.
6116
6117@item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6118@opindex Wc++14-compat
6119Warn about C++ constructs whose meaning differs between ISO C++ 2011
6120and ISO C++ 2014.  This warning is enabled by @option{-Wall}.
6121
6122@item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6123@opindex Wc++17-compat
6124Warn about C++ constructs whose meaning differs between ISO C++ 2014
6125and ISO C++ 2017.  This warning is enabled by @option{-Wall}.
6126
6127@item -Wcast-qual
6128@opindex Wcast-qual
6129@opindex Wno-cast-qual
6130Warn whenever a pointer is cast so as to remove a type qualifier from
6131the target type.  For example, warn if a @code{const char *} is cast
6132to an ordinary @code{char *}.
6133
6134Also warn when making a cast that introduces a type qualifier in an
6135unsafe way.  For example, casting @code{char **} to @code{const char **}
6136is unsafe, as in this example:
6137
6138@smallexample
6139  /* p is char ** value.  */
6140  const char **q = (const char **) p;
6141  /* Assignment of readonly string to const char * is OK.  */
6142  *q = "string";
6143  /* Now char** pointer points to read-only memory.  */
6144  **p = 'b';
6145@end smallexample
6146
6147@item -Wcast-align
6148@opindex Wcast-align
6149@opindex Wno-cast-align
6150Warn whenever a pointer is cast such that the required alignment of the
6151target is increased.  For example, warn if a @code{char *} is cast to
6152an @code{int *} on machines where integers can only be accessed at
6153two- or four-byte boundaries.
6154
6155@item -Wcast-align=strict
6156@opindex Wcast-align=strict
6157Warn whenever a pointer is cast such that the required alignment of the
6158target is increased.  For example, warn if a @code{char *} is cast to
6159an @code{int *} regardless of the target machine.
6160
6161@item -Wcast-function-type
6162@opindex Wcast-function-type
6163@opindex Wno-cast-function-type
6164Warn when a function pointer is cast to an incompatible function pointer.
6165In a cast involving function types with a variable argument list only
6166the types of initial arguments that are provided are considered.
6167Any parameter of pointer-type matches any other pointer-type.  Any benign
6168differences in integral types are ignored, like @code{int} vs. @code{long}
6169on ILP32 targets.  Likewise type qualifiers are ignored.  The function
6170type @code{void (*) (void)} is special and matches everything, which can
6171be used to suppress this warning.
6172In a cast involving pointer to member types this warning warns whenever
6173the type cast is changing the pointer to member type.
6174This warning is enabled by @option{-Wextra}.
6175
6176@item -Wwrite-strings
6177@opindex Wwrite-strings
6178@opindex Wno-write-strings
6179When compiling C, give string constants the type @code{const
6180char[@var{length}]} so that copying the address of one into a
6181non-@code{const} @code{char *} pointer produces a warning.  These
6182warnings help you find at compile time code that can try to write
6183into a string constant, but only if you have been very careful about
6184using @code{const} in declarations and prototypes.  Otherwise, it is
6185just a nuisance. This is why we did not make @option{-Wall} request
6186these warnings.
6187
6188When compiling C++, warn about the deprecated conversion from string
6189literals to @code{char *}.  This warning is enabled by default for C++
6190programs.
6191
6192@item -Wcatch-value
6193@itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6194@opindex Wcatch-value
6195@opindex Wno-catch-value
6196Warn about catch handlers that do not catch via reference.
6197With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6198warn about polymorphic class types that are caught by value.
6199With @option{-Wcatch-value=2} warn about all class types that are caught
6200by value. With @option{-Wcatch-value=3} warn about all types that are
6201not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6202
6203@item -Wclobbered
6204@opindex Wclobbered
6205@opindex Wno-clobbered
6206Warn for variables that might be changed by @code{longjmp} or
6207@code{vfork}.  This warning is also enabled by @option{-Wextra}.
6208
6209@item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6210@opindex Wconditionally-supported
6211@opindex Wno-conditionally-supported
6212Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6213
6214@item -Wconversion
6215@opindex Wconversion
6216@opindex Wno-conversion
6217Warn for implicit conversions that may alter a value. This includes
6218conversions between real and integer, like @code{abs (x)} when
6219@code{x} is @code{double}; conversions between signed and unsigned,
6220like @code{unsigned ui = -1}; and conversions to smaller types, like
6221@code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6222((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6223changed by the conversion like in @code{abs (2.0)}.  Warnings about
6224conversions between signed and unsigned integers can be disabled by
6225using @option{-Wno-sign-conversion}.
6226
6227For C++, also warn for confusing overload resolution for user-defined
6228conversions; and conversions that never use a type conversion
6229operator: conversions to @code{void}, the same type, a base class or a
6230reference to them. Warnings about conversions between signed and
6231unsigned integers are disabled by default in C++ unless
6232@option{-Wsign-conversion} is explicitly enabled.
6233
6234@item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6235@opindex Wconversion-null
6236@opindex Wno-conversion-null
6237Do not warn for conversions between @code{NULL} and non-pointer
6238types. @option{-Wconversion-null} is enabled by default.
6239
6240@item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6241@opindex Wzero-as-null-pointer-constant
6242@opindex Wno-zero-as-null-pointer-constant
6243Warn when a literal @samp{0} is used as null pointer constant.  This can
6244be useful to facilitate the conversion to @code{nullptr} in C++11.
6245
6246@item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6247@opindex Wsubobject-linkage
6248@opindex Wno-subobject-linkage
6249Warn if a class type has a base or a field whose type uses the anonymous
6250namespace or depends on a type with no linkage.  If a type A depends on
6251a type B with no or internal linkage, defining it in multiple
6252translation units would be an ODR violation because the meaning of B
6253is different in each translation unit.  If A only appears in a single
6254translation unit, the best way to silence the warning is to give it
6255internal linkage by putting it in an anonymous namespace as well.  The
6256compiler doesn't give this warning for types defined in the main .C
6257file, as those are unlikely to have multiple definitions.
6258@option{-Wsubobject-linkage} is enabled by default.
6259
6260@item -Wdangling-else
6261@opindex Wdangling-else
6262@opindex Wno-dangling-else
6263Warn about constructions where there may be confusion to which
6264@code{if} statement an @code{else} branch belongs.  Here is an example of
6265such a case:
6266
6267@smallexample
6268@group
6269@{
6270  if (a)
6271    if (b)
6272      foo ();
6273  else
6274    bar ();
6275@}
6276@end group
6277@end smallexample
6278
6279In C/C++, every @code{else} branch belongs to the innermost possible
6280@code{if} statement, which in this example is @code{if (b)}.  This is
6281often not what the programmer expected, as illustrated in the above
6282example by indentation the programmer chose.  When there is the
6283potential for this confusion, GCC issues a warning when this flag
6284is specified.  To eliminate the warning, add explicit braces around
6285the innermost @code{if} statement so there is no way the @code{else}
6286can belong to the enclosing @code{if}.  The resulting code
6287looks like this:
6288
6289@smallexample
6290@group
6291@{
6292  if (a)
6293    @{
6294      if (b)
6295        foo ();
6296      else
6297        bar ();
6298    @}
6299@}
6300@end group
6301@end smallexample
6302
6303This warning is enabled by @option{-Wparentheses}.
6304
6305@item -Wdate-time
6306@opindex Wdate-time
6307@opindex Wno-date-time
6308Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6309are encountered as they might prevent bit-wise-identical reproducible
6310compilations.
6311
6312@item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6313@opindex Wdelete-incomplete
6314@opindex Wno-delete-incomplete
6315Warn when deleting a pointer to incomplete type, which may cause
6316undefined behavior at runtime.  This warning is enabled by default.
6317
6318@item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6319@opindex Wuseless-cast
6320@opindex Wno-useless-cast
6321Warn when an expression is casted to its own type.
6322
6323@item -Wempty-body
6324@opindex Wempty-body
6325@opindex Wno-empty-body
6326Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6327while} statement.  This warning is also enabled by @option{-Wextra}.
6328
6329@item -Wenum-compare
6330@opindex Wenum-compare
6331@opindex Wno-enum-compare
6332Warn about a comparison between values of different enumerated types.
6333In C++ enumerated type mismatches in conditional expressions are also
6334diagnosed and the warning is enabled by default.  In C this warning is
6335enabled by @option{-Wall}.
6336
6337@item -Wextra-semi @r{(C++, Objective-C++ only)}
6338@opindex Wextra-semi
6339@opindex Wno-extra-semi
6340Warn about redundant semicolon after in-class function definition.
6341
6342@item -Wjump-misses-init @r{(C, Objective-C only)}
6343@opindex Wjump-misses-init
6344@opindex Wno-jump-misses-init
6345Warn if a @code{goto} statement or a @code{switch} statement jumps
6346forward across the initialization of a variable, or jumps backward to a
6347label after the variable has been initialized.  This only warns about
6348variables that are initialized when they are declared.  This warning is
6349only supported for C and Objective-C; in C++ this sort of branch is an
6350error in any case.
6351
6352@option{-Wjump-misses-init} is included in @option{-Wc++-compat}.  It
6353can be disabled with the @option{-Wno-jump-misses-init} option.
6354
6355@item -Wsign-compare
6356@opindex Wsign-compare
6357@opindex Wno-sign-compare
6358@cindex warning for comparison of signed and unsigned values
6359@cindex comparison of signed and unsigned values, warning
6360@cindex signed and unsigned values, comparison warning
6361Warn when a comparison between signed and unsigned values could produce
6362an incorrect result when the signed value is converted to unsigned.
6363In C++, this warning is also enabled by @option{-Wall}.  In C, it is
6364also enabled by @option{-Wextra}.
6365
6366@item -Wsign-conversion
6367@opindex Wsign-conversion
6368@opindex Wno-sign-conversion
6369Warn for implicit conversions that may change the sign of an integer
6370value, like assigning a signed integer expression to an unsigned
6371integer variable. An explicit cast silences the warning. In C, this
6372option is enabled also by @option{-Wconversion}.
6373
6374@item -Wfloat-conversion
6375@opindex Wfloat-conversion
6376@opindex Wno-float-conversion
6377Warn for implicit conversions that reduce the precision of a real value.
6378This includes conversions from real to integer, and from higher precision
6379real to lower precision real values.  This option is also enabled by
6380@option{-Wconversion}.
6381
6382@item -Wno-scalar-storage-order
6383@opindex -Wno-scalar-storage-order
6384@opindex -Wscalar-storage-order
6385Do not warn on suspicious constructs involving reverse scalar storage order.
6386
6387@item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6388@opindex Wsized-deallocation
6389@opindex Wno-sized-deallocation
6390Warn about a definition of an unsized deallocation function
6391@smallexample
6392void operator delete (void *) noexcept;
6393void operator delete[] (void *) noexcept;
6394@end smallexample
6395without a definition of the corresponding sized deallocation function
6396@smallexample
6397void operator delete (void *, std::size_t) noexcept;
6398void operator delete[] (void *, std::size_t) noexcept;
6399@end smallexample
6400or vice versa.  Enabled by @option{-Wextra} along with
6401@option{-fsized-deallocation}.
6402
6403@item -Wsizeof-pointer-div
6404@opindex Wsizeof-pointer-div
6405@opindex Wno-sizeof-pointer-div
6406Warn for suspicious divisions of two sizeof expressions that divide
6407the pointer size by the element size, which is the usual way to compute
6408the array size but won't work out correctly with pointers.  This warning
6409warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
6410not an array, but a pointer.  This warning is enabled by @option{-Wall}.
6411
6412@item -Wsizeof-pointer-memaccess
6413@opindex Wsizeof-pointer-memaccess
6414@opindex Wno-sizeof-pointer-memaccess
6415Warn for suspicious length parameters to certain string and memory built-in
6416functions if the argument uses @code{sizeof}.  This warning triggers for
6417example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
6418an array, but a pointer, and suggests a possible fix, or about
6419@code{memcpy (&foo, ptr, sizeof (&foo));}.  @option{-Wsizeof-pointer-memaccess}
6420also warns about calls to bounded string copy functions like @code{strncat}
6421or @code{strncpy} that specify as the bound a @code{sizeof} expression of
6422the source array.  For example, in the following function the call to
6423@code{strncat} specifies the size of the source string as the bound.  That
6424is almost certainly a mistake and so the call is diagnosed.
6425@smallexample
6426void make_file (const char *name)
6427@{
6428  char path[PATH_MAX];
6429  strncpy (path, name, sizeof path - 1);
6430  strncat (path, ".text", sizeof ".text");
6431  @dots{}
6432@}
6433@end smallexample
6434
6435The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
6436
6437@item -Wsizeof-array-argument
6438@opindex Wsizeof-array-argument
6439@opindex Wno-sizeof-array-argument
6440Warn when the @code{sizeof} operator is applied to a parameter that is
6441declared as an array in a function definition.  This warning is enabled by
6442default for C and C++ programs.
6443
6444@item -Wmemset-elt-size
6445@opindex Wmemset-elt-size
6446@opindex Wno-memset-elt-size
6447Warn for suspicious calls to the @code{memset} built-in function, if the
6448first argument references an array, and the third argument is a number
6449equal to the number of elements, but not equal to the size of the array
6450in memory.  This indicates that the user has omitted a multiplication by
6451the element size.  This warning is enabled by @option{-Wall}.
6452
6453@item -Wmemset-transposed-args
6454@opindex Wmemset-transposed-args
6455@opindex Wno-memset-transposed-args
6456Warn for suspicious calls to the @code{memset} built-in function, if the
6457second argument is not zero and the third argument is zero.  This warns e.g.@
6458about @code{memset (buf, sizeof buf, 0)} where most probably
6459@code{memset (buf, 0, sizeof buf)} was meant instead.  The diagnostics
6460is only emitted if the third argument is literal zero.  If it is some
6461expression that is folded to zero, a cast of zero to some type, etc.,
6462it is far less likely that the user has mistakenly exchanged the arguments
6463and no warning is emitted.  This warning is enabled by @option{-Wall}.
6464
6465@item -Waddress
6466@opindex Waddress
6467@opindex Wno-address
6468Warn about suspicious uses of memory addresses. These include using
6469the address of a function in a conditional expression, such as
6470@code{void func(void); if (func)}, and comparisons against the memory
6471address of a string literal, such as @code{if (x == "abc")}.  Such
6472uses typically indicate a programmer error: the address of a function
6473always evaluates to true, so their use in a conditional usually
6474indicate that the programmer forgot the parentheses in a function
6475call; and comparisons against string literals result in unspecified
6476behavior and are not portable in C, so they usually indicate that the
6477programmer intended to use @code{strcmp}.  This warning is enabled by
6478@option{-Wall}.
6479
6480@item -Wlogical-op
6481@opindex Wlogical-op
6482@opindex Wno-logical-op
6483Warn about suspicious uses of logical operators in expressions.
6484This includes using logical operators in contexts where a
6485bit-wise operator is likely to be expected.  Also warns when
6486the operands of a logical operator are the same:
6487@smallexample
6488extern int a;
6489if (a < 0 && a < 0) @{ @dots{} @}
6490@end smallexample
6491
6492@item -Wlogical-not-parentheses
6493@opindex Wlogical-not-parentheses
6494@opindex Wno-logical-not-parentheses
6495Warn about logical not used on the left hand side operand of a comparison.
6496This option does not warn if the right operand is considered to be a boolean
6497expression.  Its purpose is to detect suspicious code like the following:
6498@smallexample
6499int a;
6500@dots{}
6501if (!a > 1) @{ @dots{} @}
6502@end smallexample
6503
6504It is possible to suppress the warning by wrapping the LHS into
6505parentheses:
6506@smallexample
6507if ((!a) > 1) @{ @dots{} @}
6508@end smallexample
6509
6510This warning is enabled by @option{-Wall}.
6511
6512@item -Waggregate-return
6513@opindex Waggregate-return
6514@opindex Wno-aggregate-return
6515Warn if any functions that return structures or unions are defined or
6516called.  (In languages where you can return an array, this also elicits
6517a warning.)
6518
6519@item -Wno-aggressive-loop-optimizations
6520@opindex Wno-aggressive-loop-optimizations
6521@opindex Waggressive-loop-optimizations
6522Warn if in a loop with constant number of iterations the compiler detects
6523undefined behavior in some statement during one or more of the iterations.
6524
6525@item -Wno-attributes
6526@opindex Wno-attributes
6527@opindex Wattributes
6528Do not warn if an unexpected @code{__attribute__} is used, such as
6529unrecognized attributes, function attributes applied to variables,
6530etc.  This does not stop errors for incorrect use of supported
6531attributes.
6532
6533@item -Wno-builtin-declaration-mismatch
6534@opindex Wno-builtin-declaration-mismatch
6535@opindex Wbuiltin-declaration-mismatch
6536Warn if a built-in function is declared with the wrong signature or
6537as non-function.
6538This warning is enabled by default.
6539
6540@item -Wno-builtin-macro-redefined
6541@opindex Wno-builtin-macro-redefined
6542@opindex Wbuiltin-macro-redefined
6543Do not warn if certain built-in macros are redefined.  This suppresses
6544warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
6545@code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
6546
6547@item -Wstrict-prototypes @r{(C and Objective-C only)}
6548@opindex Wstrict-prototypes
6549@opindex Wno-strict-prototypes
6550Warn if a function is declared or defined without specifying the
6551argument types.  (An old-style function definition is permitted without
6552a warning if preceded by a declaration that specifies the argument
6553types.)
6554
6555@item -Wold-style-declaration @r{(C and Objective-C only)}
6556@opindex Wold-style-declaration
6557@opindex Wno-old-style-declaration
6558Warn for obsolescent usages, according to the C Standard, in a
6559declaration. For example, warn if storage-class specifiers like
6560@code{static} are not the first things in a declaration.  This warning
6561is also enabled by @option{-Wextra}.
6562
6563@item -Wold-style-definition @r{(C and Objective-C only)}
6564@opindex Wold-style-definition
6565@opindex Wno-old-style-definition
6566Warn if an old-style function definition is used.  A warning is given
6567even if there is a previous prototype.
6568
6569@item -Wmissing-parameter-type @r{(C and Objective-C only)}
6570@opindex Wmissing-parameter-type
6571@opindex Wno-missing-parameter-type
6572A function parameter is declared without a type specifier in K&R-style
6573functions:
6574
6575@smallexample
6576void foo(bar) @{ @}
6577@end smallexample
6578
6579This warning is also enabled by @option{-Wextra}.
6580
6581@item -Wmissing-prototypes @r{(C and Objective-C only)}
6582@opindex Wmissing-prototypes
6583@opindex Wno-missing-prototypes
6584Warn if a global function is defined without a previous prototype
6585declaration.  This warning is issued even if the definition itself
6586provides a prototype.  Use this option to detect global functions
6587that do not have a matching prototype declaration in a header file.
6588This option is not valid for C++ because all function declarations
6589provide prototypes and a non-matching declaration declares an
6590overload rather than conflict with an earlier declaration.
6591Use @option{-Wmissing-declarations} to detect missing declarations in C++.
6592
6593@item -Wmissing-declarations
6594@opindex Wmissing-declarations
6595@opindex Wno-missing-declarations
6596Warn if a global function is defined without a previous declaration.
6597Do so even if the definition itself provides a prototype.
6598Use this option to detect global functions that are not declared in
6599header files.  In C, no warnings are issued for functions with previous
6600non-prototype declarations; use @option{-Wmissing-prototypes} to detect
6601missing prototypes.  In C++, no warnings are issued for function templates,
6602or for inline functions, or for functions in anonymous namespaces.
6603
6604@item -Wmissing-field-initializers
6605@opindex Wmissing-field-initializers
6606@opindex Wno-missing-field-initializers
6607@opindex W
6608@opindex Wextra
6609@opindex Wno-extra
6610Warn if a structure's initializer has some fields missing.  For
6611example, the following code causes such a warning, because
6612@code{x.h} is implicitly zero:
6613
6614@smallexample
6615struct s @{ int f, g, h; @};
6616struct s x = @{ 3, 4 @};
6617@end smallexample
6618
6619This option does not warn about designated initializers, so the following
6620modification does not trigger a warning:
6621
6622@smallexample
6623struct s @{ int f, g, h; @};
6624struct s x = @{ .f = 3, .g = 4 @};
6625@end smallexample
6626
6627In C this option does not warn about the universal zero initializer
6628@samp{@{ 0 @}}:
6629
6630@smallexample
6631struct s @{ int f, g, h; @};
6632struct s x = @{ 0 @};
6633@end smallexample
6634
6635Likewise, in C++ this option does not warn about the empty @{ @}
6636initializer, for example:
6637
6638@smallexample
6639struct s @{ int f, g, h; @};
6640s x = @{ @};
6641@end smallexample
6642
6643This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
6644warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
6645
6646@item -Wno-multichar
6647@opindex Wno-multichar
6648@opindex Wmultichar
6649Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
6650Usually they indicate a typo in the user's code, as they have
6651implementation-defined values, and should not be used in portable code.
6652
6653@item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
6654@opindex Wnormalized=
6655@opindex Wnormalized
6656@opindex Wno-normalized
6657@cindex NFC
6658@cindex NFKC
6659@cindex character set, input normalization
6660In ISO C and ISO C++, two identifiers are different if they are
6661different sequences of characters.  However, sometimes when characters
6662outside the basic ASCII character set are used, you can have two
6663different character sequences that look the same.  To avoid confusion,
6664the ISO 10646 standard sets out some @dfn{normalization rules} which
6665when applied ensure that two sequences that look the same are turned into
6666the same sequence.  GCC can warn you if you are using identifiers that
6667have not been normalized; this option controls that warning.
6668
6669There are four levels of warning supported by GCC@.  The default is
6670@option{-Wnormalized=nfc}, which warns about any identifier that is
6671not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
6672recommended form for most uses.  It is equivalent to
6673@option{-Wnormalized}.
6674
6675Unfortunately, there are some characters allowed in identifiers by
6676ISO C and ISO C++ that, when turned into NFC, are not allowed in
6677identifiers.  That is, there's no way to use these symbols in portable
6678ISO C or C++ and have all your identifiers in NFC@.
6679@option{-Wnormalized=id} suppresses the warning for these characters.
6680It is hoped that future versions of the standards involved will correct
6681this, which is why this option is not the default.
6682
6683You can switch the warning off for all characters by writing
6684@option{-Wnormalized=none} or @option{-Wno-normalized}.  You should
6685only do this if you are using some other normalization scheme (like
6686``D''), because otherwise you can easily create bugs that are
6687literally impossible to see.
6688
6689Some characters in ISO 10646 have distinct meanings but look identical
6690in some fonts or display methodologies, especially once formatting has
6691been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
6692LETTER N'', displays just like a regular @code{n} that has been
6693placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
6694normalization scheme to convert all these into a standard form as
6695well, and GCC warns if your code is not in NFKC if you use
6696@option{-Wnormalized=nfkc}.  This warning is comparable to warning
6697about every identifier that contains the letter O because it might be
6698confused with the digit 0, and so is not the default, but may be
6699useful as a local coding convention if the programming environment
6700cannot be fixed to display these characters distinctly.
6701
6702@item -Wno-deprecated
6703@opindex Wno-deprecated
6704@opindex Wdeprecated
6705Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
6706
6707@item -Wno-deprecated-declarations
6708@opindex Wno-deprecated-declarations
6709@opindex Wdeprecated-declarations
6710Do not warn about uses of functions (@pxref{Function Attributes}),
6711variables (@pxref{Variable Attributes}), and types (@pxref{Type
6712Attributes}) marked as deprecated by using the @code{deprecated}
6713attribute.
6714
6715@item -Wno-overflow
6716@opindex Wno-overflow
6717@opindex Woverflow
6718Do not warn about compile-time overflow in constant expressions.
6719
6720@item -Wno-odr
6721@opindex Wno-odr
6722@opindex Wodr
6723Warn about One Definition Rule violations during link-time optimization.
6724Requires @option{-flto-odr-type-merging} to be enabled.  Enabled by default.
6725
6726@item -Wopenmp-simd
6727@opindex Wopenm-simd
6728Warn if the vectorizer cost model overrides the OpenMP
6729simd directive set by user.  The @option{-fsimd-cost-model=unlimited}
6730option can be used to relax the cost model.
6731
6732@item -Woverride-init @r{(C and Objective-C only)}
6733@opindex Woverride-init
6734@opindex Wno-override-init
6735@opindex W
6736@opindex Wextra
6737@opindex Wno-extra
6738Warn if an initialized field without side effects is overridden when
6739using designated initializers (@pxref{Designated Inits, , Designated
6740Initializers}).
6741
6742This warning is included in @option{-Wextra}.  To get other
6743@option{-Wextra} warnings without this one, use @option{-Wextra
6744-Wno-override-init}.
6745
6746@item -Woverride-init-side-effects @r{(C and Objective-C only)}
6747@opindex Woverride-init-side-effects
6748@opindex Wno-override-init-side-effects
6749Warn if an initialized field with side effects is overridden when
6750using designated initializers (@pxref{Designated Inits, , Designated
6751Initializers}).  This warning is enabled by default.
6752
6753@item -Wpacked
6754@opindex Wpacked
6755@opindex Wno-packed
6756Warn if a structure is given the packed attribute, but the packed
6757attribute has no effect on the layout or size of the structure.
6758Such structures may be mis-aligned for little benefit.  For
6759instance, in this code, the variable @code{f.x} in @code{struct bar}
6760is misaligned even though @code{struct bar} does not itself
6761have the packed attribute:
6762
6763@smallexample
6764@group
6765struct foo @{
6766  int x;
6767  char a, b, c, d;
6768@} __attribute__((packed));
6769struct bar @{
6770  char z;
6771  struct foo f;
6772@};
6773@end group
6774@end smallexample
6775
6776@item -Wpacked-bitfield-compat
6777@opindex Wpacked-bitfield-compat
6778@opindex Wno-packed-bitfield-compat
6779The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
6780on bit-fields of type @code{char}.  This has been fixed in GCC 4.4 but
6781the change can lead to differences in the structure layout.  GCC
6782informs you when the offset of such a field has changed in GCC 4.4.
6783For example there is no longer a 4-bit padding between field @code{a}
6784and @code{b} in this structure:
6785
6786@smallexample
6787struct foo
6788@{
6789  char a:4;
6790  char b:8;
6791@} __attribute__ ((packed));
6792@end smallexample
6793
6794This warning is enabled by default.  Use
6795@option{-Wno-packed-bitfield-compat} to disable this warning.
6796
6797@item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
6798@opindex Wpacked-not-aligned
6799@opindex Wno-packed-not-aligned
6800Warn if a structure field with explicitly specified alignment in a
6801packed struct or union is misaligned.  For example, a warning will
6802be issued on @code{struct S}, like, @code{warning: alignment 1 of
6803'struct S' is less than 8}, in this code:
6804
6805@smallexample
6806@group
6807struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
6808struct __attribute__ ((packed)) S @{
6809  struct S8 s8;
6810@};
6811@end group
6812@end smallexample
6813
6814This warning is enabled by @option{-Wall}.
6815
6816@item -Wpadded
6817@opindex Wpadded
6818@opindex Wno-padded
6819Warn if padding is included in a structure, either to align an element
6820of the structure or to align the whole structure.  Sometimes when this
6821happens it is possible to rearrange the fields of the structure to
6822reduce the padding and so make the structure smaller.
6823
6824@item -Wredundant-decls
6825@opindex Wredundant-decls
6826@opindex Wno-redundant-decls
6827Warn if anything is declared more than once in the same scope, even in
6828cases where multiple declaration is valid and changes nothing.
6829
6830@item -Wno-restrict
6831@opindex Wrestrict
6832@opindex Wno-restrict
6833Warn when an object referenced by a @code{restrict}-qualified parameter
6834(or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
6835argument, or when copies between such objects overlap.  For example,
6836the call to the @code{strcpy} function below attempts to truncate the string
6837by replacing its initial characters with the last four.  However, because
6838the call writes the terminating NUL into @code{a[4]}, the copies overlap and
6839the call is diagnosed.
6840
6841@smallexample
6842void foo (void)
6843@{
6844  char a[] = "abcd1234";
6845  strcpy (a, a + 4);
6846  @dots{}
6847@}
6848@end smallexample
6849The @option{-Wrestrict} option detects some instances of simple overlap
6850even without optimization but works best at @option{-O2} and above.  It
6851is included in @option{-Wall}.
6852
6853@item -Wnested-externs @r{(C and Objective-C only)}
6854@opindex Wnested-externs
6855@opindex Wno-nested-externs
6856Warn if an @code{extern} declaration is encountered within a function.
6857
6858@item -Wno-inherited-variadic-ctor
6859@opindex Winherited-variadic-ctor
6860@opindex Wno-inherited-variadic-ctor
6861Suppress warnings about use of C++11 inheriting constructors when the
6862base class inherited from has a C variadic constructor; the warning is
6863on by default because the ellipsis is not inherited.
6864
6865@item -Winline
6866@opindex Winline
6867@opindex Wno-inline
6868Warn if a function that is declared as inline cannot be inlined.
6869Even with this option, the compiler does not warn about failures to
6870inline functions declared in system headers.
6871
6872The compiler uses a variety of heuristics to determine whether or not
6873to inline a function.  For example, the compiler takes into account
6874the size of the function being inlined and the amount of inlining
6875that has already been done in the current function.  Therefore,
6876seemingly insignificant changes in the source program can cause the
6877warnings produced by @option{-Winline} to appear or disappear.
6878
6879@item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
6880@opindex Wno-invalid-offsetof
6881@opindex Winvalid-offsetof
6882Suppress warnings from applying the @code{offsetof} macro to a non-POD
6883type.  According to the 2014 ISO C++ standard, applying @code{offsetof}
6884to a non-standard-layout type is undefined.  In existing C++ implementations,
6885however, @code{offsetof} typically gives meaningful results.
6886This flag is for users who are aware that they are
6887writing nonportable code and who have deliberately chosen to ignore the
6888warning about it.
6889
6890The restrictions on @code{offsetof} may be relaxed in a future version
6891of the C++ standard.
6892
6893@item -Wint-in-bool-context
6894@opindex Wint-in-bool-context
6895@opindex Wno-int-in-bool-context
6896Warn for suspicious use of integer values where boolean values are expected,
6897such as conditional expressions (?:) using non-boolean integer constants in
6898boolean context, like @code{if (a <= b ? 2 : 3)}.  Or left shifting of signed
6899integers in boolean context, like @code{for (a = 0; 1 << a; a++);}.  Likewise
6900for all kinds of multiplications regardless of the data type.
6901This warning is enabled by @option{-Wall}.
6902
6903@item -Wno-int-to-pointer-cast
6904@opindex Wno-int-to-pointer-cast
6905@opindex Wint-to-pointer-cast
6906Suppress warnings from casts to pointer type of an integer of a
6907different size. In C++, casting to a pointer type of smaller size is
6908an error. @option{Wint-to-pointer-cast} is enabled by default.
6909
6910
6911@item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
6912@opindex Wno-pointer-to-int-cast
6913@opindex Wpointer-to-int-cast
6914Suppress warnings from casts from a pointer to an integer type of a
6915different size.
6916
6917@item -Winvalid-pch
6918@opindex Winvalid-pch
6919@opindex Wno-invalid-pch
6920Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
6921the search path but cannot be used.
6922
6923@item -Wlong-long
6924@opindex Wlong-long
6925@opindex Wno-long-long
6926Warn if @code{long long} type is used.  This is enabled by either
6927@option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
6928modes.  To inhibit the warning messages, use @option{-Wno-long-long}.
6929
6930@item -Wvariadic-macros
6931@opindex Wvariadic-macros
6932@opindex Wno-variadic-macros
6933Warn if variadic macros are used in ISO C90 mode, or if the GNU
6934alternate syntax is used in ISO C99 mode.  This is enabled by either
6935@option{-Wpedantic} or @option{-Wtraditional}.  To inhibit the warning
6936messages, use @option{-Wno-variadic-macros}.
6937
6938@item -Wvarargs
6939@opindex Wvarargs
6940@opindex Wno-varargs
6941Warn upon questionable usage of the macros used to handle variable
6942arguments like @code{va_start}.  This is default.  To inhibit the
6943warning messages, use @option{-Wno-varargs}.
6944
6945@item -Wvector-operation-performance
6946@opindex Wvector-operation-performance
6947@opindex Wno-vector-operation-performance
6948Warn if vector operation is not implemented via SIMD capabilities of the
6949architecture.  Mainly useful for the performance tuning.
6950Vector operation can be implemented @code{piecewise}, which means that the
6951scalar operation is performed on every vector element;
6952@code{in parallel}, which means that the vector operation is implemented
6953using scalars of wider type, which normally is more performance efficient;
6954and @code{as a single scalar}, which means that vector fits into a
6955scalar type.
6956
6957@item -Wno-virtual-move-assign
6958@opindex Wvirtual-move-assign
6959@opindex Wno-virtual-move-assign
6960Suppress warnings about inheriting from a virtual base with a
6961non-trivial C++11 move assignment operator.  This is dangerous because
6962if the virtual base is reachable along more than one path, it is
6963moved multiple times, which can mean both objects end up in the
6964moved-from state.  If the move assignment operator is written to avoid
6965moving from a moved-from object, this warning can be disabled.
6966
6967@item -Wvla
6968@opindex Wvla
6969@opindex Wno-vla
6970Warn if a variable-length array is used in the code.
6971@option{-Wno-vla} prevents the @option{-Wpedantic} warning of
6972the variable-length array.
6973
6974@item -Wvla-larger-than=@var{n}
6975If this option is used, the compiler will warn on uses of
6976variable-length arrays where the size is either unbounded, or bounded
6977by an argument that can be larger than @var{n} bytes.  This is similar
6978to how @option{-Walloca-larger-than=@var{n}} works, but with
6979variable-length arrays.
6980
6981Note that GCC may optimize small variable-length arrays of a known
6982value into plain arrays, so this warning may not get triggered for
6983such arrays.
6984
6985This warning is not enabled by @option{-Wall}, and is only active when
6986@option{-ftree-vrp} is active (default for @option{-O2} and above).
6987
6988See also @option{-Walloca-larger-than=@var{n}}.
6989
6990@item -Wvolatile-register-var
6991@opindex Wvolatile-register-var
6992@opindex Wno-volatile-register-var
6993Warn if a register variable is declared volatile.  The volatile
6994modifier does not inhibit all optimizations that may eliminate reads
6995and/or writes to register variables.  This warning is enabled by
6996@option{-Wall}.
6997
6998@item -Wdisabled-optimization
6999@opindex Wdisabled-optimization
7000@opindex Wno-disabled-optimization
7001Warn if a requested optimization pass is disabled.  This warning does
7002not generally indicate that there is anything wrong with your code; it
7003merely indicates that GCC's optimizers are unable to handle the code
7004effectively.  Often, the problem is that your code is too big or too
7005complex; GCC refuses to optimize programs when the optimization
7006itself is likely to take inordinate amounts of time.
7007
7008@item -Wpointer-sign @r{(C and Objective-C only)}
7009@opindex Wpointer-sign
7010@opindex Wno-pointer-sign
7011Warn for pointer argument passing or assignment with different signedness.
7012This option is only supported for C and Objective-C@.  It is implied by
7013@option{-Wall} and by @option{-Wpedantic}, which can be disabled with
7014@option{-Wno-pointer-sign}.
7015
7016@item -Wstack-protector
7017@opindex Wstack-protector
7018@opindex Wno-stack-protector
7019This option is only active when @option{-fstack-protector} is active.  It
7020warns about functions that are not protected against stack smashing.
7021
7022@item -Woverlength-strings
7023@opindex Woverlength-strings
7024@opindex Wno-overlength-strings
7025Warn about string constants that are longer than the ``minimum
7026maximum'' length specified in the C standard.  Modern compilers
7027generally allow string constants that are much longer than the
7028standard's minimum limit, but very portable programs should avoid
7029using longer strings.
7030
7031The limit applies @emph{after} string constant concatenation, and does
7032not count the trailing NUL@.  In C90, the limit was 509 characters; in
7033C99, it was raised to 4095.  C++98 does not specify a normative
7034minimum maximum, so we do not diagnose overlength strings in C++@.
7035
7036This option is implied by @option{-Wpedantic}, and can be disabled with
7037@option{-Wno-overlength-strings}.
7038
7039@item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
7040@opindex Wunsuffixed-float-constants
7041
7042Issue a warning for any floating constant that does not have
7043a suffix.  When used together with @option{-Wsystem-headers} it
7044warns about such constants in system header files.  This can be useful
7045when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
7046from the decimal floating-point extension to C99.
7047
7048@item -Wno-designated-init @r{(C and Objective-C only)}
7049Suppress warnings when a positional initializer is used to initialize
7050a structure that has been marked with the @code{designated_init}
7051attribute.
7052
7053@item -Whsa
7054Issue a warning when HSAIL cannot be emitted for the compiled function or
7055OpenMP construct.
7056
7057@end table
7058
7059@node Debugging Options
7060@section Options for Debugging Your Program
7061@cindex options, debugging
7062@cindex debugging information options
7063
7064To tell GCC to emit extra information for use by a debugger, in almost
7065all cases you need only to add @option{-g} to your other options.
7066
7067GCC allows you to use @option{-g} with
7068@option{-O}.  The shortcuts taken by optimized code may occasionally
7069be surprising: some variables you declared may not exist
7070at all; flow of control may briefly move where you did not expect it;
7071some statements may not be executed because they compute constant
7072results or their values are already at hand; some statements may
7073execute in different places because they have been moved out of loops.
7074Nevertheless it is possible to debug optimized output.  This makes
7075it reasonable to use the optimizer for programs that might have bugs.
7076
7077If you are not using some other optimization option, consider
7078using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
7079With no @option{-O} option at all, some compiler passes that collect
7080information useful for debugging do not run at all, so that
7081@option{-Og} may result in a better debugging experience.
7082
7083@table @gcctabopt
7084@item -g
7085@opindex g
7086Produce debugging information in the operating system's native format
7087(stabs, COFF, XCOFF, or DWARF)@.  GDB can work with this debugging
7088information.
7089
7090On most systems that use stabs format, @option{-g} enables use of extra
7091debugging information that only GDB can use; this extra information
7092makes debugging work better in GDB but probably makes other debuggers
7093crash or
7094refuse to read the program.  If you want to control for certain whether
7095to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7096@option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7097
7098@item -ggdb
7099@opindex ggdb
7100Produce debugging information for use by GDB@.  This means to use the
7101most expressive format available (DWARF, stabs, or the native format
7102if neither of those are supported), including GDB extensions if at all
7103possible.
7104
7105@item -gdwarf
7106@itemx -gdwarf-@var{version}
7107@opindex gdwarf
7108Produce debugging information in DWARF format (if that is supported).
7109The value of @var{version} may be either 2, 3, 4 or 5; the default version
7110for most targets is 4.  DWARF Version 5 is only experimental.
7111
7112Note that with DWARF Version 2, some ports require and always
7113use some non-conflicting DWARF 3 extensions in the unwind tables.
7114
7115Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7116for maximum benefit.
7117
7118GCC no longer supports DWARF Version 1, which is substantially
7119different than Version 2 and later.  For historical reasons, some
7120other DWARF-related options such as
7121@option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7122in their names, but apply to all currently-supported versions of DWARF.
7123
7124@item -gstabs
7125@opindex gstabs
7126Produce debugging information in stabs format (if that is supported),
7127without GDB extensions.  This is the format used by DBX on most BSD
7128systems.  On MIPS, Alpha and System V Release 4 systems this option
7129produces stabs debugging output that is not understood by DBX@.
7130On System V Release 4 systems this option requires the GNU assembler.
7131
7132@item -gstabs+
7133@opindex gstabs+
7134Produce debugging information in stabs format (if that is supported),
7135using GNU extensions understood only by the GNU debugger (GDB)@.  The
7136use of these extensions is likely to make other debuggers crash or
7137refuse to read the program.
7138
7139@item -gxcoff
7140@opindex gxcoff
7141Produce debugging information in XCOFF format (if that is supported).
7142This is the format used by the DBX debugger on IBM RS/6000 systems.
7143
7144@item -gxcoff+
7145@opindex gxcoff+
7146Produce debugging information in XCOFF format (if that is supported),
7147using GNU extensions understood only by the GNU debugger (GDB)@.  The
7148use of these extensions is likely to make other debuggers crash or
7149refuse to read the program, and may cause assemblers other than the GNU
7150assembler (GAS) to fail with an error.
7151
7152@item -gvms
7153@opindex gvms
7154Produce debugging information in Alpha/VMS debug format (if that is
7155supported).  This is the format used by DEBUG on Alpha/VMS systems.
7156
7157@item -g@var{level}
7158@itemx -ggdb@var{level}
7159@itemx -gstabs@var{level}
7160@itemx -gxcoff@var{level}
7161@itemx -gvms@var{level}
7162Request debugging information and also use @var{level} to specify how
7163much information.  The default level is 2.
7164
7165Level 0 produces no debug information at all.  Thus, @option{-g0} negates
7166@option{-g}.
7167
7168Level 1 produces minimal information, enough for making backtraces in
7169parts of the program that you don't plan to debug.  This includes
7170descriptions of functions and external variables, and line number
7171tables, but no information about local variables.
7172
7173Level 3 includes extra information, such as all the macro definitions
7174present in the program.  Some debuggers support macro expansion when
7175you use @option{-g3}.
7176
7177@option{-gdwarf} does not accept a concatenated debug level, to avoid
7178confusion with @option{-gdwarf-@var{level}}.
7179Instead use an additional @option{-g@var{level}} option to change the
7180debug level for DWARF.
7181
7182@item -feliminate-unused-debug-symbols
7183@opindex feliminate-unused-debug-symbols
7184Produce debugging information in stabs format (if that is supported),
7185for only symbols that are actually used.
7186
7187@item -femit-class-debug-always
7188@opindex femit-class-debug-always
7189Instead of emitting debugging information for a C++ class in only one
7190object file, emit it in all object files using the class.  This option
7191should be used only with debuggers that are unable to handle the way GCC
7192normally emits debugging information for classes because using this
7193option increases the size of debugging information by as much as a
7194factor of two.
7195
7196@item -fno-merge-debug-strings
7197@opindex fmerge-debug-strings
7198@opindex fno-merge-debug-strings
7199Direct the linker to not merge together strings in the debugging
7200information that are identical in different object files.  Merging is
7201not supported by all assemblers or linkers.  Merging decreases the size
7202of the debug information in the output file at the cost of increasing
7203link processing time.  Merging is enabled by default.
7204
7205@item -fdebug-prefix-map=@var{old}=@var{new}
7206@opindex fdebug-prefix-map
7207When compiling files residing in directory @file{@var{old}}, record
7208debugging information describing them as if the files resided in
7209directory @file{@var{new}} instead.  This can be used to replace a
7210build-time path with an install-time path in the debug info.  It can
7211also be used to change an absolute path to a relative path by using
7212@file{.} for @var{new}.  This can give more reproducible builds, which
7213are location independent, but may require an extra command to tell GDB
7214where to find the source files. See also @option{-ffile-prefix-map}.
7215
7216@item -fvar-tracking
7217@opindex fvar-tracking
7218Run variable tracking pass.  It computes where variables are stored at each
7219position in code.  Better debugging information is then generated
7220(if the debugging information format supports this information).
7221
7222It is enabled by default when compiling with optimization (@option{-Os},
7223@option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7224the debug info format supports it.
7225
7226@item -fvar-tracking-assignments
7227@opindex fvar-tracking-assignments
7228@opindex fno-var-tracking-assignments
7229Annotate assignments to user variables early in the compilation and
7230attempt to carry the annotations over throughout the compilation all the
7231way to the end, in an attempt to improve debug information while
7232optimizing.  Use of @option{-gdwarf-4} is recommended along with it.
7233
7234It can be enabled even if var-tracking is disabled, in which case
7235annotations are created and maintained, but discarded at the end.
7236By default, this flag is enabled together with @option{-fvar-tracking},
7237except when selective scheduling is enabled.
7238
7239@item -gsplit-dwarf
7240@opindex gsplit-dwarf
7241Separate as much DWARF debugging information as possible into a
7242separate output file with the extension @file{.dwo}.  This option allows
7243the build system to avoid linking files with debug information.  To
7244be useful, this option requires a debugger capable of reading @file{.dwo}
7245files.
7246
7247@item -gpubnames
7248@opindex gpubnames
7249Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7250
7251@item -ggnu-pubnames
7252@opindex ggnu-pubnames
7253Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7254suitable for conversion into a GDB@ index.  This option is only useful
7255with a linker that can produce GDB@ index version 7.
7256
7257@item -fdebug-types-section
7258@opindex fdebug-types-section
7259@opindex fno-debug-types-section
7260When using DWARF Version 4 or higher, type DIEs can be put into
7261their own @code{.debug_types} section instead of making them part of the
7262@code{.debug_info} section.  It is more efficient to put them in a separate
7263comdat sections since the linker can then remove duplicates.
7264But not all DWARF consumers support @code{.debug_types} sections yet
7265and on some objects @code{.debug_types} produces larger instead of smaller
7266debugging information.
7267
7268@item -grecord-gcc-switches
7269@itemx -gno-record-gcc-switches
7270@opindex grecord-gcc-switches
7271@opindex gno-record-gcc-switches
7272This switch causes the command-line options used to invoke the
7273compiler that may affect code generation to be appended to the
7274DW_AT_producer attribute in DWARF debugging information.  The options
7275are concatenated with spaces separating them from each other and from
7276the compiler version.
7277It is enabled by default.
7278See also @option{-frecord-gcc-switches} for another
7279way of storing compiler options into the object file.
7280
7281@item -gstrict-dwarf
7282@opindex gstrict-dwarf
7283Disallow using extensions of later DWARF standard version than selected
7284with @option{-gdwarf-@var{version}}.  On most targets using non-conflicting
7285DWARF extensions from later standard versions is allowed.
7286
7287@item -gno-strict-dwarf
7288@opindex gno-strict-dwarf
7289Allow using extensions of later DWARF standard version than selected with
7290@option{-gdwarf-@var{version}}.
7291
7292@item -gas-loc-support
7293@opindex gas-loc-support
7294Inform the compiler that the assembler supports @code{.loc} directives.
7295It may then use them for the assembler to generate DWARF2+ line number
7296tables.
7297
7298This is generally desirable, because assembler-generated line-number
7299tables are a lot more compact than those the compiler can generate
7300itself.
7301
7302This option will be enabled by default if, at GCC configure time, the
7303assembler was found to support such directives.
7304
7305@item -gno-as-loc-support
7306@opindex gno-as-loc-support
7307Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
7308line number tables are to be generated.
7309
7310@item gas-locview-support
7311@opindex gas-locview-support
7312Inform the compiler that the assembler supports @code{view} assignment
7313and reset assertion checking in @code{.loc} directives.
7314
7315This option will be enabled by default if, at GCC configure time, the
7316assembler was found to support them.
7317
7318@item gno-as-locview-support
7319Force GCC to assign view numbers internally, if
7320@option{-gvariable-location-views} are explicitly requested.
7321
7322@item -gcolumn-info
7323@itemx -gno-column-info
7324@opindex gcolumn-info
7325@opindex gno-column-info
7326Emit location column information into DWARF debugging information, rather
7327than just file and line.
7328This option is enabled by default.
7329
7330@item -gstatement-frontiers
7331@itemx -gno-statement-frontiers
7332@opindex gstatement-frontiers
7333@opindex gno-statement-frontiers
7334This option causes GCC to create markers in the internal representation
7335at the beginning of statements, and to keep them roughly in place
7336throughout compilation, using them to guide the output of @code{is_stmt}
7337markers in the line number table.  This is enabled by default when
7338compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
7339@dots{}), and outputting DWARF 2 debug information at the normal level.
7340
7341@item -gvariable-location-views
7342@itemx -gvariable-location-views=incompat5
7343@itemx -gno-variable-location-views
7344@opindex gvariable-location-views
7345@opindex gvariable-location-views=incompat5
7346@opindex gno-variable-location-views
7347Augment variable location lists with progressive view numbers implied
7348from the line number table.  This enables debug information consumers to
7349inspect state at certain points of the program, even if no instructions
7350associated with the corresponding source locations are present at that
7351point.  If the assembler lacks support for view numbers in line number
7352tables, this will cause the compiler to emit the line number table,
7353which generally makes them somewhat less compact.  The augmented line
7354number tables and location lists are fully backward-compatible, so they
7355can be consumed by debug information consumers that are not aware of
7356these augmentations, but they won't derive any benefit from them either.
7357
7358This is enabled by default when outputting DWARF 2 debug information at
7359the normal level, as long as there is assembler support,
7360@option{-fvar-tracking-assignments} is enabled and
7361@option{-gstrict-dwarf} is not.  When assembler support is not
7362available, this may still be enabled, but it will force GCC to output
7363internal line number tables, and if
7364@option{-ginternal-reset-location-views} is not enabled, that will most
7365certainly lead to silently mismatching location views.
7366
7367There is a proposed representation for view numbers that is not backward
7368compatible with the location list format introduced in DWARF 5, that can
7369be enabled with @option{-gvariable-location-views=incompat5}.  This
7370option may be removed in the future, is only provided as a reference
7371implementation of the proposed representation.  Debug information
7372consumers are not expected to support this extended format, and they
7373would be rendered unable to decode location lists using it.
7374
7375@item -ginternal-reset-location-views
7376@itemx -gno-internal-reset-location-views
7377@opindex ginternal-reset-location-views
7378@opindex gno-internal-reset-location-views
7379Attempt to determine location views that can be omitted from location
7380view lists.  This requires the compiler to have very accurate insn
7381length estimates, which isn't always the case, and it may cause
7382incorrect view lists to be generated silently when using an assembler
7383that does not support location view lists.  The GNU assembler will flag
7384any such error as a @code{view number mismatch}.  This is only enabled
7385on ports that define a reliable estimation function.
7386
7387@item -ginline-points
7388@itemx -gno-inline-points
7389@opindex ginline-points
7390@opindex gno-inline-points
7391Generate extended debug information for inlined functions.  Location
7392view tracking markers are inserted at inlined entry points, so that
7393address and view numbers can be computed and output in debug
7394information.  This can be enabled independently of location views, in
7395which case the view numbers won't be output, but it can only be enabled
7396along with statement frontiers, and it is only enabled by default if
7397location views are enabled.
7398
7399@item -gz@r{[}=@var{type}@r{]}
7400@opindex gz
7401Produce compressed debug sections in DWARF format, if that is supported.
7402If @var{type} is not given, the default type depends on the capabilities
7403of the assembler and linker used.  @var{type} may be one of
7404@samp{none} (don't compress debug sections), @samp{zlib} (use zlib
7405compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
7406compression in traditional GNU format).  If the linker doesn't support
7407writing compressed debug sections, the option is rejected.  Otherwise,
7408if the assembler does not support them, @option{-gz} is silently ignored
7409when producing object files.
7410
7411@item -femit-struct-debug-baseonly
7412@opindex femit-struct-debug-baseonly
7413Emit debug information for struct-like types
7414only when the base name of the compilation source file
7415matches the base name of file in which the struct is defined.
7416
7417This option substantially reduces the size of debugging information,
7418but at significant potential loss in type information to the debugger.
7419See @option{-femit-struct-debug-reduced} for a less aggressive option.
7420See @option{-femit-struct-debug-detailed} for more detailed control.
7421
7422This option works only with DWARF debug output.
7423
7424@item -femit-struct-debug-reduced
7425@opindex femit-struct-debug-reduced
7426Emit debug information for struct-like types
7427only when the base name of the compilation source file
7428matches the base name of file in which the type is defined,
7429unless the struct is a template or defined in a system header.
7430
7431This option significantly reduces the size of debugging information,
7432with some potential loss in type information to the debugger.
7433See @option{-femit-struct-debug-baseonly} for a more aggressive option.
7434See @option{-femit-struct-debug-detailed} for more detailed control.
7435
7436This option works only with DWARF debug output.
7437
7438@item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
7439@opindex femit-struct-debug-detailed
7440Specify the struct-like types
7441for which the compiler generates debug information.
7442The intent is to reduce duplicate struct debug information
7443between different object files within the same program.
7444
7445This option is a detailed version of
7446@option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
7447which serves for most needs.
7448
7449A specification has the syntax@*
7450[@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
7451
7452The optional first word limits the specification to
7453structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
7454A struct type is used directly when it is the type of a variable, member.
7455Indirect uses arise through pointers to structs.
7456That is, when use of an incomplete struct is valid, the use is indirect.
7457An example is
7458@samp{struct one direct; struct two * indirect;}.
7459
7460The optional second word limits the specification to
7461ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
7462Generic structs are a bit complicated to explain.
7463For C++, these are non-explicit specializations of template classes,
7464or non-template classes within the above.
7465Other programming languages have generics,
7466but @option{-femit-struct-debug-detailed} does not yet implement them.
7467
7468The third word specifies the source files for those
7469structs for which the compiler should emit debug information.
7470The values @samp{none} and @samp{any} have the normal meaning.
7471The value @samp{base} means that
7472the base of name of the file in which the type declaration appears
7473must match the base of the name of the main compilation file.
7474In practice, this means that when compiling @file{foo.c}, debug information
7475is generated for types declared in that file and @file{foo.h},
7476but not other header files.
7477The value @samp{sys} means those types satisfying @samp{base}
7478or declared in system or compiler headers.
7479
7480You may need to experiment to determine the best settings for your application.
7481
7482The default is @option{-femit-struct-debug-detailed=all}.
7483
7484This option works only with DWARF debug output.
7485
7486@item -fno-dwarf2-cfi-asm
7487@opindex fdwarf2-cfi-asm
7488@opindex fno-dwarf2-cfi-asm
7489Emit DWARF unwind info as compiler generated @code{.eh_frame} section
7490instead of using GAS @code{.cfi_*} directives.
7491
7492@item -fno-eliminate-unused-debug-types
7493@opindex feliminate-unused-debug-types
7494@opindex fno-eliminate-unused-debug-types
7495Normally, when producing DWARF output, GCC avoids producing debug symbol
7496output for types that are nowhere used in the source file being compiled.
7497Sometimes it is useful to have GCC emit debugging
7498information for all types declared in a compilation
7499unit, regardless of whether or not they are actually used
7500in that compilation unit, for example
7501if, in the debugger, you want to cast a value to a type that is
7502not actually used in your program (but is declared).  More often,
7503however, this results in a significant amount of wasted space.
7504@end table
7505
7506@node Optimize Options
7507@section Options That Control Optimization
7508@cindex optimize options
7509@cindex options, optimization
7510
7511These options control various sorts of optimizations.
7512
7513Without any optimization option, the compiler's goal is to reduce the
7514cost of compilation and to make debugging produce the expected
7515results.  Statements are independent: if you stop the program with a
7516breakpoint between statements, you can then assign a new value to any
7517variable or change the program counter to any other statement in the
7518function and get exactly the results you expect from the source
7519code.
7520
7521Turning on optimization flags makes the compiler attempt to improve
7522the performance and/or code size at the expense of compilation time
7523and possibly the ability to debug the program.
7524
7525The compiler performs optimization based on the knowledge it has of the
7526program.  Compiling multiple files at once to a single output file mode allows
7527the compiler to use information gained from all of the files when compiling
7528each of them.
7529
7530Not all optimizations are controlled directly by a flag.  Only
7531optimizations that have a flag are listed in this section.
7532
7533Most optimizations are only enabled if an @option{-O} level is set on
7534the command line.  Otherwise they are disabled, even if individual
7535optimization flags are specified.
7536
7537Depending on the target and how GCC was configured, a slightly different
7538set of optimizations may be enabled at each @option{-O} level than
7539those listed here.  You can invoke GCC with @option{-Q --help=optimizers}
7540to find out the exact set of optimizations that are enabled at each level.
7541@xref{Overall Options}, for examples.
7542
7543@table @gcctabopt
7544@item -O
7545@itemx -O1
7546@opindex O
7547@opindex O1
7548Optimize.  Optimizing compilation takes somewhat more time, and a lot
7549more memory for a large function.
7550
7551With @option{-O}, the compiler tries to reduce code size and execution
7552time, without performing any optimizations that take a great deal of
7553compilation time.
7554
7555@option{-O} turns on the following optimization flags:
7556@gccoptlist{
7557-fauto-inc-dec @gol
7558-fbranch-count-reg @gol
7559-fcombine-stack-adjustments @gol
7560-fcompare-elim @gol
7561-fcprop-registers @gol
7562-fdce @gol
7563-fdefer-pop @gol
7564-fdelayed-branch @gol
7565-fdse @gol
7566-fforward-propagate @gol
7567-fguess-branch-probability @gol
7568-fif-conversion2 @gol
7569-fif-conversion @gol
7570-finline-functions-called-once @gol
7571-fipa-pure-const @gol
7572-fipa-profile @gol
7573-fipa-reference @gol
7574-fmerge-constants @gol
7575-fmove-loop-invariants @gol
7576-fomit-frame-pointer @gol
7577-freorder-blocks @gol
7578-fshrink-wrap @gol
7579-fshrink-wrap-separate @gol
7580-fsplit-wide-types @gol
7581-fssa-backprop @gol
7582-fssa-phiopt @gol
7583-ftree-bit-ccp @gol
7584-ftree-ccp @gol
7585-ftree-ch @gol
7586-ftree-coalesce-vars @gol
7587-ftree-copy-prop @gol
7588-ftree-dce @gol
7589-ftree-dominator-opts @gol
7590-ftree-dse @gol
7591-ftree-forwprop @gol
7592-ftree-fre @gol
7593-ftree-phiprop @gol
7594-ftree-sink @gol
7595-ftree-slsr @gol
7596-ftree-sra @gol
7597-ftree-pta @gol
7598-ftree-ter @gol
7599-funit-at-a-time}
7600
7601@item -O2
7602@opindex O2
7603Optimize even more.  GCC performs nearly all supported optimizations
7604that do not involve a space-speed tradeoff.
7605As compared to @option{-O}, this option increases both compilation time
7606and the performance of the generated code.
7607
7608@option{-O2} turns on all optimization flags specified by @option{-O}.  It
7609also turns on the following optimization flags:
7610@gccoptlist{-fthread-jumps @gol
7611-falign-functions  -falign-jumps @gol
7612-falign-loops  -falign-labels @gol
7613-fcaller-saves @gol
7614-fcrossjumping @gol
7615-fcse-follow-jumps  -fcse-skip-blocks @gol
7616-fdelete-null-pointer-checks @gol
7617-fdevirtualize -fdevirtualize-speculatively @gol
7618-fexpensive-optimizations @gol
7619-fgcse  -fgcse-lm  @gol
7620-fhoist-adjacent-loads @gol
7621-finline-small-functions @gol
7622-findirect-inlining @gol
7623-fipa-cp @gol
7624-fipa-bit-cp @gol
7625-fipa-vrp @gol
7626-fipa-sra @gol
7627-fipa-icf @gol
7628-fisolate-erroneous-paths-dereference @gol
7629-flra-remat @gol
7630-foptimize-sibling-calls @gol
7631-foptimize-strlen @gol
7632-fpartial-inlining @gol
7633-fpeephole2 @gol
7634-freorder-blocks-algorithm=stc @gol
7635-freorder-blocks-and-partition -freorder-functions @gol
7636-frerun-cse-after-loop  @gol
7637-fsched-interblock  -fsched-spec @gol
7638-fschedule-insns  -fschedule-insns2 @gol
7639-fstore-merging @gol
7640-fstrict-aliasing @gol
7641-ftree-builtin-call-dce @gol
7642-ftree-switch-conversion -ftree-tail-merge @gol
7643-fcode-hoisting @gol
7644-ftree-pre @gol
7645-ftree-vrp @gol
7646-fipa-ra}
7647
7648Please note the warning under @option{-fgcse} about
7649invoking @option{-O2} on programs that use computed gotos.
7650
7651@item -O3
7652@opindex O3
7653Optimize yet more.  @option{-O3} turns on all optimizations specified
7654by @option{-O2} and also turns on the following optimization flags:
7655@gccoptlist{-finline-functions @gol
7656-funswitch-loops @gol
7657-fpredictive-commoning @gol
7658-fgcse-after-reload @gol
7659-ftree-loop-vectorize @gol
7660-ftree-loop-distribution @gol
7661-ftree-loop-distribute-patterns @gol
7662-floop-interchange @gol
7663-floop-unroll-and-jam @gol
7664-fsplit-paths @gol
7665-ftree-slp-vectorize @gol
7666-fvect-cost-model @gol
7667-ftree-partial-pre @gol
7668-fpeel-loops @gol
7669-fipa-cp-clone}
7670
7671@item -O0
7672@opindex O0
7673Reduce compilation time and make debugging produce the expected
7674results.  This is the default.
7675
7676@item -Os
7677@opindex Os
7678Optimize for size.  @option{-Os} enables all @option{-O2} optimizations that
7679do not typically increase code size.
7680
7681@option{-Os} disables the following optimization flags:
7682@gccoptlist{-falign-functions  -falign-jumps  -falign-loops @gol
7683-falign-labels  -fprefetch-loop-arrays}
7684
7685It also enables @option{-finline-functions}, causes the compiler to tune for
7686code size rather than execution speed, and performs further optimizations
7687designed to reduce code size.
7688
7689@item -Ofast
7690@opindex Ofast
7691Disregard strict standards compliance.  @option{-Ofast} enables all
7692@option{-O3} optimizations.  It also enables optimizations that are not
7693valid for all standard-compliant programs.
7694It turns on @option{-ffast-math} and the Fortran-specific
7695@option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
7696specified, and @option{-fno-protect-parens}.
7697
7698@item -Og
7699@opindex Og
7700Optimize debugging experience.  @option{-Og} enables optimizations
7701that do not interfere with debugging. It should be the optimization
7702level of choice for the standard edit-compile-debug cycle, offering
7703a reasonable level of optimization while maintaining fast compilation
7704and a good debugging experience.
7705@end table
7706
7707If you use multiple @option{-O} options, with or without level numbers,
7708the last such option is the one that is effective.
7709
7710Options of the form @option{-f@var{flag}} specify machine-independent
7711flags.  Most flags have both positive and negative forms; the negative
7712form of @option{-ffoo} is @option{-fno-foo}.  In the table
7713below, only one of the forms is listed---the one you typically
7714use.  You can figure out the other form by either removing @samp{no-}
7715or adding it.
7716
7717The following options control specific optimizations.  They are either
7718activated by @option{-O} options or are related to ones that are.  You
7719can use the following flags in the rare cases when ``fine-tuning'' of
7720optimizations to be performed is desired.
7721
7722@table @gcctabopt
7723@item -fno-defer-pop
7724@opindex fno-defer-pop
7725Always pop the arguments to each function call as soon as that function
7726returns.  For machines that must pop arguments after a function call,
7727the compiler normally lets arguments accumulate on the stack for several
7728function calls and pops them all at once.
7729
7730Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7731
7732@item -fforward-propagate
7733@opindex fforward-propagate
7734Perform a forward propagation pass on RTL@.  The pass tries to combine two
7735instructions and checks if the result can be simplified.  If loop unrolling
7736is active, two passes are performed and the second is scheduled after
7737loop unrolling.
7738
7739This option is enabled by default at optimization levels @option{-O},
7740@option{-O2}, @option{-O3}, @option{-Os}.
7741
7742@item -ffp-contract=@var{style}
7743@opindex ffp-contract
7744@option{-ffp-contract=off} disables floating-point expression contraction.
7745@option{-ffp-contract=fast} enables floating-point expression contraction
7746such as forming of fused multiply-add operations if the target has
7747native support for them.
7748@option{-ffp-contract=on} enables floating-point expression contraction
7749if allowed by the language standard.  This is currently not implemented
7750and treated equal to @option{-ffp-contract=off}.
7751
7752The default is @option{-ffp-contract=fast}.
7753
7754@item -fomit-frame-pointer
7755@opindex fomit-frame-pointer
7756Omit the frame pointer in functions that don't need one.  This avoids the
7757instructions to save, set up and restore the frame pointer; on many targets
7758it also makes an extra register available.
7759
7760On some targets this flag has no effect because the standard calling sequence
7761always uses a frame pointer, so it cannot be omitted.
7762
7763Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
7764is used in all functions.  Several targets always omit the frame pointer in
7765leaf functions.
7766
7767Enabled by default at @option{-O} and higher.
7768
7769@item -foptimize-sibling-calls
7770@opindex foptimize-sibling-calls
7771Optimize sibling and tail recursive calls.
7772
7773Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7774
7775@item -foptimize-strlen
7776@opindex foptimize-strlen
7777Optimize various standard C string functions (e.g. @code{strlen},
7778@code{strchr} or @code{strcpy}) and
7779their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7780
7781Enabled at levels @option{-O2}, @option{-O3}.
7782
7783@item -fno-inline
7784@opindex fno-inline
7785Do not expand any functions inline apart from those marked with
7786the @code{always_inline} attribute.  This is the default when not
7787optimizing.
7788
7789Single functions can be exempted from inlining by marking them
7790with the @code{noinline} attribute.
7791
7792@item -finline-small-functions
7793@opindex finline-small-functions
7794Integrate functions into their callers when their body is smaller than expected
7795function call code (so overall size of program gets smaller).  The compiler
7796heuristically decides which functions are simple enough to be worth integrating
7797in this way.  This inlining applies to all functions, even those not declared
7798inline.
7799
7800Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7801
7802@item -findirect-inlining
7803@opindex findirect-inlining
7804Inline also indirect calls that are discovered to be known at compile
7805time thanks to previous inlining.  This option has any effect only
7806when inlining itself is turned on by the @option{-finline-functions}
7807or @option{-finline-small-functions} options.
7808
7809Enabled at levels @option{-O3}, @option{-Os}.  Also enabled
7810by @option{-fprofile-use} and @option{-fauto-profile}.
7811
7812@item -finline-functions
7813@opindex finline-functions
7814Consider all functions for inlining, even if they are not declared inline.
7815The compiler heuristically decides which functions are worth integrating
7816in this way.
7817
7818If all calls to a given function are integrated, and the function is
7819declared @code{static}, then the function is normally not output as
7820assembler code in its own right.
7821
7822Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7823
7824@item -finline-functions-called-once
7825@opindex finline-functions-called-once
7826Consider all @code{static} functions called once for inlining into their
7827caller even if they are not marked @code{inline}.  If a call to a given
7828function is integrated, then the function is not output as assembler code
7829in its own right.
7830
7831Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7832
7833@item -fearly-inlining
7834@opindex fearly-inlining
7835Inline functions marked by @code{always_inline} and functions whose body seems
7836smaller than the function call overhead early before doing
7837@option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
7838makes profiling significantly cheaper and usually inlining faster on programs
7839having large chains of nested wrapper functions.
7840
7841Enabled by default.
7842
7843@item -fipa-sra
7844@opindex fipa-sra
7845Perform interprocedural scalar replacement of aggregates, removal of
7846unused parameters and replacement of parameters passed by reference
7847by parameters passed by value.
7848
7849Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7850
7851@item -finline-limit=@var{n}
7852@opindex finline-limit
7853By default, GCC limits the size of functions that can be inlined.  This flag
7854allows coarse control of this limit.  @var{n} is the size of functions that
7855can be inlined in number of pseudo instructions.
7856
7857Inlining is actually controlled by a number of parameters, which may be
7858specified individually by using @option{--param @var{name}=@var{value}}.
7859The @option{-finline-limit=@var{n}} option sets some of these parameters
7860as follows:
7861
7862@table @gcctabopt
7863@item max-inline-insns-single
7864is set to @var{n}/2.
7865@item max-inline-insns-auto
7866is set to @var{n}/2.
7867@end table
7868
7869See below for a documentation of the individual
7870parameters controlling inlining and for the defaults of these parameters.
7871
7872@emph{Note:} there may be no value to @option{-finline-limit} that results
7873in default behavior.
7874
7875@emph{Note:} pseudo instruction represents, in this particular context, an
7876abstract measurement of function's size.  In no way does it represent a count
7877of assembly instructions and as such its exact meaning might change from one
7878release to an another.
7879
7880@item -fno-keep-inline-dllexport
7881@opindex fno-keep-inline-dllexport
7882This is a more fine-grained version of @option{-fkeep-inline-functions},
7883which applies only to functions that are declared using the @code{dllexport}
7884attribute or declspec.  @xref{Function Attributes,,Declaring Attributes of
7885Functions}.
7886
7887@item -fkeep-inline-functions
7888@opindex fkeep-inline-functions
7889In C, emit @code{static} functions that are declared @code{inline}
7890into the object file, even if the function has been inlined into all
7891of its callers.  This switch does not affect functions using the
7892@code{extern inline} extension in GNU C90@.  In C++, emit any and all
7893inline functions into the object file.
7894
7895@item -fkeep-static-functions
7896@opindex fkeep-static-functions
7897Emit @code{static} functions into the object file, even if the function
7898is never used.
7899
7900@item -fkeep-static-consts
7901@opindex fkeep-static-consts
7902Emit variables declared @code{static const} when optimization isn't turned
7903on, even if the variables aren't referenced.
7904
7905GCC enables this option by default.  If you want to force the compiler to
7906check if a variable is referenced, regardless of whether or not
7907optimization is turned on, use the @option{-fno-keep-static-consts} option.
7908
7909@item -fmerge-constants
7910@opindex fmerge-constants
7911Attempt to merge identical constants (string constants and floating-point
7912constants) across compilation units.
7913
7914This option is the default for optimized compilation if the assembler and
7915linker support it.  Use @option{-fno-merge-constants} to inhibit this
7916behavior.
7917
7918Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7919
7920@item -fmerge-all-constants
7921@opindex fmerge-all-constants
7922Attempt to merge identical constants and identical variables.
7923
7924This option implies @option{-fmerge-constants}.  In addition to
7925@option{-fmerge-constants} this considers e.g.@: even constant initialized
7926arrays or initialized constant variables with integral or floating-point
7927types.  Languages like C or C++ require each variable, including multiple
7928instances of the same variable in recursive calls, to have distinct locations,
7929so using this option results in non-conforming
7930behavior.
7931
7932@item -fmodulo-sched
7933@opindex fmodulo-sched
7934Perform swing modulo scheduling immediately before the first scheduling
7935pass.  This pass looks at innermost loops and reorders their
7936instructions by overlapping different iterations.
7937
7938@item -fmodulo-sched-allow-regmoves
7939@opindex fmodulo-sched-allow-regmoves
7940Perform more aggressive SMS-based modulo scheduling with register moves
7941allowed.  By setting this flag certain anti-dependences edges are
7942deleted, which triggers the generation of reg-moves based on the
7943life-range analysis.  This option is effective only with
7944@option{-fmodulo-sched} enabled.
7945
7946@item -fno-branch-count-reg
7947@opindex fno-branch-count-reg
7948Avoid running a pass scanning for opportunities to use ``decrement and
7949branch'' instructions on a count register instead of generating sequences
7950of instructions that decrement a register, compare it against zero, and
7951then branch based upon the result.  This option is only meaningful on
7952architectures that support such instructions, which include x86, PowerPC,
7953IA-64 and S/390.  Note that the @option{-fno-branch-count-reg} option
7954doesn't remove the decrement and branch instructions from the generated
7955instruction stream introduced by other optimization passes.
7956
7957Enabled by default at @option{-O1} and higher.
7958
7959The default is @option{-fbranch-count-reg}.
7960
7961@item -fno-function-cse
7962@opindex fno-function-cse
7963Do not put function addresses in registers; make each instruction that
7964calls a constant function contain the function's address explicitly.
7965
7966This option results in less efficient code, but some strange hacks
7967that alter the assembler output may be confused by the optimizations
7968performed when this option is not used.
7969
7970The default is @option{-ffunction-cse}
7971
7972@item -fno-zero-initialized-in-bss
7973@opindex fno-zero-initialized-in-bss
7974If the target supports a BSS section, GCC by default puts variables that
7975are initialized to zero into BSS@.  This can save space in the resulting
7976code.
7977
7978This option turns off this behavior because some programs explicitly
7979rely on variables going to the data section---e.g., so that the
7980resulting executable can find the beginning of that section and/or make
7981assumptions based on that.
7982
7983The default is @option{-fzero-initialized-in-bss}.
7984
7985@item -fthread-jumps
7986@opindex fthread-jumps
7987Perform optimizations that check to see if a jump branches to a
7988location where another comparison subsumed by the first is found.  If
7989so, the first branch is redirected to either the destination of the
7990second branch or a point immediately following it, depending on whether
7991the condition is known to be true or false.
7992
7993Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7994
7995@item -fsplit-wide-types
7996@opindex fsplit-wide-types
7997When using a type that occupies multiple registers, such as @code{long
7998long} on a 32-bit system, split the registers apart and allocate them
7999independently.  This normally generates better code for those types,
8000but may make debugging more difficult.
8001
8002Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8003@option{-Os}.
8004
8005@item -fcse-follow-jumps
8006@opindex fcse-follow-jumps
8007In common subexpression elimination (CSE), scan through jump instructions
8008when the target of the jump is not reached by any other path.  For
8009example, when CSE encounters an @code{if} statement with an
8010@code{else} clause, CSE follows the jump when the condition
8011tested is false.
8012
8013Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8014
8015@item -fcse-skip-blocks
8016@opindex fcse-skip-blocks
8017This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8018follow jumps that conditionally skip over blocks.  When CSE
8019encounters a simple @code{if} statement with no else clause,
8020@option{-fcse-skip-blocks} causes CSE to follow the jump around the
8021body of the @code{if}.
8022
8023Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8024
8025@item -frerun-cse-after-loop
8026@opindex frerun-cse-after-loop
8027Re-run common subexpression elimination after loop optimizations are
8028performed.
8029
8030Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8031
8032@item -fgcse
8033@opindex fgcse
8034Perform a global common subexpression elimination pass.
8035This pass also performs global constant and copy propagation.
8036
8037@emph{Note:} When compiling a program using computed gotos, a GCC
8038extension, you may get better run-time performance if you disable
8039the global common subexpression elimination pass by adding
8040@option{-fno-gcse} to the command line.
8041
8042Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8043
8044@item -fgcse-lm
8045@opindex fgcse-lm
8046When @option{-fgcse-lm} is enabled, global common subexpression elimination
8047attempts to move loads that are only killed by stores into themselves.  This
8048allows a loop containing a load/store sequence to be changed to a load outside
8049the loop, and a copy/store within the loop.
8050
8051Enabled by default when @option{-fgcse} is enabled.
8052
8053@item -fgcse-sm
8054@opindex fgcse-sm
8055When @option{-fgcse-sm} is enabled, a store motion pass is run after
8056global common subexpression elimination.  This pass attempts to move
8057stores out of loops.  When used in conjunction with @option{-fgcse-lm},
8058loops containing a load/store sequence can be changed to a load before
8059the loop and a store after the loop.
8060
8061Not enabled at any optimization level.
8062
8063@item -fgcse-las
8064@opindex fgcse-las
8065When @option{-fgcse-las} is enabled, the global common subexpression
8066elimination pass eliminates redundant loads that come after stores to the
8067same memory location (both partial and full redundancies).
8068
8069Not enabled at any optimization level.
8070
8071@item -fgcse-after-reload
8072@opindex fgcse-after-reload
8073When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8074pass is performed after reload.  The purpose of this pass is to clean up
8075redundant spilling.
8076
8077@item -faggressive-loop-optimizations
8078@opindex faggressive-loop-optimizations
8079This option tells the loop optimizer to use language constraints to
8080derive bounds for the number of iterations of a loop.  This assumes that
8081loop code does not invoke undefined behavior by for example causing signed
8082integer overflows or out-of-bound array accesses.  The bounds for the
8083number of iterations of a loop are used to guide loop unrolling and peeling
8084and loop exit test optimizations.
8085This option is enabled by default.
8086
8087@item -funconstrained-commons
8088@opindex funconstrained-commons
8089This option tells the compiler that variables declared in common blocks
8090(e.g. Fortran) may later be overridden with longer trailing arrays. This
8091prevents certain optimizations that depend on knowing the array bounds.
8092
8093@item -fcrossjumping
8094@opindex fcrossjumping
8095Perform cross-jumping transformation.
8096This transformation unifies equivalent code and saves code size.  The
8097resulting code may or may not perform better than without cross-jumping.
8098
8099Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8100
8101@item -fauto-inc-dec
8102@opindex fauto-inc-dec
8103Combine increments or decrements of addresses with memory accesses.
8104This pass is always skipped on architectures that do not have
8105instructions to support this.  Enabled by default at @option{-O} and
8106higher on architectures that support this.
8107
8108@item -fdce
8109@opindex fdce
8110Perform dead code elimination (DCE) on RTL@.
8111Enabled by default at @option{-O} and higher.
8112
8113@item -fdse
8114@opindex fdse
8115Perform dead store elimination (DSE) on RTL@.
8116Enabled by default at @option{-O} and higher.
8117
8118@item -fif-conversion
8119@opindex fif-conversion
8120Attempt to transform conditional jumps into branch-less equivalents.  This
8121includes use of conditional moves, min, max, set flags and abs instructions, and
8122some tricks doable by standard arithmetics.  The use of conditional execution
8123on chips where it is available is controlled by @option{-fif-conversion2}.
8124
8125Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8126
8127@item -fif-conversion2
8128@opindex fif-conversion2
8129Use conditional execution (where available) to transform conditional jumps into
8130branch-less equivalents.
8131
8132Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8133
8134@item -fdeclone-ctor-dtor
8135@opindex fdeclone-ctor-dtor
8136The C++ ABI requires multiple entry points for constructors and
8137destructors: one for a base subobject, one for a complete object, and
8138one for a virtual destructor that calls operator delete afterwards.
8139For a hierarchy with virtual bases, the base and complete variants are
8140clones, which means two copies of the function.  With this option, the
8141base and complete variants are changed to be thunks that call a common
8142implementation.
8143
8144Enabled by @option{-Os}.
8145
8146@item -fdelete-null-pointer-checks
8147@opindex fdelete-null-pointer-checks
8148Assume that programs cannot safely dereference null pointers, and that
8149no code or data element resides at address zero.
8150This option enables simple constant
8151folding optimizations at all optimization levels.  In addition, other
8152optimization passes in GCC use this flag to control global dataflow
8153analyses that eliminate useless checks for null pointers; these assume
8154that a memory access to address zero always results in a trap, so
8155that if a pointer is checked after it has already been dereferenced,
8156it cannot be null.
8157
8158Note however that in some environments this assumption is not true.
8159Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8160for programs that depend on that behavior.
8161
8162This option is enabled by default on most targets.  On Nios II ELF, it
8163defaults to off.  On AVR, CR16, and MSP430, this option is completely disabled.
8164
8165Passes that use the dataflow information
8166are enabled independently at different optimization levels.
8167
8168@item -fdevirtualize
8169@opindex fdevirtualize
8170Attempt to convert calls to virtual functions to direct calls.  This
8171is done both within a procedure and interprocedurally as part of
8172indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8173propagation (@option{-fipa-cp}).
8174Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8175
8176@item -fdevirtualize-speculatively
8177@opindex fdevirtualize-speculatively
8178Attempt to convert calls to virtual functions to speculative direct calls.
8179Based on the analysis of the type inheritance graph, determine for a given call
8180the set of likely targets. If the set is small, preferably of size 1, change
8181the call into a conditional deciding between direct and indirect calls.  The
8182speculative calls enable more optimizations, such as inlining.  When they seem
8183useless after further optimization, they are converted back into original form.
8184
8185@item -fdevirtualize-at-ltrans
8186@opindex fdevirtualize-at-ltrans
8187Stream extra information needed for aggressive devirtualization when running
8188the link-time optimizer in local transformation mode.
8189This option enables more devirtualization but
8190significantly increases the size of streamed data. For this reason it is
8191disabled by default.
8192
8193@item -fexpensive-optimizations
8194@opindex fexpensive-optimizations
8195Perform a number of minor optimizations that are relatively expensive.
8196
8197Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8198
8199@item -free
8200@opindex free
8201Attempt to remove redundant extension instructions.  This is especially
8202helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8203registers after writing to their lower 32-bit half.
8204
8205Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8206@option{-O3}, @option{-Os}.
8207
8208@item -fno-lifetime-dse
8209@opindex fno-lifetime-dse
8210In C++ the value of an object is only affected by changes within its
8211lifetime: when the constructor begins, the object has an indeterminate
8212value, and any changes during the lifetime of the object are dead when
8213the object is destroyed.  Normally dead store elimination will take
8214advantage of this; if your code relies on the value of the object
8215storage persisting beyond the lifetime of the object, you can use this
8216flag to disable this optimization.  To preserve stores before the
8217constructor starts (e.g. because your operator new clears the object
8218storage) but still treat the object as dead after the destructor you,
8219can use @option{-flifetime-dse=1}.  The default behavior can be
8220explicitly selected with @option{-flifetime-dse=2}.
8221@option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8222
8223@item -flive-range-shrinkage
8224@opindex flive-range-shrinkage
8225Attempt to decrease register pressure through register live range
8226shrinkage.  This is helpful for fast processors with small or moderate
8227size register sets.
8228
8229@item -fira-algorithm=@var{algorithm}
8230@opindex fira-algorithm
8231Use the specified coloring algorithm for the integrated register
8232allocator.  The @var{algorithm} argument can be @samp{priority}, which
8233specifies Chow's priority coloring, or @samp{CB}, which specifies
8234Chaitin-Briggs coloring.  Chaitin-Briggs coloring is not implemented
8235for all architectures, but for those targets that do support it, it is
8236the default because it generates better code.
8237
8238@item -fira-region=@var{region}
8239@opindex fira-region
8240Use specified regions for the integrated register allocator.  The
8241@var{region} argument should be one of the following:
8242
8243@table @samp
8244
8245@item all
8246Use all loops as register allocation regions.
8247This can give the best results for machines with a small and/or
8248irregular register set.
8249
8250@item mixed
8251Use all loops except for loops with small register pressure
8252as the regions.  This value usually gives
8253the best results in most cases and for most architectures,
8254and is enabled by default when compiling with optimization for speed
8255(@option{-O}, @option{-O2}, @dots{}).
8256
8257@item one
8258Use all functions as a single region.
8259This typically results in the smallest code size, and is enabled by default for
8260@option{-Os} or @option{-O0}.
8261
8262@end table
8263
8264@item -fira-hoist-pressure
8265@opindex fira-hoist-pressure
8266Use IRA to evaluate register pressure in the code hoisting pass for
8267decisions to hoist expressions.  This option usually results in smaller
8268code, but it can slow the compiler down.
8269
8270This option is enabled at level @option{-Os} for all targets.
8271
8272@item -fira-loop-pressure
8273@opindex fira-loop-pressure
8274Use IRA to evaluate register pressure in loops for decisions to move
8275loop invariants.  This option usually results in generation
8276of faster and smaller code on machines with large register files (>= 32
8277registers), but it can slow the compiler down.
8278
8279This option is enabled at level @option{-O3} for some targets.
8280
8281@item -fno-ira-share-save-slots
8282@opindex fno-ira-share-save-slots
8283Disable sharing of stack slots used for saving call-used hard
8284registers living through a call.  Each hard register gets a
8285separate stack slot, and as a result function stack frames are
8286larger.
8287
8288@item -fno-ira-share-spill-slots
8289@opindex fno-ira-share-spill-slots
8290Disable sharing of stack slots allocated for pseudo-registers.  Each
8291pseudo-register that does not get a hard register gets a separate
8292stack slot, and as a result function stack frames are larger.
8293
8294@item -flra-remat
8295@opindex flra-remat
8296Enable CFG-sensitive rematerialization in LRA.  Instead of loading
8297values of spilled pseudos, LRA tries to rematerialize (recalculate)
8298values if it is profitable.
8299
8300Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8301
8302@item -fdelayed-branch
8303@opindex fdelayed-branch
8304If supported for the target machine, attempt to reorder instructions
8305to exploit instruction slots available after delayed branch
8306instructions.
8307
8308Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8309
8310@item -fschedule-insns
8311@opindex fschedule-insns
8312If supported for the target machine, attempt to reorder instructions to
8313eliminate execution stalls due to required data being unavailable.  This
8314helps machines that have slow floating point or memory load instructions
8315by allowing other instructions to be issued until the result of the load
8316or floating-point instruction is required.
8317
8318Enabled at levels @option{-O2}, @option{-O3}.
8319
8320@item -fschedule-insns2
8321@opindex fschedule-insns2
8322Similar to @option{-fschedule-insns}, but requests an additional pass of
8323instruction scheduling after register allocation has been done.  This is
8324especially useful on machines with a relatively small number of
8325registers and where memory load instructions take more than one cycle.
8326
8327Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8328
8329@item -fno-sched-interblock
8330@opindex fno-sched-interblock
8331Don't schedule instructions across basic blocks.  This is normally
8332enabled by default when scheduling before register allocation, i.e.@:
8333with @option{-fschedule-insns} or at @option{-O2} or higher.
8334
8335@item -fno-sched-spec
8336@opindex fno-sched-spec
8337Don't allow speculative motion of non-load instructions.  This is normally
8338enabled by default when scheduling before register allocation, i.e.@:
8339with @option{-fschedule-insns} or at @option{-O2} or higher.
8340
8341@item -fsched-pressure
8342@opindex fsched-pressure
8343Enable register pressure sensitive insn scheduling before register
8344allocation.  This only makes sense when scheduling before register
8345allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8346@option{-O2} or higher.  Usage of this option can improve the
8347generated code and decrease its size by preventing register pressure
8348increase above the number of available hard registers and subsequent
8349spills in register allocation.
8350
8351@item -fsched-spec-load
8352@opindex fsched-spec-load
8353Allow speculative motion of some load instructions.  This only makes
8354sense when scheduling before register allocation, i.e.@: with
8355@option{-fschedule-insns} or at @option{-O2} or higher.
8356
8357@item -fsched-spec-load-dangerous
8358@opindex fsched-spec-load-dangerous
8359Allow speculative motion of more load instructions.  This only makes
8360sense when scheduling before register allocation, i.e.@: with
8361@option{-fschedule-insns} or at @option{-O2} or higher.
8362
8363@item -fsched-stalled-insns
8364@itemx -fsched-stalled-insns=@var{n}
8365@opindex fsched-stalled-insns
8366Define how many insns (if any) can be moved prematurely from the queue
8367of stalled insns into the ready list during the second scheduling pass.
8368@option{-fno-sched-stalled-insns} means that no insns are moved
8369prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8370on how many queued insns can be moved prematurely.
8371@option{-fsched-stalled-insns} without a value is equivalent to
8372@option{-fsched-stalled-insns=1}.
8373
8374@item -fsched-stalled-insns-dep
8375@itemx -fsched-stalled-insns-dep=@var{n}
8376@opindex fsched-stalled-insns-dep
8377Define how many insn groups (cycles) are examined for a dependency
8378on a stalled insn that is a candidate for premature removal from the queue
8379of stalled insns.  This has an effect only during the second scheduling pass,
8380and only if @option{-fsched-stalled-insns} is used.
8381@option{-fno-sched-stalled-insns-dep} is equivalent to
8382@option{-fsched-stalled-insns-dep=0}.
8383@option{-fsched-stalled-insns-dep} without a value is equivalent to
8384@option{-fsched-stalled-insns-dep=1}.
8385
8386@item -fsched2-use-superblocks
8387@opindex fsched2-use-superblocks
8388When scheduling after register allocation, use superblock scheduling.
8389This allows motion across basic block boundaries,
8390resulting in faster schedules.  This option is experimental, as not all machine
8391descriptions used by GCC model the CPU closely enough to avoid unreliable
8392results from the algorithm.
8393
8394This only makes sense when scheduling after register allocation, i.e.@: with
8395@option{-fschedule-insns2} or at @option{-O2} or higher.
8396
8397@item -fsched-group-heuristic
8398@opindex fsched-group-heuristic
8399Enable the group heuristic in the scheduler.  This heuristic favors
8400the instruction that belongs to a schedule group.  This is enabled
8401by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8402or @option{-fschedule-insns2} or at @option{-O2} or higher.
8403
8404@item -fsched-critical-path-heuristic
8405@opindex fsched-critical-path-heuristic
8406Enable the critical-path heuristic in the scheduler.  This heuristic favors
8407instructions on the critical path.  This is enabled by default when
8408scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8409or @option{-fschedule-insns2} or at @option{-O2} or higher.
8410
8411@item -fsched-spec-insn-heuristic
8412@opindex fsched-spec-insn-heuristic
8413Enable the speculative instruction heuristic in the scheduler.  This
8414heuristic favors speculative instructions with greater dependency weakness.
8415This is enabled by default when scheduling is enabled, i.e.@:
8416with @option{-fschedule-insns} or @option{-fschedule-insns2}
8417or at @option{-O2} or higher.
8418
8419@item -fsched-rank-heuristic
8420@opindex fsched-rank-heuristic
8421Enable the rank heuristic in the scheduler.  This heuristic favors
8422the instruction belonging to a basic block with greater size or frequency.
8423This is enabled by default when scheduling is enabled, i.e.@:
8424with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8425at @option{-O2} or higher.
8426
8427@item -fsched-last-insn-heuristic
8428@opindex fsched-last-insn-heuristic
8429Enable the last-instruction heuristic in the scheduler.  This heuristic
8430favors the instruction that is less dependent on the last instruction
8431scheduled.  This is enabled by default when scheduling is enabled,
8432i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8433at @option{-O2} or higher.
8434
8435@item -fsched-dep-count-heuristic
8436@opindex fsched-dep-count-heuristic
8437Enable the dependent-count heuristic in the scheduler.  This heuristic
8438favors the instruction that has more instructions depending on it.
8439This is enabled by default when scheduling is enabled, i.e.@:
8440with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8441at @option{-O2} or higher.
8442
8443@item -freschedule-modulo-scheduled-loops
8444@opindex freschedule-modulo-scheduled-loops
8445Modulo scheduling is performed before traditional scheduling.  If a loop
8446is modulo scheduled, later scheduling passes may change its schedule.
8447Use this option to control that behavior.
8448
8449@item -fselective-scheduling
8450@opindex fselective-scheduling
8451Schedule instructions using selective scheduling algorithm.  Selective
8452scheduling runs instead of the first scheduler pass.
8453
8454@item -fselective-scheduling2
8455@opindex fselective-scheduling2
8456Schedule instructions using selective scheduling algorithm.  Selective
8457scheduling runs instead of the second scheduler pass.
8458
8459@item -fsel-sched-pipelining
8460@opindex fsel-sched-pipelining
8461Enable software pipelining of innermost loops during selective scheduling.
8462This option has no effect unless one of @option{-fselective-scheduling} or
8463@option{-fselective-scheduling2} is turned on.
8464
8465@item -fsel-sched-pipelining-outer-loops
8466@opindex fsel-sched-pipelining-outer-loops
8467When pipelining loops during selective scheduling, also pipeline outer loops.
8468This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8469
8470@item -fsemantic-interposition
8471@opindex fsemantic-interposition
8472Some object formats, like ELF, allow interposing of symbols by the
8473dynamic linker.
8474This means that for symbols exported from the DSO, the compiler cannot perform
8475interprocedural propagation, inlining and other optimizations in anticipation
8476that the function or variable in question may change. While this feature is
8477useful, for example, to rewrite memory allocation functions by a debugging
8478implementation, it is expensive in the terms of code quality.
8479With @option{-fno-semantic-interposition} the compiler assumes that
8480if interposition happens for functions the overwriting function will have
8481precisely the same semantics (and side effects).
8482Similarly if interposition happens
8483for variables, the constructor of the variable will be the same. The flag
8484has no effect for functions explicitly declared inline
8485(where it is never allowed for interposition to change semantics)
8486and for symbols explicitly declared weak.
8487
8488@item -fshrink-wrap
8489@opindex fshrink-wrap
8490Emit function prologues only before parts of the function that need it,
8491rather than at the top of the function.  This flag is enabled by default at
8492@option{-O} and higher.
8493
8494@item -fshrink-wrap-separate
8495@opindex fshrink-wrap-separate
8496Shrink-wrap separate parts of the prologue and epilogue separately, so that
8497those parts are only executed when needed.
8498This option is on by default, but has no effect unless @option{-fshrink-wrap}
8499is also turned on and the target supports this.
8500
8501@item -fcaller-saves
8502@opindex fcaller-saves
8503Enable allocation of values to registers that are clobbered by
8504function calls, by emitting extra instructions to save and restore the
8505registers around such calls.  Such allocation is done only when it
8506seems to result in better code.
8507
8508This option is always enabled by default on certain machines, usually
8509those which have no call-preserved registers to use instead.
8510
8511Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8512
8513@item -fcombine-stack-adjustments
8514@opindex fcombine-stack-adjustments
8515Tracks stack adjustments (pushes and pops) and stack memory references
8516and then tries to find ways to combine them.
8517
8518Enabled by default at @option{-O1} and higher.
8519
8520@item -fipa-ra
8521@opindex fipa-ra
8522Use caller save registers for allocation if those registers are not used by
8523any called function.  In that case it is not necessary to save and restore
8524them around calls.  This is only possible if called functions are part of
8525same compilation unit as current function and they are compiled before it.
8526
8527Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
8528is disabled if generated code will be instrumented for profiling
8529(@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
8530exactly (this happens on targets that do not expose prologues
8531and epilogues in RTL).
8532
8533@item -fconserve-stack
8534@opindex fconserve-stack
8535Attempt to minimize stack usage.  The compiler attempts to use less
8536stack space, even if that makes the program slower.  This option
8537implies setting the @option{large-stack-frame} parameter to 100
8538and the @option{large-stack-frame-growth} parameter to 400.
8539
8540@item -ftree-reassoc
8541@opindex ftree-reassoc
8542Perform reassociation on trees.  This flag is enabled by default
8543at @option{-O} and higher.
8544
8545@item -fcode-hoisting
8546@opindex fcode-hoisting
8547Perform code hoisting.  Code hoisting tries to move the
8548evaluation of expressions executed on all paths to the function exit
8549as early as possible.  This is especially useful as a code size
8550optimization, but it often helps for code speed as well.
8551This flag is enabled by default at @option{-O2} and higher.
8552
8553@item -ftree-pre
8554@opindex ftree-pre
8555Perform partial redundancy elimination (PRE) on trees.  This flag is
8556enabled by default at @option{-O2} and @option{-O3}.
8557
8558@item -ftree-partial-pre
8559@opindex ftree-partial-pre
8560Make partial redundancy elimination (PRE) more aggressive.  This flag is
8561enabled by default at @option{-O3}.
8562
8563@item -ftree-forwprop
8564@opindex ftree-forwprop
8565Perform forward propagation on trees.  This flag is enabled by default
8566at @option{-O} and higher.
8567
8568@item -ftree-fre
8569@opindex ftree-fre
8570Perform full redundancy elimination (FRE) on trees.  The difference
8571between FRE and PRE is that FRE only considers expressions
8572that are computed on all paths leading to the redundant computation.
8573This analysis is faster than PRE, though it exposes fewer redundancies.
8574This flag is enabled by default at @option{-O} and higher.
8575
8576@item -ftree-phiprop
8577@opindex ftree-phiprop
8578Perform hoisting of loads from conditional pointers on trees.  This
8579pass is enabled by default at @option{-O} and higher.
8580
8581@item -fhoist-adjacent-loads
8582@opindex fhoist-adjacent-loads
8583Speculatively hoist loads from both branches of an if-then-else if the
8584loads are from adjacent locations in the same structure and the target
8585architecture has a conditional move instruction.  This flag is enabled
8586by default at @option{-O2} and higher.
8587
8588@item -ftree-copy-prop
8589@opindex ftree-copy-prop
8590Perform copy propagation on trees.  This pass eliminates unnecessary
8591copy operations.  This flag is enabled by default at @option{-O} and
8592higher.
8593
8594@item -fipa-pure-const
8595@opindex fipa-pure-const
8596Discover which functions are pure or constant.
8597Enabled by default at @option{-O} and higher.
8598
8599@item -fipa-reference
8600@opindex fipa-reference
8601Discover which static variables do not escape the
8602compilation unit.
8603Enabled by default at @option{-O} and higher.
8604
8605@item -fipa-pta
8606@opindex fipa-pta
8607Perform interprocedural pointer analysis and interprocedural modification
8608and reference analysis.  This option can cause excessive memory and
8609compile-time usage on large compilation units.  It is not enabled by
8610default at any optimization level.
8611
8612@item -fipa-profile
8613@opindex fipa-profile
8614Perform interprocedural profile propagation.  The functions called only from
8615cold functions are marked as cold. Also functions executed once (such as
8616@code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8617functions and loop less parts of functions executed once are then optimized for
8618size.
8619Enabled by default at @option{-O} and higher.
8620
8621@item -fipa-cp
8622@opindex fipa-cp
8623Perform interprocedural constant propagation.
8624This optimization analyzes the program to determine when values passed
8625to functions are constants and then optimizes accordingly.
8626This optimization can substantially increase performance
8627if the application has constants passed to functions.
8628This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8629
8630@item -fipa-cp-clone
8631@opindex fipa-cp-clone
8632Perform function cloning to make interprocedural constant propagation stronger.
8633When enabled, interprocedural constant propagation performs function cloning
8634when externally visible function can be called with constant arguments.
8635Because this optimization can create multiple copies of functions,
8636it may significantly increase code size
8637(see @option{--param ipcp-unit-growth=@var{value}}).
8638This flag is enabled by default at @option{-O3}.
8639
8640@item -fipa-bit-cp
8641@opindex -fipa-bit-cp
8642When enabled, perform interprocedural bitwise constant
8643propagation. This flag is enabled by default at @option{-O2}. It
8644requires that @option{-fipa-cp} is enabled.
8645
8646@item -fipa-vrp
8647@opindex -fipa-vrp
8648When enabled, perform interprocedural propagation of value
8649ranges. This flag is enabled by default at @option{-O2}. It requires
8650that @option{-fipa-cp} is enabled.
8651
8652@item -fipa-icf
8653@opindex fipa-icf
8654Perform Identical Code Folding for functions and read-only variables.
8655The optimization reduces code size and may disturb unwind stacks by replacing
8656a function by equivalent one with a different name. The optimization works
8657more effectively with link-time optimization enabled.
8658
8659Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8660works on different levels and thus the optimizations are not same - there are
8661equivalences that are found only by GCC and equivalences found only by Gold.
8662
8663This flag is enabled by default at @option{-O2} and @option{-Os}.
8664
8665@item -fisolate-erroneous-paths-dereference
8666@opindex fisolate-erroneous-paths-dereference
8667Detect paths that trigger erroneous or undefined behavior due to
8668dereferencing a null pointer.  Isolate those paths from the main control
8669flow and turn the statement with erroneous or undefined behavior into a trap.
8670This flag is enabled by default at @option{-O2} and higher and depends on
8671@option{-fdelete-null-pointer-checks} also being enabled.
8672
8673@item -fisolate-erroneous-paths-attribute
8674@opindex fisolate-erroneous-paths-attribute
8675Detect paths that trigger erroneous or undefined behavior due to a null value
8676being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8677attribute.  Isolate those paths from the main control flow and turn the
8678statement with erroneous or undefined behavior into a trap.  This is not
8679currently enabled, but may be enabled by @option{-O2} in the future.
8680
8681@item -ftree-sink
8682@opindex ftree-sink
8683Perform forward store motion on trees.  This flag is
8684enabled by default at @option{-O} and higher.
8685
8686@item -ftree-bit-ccp
8687@opindex ftree-bit-ccp
8688Perform sparse conditional bit constant propagation on trees and propagate
8689pointer alignment information.
8690This pass only operates on local scalar variables and is enabled by default
8691at @option{-O} and higher.  It requires that @option{-ftree-ccp} is enabled.
8692
8693@item -ftree-ccp
8694@opindex ftree-ccp
8695Perform sparse conditional constant propagation (CCP) on trees.  This
8696pass only operates on local scalar variables and is enabled by default
8697at @option{-O} and higher.
8698
8699@item -fssa-backprop
8700@opindex fssa-backprop
8701Propagate information about uses of a value up the definition chain
8702in order to simplify the definitions.  For example, this pass strips
8703sign operations if the sign of a value never matters.  The flag is
8704enabled by default at @option{-O} and higher.
8705
8706@item -fssa-phiopt
8707@opindex fssa-phiopt
8708Perform pattern matching on SSA PHI nodes to optimize conditional
8709code.  This pass is enabled by default at @option{-O} and higher.
8710
8711@item -ftree-switch-conversion
8712@opindex ftree-switch-conversion
8713Perform conversion of simple initializations in a switch to
8714initializations from a scalar array.  This flag is enabled by default
8715at @option{-O2} and higher.
8716
8717@item -ftree-tail-merge
8718@opindex ftree-tail-merge
8719Look for identical code sequences.  When found, replace one with a jump to the
8720other.  This optimization is known as tail merging or cross jumping.  This flag
8721is enabled by default at @option{-O2} and higher.  The compilation time
8722in this pass can
8723be limited using @option{max-tail-merge-comparisons} parameter and
8724@option{max-tail-merge-iterations} parameter.
8725
8726@item -ftree-dce
8727@opindex ftree-dce
8728Perform dead code elimination (DCE) on trees.  This flag is enabled by
8729default at @option{-O} and higher.
8730
8731@item -ftree-builtin-call-dce
8732@opindex ftree-builtin-call-dce
8733Perform conditional dead code elimination (DCE) for calls to built-in functions
8734that may set @code{errno} but are otherwise free of side effects.  This flag is
8735enabled by default at @option{-O2} and higher if @option{-Os} is not also
8736specified.
8737
8738@item -ftree-dominator-opts
8739@opindex ftree-dominator-opts
8740Perform a variety of simple scalar cleanups (constant/copy
8741propagation, redundancy elimination, range propagation and expression
8742simplification) based on a dominator tree traversal.  This also
8743performs jump threading (to reduce jumps to jumps). This flag is
8744enabled by default at @option{-O} and higher.
8745
8746@item -ftree-dse
8747@opindex ftree-dse
8748Perform dead store elimination (DSE) on trees.  A dead store is a store into
8749a memory location that is later overwritten by another store without
8750any intervening loads.  In this case the earlier store can be deleted.  This
8751flag is enabled by default at @option{-O} and higher.
8752
8753@item -ftree-ch
8754@opindex ftree-ch
8755Perform loop header copying on trees.  This is beneficial since it increases
8756effectiveness of code motion optimizations.  It also saves one jump.  This flag
8757is enabled by default at @option{-O} and higher.  It is not enabled
8758for @option{-Os}, since it usually increases code size.
8759
8760@item -ftree-loop-optimize
8761@opindex ftree-loop-optimize
8762Perform loop optimizations on trees.  This flag is enabled by default
8763at @option{-O} and higher.
8764
8765@item -ftree-loop-linear
8766@itemx -floop-strip-mine
8767@itemx -floop-block
8768@opindex ftree-loop-linear
8769@opindex floop-strip-mine
8770@opindex floop-block
8771Perform loop nest optimizations.  Same as
8772@option{-floop-nest-optimize}.  To use this code transformation, GCC has
8773to be configured with @option{--with-isl} to enable the Graphite loop
8774transformation infrastructure.
8775
8776@item -fgraphite-identity
8777@opindex fgraphite-identity
8778Enable the identity transformation for graphite.  For every SCoP we generate
8779the polyhedral representation and transform it back to gimple.  Using
8780@option{-fgraphite-identity} we can check the costs or benefits of the
8781GIMPLE -> GRAPHITE -> GIMPLE transformation.  Some minimal optimizations
8782are also performed by the code generator isl, like index splitting and
8783dead code elimination in loops.
8784
8785@item -floop-nest-optimize
8786@opindex floop-nest-optimize
8787Enable the isl based loop nest optimizer.  This is a generic loop nest
8788optimizer based on the Pluto optimization algorithms.  It calculates a loop
8789structure optimized for data-locality and parallelism.  This option
8790is experimental.
8791
8792@item -floop-parallelize-all
8793@opindex floop-parallelize-all
8794Use the Graphite data dependence analysis to identify loops that can
8795be parallelized.  Parallelize all the loops that can be analyzed to
8796not contain loop carried dependences without checking that it is
8797profitable to parallelize the loops.
8798
8799@item -ftree-coalesce-vars
8800@opindex ftree-coalesce-vars
8801While transforming the program out of the SSA representation, attempt to
8802reduce copying by coalescing versions of different user-defined
8803variables, instead of just compiler temporaries.  This may severely
8804limit the ability to debug an optimized program compiled with
8805@option{-fno-var-tracking-assignments}.  In the negated form, this flag
8806prevents SSA coalescing of user variables.  This option is enabled by
8807default if optimization is enabled, and it does very little otherwise.
8808
8809@item -ftree-loop-if-convert
8810@opindex ftree-loop-if-convert
8811Attempt to transform conditional jumps in the innermost loops to
8812branch-less equivalents.  The intent is to remove control-flow from
8813the innermost loops in order to improve the ability of the
8814vectorization pass to handle these loops.  This is enabled by default
8815if vectorization is enabled.
8816
8817@item -ftree-loop-distribution
8818@opindex ftree-loop-distribution
8819Perform loop distribution.  This flag can improve cache performance on
8820big loop bodies and allow further loop optimizations, like
8821parallelization or vectorization, to take place.  For example, the loop
8822@smallexample
8823DO I = 1, N
8824  A(I) = B(I) + C
8825  D(I) = E(I) * F
8826ENDDO
8827@end smallexample
8828is transformed to
8829@smallexample
8830DO I = 1, N
8831   A(I) = B(I) + C
8832ENDDO
8833DO I = 1, N
8834   D(I) = E(I) * F
8835ENDDO
8836@end smallexample
8837
8838@item -ftree-loop-distribute-patterns
8839@opindex ftree-loop-distribute-patterns
8840Perform loop distribution of patterns that can be code generated with
8841calls to a library.  This flag is enabled by default at @option{-O3}.
8842
8843This pass distributes the initialization loops and generates a call to
8844memset zero.  For example, the loop
8845@smallexample
8846DO I = 1, N
8847  A(I) = 0
8848  B(I) = A(I) + I
8849ENDDO
8850@end smallexample
8851is transformed to
8852@smallexample
8853DO I = 1, N
8854   A(I) = 0
8855ENDDO
8856DO I = 1, N
8857   B(I) = A(I) + I
8858ENDDO
8859@end smallexample
8860and the initialization loop is transformed into a call to memset zero.
8861
8862@item -floop-interchange
8863@opindex floop-interchange
8864Perform loop interchange outside of graphite.  This flag can improve cache
8865performance on loop nest and allow further loop optimizations, like
8866vectorization, to take place.  For example, the loop
8867@smallexample
8868for (int i = 0; i < N; i++)
8869  for (int j = 0; j < N; j++)
8870    for (int k = 0; k < N; k++)
8871      c[i][j] = c[i][j] + a[i][k]*b[k][j];
8872@end smallexample
8873is transformed to
8874@smallexample
8875for (int i = 0; i < N; i++)
8876  for (int k = 0; k < N; k++)
8877    for (int j = 0; j < N; j++)
8878      c[i][j] = c[i][j] + a[i][k]*b[k][j];
8879@end smallexample
8880This flag is enabled by default at @option{-O3}.
8881
8882@item -floop-unroll-and-jam
8883@opindex floop-unroll-and-jam
8884Apply unroll and jam transformations on feasible loops.  In a loop
8885nest this unrolls the outer loop by some factor and fuses the resulting
8886multiple inner loops.  This flag is enabled by default at @option{-O3}.
8887
8888@item -ftree-loop-im
8889@opindex ftree-loop-im
8890Perform loop invariant motion on trees.  This pass moves only invariants that
8891are hard to handle at RTL level (function calls, operations that expand to
8892nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
8893operands of conditions that are invariant out of the loop, so that we can use
8894just trivial invariantness analysis in loop unswitching.  The pass also includes
8895store motion.
8896
8897@item -ftree-loop-ivcanon
8898@opindex ftree-loop-ivcanon
8899Create a canonical counter for number of iterations in loops for which
8900determining number of iterations requires complicated analysis.  Later
8901optimizations then may determine the number easily.  Useful especially
8902in connection with unrolling.
8903
8904@item -fivopts
8905@opindex fivopts
8906Perform induction variable optimizations (strength reduction, induction
8907variable merging and induction variable elimination) on trees.
8908
8909@item -ftree-parallelize-loops=n
8910@opindex ftree-parallelize-loops
8911Parallelize loops, i.e., split their iteration space to run in n threads.
8912This is only possible for loops whose iterations are independent
8913and can be arbitrarily reordered.  The optimization is only
8914profitable on multiprocessor machines, for loops that are CPU-intensive,
8915rather than constrained e.g.@: by memory bandwidth.  This option
8916implies @option{-pthread}, and thus is only supported on targets
8917that have support for @option{-pthread}.
8918
8919@item -ftree-pta
8920@opindex ftree-pta
8921Perform function-local points-to analysis on trees.  This flag is
8922enabled by default at @option{-O} and higher.
8923
8924@item -ftree-sra
8925@opindex ftree-sra
8926Perform scalar replacement of aggregates.  This pass replaces structure
8927references with scalars to prevent committing structures to memory too
8928early.  This flag is enabled by default at @option{-O} and higher.
8929
8930@item -fstore-merging
8931@opindex fstore-merging
8932Perform merging of narrow stores to consecutive memory addresses.  This pass
8933merges contiguous stores of immediate values narrower than a word into fewer
8934wider stores to reduce the number of instructions.  This is enabled by default
8935at @option{-O2} and higher as well as @option{-Os}.
8936
8937@item -ftree-ter
8938@opindex ftree-ter
8939Perform temporary expression replacement during the SSA->normal phase.  Single
8940use/single def temporaries are replaced at their use location with their
8941defining expression.  This results in non-GIMPLE code, but gives the expanders
8942much more complex trees to work on resulting in better RTL generation.  This is
8943enabled by default at @option{-O} and higher.
8944
8945@item -ftree-slsr
8946@opindex ftree-slsr
8947Perform straight-line strength reduction on trees.  This recognizes related
8948expressions involving multiplications and replaces them by less expensive
8949calculations when possible.  This is enabled by default at @option{-O} and
8950higher.
8951
8952@item -ftree-vectorize
8953@opindex ftree-vectorize
8954Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8955and @option{-ftree-slp-vectorize} if not explicitly specified.
8956
8957@item -ftree-loop-vectorize
8958@opindex ftree-loop-vectorize
8959Perform loop vectorization on trees. This flag is enabled by default at
8960@option{-O3} and when @option{-ftree-vectorize} is enabled.
8961
8962@item -ftree-slp-vectorize
8963@opindex ftree-slp-vectorize
8964Perform basic block vectorization on trees. This flag is enabled by default at
8965@option{-O3} and when @option{-ftree-vectorize} is enabled.
8966
8967@item -fvect-cost-model=@var{model}
8968@opindex fvect-cost-model
8969Alter the cost model used for vectorization.  The @var{model} argument
8970should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8971With the @samp{unlimited} model the vectorized code-path is assumed
8972to be profitable while with the @samp{dynamic} model a runtime check
8973guards the vectorized code-path to enable it only for iteration
8974counts that will likely execute faster than when executing the original
8975scalar loop.  The @samp{cheap} model disables vectorization of
8976loops where doing so would be cost prohibitive for example due to
8977required runtime checks for data dependence or alignment but otherwise
8978is equal to the @samp{dynamic} model.
8979The default cost model depends on other optimization flags and is
8980either @samp{dynamic} or @samp{cheap}.
8981
8982@item -fsimd-cost-model=@var{model}
8983@opindex fsimd-cost-model
8984Alter the cost model used for vectorization of loops marked with the OpenMP
8985simd directive.  The @var{model} argument should be one of
8986@samp{unlimited}, @samp{dynamic}, @samp{cheap}.  All values of @var{model}
8987have the same meaning as described in @option{-fvect-cost-model} and by
8988default a cost model defined with @option{-fvect-cost-model} is used.
8989
8990@item -ftree-vrp
8991@opindex ftree-vrp
8992Perform Value Range Propagation on trees.  This is similar to the
8993constant propagation pass, but instead of values, ranges of values are
8994propagated.  This allows the optimizers to remove unnecessary range
8995checks like array bound checks and null pointer checks.  This is
8996enabled by default at @option{-O2} and higher.  Null pointer check
8997elimination is only done if @option{-fdelete-null-pointer-checks} is
8998enabled.
8999
9000@item -fsplit-paths
9001@opindex fsplit-paths
9002Split paths leading to loop backedges.  This can improve dead code
9003elimination and common subexpression elimination.  This is enabled by
9004default at @option{-O2} and above.
9005
9006@item -fsplit-ivs-in-unroller
9007@opindex fsplit-ivs-in-unroller
9008Enables expression of values of induction variables in later iterations
9009of the unrolled loop using the value in the first iteration.  This breaks
9010long dependency chains, thus improving efficiency of the scheduling passes.
9011
9012A combination of @option{-fweb} and CSE is often sufficient to obtain the
9013same effect.  However, that is not reliable in cases where the loop body
9014is more complicated than a single basic block.  It also does not work at all
9015on some architectures due to restrictions in the CSE pass.
9016
9017This optimization is enabled by default.
9018
9019@item -fvariable-expansion-in-unroller
9020@opindex fvariable-expansion-in-unroller
9021With this option, the compiler creates multiple copies of some
9022local variables when unrolling a loop, which can result in superior code.
9023
9024@item -fpartial-inlining
9025@opindex fpartial-inlining
9026Inline parts of functions.  This option has any effect only
9027when inlining itself is turned on by the @option{-finline-functions}
9028or @option{-finline-small-functions} options.
9029
9030Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9031
9032@item -fpredictive-commoning
9033@opindex fpredictive-commoning
9034Perform predictive commoning optimization, i.e., reusing computations
9035(especially memory loads and stores) performed in previous
9036iterations of loops.
9037
9038This option is enabled at level @option{-O3}.
9039
9040@item -fprefetch-loop-arrays
9041@opindex fprefetch-loop-arrays
9042If supported by the target machine, generate instructions to prefetch
9043memory to improve the performance of loops that access large arrays.
9044
9045This option may generate better or worse code; results are highly
9046dependent on the structure of loops within the source code.
9047
9048Disabled at level @option{-Os}.
9049
9050@item -fno-printf-return-value
9051@opindex fno-printf-return-value
9052Do not substitute constants for known return value of formatted output
9053functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
9054@code{vsnprintf} (but not @code{printf} of @code{fprintf}).  This
9055transformation allows GCC to optimize or even eliminate branches based
9056on the known return value of these functions called with arguments that
9057are either constant, or whose values are known to be in a range that
9058makes determining the exact return value possible.  For example, when
9059@option{-fprintf-return-value} is in effect, both the branch and the
9060body of the @code{if} statement (but not the call to @code{snprint})
9061can be optimized away when @code{i} is a 32-bit or smaller integer
9062because the return value is guaranteed to be at most 8.
9063
9064@smallexample
9065char buf[9];
9066if (snprintf (buf, "%08x", i) >= sizeof buf)
9067  @dots{}
9068@end smallexample
9069
9070The @option{-fprintf-return-value} option relies on other optimizations
9071and yields best results with @option{-O2} and above.  It works in tandem
9072with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
9073options.  The @option{-fprintf-return-value} option is enabled by default.
9074
9075@item -fno-peephole
9076@itemx -fno-peephole2
9077@opindex fno-peephole
9078@opindex fno-peephole2
9079Disable any machine-specific peephole optimizations.  The difference
9080between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9081are implemented in the compiler; some targets use one, some use the
9082other, a few use both.
9083
9084@option{-fpeephole} is enabled by default.
9085@option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9086
9087@item -fno-guess-branch-probability
9088@opindex fno-guess-branch-probability
9089Do not guess branch probabilities using heuristics.
9090
9091GCC uses heuristics to guess branch probabilities if they are
9092not provided by profiling feedback (@option{-fprofile-arcs}).  These
9093heuristics are based on the control flow graph.  If some branch probabilities
9094are specified by @code{__builtin_expect}, then the heuristics are
9095used to guess branch probabilities for the rest of the control flow graph,
9096taking the @code{__builtin_expect} info into account.  The interactions
9097between the heuristics and @code{__builtin_expect} can be complex, and in
9098some cases, it may be useful to disable the heuristics so that the effects
9099of @code{__builtin_expect} are easier to understand.
9100
9101The default is @option{-fguess-branch-probability} at levels
9102@option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9103
9104@item -freorder-blocks
9105@opindex freorder-blocks
9106Reorder basic blocks in the compiled function in order to reduce number of
9107taken branches and improve code locality.
9108
9109Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9110
9111@item -freorder-blocks-algorithm=@var{algorithm}
9112@opindex freorder-blocks-algorithm
9113Use the specified algorithm for basic block reordering.  The
9114@var{algorithm} argument can be @samp{simple}, which does not increase
9115code size (except sometimes due to secondary effects like alignment),
9116or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9117put all often executed code together, minimizing the number of branches
9118executed by making extra copies of code.
9119
9120The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9121@samp{stc} at levels @option{-O2}, @option{-O3}.
9122
9123@item -freorder-blocks-and-partition
9124@opindex freorder-blocks-and-partition
9125In addition to reordering basic blocks in the compiled function, in order
9126to reduce number of taken branches, partitions hot and cold basic blocks
9127into separate sections of the assembly and @file{.o} files, to improve
9128paging and cache locality performance.
9129
9130This optimization is automatically turned off in the presence of
9131exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
9132section attribute and on any architecture that does not support named
9133sections.  When @option{-fsplit-stack} is used this option is not
9134enabled by default (to avoid linker errors), but may be enabled
9135explicitly (if using a working linker).
9136
9137Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
9138
9139@item -freorder-functions
9140@opindex freorder-functions
9141Reorder functions in the object file in order to
9142improve code locality.  This is implemented by using special
9143subsections @code{.text.hot} for most frequently executed functions and
9144@code{.text.unlikely} for unlikely executed functions.  Reordering is done by
9145the linker so object file format must support named sections and linker must
9146place them in a reasonable way.
9147
9148Also profile feedback must be available to make this option effective.  See
9149@option{-fprofile-arcs} for details.
9150
9151Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9152
9153@item -fstrict-aliasing
9154@opindex fstrict-aliasing
9155Allow the compiler to assume the strictest aliasing rules applicable to
9156the language being compiled.  For C (and C++), this activates
9157optimizations based on the type of expressions.  In particular, an
9158object of one type is assumed never to reside at the same address as an
9159object of a different type, unless the types are almost the same.  For
9160example, an @code{unsigned int} can alias an @code{int}, but not a
9161@code{void*} or a @code{double}.  A character type may alias any other
9162type.
9163
9164@anchor{Type-punning}Pay special attention to code like this:
9165@smallexample
9166union a_union @{
9167  int i;
9168  double d;
9169@};
9170
9171int f() @{
9172  union a_union t;
9173  t.d = 3.0;
9174  return t.i;
9175@}
9176@end smallexample
9177The practice of reading from a different union member than the one most
9178recently written to (called ``type-punning'') is common.  Even with
9179@option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9180is accessed through the union type.  So, the code above works as
9181expected.  @xref{Structures unions enumerations and bit-fields
9182implementation}.  However, this code might not:
9183@smallexample
9184int f() @{
9185  union a_union t;
9186  int* ip;
9187  t.d = 3.0;
9188  ip = &t.i;
9189  return *ip;
9190@}
9191@end smallexample
9192
9193Similarly, access by taking the address, casting the resulting pointer
9194and dereferencing the result has undefined behavior, even if the cast
9195uses a union type, e.g.:
9196@smallexample
9197int f() @{
9198  double d = 3.0;
9199  return ((union a_union *) &d)->i;
9200@}
9201@end smallexample
9202
9203The @option{-fstrict-aliasing} option is enabled at levels
9204@option{-O2}, @option{-O3}, @option{-Os}.
9205
9206@item -falign-functions
9207@itemx -falign-functions=@var{n}
9208@opindex falign-functions
9209Align the start of functions to the next power-of-two greater than
9210@var{n}, skipping up to @var{n} bytes.  For instance,
9211@option{-falign-functions=32} aligns functions to the next 32-byte
9212boundary, but @option{-falign-functions=24} aligns to the next
921332-byte boundary only if this can be done by skipping 23 bytes or less.
9214
9215@option{-fno-align-functions} and @option{-falign-functions=1} are
9216equivalent and mean that functions are not aligned.
9217
9218Some assemblers only support this flag when @var{n} is a power of two;
9219in that case, it is rounded up.
9220
9221If @var{n} is not specified or is zero, use a machine-dependent default.
9222The maximum allowed @var{n} option value is 65536.
9223
9224Enabled at levels @option{-O2}, @option{-O3}.
9225
9226@item -flimit-function-alignment
9227If this option is enabled, the compiler tries to avoid unnecessarily
9228overaligning functions. It attempts to instruct the assembler to align
9229by the amount specified by @option{-falign-functions}, but not to
9230skip more bytes than the size of the function.
9231
9232@item -falign-labels
9233@itemx -falign-labels=@var{n}
9234@opindex falign-labels
9235Align all branch targets to a power-of-two boundary, skipping up to
9236@var{n} bytes like @option{-falign-functions}.  This option can easily
9237make code slower, because it must insert dummy operations for when the
9238branch target is reached in the usual flow of the code.
9239
9240@option{-fno-align-labels} and @option{-falign-labels=1} are
9241equivalent and mean that labels are not aligned.
9242
9243If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9244are greater than this value, then their values are used instead.
9245
9246If @var{n} is not specified or is zero, use a machine-dependent default
9247which is very likely to be @samp{1}, meaning no alignment.
9248The maximum allowed @var{n} option value is 65536.
9249
9250Enabled at levels @option{-O2}, @option{-O3}.
9251
9252@item -falign-loops
9253@itemx -falign-loops=@var{n}
9254@opindex falign-loops
9255Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9256like @option{-falign-functions}.  If the loops are
9257executed many times, this makes up for any execution of the dummy
9258operations.
9259
9260@option{-fno-align-loops} and @option{-falign-loops=1} are
9261equivalent and mean that loops are not aligned.
9262The maximum allowed @var{n} option value is 65536.
9263
9264If @var{n} is not specified or is zero, use a machine-dependent default.
9265
9266Enabled at levels @option{-O2}, @option{-O3}.
9267
9268@item -falign-jumps
9269@itemx -falign-jumps=@var{n}
9270@opindex falign-jumps
9271Align branch targets to a power-of-two boundary, for branch targets
9272where the targets can only be reached by jumping, skipping up to @var{n}
9273bytes like @option{-falign-functions}.  In this case, no dummy operations
9274need be executed.
9275
9276@option{-fno-align-jumps} and @option{-falign-jumps=1} are
9277equivalent and mean that loops are not aligned.
9278
9279If @var{n} is not specified or is zero, use a machine-dependent default.
9280The maximum allowed @var{n} option value is 65536.
9281
9282Enabled at levels @option{-O2}, @option{-O3}.
9283
9284@item -funit-at-a-time
9285@opindex funit-at-a-time
9286This option is left for compatibility reasons. @option{-funit-at-a-time}
9287has no effect, while @option{-fno-unit-at-a-time} implies
9288@option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9289
9290Enabled by default.
9291
9292@item -fno-toplevel-reorder
9293@opindex fno-toplevel-reorder
9294Do not reorder top-level functions, variables, and @code{asm}
9295statements.  Output them in the same order that they appear in the
9296input file.  When this option is used, unreferenced static variables
9297are not removed.  This option is intended to support existing code
9298that relies on a particular ordering.  For new code, it is better to
9299use attributes when possible.
9300
9301Enabled at level @option{-O0}.  When disabled explicitly, it also implies
9302@option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9303targets.
9304
9305@item -fweb
9306@opindex fweb
9307Constructs webs as commonly used for register allocation purposes and assign
9308each web individual pseudo register.  This allows the register allocation pass
9309to operate on pseudos directly, but also strengthens several other optimization
9310passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
9311however, make debugging impossible, since variables no longer stay in a
9312``home register''.
9313
9314Enabled by default with @option{-funroll-loops}.
9315
9316@item -fwhole-program
9317@opindex fwhole-program
9318Assume that the current compilation unit represents the whole program being
9319compiled.  All public functions and variables with the exception of @code{main}
9320and those merged by attribute @code{externally_visible} become static functions
9321and in effect are optimized more aggressively by interprocedural optimizers.
9322
9323This option should not be used in combination with @option{-flto}.
9324Instead relying on a linker plugin should provide safer and more precise
9325information.
9326
9327@item -flto[=@var{n}]
9328@opindex flto
9329This option runs the standard link-time optimizer.  When invoked
9330with source code, it generates GIMPLE (one of GCC's internal
9331representations) and writes it to special ELF sections in the object
9332file.  When the object files are linked together, all the function
9333bodies are read from these ELF sections and instantiated as if they
9334had been part of the same translation unit.
9335
9336To use the link-time optimizer, @option{-flto} and optimization
9337options should be specified at compile time and during the final link.
9338It is recommended that you compile all the files participating in the
9339same link with the same options and also specify those options at
9340link time.
9341For example:
9342
9343@smallexample
9344gcc -c -O2 -flto foo.c
9345gcc -c -O2 -flto bar.c
9346gcc -o myprog -flto -O2 foo.o bar.o
9347@end smallexample
9348
9349The first two invocations to GCC save a bytecode representation
9350of GIMPLE into special ELF sections inside @file{foo.o} and
9351@file{bar.o}.  The final invocation reads the GIMPLE bytecode from
9352@file{foo.o} and @file{bar.o}, merges the two files into a single
9353internal image, and compiles the result as usual.  Since both
9354@file{foo.o} and @file{bar.o} are merged into a single image, this
9355causes all the interprocedural analyses and optimizations in GCC to
9356work across the two files as if they were a single one.  This means,
9357for example, that the inliner is able to inline functions in
9358@file{bar.o} into functions in @file{foo.o} and vice-versa.
9359
9360Another (simpler) way to enable link-time optimization is:
9361
9362@smallexample
9363gcc -o myprog -flto -O2 foo.c bar.c
9364@end smallexample
9365
9366The above generates bytecode for @file{foo.c} and @file{bar.c},
9367merges them together into a single GIMPLE representation and optimizes
9368them as usual to produce @file{myprog}.
9369
9370The only important thing to keep in mind is that to enable link-time
9371optimizations you need to use the GCC driver to perform the link step.
9372GCC then automatically performs link-time optimization if any of the
9373objects involved were compiled with the @option{-flto} command-line option.
9374You generally
9375should specify the optimization options to be used for link-time
9376optimization though GCC tries to be clever at guessing an
9377optimization level to use from the options used at compile time
9378if you fail to specify one at link time.  You can always override
9379the automatic decision to do link-time optimization
9380by passing @option{-fno-lto} to the link command.
9381
9382To make whole program optimization effective, it is necessary to make
9383certain whole program assumptions.  The compiler needs to know
9384what functions and variables can be accessed by libraries and runtime
9385outside of the link-time optimized unit.  When supported by the linker,
9386the linker plugin (see @option{-fuse-linker-plugin}) passes information
9387to the compiler about used and externally visible symbols.  When
9388the linker plugin is not available, @option{-fwhole-program} should be
9389used to allow the compiler to make these assumptions, which leads
9390to more aggressive optimization decisions.
9391
9392When @option{-fuse-linker-plugin} is not enabled, when a file is
9393compiled with @option{-flto}, the generated object file is larger than
9394a regular object file because it contains GIMPLE bytecodes and the usual
9395final code (see @option{-ffat-lto-objects}.  This means that
9396object files with LTO information can be linked as normal object
9397files; if @option{-fno-lto} is passed to the linker, no
9398interprocedural optimizations are applied.  Note that when
9399@option{-fno-fat-lto-objects} is enabled the compile stage is faster
9400but you cannot perform a regular, non-LTO link on them.
9401
9402Additionally, the optimization flags used to compile individual files
9403are not necessarily related to those used at link time.  For instance,
9404
9405@smallexample
9406gcc -c -O0 -ffat-lto-objects -flto foo.c
9407gcc -c -O0 -ffat-lto-objects -flto bar.c
9408gcc -o myprog -O3 foo.o bar.o
9409@end smallexample
9410
9411This produces individual object files with unoptimized assembler
9412code, but the resulting binary @file{myprog} is optimized at
9413@option{-O3}.  If, instead, the final binary is generated with
9414@option{-fno-lto}, then @file{myprog} is not optimized.
9415
9416When producing the final binary, GCC only
9417applies link-time optimizations to those files that contain bytecode.
9418Therefore, you can mix and match object files and libraries with
9419GIMPLE bytecodes and final object code.  GCC automatically selects
9420which files to optimize in LTO mode and which files to link without
9421further processing.
9422
9423There are some code generation flags preserved by GCC when
9424generating bytecodes, as they need to be used during the final link
9425stage.  Generally options specified at link time override those
9426specified at compile time.
9427
9428If you do not specify an optimization level option @option{-O} at
9429link time, then GCC uses the highest optimization level
9430used when compiling the object files.
9431
9432Currently, the following options and their settings are taken from
9433the first object file that explicitly specifies them:
9434@option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9435@option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9436and all the @option{-m} target flags.
9437
9438Certain ABI-changing flags are required to match in all compilation units,
9439and trying to override this at link time with a conflicting value
9440is ignored.  This includes options such as @option{-freg-struct-return}
9441and @option{-fpcc-struct-return}.
9442
9443Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9444@option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9445are passed through to the link stage and merged conservatively for
9446conflicting translation units.  Specifically
9447@option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9448precedence; and for example @option{-ffp-contract=off} takes precedence
9449over @option{-ffp-contract=fast}.  You can override them at link time.
9450
9451If LTO encounters objects with C linkage declared with incompatible
9452types in separate translation units to be linked together (undefined
9453behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9454issued.  The behavior is still undefined at run time.  Similar
9455diagnostics may be raised for other languages.
9456
9457Another feature of LTO is that it is possible to apply interprocedural
9458optimizations on files written in different languages:
9459
9460@smallexample
9461gcc -c -flto foo.c
9462g++ -c -flto bar.cc
9463gfortran -c -flto baz.f90
9464g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9465@end smallexample
9466
9467Notice that the final link is done with @command{g++} to get the C++
9468runtime libraries and @option{-lgfortran} is added to get the Fortran
9469runtime libraries.  In general, when mixing languages in LTO mode, you
9470should use the same link command options as when mixing languages in a
9471regular (non-LTO) compilation.
9472
9473If object files containing GIMPLE bytecode are stored in a library archive, say
9474@file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9475are using a linker with plugin support.  To create static libraries suitable
9476for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9477and @command{ranlib};
9478to show the symbols of object files with GIMPLE bytecode, use
9479@command{gcc-nm}.  Those commands require that @command{ar}, @command{ranlib}
9480and @command{nm} have been compiled with plugin support.  At link time, use the
9481flag @option{-fuse-linker-plugin} to ensure that the library participates in
9482the LTO optimization process:
9483
9484@smallexample
9485gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9486@end smallexample
9487
9488With the linker plugin enabled, the linker extracts the needed
9489GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9490to make them part of the aggregated GIMPLE image to be optimized.
9491
9492If you are not using a linker with plugin support and/or do not
9493enable the linker plugin, then the objects inside @file{libfoo.a}
9494are extracted and linked as usual, but they do not participate
9495in the LTO optimization process.  In order to make a static library suitable
9496for both LTO optimization and usual linkage, compile its object files with
9497@option{-flto} @option{-ffat-lto-objects}.
9498
9499Link-time optimizations do not require the presence of the whole program to
9500operate.  If the program does not require any symbols to be exported, it is
9501possible to combine @option{-flto} and @option{-fwhole-program} to allow
9502the interprocedural optimizers to use more aggressive assumptions which may
9503lead to improved optimization opportunities.
9504Use of @option{-fwhole-program} is not needed when linker plugin is
9505active (see @option{-fuse-linker-plugin}).
9506
9507The current implementation of LTO makes no
9508attempt to generate bytecode that is portable between different
9509types of hosts.  The bytecode files are versioned and there is a
9510strict version check, so bytecode files generated in one version of
9511GCC do not work with an older or newer version of GCC.
9512
9513Link-time optimization does not work well with generation of debugging
9514information on systems other than those using a combination of ELF and
9515DWARF.
9516
9517If you specify the optional @var{n}, the optimization and code
9518generation done at link time is executed in parallel using @var{n}
9519parallel jobs by utilizing an installed @command{make} program.  The
9520environment variable @env{MAKE} may be used to override the program
9521used.  The default value for @var{n} is 1.
9522
9523You can also specify @option{-flto=jobserver} to use GNU make's
9524job server mode to determine the number of parallel jobs. This
9525is useful when the Makefile calling GCC is already executing in parallel.
9526You must prepend a @samp{+} to the command recipe in the parent Makefile
9527for this to work.  This option likely only works if @env{MAKE} is
9528GNU make.
9529
9530@item -flto-partition=@var{alg}
9531@opindex flto-partition
9532Specify the partitioning algorithm used by the link-time optimizer.
9533The value is either @samp{1to1} to specify a partitioning mirroring
9534the original source files or @samp{balanced} to specify partitioning
9535into equally sized chunks (whenever possible) or @samp{max} to create
9536new partition for every symbol where possible.  Specifying @samp{none}
9537as an algorithm disables partitioning and streaming completely.
9538The default value is @samp{balanced}. While @samp{1to1} can be used
9539as an workaround for various code ordering issues, the @samp{max}
9540partitioning is intended for internal testing only.
9541The value @samp{one} specifies that exactly one partition should be
9542used while the value @samp{none} bypasses partitioning and executes
9543the link-time optimization step directly from the WPA phase.
9544
9545@item -flto-odr-type-merging
9546@opindex flto-odr-type-merging
9547Enable streaming of mangled types names of C++ types and their unification
9548at link time.  This increases size of LTO object files, but enables
9549diagnostics about One Definition Rule violations.
9550
9551@item -flto-compression-level=@var{n}
9552@opindex flto-compression-level
9553This option specifies the level of compression used for intermediate
9554language written to LTO object files, and is only meaningful in
9555conjunction with LTO mode (@option{-flto}).  Valid
9556values are 0 (no compression) to 9 (maximum compression).  Values
9557outside this range are clamped to either 0 or 9.  If the option is not
9558given, a default balanced compression setting is used.
9559
9560@item -fuse-linker-plugin
9561@opindex fuse-linker-plugin
9562Enables the use of a linker plugin during link-time optimization.  This
9563option relies on plugin support in the linker, which is available in gold
9564or in GNU ld 2.21 or newer.
9565
9566This option enables the extraction of object files with GIMPLE bytecode out
9567of library archives. This improves the quality of optimization by exposing
9568more code to the link-time optimizer.  This information specifies what
9569symbols can be accessed externally (by non-LTO object or during dynamic
9570linking).  Resulting code quality improvements on binaries (and shared
9571libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9572See @option{-flto} for a description of the effect of this flag and how to
9573use it.
9574
9575This option is enabled by default when LTO support in GCC is enabled
9576and GCC was configured for use with
9577a linker supporting plugins (GNU ld 2.21 or newer or gold).
9578
9579@item -ffat-lto-objects
9580@opindex ffat-lto-objects
9581Fat LTO objects are object files that contain both the intermediate language
9582and the object code. This makes them usable for both LTO linking and normal
9583linking. This option is effective only when compiling with @option{-flto}
9584and is ignored at link time.
9585
9586@option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9587requires the complete toolchain to be aware of LTO. It requires a linker with
9588linker plugin support for basic functionality.  Additionally,
9589@command{nm}, @command{ar} and @command{ranlib}
9590need to support linker plugins to allow a full-featured build environment
9591(capable of building static libraries etc).  GCC provides the @command{gcc-ar},
9592@command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9593to these tools. With non fat LTO makefiles need to be modified to use them.
9594
9595Note that modern binutils provide plugin auto-load mechanism.
9596Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
9597effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
9598@command{gcc-ranlib}).
9599
9600The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9601support.
9602
9603@item -fcompare-elim
9604@opindex fcompare-elim
9605After register allocation and post-register allocation instruction splitting,
9606identify arithmetic instructions that compute processor flags similar to a
9607comparison operation based on that arithmetic.  If possible, eliminate the
9608explicit comparison operation.
9609
9610This pass only applies to certain targets that cannot explicitly represent
9611the comparison operation before register allocation is complete.
9612
9613Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9614
9615@item -fcprop-registers
9616@opindex fcprop-registers
9617After register allocation and post-register allocation instruction splitting,
9618perform a copy-propagation pass to try to reduce scheduling dependencies
9619and occasionally eliminate the copy.
9620
9621Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9622
9623@item -fprofile-correction
9624@opindex fprofile-correction
9625Profiles collected using an instrumented binary for multi-threaded programs may
9626be inconsistent due to missed counter updates. When this option is specified,
9627GCC uses heuristics to correct or smooth out such inconsistencies. By
9628default, GCC emits an error message when an inconsistent profile is detected.
9629
9630@item -fprofile-use
9631@itemx -fprofile-use=@var{path}
9632@opindex fprofile-use
9633Enable profile feedback-directed optimizations,
9634and the following optimizations
9635which are generally profitable only with profile feedback available:
9636@option{-fbranch-probabilities}, @option{-fvpt},
9637@option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9638@option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9639
9640Before you can use this option, you must first generate profiling information.
9641@xref{Instrumentation Options}, for information about the
9642@option{-fprofile-generate} option.
9643
9644By default, GCC emits an error message if the feedback profiles do not
9645match the source code.  This error can be turned into a warning by using
9646@option{-Wcoverage-mismatch}.  Note this may result in poorly optimized
9647code.
9648
9649If @var{path} is specified, GCC looks at the @var{path} to find
9650the profile feedback data files. See @option{-fprofile-dir}.
9651
9652@item -fauto-profile
9653@itemx -fauto-profile=@var{path}
9654@opindex fauto-profile
9655Enable sampling-based feedback-directed optimizations,
9656and the following optimizations
9657which are generally profitable only with profile feedback available:
9658@option{-fbranch-probabilities}, @option{-fvpt},
9659@option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9660@option{-ftree-vectorize},
9661@option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9662@option{-fpredictive-commoning}, @option{-funswitch-loops},
9663@option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9664
9665@var{path} is the name of a file containing AutoFDO profile information.
9666If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9667
9668Producing an AutoFDO profile data file requires running your program
9669with the @command{perf} utility on a supported GNU/Linux target system.
9670For more information, see @uref{https://perf.wiki.kernel.org/}.
9671
9672E.g.
9673@smallexample
9674perf record -e br_inst_retired:near_taken -b -o perf.data \
9675    -- your_program
9676@end smallexample
9677
9678Then use the @command{create_gcov} tool to convert the raw profile data
9679to a format that can be used by GCC.@  You must also supply the
9680unstripped binary for your program to this tool.
9681See @uref{https://github.com/google/autofdo}.
9682
9683E.g.
9684@smallexample
9685create_gcov --binary=your_program.unstripped --profile=perf.data \
9686    --gcov=profile.afdo
9687@end smallexample
9688@end table
9689
9690The following options control compiler behavior regarding floating-point
9691arithmetic.  These options trade off between speed and
9692correctness.  All must be specifically enabled.
9693
9694@table @gcctabopt
9695@item -ffloat-store
9696@opindex ffloat-store
9697Do not store floating-point variables in registers, and inhibit other
9698options that might change whether a floating-point value is taken from a
9699register or memory.
9700
9701@cindex floating-point precision
9702This option prevents undesirable excess precision on machines such as
9703the 68000 where the floating registers (of the 68881) keep more
9704precision than a @code{double} is supposed to have.  Similarly for the
9705x86 architecture.  For most programs, the excess precision does only
9706good, but a few programs rely on the precise definition of IEEE floating
9707point.  Use @option{-ffloat-store} for such programs, after modifying
9708them to store all pertinent intermediate computations into variables.
9709
9710@item -fexcess-precision=@var{style}
9711@opindex fexcess-precision
9712This option allows further control over excess precision on machines
9713where floating-point operations occur in a format with more precision or
9714range than the IEEE standard and interchange floating-point types.  By
9715default, @option{-fexcess-precision=fast} is in effect; this means that
9716operations may be carried out in a wider precision than the types specified
9717in the source if that would result in faster code, and it is unpredictable
9718when rounding to the types specified in the source code takes place.
9719When compiling C, if @option{-fexcess-precision=standard} is specified then
9720excess precision follows the rules specified in ISO C99; in particular,
9721both casts and assignments cause values to be rounded to their
9722semantic types (whereas @option{-ffloat-store} only affects
9723assignments).  This option is enabled by default for C if a strict
9724conformance option such as @option{-std=c99} is used.
9725@option{-ffast-math} enables @option{-fexcess-precision=fast} by default
9726regardless of whether a strict conformance option is used.
9727
9728@opindex mfpmath
9729@option{-fexcess-precision=standard} is not implemented for languages
9730other than C.  On the x86, it has no effect if @option{-mfpmath=sse}
9731or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9732semantics apply without excess precision, and in the latter, rounding
9733is unpredictable.
9734
9735@item -ffast-math
9736@opindex ffast-math
9737Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9738@option{-ffinite-math-only}, @option{-fno-rounding-math},
9739@option{-fno-signaling-nans}, @option{-fcx-limited-range} and
9740@option{-fexcess-precision=fast}.
9741
9742This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9743
9744This option is not turned on by any @option{-O} option besides
9745@option{-Ofast} since it can result in incorrect output for programs
9746that depend on an exact implementation of IEEE or ISO rules/specifications
9747for math functions. It may, however, yield faster code for programs
9748that do not require the guarantees of these specifications.
9749
9750@item -fno-math-errno
9751@opindex fno-math-errno
9752Do not set @code{errno} after calling math functions that are executed
9753with a single instruction, e.g., @code{sqrt}.  A program that relies on
9754IEEE exceptions for math error handling may want to use this flag
9755for speed while maintaining IEEE arithmetic compatibility.
9756
9757This option is not turned on by any @option{-O} option since
9758it can result in incorrect output for programs that depend on
9759an exact implementation of IEEE or ISO rules/specifications for
9760math functions. It may, however, yield faster code for programs
9761that do not require the guarantees of these specifications.
9762
9763The default is @option{-fmath-errno}.
9764
9765On Darwin systems, the math library never sets @code{errno}.  There is
9766therefore no reason for the compiler to consider the possibility that
9767it might, and @option{-fno-math-errno} is the default.
9768
9769@item -funsafe-math-optimizations
9770@opindex funsafe-math-optimizations
9771
9772Allow optimizations for floating-point arithmetic that (a) assume
9773that arguments and results are valid and (b) may violate IEEE or
9774ANSI standards.  When used at link time, it may include libraries
9775or startup files that change the default FPU control word or other
9776similar optimizations.
9777
9778This option is not turned on by any @option{-O} option since
9779it can result in incorrect output for programs that depend on
9780an exact implementation of IEEE or ISO rules/specifications for
9781math functions. It may, however, yield faster code for programs
9782that do not require the guarantees of these specifications.
9783Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9784@option{-fassociative-math} and @option{-freciprocal-math}.
9785
9786The default is @option{-fno-unsafe-math-optimizations}.
9787
9788@item -fassociative-math
9789@opindex fassociative-math
9790
9791Allow re-association of operands in series of floating-point operations.
9792This violates the ISO C and C++ language standard by possibly changing
9793computation result.  NOTE: re-ordering may change the sign of zero as
9794well as ignore NaNs and inhibit or create underflow or overflow (and
9795thus cannot be used on code that relies on rounding behavior like
9796@code{(x + 2**52) - 2**52}.  May also reorder floating-point comparisons
9797and thus may not be used when ordered comparisons are required.
9798This option requires that both @option{-fno-signed-zeros} and
9799@option{-fno-trapping-math} be in effect.  Moreover, it doesn't make
9800much sense with @option{-frounding-math}. For Fortran the option
9801is automatically enabled when both @option{-fno-signed-zeros} and
9802@option{-fno-trapping-math} are in effect.
9803
9804The default is @option{-fno-associative-math}.
9805
9806@item -freciprocal-math
9807@opindex freciprocal-math
9808
9809Allow the reciprocal of a value to be used instead of dividing by
9810the value if this enables optimizations.  For example @code{x / y}
9811can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9812is subject to common subexpression elimination.  Note that this loses
9813precision and increases the number of flops operating on the value.
9814
9815The default is @option{-fno-reciprocal-math}.
9816
9817@item -ffinite-math-only
9818@opindex ffinite-math-only
9819Allow optimizations for floating-point arithmetic that assume
9820that arguments and results are not NaNs or +-Infs.
9821
9822This option is not turned on by any @option{-O} option since
9823it can result in incorrect output for programs that depend on
9824an exact implementation of IEEE or ISO rules/specifications for
9825math functions. It may, however, yield faster code for programs
9826that do not require the guarantees of these specifications.
9827
9828The default is @option{-fno-finite-math-only}.
9829
9830@item -fno-signed-zeros
9831@opindex fno-signed-zeros
9832Allow optimizations for floating-point arithmetic that ignore the
9833signedness of zero.  IEEE arithmetic specifies the behavior of
9834distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9835of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9836This option implies that the sign of a zero result isn't significant.
9837
9838The default is @option{-fsigned-zeros}.
9839
9840@item -fno-trapping-math
9841@opindex fno-trapping-math
9842Compile code assuming that floating-point operations cannot generate
9843user-visible traps.  These traps include division by zero, overflow,
9844underflow, inexact result and invalid operation.  This option requires
9845that @option{-fno-signaling-nans} be in effect.  Setting this option may
9846allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9847
9848This option should never be turned on by any @option{-O} option since
9849it can result in incorrect output for programs that depend on
9850an exact implementation of IEEE or ISO rules/specifications for
9851math functions.
9852
9853The default is @option{-ftrapping-math}.
9854
9855@item -frounding-math
9856@opindex frounding-math
9857Disable transformations and optimizations that assume default floating-point
9858rounding behavior.  This is round-to-zero for all floating point
9859to integer conversions, and round-to-nearest for all other arithmetic
9860truncations.  This option should be specified for programs that change
9861the FP rounding mode dynamically, or that may be executed with a
9862non-default rounding mode.  This option disables constant folding of
9863floating-point expressions at compile time (which may be affected by
9864rounding mode) and arithmetic transformations that are unsafe in the
9865presence of sign-dependent rounding modes.
9866
9867The default is @option{-fno-rounding-math}.
9868
9869This option is experimental and does not currently guarantee to
9870disable all GCC optimizations that are affected by rounding mode.
9871Future versions of GCC may provide finer control of this setting
9872using C99's @code{FENV_ACCESS} pragma.  This command-line option
9873will be used to specify the default state for @code{FENV_ACCESS}.
9874
9875@item -fsignaling-nans
9876@opindex fsignaling-nans
9877Compile code assuming that IEEE signaling NaNs may generate user-visible
9878traps during floating-point operations.  Setting this option disables
9879optimizations that may change the number of exceptions visible with
9880signaling NaNs.  This option implies @option{-ftrapping-math}.
9881
9882This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9883be defined.
9884
9885The default is @option{-fno-signaling-nans}.
9886
9887This option is experimental and does not currently guarantee to
9888disable all GCC optimizations that affect signaling NaN behavior.
9889
9890@item -fno-fp-int-builtin-inexact
9891@opindex fno-fp-int-builtin-inexact
9892Do not allow the built-in functions @code{ceil}, @code{floor},
9893@code{round} and @code{trunc}, and their @code{float} and @code{long
9894double} variants, to generate code that raises the ``inexact''
9895floating-point exception for noninteger arguments.  ISO C99 and C11
9896allow these functions to raise the ``inexact'' exception, but ISO/IEC
9897TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
9898functions to do so.
9899
9900The default is @option{-ffp-int-builtin-inexact}, allowing the
9901exception to be raised.  This option does nothing unless
9902@option{-ftrapping-math} is in effect.
9903
9904Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
9905generate a call to a library function then the ``inexact'' exception
9906may be raised if the library implementation does not follow TS 18661.
9907
9908@item -fsingle-precision-constant
9909@opindex fsingle-precision-constant
9910Treat floating-point constants as single precision instead of
9911implicitly converting them to double-precision constants.
9912
9913@item -fcx-limited-range
9914@opindex fcx-limited-range
9915When enabled, this option states that a range reduction step is not
9916needed when performing complex division.  Also, there is no checking
9917whether the result of a complex multiplication or division is @code{NaN
9918+ I*NaN}, with an attempt to rescue the situation in that case.  The
9919default is @option{-fno-cx-limited-range}, but is enabled by
9920@option{-ffast-math}.
9921
9922This option controls the default setting of the ISO C99
9923@code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
9924all languages.
9925
9926@item -fcx-fortran-rules
9927@opindex fcx-fortran-rules
9928Complex multiplication and division follow Fortran rules.  Range
9929reduction is done as part of complex division, but there is no checking
9930whether the result of a complex multiplication or division is @code{NaN
9931+ I*NaN}, with an attempt to rescue the situation in that case.
9932
9933The default is @option{-fno-cx-fortran-rules}.
9934
9935@end table
9936
9937The following options control optimizations that may improve
9938performance, but are not enabled by any @option{-O} options.  This
9939section includes experimental options that may produce broken code.
9940
9941@table @gcctabopt
9942@item -fbranch-probabilities
9943@opindex fbranch-probabilities
9944After running a program compiled with @option{-fprofile-arcs}
9945(@pxref{Instrumentation Options}),
9946you can compile it a second time using
9947@option{-fbranch-probabilities}, to improve optimizations based on
9948the number of times each branch was taken.  When a program
9949compiled with @option{-fprofile-arcs} exits, it saves arc execution
9950counts to a file called @file{@var{sourcename}.gcda} for each source
9951file.  The information in this data file is very dependent on the
9952structure of the generated code, so you must use the same source code
9953and the same optimization options for both compilations.
9954
9955With @option{-fbranch-probabilities}, GCC puts a
9956@samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9957These can be used to improve optimization.  Currently, they are only
9958used in one place: in @file{reorg.c}, instead of guessing which path a
9959branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9960exactly determine which path is taken more often.
9961
9962@item -fprofile-values
9963@opindex fprofile-values
9964If combined with @option{-fprofile-arcs}, it adds code so that some
9965data about values of expressions in the program is gathered.
9966
9967With @option{-fbranch-probabilities}, it reads back the data gathered
9968from profiling values of expressions for usage in optimizations.
9969
9970Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9971
9972@item -fprofile-reorder-functions
9973@opindex fprofile-reorder-functions
9974Function reordering based on profile instrumentation collects
9975first time of execution of a function and orders these functions
9976in ascending order.
9977
9978Enabled with @option{-fprofile-use}.
9979
9980@item -fvpt
9981@opindex fvpt
9982If combined with @option{-fprofile-arcs}, this option instructs the compiler
9983to add code to gather information about values of expressions.
9984
9985With @option{-fbranch-probabilities}, it reads back the data gathered
9986and actually performs the optimizations based on them.
9987Currently the optimizations include specialization of division operations
9988using the knowledge about the value of the denominator.
9989
9990@item -frename-registers
9991@opindex frename-registers
9992Attempt to avoid false dependencies in scheduled code by making use
9993of registers left over after register allocation.  This optimization
9994most benefits processors with lots of registers.  Depending on the
9995debug information format adopted by the target, however, it can
9996make debugging impossible, since variables no longer stay in
9997a ``home register''.
9998
9999Enabled by default with @option{-funroll-loops}.
10000
10001@item -fschedule-fusion
10002@opindex fschedule-fusion
10003Performs a target dependent pass over the instruction stream to schedule
10004instructions of same type together because target machine can execute them
10005more efficiently if they are adjacent to each other in the instruction flow.
10006
10007Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10008
10009@item -ftracer
10010@opindex ftracer
10011Perform tail duplication to enlarge superblock size.  This transformation
10012simplifies the control flow of the function allowing other optimizations to do
10013a better job.
10014
10015Enabled with @option{-fprofile-use}.
10016
10017@item -funroll-loops
10018@opindex funroll-loops
10019Unroll loops whose number of iterations can be determined at compile time or
10020upon entry to the loop.  @option{-funroll-loops} implies
10021@option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10022It also turns on complete loop peeling (i.e.@: complete removal of loops with
10023a small constant number of iterations).  This option makes code larger, and may
10024or may not make it run faster.
10025
10026Enabled with @option{-fprofile-use}.
10027
10028@item -funroll-all-loops
10029@opindex funroll-all-loops
10030Unroll all loops, even if their number of iterations is uncertain when
10031the loop is entered.  This usually makes programs run more slowly.
10032@option{-funroll-all-loops} implies the same options as
10033@option{-funroll-loops}.
10034
10035@item -fpeel-loops
10036@opindex fpeel-loops
10037Peels loops for which there is enough information that they do not
10038roll much (from profile feedback or static analysis).  It also turns on
10039complete loop peeling (i.e.@: complete removal of loops with small constant
10040number of iterations).
10041
10042Enabled with @option{-O3} and/or @option{-fprofile-use}.
10043
10044@item -fmove-loop-invariants
10045@opindex fmove-loop-invariants
10046Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
10047at level @option{-O1}
10048
10049@item -fsplit-loops
10050@opindex fsplit-loops
10051Split a loop into two if it contains a condition that's always true
10052for one side of the iteration space and false for the other.
10053
10054@item -funswitch-loops
10055@opindex funswitch-loops
10056Move branches with loop invariant conditions out of the loop, with duplicates
10057of the loop on both branches (modified according to result of the condition).
10058
10059@item -ffunction-sections
10060@itemx -fdata-sections
10061@opindex ffunction-sections
10062@opindex fdata-sections
10063Place each function or data item into its own section in the output
10064file if the target supports arbitrary sections.  The name of the
10065function or the name of the data item determines the section's name
10066in the output file.
10067
10068Use these options on systems where the linker can perform optimizations to
10069improve locality of reference in the instruction space.  Most systems using the
10070ELF object format have linkers with such optimizations.  On AIX, the linker
10071rearranges sections (CSECTs) based on the call graph.  The performance impact
10072varies.
10073
10074Together with a linker garbage collection (linker @option{--gc-sections}
10075option) these options may lead to smaller statically-linked executables (after
10076stripping).
10077
10078On ELF/DWARF systems these options do not degenerate the quality of the debug
10079information.  There could be issues with other object files/debug info formats.
10080
10081Only use these options when there are significant benefits from doing so.  When
10082you specify these options, the assembler and linker create larger object and
10083executable files and are also slower.  These options affect code generation.
10084They prevent optimizations by the compiler and assembler using relative
10085locations inside a translation unit since the locations are unknown until
10086link time.  An example of such an optimization is relaxing calls to short call
10087instructions.
10088
10089@item -fbranch-target-load-optimize
10090@opindex fbranch-target-load-optimize
10091Perform branch target register load optimization before prologue / epilogue
10092threading.
10093The use of target registers can typically be exposed only during reload,
10094thus hoisting loads out of loops and doing inter-block scheduling needs
10095a separate optimization pass.
10096
10097@item -fbranch-target-load-optimize2
10098@opindex fbranch-target-load-optimize2
10099Perform branch target register load optimization after prologue / epilogue
10100threading.
10101
10102@item -fbtr-bb-exclusive
10103@opindex fbtr-bb-exclusive
10104When performing branch target register load optimization, don't reuse
10105branch target registers within any basic block.
10106
10107@item -fstdarg-opt
10108@opindex fstdarg-opt
10109Optimize the prologue of variadic argument functions with respect to usage of
10110those arguments.
10111
10112@item -fsection-anchors
10113@opindex fsection-anchors
10114Try to reduce the number of symbolic address calculations by using
10115shared ``anchor'' symbols to address nearby objects.  This transformation
10116can help to reduce the number of GOT entries and GOT accesses on some
10117targets.
10118
10119For example, the implementation of the following function @code{foo}:
10120
10121@smallexample
10122static int a, b, c;
10123int foo (void) @{ return a + b + c; @}
10124@end smallexample
10125
10126@noindent
10127usually calculates the addresses of all three variables, but if you
10128compile it with @option{-fsection-anchors}, it accesses the variables
10129from a common anchor point instead.  The effect is similar to the
10130following pseudocode (which isn't valid C):
10131
10132@smallexample
10133int foo (void)
10134@{
10135  register int *xr = &x;
10136  return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10137@}
10138@end smallexample
10139
10140Not all targets support this option.
10141
10142@item --param @var{name}=@var{value}
10143@opindex param
10144In some places, GCC uses various constants to control the amount of
10145optimization that is done.  For example, GCC does not inline functions
10146that contain more than a certain number of instructions.  You can
10147control some of these constants on the command line using the
10148@option{--param} option.
10149
10150The names of specific parameters, and the meaning of the values, are
10151tied to the internals of the compiler, and are subject to change
10152without notice in future releases.
10153
10154In each case, the @var{value} is an integer.  The allowable choices for
10155@var{name} are:
10156
10157@table @gcctabopt
10158@item predictable-branch-outcome
10159When branch is predicted to be taken with probability lower than this threshold
10160(in percent), then it is considered well predictable. The default is 10.
10161
10162@item max-rtl-if-conversion-insns
10163RTL if-conversion tries to remove conditional branches around a block and
10164replace them with conditionally executed instructions.  This parameter
10165gives the maximum number of instructions in a block which should be
10166considered for if-conversion.  The default is 10, though the compiler will
10167also use other heuristics to decide whether if-conversion is likely to be
10168profitable.
10169
10170@item max-rtl-if-conversion-predictable-cost
10171@itemx max-rtl-if-conversion-unpredictable-cost
10172RTL if-conversion will try to remove conditional branches around a block
10173and replace them with conditionally executed instructions.  These parameters
10174give the maximum permissible cost for the sequence that would be generated
10175by if-conversion depending on whether the branch is statically determined
10176to be predictable or not.  The units for this parameter are the same as
10177those for the GCC internal seq_cost metric.  The compiler will try to
10178provide a reasonable default for this parameter using the BRANCH_COST
10179target macro.
10180
10181@item max-crossjump-edges
10182The maximum number of incoming edges to consider for cross-jumping.
10183The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10184the number of edges incoming to each block.  Increasing values mean
10185more aggressive optimization, making the compilation time increase with
10186probably small improvement in executable size.
10187
10188@item min-crossjump-insns
10189The minimum number of instructions that must be matched at the end
10190of two blocks before cross-jumping is performed on them.  This
10191value is ignored in the case where all instructions in the block being
10192cross-jumped from are matched.  The default value is 5.
10193
10194@item max-grow-copy-bb-insns
10195The maximum code size expansion factor when copying basic blocks
10196instead of jumping.  The expansion is relative to a jump instruction.
10197The default value is 8.
10198
10199@item max-goto-duplication-insns
10200The maximum number of instructions to duplicate to a block that jumps
10201to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
10202passes, GCC factors computed gotos early in the compilation process,
10203and unfactors them as late as possible.  Only computed jumps at the
10204end of a basic blocks with no more than max-goto-duplication-insns are
10205unfactored.  The default value is 8.
10206
10207@item max-delay-slot-insn-search
10208The maximum number of instructions to consider when looking for an
10209instruction to fill a delay slot.  If more than this arbitrary number of
10210instructions are searched, the time savings from filling the delay slot
10211are minimal, so stop searching.  Increasing values mean more
10212aggressive optimization, making the compilation time increase with probably
10213small improvement in execution time.
10214
10215@item max-delay-slot-live-search
10216When trying to fill delay slots, the maximum number of instructions to
10217consider when searching for a block with valid live register
10218information.  Increasing this arbitrarily chosen value means more
10219aggressive optimization, increasing the compilation time.  This parameter
10220should be removed when the delay slot code is rewritten to maintain the
10221control-flow graph.
10222
10223@item max-gcse-memory
10224The approximate maximum amount of memory that can be allocated in
10225order to perform the global common subexpression elimination
10226optimization.  If more memory than specified is required, the
10227optimization is not done.
10228
10229@item max-gcse-insertion-ratio
10230If the ratio of expression insertions to deletions is larger than this value
10231for any expression, then RTL PRE inserts or removes the expression and thus
10232leaves partially redundant computations in the instruction stream.  The default value is 20.
10233
10234@item max-pending-list-length
10235The maximum number of pending dependencies scheduling allows
10236before flushing the current state and starting over.  Large functions
10237with few branches or calls can create excessively large lists which
10238needlessly consume memory and resources.
10239
10240@item max-modulo-backtrack-attempts
10241The maximum number of backtrack attempts the scheduler should make
10242when modulo scheduling a loop.  Larger values can exponentially increase
10243compilation time.
10244
10245@item max-inline-insns-single
10246Several parameters control the tree inliner used in GCC@.
10247This number sets the maximum number of instructions (counted in GCC's
10248internal representation) in a single function that the tree inliner
10249considers for inlining.  This only affects functions declared
10250inline and methods implemented in a class declaration (C++).
10251The default value is 400.
10252
10253@item max-inline-insns-auto
10254When you use @option{-finline-functions} (included in @option{-O3}),
10255a lot of functions that would otherwise not be considered for inlining
10256by the compiler are investigated.  To those functions, a different
10257(more restrictive) limit compared to functions declared inline can
10258be applied.
10259The default value is 30.
10260
10261@item inline-min-speedup
10262When estimated performance improvement of caller + callee runtime exceeds this
10263threshold (in percent), the function can be inlined regardless of the limit on
10264@option{--param max-inline-insns-single} and @option{--param
10265max-inline-insns-auto}.
10266The default value is 15.
10267
10268@item large-function-insns
10269The limit specifying really large functions.  For functions larger than this
10270limit after inlining, inlining is constrained by
10271@option{--param large-function-growth}.  This parameter is useful primarily
10272to avoid extreme compilation time caused by non-linear algorithms used by the
10273back end.
10274The default value is 2700.
10275
10276@item large-function-growth
10277Specifies maximal growth of large function caused by inlining in percents.
10278The default value is 100 which limits large function growth to 2.0 times
10279the original size.
10280
10281@item large-unit-insns
10282The limit specifying large translation unit.  Growth caused by inlining of
10283units larger than this limit is limited by @option{--param inline-unit-growth}.
10284For small units this might be too tight.
10285For example, consider a unit consisting of function A
10286that is inline and B that just calls A three times.  If B is small relative to
10287A, the growth of unit is 300\% and yet such inlining is very sane.  For very
10288large units consisting of small inlineable functions, however, the overall unit
10289growth limit is needed to avoid exponential explosion of code size.  Thus for
10290smaller units, the size is increased to @option{--param large-unit-insns}
10291before applying @option{--param inline-unit-growth}.  The default is 10000.
10292
10293@item inline-unit-growth
10294Specifies maximal overall growth of the compilation unit caused by inlining.
10295The default value is 20 which limits unit growth to 1.2 times the original
10296size. Cold functions (either marked cold via an attribute or by profile
10297feedback) are not accounted into the unit size.
10298
10299@item ipcp-unit-growth
10300Specifies maximal overall growth of the compilation unit caused by
10301interprocedural constant propagation.  The default value is 10 which limits
10302unit growth to 1.1 times the original size.
10303
10304@item large-stack-frame
10305The limit specifying large stack frames.  While inlining the algorithm is trying
10306to not grow past this limit too much.  The default value is 256 bytes.
10307
10308@item large-stack-frame-growth
10309Specifies maximal growth of large stack frames caused by inlining in percents.
10310The default value is 1000 which limits large stack frame growth to 11 times
10311the original size.
10312
10313@item max-inline-insns-recursive
10314@itemx max-inline-insns-recursive-auto
10315Specifies the maximum number of instructions an out-of-line copy of a
10316self-recursive inline
10317function can grow into by performing recursive inlining.
10318
10319@option{--param max-inline-insns-recursive} applies to functions
10320declared inline.
10321For functions not declared inline, recursive inlining
10322happens only when @option{-finline-functions} (included in @option{-O3}) is
10323enabled; @option{--param max-inline-insns-recursive-auto} applies instead.  The
10324default value is 450.
10325
10326@item max-inline-recursive-depth
10327@itemx max-inline-recursive-depth-auto
10328Specifies the maximum recursion depth used for recursive inlining.
10329
10330@option{--param max-inline-recursive-depth} applies to functions
10331declared inline.  For functions not declared inline, recursive inlining
10332happens only when @option{-finline-functions} (included in @option{-O3}) is
10333enabled; @option{--param max-inline-recursive-depth-auto} applies instead.  The
10334default value is 8.
10335
10336@item min-inline-recursive-probability
10337Recursive inlining is profitable only for function having deep recursion
10338in average and can hurt for function having little recursion depth by
10339increasing the prologue size or complexity of function body to other
10340optimizers.
10341
10342When profile feedback is available (see @option{-fprofile-generate}) the actual
10343recursion depth can be guessed from the probability that function recurses
10344via a given call expression.  This parameter limits inlining only to call
10345expressions whose probability exceeds the given threshold (in percents).
10346The default value is 10.
10347
10348@item early-inlining-insns
10349Specify growth that the early inliner can make.  In effect it increases
10350the amount of inlining for code having a large abstraction penalty.
10351The default value is 14.
10352
10353@item max-early-inliner-iterations
10354Limit of iterations of the early inliner.  This basically bounds
10355the number of nested indirect calls the early inliner can resolve.
10356Deeper chains are still handled by late inlining.
10357
10358@item comdat-sharing-probability
10359Probability (in percent) that C++ inline function with comdat visibility
10360are shared across multiple compilation units.  The default value is 20.
10361
10362@item profile-func-internal-id
10363A parameter to control whether to use function internal id in profile
10364database lookup. If the value is 0, the compiler uses an id that
10365is based on function assembler name and filename, which makes old profile
10366data more tolerant to source changes such as function reordering etc.
10367The default value is 0.
10368
10369@item min-vect-loop-bound
10370The minimum number of iterations under which loops are not vectorized
10371when @option{-ftree-vectorize} is used.  The number of iterations after
10372vectorization needs to be greater than the value specified by this option
10373to allow vectorization.  The default value is 0.
10374
10375@item gcse-cost-distance-ratio
10376Scaling factor in calculation of maximum distance an expression
10377can be moved by GCSE optimizations.  This is currently supported only in the
10378code hoisting pass.  The bigger the ratio, the more aggressive code hoisting
10379is with simple expressions, i.e., the expressions that have cost
10380less than @option{gcse-unrestricted-cost}.  Specifying 0 disables
10381hoisting of simple expressions.  The default value is 10.
10382
10383@item gcse-unrestricted-cost
10384Cost, roughly measured as the cost of a single typical machine
10385instruction, at which GCSE optimizations do not constrain
10386the distance an expression can travel.  This is currently
10387supported only in the code hoisting pass.  The lesser the cost,
10388the more aggressive code hoisting is.  Specifying 0
10389allows all expressions to travel unrestricted distances.
10390The default value is 3.
10391
10392@item max-hoist-depth
10393The depth of search in the dominator tree for expressions to hoist.
10394This is used to avoid quadratic behavior in hoisting algorithm.
10395The value of 0 does not limit on the search, but may slow down compilation
10396of huge functions.  The default value is 30.
10397
10398@item max-tail-merge-comparisons
10399The maximum amount of similar bbs to compare a bb with.  This is used to
10400avoid quadratic behavior in tree tail merging.  The default value is 10.
10401
10402@item max-tail-merge-iterations
10403The maximum amount of iterations of the pass over the function.  This is used to
10404limit compilation time in tree tail merging.  The default value is 2.
10405
10406@item store-merging-allow-unaligned
10407Allow the store merging pass to introduce unaligned stores if it is legal to
10408do so.  The default value is 1.
10409
10410@item max-stores-to-merge
10411The maximum number of stores to attempt to merge into wider stores in the store
10412merging pass.  The minimum value is 2 and the default is 64.
10413
10414@item max-unrolled-insns
10415The maximum number of instructions that a loop may have to be unrolled.
10416If a loop is unrolled, this parameter also determines how many times
10417the loop code is unrolled.
10418
10419@item max-average-unrolled-insns
10420The maximum number of instructions biased by probabilities of their execution
10421that a loop may have to be unrolled.  If a loop is unrolled,
10422this parameter also determines how many times the loop code is unrolled.
10423
10424@item max-unroll-times
10425The maximum number of unrollings of a single loop.
10426
10427@item max-peeled-insns
10428The maximum number of instructions that a loop may have to be peeled.
10429If a loop is peeled, this parameter also determines how many times
10430the loop code is peeled.
10431
10432@item max-peel-times
10433The maximum number of peelings of a single loop.
10434
10435@item max-peel-branches
10436The maximum number of branches on the hot path through the peeled sequence.
10437
10438@item max-completely-peeled-insns
10439The maximum number of insns of a completely peeled loop.
10440
10441@item max-completely-peel-times
10442The maximum number of iterations of a loop to be suitable for complete peeling.
10443
10444@item max-completely-peel-loop-nest-depth
10445The maximum depth of a loop nest suitable for complete peeling.
10446
10447@item max-unswitch-insns
10448The maximum number of insns of an unswitched loop.
10449
10450@item max-unswitch-level
10451The maximum number of branches unswitched in a single loop.
10452
10453@item max-loop-headers-insns
10454The maximum number of insns in loop header duplicated by the copy loop headers
10455pass.
10456
10457@item lim-expensive
10458The minimum cost of an expensive expression in the loop invariant motion.
10459
10460@item iv-consider-all-candidates-bound
10461Bound on number of candidates for induction variables, below which
10462all candidates are considered for each use in induction variable
10463optimizations.  If there are more candidates than this,
10464only the most relevant ones are considered to avoid quadratic time complexity.
10465
10466@item iv-max-considered-uses
10467The induction variable optimizations give up on loops that contain more
10468induction variable uses.
10469
10470@item iv-always-prune-cand-set-bound
10471If the number of candidates in the set is smaller than this value,
10472always try to remove unnecessary ivs from the set
10473when adding a new one.
10474
10475@item avg-loop-niter
10476Average number of iterations of a loop.
10477
10478@item dse-max-object-size
10479Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
10480Larger values may result in larger compilation times.
10481
10482@item scev-max-expr-size
10483Bound on size of expressions used in the scalar evolutions analyzer.
10484Large expressions slow the analyzer.
10485
10486@item scev-max-expr-complexity
10487Bound on the complexity of the expressions in the scalar evolutions analyzer.
10488Complex expressions slow the analyzer.
10489
10490@item max-tree-if-conversion-phi-args
10491Maximum number of arguments in a PHI supported by TREE if conversion
10492unless the loop is marked with simd pragma.
10493
10494@item vect-max-version-for-alignment-checks
10495The maximum number of run-time checks that can be performed when
10496doing loop versioning for alignment in the vectorizer.
10497
10498@item vect-max-version-for-alias-checks
10499The maximum number of run-time checks that can be performed when
10500doing loop versioning for alias in the vectorizer.
10501
10502@item vect-max-peeling-for-alignment
10503The maximum number of loop peels to enhance access alignment
10504for vectorizer. Value -1 means no limit.
10505
10506@item max-iterations-to-track
10507The maximum number of iterations of a loop the brute-force algorithm
10508for analysis of the number of iterations of the loop tries to evaluate.
10509
10510@item hot-bb-count-ws-permille
10511A basic block profile count is considered hot if it contributes to
10512the given permillage (i.e. 0...1000) of the entire profiled execution.
10513
10514@item hot-bb-frequency-fraction
10515Select fraction of the entry block frequency of executions of basic block in
10516function given basic block needs to have to be considered hot.
10517
10518@item max-predicted-iterations
10519The maximum number of loop iterations we predict statically.  This is useful
10520in cases where a function contains a single loop with known bound and
10521another loop with unknown bound.
10522The known number of iterations is predicted correctly, while
10523the unknown number of iterations average to roughly 10.  This means that the
10524loop without bounds appears artificially cold relative to the other one.
10525
10526@item builtin-expect-probability
10527Control the probability of the expression having the specified value. This
10528parameter takes a percentage (i.e. 0 ... 100) as input.
10529The default probability of 90 is obtained empirically.
10530
10531@item align-threshold
10532
10533Select fraction of the maximal frequency of executions of a basic block in
10534a function to align the basic block.
10535
10536@item align-loop-iterations
10537
10538A loop expected to iterate at least the selected number of iterations is
10539aligned.
10540
10541@item tracer-dynamic-coverage
10542@itemx tracer-dynamic-coverage-feedback
10543
10544This value is used to limit superblock formation once the given percentage of
10545executed instructions is covered.  This limits unnecessary code size
10546expansion.
10547
10548The @option{tracer-dynamic-coverage-feedback} parameter
10549is used only when profile
10550feedback is available.  The real profiles (as opposed to statically estimated
10551ones) are much less balanced allowing the threshold to be larger value.
10552
10553@item tracer-max-code-growth
10554Stop tail duplication once code growth has reached given percentage.  This is
10555a rather artificial limit, as most of the duplicates are eliminated later in
10556cross jumping, so it may be set to much higher values than is the desired code
10557growth.
10558
10559@item tracer-min-branch-ratio
10560
10561Stop reverse growth when the reverse probability of best edge is less than this
10562threshold (in percent).
10563
10564@item tracer-min-branch-probability
10565@itemx tracer-min-branch-probability-feedback
10566
10567Stop forward growth if the best edge has probability lower than this
10568threshold.
10569
10570Similarly to @option{tracer-dynamic-coverage} two parameters are
10571provided.  @option{tracer-min-branch-probability-feedback} is used for
10572compilation with profile feedback and @option{tracer-min-branch-probability}
10573compilation without.  The value for compilation with profile feedback
10574needs to be more conservative (higher) in order to make tracer
10575effective.
10576
10577@item stack-clash-protection-guard-size
10578Specify the size of the operating system provided stack guard as
105792 raised to @var{num} bytes.  The default value is 12 (4096 bytes).
10580Acceptable values are between 12 and 30.  Higher values may reduce the
10581number of explicit probes, but a value larger than the operating system
10582provided guard will leave code vulnerable to stack clash style attacks.
10583
10584@item stack-clash-protection-probe-interval
10585Stack clash protection involves probing stack space as it is allocated.  This
10586param controls the maximum distance between probes into the stack as 2 raised
10587to @var{num} bytes.  Acceptable values are between 10 and 16 and defaults to
1058812.  Higher values may reduce the number of explicit probes, but a value
10589larger than the operating system provided guard will leave code vulnerable to
10590stack clash style attacks.
10591
10592@item max-cse-path-length
10593
10594The maximum number of basic blocks on path that CSE considers.
10595The default is 10.
10596
10597@item max-cse-insns
10598The maximum number of instructions CSE processes before flushing.
10599The default is 1000.
10600
10601@item ggc-min-expand
10602
10603GCC uses a garbage collector to manage its own memory allocation.  This
10604parameter specifies the minimum percentage by which the garbage
10605collector's heap should be allowed to expand between collections.
10606Tuning this may improve compilation speed; it has no effect on code
10607generation.
10608
10609The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10610RAM >= 1GB@.  If @code{getrlimit} is available, the notion of ``RAM'' is
10611the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
10612GCC is not able to calculate RAM on a particular platform, the lower
10613bound of 30% is used.  Setting this parameter and
10614@option{ggc-min-heapsize} to zero causes a full collection to occur at
10615every opportunity.  This is extremely slow, but can be useful for
10616debugging.
10617
10618@item ggc-min-heapsize
10619
10620Minimum size of the garbage collector's heap before it begins bothering
10621to collect garbage.  The first collection occurs after the heap expands
10622by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
10623tuning this may improve compilation speed, and has no effect on code
10624generation.
10625
10626The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10627tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10628with a lower bound of 4096 (four megabytes) and an upper bound of
10629131072 (128 megabytes).  If GCC is not able to calculate RAM on a
10630particular platform, the lower bound is used.  Setting this parameter
10631very large effectively disables garbage collection.  Setting this
10632parameter and @option{ggc-min-expand} to zero causes a full collection
10633to occur at every opportunity.
10634
10635@item max-reload-search-insns
10636The maximum number of instruction reload should look backward for equivalent
10637register.  Increasing values mean more aggressive optimization, making the
10638compilation time increase with probably slightly better performance.
10639The default value is 100.
10640
10641@item max-cselib-memory-locations
10642The maximum number of memory locations cselib should take into account.
10643Increasing values mean more aggressive optimization, making the compilation time
10644increase with probably slightly better performance.  The default value is 500.
10645
10646@item max-sched-ready-insns
10647The maximum number of instructions ready to be issued the scheduler should
10648consider at any given time during the first scheduling pass.  Increasing
10649values mean more thorough searches, making the compilation time increase
10650with probably little benefit.  The default value is 100.
10651
10652@item max-sched-region-blocks
10653The maximum number of blocks in a region to be considered for
10654interblock scheduling.  The default value is 10.
10655
10656@item max-pipeline-region-blocks
10657The maximum number of blocks in a region to be considered for
10658pipelining in the selective scheduler.  The default value is 15.
10659
10660@item max-sched-region-insns
10661The maximum number of insns in a region to be considered for
10662interblock scheduling.  The default value is 100.
10663
10664@item max-pipeline-region-insns
10665The maximum number of insns in a region to be considered for
10666pipelining in the selective scheduler.  The default value is 200.
10667
10668@item min-spec-prob
10669The minimum probability (in percents) of reaching a source block
10670for interblock speculative scheduling.  The default value is 40.
10671
10672@item max-sched-extend-regions-iters
10673The maximum number of iterations through CFG to extend regions.
10674A value of 0 (the default) disables region extensions.
10675
10676@item max-sched-insn-conflict-delay
10677The maximum conflict delay for an insn to be considered for speculative motion.
10678The default value is 3.
10679
10680@item sched-spec-prob-cutoff
10681The minimal probability of speculation success (in percents), so that
10682speculative insns are scheduled.
10683The default value is 40.
10684
10685@item sched-state-edge-prob-cutoff
10686The minimum probability an edge must have for the scheduler to save its
10687state across it.
10688The default value is 10.
10689
10690@item sched-mem-true-dep-cost
10691Minimal distance (in CPU cycles) between store and load targeting same
10692memory locations.  The default value is 1.
10693
10694@item selsched-max-lookahead
10695The maximum size of the lookahead window of selective scheduling.  It is a
10696depth of search for available instructions.
10697The default value is 50.
10698
10699@item selsched-max-sched-times
10700The maximum number of times that an instruction is scheduled during
10701selective scheduling.  This is the limit on the number of iterations
10702through which the instruction may be pipelined.  The default value is 2.
10703
10704@item selsched-insns-to-rename
10705The maximum number of best instructions in the ready list that are considered
10706for renaming in the selective scheduler.  The default value is 2.
10707
10708@item sms-min-sc
10709The minimum value of stage count that swing modulo scheduler
10710generates.  The default value is 2.
10711
10712@item max-last-value-rtl
10713The maximum size measured as number of RTLs that can be recorded in an expression
10714in combiner for a pseudo register as last known value of that register.  The default
10715is 10000.
10716
10717@item max-combine-insns
10718The maximum number of instructions the RTL combiner tries to combine.
10719The default value is 2 at @option{-Og} and 4 otherwise.
10720
10721@item integer-share-limit
10722Small integer constants can use a shared data structure, reducing the
10723compiler's memory usage and increasing its speed.  This sets the maximum
10724value of a shared integer constant.  The default value is 256.
10725
10726@item ssp-buffer-size
10727The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10728protection when @option{-fstack-protection} is used.
10729
10730@item min-size-for-stack-sharing
10731The minimum size of variables taking part in stack slot sharing when not
10732optimizing. The default value is 32.
10733
10734@item max-jump-thread-duplication-stmts
10735Maximum number of statements allowed in a block that needs to be
10736duplicated when threading jumps.
10737
10738@item max-fields-for-field-sensitive
10739Maximum number of fields in a structure treated in
10740a field sensitive manner during pointer analysis.  The default is zero
10741for @option{-O0} and @option{-O1},
10742and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10743
10744@item prefetch-latency
10745Estimate on average number of instructions that are executed before
10746prefetch finishes.  The distance prefetched ahead is proportional
10747to this constant.  Increasing this number may also lead to less
10748streams being prefetched (see @option{simultaneous-prefetches}).
10749
10750@item simultaneous-prefetches
10751Maximum number of prefetches that can run at the same time.
10752
10753@item l1-cache-line-size
10754The size of cache line in L1 cache, in bytes.
10755
10756@item l1-cache-size
10757The size of L1 cache, in kilobytes.
10758
10759@item l2-cache-size
10760The size of L2 cache, in kilobytes.
10761
10762@item loop-interchange-max-num-stmts
10763The maximum number of stmts in a loop to be interchanged.
10764
10765@item loop-interchange-stride-ratio
10766The minimum ratio between stride of two loops for interchange to be profitable.
10767
10768@item min-insn-to-prefetch-ratio
10769The minimum ratio between the number of instructions and the
10770number of prefetches to enable prefetching in a loop.
10771
10772@item prefetch-min-insn-to-mem-ratio
10773The minimum ratio between the number of instructions and the
10774number of memory references to enable prefetching in a loop.
10775
10776@item use-canonical-types
10777Whether the compiler should use the ``canonical'' type system.  By
10778default, this should always be 1, which uses a more efficient internal
10779mechanism for comparing types in C++ and Objective-C++.  However, if
10780bugs in the canonical type system are causing compilation failures,
10781set this value to 0 to disable canonical types.
10782
10783@item switch-conversion-max-branch-ratio
10784Switch initialization conversion refuses to create arrays that are
10785bigger than @option{switch-conversion-max-branch-ratio} times the number of
10786branches in the switch.
10787
10788@item max-partial-antic-length
10789Maximum length of the partial antic set computed during the tree
10790partial redundancy elimination optimization (@option{-ftree-pre}) when
10791optimizing at @option{-O3} and above.  For some sorts of source code
10792the enhanced partial redundancy elimination optimization can run away,
10793consuming all of the memory available on the host machine.  This
10794parameter sets a limit on the length of the sets that are computed,
10795which prevents the runaway behavior.  Setting a value of 0 for
10796this parameter allows an unlimited set length.
10797
10798@item sccvn-max-scc-size
10799Maximum size of a strongly connected component (SCC) during SCCVN
10800processing.  If this limit is hit, SCCVN processing for the whole
10801function is not done and optimizations depending on it are
10802disabled.  The default maximum SCC size is 10000.
10803
10804@item sccvn-max-alias-queries-per-access
10805Maximum number of alias-oracle queries we perform when looking for
10806redundancies for loads and stores.  If this limit is hit the search
10807is aborted and the load or store is not considered redundant.  The
10808number of queries is algorithmically limited to the number of
10809stores on all paths from the load to the function entry.
10810The default maximum number of queries is 1000.
10811
10812@item ira-max-loops-num
10813IRA uses regional register allocation by default.  If a function
10814contains more loops than the number given by this parameter, only at most
10815the given number of the most frequently-executed loops form regions
10816for regional register allocation.  The default value of the
10817parameter is 100.
10818
10819@item ira-max-conflict-table-size
10820Although IRA uses a sophisticated algorithm to compress the conflict
10821table, the table can still require excessive amounts of memory for
10822huge functions.  If the conflict table for a function could be more
10823than the size in MB given by this parameter, the register allocator
10824instead uses a faster, simpler, and lower-quality
10825algorithm that does not require building a pseudo-register conflict table.
10826The default value of the parameter is 2000.
10827
10828@item ira-loop-reserved-regs
10829IRA can be used to evaluate more accurate register pressure in loops
10830for decisions to move loop invariants (see @option{-O3}).  The number
10831of available registers reserved for some other purposes is given
10832by this parameter.  The default value of the parameter is 2, which is
10833the minimal number of registers needed by typical instructions.
10834This value is the best found from numerous experiments.
10835
10836@item lra-inheritance-ebb-probability-cutoff
10837LRA tries to reuse values reloaded in registers in subsequent insns.
10838This optimization is called inheritance.  EBB is used as a region to
10839do this optimization.  The parameter defines a minimal fall-through
10840edge probability in percentage used to add BB to inheritance EBB in
10841LRA.  The default value of the parameter is 40.  The value was chosen
10842from numerous runs of SPEC2000 on x86-64.
10843
10844@item loop-invariant-max-bbs-in-loop
10845Loop invariant motion can be very expensive, both in compilation time and
10846in amount of needed compile-time memory, with very large loops.  Loops
10847with more basic blocks than this parameter won't have loop invariant
10848motion optimization performed on them.  The default value of the
10849parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10850
10851@item loop-max-datarefs-for-datadeps
10852Building data dependencies is expensive for very large loops.  This
10853parameter limits the number of data references in loops that are
10854considered for data dependence analysis.  These large loops are no
10855handled by the optimizations using loop data dependencies.
10856The default value is 1000.
10857
10858@item max-vartrack-size
10859Sets a maximum number of hash table slots to use during variable
10860tracking dataflow analysis of any function.  If this limit is exceeded
10861with variable tracking at assignments enabled, analysis for that
10862function is retried without it, after removing all debug insns from
10863the function.  If the limit is exceeded even without debug insns, var
10864tracking analysis is completely disabled for the function.  Setting
10865the parameter to zero makes it unlimited.
10866
10867@item max-vartrack-expr-depth
10868Sets a maximum number of recursion levels when attempting to map
10869variable names or debug temporaries to value expressions.  This trades
10870compilation time for more complete debug information.  If this is set too
10871low, value expressions that are available and could be represented in
10872debug information may end up not being used; setting this higher may
10873enable the compiler to find more complex debug expressions, but compile
10874time and memory use may grow.  The default is 12.
10875
10876@item max-debug-marker-count
10877Sets a threshold on the number of debug markers (e.g. begin stmt
10878markers) to avoid complexity explosion at inlining or expanding to RTL.
10879If a function has more such gimple stmts than the set limit, such stmts
10880will be dropped from the inlined copy of a function, and from its RTL
10881expansion.  The default is 100000.
10882
10883@item min-nondebug-insn-uid
10884Use uids starting at this parameter for nondebug insns.  The range below
10885the parameter is reserved exclusively for debug insns created by
10886@option{-fvar-tracking-assignments}, but debug insns may get
10887(non-overlapping) uids above it if the reserved range is exhausted.
10888
10889@item ipa-sra-ptr-growth-factor
10890IPA-SRA replaces a pointer to an aggregate with one or more new
10891parameters only when their cumulative size is less or equal to
10892@option{ipa-sra-ptr-growth-factor} times the size of the original
10893pointer parameter.
10894
10895@item sra-max-scalarization-size-Ospeed
10896@itemx sra-max-scalarization-size-Osize
10897The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10898replace scalar parts of aggregates with uses of independent scalar
10899variables.  These parameters control the maximum size, in storage units,
10900of aggregate which is considered for replacement when compiling for
10901speed
10902(@option{sra-max-scalarization-size-Ospeed}) or size
10903(@option{sra-max-scalarization-size-Osize}) respectively.
10904
10905@item tm-max-aggregate-size
10906When making copies of thread-local variables in a transaction, this
10907parameter specifies the size in bytes after which variables are
10908saved with the logging functions as opposed to save/restore code
10909sequence pairs.  This option only applies when using
10910@option{-fgnu-tm}.
10911
10912@item graphite-max-nb-scop-params
10913To avoid exponential effects in the Graphite loop transforms, the
10914number of parameters in a Static Control Part (SCoP) is bounded.  The
10915default value is 10 parameters, a value of zero can be used to lift
10916the bound.  A variable whose value is unknown at compilation time and
10917defined outside a SCoP is a parameter of the SCoP.
10918
10919@item loop-block-tile-size
10920Loop blocking or strip mining transforms, enabled with
10921@option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10922loop in the loop nest by a given number of iterations.  The strip
10923length can be changed using the @option{loop-block-tile-size}
10924parameter.  The default value is 51 iterations.
10925
10926@item loop-unroll-jam-size
10927Specify the unroll factor for the @option{-floop-unroll-and-jam} option.  The
10928default value is 4.
10929
10930@item loop-unroll-jam-depth
10931Specify the dimension to be unrolled (counting from the most inner loop)
10932for the  @option{-floop-unroll-and-jam}.  The default value is 2.
10933
10934@item ipa-cp-value-list-size
10935IPA-CP attempts to track all possible values and types passed to a function's
10936parameter in order to propagate them and perform devirtualization.
10937@option{ipa-cp-value-list-size} is the maximum number of values and types it
10938stores per one formal parameter of a function.
10939
10940@item ipa-cp-eval-threshold
10941IPA-CP calculates its own score of cloning profitability heuristics
10942and performs those cloning opportunities with scores that exceed
10943@option{ipa-cp-eval-threshold}.
10944
10945@item ipa-cp-recursion-penalty
10946Percentage penalty the recursive functions will receive when they
10947are evaluated for cloning.
10948
10949@item ipa-cp-single-call-penalty
10950Percentage penalty functions containing a single call to another
10951function will receive when they are evaluated for cloning.
10952
10953
10954@item ipa-max-agg-items
10955IPA-CP is also capable to propagate a number of scalar values passed
10956in an aggregate. @option{ipa-max-agg-items} controls the maximum
10957number of such values per one parameter.
10958
10959@item ipa-cp-loop-hint-bonus
10960When IPA-CP determines that a cloning candidate would make the number
10961of iterations of a loop known, it adds a bonus of
10962@option{ipa-cp-loop-hint-bonus} to the profitability score of
10963the candidate.
10964
10965@item ipa-cp-array-index-hint-bonus
10966When IPA-CP determines that a cloning candidate would make the index of
10967an array access known, it adds a bonus of
10968@option{ipa-cp-array-index-hint-bonus} to the profitability
10969score of the candidate.
10970
10971@item ipa-max-aa-steps
10972During its analysis of function bodies, IPA-CP employs alias analysis
10973in order to track values pointed to by function parameters.  In order
10974not spend too much time analyzing huge functions, it gives up and
10975consider all memory clobbered after examining
10976@option{ipa-max-aa-steps} statements modifying memory.
10977
10978@item lto-partitions
10979Specify desired number of partitions produced during WHOPR compilation.
10980The number of partitions should exceed the number of CPUs used for compilation.
10981The default value is 32.
10982
10983@item lto-min-partition
10984Size of minimal partition for WHOPR (in estimated instructions).
10985This prevents expenses of splitting very small programs into too many
10986partitions.
10987
10988@item lto-max-partition
10989Size of max partition for WHOPR (in estimated instructions).
10990to provide an upper bound for individual size of partition.
10991Meant to be used only with balanced partitioning.
10992
10993@item cxx-max-namespaces-for-diagnostic-help
10994The maximum number of namespaces to consult for suggestions when C++
10995name lookup fails for an identifier.  The default is 1000.
10996
10997@item sink-frequency-threshold
10998The maximum relative execution frequency (in percents) of the target block
10999relative to a statement's original block to allow statement sinking of a
11000statement.  Larger numbers result in more aggressive statement sinking.
11001The default value is 75.  A small positive adjustment is applied for
11002statements with memory operands as those are even more profitable so sink.
11003
11004@item max-stores-to-sink
11005The maximum number of conditional store pairs that can be sunk.  Set to 0
11006if either vectorization (@option{-ftree-vectorize}) or if-conversion
11007(@option{-ftree-loop-if-convert}) is disabled.  The default is 2.
11008
11009@item allow-store-data-races
11010Allow optimizers to introduce new data races on stores.
11011Set to 1 to allow, otherwise to 0.  This option is enabled by default
11012at optimization level @option{-Ofast}.
11013
11014@item case-values-threshold
11015The smallest number of different values for which it is best to use a
11016jump-table instead of a tree of conditional branches.  If the value is
110170, use the default for the machine.  The default is 0.
11018
11019@item tree-reassoc-width
11020Set the maximum number of instructions executed in parallel in
11021reassociated tree. This parameter overrides target dependent
11022heuristics used by default if has non zero value.
11023
11024@item sched-pressure-algorithm
11025Choose between the two available implementations of
11026@option{-fsched-pressure}.  Algorithm 1 is the original implementation
11027and is the more likely to prevent instructions from being reordered.
11028Algorithm 2 was designed to be a compromise between the relatively
11029conservative approach taken by algorithm 1 and the rather aggressive
11030approach taken by the default scheduler.  It relies more heavily on
11031having a regular register file and accurate register pressure classes.
11032See @file{haifa-sched.c} in the GCC sources for more details.
11033
11034The default choice depends on the target.
11035
11036@item max-slsr-cand-scan
11037Set the maximum number of existing candidates that are considered when
11038seeking a basis for a new straight-line strength reduction candidate.
11039
11040@item asan-globals
11041Enable buffer overflow detection for global objects.  This kind
11042of protection is enabled by default if you are using
11043@option{-fsanitize=address} option.
11044To disable global objects protection use @option{--param asan-globals=0}.
11045
11046@item asan-stack
11047Enable buffer overflow detection for stack objects.  This kind of
11048protection is enabled by default when using @option{-fsanitize=address}.
11049To disable stack protection use @option{--param asan-stack=0} option.
11050
11051@item asan-instrument-reads
11052Enable buffer overflow detection for memory reads.  This kind of
11053protection is enabled by default when using @option{-fsanitize=address}.
11054To disable memory reads protection use
11055@option{--param asan-instrument-reads=0}.
11056
11057@item asan-instrument-writes
11058Enable buffer overflow detection for memory writes.  This kind of
11059protection is enabled by default when using @option{-fsanitize=address}.
11060To disable memory writes protection use
11061@option{--param asan-instrument-writes=0} option.
11062
11063@item asan-memintrin
11064Enable detection for built-in functions.  This kind of protection
11065is enabled by default when using @option{-fsanitize=address}.
11066To disable built-in functions protection use
11067@option{--param asan-memintrin=0}.
11068
11069@item asan-use-after-return
11070Enable detection of use-after-return.  This kind of protection
11071is enabled by default when using the @option{-fsanitize=address} option.
11072To disable it use @option{--param asan-use-after-return=0}.
11073
11074Note: By default the check is disabled at run time.  To enable it,
11075add @code{detect_stack_use_after_return=1} to the environment variable
11076@env{ASAN_OPTIONS}.
11077
11078@item asan-instrumentation-with-call-threshold
11079If number of memory accesses in function being instrumented
11080is greater or equal to this number, use callbacks instead of inline checks.
11081E.g. to disable inline code use
11082@option{--param asan-instrumentation-with-call-threshold=0}.
11083
11084@item use-after-scope-direct-emission-threshold
11085If the size of a local variable in bytes is smaller or equal to this
11086number, directly poison (or unpoison) shadow memory instead of using
11087run-time callbacks.  The default value is 256.
11088
11089@item chkp-max-ctor-size
11090Static constructors generated by Pointer Bounds Checker may become very
11091large and significantly increase compile time at optimization level
11092@option{-O1} and higher.  This parameter is a maximum number of statements
11093in a single generated constructor.  Default value is 5000.
11094
11095@item max-fsm-thread-path-insns
11096Maximum number of instructions to copy when duplicating blocks on a
11097finite state automaton jump thread path.  The default is 100.
11098
11099@item max-fsm-thread-length
11100Maximum number of basic blocks on a finite state automaton jump thread
11101path.  The default is 10.
11102
11103@item max-fsm-thread-paths
11104Maximum number of new jump thread paths to create for a finite state
11105automaton.  The default is 50.
11106
11107@item parloops-chunk-size
11108Chunk size of omp schedule for loops parallelized by parloops.  The default
11109is 0.
11110
11111@item parloops-schedule
11112Schedule type of omp schedule for loops parallelized by parloops (static,
11113dynamic, guided, auto, runtime).  The default is static.
11114
11115@item parloops-min-per-thread
11116The minimum number of iterations per thread of an innermost parallelized
11117loop for which the parallelized variant is prefered over the single threaded
11118one.  The default is 100.  Note that for a parallelized loop nest the
11119minimum number of iterations of the outermost loop per thread is two.
11120
11121@item max-ssa-name-query-depth
11122Maximum depth of recursion when querying properties of SSA names in things
11123like fold routines.  One level of recursion corresponds to following a
11124use-def chain.
11125
11126@item hsa-gen-debug-stores
11127Enable emission of special debug stores within HSA kernels which are
11128then read and reported by libgomp plugin.  Generation of these stores
11129is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
11130enable it.
11131
11132@item max-speculative-devirt-maydefs
11133The maximum number of may-defs we analyze when looking for a must-def
11134specifying the dynamic type of an object that invokes a virtual call
11135we may be able to devirtualize speculatively.
11136
11137@item max-vrp-switch-assertions
11138The maximum number of assertions to add along the default edge of a switch
11139statement during VRP.  The default is 10.
11140
11141@item unroll-jam-min-percent
11142The minimum percentage of memory references that must be optimized
11143away for the unroll-and-jam transformation to be considered profitable.
11144
11145@item unroll-jam-max-unroll
11146The maximum number of times the outer loop should be unrolled by
11147the unroll-and-jam transformation.
11148@end table
11149@end table
11150
11151@node Instrumentation Options
11152@section Program Instrumentation Options
11153@cindex instrumentation options
11154@cindex program instrumentation options
11155@cindex run-time error checking options
11156@cindex profiling options
11157@cindex options, program instrumentation
11158@cindex options, run-time error checking
11159@cindex options, profiling
11160
11161GCC supports a number of command-line options that control adding
11162run-time instrumentation to the code it normally generates.
11163For example, one purpose of instrumentation is collect profiling
11164statistics for use in finding program hot spots, code coverage
11165analysis, or profile-guided optimizations.
11166Another class of program instrumentation is adding run-time checking
11167to detect programming errors like invalid pointer
11168dereferences or out-of-bounds array accesses, as well as deliberately
11169hostile attacks such as stack smashing or C++ vtable hijacking.
11170There is also a general hook which can be used to implement other
11171forms of tracing or function-level instrumentation for debug or
11172program analysis purposes.
11173
11174@table @gcctabopt
11175@cindex @command{prof}
11176@item -p
11177@opindex p
11178Generate extra code to write profile information suitable for the
11179analysis program @command{prof}.  You must use this option when compiling
11180the source files you want data about, and you must also use it when
11181linking.
11182
11183@cindex @command{gprof}
11184@item -pg
11185@opindex pg
11186Generate extra code to write profile information suitable for the
11187analysis program @command{gprof}.  You must use this option when compiling
11188the source files you want data about, and you must also use it when
11189linking.
11190
11191@item -fprofile-arcs
11192@opindex fprofile-arcs
11193Add code so that program flow @dfn{arcs} are instrumented.  During
11194execution the program records how many times each branch and call is
11195executed and how many times it is taken or returns.  On targets that support
11196constructors with priority support, profiling properly handles constructors,
11197destructors and C++ constructors (and destructors) of classes which are used
11198as a type of a global variable.
11199
11200When the compiled
11201program exits it saves this data to a file called
11202@file{@var{auxname}.gcda} for each source file.  The data may be used for
11203profile-directed optimizations (@option{-fbranch-probabilities}), or for
11204test coverage analysis (@option{-ftest-coverage}).  Each object file's
11205@var{auxname} is generated from the name of the output file, if
11206explicitly specified and it is not the final executable, otherwise it is
11207the basename of the source file.  In both cases any suffix is removed
11208(e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
11209@file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
11210@xref{Cross-profiling}.
11211
11212@cindex @command{gcov}
11213@item --coverage
11214@opindex coverage
11215
11216This option is used to compile and link code instrumented for coverage
11217analysis.  The option is a synonym for @option{-fprofile-arcs}
11218@option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
11219linking).  See the documentation for those options for more details.
11220
11221@itemize
11222
11223@item
11224Compile the source files with @option{-fprofile-arcs} plus optimization
11225and code generation options.  For test coverage analysis, use the
11226additional @option{-ftest-coverage} option.  You do not need to profile
11227every source file in a program.
11228
11229@item
11230Compile the source files additionally with @option{-fprofile-abs-path}
11231to create absolute path names in the @file{.gcno} files.  This allows
11232@command{gcov} to find the correct sources in projects where compilations
11233occur with different working directories.
11234
11235@item
11236Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
11237(the latter implies the former).
11238
11239@item
11240Run the program on a representative workload to generate the arc profile
11241information.  This may be repeated any number of times.  You can run
11242concurrent instances of your program, and provided that the file system
11243supports locking, the data files will be correctly updated.  Unless
11244a strict ISO C dialect option is in effect, @code{fork} calls are
11245detected and correctly handled without double counting.
11246
11247@item
11248For profile-directed optimizations, compile the source files again with
11249the same optimization and code generation options plus
11250@option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
11251Control Optimization}).
11252
11253@item
11254For test coverage analysis, use @command{gcov} to produce human readable
11255information from the @file{.gcno} and @file{.gcda} files.  Refer to the
11256@command{gcov} documentation for further information.
11257
11258@end itemize
11259
11260With @option{-fprofile-arcs}, for each function of your program GCC
11261creates a program flow graph, then finds a spanning tree for the graph.
11262Only arcs that are not on the spanning tree have to be instrumented: the
11263compiler adds code to count the number of times that these arcs are
11264executed.  When an arc is the only exit or only entrance to a block, the
11265instrumentation code can be added to the block; otherwise, a new basic
11266block must be created to hold the instrumentation code.
11267
11268@need 2000
11269@item -ftest-coverage
11270@opindex ftest-coverage
11271Produce a notes file that the @command{gcov} code-coverage utility
11272(@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
11273show program coverage.  Each source file's note file is called
11274@file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
11275above for a description of @var{auxname} and instructions on how to
11276generate test coverage data.  Coverage data matches the source files
11277more closely if you do not optimize.
11278
11279@item -fprofile-abs-path
11280@opindex fprofile-abs-path
11281Automatically convert relative source file names to absolute path names
11282in the @file{.gcno} files.  This allows @command{gcov} to find the correct
11283sources in projects where compilations occur with different working
11284directories.
11285
11286@item -fprofile-dir=@var{path}
11287@opindex fprofile-dir
11288
11289Set the directory to search for the profile data files in to @var{path}.
11290This option affects only the profile data generated by
11291@option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
11292and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
11293and its related options.  Both absolute and relative paths can be used.
11294By default, GCC uses the current directory as @var{path}, thus the
11295profile data file appears in the same directory as the object file.
11296
11297@item -fprofile-generate
11298@itemx -fprofile-generate=@var{path}
11299@opindex fprofile-generate
11300
11301Enable options usually used for instrumenting application to produce
11302profile useful for later recompilation with profile feedback based
11303optimization.  You must use @option{-fprofile-generate} both when
11304compiling and when linking your program.
11305
11306The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
11307
11308If @var{path} is specified, GCC looks at the @var{path} to find
11309the profile feedback data files. See @option{-fprofile-dir}.
11310
11311To optimize the program based on the collected profile information, use
11312@option{-fprofile-use}.  @xref{Optimize Options}, for more information.
11313
11314@item -fprofile-update=@var{method}
11315@opindex fprofile-update
11316
11317Alter the update method for an application instrumented for profile
11318feedback based optimization.  The @var{method} argument should be one of
11319@samp{single}, @samp{atomic} or @samp{prefer-atomic}.
11320The first one is useful for single-threaded applications,
11321while the second one prevents profile corruption by emitting thread-safe code.
11322
11323@strong{Warning:} When an application does not properly join all threads
11324(or creates an detached thread), a profile file can be still corrupted.
11325
11326Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
11327when supported by a target, or to @samp{single} otherwise.  The GCC driver
11328automatically selects @samp{prefer-atomic} when @option{-pthread}
11329is present in the command line.
11330
11331@item -fsanitize=address
11332@opindex fsanitize=address
11333Enable AddressSanitizer, a fast memory error detector.
11334Memory access instructions are instrumented to detect
11335out-of-bounds and use-after-free bugs.
11336The option enables @option{-fsanitize-address-use-after-scope}.
11337See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
11338more details.  The run-time behavior can be influenced using the
11339@env{ASAN_OPTIONS} environment variable.  When set to @code{help=1},
11340the available options are shown at startup of the instrumented program.  See
11341@url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
11342for a list of supported options.
11343The option cannot be combined with @option{-fsanitize=thread}
11344and/or @option{-fcheck-pointer-bounds}.
11345
11346@item -fsanitize=kernel-address
11347@opindex fsanitize=kernel-address
11348Enable AddressSanitizer for Linux kernel.
11349See @uref{https://github.com/google/kasan/wiki} for more details.
11350The option cannot be combined with @option{-fcheck-pointer-bounds}.
11351
11352@item -fsanitize=pointer-compare
11353@opindex fsanitize=pointer-compare
11354Instrument comparison operation (<, <=, >, >=) with pointer operands.
11355The option must be combined with either @option{-fsanitize=kernel-address} or
11356@option{-fsanitize=address}
11357The option cannot be combined with @option{-fsanitize=thread}
11358and/or @option{-fcheck-pointer-bounds}.
11359Note: By default the check is disabled at run time.  To enable it,
11360add @code{detect_invalid_pointer_pairs=2} to the environment variable
11361@env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
11362invalid operation only when both pointers are non-null.
11363
11364@item -fsanitize=pointer-subtract
11365@opindex fsanitize=pointer-subtract
11366Instrument subtraction with pointer operands.
11367The option must be combined with either @option{-fsanitize=kernel-address} or
11368@option{-fsanitize=address}
11369The option cannot be combined with @option{-fsanitize=thread}
11370and/or @option{-fcheck-pointer-bounds}.
11371Note: By default the check is disabled at run time.  To enable it,
11372add @code{detect_invalid_pointer_pairs=2} to the environment variable
11373@env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
11374invalid operation only when both pointers are non-null.
11375
11376@item -fsanitize=thread
11377@opindex fsanitize=thread
11378Enable ThreadSanitizer, a fast data race detector.
11379Memory access instructions are instrumented to detect
11380data race bugs.  See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
11381details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
11382environment variable; see
11383@url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
11384supported options.
11385The option cannot be combined with @option{-fsanitize=address},
11386@option{-fsanitize=leak} and/or @option{-fcheck-pointer-bounds}.
11387
11388Note that sanitized atomic builtins cannot throw exceptions when
11389operating on invalid memory addresses with non-call exceptions
11390(@option{-fnon-call-exceptions}).
11391
11392@item -fsanitize=leak
11393@opindex fsanitize=leak
11394Enable LeakSanitizer, a memory leak detector.
11395This option only matters for linking of executables and
11396the executable is linked against a library that overrides @code{malloc}
11397and other allocator functions.  See
11398@uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
11399details.  The run-time behavior can be influenced using the
11400@env{LSAN_OPTIONS} environment variable.
11401The option cannot be combined with @option{-fsanitize=thread}.
11402
11403@item -fsanitize=undefined
11404@opindex fsanitize=undefined
11405Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
11406Various computations are instrumented to detect undefined behavior
11407at runtime.  Current suboptions are:
11408
11409@table @gcctabopt
11410
11411@item -fsanitize=shift
11412@opindex fsanitize=shift
11413This option enables checking that the result of a shift operation is
11414not undefined.  Note that what exactly is considered undefined differs
11415slightly between C and C++, as well as between ISO C90 and C99, etc.
11416This option has two suboptions, @option{-fsanitize=shift-base} and
11417@option{-fsanitize=shift-exponent}.
11418
11419@item -fsanitize=shift-exponent
11420@opindex fsanitize=shift-exponent
11421This option enables checking that the second argument of a shift operation
11422is not negative and is smaller than the precision of the promoted first
11423argument.
11424
11425@item -fsanitize=shift-base
11426@opindex fsanitize=shift-base
11427If the second argument of a shift operation is within range, check that the
11428result of a shift operation is not undefined.  Note that what exactly is
11429considered undefined differs slightly between C and C++, as well as between
11430ISO C90 and C99, etc.
11431
11432@item -fsanitize=integer-divide-by-zero
11433@opindex fsanitize=integer-divide-by-zero
11434Detect integer division by zero as well as @code{INT_MIN / -1} division.
11435
11436@item -fsanitize=unreachable
11437@opindex fsanitize=unreachable
11438With this option, the compiler turns the @code{__builtin_unreachable}
11439call into a diagnostics message call instead.  When reaching the
11440@code{__builtin_unreachable} call, the behavior is undefined.
11441
11442@item -fsanitize=vla-bound
11443@opindex fsanitize=vla-bound
11444This option instructs the compiler to check that the size of a variable
11445length array is positive.
11446
11447@item -fsanitize=null
11448@opindex fsanitize=null
11449This option enables pointer checking.  Particularly, the application
11450built with this option turned on will issue an error message when it
11451tries to dereference a NULL pointer, or if a reference (possibly an
11452rvalue reference) is bound to a NULL pointer, or if a method is invoked
11453on an object pointed by a NULL pointer.
11454
11455@item -fsanitize=return
11456@opindex fsanitize=return
11457This option enables return statement checking.  Programs
11458built with this option turned on will issue an error message
11459when the end of a non-void function is reached without actually
11460returning a value.  This option works in C++ only.
11461
11462@item -fsanitize=signed-integer-overflow
11463@opindex fsanitize=signed-integer-overflow
11464This option enables signed integer overflow checking.  We check that
11465the result of @code{+}, @code{*}, and both unary and binary @code{-}
11466does not overflow in the signed arithmetics.  Note, integer promotion
11467rules must be taken into account.  That is, the following is not an
11468overflow:
11469@smallexample
11470signed char a = SCHAR_MAX;
11471a++;
11472@end smallexample
11473
11474@item -fsanitize=bounds
11475@opindex fsanitize=bounds
11476This option enables instrumentation of array bounds.  Various out of bounds
11477accesses are detected.  Flexible array members, flexible array member-like
11478arrays, and initializers of variables with static storage are not instrumented.
11479The option cannot be combined with @option{-fcheck-pointer-bounds}.
11480
11481@item -fsanitize=bounds-strict
11482@opindex fsanitize=bounds-strict
11483This option enables strict instrumentation of array bounds.  Most out of bounds
11484accesses are detected, including flexible array members and flexible array
11485member-like arrays.  Initializers of variables with static storage are not
11486instrumented.  The option cannot be combined
11487with @option{-fcheck-pointer-bounds}.
11488
11489@item -fsanitize=alignment
11490@opindex fsanitize=alignment
11491
11492This option enables checking of alignment of pointers when they are
11493dereferenced, or when a reference is bound to insufficiently aligned target,
11494or when a method or constructor is invoked on insufficiently aligned object.
11495
11496@item -fsanitize=object-size
11497@opindex fsanitize=object-size
11498This option enables instrumentation of memory references using the
11499@code{__builtin_object_size} function.  Various out of bounds pointer
11500accesses are detected.
11501
11502@item -fsanitize=float-divide-by-zero
11503@opindex fsanitize=float-divide-by-zero
11504Detect floating-point division by zero.  Unlike other similar options,
11505@option{-fsanitize=float-divide-by-zero} is not enabled by
11506@option{-fsanitize=undefined}, since floating-point division by zero can
11507be a legitimate way of obtaining infinities and NaNs.
11508
11509@item -fsanitize=float-cast-overflow
11510@opindex fsanitize=float-cast-overflow
11511This option enables floating-point type to integer conversion checking.
11512We check that the result of the conversion does not overflow.
11513Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
11514not enabled by @option{-fsanitize=undefined}.
11515This option does not work well with @code{FE_INVALID} exceptions enabled.
11516
11517@item -fsanitize=nonnull-attribute
11518@opindex fsanitize=nonnull-attribute
11519
11520This option enables instrumentation of calls, checking whether null values
11521are not passed to arguments marked as requiring a non-null value by the
11522@code{nonnull} function attribute.
11523
11524@item -fsanitize=returns-nonnull-attribute
11525@opindex fsanitize=returns-nonnull-attribute
11526
11527This option enables instrumentation of return statements in functions
11528marked with @code{returns_nonnull} function attribute, to detect returning
11529of null values from such functions.
11530
11531@item -fsanitize=bool
11532@opindex fsanitize=bool
11533
11534This option enables instrumentation of loads from bool.  If a value other
11535than 0/1 is loaded, a run-time error is issued.
11536
11537@item -fsanitize=enum
11538@opindex fsanitize=enum
11539
11540This option enables instrumentation of loads from an enum type.  If
11541a value outside the range of values for the enum type is loaded,
11542a run-time error is issued.
11543
11544@item -fsanitize=vptr
11545@opindex fsanitize=vptr
11546
11547This option enables instrumentation of C++ member function calls, member
11548accesses and some conversions between pointers to base and derived classes,
11549to verify the referenced object has the correct dynamic type.
11550
11551@item -fsanitize=pointer-overflow
11552@opindex fsanitize=pointer-overflow
11553
11554This option enables instrumentation of pointer arithmetics.  If the pointer
11555arithmetics overflows, a run-time error is issued.
11556
11557@item -fsanitize=builtin
11558@opindex fsanitize=builtin
11559
11560This option enables instrumentation of arguments to selected builtin
11561functions.  If an invalid value is passed to such arguments, a run-time
11562error is issued.  E.g.@ passing 0 as the argument to @code{__builtin_ctz}
11563or @code{__builtin_clz} invokes undefined behavior and is diagnosed
11564by this option.
11565
11566@end table
11567
11568While @option{-ftrapv} causes traps for signed overflows to be emitted,
11569@option{-fsanitize=undefined} gives a diagnostic message.
11570This currently works only for the C family of languages.
11571
11572@item -fno-sanitize=all
11573@opindex fno-sanitize=all
11574
11575This option disables all previously enabled sanitizers.
11576@option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
11577together.
11578
11579@item -fasan-shadow-offset=@var{number}
11580@opindex fasan-shadow-offset
11581This option forces GCC to use custom shadow offset in AddressSanitizer checks.
11582It is useful for experimenting with different shadow memory layouts in
11583Kernel AddressSanitizer.
11584
11585@item -fsanitize-sections=@var{s1},@var{s2},...
11586@opindex fsanitize-sections
11587Sanitize global variables in selected user-defined sections.  @var{si} may
11588contain wildcards.
11589
11590@item -fsanitize-recover@r{[}=@var{opts}@r{]}
11591@opindex fsanitize-recover
11592@opindex fno-sanitize-recover
11593@option{-fsanitize-recover=} controls error recovery mode for sanitizers
11594mentioned in comma-separated list of @var{opts}.  Enabling this option
11595for a sanitizer component causes it to attempt to continue
11596running the program as if no error happened.  This means multiple
11597runtime errors can be reported in a single program run, and the exit
11598code of the program may indicate success even when errors
11599have been reported.  The @option{-fno-sanitize-recover=} option
11600can be used to alter
11601this behavior: only the first detected error is reported
11602and program then exits with a non-zero exit code.
11603
11604Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
11605except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
11606@option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
11607@option{-fsanitize=bounds-strict},
11608@option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
11609For these sanitizers error recovery is turned on by default,
11610except @option{-fsanitize=address}, for which this feature is experimental.
11611@option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
11612accepted, the former enables recovery for all sanitizers that support it,
11613the latter disables recovery for all sanitizers that support it.
11614
11615Even if a recovery mode is turned on the compiler side, it needs to be also
11616enabled on the runtime library side, otherwise the failures are still fatal.
11617The runtime library defaults to @code{halt_on_error=0} for
11618ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
11619AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
11620setting the @code{halt_on_error} flag in the corresponding environment variable.
11621
11622Syntax without an explicit @var{opts} parameter is deprecated.  It is
11623equivalent to specifying an @var{opts} list of:
11624
11625@smallexample
11626undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
11627@end smallexample
11628
11629@item -fsanitize-address-use-after-scope
11630@opindex fsanitize-address-use-after-scope
11631Enable sanitization of local variables to detect use-after-scope bugs.
11632The option sets @option{-fstack-reuse} to @samp{none}.
11633
11634@item -fsanitize-undefined-trap-on-error
11635@opindex fsanitize-undefined-trap-on-error
11636The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
11637report undefined behavior using @code{__builtin_trap} rather than
11638a @code{libubsan} library routine.  The advantage of this is that the
11639@code{libubsan} library is not needed and is not linked in, so this
11640is usable even in freestanding environments.
11641
11642@item -fsanitize-coverage=trace-pc
11643@opindex fsanitize-coverage=trace-pc
11644Enable coverage-guided fuzzing code instrumentation.
11645Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
11646
11647@item -fsanitize-coverage=trace-cmp
11648@opindex fsanitize-coverage=trace-cmp
11649Enable dataflow guided fuzzing code instrumentation.
11650Inserts a call to @code{__sanitizer_cov_trace_cmp1},
11651@code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
11652@code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
11653variable or @code{__sanitizer_cov_trace_const_cmp1},
11654@code{__sanitizer_cov_trace_const_cmp2},
11655@code{__sanitizer_cov_trace_const_cmp4} or
11656@code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
11657operand constant, @code{__sanitizer_cov_trace_cmpf} or
11658@code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
11659@code{__sanitizer_cov_trace_switch} for switch statements.
11660
11661@item -fbounds-check
11662@opindex fbounds-check
11663For front ends that support it, generate additional code to check that
11664indices used to access arrays are within the declared range.  This is
11665currently only supported by the Fortran front end, where this option
11666defaults to false.
11667
11668@item -fcheck-pointer-bounds
11669@opindex fcheck-pointer-bounds
11670@opindex fno-check-pointer-bounds
11671@cindex Pointer Bounds Checker options
11672Enable Pointer Bounds Checker instrumentation.  Each memory reference
11673is instrumented with checks of the pointer used for memory access against
11674bounds associated with that pointer.
11675
11676Currently there
11677is only an implementation for Intel MPX available, thus x86 GNU/Linux target
11678and @option{-mmpx} are required to enable this feature.
11679MPX-based instrumentation requires
11680a runtime library to enable MPX in hardware and handle bounds
11681violation signals.  By default when @option{-fcheck-pointer-bounds}
11682and @option{-mmpx} options are used to link a program, the GCC driver
11683links against the @file{libmpx} and @file{libmpxwrappers} libraries.
11684Bounds checking on calls to dynamic libraries requires a linker
11685with @option{-z bndplt} support; if GCC was configured with a linker
11686without support for this option (including the Gold linker and older
11687versions of ld), a warning is given if you link with @option{-mmpx}
11688without also specifying @option{-static}, since the overall effectiveness
11689of the bounds checking protection is reduced.
11690See also @option{-static-libmpxwrappers}.
11691
11692MPX-based instrumentation
11693may be used for debugging and also may be included in production code
11694to increase program security.  Depending on usage, you may
11695have different requirements for the runtime library.  The current version
11696of the MPX runtime library is more oriented for use as a debugging
11697tool.  MPX runtime library usage implies @option{-lpthread}.  See
11698also @option{-static-libmpx}.  The runtime library  behavior can be
11699influenced using various @env{CHKP_RT_*} environment variables.  See
11700@uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
11701for more details.
11702
11703Generated instrumentation may be controlled by various
11704@option{-fchkp-*} options and by the @code{bnd_variable_size}
11705structure field attribute (@pxref{Type Attributes}) and
11706@code{bnd_legacy}, and @code{bnd_instrument} function attributes
11707(@pxref{Function Attributes}).  GCC also provides a number of built-in
11708functions for controlling the Pointer Bounds Checker.  @xref{Pointer
11709Bounds Checker builtins}, for more information.
11710
11711@item -fchkp-check-incomplete-type
11712@opindex fchkp-check-incomplete-type
11713@opindex fno-chkp-check-incomplete-type
11714Generate pointer bounds checks for variables with incomplete type.
11715Enabled by default.
11716
11717@item -fchkp-narrow-bounds
11718@opindex fchkp-narrow-bounds
11719@opindex fno-chkp-narrow-bounds
11720Controls bounds used by Pointer Bounds Checker for pointers to object
11721fields.  If narrowing is enabled then field bounds are used.  Otherwise
11722object bounds are used.  See also @option{-fchkp-narrow-to-innermost-array}
11723and @option{-fchkp-first-field-has-own-bounds}.  Enabled by default.
11724
11725@item -fchkp-first-field-has-own-bounds
11726@opindex fchkp-first-field-has-own-bounds
11727@opindex fno-chkp-first-field-has-own-bounds
11728Forces Pointer Bounds Checker to use narrowed bounds for the address of the
11729first field in the structure.  By default a pointer to the first field has
11730the same bounds as a pointer to the whole structure.
11731
11732@item -fchkp-flexible-struct-trailing-arrays
11733@opindex fchkp-flexible-struct-trailing-arrays
11734@opindex fno-chkp-flexible-struct-trailing-arrays
11735Forces Pointer Bounds Checker to treat all trailing arrays in structures as
11736possibly flexible.  By default only array fields with zero length or that are
11737marked with attribute bnd_variable_size are treated as flexible.
11738
11739@item -fchkp-narrow-to-innermost-array
11740@opindex fchkp-narrow-to-innermost-array
11741@opindex fno-chkp-narrow-to-innermost-array
11742Forces Pointer Bounds Checker to use bounds of the innermost arrays in
11743case of nested static array access.  By default this option is disabled and
11744bounds of the outermost array are used.
11745
11746@item -fchkp-optimize
11747@opindex fchkp-optimize
11748@opindex fno-chkp-optimize
11749Enables Pointer Bounds Checker optimizations.  Enabled by default at
11750optimization levels @option{-O}, @option{-O2}, @option{-O3}.
11751
11752@item -fchkp-use-fast-string-functions
11753@opindex fchkp-use-fast-string-functions
11754@opindex fno-chkp-use-fast-string-functions
11755Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
11756by Pointer Bounds Checker.  Disabled by default.
11757
11758@item -fchkp-use-nochk-string-functions
11759@opindex fchkp-use-nochk-string-functions
11760@opindex fno-chkp-use-nochk-string-functions
11761Enables use of @code{*_nochk} versions of string functions (not checking bounds)
11762by Pointer Bounds Checker.  Disabled by default.
11763
11764@item -fchkp-use-static-bounds
11765@opindex fchkp-use-static-bounds
11766@opindex fno-chkp-use-static-bounds
11767Allow Pointer Bounds Checker to generate static bounds holding
11768bounds of static variables.  Enabled by default.
11769
11770@item -fchkp-use-static-const-bounds
11771@opindex fchkp-use-static-const-bounds
11772@opindex fno-chkp-use-static-const-bounds
11773Use statically-initialized bounds for constant bounds instead of
11774generating them each time they are required.  By default enabled when
11775@option{-fchkp-use-static-bounds} is enabled.
11776
11777@item -fchkp-treat-zero-dynamic-size-as-infinite
11778@opindex fchkp-treat-zero-dynamic-size-as-infinite
11779@opindex fno-chkp-treat-zero-dynamic-size-as-infinite
11780With this option, objects with incomplete type whose
11781dynamically-obtained size is zero are treated as having infinite size
11782instead by Pointer Bounds
11783Checker.  This option may be helpful if a program is linked with a library
11784missing size information for some symbols.  Disabled by default.
11785
11786@item -fchkp-check-read
11787@opindex fchkp-check-read
11788@opindex fno-chkp-check-read
11789Instructs Pointer Bounds Checker to generate checks for all read
11790accesses to memory.  Enabled by default.
11791
11792@item -fchkp-check-write
11793@opindex fchkp-check-write
11794@opindex fno-chkp-check-write
11795Instructs Pointer Bounds Checker to generate checks for all write
11796accesses to memory.  Enabled by default.
11797
11798@item -fchkp-store-bounds
11799@opindex fchkp-store-bounds
11800@opindex fno-chkp-store-bounds
11801Instructs Pointer Bounds Checker to generate bounds stores for
11802pointer writes.  Enabled by default.
11803
11804@item -fchkp-instrument-calls
11805@opindex fchkp-instrument-calls
11806@opindex fno-chkp-instrument-calls
11807Instructs Pointer Bounds Checker to pass pointer bounds to calls.
11808Enabled by default.
11809
11810@item -fchkp-instrument-marked-only
11811@opindex fchkp-instrument-marked-only
11812@opindex fno-chkp-instrument-marked-only
11813Instructs Pointer Bounds Checker to instrument only functions
11814marked with the @code{bnd_instrument} attribute
11815(@pxref{Function Attributes}).  Disabled by default.
11816
11817@item -fchkp-use-wrappers
11818@opindex fchkp-use-wrappers
11819@opindex fno-chkp-use-wrappers
11820Allows Pointer Bounds Checker to replace calls to built-in functions
11821with calls to wrapper functions.  When @option{-fchkp-use-wrappers}
11822is used to link a program, the GCC driver automatically links
11823against @file{libmpxwrappers}.  See also @option{-static-libmpxwrappers}.
11824Enabled by default.
11825
11826@item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
11827@opindex fcf-protection
11828Enable code instrumentation of control-flow transfers to increase
11829program security by checking that target addresses of control-flow
11830transfer instructions (such as indirect function call, function return,
11831indirect jump) are valid.  This prevents diverting the flow of control
11832to an unexpected target.  This is intended to protect against such
11833threats as Return-oriented Programming (ROP), and similarly
11834call/jmp-oriented programming (COP/JOP).
11835
11836The value @code{branch} tells the compiler to implement checking of
11837validity of control-flow transfer at the point of indirect branch
11838instructions, i.e. call/jmp instructions.  The value @code{return}
11839implements checking of validity at the point of returning from a
11840function.  The value @code{full} is an alias for specifying both
11841@code{branch} and @code{return}. The value @code{none} turns off
11842instrumentation.
11843
11844The macro @code{__CET__} is defined when @option{-fcf-protection} is
11845used.  The first bit of @code{__CET__} is set to 1 for the value
11846@code{branch} and the second bit of @code{__CET__} is set to 1 for
11847the @code{return}.
11848
11849You can also use the @code{nocf_check} attribute to identify
11850which functions and calls should be skipped from instrumentation
11851(@pxref{Function Attributes}).
11852
11853Currently the x86 GNU/Linux target provides an implementation based
11854on Intel Control-flow Enforcement Technology (CET).
11855
11856@item -fstack-protector
11857@opindex fstack-protector
11858Emit extra code to check for buffer overflows, such as stack smashing
11859attacks.  This is done by adding a guard variable to functions with
11860vulnerable objects.  This includes functions that call @code{alloca}, and
11861functions with buffers larger than 8 bytes.  The guards are initialized
11862when a function is entered and then checked when the function exits.
11863If a guard check fails, an error message is printed and the program exits.
11864
11865@item -fstack-protector-all
11866@opindex fstack-protector-all
11867Like @option{-fstack-protector} except that all functions are protected.
11868
11869@item -fstack-protector-strong
11870@opindex fstack-protector-strong
11871Like @option{-fstack-protector} but includes additional functions to
11872be protected --- those that have local array definitions, or have
11873references to local frame addresses.
11874
11875@item -fstack-protector-explicit
11876@opindex fstack-protector-explicit
11877Like @option{-fstack-protector} but only protects those functions which
11878have the @code{stack_protect} attribute.
11879
11880@item -fstack-check
11881@opindex fstack-check
11882Generate code to verify that you do not go beyond the boundary of the
11883stack.  You should specify this flag if you are running in an
11884environment with multiple threads, but you only rarely need to specify it in
11885a single-threaded environment since stack overflow is automatically
11886detected on nearly all systems if there is only one stack.
11887
11888Note that this switch does not actually cause checking to be done; the
11889operating system or the language runtime must do that.  The switch causes
11890generation of code to ensure that they see the stack being extended.
11891
11892You can additionally specify a string parameter: @samp{no} means no
11893checking, @samp{generic} means force the use of old-style checking,
11894@samp{specific} means use the best checking method and is equivalent
11895to bare @option{-fstack-check}.
11896
11897Old-style checking is a generic mechanism that requires no specific
11898target support in the compiler but comes with the following drawbacks:
11899
11900@enumerate
11901@item
11902Modified allocation strategy for large objects: they are always
11903allocated dynamically if their size exceeds a fixed threshold.  Note this
11904may change the semantics of some code.
11905
11906@item
11907Fixed limit on the size of the static frame of functions: when it is
11908topped by a particular function, stack checking is not reliable and
11909a warning is issued by the compiler.
11910
11911@item
11912Inefficiency: because of both the modified allocation strategy and the
11913generic implementation, code performance is hampered.
11914@end enumerate
11915
11916Note that old-style stack checking is also the fallback method for
11917@samp{specific} if no target support has been added in the compiler.
11918
11919@samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
11920and stack overflows.  @samp{specific} is an excellent choice when compiling
11921Ada code.  It is not generally sufficient to protect against stack-clash
11922attacks.  To protect against those you want @samp{-fstack-clash-protection}.
11923
11924@item -fstack-clash-protection
11925@opindex fstack-clash-protection
11926Generate code to prevent stack clash style attacks.  When this option is
11927enabled, the compiler will only allocate one page of stack space at a time
11928and each page is accessed immediately after allocation.  Thus, it prevents
11929allocations from jumping over any stack guard page provided by the
11930operating system.
11931
11932Most targets do not fully support stack clash protection.  However, on
11933those targets @option{-fstack-clash-protection} will protect dynamic stack
11934allocations.  @option{-fstack-clash-protection} may also provide limited
11935protection for static stack allocations if the target supports
11936@option{-fstack-check=specific}.
11937
11938@item -fstack-limit-register=@var{reg}
11939@itemx -fstack-limit-symbol=@var{sym}
11940@itemx -fno-stack-limit
11941@opindex fstack-limit-register
11942@opindex fstack-limit-symbol
11943@opindex fno-stack-limit
11944Generate code to ensure that the stack does not grow beyond a certain value,
11945either the value of a register or the address of a symbol.  If a larger
11946stack is required, a signal is raised at run time.  For most targets,
11947the signal is raised before the stack overruns the boundary, so
11948it is possible to catch the signal without taking special precautions.
11949
11950For instance, if the stack starts at absolute address @samp{0x80000000}
11951and grows downwards, you can use the flags
11952@option{-fstack-limit-symbol=__stack_limit} and
11953@option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
11954of 128KB@.  Note that this may only work with the GNU linker.
11955
11956You can locally override stack limit checking by using the
11957@code{no_stack_limit} function attribute (@pxref{Function Attributes}).
11958
11959@item -fsplit-stack
11960@opindex fsplit-stack
11961Generate code to automatically split the stack before it overflows.
11962The resulting program has a discontiguous stack which can only
11963overflow if the program is unable to allocate any more memory.  This
11964is most useful when running threaded programs, as it is no longer
11965necessary to calculate a good stack size to use for each thread.  This
11966is currently only implemented for the x86 targets running
11967GNU/Linux.
11968
11969When code compiled with @option{-fsplit-stack} calls code compiled
11970without @option{-fsplit-stack}, there may not be much stack space
11971available for the latter code to run.  If compiling all code,
11972including library code, with @option{-fsplit-stack} is not an option,
11973then the linker can fix up these calls so that the code compiled
11974without @option{-fsplit-stack} always has a large stack.  Support for
11975this is implemented in the gold linker in GNU binutils release 2.21
11976and later.
11977
11978@item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
11979@opindex fvtable-verify
11980This option is only available when compiling C++ code.
11981It turns on (or off, if using @option{-fvtable-verify=none}) the security
11982feature that verifies at run time, for every virtual call, that
11983the vtable pointer through which the call is made is valid for the type of
11984the object, and has not been corrupted or overwritten.  If an invalid vtable
11985pointer is detected at run time, an error is reported and execution of the
11986program is immediately halted.
11987
11988This option causes run-time data structures to be built at program startup,
11989which are used for verifying the vtable pointers.
11990The options @samp{std} and @samp{preinit}
11991control the timing of when these data structures are built.  In both cases the
11992data structures are built before execution reaches @code{main}.  Using
11993@option{-fvtable-verify=std} causes the data structures to be built after
11994shared libraries have been loaded and initialized.
11995@option{-fvtable-verify=preinit} causes them to be built before shared
11996libraries have been loaded and initialized.
11997
11998If this option appears multiple times in the command line with different
11999values specified, @samp{none} takes highest priority over both @samp{std} and
12000@samp{preinit}; @samp{preinit} takes priority over @samp{std}.
12001
12002@item -fvtv-debug
12003@opindex fvtv-debug
12004When used in conjunction with @option{-fvtable-verify=std} or
12005@option{-fvtable-verify=preinit}, causes debug versions of the
12006runtime functions for the vtable verification feature to be called.
12007This flag also causes the compiler to log information about which
12008vtable pointers it finds for each class.
12009This information is written to a file named @file{vtv_set_ptr_data.log}
12010in the directory named by the environment variable @env{VTV_LOGS_DIR}
12011if that is defined or the current working directory otherwise.
12012
12013Note:  This feature @emph{appends} data to the log file. If you want a fresh log
12014file, be sure to delete any existing one.
12015
12016@item -fvtv-counts
12017@opindex fvtv-counts
12018This is a debugging flag.  When used in conjunction with
12019@option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
12020causes the compiler to keep track of the total number of virtual calls
12021it encounters and the number of verifications it inserts.  It also
12022counts the number of calls to certain run-time library functions
12023that it inserts and logs this information for each compilation unit.
12024The compiler writes this information to a file named
12025@file{vtv_count_data.log} in the directory named by the environment
12026variable @env{VTV_LOGS_DIR} if that is defined or the current working
12027directory otherwise.  It also counts the size of the vtable pointer sets
12028for each class, and writes this information to @file{vtv_class_set_sizes.log}
12029in the same directory.
12030
12031Note:  This feature @emph{appends} data to the log files.  To get fresh log
12032files, be sure to delete any existing ones.
12033
12034@item -finstrument-functions
12035@opindex finstrument-functions
12036Generate instrumentation calls for entry and exit to functions.  Just
12037after function entry and just before function exit, the following
12038profiling functions are called with the address of the current
12039function and its call site.  (On some platforms,
12040@code{__builtin_return_address} does not work beyond the current
12041function, so the call site information may not be available to the
12042profiling functions otherwise.)
12043
12044@smallexample
12045void __cyg_profile_func_enter (void *this_fn,
12046                               void *call_site);
12047void __cyg_profile_func_exit  (void *this_fn,
12048                               void *call_site);
12049@end smallexample
12050
12051The first argument is the address of the start of the current function,
12052which may be looked up exactly in the symbol table.
12053
12054This instrumentation is also done for functions expanded inline in other
12055functions.  The profiling calls indicate where, conceptually, the
12056inline function is entered and exited.  This means that addressable
12057versions of such functions must be available.  If all your uses of a
12058function are expanded inline, this may mean an additional expansion of
12059code size.  If you use @code{extern inline} in your C code, an
12060addressable version of such functions must be provided.  (This is
12061normally the case anyway, but if you get lucky and the optimizer always
12062expands the functions inline, you might have gotten away without
12063providing static copies.)
12064
12065A function may be given the attribute @code{no_instrument_function}, in
12066which case this instrumentation is not done.  This can be used, for
12067example, for the profiling functions listed above, high-priority
12068interrupt routines, and any functions from which the profiling functions
12069cannot safely be called (perhaps signal handlers, if the profiling
12070routines generate output or allocate memory).
12071
12072@item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
12073@opindex finstrument-functions-exclude-file-list
12074
12075Set the list of functions that are excluded from instrumentation (see
12076the description of @option{-finstrument-functions}).  If the file that
12077contains a function definition matches with one of @var{file}, then
12078that function is not instrumented.  The match is done on substrings:
12079if the @var{file} parameter is a substring of the file name, it is
12080considered to be a match.
12081
12082For example:
12083
12084@smallexample
12085-finstrument-functions-exclude-file-list=/bits/stl,include/sys
12086@end smallexample
12087
12088@noindent
12089excludes any inline function defined in files whose pathnames
12090contain @file{/bits/stl} or @file{include/sys}.
12091
12092If, for some reason, you want to include letter @samp{,} in one of
12093@var{sym}, write @samp{\,}. For example,
12094@option{-finstrument-functions-exclude-file-list='\,\,tmp'}
12095(note the single quote surrounding the option).
12096
12097@item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
12098@opindex finstrument-functions-exclude-function-list
12099
12100This is similar to @option{-finstrument-functions-exclude-file-list},
12101but this option sets the list of function names to be excluded from
12102instrumentation.  The function name to be matched is its user-visible
12103name, such as @code{vector<int> blah(const vector<int> &)}, not the
12104internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}).  The
12105match is done on substrings: if the @var{sym} parameter is a substring
12106of the function name, it is considered to be a match.  For C99 and C++
12107extended identifiers, the function name must be given in UTF-8, not
12108using universal character names.
12109
12110@item -fpatchable-function-entry=@var{N}[,@var{M}]
12111@opindex fpatchable-function-entry
12112Generate @var{N} NOPs right at the beginning
12113of each function, with the function entry point before the @var{M}th NOP.
12114If @var{M} is omitted, it defaults to @code{0} so the
12115function entry points to the address just at the first NOP.
12116The NOP instructions reserve extra space which can be used to patch in
12117any desired instrumentation at run time, provided that the code segment
12118is writable.  The amount of space is controllable indirectly via
12119the number of NOPs; the NOP instruction used corresponds to the instruction
12120emitted by the internal GCC back-end interface @code{gen_nop}.  This behavior
12121is target-specific and may also depend on the architecture variant and/or
12122other compilation options.
12123
12124For run-time identification, the starting addresses of these areas,
12125which correspond to their respective function entries minus @var{M},
12126are additionally collected in the @code{__patchable_function_entries}
12127section of the resulting binary.
12128
12129Note that the value of @code{__attribute__ ((patchable_function_entry
12130(N,M)))} takes precedence over command-line option
12131@option{-fpatchable-function-entry=N,M}.  This can be used to increase
12132the area size or to remove it completely on a single function.
12133If @code{N=0}, no pad location is recorded.
12134
12135The NOP instructions are inserted at---and maybe before, depending on
12136@var{M}---the function entry address, even before the prologue.
12137
12138@end table
12139
12140
12141@node Preprocessor Options
12142@section Options Controlling the Preprocessor
12143@cindex preprocessor options
12144@cindex options, preprocessor
12145
12146These options control the C preprocessor, which is run on each C source
12147file before actual compilation.
12148
12149If you use the @option{-E} option, nothing is done except preprocessing.
12150Some of these options make sense only together with @option{-E} because
12151they cause the preprocessor output to be unsuitable for actual
12152compilation.
12153
12154In addition to the options listed here, there are a number of options
12155to control search paths for include files documented in
12156@ref{Directory Options}.
12157Options to control preprocessor diagnostics are listed in
12158@ref{Warning Options}.
12159
12160@table @gcctabopt
12161@include cppopts.texi
12162
12163@item -Wp,@var{option}
12164@opindex Wp
12165You can use @option{-Wp,@var{option}} to bypass the compiler driver
12166and pass @var{option} directly through to the preprocessor.  If
12167@var{option} contains commas, it is split into multiple options at the
12168commas.  However, many options are modified, translated or interpreted
12169by the compiler driver before being passed to the preprocessor, and
12170@option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
12171interface is undocumented and subject to change, so whenever possible
12172you should avoid using @option{-Wp} and let the driver handle the
12173options instead.
12174
12175@item -Xpreprocessor @var{option}
12176@opindex Xpreprocessor
12177Pass @var{option} as an option to the preprocessor.  You can use this to
12178supply system-specific preprocessor options that GCC does not
12179recognize.
12180
12181If you want to pass an option that takes an argument, you must use
12182@option{-Xpreprocessor} twice, once for the option and once for the argument.
12183
12184@item -no-integrated-cpp
12185@opindex no-integrated-cpp
12186Perform preprocessing as a separate pass before compilation.
12187By default, GCC performs preprocessing as an integrated part of
12188input tokenization and parsing.
12189If this option is provided, the appropriate language front end
12190(@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
12191and Objective-C, respectively) is instead invoked twice,
12192once for preprocessing only and once for actual compilation
12193of the preprocessed input.
12194This option may be useful in conjunction with the @option{-B} or
12195@option{-wrapper} options to specify an alternate preprocessor or
12196perform additional processing of the program source between
12197normal preprocessing and compilation.
12198
12199@end table
12200
12201@node Assembler Options
12202@section Passing Options to the Assembler
12203
12204@c prevent bad page break with this line
12205You can pass options to the assembler.
12206
12207@table @gcctabopt
12208@item -Wa,@var{option}
12209@opindex Wa
12210Pass @var{option} as an option to the assembler.  If @var{option}
12211contains commas, it is split into multiple options at the commas.
12212
12213@item -Xassembler @var{option}
12214@opindex Xassembler
12215Pass @var{option} as an option to the assembler.  You can use this to
12216supply system-specific assembler options that GCC does not
12217recognize.
12218
12219If you want to pass an option that takes an argument, you must use
12220@option{-Xassembler} twice, once for the option and once for the argument.
12221
12222@end table
12223
12224@node Link Options
12225@section Options for Linking
12226@cindex link options
12227@cindex options, linking
12228
12229These options come into play when the compiler links object files into
12230an executable output file.  They are meaningless if the compiler is
12231not doing a link step.
12232
12233@table @gcctabopt
12234@cindex file names
12235@item @var{object-file-name}
12236A file name that does not end in a special recognized suffix is
12237considered to name an object file or library.  (Object files are
12238distinguished from libraries by the linker according to the file
12239contents.)  If linking is done, these object files are used as input
12240to the linker.
12241
12242@item -c
12243@itemx -S
12244@itemx -E
12245@opindex c
12246@opindex S
12247@opindex E
12248If any of these options is used, then the linker is not run, and
12249object file names should not be used as arguments.  @xref{Overall
12250Options}.
12251
12252@item -fuse-ld=bfd
12253@opindex fuse-ld=bfd
12254Use the @command{bfd} linker instead of the default linker.
12255
12256@item -fuse-ld=gold
12257@opindex fuse-ld=gold
12258Use the @command{gold} linker instead of the default linker.
12259
12260@cindex Libraries
12261@item -l@var{library}
12262@itemx -l @var{library}
12263@opindex l
12264Search the library named @var{library} when linking.  (The second
12265alternative with the library as a separate argument is only for
12266POSIX compliance and is not recommended.)
12267
12268It makes a difference where in the command you write this option; the
12269linker searches and processes libraries and object files in the order they
12270are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
12271after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
12272to functions in @samp{z}, those functions may not be loaded.
12273
12274The linker searches a standard list of directories for the library,
12275which is actually a file named @file{lib@var{library}.a}.  The linker
12276then uses this file as if it had been specified precisely by name.
12277
12278The directories searched include several standard system directories
12279plus any that you specify with @option{-L}.
12280
12281Normally the files found this way are library files---archive files
12282whose members are object files.  The linker handles an archive file by
12283scanning through it for members which define symbols that have so far
12284been referenced but not defined.  But if the file that is found is an
12285ordinary object file, it is linked in the usual fashion.  The only
12286difference between using an @option{-l} option and specifying a file name
12287is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
12288and searches several directories.
12289
12290@item -lobjc
12291@opindex lobjc
12292You need this special case of the @option{-l} option in order to
12293link an Objective-C or Objective-C++ program.
12294
12295@item -nostartfiles
12296@opindex nostartfiles
12297Do not use the standard system startup files when linking.
12298The standard system libraries are used normally, unless @option{-nostdlib}
12299or @option{-nodefaultlibs} is used.
12300
12301@item -nodefaultlibs
12302@opindex nodefaultlibs
12303Do not use the standard system libraries when linking.
12304Only the libraries you specify are passed to the linker, and options
12305specifying linkage of the system libraries, such as @option{-static-libgcc}
12306or @option{-shared-libgcc}, are ignored.
12307The standard startup files are used normally, unless @option{-nostartfiles}
12308is used.
12309
12310The compiler may generate calls to @code{memcmp},
12311@code{memset}, @code{memcpy} and @code{memmove}.
12312These entries are usually resolved by entries in
12313libc.  These entry points should be supplied through some other
12314mechanism when this option is specified.
12315
12316@item -nostdlib
12317@opindex nostdlib
12318Do not use the standard system startup files or libraries when linking.
12319No startup files and only the libraries you specify are passed to
12320the linker, and options specifying linkage of the system libraries, such as
12321@option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
12322
12323The compiler may generate calls to @code{memcmp}, @code{memset},
12324@code{memcpy} and @code{memmove}.
12325These entries are usually resolved by entries in
12326libc.  These entry points should be supplied through some other
12327mechanism when this option is specified.
12328
12329@cindex @option{-lgcc}, use with @option{-nostdlib}
12330@cindex @option{-nostdlib} and unresolved references
12331@cindex unresolved references and @option{-nostdlib}
12332@cindex @option{-lgcc}, use with @option{-nodefaultlibs}
12333@cindex @option{-nodefaultlibs} and unresolved references
12334@cindex unresolved references and @option{-nodefaultlibs}
12335One of the standard libraries bypassed by @option{-nostdlib} and
12336@option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
12337which GCC uses to overcome shortcomings of particular machines, or special
12338needs for some languages.
12339(@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
12340Collection (GCC) Internals},
12341for more discussion of @file{libgcc.a}.)
12342In most cases, you need @file{libgcc.a} even when you want to avoid
12343other standard libraries.  In other words, when you specify @option{-nostdlib}
12344or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
12345This ensures that you have no unresolved references to internal GCC
12346library subroutines.
12347(An example of such an internal subroutine is @code{__main}, used to ensure C++
12348constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
12349GNU Compiler Collection (GCC) Internals}.)
12350
12351@item -pie
12352@opindex pie
12353Produce a dynamically linked position independent executable on targets
12354that support it.  For predictable results, you must also specify the same
12355set of options used for compilation (@option{-fpie}, @option{-fPIE},
12356or model suboptions) when you specify this linker option.
12357
12358@item -no-pie
12359@opindex no-pie
12360Don't produce a dynamically linked position independent executable.
12361
12362@item -static-pie
12363@opindex static-pie
12364Produce a static position independent executable on targets that support
12365it.  A static position independent executable is similar to a static
12366executable, but can be loaded at any address without a dynamic linker.
12367For predictable results, you must also specify the same set of options
12368used for compilation (@option{-fpie}, @option{-fPIE}, or model
12369suboptions) when you specify this linker option.
12370
12371@item -pthread
12372@opindex pthread
12373Link with the POSIX threads library.  This option is supported on
12374GNU/Linux targets, most other Unix derivatives, and also on
12375x86 Cygwin and MinGW targets.  On some targets this option also sets
12376flags for the preprocessor, so it should be used consistently for both
12377compilation and linking.
12378
12379@item -rdynamic
12380@opindex rdynamic
12381Pass the flag @option{-export-dynamic} to the ELF linker, on targets
12382that support it. This instructs the linker to add all symbols, not
12383only used ones, to the dynamic symbol table. This option is needed
12384for some uses of @code{dlopen} or to allow obtaining backtraces
12385from within a program.
12386
12387@item -s
12388@opindex s
12389Remove all symbol table and relocation information from the executable.
12390
12391@item -static
12392@opindex static
12393On systems that support dynamic linking, this overrides @option{-pie}
12394and prevents linking with the shared libraries.  On other systems, this
12395option has no effect.
12396
12397@item -shared
12398@opindex shared
12399Produce a shared object which can then be linked with other objects to
12400form an executable.  Not all systems support this option.  For predictable
12401results, you must also specify the same set of options used for compilation
12402(@option{-fpic}, @option{-fPIC}, or model suboptions) when
12403you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
12404needs to build supplementary stub code for constructors to work.  On
12405multi-libbed systems, @samp{gcc -shared} must select the correct support
12406libraries to link against.  Failing to supply the correct flags may lead
12407to subtle defects.  Supplying them in cases where they are not necessary
12408is innocuous.}
12409
12410@item -shared-libgcc
12411@itemx -static-libgcc
12412@opindex shared-libgcc
12413@opindex static-libgcc
12414On systems that provide @file{libgcc} as a shared library, these options
12415force the use of either the shared or static version, respectively.
12416If no shared version of @file{libgcc} was built when the compiler was
12417configured, these options have no effect.
12418
12419There are several situations in which an application should use the
12420shared @file{libgcc} instead of the static version.  The most common
12421of these is when the application wishes to throw and catch exceptions
12422across different shared libraries.  In that case, each of the libraries
12423as well as the application itself should use the shared @file{libgcc}.
12424
12425Therefore, the G++ driver automatically adds @option{-shared-libgcc}
12426whenever you build a shared library or a main executable, because C++
12427programs typically use exceptions, so this is the right thing to do.
12428
12429If, instead, you use the GCC driver to create shared libraries, you may
12430find that they are not always linked with the shared @file{libgcc}.
12431If GCC finds, at its configuration time, that you have a non-GNU linker
12432or a GNU linker that does not support option @option{--eh-frame-hdr},
12433it links the shared version of @file{libgcc} into shared libraries
12434by default.  Otherwise, it takes advantage of the linker and optimizes
12435away the linking with the shared version of @file{libgcc}, linking with
12436the static version of libgcc by default.  This allows exceptions to
12437propagate through such shared libraries, without incurring relocation
12438costs at library load time.
12439
12440However, if a library or main executable is supposed to throw or catch
12441exceptions, you must link it using the G++ driver, or using the option
12442@option{-shared-libgcc}, such that it is linked with the shared
12443@file{libgcc}.
12444
12445@item -static-libasan
12446@opindex static-libasan
12447When the @option{-fsanitize=address} option is used to link a program,
12448the GCC driver automatically links against @option{libasan}.  If
12449@file{libasan} is available as a shared library, and the @option{-static}
12450option is not used, then this links against the shared version of
12451@file{libasan}.  The @option{-static-libasan} option directs the GCC
12452driver to link @file{libasan} statically, without necessarily linking
12453other libraries statically.
12454
12455@item -static-libtsan
12456@opindex static-libtsan
12457When the @option{-fsanitize=thread} option is used to link a program,
12458the GCC driver automatically links against @option{libtsan}.  If
12459@file{libtsan} is available as a shared library, and the @option{-static}
12460option is not used, then this links against the shared version of
12461@file{libtsan}.  The @option{-static-libtsan} option directs the GCC
12462driver to link @file{libtsan} statically, without necessarily linking
12463other libraries statically.
12464
12465@item -static-liblsan
12466@opindex static-liblsan
12467When the @option{-fsanitize=leak} option is used to link a program,
12468the GCC driver automatically links against @option{liblsan}.  If
12469@file{liblsan} is available as a shared library, and the @option{-static}
12470option is not used, then this links against the shared version of
12471@file{liblsan}.  The @option{-static-liblsan} option directs the GCC
12472driver to link @file{liblsan} statically, without necessarily linking
12473other libraries statically.
12474
12475@item -static-libubsan
12476@opindex static-libubsan
12477When the @option{-fsanitize=undefined} option is used to link a program,
12478the GCC driver automatically links against @option{libubsan}.  If
12479@file{libubsan} is available as a shared library, and the @option{-static}
12480option is not used, then this links against the shared version of
12481@file{libubsan}.  The @option{-static-libubsan} option directs the GCC
12482driver to link @file{libubsan} statically, without necessarily linking
12483other libraries statically.
12484
12485@item -static-libmpx
12486@opindex static-libmpx
12487When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
12488used to link a program, the GCC driver automatically links against
12489@file{libmpx}.  If @file{libmpx} is available as a shared library,
12490and the @option{-static} option is not used, then this links against
12491the shared version of @file{libmpx}.  The @option{-static-libmpx}
12492option directs the GCC driver to link @file{libmpx} statically,
12493without necessarily linking other libraries statically.
12494
12495@item -static-libmpxwrappers
12496@opindex static-libmpxwrappers
12497When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
12498to link a program without also using @option{-fno-chkp-use-wrappers}, the
12499GCC driver automatically links against @file{libmpxwrappers}.  If
12500@file{libmpxwrappers} is available as a shared library, and the
12501@option{-static} option is not used, then this links against the shared
12502version of @file{libmpxwrappers}.  The @option{-static-libmpxwrappers}
12503option directs the GCC driver to link @file{libmpxwrappers} statically,
12504without necessarily linking other libraries statically.
12505
12506@item -static-libstdc++
12507@opindex static-libstdc++
12508When the @command{g++} program is used to link a C++ program, it
12509normally automatically links against @option{libstdc++}.  If
12510@file{libstdc++} is available as a shared library, and the
12511@option{-static} option is not used, then this links against the
12512shared version of @file{libstdc++}.  That is normally fine.  However, it
12513is sometimes useful to freeze the version of @file{libstdc++} used by
12514the program without going all the way to a fully static link.  The
12515@option{-static-libstdc++} option directs the @command{g++} driver to
12516link @file{libstdc++} statically, without necessarily linking other
12517libraries statically.
12518
12519@item -symbolic
12520@opindex symbolic
12521Bind references to global symbols when building a shared object.  Warn
12522about any unresolved references (unless overridden by the link editor
12523option @option{-Xlinker -z -Xlinker defs}).  Only a few systems support
12524this option.
12525
12526@item -T @var{script}
12527@opindex T
12528@cindex linker script
12529Use @var{script} as the linker script.  This option is supported by most
12530systems using the GNU linker.  On some targets, such as bare-board
12531targets without an operating system, the @option{-T} option may be required
12532when linking to avoid references to undefined symbols.
12533
12534@item -Xlinker @var{option}
12535@opindex Xlinker
12536Pass @var{option} as an option to the linker.  You can use this to
12537supply system-specific linker options that GCC does not recognize.
12538
12539If you want to pass an option that takes a separate argument, you must use
12540@option{-Xlinker} twice, once for the option and once for the argument.
12541For example, to pass @option{-assert definitions}, you must write
12542@option{-Xlinker -assert -Xlinker definitions}.  It does not work to write
12543@option{-Xlinker "-assert definitions"}, because this passes the entire
12544string as a single argument, which is not what the linker expects.
12545
12546When using the GNU linker, it is usually more convenient to pass
12547arguments to linker options using the @option{@var{option}=@var{value}}
12548syntax than as separate arguments.  For example, you can specify
12549@option{-Xlinker -Map=output.map} rather than
12550@option{-Xlinker -Map -Xlinker output.map}.  Other linkers may not support
12551this syntax for command-line options.
12552
12553@item -Wl,@var{option}
12554@opindex Wl
12555Pass @var{option} as an option to the linker.  If @var{option} contains
12556commas, it is split into multiple options at the commas.  You can use this
12557syntax to pass an argument to the option.
12558For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
12559linker.  When using the GNU linker, you can also get the same effect with
12560@option{-Wl,-Map=output.map}.
12561
12562@item -u @var{symbol}
12563@opindex u
12564Pretend the symbol @var{symbol} is undefined, to force linking of
12565library modules to define it.  You can use @option{-u} multiple times with
12566different symbols to force loading of additional library modules.
12567
12568@item -z @var{keyword}
12569@opindex z
12570@option{-z} is passed directly on to the linker along with the keyword
12571@var{keyword}. See the section in the documentation of your linker for
12572permitted values and their meanings.
12573@end table
12574
12575@node Directory Options
12576@section Options for Directory Search
12577@cindex directory options
12578@cindex options, directory search
12579@cindex search path
12580
12581These options specify directories to search for header files, for
12582libraries and for parts of the compiler:
12583
12584@table @gcctabopt
12585@include cppdiropts.texi
12586
12587@item -iplugindir=@var{dir}
12588@opindex iplugindir=
12589Set the directory to search for plugins that are passed
12590by @option{-fplugin=@var{name}} instead of
12591@option{-fplugin=@var{path}/@var{name}.so}.  This option is not meant
12592to be used by the user, but only passed by the driver.
12593
12594@item -L@var{dir}
12595@opindex L
12596Add directory @var{dir} to the list of directories to be searched
12597for @option{-l}.
12598
12599@item -B@var{prefix}
12600@opindex B
12601This option specifies where to find the executables, libraries,
12602include files, and data files of the compiler itself.
12603
12604The compiler driver program runs one or more of the subprograms
12605@command{cpp}, @command{cc1}, @command{as} and @command{ld}.  It tries
12606@var{prefix} as a prefix for each program it tries to run, both with and
12607without @samp{@var{machine}/@var{version}/} for the corresponding target
12608machine and compiler version.
12609
12610For each subprogram to be run, the compiler driver first tries the
12611@option{-B} prefix, if any.  If that name is not found, or if @option{-B}
12612is not specified, the driver tries two standard prefixes,
12613@file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
12614those results in a file name that is found, the unmodified program
12615name is searched for using the directories specified in your
12616@env{PATH} environment variable.
12617
12618The compiler checks to see if the path provided by @option{-B}
12619refers to a directory, and if necessary it adds a directory
12620separator character at the end of the path.
12621
12622@option{-B} prefixes that effectively specify directory names also apply
12623to libraries in the linker, because the compiler translates these
12624options into @option{-L} options for the linker.  They also apply to
12625include files in the preprocessor, because the compiler translates these
12626options into @option{-isystem} options for the preprocessor.  In this case,
12627the compiler appends @samp{include} to the prefix.
12628
12629The runtime support file @file{libgcc.a} can also be searched for using
12630the @option{-B} prefix, if needed.  If it is not found there, the two
12631standard prefixes above are tried, and that is all.  The file is left
12632out of the link if it is not found by those means.
12633
12634Another way to specify a prefix much like the @option{-B} prefix is to use
12635the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
12636Variables}.
12637
12638As a special kludge, if the path provided by @option{-B} is
12639@file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
126409, then it is replaced by @file{[dir/]include}.  This is to help
12641with boot-strapping the compiler.
12642
12643@item -no-canonical-prefixes
12644@opindex no-canonical-prefixes
12645Do not expand any symbolic links, resolve references to @samp{/../}
12646or @samp{/./}, or make the path absolute when generating a relative
12647prefix.
12648
12649@item --sysroot=@var{dir}
12650@opindex sysroot
12651Use @var{dir} as the logical root directory for headers and libraries.
12652For example, if the compiler normally searches for headers in
12653@file{/usr/include} and libraries in @file{/usr/lib}, it instead
12654searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
12655
12656If you use both this option and the @option{-isysroot} option, then
12657the @option{--sysroot} option applies to libraries, but the
12658@option{-isysroot} option applies to header files.
12659
12660The GNU linker (beginning with version 2.16) has the necessary support
12661for this option.  If your linker does not support this option, the
12662header file aspect of @option{--sysroot} still works, but the
12663library aspect does not.
12664
12665@item --no-sysroot-suffix
12666@opindex no-sysroot-suffix
12667For some targets, a suffix is added to the root directory specified
12668with @option{--sysroot}, depending on the other options used, so that
12669headers may for example be found in
12670@file{@var{dir}/@var{suffix}/usr/include} instead of
12671@file{@var{dir}/usr/include}.  This option disables the addition of
12672such a suffix.
12673
12674@end table
12675
12676@node Code Gen Options
12677@section Options for Code Generation Conventions
12678@cindex code generation conventions
12679@cindex options, code generation
12680@cindex run-time options
12681
12682These machine-independent options control the interface conventions
12683used in code generation.
12684
12685Most of them have both positive and negative forms; the negative form
12686of @option{-ffoo} is @option{-fno-foo}.  In the table below, only
12687one of the forms is listed---the one that is not the default.  You
12688can figure out the other form by either removing @samp{no-} or adding
12689it.
12690
12691@table @gcctabopt
12692@item -fstack-reuse=@var{reuse-level}
12693@opindex fstack_reuse
12694This option controls stack space reuse for user declared local/auto variables
12695and compiler generated temporaries.  @var{reuse_level} can be @samp{all},
12696@samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
12697local variables and temporaries, @samp{named_vars} enables the reuse only for
12698user defined local variables with names, and @samp{none} disables stack reuse
12699completely. The default value is @samp{all}. The option is needed when the
12700program extends the lifetime of a scoped local variable or a compiler generated
12701temporary beyond the end point defined by the language.  When a lifetime of
12702a variable ends, and if the variable lives in memory, the optimizing compiler
12703has the freedom to reuse its stack space with other temporaries or scoped
12704local variables whose live range does not overlap with it. Legacy code extending
12705local lifetime is likely to break with the stack reuse optimization.
12706
12707For example,
12708
12709@smallexample
12710   int *p;
12711   @{
12712     int local1;
12713
12714     p = &local1;
12715     local1 = 10;
12716     ....
12717   @}
12718   @{
12719      int local2;
12720      local2 = 20;
12721      ...
12722   @}
12723
12724   if (*p == 10)  // out of scope use of local1
12725     @{
12726
12727     @}
12728@end smallexample
12729
12730Another example:
12731@smallexample
12732
12733   struct A
12734   @{
12735       A(int k) : i(k), j(k) @{ @}
12736       int i;
12737       int j;
12738   @};
12739
12740   A *ap;
12741
12742   void foo(const A& ar)
12743   @{
12744      ap = &ar;
12745   @}
12746
12747   void bar()
12748   @{
12749      foo(A(10)); // temp object's lifetime ends when foo returns
12750
12751      @{
12752        A a(20);
12753        ....
12754      @}
12755      ap->i+= 10;  // ap references out of scope temp whose space
12756                   // is reused with a. What is the value of ap->i?
12757   @}
12758
12759@end smallexample
12760
12761The lifetime of a compiler generated temporary is well defined by the C++
12762standard. When a lifetime of a temporary ends, and if the temporary lives
12763in memory, the optimizing compiler has the freedom to reuse its stack
12764space with other temporaries or scoped local variables whose live range
12765does not overlap with it. However some of the legacy code relies on
12766the behavior of older compilers in which temporaries' stack space is
12767not reused, the aggressive stack reuse can lead to runtime errors. This
12768option is used to control the temporary stack reuse optimization.
12769
12770@item -ftrapv
12771@opindex ftrapv
12772This option generates traps for signed overflow on addition, subtraction,
12773multiplication operations.
12774The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12775@option{-ftrapv} @option{-fwrapv} on the command-line results in
12776@option{-fwrapv} being effective.  Note that only active options override, so
12777using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12778results in @option{-ftrapv} being effective.
12779
12780@item -fwrapv
12781@opindex fwrapv
12782This option instructs the compiler to assume that signed arithmetic
12783overflow of addition, subtraction and multiplication wraps around
12784using twos-complement representation.  This flag enables some optimizations
12785and disables others.
12786The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12787@option{-ftrapv} @option{-fwrapv} on the command-line results in
12788@option{-fwrapv} being effective.  Note that only active options override, so
12789using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12790results in @option{-ftrapv} being effective.
12791
12792@item -fwrapv-pointer
12793@opindex fwrapv-pointer
12794This option instructs the compiler to assume that pointer arithmetic
12795overflow on addition and subtraction wraps around using twos-complement
12796representation.  This flag disables some optimizations which assume
12797pointer overflow is invalid.
12798
12799@item -fstrict-overflow
12800@opindex fstrict-overflow
12801This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
12802negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
12803
12804@item -fexceptions
12805@opindex fexceptions
12806Enable exception handling.  Generates extra code needed to propagate
12807exceptions.  For some targets, this implies GCC generates frame
12808unwind information for all functions, which can produce significant data
12809size overhead, although it does not affect execution.  If you do not
12810specify this option, GCC enables it by default for languages like
12811C++ that normally require exception handling, and disables it for
12812languages like C that do not normally require it.  However, you may need
12813to enable this option when compiling C code that needs to interoperate
12814properly with exception handlers written in C++.  You may also wish to
12815disable this option if you are compiling older C++ programs that don't
12816use exception handling.
12817
12818@item -fnon-call-exceptions
12819@opindex fnon-call-exceptions
12820Generate code that allows trapping instructions to throw exceptions.
12821Note that this requires platform-specific runtime support that does
12822not exist everywhere.  Moreover, it only allows @emph{trapping}
12823instructions to throw exceptions, i.e.@: memory references or floating-point
12824instructions.  It does not allow exceptions to be thrown from
12825arbitrary signal handlers such as @code{SIGALRM}.
12826
12827@item -fdelete-dead-exceptions
12828@opindex fdelete-dead-exceptions
12829Consider that instructions that may throw exceptions but don't otherwise
12830contribute to the execution of the program can be optimized away.
12831This option is enabled by default for the Ada front end, as permitted by
12832the Ada language specification.
12833Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
12834
12835@item -funwind-tables
12836@opindex funwind-tables
12837Similar to @option{-fexceptions}, except that it just generates any needed
12838static data, but does not affect the generated code in any other way.
12839You normally do not need to enable this option; instead, a language processor
12840that needs this handling enables it on your behalf.
12841
12842@item -fasynchronous-unwind-tables
12843@opindex fasynchronous-unwind-tables
12844Generate unwind table in DWARF format, if supported by target machine.  The
12845table is exact at each instruction boundary, so it can be used for stack
12846unwinding from asynchronous events (such as debugger or garbage collector).
12847
12848@item -fno-gnu-unique
12849@opindex fno-gnu-unique
12850On systems with recent GNU assembler and C library, the C++ compiler
12851uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
12852of template static data members and static local variables in inline
12853functions are unique even in the presence of @code{RTLD_LOCAL}; this
12854is necessary to avoid problems with a library used by two different
12855@code{RTLD_LOCAL} plugins depending on a definition in one of them and
12856therefore disagreeing with the other one about the binding of the
12857symbol.  But this causes @code{dlclose} to be ignored for affected
12858DSOs; if your program relies on reinitialization of a DSO via
12859@code{dlclose} and @code{dlopen}, you can use
12860@option{-fno-gnu-unique}.
12861
12862@item -fpcc-struct-return
12863@opindex fpcc-struct-return
12864Return ``short'' @code{struct} and @code{union} values in memory like
12865longer ones, rather than in registers.  This convention is less
12866efficient, but it has the advantage of allowing intercallability between
12867GCC-compiled files and files compiled with other compilers, particularly
12868the Portable C Compiler (pcc).
12869
12870The precise convention for returning structures in memory depends
12871on the target configuration macros.
12872
12873Short structures and unions are those whose size and alignment match
12874that of some integer type.
12875
12876@strong{Warning:} code compiled with the @option{-fpcc-struct-return}
12877switch is not binary compatible with code compiled with the
12878@option{-freg-struct-return} switch.
12879Use it to conform to a non-default application binary interface.
12880
12881@item -freg-struct-return
12882@opindex freg-struct-return
12883Return @code{struct} and @code{union} values in registers when possible.
12884This is more efficient for small structures than
12885@option{-fpcc-struct-return}.
12886
12887If you specify neither @option{-fpcc-struct-return} nor
12888@option{-freg-struct-return}, GCC defaults to whichever convention is
12889standard for the target.  If there is no standard convention, GCC
12890defaults to @option{-fpcc-struct-return}, except on targets where GCC is
12891the principal compiler.  In those cases, we can choose the standard, and
12892we chose the more efficient register return alternative.
12893
12894@strong{Warning:} code compiled with the @option{-freg-struct-return}
12895switch is not binary compatible with code compiled with the
12896@option{-fpcc-struct-return} switch.
12897Use it to conform to a non-default application binary interface.
12898
12899@item -fshort-enums
12900@opindex fshort-enums
12901Allocate to an @code{enum} type only as many bytes as it needs for the
12902declared range of possible values.  Specifically, the @code{enum} type
12903is equivalent to the smallest integer type that has enough room.
12904
12905@strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
12906code that is not binary compatible with code generated without that switch.
12907Use it to conform to a non-default application binary interface.
12908
12909@item -fshort-wchar
12910@opindex fshort-wchar
12911Override the underlying type for @code{wchar_t} to be @code{short
12912unsigned int} instead of the default for the target.  This option is
12913useful for building programs to run under WINE@.
12914
12915@strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
12916code that is not binary compatible with code generated without that switch.
12917Use it to conform to a non-default application binary interface.
12918
12919@item -fno-common
12920@opindex fno-common
12921@cindex tentative definitions
12922In C code, this option controls the placement of global variables
12923defined without an initializer, known as @dfn{tentative definitions}
12924in the C standard.  Tentative definitions are distinct from declarations
12925of a variable with the @code{extern} keyword, which do not allocate storage.
12926
12927Unix C compilers have traditionally allocated storage for
12928uninitialized global variables in a common block.  This allows the
12929linker to resolve all tentative definitions of the same variable
12930in different compilation units to the same object, or to a non-tentative
12931definition.
12932This is the behavior specified by @option{-fcommon}, and is the default for
12933GCC on most targets.
12934On the other hand, this behavior is not required by ISO
12935C, and on some targets may carry a speed or code size penalty on
12936variable references.
12937
12938The @option{-fno-common} option specifies that the compiler should instead
12939place uninitialized global variables in the data section of the object file.
12940This inhibits the merging of tentative definitions by the linker so
12941you get a multiple-definition error if the same
12942variable is defined in more than one compilation unit.
12943Compiling with @option{-fno-common} is useful on targets for which
12944it provides better performance, or if you wish to verify that the
12945program will work on other systems that always treat uninitialized
12946variable definitions this way.
12947
12948@item -fno-ident
12949@opindex fno-ident
12950Ignore the @code{#ident} directive.
12951
12952@item -finhibit-size-directive
12953@opindex finhibit-size-directive
12954Don't output a @code{.size} assembler directive, or anything else that
12955would cause trouble if the function is split in the middle, and the
12956two halves are placed at locations far apart in memory.  This option is
12957used when compiling @file{crtstuff.c}; you should not need to use it
12958for anything else.
12959
12960@item -fverbose-asm
12961@opindex fverbose-asm
12962Put extra commentary information in the generated assembly code to
12963make it more readable.  This option is generally only of use to those
12964who actually need to read the generated assembly code (perhaps while
12965debugging the compiler itself).
12966
12967@option{-fno-verbose-asm}, the default, causes the
12968extra information to be omitted and is useful when comparing two assembler
12969files.
12970
12971The added comments include:
12972
12973@itemize @bullet
12974
12975@item
12976information on the compiler version and command-line options,
12977
12978@item
12979the source code lines associated with the assembly instructions,
12980in the form FILENAME:LINENUMBER:CONTENT OF LINE,
12981
12982@item
12983hints on which high-level expressions correspond to
12984the various assembly instruction operands.
12985
12986@end itemize
12987
12988For example, given this C source file:
12989
12990@smallexample
12991int test (int n)
12992@{
12993  int i;
12994  int total = 0;
12995
12996  for (i = 0; i < n; i++)
12997    total += i * i;
12998
12999  return total;
13000@}
13001@end smallexample
13002
13003compiling to (x86_64) assembly via @option{-S} and emitting the result
13004direct to stdout via @option{-o} @option{-}
13005
13006@smallexample
13007gcc -S test.c -fverbose-asm -Os -o -
13008@end smallexample
13009
13010gives output similar to this:
13011
13012@smallexample
13013	.file	"test.c"
13014# GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
13015  [...snip...]
13016# options passed:
13017  [...snip...]
13018
13019	.text
13020	.globl	test
13021	.type	test, @@function
13022test:
13023.LFB0:
13024	.cfi_startproc
13025# test.c:4:   int total = 0;
13026	xorl	%eax, %eax	# <retval>
13027# test.c:6:   for (i = 0; i < n; i++)
13028	xorl	%edx, %edx	# i
13029.L2:
13030# test.c:6:   for (i = 0; i < n; i++)
13031	cmpl	%edi, %edx	# n, i
13032	jge	.L5	#,
13033# test.c:7:     total += i * i;
13034	movl	%edx, %ecx	# i, tmp92
13035	imull	%edx, %ecx	# i, tmp92
13036# test.c:6:   for (i = 0; i < n; i++)
13037	incl	%edx	# i
13038# test.c:7:     total += i * i;
13039	addl	%ecx, %eax	# tmp92, <retval>
13040	jmp	.L2	#
13041.L5:
13042# test.c:10: @}
13043	ret
13044	.cfi_endproc
13045.LFE0:
13046	.size	test, .-test
13047	.ident	"GCC: (GNU) 7.0.0 20160809 (experimental)"
13048	.section	.note.GNU-stack,"",@@progbits
13049@end smallexample
13050
13051The comments are intended for humans rather than machines and hence the
13052precise format of the comments is subject to change.
13053
13054@item -frecord-gcc-switches
13055@opindex frecord-gcc-switches
13056This switch causes the command line used to invoke the
13057compiler to be recorded into the object file that is being created.
13058This switch is only implemented on some targets and the exact format
13059of the recording is target and binary file format dependent, but it
13060usually takes the form of a section containing ASCII text.  This
13061switch is related to the @option{-fverbose-asm} switch, but that
13062switch only records information in the assembler output file as
13063comments, so it never reaches the object file.
13064See also @option{-grecord-gcc-switches} for another
13065way of storing compiler options into the object file.
13066
13067@item -fpic
13068@opindex fpic
13069@cindex global offset table
13070@cindex PIC
13071Generate position-independent code (PIC) suitable for use in a shared
13072library, if supported for the target machine.  Such code accesses all
13073constant addresses through a global offset table (GOT)@.  The dynamic
13074loader resolves the GOT entries when the program starts (the dynamic
13075loader is not part of GCC; it is part of the operating system).  If
13076the GOT size for the linked executable exceeds a machine-specific
13077maximum size, you get an error message from the linker indicating that
13078@option{-fpic} does not work; in that case, recompile with @option{-fPIC}
13079instead.  (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
13080on the m68k and RS/6000.  The x86 has no such limit.)
13081
13082Position-independent code requires special support, and therefore works
13083only on certain machines.  For the x86, GCC supports PIC for System V
13084but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
13085position-independent.
13086
13087When this flag is set, the macros @code{__pic__} and @code{__PIC__}
13088are defined to 1.
13089
13090@item -fPIC
13091@opindex fPIC
13092If supported for the target machine, emit position-independent code,
13093suitable for dynamic linking and avoiding any limit on the size of the
13094global offset table.  This option makes a difference on AArch64, m68k,
13095PowerPC and SPARC@.
13096
13097Position-independent code requires special support, and therefore works
13098only on certain machines.
13099
13100When this flag is set, the macros @code{__pic__} and @code{__PIC__}
13101are defined to 2.
13102
13103@item -fpie
13104@itemx -fPIE
13105@opindex fpie
13106@opindex fPIE
13107These options are similar to @option{-fpic} and @option{-fPIC}, but
13108generated position independent code can be only linked into executables.
13109Usually these options are used when @option{-pie} GCC option is
13110used during linking.
13111
13112@option{-fpie} and @option{-fPIE} both define the macros
13113@code{__pie__} and @code{__PIE__}.  The macros have the value 1
13114for @option{-fpie} and 2 for @option{-fPIE}.
13115
13116@item -fno-plt
13117@opindex fno-plt
13118Do not use the PLT for external function calls in position-independent code.
13119Instead, load the callee address at call sites from the GOT and branch to it.
13120This leads to more efficient code by eliminating PLT stubs and exposing
13121GOT loads to optimizations.  On architectures such as 32-bit x86 where
13122PLT stubs expect the GOT pointer in a specific register, this gives more
13123register allocation freedom to the compiler.
13124Lazy binding requires use of the PLT;
13125with @option{-fno-plt} all external symbols are resolved at load time.
13126
13127Alternatively, the function attribute @code{noplt} can be used to avoid calls
13128through the PLT for specific external functions.
13129
13130In position-dependent code, a few targets also convert calls to
13131functions that are marked to not use the PLT to use the GOT instead.
13132
13133@item -fno-jump-tables
13134@opindex fno-jump-tables
13135Do not use jump tables for switch statements even where it would be
13136more efficient than other code generation strategies.  This option is
13137of use in conjunction with @option{-fpic} or @option{-fPIC} for
13138building code that forms part of a dynamic linker and cannot
13139reference the address of a jump table.  On some targets, jump tables
13140do not require a GOT and this option is not needed.
13141
13142@item -ffixed-@var{reg}
13143@opindex ffixed
13144Treat the register named @var{reg} as a fixed register; generated code
13145should never refer to it (except perhaps as a stack pointer, frame
13146pointer or in some other fixed role).
13147
13148@var{reg} must be the name of a register.  The register names accepted
13149are machine-specific and are defined in the @code{REGISTER_NAMES}
13150macro in the machine description macro file.
13151
13152This flag does not have a negative form, because it specifies a
13153three-way choice.
13154
13155@item -fcall-used-@var{reg}
13156@opindex fcall-used
13157Treat the register named @var{reg} as an allocable register that is
13158clobbered by function calls.  It may be allocated for temporaries or
13159variables that do not live across a call.  Functions compiled this way
13160do not save and restore the register @var{reg}.
13161
13162It is an error to use this flag with the frame pointer or stack pointer.
13163Use of this flag for other registers that have fixed pervasive roles in
13164the machine's execution model produces disastrous results.
13165
13166This flag does not have a negative form, because it specifies a
13167three-way choice.
13168
13169@item -fcall-saved-@var{reg}
13170@opindex fcall-saved
13171Treat the register named @var{reg} as an allocable register saved by
13172functions.  It may be allocated even for temporaries or variables that
13173live across a call.  Functions compiled this way save and restore
13174the register @var{reg} if they use it.
13175
13176It is an error to use this flag with the frame pointer or stack pointer.
13177Use of this flag for other registers that have fixed pervasive roles in
13178the machine's execution model produces disastrous results.
13179
13180A different sort of disaster results from the use of this flag for
13181a register in which function values may be returned.
13182
13183This flag does not have a negative form, because it specifies a
13184three-way choice.
13185
13186@item -fpack-struct[=@var{n}]
13187@opindex fpack-struct
13188Without a value specified, pack all structure members together without
13189holes.  When a value is specified (which must be a small power of two), pack
13190structure members according to this value, representing the maximum
13191alignment (that is, objects with default alignment requirements larger than
13192this are output potentially unaligned at the next fitting location.
13193
13194@strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
13195code that is not binary compatible with code generated without that switch.
13196Additionally, it makes the code suboptimal.
13197Use it to conform to a non-default application binary interface.
13198
13199@item -fleading-underscore
13200@opindex fleading-underscore
13201This option and its counterpart, @option{-fno-leading-underscore}, forcibly
13202change the way C symbols are represented in the object file.  One use
13203is to help link with legacy assembly code.
13204
13205@strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
13206generate code that is not binary compatible with code generated without that
13207switch.  Use it to conform to a non-default application binary interface.
13208Not all targets provide complete support for this switch.
13209
13210@item -ftls-model=@var{model}
13211@opindex ftls-model
13212Alter the thread-local storage model to be used (@pxref{Thread-Local}).
13213The @var{model} argument should be one of @samp{global-dynamic},
13214@samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
13215Note that the choice is subject to optimization: the compiler may use
13216a more efficient model for symbols not visible outside of the translation
13217unit, or if @option{-fpic} is not given on the command line.
13218
13219The default without @option{-fpic} is @samp{initial-exec}; with
13220@option{-fpic} the default is @samp{global-dynamic}.
13221
13222@item -ftrampolines
13223@opindex ftrampolines
13224For targets that normally need trampolines for nested functions, always
13225generate them instead of using descriptors.  Otherwise, for targets that
13226do not need them, like for example HP-PA or IA-64, do nothing.
13227
13228A trampoline is a small piece of code that is created at run time on the
13229stack when the address of a nested function is taken, and is used to call
13230the nested function indirectly.  Therefore, it requires the stack to be
13231made executable in order for the program to work properly.
13232
13233@option{-fno-trampolines} is enabled by default on a language by language
13234basis to let the compiler avoid generating them, if it computes that this
13235is safe, and replace them with descriptors.  Descriptors are made up of data
13236only, but the generated code must be prepared to deal with them.  As of this
13237writing, @option{-fno-trampolines} is enabled by default only for Ada.
13238
13239Moreover, code compiled with @option{-ftrampolines} and code compiled with
13240@option{-fno-trampolines} are not binary compatible if nested functions are
13241present.  This option must therefore be used on a program-wide basis and be
13242manipulated with extreme care.
13243
13244@item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
13245@opindex fvisibility
13246Set the default ELF image symbol visibility to the specified option---all
13247symbols are marked with this unless overridden within the code.
13248Using this feature can very substantially improve linking and
13249load times of shared object libraries, produce more optimized
13250code, provide near-perfect API export and prevent symbol clashes.
13251It is @strong{strongly} recommended that you use this in any shared objects
13252you distribute.
13253
13254Despite the nomenclature, @samp{default} always means public; i.e.,
13255available to be linked against from outside the shared object.
13256@samp{protected} and @samp{internal} are pretty useless in real-world
13257usage so the only other commonly used option is @samp{hidden}.
13258The default if @option{-fvisibility} isn't specified is
13259@samp{default}, i.e., make every symbol public.
13260
13261A good explanation of the benefits offered by ensuring ELF
13262symbols have the correct visibility is given by ``How To Write
13263Shared Libraries'' by Ulrich Drepper (which can be found at
13264@w{@uref{https://www.akkadia.org/drepper/}})---however a superior
13265solution made possible by this option to marking things hidden when
13266the default is public is to make the default hidden and mark things
13267public.  This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
13268and @code{__attribute__ ((visibility("default")))} instead of
13269@code{__declspec(dllexport)} you get almost identical semantics with
13270identical syntax.  This is a great boon to those working with
13271cross-platform projects.
13272
13273For those adding visibility support to existing code, you may find
13274@code{#pragma GCC visibility} of use.  This works by you enclosing
13275the declarations you wish to set visibility for with (for example)
13276@code{#pragma GCC visibility push(hidden)} and
13277@code{#pragma GCC visibility pop}.
13278Bear in mind that symbol visibility should be viewed @strong{as
13279part of the API interface contract} and thus all new code should
13280always specify visibility when it is not the default; i.e., declarations
13281only for use within the local DSO should @strong{always} be marked explicitly
13282as hidden as so to avoid PLT indirection overheads---making this
13283abundantly clear also aids readability and self-documentation of the code.
13284Note that due to ISO C++ specification requirements, @code{operator new} and
13285@code{operator delete} must always be of default visibility.
13286
13287Be aware that headers from outside your project, in particular system
13288headers and headers from any other library you use, may not be
13289expecting to be compiled with visibility other than the default.  You
13290may need to explicitly say @code{#pragma GCC visibility push(default)}
13291before including any such headers.
13292
13293@code{extern} declarations are not affected by @option{-fvisibility}, so
13294a lot of code can be recompiled with @option{-fvisibility=hidden} with
13295no modifications.  However, this means that calls to @code{extern}
13296functions with no explicit visibility use the PLT, so it is more
13297effective to use @code{__attribute ((visibility))} and/or
13298@code{#pragma GCC visibility} to tell the compiler which @code{extern}
13299declarations should be treated as hidden.
13300
13301Note that @option{-fvisibility} does affect C++ vague linkage
13302entities. This means that, for instance, an exception class that is
13303be thrown between DSOs must be explicitly marked with default
13304visibility so that the @samp{type_info} nodes are unified between
13305the DSOs.
13306
13307An overview of these techniques, their benefits and how to use them
13308is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
13309
13310@item -fstrict-volatile-bitfields
13311@opindex fstrict-volatile-bitfields
13312This option should be used if accesses to volatile bit-fields (or other
13313structure fields, although the compiler usually honors those types
13314anyway) should use a single access of the width of the
13315field's type, aligned to a natural alignment if possible.  For
13316example, targets with memory-mapped peripheral registers might require
13317all such accesses to be 16 bits wide; with this flag you can
13318declare all peripheral bit-fields as @code{unsigned short} (assuming short
13319is 16 bits on these targets) to force GCC to use 16-bit accesses
13320instead of, perhaps, a more efficient 32-bit access.
13321
13322If this option is disabled, the compiler uses the most efficient
13323instruction.  In the previous example, that might be a 32-bit load
13324instruction, even though that accesses bytes that do not contain
13325any portion of the bit-field, or memory-mapped registers unrelated to
13326the one being updated.
13327
13328In some cases, such as when the @code{packed} attribute is applied to a
13329structure field, it may not be possible to access the field with a single
13330read or write that is correctly aligned for the target machine.  In this
13331case GCC falls back to generating multiple accesses rather than code that
13332will fault or truncate the result at run time.
13333
13334Note:  Due to restrictions of the C/C++11 memory model, write accesses are
13335not allowed to touch non bit-field members.  It is therefore recommended
13336to define all bits of the field's type as bit-field members.
13337
13338The default value of this option is determined by the application binary
13339interface for the target processor.
13340
13341@item -fsync-libcalls
13342@opindex fsync-libcalls
13343This option controls whether any out-of-line instance of the @code{__sync}
13344family of functions may be used to implement the C++11 @code{__atomic}
13345family of functions.
13346
13347The default value of this option is enabled, thus the only useful form
13348of the option is @option{-fno-sync-libcalls}.  This option is used in
13349the implementation of the @file{libatomic} runtime library.
13350
13351@end table
13352
13353@node Developer Options
13354@section GCC Developer Options
13355@cindex developer options
13356@cindex debugging GCC
13357@cindex debug dump options
13358@cindex dump options
13359@cindex compilation statistics
13360
13361This section describes command-line options that are primarily of
13362interest to GCC developers, including options to support compiler
13363testing and investigation of compiler bugs and compile-time
13364performance problems.  This includes options that produce debug dumps
13365at various points in the compilation; that print statistics such as
13366memory use and execution time; and that print information about GCC's
13367configuration, such as where it searches for libraries.  You should
13368rarely need to use any of these options for ordinary compilation and
13369linking tasks.
13370
13371@table @gcctabopt
13372
13373@item -d@var{letters}
13374@itemx -fdump-rtl-@var{pass}
13375@itemx -fdump-rtl-@var{pass}=@var{filename}
13376@opindex d
13377@opindex fdump-rtl-@var{pass}
13378Says to make debugging dumps during compilation at times specified by
13379@var{letters}.  This is used for debugging the RTL-based passes of the
13380compiler.  The file names for most of the dumps are made by appending
13381a pass number and a word to the @var{dumpname}, and the files are
13382created in the directory of the output file.  In case of
13383@option{=@var{filename}} option, the dump is output on the given file
13384instead of the pass numbered dump files.  Note that the pass number is
13385assigned as passes are registered into the pass manager.  Most passes
13386are registered in the order that they will execute and for these passes
13387the number corresponds to the pass execution order.  However, passes
13388registered by plugins, passes specific to compilation targets, or
13389passes that are otherwise registered after all the other passes are
13390numbered higher than a pass named "final", even if they are executed
13391earlier.  @var{dumpname} is generated from the name of the output
13392file if explicitly specified and not an executable, otherwise it is
13393the basename of the source file.
13394
13395Some @option{-d@var{letters}} switches have different meaning when
13396@option{-E} is used for preprocessing.  @xref{Preprocessor Options},
13397for information about preprocessor-specific dump options.
13398
13399Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
13400@option{-d} option @var{letters}.  Here are the possible
13401letters for use in @var{pass} and @var{letters}, and their meanings:
13402
13403@table @gcctabopt
13404
13405@item -fdump-rtl-alignments
13406@opindex fdump-rtl-alignments
13407Dump after branch alignments have been computed.
13408
13409@item -fdump-rtl-asmcons
13410@opindex fdump-rtl-asmcons
13411Dump after fixing rtl statements that have unsatisfied in/out constraints.
13412
13413@item -fdump-rtl-auto_inc_dec
13414@opindex fdump-rtl-auto_inc_dec
13415Dump after auto-inc-dec discovery.  This pass is only run on
13416architectures that have auto inc or auto dec instructions.
13417
13418@item -fdump-rtl-barriers
13419@opindex fdump-rtl-barriers
13420Dump after cleaning up the barrier instructions.
13421
13422@item -fdump-rtl-bbpart
13423@opindex fdump-rtl-bbpart
13424Dump after partitioning hot and cold basic blocks.
13425
13426@item -fdump-rtl-bbro
13427@opindex fdump-rtl-bbro
13428Dump after block reordering.
13429
13430@item -fdump-rtl-btl1
13431@itemx -fdump-rtl-btl2
13432@opindex fdump-rtl-btl2
13433@opindex fdump-rtl-btl2
13434@option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
13435after the two branch
13436target load optimization passes.
13437
13438@item -fdump-rtl-bypass
13439@opindex fdump-rtl-bypass
13440Dump after jump bypassing and control flow optimizations.
13441
13442@item -fdump-rtl-combine
13443@opindex fdump-rtl-combine
13444Dump after the RTL instruction combination pass.
13445
13446@item -fdump-rtl-compgotos
13447@opindex fdump-rtl-compgotos
13448Dump after duplicating the computed gotos.
13449
13450@item -fdump-rtl-ce1
13451@itemx -fdump-rtl-ce2
13452@itemx -fdump-rtl-ce3
13453@opindex fdump-rtl-ce1
13454@opindex fdump-rtl-ce2
13455@opindex fdump-rtl-ce3
13456@option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
13457@option{-fdump-rtl-ce3} enable dumping after the three
13458if conversion passes.
13459
13460@item -fdump-rtl-cprop_hardreg
13461@opindex fdump-rtl-cprop_hardreg
13462Dump after hard register copy propagation.
13463
13464@item -fdump-rtl-csa
13465@opindex fdump-rtl-csa
13466Dump after combining stack adjustments.
13467
13468@item -fdump-rtl-cse1
13469@itemx -fdump-rtl-cse2
13470@opindex fdump-rtl-cse1
13471@opindex fdump-rtl-cse2
13472@option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
13473the two common subexpression elimination passes.
13474
13475@item -fdump-rtl-dce
13476@opindex fdump-rtl-dce
13477Dump after the standalone dead code elimination passes.
13478
13479@item -fdump-rtl-dbr
13480@opindex fdump-rtl-dbr
13481Dump after delayed branch scheduling.
13482
13483@item -fdump-rtl-dce1
13484@itemx -fdump-rtl-dce2
13485@opindex fdump-rtl-dce1
13486@opindex fdump-rtl-dce2
13487@option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
13488the two dead store elimination passes.
13489
13490@item -fdump-rtl-eh
13491@opindex fdump-rtl-eh
13492Dump after finalization of EH handling code.
13493
13494@item -fdump-rtl-eh_ranges
13495@opindex fdump-rtl-eh_ranges
13496Dump after conversion of EH handling range regions.
13497
13498@item -fdump-rtl-expand
13499@opindex fdump-rtl-expand
13500Dump after RTL generation.
13501
13502@item -fdump-rtl-fwprop1
13503@itemx -fdump-rtl-fwprop2
13504@opindex fdump-rtl-fwprop1
13505@opindex fdump-rtl-fwprop2
13506@option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
13507dumping after the two forward propagation passes.
13508
13509@item -fdump-rtl-gcse1
13510@itemx -fdump-rtl-gcse2
13511@opindex fdump-rtl-gcse1
13512@opindex fdump-rtl-gcse2
13513@option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
13514after global common subexpression elimination.
13515
13516@item -fdump-rtl-init-regs
13517@opindex fdump-rtl-init-regs
13518Dump after the initialization of the registers.
13519
13520@item -fdump-rtl-initvals
13521@opindex fdump-rtl-initvals
13522Dump after the computation of the initial value sets.
13523
13524@item -fdump-rtl-into_cfglayout
13525@opindex fdump-rtl-into_cfglayout
13526Dump after converting to cfglayout mode.
13527
13528@item -fdump-rtl-ira
13529@opindex fdump-rtl-ira
13530Dump after iterated register allocation.
13531
13532@item -fdump-rtl-jump
13533@opindex fdump-rtl-jump
13534Dump after the second jump optimization.
13535
13536@item -fdump-rtl-loop2
13537@opindex fdump-rtl-loop2
13538@option{-fdump-rtl-loop2} enables dumping after the rtl
13539loop optimization passes.
13540
13541@item -fdump-rtl-mach
13542@opindex fdump-rtl-mach
13543Dump after performing the machine dependent reorganization pass, if that
13544pass exists.
13545
13546@item -fdump-rtl-mode_sw
13547@opindex fdump-rtl-mode_sw
13548Dump after removing redundant mode switches.
13549
13550@item -fdump-rtl-rnreg
13551@opindex fdump-rtl-rnreg
13552Dump after register renumbering.
13553
13554@item -fdump-rtl-outof_cfglayout
13555@opindex fdump-rtl-outof_cfglayout
13556Dump after converting from cfglayout mode.
13557
13558@item -fdump-rtl-peephole2
13559@opindex fdump-rtl-peephole2
13560Dump after the peephole pass.
13561
13562@item -fdump-rtl-postreload
13563@opindex fdump-rtl-postreload
13564Dump after post-reload optimizations.
13565
13566@item -fdump-rtl-pro_and_epilogue
13567@opindex fdump-rtl-pro_and_epilogue
13568Dump after generating the function prologues and epilogues.
13569
13570@item -fdump-rtl-sched1
13571@itemx -fdump-rtl-sched2
13572@opindex fdump-rtl-sched1
13573@opindex fdump-rtl-sched2
13574@option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
13575after the basic block scheduling passes.
13576
13577@item -fdump-rtl-ree
13578@opindex fdump-rtl-ree
13579Dump after sign/zero extension elimination.
13580
13581@item -fdump-rtl-seqabstr
13582@opindex fdump-rtl-seqabstr
13583Dump after common sequence discovery.
13584
13585@item -fdump-rtl-shorten
13586@opindex fdump-rtl-shorten
13587Dump after shortening branches.
13588
13589@item -fdump-rtl-sibling
13590@opindex fdump-rtl-sibling
13591Dump after sibling call optimizations.
13592
13593@item -fdump-rtl-split1
13594@itemx -fdump-rtl-split2
13595@itemx -fdump-rtl-split3
13596@itemx -fdump-rtl-split4
13597@itemx -fdump-rtl-split5
13598@opindex fdump-rtl-split1
13599@opindex fdump-rtl-split2
13600@opindex fdump-rtl-split3
13601@opindex fdump-rtl-split4
13602@opindex fdump-rtl-split5
13603These options enable dumping after five rounds of
13604instruction splitting.
13605
13606@item -fdump-rtl-sms
13607@opindex fdump-rtl-sms
13608Dump after modulo scheduling.  This pass is only run on some
13609architectures.
13610
13611@item -fdump-rtl-stack
13612@opindex fdump-rtl-stack
13613Dump after conversion from GCC's ``flat register file'' registers to the
13614x87's stack-like registers.  This pass is only run on x86 variants.
13615
13616@item -fdump-rtl-subreg1
13617@itemx -fdump-rtl-subreg2
13618@opindex fdump-rtl-subreg1
13619@opindex fdump-rtl-subreg2
13620@option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
13621the two subreg expansion passes.
13622
13623@item -fdump-rtl-unshare
13624@opindex fdump-rtl-unshare
13625Dump after all rtl has been unshared.
13626
13627@item -fdump-rtl-vartrack
13628@opindex fdump-rtl-vartrack
13629Dump after variable tracking.
13630
13631@item -fdump-rtl-vregs
13632@opindex fdump-rtl-vregs
13633Dump after converting virtual registers to hard registers.
13634
13635@item -fdump-rtl-web
13636@opindex fdump-rtl-web
13637Dump after live range splitting.
13638
13639@item -fdump-rtl-regclass
13640@itemx -fdump-rtl-subregs_of_mode_init
13641@itemx -fdump-rtl-subregs_of_mode_finish
13642@itemx -fdump-rtl-dfinit
13643@itemx -fdump-rtl-dfinish
13644@opindex fdump-rtl-regclass
13645@opindex fdump-rtl-subregs_of_mode_init
13646@opindex fdump-rtl-subregs_of_mode_finish
13647@opindex fdump-rtl-dfinit
13648@opindex fdump-rtl-dfinish
13649These dumps are defined but always produce empty files.
13650
13651@item -da
13652@itemx -fdump-rtl-all
13653@opindex da
13654@opindex fdump-rtl-all
13655Produce all the dumps listed above.
13656
13657@item -dA
13658@opindex dA
13659Annotate the assembler output with miscellaneous debugging information.
13660
13661@item -dD
13662@opindex dD
13663Dump all macro definitions, at the end of preprocessing, in addition to
13664normal output.
13665
13666@item -dH
13667@opindex dH
13668Produce a core dump whenever an error occurs.
13669
13670@item -dp
13671@opindex dp
13672Annotate the assembler output with a comment indicating which
13673pattern and alternative is used.  The length and cost of each instruction are
13674also printed.
13675
13676@item -dP
13677@opindex dP
13678Dump the RTL in the assembler output as a comment before each instruction.
13679Also turns on @option{-dp} annotation.
13680
13681@item -dx
13682@opindex dx
13683Just generate RTL for a function instead of compiling it.  Usually used
13684with @option{-fdump-rtl-expand}.
13685@end table
13686
13687@item -fdump-noaddr
13688@opindex fdump-noaddr
13689When doing debugging dumps, suppress address output.  This makes it more
13690feasible to use diff on debugging dumps for compiler invocations with
13691different compiler binaries and/or different
13692text / bss / data / heap / stack / dso start locations.
13693
13694@item -freport-bug
13695@opindex freport-bug
13696Collect and dump debug information into a temporary file if an
13697internal compiler error (ICE) occurs.
13698
13699@item -fdump-unnumbered
13700@opindex fdump-unnumbered
13701When doing debugging dumps, suppress instruction numbers and address output.
13702This makes it more feasible to use diff on debugging dumps for compiler
13703invocations with different options, in particular with and without
13704@option{-g}.
13705
13706@item -fdump-unnumbered-links
13707@opindex fdump-unnumbered-links
13708When doing debugging dumps (see @option{-d} option above), suppress
13709instruction numbers for the links to the previous and next instructions
13710in a sequence.
13711
13712@item -fdump-ipa-@var{switch}
13713@opindex fdump-ipa
13714Control the dumping at various stages of inter-procedural analysis
13715language tree to a file.  The file name is generated by appending a
13716switch specific suffix to the source file name, and the file is created
13717in the same directory as the output file.  The following dumps are
13718possible:
13719
13720@table @samp
13721@item all
13722Enables all inter-procedural analysis dumps.
13723
13724@item cgraph
13725Dumps information about call-graph optimization, unused function removal,
13726and inlining decisions.
13727
13728@item inline
13729Dump after function inlining.
13730
13731@end table
13732
13733@item -fdump-lang-all
13734@itemx -fdump-lang-@var{switch}
13735@itemx -fdump-lang-@var{switch}-@var{options}
13736@itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
13737@opindex fdump-lang-all
13738@opindex fdump-lang
13739Control the dumping of language-specific information.  The @var{options}
13740and @var{filename} portions behave as described in the
13741@option{-fdump-tree} option.  The following @var{switch} values are
13742accepted:
13743
13744@table @samp
13745@item all
13746
13747Enable all language-specific dumps.
13748
13749@item class
13750Dump class hierarchy information.  Virtual table information is emitted
13751unless '@option{slim}' is specified.  This option is applicable to C++ only.
13752
13753@item raw
13754Dump the raw internal tree data.  This option is applicable to C++ only.
13755
13756@end table
13757
13758@item -fdump-passes
13759@opindex fdump-passes
13760Print on @file{stderr} the list of optimization passes that are turned
13761on and off by the current command-line options.
13762
13763@item -fdump-statistics-@var{option}
13764@opindex fdump-statistics
13765Enable and control dumping of pass statistics in a separate file.  The
13766file name is generated by appending a suffix ending in
13767@samp{.statistics} to the source file name, and the file is created in
13768the same directory as the output file.  If the @samp{-@var{option}}
13769form is used, @samp{-stats} causes counters to be summed over the
13770whole compilation unit while @samp{-details} dumps every event as
13771the passes generate them.  The default with no option is to sum
13772counters for each function compiled.
13773
13774@item -fdump-tree-all
13775@itemx -fdump-tree-@var{switch}
13776@itemx -fdump-tree-@var{switch}-@var{options}
13777@itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
13778@opindex fdump-tree-all
13779@opindex fdump-tree
13780Control the dumping at various stages of processing the intermediate
13781language tree to a file.  The file name is generated by appending a
13782switch-specific suffix to the source file name, and the file is
13783created in the same directory as the output file. In case of
13784@option{=@var{filename}} option, the dump is output on the given file
13785instead of the auto named dump files.  If the @samp{-@var{options}}
13786form is used, @var{options} is a list of @samp{-} separated options
13787which control the details of the dump.  Not all options are applicable
13788to all dumps; those that are not meaningful are ignored.  The
13789following options are available
13790
13791@table @samp
13792@item address
13793Print the address of each node.  Usually this is not meaningful as it
13794changes according to the environment and source file.  Its primary use
13795is for tying up a dump file with a debug environment.
13796@item asmname
13797If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
13798in the dump instead of @code{DECL_NAME}.  Its primary use is ease of
13799use working backward from mangled names in the assembly file.
13800@item slim
13801When dumping front-end intermediate representations, inhibit dumping
13802of members of a scope or body of a function merely because that scope
13803has been reached.  Only dump such items when they are directly reachable
13804by some other path.
13805
13806When dumping pretty-printed trees, this option inhibits dumping the
13807bodies of control structures.
13808
13809When dumping RTL, print the RTL in slim (condensed) form instead of
13810the default LISP-like representation.
13811@item raw
13812Print a raw representation of the tree.  By default, trees are
13813pretty-printed into a C-like representation.
13814@item details
13815Enable more detailed dumps (not honored by every dump option). Also
13816include information from the optimization passes.
13817@item stats
13818Enable dumping various statistics about the pass (not honored by every dump
13819option).
13820@item blocks
13821Enable showing basic block boundaries (disabled in raw dumps).
13822@item graph
13823For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
13824dump a representation of the control flow graph suitable for viewing with
13825GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}.  Each function in
13826the file is pretty-printed as a subgraph, so that GraphViz can render them
13827all in a single plot.
13828
13829This option currently only works for RTL dumps, and the RTL is always
13830dumped in slim form.
13831@item vops
13832Enable showing virtual operands for every statement.
13833@item lineno
13834Enable showing line numbers for statements.
13835@item uid
13836Enable showing the unique ID (@code{DECL_UID}) for each variable.
13837@item verbose
13838Enable showing the tree dump for each statement.
13839@item eh
13840Enable showing the EH region number holding each statement.
13841@item scev
13842Enable showing scalar evolution analysis details.
13843@item optimized
13844Enable showing optimization information (only available in certain
13845passes).
13846@item missed
13847Enable showing missed optimization information (only available in certain
13848passes).
13849@item note
13850Enable other detailed optimization information (only available in
13851certain passes).
13852@item =@var{filename}
13853Instead of an auto named dump file, output into the given file
13854name. The file names @file{stdout} and @file{stderr} are treated
13855specially and are considered already open standard streams. For
13856example,
13857
13858@smallexample
13859gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
13860     -fdump-tree-pre=/dev/stderr file.c
13861@end smallexample
13862
13863outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
13864output on to @file{stderr}. If two conflicting dump filenames are
13865given for the same pass, then the latter option overrides the earlier
13866one.
13867
13868@item all
13869Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
13870and @option{lineno}.
13871
13872@item optall
13873Turn on all optimization options, i.e., @option{optimized},
13874@option{missed}, and @option{note}.
13875@end table
13876
13877To determine what tree dumps are available or find the dump for a pass
13878of interest follow the steps below.
13879
13880@enumerate
13881@item
13882Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
13883look for a code that corresponds to the pass you are interested in.
13884For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
13885@code{tree-vrp2} correspond to the three Value Range Propagation passes.
13886The number at the end distinguishes distinct invocations of the same pass.
13887@item
13888To enable the creation of the dump file, append the pass code to
13889the @option{-fdump-} option prefix and invoke GCC with it.  For example,
13890to enable the dump from the Early Value Range Propagation pass, invoke
13891GCC with the @option{-fdump-tree-evrp} option.  Optionally, you may
13892specify the name of the dump file.  If you don't specify one, GCC
13893creates as described below.
13894@item
13895Find the pass dump in a file whose name is composed of three components
13896separated by a period: the name of the source file GCC was invoked to
13897compile, a numeric suffix indicating the pass number followed by the
13898letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
13899and finally the pass code.  For example, the Early VRP pass dump might
13900be in a file named @file{myfile.c.038t.evrp} in the current working
13901directory.  Note that the numeric codes are not stable and may change
13902from one version of GCC to another.
13903@end enumerate
13904
13905@item -fopt-info
13906@itemx -fopt-info-@var{options}
13907@itemx -fopt-info-@var{options}=@var{filename}
13908@opindex fopt-info
13909Controls optimization dumps from various optimization passes. If the
13910@samp{-@var{options}} form is used, @var{options} is a list of
13911@samp{-} separated option keywords to select the dump details and
13912optimizations.
13913
13914The @var{options} can be divided into two groups: options describing the
13915verbosity of the dump, and options describing which optimizations
13916should be included. The options from both the groups can be freely
13917mixed as they are non-overlapping. However, in case of any conflicts,
13918the later options override the earlier options on the command
13919line.
13920
13921The following options control the dump verbosity:
13922
13923@table @samp
13924@item optimized
13925Print information when an optimization is successfully applied. It is
13926up to a pass to decide which information is relevant. For example, the
13927vectorizer passes print the source location of loops which are
13928successfully vectorized.
13929@item missed
13930Print information about missed optimizations. Individual passes
13931control which information to include in the output.
13932@item note
13933Print verbose information about optimizations, such as certain
13934transformations, more detailed messages about decisions etc.
13935@item all
13936Print detailed optimization information. This includes
13937@samp{optimized}, @samp{missed}, and @samp{note}.
13938@end table
13939
13940One or more of the following option keywords can be used to describe a
13941group of optimizations:
13942
13943@table @samp
13944@item ipa
13945Enable dumps from all interprocedural optimizations.
13946@item loop
13947Enable dumps from all loop optimizations.
13948@item inline
13949Enable dumps from all inlining optimizations.
13950@item omp
13951Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
13952@item vec
13953Enable dumps from all vectorization optimizations.
13954@item optall
13955Enable dumps from all optimizations. This is a superset of
13956the optimization groups listed above.
13957@end table
13958
13959If @var{options} is
13960omitted, it defaults to @samp{optimized-optall}, which means to dump all
13961info about successful optimizations from all the passes.
13962
13963If the @var{filename} is provided, then the dumps from all the
13964applicable optimizations are concatenated into the @var{filename}.
13965Otherwise the dump is output onto @file{stderr}. Though multiple
13966@option{-fopt-info} options are accepted, only one of them can include
13967a @var{filename}. If other filenames are provided then all but the
13968first such option are ignored.
13969
13970Note that the output @var{filename} is overwritten
13971in case of multiple translation units. If a combined output from
13972multiple translation units is desired, @file{stderr} should be used
13973instead.
13974
13975In the following example, the optimization info is output to
13976@file{stderr}:
13977
13978@smallexample
13979gcc -O3 -fopt-info
13980@end smallexample
13981
13982This example:
13983@smallexample
13984gcc -O3 -fopt-info-missed=missed.all
13985@end smallexample
13986
13987@noindent
13988outputs missed optimization report from all the passes into
13989@file{missed.all}, and this one:
13990
13991@smallexample
13992gcc -O2 -ftree-vectorize -fopt-info-vec-missed
13993@end smallexample
13994
13995@noindent
13996prints information about missed optimization opportunities from
13997vectorization passes on @file{stderr}.
13998Note that @option{-fopt-info-vec-missed} is equivalent to
13999@option{-fopt-info-missed-vec}.  The order of the optimization group
14000names and message types listed after @option{-fopt-info} does not matter.
14001
14002As another example,
14003@smallexample
14004gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
14005@end smallexample
14006
14007@noindent
14008outputs information about missed optimizations as well as
14009optimized locations from all the inlining passes into
14010@file{inline.txt}.
14011
14012Finally, consider:
14013
14014@smallexample
14015gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
14016@end smallexample
14017
14018@noindent
14019Here the two output filenames @file{vec.miss} and @file{loop.opt} are
14020in conflict since only one output file is allowed. In this case, only
14021the first option takes effect and the subsequent options are
14022ignored. Thus only @file{vec.miss} is produced which contains
14023dumps from the vectorizer about missed opportunities.
14024
14025@item -fsched-verbose=@var{n}
14026@opindex fsched-verbose
14027On targets that use instruction scheduling, this option controls the
14028amount of debugging output the scheduler prints to the dump files.
14029
14030For @var{n} greater than zero, @option{-fsched-verbose} outputs the
14031same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
14032For @var{n} greater than one, it also output basic block probabilities,
14033detailed ready list information and unit/insn info.  For @var{n} greater
14034than two, it includes RTL at abort point, control-flow and regions info.
14035And for @var{n} over four, @option{-fsched-verbose} also includes
14036dependence info.
14037
14038
14039
14040@item -fenable-@var{kind}-@var{pass}
14041@itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
14042@opindex fdisable-
14043@opindex fenable-
14044
14045This is a set of options that are used to explicitly disable/enable
14046optimization passes.  These options are intended for use for debugging GCC.
14047Compiler users should use regular options for enabling/disabling
14048passes instead.
14049
14050@table @gcctabopt
14051
14052@item -fdisable-ipa-@var{pass}
14053Disable IPA pass @var{pass}. @var{pass} is the pass name.  If the same pass is
14054statically invoked in the compiler multiple times, the pass name should be
14055appended with a sequential number starting from 1.
14056
14057@item -fdisable-rtl-@var{pass}
14058@itemx -fdisable-rtl-@var{pass}=@var{range-list}
14059Disable RTL pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
14060statically invoked in the compiler multiple times, the pass name should be
14061appended with a sequential number starting from 1.  @var{range-list} is a
14062comma-separated list of function ranges or assembler names.  Each range is a number
14063pair separated by a colon.  The range is inclusive in both ends.  If the range
14064is trivial, the number pair can be simplified as a single number.  If the
14065function's call graph node's @var{uid} falls within one of the specified ranges,
14066the @var{pass} is disabled for that function.  The @var{uid} is shown in the
14067function header of a dump file, and the pass names can be dumped by using
14068option @option{-fdump-passes}.
14069
14070@item -fdisable-tree-@var{pass}
14071@itemx -fdisable-tree-@var{pass}=@var{range-list}
14072Disable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description of
14073option arguments.
14074
14075@item -fenable-ipa-@var{pass}
14076Enable IPA pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
14077statically invoked in the compiler multiple times, the pass name should be
14078appended with a sequential number starting from 1.
14079
14080@item -fenable-rtl-@var{pass}
14081@itemx -fenable-rtl-@var{pass}=@var{range-list}
14082Enable RTL pass @var{pass}.  See @option{-fdisable-rtl} for option argument
14083description and examples.
14084
14085@item -fenable-tree-@var{pass}
14086@itemx -fenable-tree-@var{pass}=@var{range-list}
14087Enable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description
14088of option arguments.
14089
14090@end table
14091
14092Here are some examples showing uses of these options.
14093
14094@smallexample
14095
14096# disable ccp1 for all functions
14097   -fdisable-tree-ccp1
14098# disable complete unroll for function whose cgraph node uid is 1
14099   -fenable-tree-cunroll=1
14100# disable gcse2 for functions at the following ranges [1,1],
14101# [300,400], and [400,1000]
14102# disable gcse2 for functions foo and foo2
14103   -fdisable-rtl-gcse2=foo,foo2
14104# disable early inlining
14105   -fdisable-tree-einline
14106# disable ipa inlining
14107   -fdisable-ipa-inline
14108# enable tree full unroll
14109   -fenable-tree-unroll
14110
14111@end smallexample
14112
14113@item -fchecking
14114@itemx -fchecking=@var{n}
14115@opindex fchecking
14116@opindex fno-checking
14117Enable internal consistency checking.  The default depends on
14118the compiler configuration.  @option{-fchecking=2} enables further
14119internal consistency checking that might affect code generation.
14120
14121@item -frandom-seed=@var{string}
14122@opindex frandom-seed
14123This option provides a seed that GCC uses in place of
14124random numbers in generating certain symbol names
14125that have to be different in every compiled file.  It is also used to
14126place unique stamps in coverage data files and the object files that
14127produce them.  You can use the @option{-frandom-seed} option to produce
14128reproducibly identical object files.
14129
14130The @var{string} can either be a number (decimal, octal or hex) or an
14131arbitrary string (in which case it's converted to a number by
14132computing CRC32).
14133
14134The @var{string} should be different for every file you compile.
14135
14136@item -save-temps
14137@itemx -save-temps=cwd
14138@opindex save-temps
14139Store the usual ``temporary'' intermediate files permanently; place them
14140in the current directory and name them based on the source file.  Thus,
14141compiling @file{foo.c} with @option{-c -save-temps} produces files
14142@file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
14143preprocessed @file{foo.i} output file even though the compiler now
14144normally uses an integrated preprocessor.
14145
14146When used in combination with the @option{-x} command-line option,
14147@option{-save-temps} is sensible enough to avoid over writing an
14148input source file with the same extension as an intermediate file.
14149The corresponding intermediate file may be obtained by renaming the
14150source file before using @option{-save-temps}.
14151
14152If you invoke GCC in parallel, compiling several different source
14153files that share a common base name in different subdirectories or the
14154same source file compiled for multiple output destinations, it is
14155likely that the different parallel compilers will interfere with each
14156other, and overwrite the temporary files.  For instance:
14157
14158@smallexample
14159gcc -save-temps -o outdir1/foo.o indir1/foo.c&
14160gcc -save-temps -o outdir2/foo.o indir2/foo.c&
14161@end smallexample
14162
14163may result in @file{foo.i} and @file{foo.o} being written to
14164simultaneously by both compilers.
14165
14166@item -save-temps=obj
14167@opindex save-temps=obj
14168Store the usual ``temporary'' intermediate files permanently.  If the
14169@option{-o} option is used, the temporary files are based on the
14170object file.  If the @option{-o} option is not used, the
14171@option{-save-temps=obj} switch behaves like @option{-save-temps}.
14172
14173For example:
14174
14175@smallexample
14176gcc -save-temps=obj -c foo.c
14177gcc -save-temps=obj -c bar.c -o dir/xbar.o
14178gcc -save-temps=obj foobar.c -o dir2/yfoobar
14179@end smallexample
14180
14181@noindent
14182creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
14183@file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
14184@file{dir2/yfoobar.o}.
14185
14186@item -time@r{[}=@var{file}@r{]}
14187@opindex time
14188Report the CPU time taken by each subprocess in the compilation
14189sequence.  For C source files, this is the compiler proper and assembler
14190(plus the linker if linking is done).
14191
14192Without the specification of an output file, the output looks like this:
14193
14194@smallexample
14195# cc1 0.12 0.01
14196# as 0.00 0.01
14197@end smallexample
14198
14199The first number on each line is the ``user time'', that is time spent
14200executing the program itself.  The second number is ``system time'',
14201time spent executing operating system routines on behalf of the program.
14202Both numbers are in seconds.
14203
14204With the specification of an output file, the output is appended to the
14205named file, and it looks like this:
14206
14207@smallexample
142080.12 0.01 cc1 @var{options}
142090.00 0.01 as @var{options}
14210@end smallexample
14211
14212The ``user time'' and the ``system time'' are moved before the program
14213name, and the options passed to the program are displayed, so that one
14214can later tell what file was being compiled, and with which options.
14215
14216@item -fdump-final-insns@r{[}=@var{file}@r{]}
14217@opindex fdump-final-insns
14218Dump the final internal representation (RTL) to @var{file}.  If the
14219optional argument is omitted (or if @var{file} is @code{.}), the name
14220of the dump file is determined by appending @code{.gkd} to the
14221compilation output file name.
14222
14223@item -fcompare-debug@r{[}=@var{opts}@r{]}
14224@opindex fcompare-debug
14225@opindex fno-compare-debug
14226If no error occurs during compilation, run the compiler a second time,
14227adding @var{opts} and @option{-fcompare-debug-second} to the arguments
14228passed to the second compilation.  Dump the final internal
14229representation in both compilations, and print an error if they differ.
14230
14231If the equal sign is omitted, the default @option{-gtoggle} is used.
14232
14233The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
14234and nonzero, implicitly enables @option{-fcompare-debug}.  If
14235@env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
14236then it is used for @var{opts}, otherwise the default @option{-gtoggle}
14237is used.
14238
14239@option{-fcompare-debug=}, with the equal sign but without @var{opts},
14240is equivalent to @option{-fno-compare-debug}, which disables the dumping
14241of the final representation and the second compilation, preventing even
14242@env{GCC_COMPARE_DEBUG} from taking effect.
14243
14244To verify full coverage during @option{-fcompare-debug} testing, set
14245@env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
14246which GCC rejects as an invalid option in any actual compilation
14247(rather than preprocessing, assembly or linking).  To get just a
14248warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
14249not overridden} will do.
14250
14251@item -fcompare-debug-second
14252@opindex fcompare-debug-second
14253This option is implicitly passed to the compiler for the second
14254compilation requested by @option{-fcompare-debug}, along with options to
14255silence warnings, and omitting other options that would cause the compiler
14256to produce output to files or to standard output as a side effect.  Dump
14257files and preserved temporary files are renamed so as to contain the
14258@code{.gk} additional extension during the second compilation, to avoid
14259overwriting those generated by the first.
14260
14261When this option is passed to the compiler driver, it causes the
14262@emph{first} compilation to be skipped, which makes it useful for little
14263other than debugging the compiler proper.
14264
14265@item -gtoggle
14266@opindex gtoggle
14267Turn off generation of debug info, if leaving out this option
14268generates it, or turn it on at level 2 otherwise.  The position of this
14269argument in the command line does not matter; it takes effect after all
14270other options are processed, and it does so only once, no matter how
14271many times it is given.  This is mainly intended to be used with
14272@option{-fcompare-debug}.
14273
14274@item -fvar-tracking-assignments-toggle
14275@opindex fvar-tracking-assignments-toggle
14276@opindex fno-var-tracking-assignments-toggle
14277Toggle @option{-fvar-tracking-assignments}, in the same way that
14278@option{-gtoggle} toggles @option{-g}.
14279
14280@item -Q
14281@opindex Q
14282Makes the compiler print out each function name as it is compiled, and
14283print some statistics about each pass when it finishes.
14284
14285@item -ftime-report
14286@opindex ftime-report
14287Makes the compiler print some statistics about the time consumed by each
14288pass when it finishes.
14289
14290@item -ftime-report-details
14291@opindex ftime-report-details
14292Record the time consumed by infrastructure parts separately for each pass.
14293
14294@item -fira-verbose=@var{n}
14295@opindex fira-verbose
14296Control the verbosity of the dump file for the integrated register allocator.
14297The default value is 5.  If the value @var{n} is greater or equal to 10,
14298the dump output is sent to stderr using the same format as @var{n} minus 10.
14299
14300@item -flto-report
14301@opindex flto-report
14302Prints a report with internal details on the workings of the link-time
14303optimizer.  The contents of this report vary from version to version.
14304It is meant to be useful to GCC developers when processing object
14305files in LTO mode (via @option{-flto}).
14306
14307Disabled by default.
14308
14309@item -flto-report-wpa
14310@opindex flto-report-wpa
14311Like @option{-flto-report}, but only print for the WPA phase of Link
14312Time Optimization.
14313
14314@item -fmem-report
14315@opindex fmem-report
14316Makes the compiler print some statistics about permanent memory
14317allocation when it finishes.
14318
14319@item -fmem-report-wpa
14320@opindex fmem-report-wpa
14321Makes the compiler print some statistics about permanent memory
14322allocation for the WPA phase only.
14323
14324@item -fpre-ipa-mem-report
14325@opindex fpre-ipa-mem-report
14326@item -fpost-ipa-mem-report
14327@opindex fpost-ipa-mem-report
14328Makes the compiler print some statistics about permanent memory
14329allocation before or after interprocedural optimization.
14330
14331@item -fprofile-report
14332@opindex fprofile-report
14333Makes the compiler print some statistics about consistency of the
14334(estimated) profile and effect of individual passes.
14335
14336@item -fstack-usage
14337@opindex fstack-usage
14338Makes the compiler output stack usage information for the program, on a
14339per-function basis.  The filename for the dump is made by appending
14340@file{.su} to the @var{auxname}.  @var{auxname} is generated from the name of
14341the output file, if explicitly specified and it is not an executable,
14342otherwise it is the basename of the source file.  An entry is made up
14343of three fields:
14344
14345@itemize
14346@item
14347The name of the function.
14348@item
14349A number of bytes.
14350@item
14351One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
14352@end itemize
14353
14354The qualifier @code{static} means that the function manipulates the stack
14355statically: a fixed number of bytes are allocated for the frame on function
14356entry and released on function exit; no stack adjustments are otherwise made
14357in the function.  The second field is this fixed number of bytes.
14358
14359The qualifier @code{dynamic} means that the function manipulates the stack
14360dynamically: in addition to the static allocation described above, stack
14361adjustments are made in the body of the function, for example to push/pop
14362arguments around function calls.  If the qualifier @code{bounded} is also
14363present, the amount of these adjustments is bounded at compile time and
14364the second field is an upper bound of the total amount of stack used by
14365the function.  If it is not present, the amount of these adjustments is
14366not bounded at compile time and the second field only represents the
14367bounded part.
14368
14369@item -fstats
14370@opindex fstats
14371Emit statistics about front-end processing at the end of the compilation.
14372This option is supported only by the C++ front end, and
14373the information is generally only useful to the G++ development team.
14374
14375@item -fdbg-cnt-list
14376@opindex fdbg-cnt-list
14377Print the name and the counter upper bound for all debug counters.
14378
14379
14380@item -fdbg-cnt=@var{counter-value-list}
14381@opindex fdbg-cnt
14382Set the internal debug counter upper bound.  @var{counter-value-list}
14383is a comma-separated list of @var{name}:@var{value} pairs
14384which sets the upper bound of each debug counter @var{name} to @var{value}.
14385All debug counters have the initial upper bound of @code{UINT_MAX};
14386thus @code{dbg_cnt} returns true always unless the upper bound
14387is set by this option.
14388For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
14389@code{dbg_cnt(dce)} returns true only for first 10 invocations.
14390
14391@item -print-file-name=@var{library}
14392@opindex print-file-name
14393Print the full absolute name of the library file @var{library} that
14394would be used when linking---and don't do anything else.  With this
14395option, GCC does not compile or link anything; it just prints the
14396file name.
14397
14398@item -print-multi-directory
14399@opindex print-multi-directory
14400Print the directory name corresponding to the multilib selected by any
14401other switches present in the command line.  This directory is supposed
14402to exist in @env{GCC_EXEC_PREFIX}.
14403
14404@item -print-multi-lib
14405@opindex print-multi-lib
14406Print the mapping from multilib directory names to compiler switches
14407that enable them.  The directory name is separated from the switches by
14408@samp{;}, and each switch starts with an @samp{@@} instead of the
14409@samp{-}, without spaces between multiple switches.  This is supposed to
14410ease shell processing.
14411
14412@item -print-multi-os-directory
14413@opindex print-multi-os-directory
14414Print the path to OS libraries for the selected
14415multilib, relative to some @file{lib} subdirectory.  If OS libraries are
14416present in the @file{lib} subdirectory and no multilibs are used, this is
14417usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
14418sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
14419@file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
14420subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
14421
14422@item -print-multiarch
14423@opindex print-multiarch
14424Print the path to OS libraries for the selected multiarch,
14425relative to some @file{lib} subdirectory.
14426
14427@item -print-prog-name=@var{program}
14428@opindex print-prog-name
14429Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
14430
14431@item -print-libgcc-file-name
14432@opindex print-libgcc-file-name
14433Same as @option{-print-file-name=libgcc.a}.
14434
14435This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
14436but you do want to link with @file{libgcc.a}.  You can do:
14437
14438@smallexample
14439gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
14440@end smallexample
14441
14442@item -print-search-dirs
14443@opindex print-search-dirs
14444Print the name of the configured installation directory and a list of
14445program and library directories @command{gcc} searches---and don't do anything else.
14446
14447This is useful when @command{gcc} prints the error message
14448@samp{installation problem, cannot exec cpp0: No such file or directory}.
14449To resolve this you either need to put @file{cpp0} and the other compiler
14450components where @command{gcc} expects to find them, or you can set the environment
14451variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
14452Don't forget the trailing @samp{/}.
14453@xref{Environment Variables}.
14454
14455@item -print-sysroot
14456@opindex print-sysroot
14457Print the target sysroot directory that is used during
14458compilation.  This is the target sysroot specified either at configure
14459time or using the @option{--sysroot} option, possibly with an extra
14460suffix that depends on compilation options.  If no target sysroot is
14461specified, the option prints nothing.
14462
14463@item -print-sysroot-headers-suffix
14464@opindex print-sysroot-headers-suffix
14465Print the suffix added to the target sysroot when searching for
14466headers, or give an error if the compiler is not configured with such
14467a suffix---and don't do anything else.
14468
14469@item -dumpmachine
14470@opindex dumpmachine
14471Print the compiler's target machine (for example,
14472@samp{i686-pc-linux-gnu})---and don't do anything else.
14473
14474@item -dumpversion
14475@opindex dumpversion
14476Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
14477anything else.  This is the compiler version used in filesystem paths,
14478specs, can be depending on how the compiler has been configured just
14479a single number (major version), two numbers separated by dot (major and
14480minor version) or three numbers separated by dots (major, minor and patchlevel
14481version).
14482
14483@item -dumpfullversion
14484@opindex dumpfullversion
14485Print the full compiler version, always 3 numbers separated by dots,
14486major, minor and patchlevel version.
14487
14488@item -dumpspecs
14489@opindex dumpspecs
14490Print the compiler's built-in specs---and don't do anything else.  (This
14491is used when GCC itself is being built.)  @xref{Spec Files}.
14492@end table
14493
14494@node Submodel Options
14495@section Machine-Dependent Options
14496@cindex submodel options
14497@cindex specifying hardware config
14498@cindex hardware models and configurations, specifying
14499@cindex target-dependent options
14500@cindex machine-dependent options
14501
14502Each target machine supported by GCC can have its own options---for
14503example, to allow you to compile for a particular processor variant or
14504ABI, or to control optimizations specific to that machine.  By
14505convention, the names of machine-specific options start with
14506@samp{-m}.
14507
14508Some configurations of the compiler also support additional target-specific
14509options, usually for compatibility with other compilers on the same
14510platform.
14511
14512@c This list is ordered alphanumerically by subsection name.
14513@c It should be the same order and spelling as these options are listed
14514@c in Machine Dependent Options
14515
14516@menu
14517* AArch64 Options::
14518* Adapteva Epiphany Options::
14519* ARC Options::
14520* ARM Options::
14521* AVR Options::
14522* Blackfin Options::
14523* C6X Options::
14524* CRIS Options::
14525* CR16 Options::
14526* Darwin Options::
14527* DEC Alpha Options::
14528* FR30 Options::
14529* FT32 Options::
14530* FRV Options::
14531* GNU/Linux Options::
14532* H8/300 Options::
14533* HPPA Options::
14534* IA-64 Options::
14535* LM32 Options::
14536* M32C Options::
14537* M32R/D Options::
14538* M680x0 Options::
14539* MCore Options::
14540* MeP Options::
14541* MicroBlaze Options::
14542* MIPS Options::
14543* MMIX Options::
14544* MN10300 Options::
14545* Moxie Options::
14546* MSP430 Options::
14547* NDS32 Options::
14548* Nios II Options::
14549* Nvidia PTX Options::
14550* PDP-11 Options::
14551* picoChip Options::
14552* PowerPC Options::
14553* PowerPC SPE Options::
14554* RISC-V Options::
14555* RL78 Options::
14556* RS/6000 and PowerPC Options::
14557* RX Options::
14558* S/390 and zSeries Options::
14559* Score Options::
14560* SH Options::
14561* Solaris 2 Options::
14562* SPARC Options::
14563* SPU Options::
14564* System V Options::
14565* TILE-Gx Options::
14566* TILEPro Options::
14567* V850 Options::
14568* VAX Options::
14569* Visium Options::
14570* VMS Options::
14571* VxWorks Options::
14572* x86 Options::
14573* x86 Windows Options::
14574* Xstormy16 Options::
14575* Xtensa Options::
14576* zSeries Options::
14577@end menu
14578
14579@node AArch64 Options
14580@subsection AArch64 Options
14581@cindex AArch64 Options
14582
14583These options are defined for AArch64 implementations:
14584
14585@table @gcctabopt
14586
14587@item -mabi=@var{name}
14588@opindex mabi
14589Generate code for the specified data model.  Permissible values
14590are @samp{ilp32} for SysV-like data model where int, long int and pointers
14591are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
14592but long int and pointers are 64 bits.
14593
14594The default depends on the specific target configuration.  Note that
14595the LP64 and ILP32 ABIs are not link-compatible; you must compile your
14596entire program with the same ABI, and link with a compatible set of libraries.
14597
14598@item -mbig-endian
14599@opindex mbig-endian
14600Generate big-endian code.  This is the default when GCC is configured for an
14601@samp{aarch64_be-*-*} target.
14602
14603@item -mgeneral-regs-only
14604@opindex mgeneral-regs-only
14605Generate code which uses only the general-purpose registers.  This will prevent
14606the compiler from using floating-point and Advanced SIMD registers but will not
14607impose any restrictions on the assembler.
14608
14609@item -mlittle-endian
14610@opindex mlittle-endian
14611Generate little-endian code.  This is the default when GCC is configured for an
14612@samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
14613
14614@item -mcmodel=tiny
14615@opindex mcmodel=tiny
14616Generate code for the tiny code model.  The program and its statically defined
14617symbols must be within 1MB of each other.  Programs can be statically or
14618dynamically linked.
14619
14620@item -mcmodel=small
14621@opindex mcmodel=small
14622Generate code for the small code model.  The program and its statically defined
14623symbols must be within 4GB of each other.  Programs can be statically or
14624dynamically linked.  This is the default code model.
14625
14626@item -mcmodel=large
14627@opindex mcmodel=large
14628Generate code for the large code model.  This makes no assumptions about
14629addresses and sizes of sections.  Programs can be statically linked only.
14630
14631@item -mstrict-align
14632@opindex mstrict-align
14633Avoid generating memory accesses that may not be aligned on a natural object
14634boundary as described in the architecture specification.
14635
14636@item -momit-leaf-frame-pointer
14637@itemx -mno-omit-leaf-frame-pointer
14638@opindex momit-leaf-frame-pointer
14639@opindex mno-omit-leaf-frame-pointer
14640Omit or keep the frame pointer in leaf functions.  The former behavior is the
14641default.
14642
14643@item -mtls-dialect=desc
14644@opindex mtls-dialect=desc
14645Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
14646of TLS variables.  This is the default.
14647
14648@item -mtls-dialect=traditional
14649@opindex mtls-dialect=traditional
14650Use traditional TLS as the thread-local storage mechanism for dynamic accesses
14651of TLS variables.
14652
14653@item -mtls-size=@var{size}
14654@opindex mtls-size
14655Specify bit size of immediate TLS offsets.  Valid values are 12, 24, 32, 48.
14656This option requires binutils 2.26 or newer.
14657
14658@item -mfix-cortex-a53-835769
14659@itemx -mno-fix-cortex-a53-835769
14660@opindex mfix-cortex-a53-835769
14661@opindex mno-fix-cortex-a53-835769
14662Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
14663This involves inserting a NOP instruction between memory instructions and
1466464-bit integer multiply-accumulate instructions.
14665
14666@item -mfix-cortex-a53-843419
14667@itemx -mno-fix-cortex-a53-843419
14668@opindex mfix-cortex-a53-843419
14669@opindex mno-fix-cortex-a53-843419
14670Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
14671This erratum workaround is made at link time and this will only pass the
14672corresponding flag to the linker.
14673
14674@item -mlow-precision-recip-sqrt
14675@itemx -mno-low-precision-recip-sqrt
14676@opindex mlow-precision-recip-sqrt
14677@opindex mno-low-precision-recip-sqrt
14678Enable or disable the reciprocal square root approximation.
14679This option only has an effect if @option{-ffast-math} or
14680@option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
14681precision of reciprocal square root results to about 16 bits for
14682single precision and to 32 bits for double precision.
14683
14684@item -mlow-precision-sqrt
14685@itemx -mno-low-precision-sqrt
14686@opindex -mlow-precision-sqrt
14687@opindex -mno-low-precision-sqrt
14688Enable or disable the square root approximation.
14689This option only has an effect if @option{-ffast-math} or
14690@option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
14691precision of square root results to about 16 bits for
14692single precision and to 32 bits for double precision.
14693If enabled, it implies @option{-mlow-precision-recip-sqrt}.
14694
14695@item -mlow-precision-div
14696@itemx -mno-low-precision-div
14697@opindex -mlow-precision-div
14698@opindex -mno-low-precision-div
14699Enable or disable the division approximation.
14700This option only has an effect if @option{-ffast-math} or
14701@option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
14702precision of division results to about 16 bits for
14703single precision and to 32 bits for double precision.
14704
14705@item -march=@var{name}
14706@opindex march
14707Specify the name of the target architecture and, optionally, one or
14708more feature modifiers.  This option has the form
14709@option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
14710
14711The permissible values for @var{arch} are @samp{armv8-a},
14712@samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a} or @samp{armv8.4-a}
14713or @var{native}.
14714
14715The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
14716support for the ARMv8.4-A architecture extensions.
14717
14718The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
14719support for the ARMv8.3-A architecture extensions.
14720
14721The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
14722support for the ARMv8.2-A architecture extensions.
14723
14724The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
14725support for the ARMv8.1-A architecture extension.  In particular, it
14726enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
14727
14728The value @samp{native} is available on native AArch64 GNU/Linux and
14729causes the compiler to pick the architecture of the host system.  This
14730option has no effect if the compiler is unable to recognize the
14731architecture of the host system,
14732
14733The permissible values for @var{feature} are listed in the sub-section
14734on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14735Feature Modifiers}.  Where conflicting feature modifiers are
14736specified, the right-most feature is used.
14737
14738GCC uses @var{name} to determine what kind of instructions it can emit
14739when generating assembly code.  If @option{-march} is specified
14740without either of @option{-mtune} or @option{-mcpu} also being
14741specified, the code is tuned to perform well across a range of target
14742processors implementing the target architecture.
14743
14744@item -mtune=@var{name}
14745@opindex mtune
14746Specify the name of the target processor for which GCC should tune the
14747performance of the code.  Permissible values for this option are:
14748@samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
14749@samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
14750@samp{cortex-a76}, @samp{ares}, @samp{neoverse-n1}
14751@samp{exynos-m1}, @samp{falkor}, @samp{qdf24xx}, @samp{saphira},
14752@samp{xgene1}, @samp{vulcan}, @samp{thunderx},
14753@samp{thunderxt88}, @samp{thunderxt88p1}, @samp{thunderxt81},
14754@samp{thunderxt83}, @samp{thunderx2t99}, @samp{cortex-a57.cortex-a53},
14755@samp{cortex-a72.cortex-a53}, @samp{cortex-a73.cortex-a35},
14756@samp{cortex-a73.cortex-a53}, @samp{cortex-a75.cortex-a55},
14757@samp{native}.
14758
14759The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
14760@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
14761@samp{cortex-a75.cortex-a55} specify that GCC should tune for a
14762big.LITTLE system.
14763
14764Additionally on native AArch64 GNU/Linux systems the value
14765@samp{native} tunes performance to the host system.  This option has no effect
14766if the compiler is unable to recognize the processor of the host system.
14767
14768Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
14769are specified, the code is tuned to perform well across a range
14770of target processors.
14771
14772This option cannot be suffixed by feature modifiers.
14773
14774@item -mcpu=@var{name}
14775@opindex mcpu
14776Specify the name of the target processor, optionally suffixed by one
14777or more feature modifiers.  This option has the form
14778@option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
14779the permissible values for @var{cpu} are the same as those available
14780for @option{-mtune}.  The permissible values for @var{feature} are
14781documented in the sub-section on
14782@ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14783Feature Modifiers}.  Where conflicting feature modifiers are
14784specified, the right-most feature is used.
14785
14786GCC uses @var{name} to determine what kind of instructions it can emit when
14787generating assembly code (as if by @option{-march}) and to determine
14788the target processor for which to tune for performance (as if
14789by @option{-mtune}).  Where this option is used in conjunction
14790with @option{-march} or @option{-mtune}, those options take precedence
14791over the appropriate part of this option.
14792
14793@item -moverride=@var{string}
14794@opindex moverride
14795Override tuning decisions made by the back-end in response to a
14796@option{-mtune=} switch.  The syntax, semantics, and accepted values
14797for @var{string} in this option are not guaranteed to be consistent
14798across releases.
14799
14800This option is only intended to be useful when developing GCC.
14801
14802@item -mverbose-cost-dump
14803@opindex mverbose-cost-dump
14804Enable verbose cost model dumping in the debug dump files.  This option is
14805provided for use in debugging the compiler.
14806
14807@item -mpc-relative-literal-loads
14808@itemx -mno-pc-relative-literal-loads
14809@opindex mpc-relative-literal-loads
14810@opindex mno-pc-relative-literal-loads
14811Enable or disable PC-relative literal loads.  With this option literal pools are
14812accessed using a single instruction and emitted after each function.  This
14813limits the maximum size of functions to 1MB.  This is enabled by default for
14814@option{-mcmodel=tiny}.
14815
14816@item -msign-return-address=@var{scope}
14817@opindex msign-return-address
14818Select the function scope on which return address signing will be applied.
14819Permissible values are @samp{none}, which disables return address signing,
14820@samp{non-leaf}, which enables pointer signing for functions which are not leaf
14821functions, and @samp{all}, which enables pointer signing for all functions.  The
14822default value is @samp{none}.
14823
14824@item -msve-vector-bits=@var{bits}
14825@opindex msve-vector-bits
14826Specify the number of bits in an SVE vector register.  This option only has
14827an effect when SVE is enabled.
14828
14829GCC supports two forms of SVE code generation: ``vector-length
14830agnostic'' output that works with any size of vector register and
14831``vector-length specific'' output that allows GCC to make assumptions
14832about the vector length when it is useful for optimization reasons.
14833The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
14834@samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
14835Specifying @samp{scalable} selects vector-length agnostic
14836output.  At present @samp{-msve-vector-bits=128} also generates vector-length
14837agnostic output.  All other values generate vector-length specific code.
14838The behavior of these values may change in future releases and no value except
14839@samp{scalable} should be relied on for producing code that is portable across
14840different hardware SVE vector lengths.
14841
14842The default is @samp{-msve-vector-bits=scalable}, which produces
14843vector-length agnostic code.
14844@end table
14845
14846@subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
14847@anchor{aarch64-feature-modifiers}
14848@cindex @option{-march} feature modifiers
14849@cindex @option{-mcpu} feature modifiers
14850Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
14851the following and their inverses @option{no@var{feature}}:
14852
14853@table @samp
14854@item crc
14855Enable CRC extension.  This is on by default for
14856@option{-march=armv8.1-a}.
14857@item crypto
14858Enable Crypto extension.  This also enables Advanced SIMD and floating-point
14859instructions.
14860@item fp
14861Enable floating-point instructions.  This is on by default for all possible
14862values for options @option{-march} and @option{-mcpu}.
14863@item simd
14864Enable Advanced SIMD instructions.  This also enables floating-point
14865instructions.  This is on by default for all possible values for options
14866@option{-march} and @option{-mcpu}.
14867@item sve
14868Enable Scalable Vector Extension instructions.  This also enables Advanced
14869SIMD and floating-point instructions.
14870@item lse
14871Enable Large System Extension instructions.  This is on by default for
14872@option{-march=armv8.1-a}.
14873@item rdma
14874Enable Round Double Multiply Accumulate instructions.  This is on by default
14875for @option{-march=armv8.1-a}.
14876@item fp16
14877Enable FP16 extension.  This also enables floating-point instructions.
14878@item fp16fml
14879Enable FP16 fmla extension.  This also enables FP16 extensions and
14880floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
14881
14882@item rcpc
14883Enable the RcPc extension.  This does not change code generation from GCC,
14884but is passed on to the assembler, enabling inline asm statements to use
14885instructions from the RcPc extension.
14886@item dotprod
14887Enable the Dot Product extension.  This also enables Advanced SIMD instructions.
14888@item aes
14889Enable the Armv8-a aes and pmull crypto extension.  This also enables Advanced
14890SIMD instructions.
14891@item sha2
14892Enable the Armv8-a sha2 crypto extension.  This also enables Advanced SIMD instructions.
14893@item sha3
14894Enable the sha512 and sha3 crypto extension.  This also enables Advanced SIMD
14895instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
14896@item sm4
14897Enable the sm3 and sm4 crypto extension.  This also enables Advanced SIMD instructions.
14898Use of this option with architectures prior to Armv8.2-A is not supported.
14899
14900@end table
14901
14902Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
14903which implies @option{fp}.
14904Conversely, @option{nofp} implies @option{nosimd}, which implies
14905@option{nocrypto}, @option{noaes} and @option{nosha2}.
14906
14907@node Adapteva Epiphany Options
14908@subsection Adapteva Epiphany Options
14909
14910These @samp{-m} options are defined for Adapteva Epiphany:
14911
14912@table @gcctabopt
14913@item -mhalf-reg-file
14914@opindex mhalf-reg-file
14915Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
14916That allows code to run on hardware variants that lack these registers.
14917
14918@item -mprefer-short-insn-regs
14919@opindex mprefer-short-insn-regs
14920Preferentially allocate registers that allow short instruction generation.
14921This can result in increased instruction count, so this may either reduce or
14922increase overall code size.
14923
14924@item -mbranch-cost=@var{num}
14925@opindex mbranch-cost
14926Set the cost of branches to roughly @var{num} ``simple'' instructions.
14927This cost is only a heuristic and is not guaranteed to produce
14928consistent results across releases.
14929
14930@item -mcmove
14931@opindex mcmove
14932Enable the generation of conditional moves.
14933
14934@item -mnops=@var{num}
14935@opindex mnops
14936Emit @var{num} NOPs before every other generated instruction.
14937
14938@item -mno-soft-cmpsf
14939@opindex mno-soft-cmpsf
14940For single-precision floating-point comparisons, emit an @code{fsub} instruction
14941and test the flags.  This is faster than a software comparison, but can
14942get incorrect results in the presence of NaNs, or when two different small
14943numbers are compared such that their difference is calculated as zero.
14944The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
14945software comparisons.
14946
14947@item -mstack-offset=@var{num}
14948@opindex mstack-offset
14949Set the offset between the top of the stack and the stack pointer.
14950E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
14951can be used by leaf functions without stack allocation.
14952Values other than @samp{8} or @samp{16} are untested and unlikely to work.
14953Note also that this option changes the ABI; compiling a program with a
14954different stack offset than the libraries have been compiled with
14955generally does not work.
14956This option can be useful if you want to evaluate if a different stack
14957offset would give you better code, but to actually use a different stack
14958offset to build working programs, it is recommended to configure the
14959toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
14960
14961@item -mno-round-nearest
14962@opindex mno-round-nearest
14963Make the scheduler assume that the rounding mode has been set to
14964truncating.  The default is @option{-mround-nearest}.
14965
14966@item -mlong-calls
14967@opindex mlong-calls
14968If not otherwise specified by an attribute, assume all calls might be beyond
14969the offset range of the @code{b} / @code{bl} instructions, and therefore load the
14970function address into a register before performing a (otherwise direct) call.
14971This is the default.
14972
14973@item -mshort-calls
14974@opindex short-calls
14975If not otherwise specified by an attribute, assume all direct calls are
14976in the range of the @code{b} / @code{bl} instructions, so use these instructions
14977for direct calls.  The default is @option{-mlong-calls}.
14978
14979@item -msmall16
14980@opindex msmall16
14981Assume addresses can be loaded as 16-bit unsigned values.  This does not
14982apply to function addresses for which @option{-mlong-calls} semantics
14983are in effect.
14984
14985@item -mfp-mode=@var{mode}
14986@opindex mfp-mode
14987Set the prevailing mode of the floating-point unit.
14988This determines the floating-point mode that is provided and expected
14989at function call and return time.  Making this mode match the mode you
14990predominantly need at function start can make your programs smaller and
14991faster by avoiding unnecessary mode switches.
14992
14993@var{mode} can be set to one the following values:
14994
14995@table @samp
14996@item caller
14997Any mode at function entry is valid, and retained or restored when
14998the function returns, and when it calls other functions.
14999This mode is useful for compiling libraries or other compilation units
15000you might want to incorporate into different programs with different
15001prevailing FPU modes, and the convenience of being able to use a single
15002object file outweighs the size and speed overhead for any extra
15003mode switching that might be needed, compared with what would be needed
15004with a more specific choice of prevailing FPU mode.
15005
15006@item truncate
15007This is the mode used for floating-point calculations with
15008truncating (i.e.@: round towards zero) rounding mode.  That includes
15009conversion from floating point to integer.
15010
15011@item round-nearest
15012This is the mode used for floating-point calculations with
15013round-to-nearest-or-even rounding mode.
15014
15015@item int
15016This is the mode used to perform integer calculations in the FPU, e.g.@:
15017integer multiply, or integer multiply-and-accumulate.
15018@end table
15019
15020The default is @option{-mfp-mode=caller}
15021
15022@item -mnosplit-lohi
15023@itemx -mno-postinc
15024@itemx -mno-postmodify
15025@opindex mnosplit-lohi
15026@opindex mno-postinc
15027@opindex mno-postmodify
15028Code generation tweaks that disable, respectively, splitting of 32-bit
15029loads, generation of post-increment addresses, and generation of
15030post-modify addresses.  The defaults are @option{msplit-lohi},
15031@option{-mpost-inc}, and @option{-mpost-modify}.
15032
15033@item -mnovect-double
15034@opindex mno-vect-double
15035Change the preferred SIMD mode to SImode.  The default is
15036@option{-mvect-double}, which uses DImode as preferred SIMD mode.
15037
15038@item -max-vect-align=@var{num}
15039@opindex max-vect-align
15040The maximum alignment for SIMD vector mode types.
15041@var{num} may be 4 or 8.  The default is 8.
15042Note that this is an ABI change, even though many library function
15043interfaces are unaffected if they don't use SIMD vector modes
15044in places that affect size and/or alignment of relevant types.
15045
15046@item -msplit-vecmove-early
15047@opindex msplit-vecmove-early
15048Split vector moves into single word moves before reload.  In theory this
15049can give better register allocation, but so far the reverse seems to be
15050generally the case.
15051
15052@item -m1reg-@var{reg}
15053@opindex m1reg-
15054Specify a register to hold the constant @minus{}1, which makes loading small negative
15055constants and certain bitmasks faster.
15056Allowable values for @var{reg} are @samp{r43} and @samp{r63},
15057which specify use of that register as a fixed register,
15058and @samp{none}, which means that no register is used for this
15059purpose.  The default is @option{-m1reg-none}.
15060
15061@end table
15062
15063@node ARC Options
15064@subsection ARC Options
15065@cindex ARC options
15066
15067The following options control the architecture variant for which code
15068is being compiled:
15069
15070@c architecture variants
15071@table @gcctabopt
15072
15073@item -mbarrel-shifter
15074@opindex mbarrel-shifter
15075Generate instructions supported by barrel shifter.  This is the default
15076unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
15077
15078@item -mjli-always
15079@opindex mjli-alawys
15080Force to call a function using jli_s instruction.  This option is
15081valid only for ARCv2 architecture.
15082
15083@item -mcpu=@var{cpu}
15084@opindex mcpu
15085Set architecture type, register usage, and instruction scheduling
15086parameters for @var{cpu}.  There are also shortcut alias options
15087available for backward compatibility and convenience.  Supported
15088values for @var{cpu} are
15089
15090@table @samp
15091@opindex mA6
15092@opindex mARC600
15093@item arc600
15094Compile for ARC600.  Aliases: @option{-mA6}, @option{-mARC600}.
15095
15096@item arc601
15097@opindex mARC601
15098Compile for ARC601.  Alias: @option{-mARC601}.
15099
15100@item arc700
15101@opindex mA7
15102@opindex mARC700
15103Compile for ARC700.  Aliases: @option{-mA7}, @option{-mARC700}.
15104This is the default when configured with @option{--with-cpu=arc700}@.
15105
15106@item arcem
15107Compile for ARC EM.
15108
15109@item archs
15110Compile for ARC HS.
15111
15112@item em
15113Compile for ARC EM CPU with no hardware extensions.
15114
15115@item em4
15116Compile for ARC EM4 CPU.
15117
15118@item em4_dmips
15119Compile for ARC EM4 DMIPS CPU.
15120
15121@item em4_fpus
15122Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
15123extension.
15124
15125@item em4_fpuda
15126Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
15127double assist instructions.
15128
15129@item hs
15130Compile for ARC HS CPU with no hardware extensions except the atomic
15131instructions.
15132
15133@item hs34
15134Compile for ARC HS34 CPU.
15135
15136@item hs38
15137Compile for ARC HS38 CPU.
15138
15139@item hs38_linux
15140Compile for ARC HS38 CPU with all hardware extensions on.
15141
15142@item arc600_norm
15143Compile for ARC 600 CPU with @code{norm} instructions enabled.
15144
15145@item arc600_mul32x16
15146Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
15147instructions enabled.
15148
15149@item arc600_mul64
15150Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
15151instructions enabled.
15152
15153@item arc601_norm
15154Compile for ARC 601 CPU with @code{norm} instructions enabled.
15155
15156@item arc601_mul32x16
15157Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
15158instructions enabled.
15159
15160@item arc601_mul64
15161Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
15162instructions enabled.
15163
15164@item nps400
15165Compile for ARC 700 on NPS400 chip.
15166
15167@item em_mini
15168Compile for ARC EM minimalist configuration featuring reduced register
15169set.
15170
15171@end table
15172
15173@item -mdpfp
15174@opindex mdpfp
15175@itemx -mdpfp-compact
15176@opindex mdpfp-compact
15177Generate double-precision FPX instructions, tuned for the compact
15178implementation.
15179
15180@item -mdpfp-fast
15181@opindex mdpfp-fast
15182Generate double-precision FPX instructions, tuned for the fast
15183implementation.
15184
15185@item -mno-dpfp-lrsr
15186@opindex mno-dpfp-lrsr
15187Disable @code{lr} and @code{sr} instructions from using FPX extension
15188aux registers.
15189
15190@item -mea
15191@opindex mea
15192Generate extended arithmetic instructions.  Currently only
15193@code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
15194supported.  This is always enabled for @option{-mcpu=ARC700}.
15195
15196@item -mno-mpy
15197@opindex mno-mpy
15198Do not generate @code{mpy}-family instructions for ARC700.  This option is
15199deprecated.
15200
15201@item -mmul32x16
15202@opindex mmul32x16
15203Generate 32x16-bit multiply and multiply-accumulate instructions.
15204
15205@item -mmul64
15206@opindex mmul64
15207Generate @code{mul64} and @code{mulu64} instructions.
15208Only valid for @option{-mcpu=ARC600}.
15209
15210@item -mnorm
15211@opindex mnorm
15212Generate @code{norm} instructions.  This is the default if @option{-mcpu=ARC700}
15213is in effect.
15214
15215@item -mspfp
15216@opindex mspfp
15217@itemx -mspfp-compact
15218@opindex mspfp-compact
15219Generate single-precision FPX instructions, tuned for the compact
15220implementation.
15221
15222@item -mspfp-fast
15223@opindex mspfp-fast
15224Generate single-precision FPX instructions, tuned for the fast
15225implementation.
15226
15227@item -msimd
15228@opindex msimd
15229Enable generation of ARC SIMD instructions via target-specific
15230builtins.  Only valid for @option{-mcpu=ARC700}.
15231
15232@item -msoft-float
15233@opindex msoft-float
15234This option ignored; it is provided for compatibility purposes only.
15235Software floating-point code is emitted by default, and this default
15236can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
15237@option{-mspfp-fast} for single precision, and @option{-mdpfp},
15238@option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
15239
15240@item -mswap
15241@opindex mswap
15242Generate @code{swap} instructions.
15243
15244@item -matomic
15245@opindex matomic
15246This enables use of the locked load/store conditional extension to implement
15247atomic memory built-in functions.  Not available for ARC 6xx or ARC
15248EM cores.
15249
15250@item -mdiv-rem
15251@opindex mdiv-rem
15252Enable @code{div} and @code{rem} instructions for ARCv2 cores.
15253
15254@item -mcode-density
15255@opindex mcode-density
15256Enable code density instructions for ARC EM.
15257This option is on by default for ARC HS.
15258
15259@item -mll64
15260@opindex mll64
15261Enable double load/store operations for ARC HS cores.
15262
15263@item -mtp-regno=@var{regno}
15264@opindex mtp-regno
15265Specify thread pointer register number.
15266
15267@item -mmpy-option=@var{multo}
15268@opindex mmpy-option
15269Compile ARCv2 code with a multiplier design option.  You can specify
15270the option using either a string or numeric value for @var{multo}.
15271@samp{wlh1} is the default value.  The recognized values are:
15272
15273@table @samp
15274@item 0
15275@itemx none
15276No multiplier available.
15277
15278@item 1
15279@itemx w
1528016x16 multiplier, fully pipelined.
15281The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
15282
15283@item 2
15284@itemx wlh1
1528532x32 multiplier, fully
15286pipelined (1 stage).  The following instructions are additionally
15287enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15288
15289@item 3
15290@itemx wlh2
1529132x32 multiplier, fully pipelined
15292(2 stages).  The following instructions are additionally enabled: @code{mpy},
15293@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15294
15295@item 4
15296@itemx wlh3
15297Two 16x16 multipliers, blocking,
15298sequential.  The following instructions are additionally enabled: @code{mpy},
15299@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15300
15301@item 5
15302@itemx wlh4
15303One 16x16 multiplier, blocking,
15304sequential.  The following instructions are additionally enabled: @code{mpy},
15305@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15306
15307@item 6
15308@itemx wlh5
15309One 32x4 multiplier, blocking,
15310sequential.  The following instructions are additionally enabled: @code{mpy},
15311@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15312
15313@item 7
15314@itemx plus_dmpy
15315ARC HS SIMD support.
15316
15317@item 8
15318@itemx plus_macd
15319ARC HS SIMD support.
15320
15321@item 9
15322@itemx plus_qmacw
15323ARC HS SIMD support.
15324
15325@end table
15326
15327This option is only available for ARCv2 cores@.
15328
15329@item -mfpu=@var{fpu}
15330@opindex mfpu
15331Enables support for specific floating-point hardware extensions for ARCv2
15332cores.  Supported values for @var{fpu} are:
15333
15334@table @samp
15335
15336@item fpus
15337Enables support for single-precision floating-point hardware
15338extensions@.
15339
15340@item fpud
15341Enables support for double-precision floating-point hardware
15342extensions.  The single-precision floating-point extension is also
15343enabled.  Not available for ARC EM@.
15344
15345@item fpuda
15346Enables support for double-precision floating-point hardware
15347extensions using double-precision assist instructions.  The single-precision
15348floating-point extension is also enabled.  This option is
15349only available for ARC EM@.
15350
15351@item fpuda_div
15352Enables support for double-precision floating-point hardware
15353extensions using double-precision assist instructions.
15354The single-precision floating-point, square-root, and divide
15355extensions are also enabled.  This option is
15356only available for ARC EM@.
15357
15358@item fpuda_fma
15359Enables support for double-precision floating-point hardware
15360extensions using double-precision assist instructions.
15361The single-precision floating-point and fused multiply and add
15362hardware extensions are also enabled.  This option is
15363only available for ARC EM@.
15364
15365@item fpuda_all
15366Enables support for double-precision floating-point hardware
15367extensions using double-precision assist instructions.
15368All single-precision floating-point hardware extensions are also
15369enabled.  This option is only available for ARC EM@.
15370
15371@item fpus_div
15372Enables support for single-precision floating-point, square-root and divide
15373hardware extensions@.
15374
15375@item fpud_div
15376Enables support for double-precision floating-point, square-root and divide
15377hardware extensions.  This option
15378includes option @samp{fpus_div}. Not available for ARC EM@.
15379
15380@item fpus_fma
15381Enables support for single-precision floating-point and
15382fused multiply and add hardware extensions@.
15383
15384@item fpud_fma
15385Enables support for double-precision floating-point and
15386fused multiply and add hardware extensions.  This option
15387includes option @samp{fpus_fma}.  Not available for ARC EM@.
15388
15389@item fpus_all
15390Enables support for all single-precision floating-point hardware
15391extensions@.
15392
15393@item fpud_all
15394Enables support for all single- and double-precision floating-point
15395hardware extensions.  Not available for ARC EM@.
15396
15397@end table
15398
15399@item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
15400@opindex mirq-ctrl-saved
15401Specifies general-purposes registers that the processor automatically
15402saves/restores on interrupt entry and exit.  @var{register-range} is
15403specified as two registers separated by a dash.  The register range
15404always starts with @code{r0}, the upper limit is @code{fp} register.
15405@var{blink} and @var{lp_count} are optional.  This option is only
15406valid for ARC EM and ARC HS cores.
15407
15408@item -mrgf-banked-regs=@var{number}
15409@opindex mrgf-banked-regs
15410Specifies the number of registers replicated in second register bank
15411on entry to fast interrupt.  Fast interrupts are interrupts with the
15412highest priority level P0.  These interrupts save only PC and STATUS32
15413registers to avoid memory transactions during interrupt entry and exit
15414sequences.  Use this option when you are using fast interrupts in an
15415ARC V2 family processor.  Permitted values are 4, 8, 16, and 32.
15416
15417@item -mlpc-width=@var{width}
15418@opindex mlpc-width
15419Specify the width of the @code{lp_count} register.  Valid values for
15420@var{width} are 8, 16, 20, 24, 28 and 32 bits.  The default width is
15421fixed to 32 bits.  If the width is less than 32, the compiler does not
15422attempt to transform loops in your program to use the zero-delay loop
15423mechanism unless it is known that the @code{lp_count} register can
15424hold the required loop-counter value.  Depending on the width
15425specified, the compiler and run-time library might continue to use the
15426loop mechanism for various needs.  This option defines macro
15427@code{__ARC_LPC_WIDTH__} with the value of @var{width}.
15428
15429@item -mrf16
15430@opindex mrf16
15431This option instructs the compiler to generate code for a 16-entry
15432register file.  This option defines the @code{__ARC_RF16__}
15433preprocessor macro.
15434
15435@end table
15436
15437The following options are passed through to the assembler, and also
15438define preprocessor macro symbols.
15439
15440@c Flags used by the assembler, but for which we define preprocessor
15441@c macro symbols as well.
15442@table @gcctabopt
15443@item -mdsp-packa
15444@opindex mdsp-packa
15445Passed down to the assembler to enable the DSP Pack A extensions.
15446Also sets the preprocessor symbol @code{__Xdsp_packa}.  This option is
15447deprecated.
15448
15449@item -mdvbf
15450@opindex mdvbf
15451Passed down to the assembler to enable the dual Viterbi butterfly
15452extension.  Also sets the preprocessor symbol @code{__Xdvbf}.  This
15453option is deprecated.
15454
15455@c ARC700 4.10 extension instruction
15456@item -mlock
15457@opindex mlock
15458Passed down to the assembler to enable the locked load/store
15459conditional extension.  Also sets the preprocessor symbol
15460@code{__Xlock}.
15461
15462@item -mmac-d16
15463@opindex mmac-d16
15464Passed down to the assembler.  Also sets the preprocessor symbol
15465@code{__Xxmac_d16}.  This option is deprecated.
15466
15467@item -mmac-24
15468@opindex mmac-24
15469Passed down to the assembler.  Also sets the preprocessor symbol
15470@code{__Xxmac_24}.  This option is deprecated.
15471
15472@c ARC700 4.10 extension instruction
15473@item -mrtsc
15474@opindex mrtsc
15475Passed down to the assembler to enable the 64-bit time-stamp counter
15476extension instruction.  Also sets the preprocessor symbol
15477@code{__Xrtsc}.  This option is deprecated.
15478
15479@c ARC700 4.10 extension instruction
15480@item -mswape
15481@opindex mswape
15482Passed down to the assembler to enable the swap byte ordering
15483extension instruction.  Also sets the preprocessor symbol
15484@code{__Xswape}.
15485
15486@item -mtelephony
15487@opindex mtelephony
15488Passed down to the assembler to enable dual- and single-operand
15489instructions for telephony.  Also sets the preprocessor symbol
15490@code{__Xtelephony}.  This option is deprecated.
15491
15492@item -mxy
15493@opindex mxy
15494Passed down to the assembler to enable the XY memory extension.  Also
15495sets the preprocessor symbol @code{__Xxy}.
15496
15497@end table
15498
15499The following options control how the assembly code is annotated:
15500
15501@c Assembly annotation options
15502@table @gcctabopt
15503@item -misize
15504@opindex misize
15505Annotate assembler instructions with estimated addresses.
15506
15507@item -mannotate-align
15508@opindex mannotate-align
15509Explain what alignment considerations lead to the decision to make an
15510instruction short or long.
15511
15512@end table
15513
15514The following options are passed through to the linker:
15515
15516@c options passed through to the linker
15517@table @gcctabopt
15518@item -marclinux
15519@opindex marclinux
15520Passed through to the linker, to specify use of the @code{arclinux} emulation.
15521This option is enabled by default in tool chains built for
15522@w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
15523when profiling is not requested.
15524
15525@item -marclinux_prof
15526@opindex marclinux_prof
15527Passed through to the linker, to specify use of the
15528@code{arclinux_prof} emulation.  This option is enabled by default in
15529tool chains built for @w{@code{arc-linux-uclibc}} and
15530@w{@code{arceb-linux-uclibc}} targets when profiling is requested.
15531
15532@end table
15533
15534The following options control the semantics of generated code:
15535
15536@c semantically relevant code generation options
15537@table @gcctabopt
15538@item -mlong-calls
15539@opindex mlong-calls
15540Generate calls as register indirect calls, thus providing access
15541to the full 32-bit address range.
15542
15543@item -mmedium-calls
15544@opindex mmedium-calls
15545Don't use less than 25-bit addressing range for calls, which is the
15546offset available for an unconditional branch-and-link
15547instruction.  Conditional execution of function calls is suppressed, to
15548allow use of the 25-bit range, rather than the 21-bit range with
15549conditional branch-and-link.  This is the default for tool chains built
15550for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
15551
15552@item -G @var{num}
15553@opindex G
15554Put definitions of externally-visible data in a small data section if
15555that data is no bigger than @var{num} bytes.  The default value of
15556@var{num} is 4 for any ARC configuration, or 8 when we have double
15557load/store operations.
15558
15559@item -mno-sdata
15560@opindex mno-sdata
15561Do not generate sdata references.  This is the default for tool chains
15562built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
15563targets.
15564
15565@item -mvolatile-cache
15566@opindex mvolatile-cache
15567Use ordinarily cached memory accesses for volatile references.  This is the
15568default.
15569
15570@item -mno-volatile-cache
15571@opindex mno-volatile-cache
15572Enable cache bypass for volatile references.
15573
15574@end table
15575
15576The following options fine tune code generation:
15577@c code generation tuning options
15578@table @gcctabopt
15579@item -malign-call
15580@opindex malign-call
15581Do alignment optimizations for call instructions.
15582
15583@item -mauto-modify-reg
15584@opindex mauto-modify-reg
15585Enable the use of pre/post modify with register displacement.
15586
15587@item -mbbit-peephole
15588@opindex mbbit-peephole
15589Enable bbit peephole2.
15590
15591@item -mno-brcc
15592@opindex mno-brcc
15593This option disables a target-specific pass in @file{arc_reorg} to
15594generate compare-and-branch (@code{br@var{cc}}) instructions.
15595It has no effect on
15596generation of these instructions driven by the combiner pass.
15597
15598@item -mcase-vector-pcrel
15599@opindex mcase-vector-pcrel
15600Use PC-relative switch case tables to enable case table shortening.
15601This is the default for @option{-Os}.
15602
15603@item -mcompact-casesi
15604@opindex mcompact-casesi
15605Enable compact @code{casesi} pattern.  This is the default for @option{-Os},
15606and only available for ARCv1 cores.
15607
15608@item -mno-cond-exec
15609@opindex mno-cond-exec
15610Disable the ARCompact-specific pass to generate conditional
15611execution instructions.
15612
15613Due to delay slot scheduling and interactions between operand numbers,
15614literal sizes, instruction lengths, and the support for conditional execution,
15615the target-independent pass to generate conditional execution is often lacking,
15616so the ARC port has kept a special pass around that tries to find more
15617conditional execution generation opportunities after register allocation,
15618branch shortening, and delay slot scheduling have been done.  This pass
15619generally, but not always, improves performance and code size, at the cost of
15620extra compilation time, which is why there is an option to switch it off.
15621If you have a problem with call instructions exceeding their allowable
15622offset range because they are conditionalized, you should consider using
15623@option{-mmedium-calls} instead.
15624
15625@item -mearly-cbranchsi
15626@opindex mearly-cbranchsi
15627Enable pre-reload use of the @code{cbranchsi} pattern.
15628
15629@item -mexpand-adddi
15630@opindex mexpand-adddi
15631Expand @code{adddi3} and @code{subdi3} at RTL generation time into
15632@code{add.f}, @code{adc} etc.  This option is deprecated.
15633
15634@item -mindexed-loads
15635@opindex mindexed-loads
15636Enable the use of indexed loads.  This can be problematic because some
15637optimizers then assume that indexed stores exist, which is not
15638the case.
15639
15640@item -mlra
15641@opindex mlra
15642Enable Local Register Allocation.  This is still experimental for ARC,
15643so by default the compiler uses standard reload
15644(i.e. @option{-mno-lra}).
15645
15646@item -mlra-priority-none
15647@opindex mlra-priority-none
15648Don't indicate any priority for target registers.
15649
15650@item -mlra-priority-compact
15651@opindex mlra-priority-compact
15652Indicate target register priority for r0..r3 / r12..r15.
15653
15654@item -mlra-priority-noncompact
15655@opindex mlra-priority-noncompact
15656Reduce target register priority for r0..r3 / r12..r15.
15657
15658@item -mno-millicode
15659@opindex mno-millicode
15660When optimizing for size (using @option{-Os}), prologues and epilogues
15661that have to save or restore a large number of registers are often
15662shortened by using call to a special function in libgcc; this is
15663referred to as a @emph{millicode} call.  As these calls can pose
15664performance issues, and/or cause linking issues when linking in a
15665nonstandard way, this option is provided to turn off millicode call
15666generation.
15667
15668@item -mmixed-code
15669@opindex mmixed-code
15670Tweak register allocation to help 16-bit instruction generation.
15671This generally has the effect of decreasing the average instruction size
15672while increasing the instruction count.
15673
15674@item -mq-class
15675@opindex mq-class
15676Enable @samp{q} instruction alternatives.
15677This is the default for @option{-Os}.
15678
15679@item -mRcq
15680@opindex mRcq
15681Enable @samp{Rcq} constraint handling.
15682Most short code generation depends on this.
15683This is the default.
15684
15685@item -mRcw
15686@opindex mRcw
15687Enable @samp{Rcw} constraint handling.
15688Most ccfsm condexec mostly depends on this.
15689This is the default.
15690
15691@item -msize-level=@var{level}
15692@opindex msize-level
15693Fine-tune size optimization with regards to instruction lengths and alignment.
15694The recognized values for @var{level} are:
15695@table @samp
15696@item 0
15697No size optimization.  This level is deprecated and treated like @samp{1}.
15698
15699@item 1
15700Short instructions are used opportunistically.
15701
15702@item 2
15703In addition, alignment of loops and of code after barriers are dropped.
15704
15705@item 3
15706In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
15707
15708@end table
15709
15710This defaults to @samp{3} when @option{-Os} is in effect.  Otherwise,
15711the behavior when this is not set is equivalent to level @samp{1}.
15712
15713@item -mtune=@var{cpu}
15714@opindex mtune
15715Set instruction scheduling parameters for @var{cpu}, overriding any implied
15716by @option{-mcpu=}.
15717
15718Supported values for @var{cpu} are
15719
15720@table @samp
15721@item ARC600
15722Tune for ARC600 CPU.
15723
15724@item ARC601
15725Tune for ARC601 CPU.
15726
15727@item ARC700
15728Tune for ARC700 CPU with standard multiplier block.
15729
15730@item ARC700-xmac
15731Tune for ARC700 CPU with XMAC block.
15732
15733@item ARC725D
15734Tune for ARC725D CPU.
15735
15736@item ARC750D
15737Tune for ARC750D CPU.
15738
15739@end table
15740
15741@item -mmultcost=@var{num}
15742@opindex mmultcost
15743Cost to assume for a multiply instruction, with @samp{4} being equal to a
15744normal instruction.
15745
15746@item -munalign-prob-threshold=@var{probability}
15747@opindex munalign-prob-threshold
15748Set probability threshold for unaligning branches.
15749When tuning for @samp{ARC700} and optimizing for speed, branches without
15750filled delay slot are preferably emitted unaligned and long, unless
15751profiling indicates that the probability for the branch to be taken
15752is below @var{probability}.  @xref{Cross-profiling}.
15753The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
15754
15755@end table
15756
15757The following options are maintained for backward compatibility, but
15758are now deprecated and will be removed in a future release:
15759
15760@c Deprecated options
15761@table @gcctabopt
15762
15763@item -margonaut
15764@opindex margonaut
15765Obsolete FPX.
15766
15767@item -mbig-endian
15768@opindex mbig-endian
15769@itemx -EB
15770@opindex EB
15771Compile code for big-endian targets.  Use of these options is now
15772deprecated.  Big-endian code is supported by configuring GCC to build
15773@w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
15774for which big endian is the default.
15775
15776@item -mlittle-endian
15777@opindex mlittle-endian
15778@itemx -EL
15779@opindex EL
15780Compile code for little-endian targets.  Use of these options is now
15781deprecated.  Little-endian code is supported by configuring GCC to build
15782@w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
15783for which little endian is the default.
15784
15785@item -mbarrel_shifter
15786@opindex mbarrel_shifter
15787Replaced by @option{-mbarrel-shifter}.
15788
15789@item -mdpfp_compact
15790@opindex mdpfp_compact
15791Replaced by @option{-mdpfp-compact}.
15792
15793@item -mdpfp_fast
15794@opindex mdpfp_fast
15795Replaced by @option{-mdpfp-fast}.
15796
15797@item -mdsp_packa
15798@opindex mdsp_packa
15799Replaced by @option{-mdsp-packa}.
15800
15801@item -mEA
15802@opindex mEA
15803Replaced by @option{-mea}.
15804
15805@item -mmac_24
15806@opindex mmac_24
15807Replaced by @option{-mmac-24}.
15808
15809@item -mmac_d16
15810@opindex mmac_d16
15811Replaced by @option{-mmac-d16}.
15812
15813@item -mspfp_compact
15814@opindex mspfp_compact
15815Replaced by @option{-mspfp-compact}.
15816
15817@item -mspfp_fast
15818@opindex mspfp_fast
15819Replaced by @option{-mspfp-fast}.
15820
15821@item -mtune=@var{cpu}
15822@opindex mtune
15823Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
15824@samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
15825@samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
15826
15827@item -multcost=@var{num}
15828@opindex multcost
15829Replaced by @option{-mmultcost}.
15830
15831@end table
15832
15833@node ARM Options
15834@subsection ARM Options
15835@cindex ARM options
15836
15837These @samp{-m} options are defined for the ARM port:
15838
15839@table @gcctabopt
15840@item -mabi=@var{name}
15841@opindex mabi
15842Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
15843@samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
15844
15845@item -mapcs-frame
15846@opindex mapcs-frame
15847Generate a stack frame that is compliant with the ARM Procedure Call
15848Standard for all functions, even if this is not strictly necessary for
15849correct execution of the code.  Specifying @option{-fomit-frame-pointer}
15850with this option causes the stack frames not to be generated for
15851leaf functions.  The default is @option{-mno-apcs-frame}.
15852This option is deprecated.
15853
15854@item -mapcs
15855@opindex mapcs
15856This is a synonym for @option{-mapcs-frame} and is deprecated.
15857
15858@ignore
15859@c not currently implemented
15860@item -mapcs-stack-check
15861@opindex mapcs-stack-check
15862Generate code to check the amount of stack space available upon entry to
15863every function (that actually uses some stack space).  If there is
15864insufficient space available then either the function
15865@code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
15866called, depending upon the amount of stack space required.  The runtime
15867system is required to provide these functions.  The default is
15868@option{-mno-apcs-stack-check}, since this produces smaller code.
15869
15870@c not currently implemented
15871@item -mapcs-reentrant
15872@opindex mapcs-reentrant
15873Generate reentrant, position-independent code.  The default is
15874@option{-mno-apcs-reentrant}.
15875@end ignore
15876
15877@item -mthumb-interwork
15878@opindex mthumb-interwork
15879Generate code that supports calling between the ARM and Thumb
15880instruction sets.  Without this option, on pre-v5 architectures, the
15881two instruction sets cannot be reliably used inside one program.  The
15882default is @option{-mno-thumb-interwork}, since slightly larger code
15883is generated when @option{-mthumb-interwork} is specified.  In AAPCS
15884configurations this option is meaningless.
15885
15886@item -mno-sched-prolog
15887@opindex mno-sched-prolog
15888Prevent the reordering of instructions in the function prologue, or the
15889merging of those instruction with the instructions in the function's
15890body.  This means that all functions start with a recognizable set
15891of instructions (or in fact one of a choice from a small set of
15892different function prologues), and this information can be used to
15893locate the start of functions inside an executable piece of code.  The
15894default is @option{-msched-prolog}.
15895
15896@item -mfloat-abi=@var{name}
15897@opindex mfloat-abi
15898Specifies which floating-point ABI to use.  Permissible values
15899are: @samp{soft}, @samp{softfp} and @samp{hard}.
15900
15901Specifying @samp{soft} causes GCC to generate output containing
15902library calls for floating-point operations.
15903@samp{softfp} allows the generation of code using hardware floating-point
15904instructions, but still uses the soft-float calling conventions.
15905@samp{hard} allows generation of floating-point instructions
15906and uses FPU-specific calling conventions.
15907
15908The default depends on the specific target configuration.  Note that
15909the hard-float and soft-float ABIs are not link-compatible; you must
15910compile your entire program with the same ABI, and link with a
15911compatible set of libraries.
15912
15913@item -mlittle-endian
15914@opindex mlittle-endian
15915Generate code for a processor running in little-endian mode.  This is
15916the default for all standard configurations.
15917
15918@item -mbig-endian
15919@opindex mbig-endian
15920Generate code for a processor running in big-endian mode; the default is
15921to compile code for a little-endian processor.
15922
15923@item -mbe8
15924@itemx -mbe32
15925@opindex mbe8
15926When linking a big-endian image select between BE8 and BE32 formats.
15927The option has no effect for little-endian images and is ignored.  The
15928default is dependent on the selected target architecture.  For ARMv6
15929and later architectures the default is BE8, for older architectures
15930the default is BE32.  BE32 format has been deprecated by ARM.
15931
15932@item -march=@var{name}@r{[}+extension@dots{}@r{]}
15933@opindex march
15934This specifies the name of the target ARM architecture.  GCC uses this
15935name to determine what kind of instructions it can emit when generating
15936assembly code.  This option can be used in conjunction with or instead
15937of the @option{-mcpu=} option.
15938
15939Permissible names are:
15940@samp{armv4t},
15941@samp{armv5t}, @samp{armv5te},
15942@samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
15943@samp{armv6z}, @samp{armv6zk},
15944@samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
15945@samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
15946@samp{armv8.4-a},
15947@samp{armv7-r},
15948@samp{armv8-r},
15949@samp{armv6-m}, @samp{armv6s-m},
15950@samp{armv7-m}, @samp{armv7e-m},
15951@samp{armv8-m.base}, @samp{armv8-m.main},
15952@samp{iwmmxt} and @samp{iwmmxt2}.
15953
15954Additionally, the following architectures, which lack support for the
15955Thumb execution state, are recognized but support is deprecated:
15956@samp{armv2}, @samp{armv2a}, @samp{armv3}, @samp{armv3m},
15957@samp{armv4}, @samp{armv5} and @samp{armv5e}.
15958
15959Many of the architectures support extensions.  These can be added by
15960appending @samp{+@var{extension}} to the architecture name.  Extension
15961options are processed in order and capabilities accumulate.  An extension
15962will also enable any necessary base extensions
15963upon which it depends.  For example, the @samp{+crypto} extension
15964will always enable the @samp{+simd} extension.  The exception to the
15965additive construction is for extensions that are prefixed with
15966@samp{+no@dots{}}: these extensions disable the specified option and
15967any other extensions that may depend on the presence of that
15968extension.
15969
15970For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
15971writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
15972entirely disabled by the @samp{+nofp} option that follows it.
15973
15974Most extension names are generically named, but have an effect that is
15975dependent upon the architecture to which it is applied.  For example,
15976the @samp{+simd} option can be applied to both @samp{armv7-a} and
15977@samp{armv8-a} architectures, but will enable the original ARMv7-A
15978Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
15979variant for @samp{armv8-a}.
15980
15981The table below lists the supported extensions for each architecture.
15982Architectures not mentioned do not support any extensions.
15983
15984@table @samp
15985@item  armv5e
15986@itemx armv5te
15987@itemx armv6
15988@itemx armv6j
15989@itemx armv6k
15990@itemx armv6kz
15991@itemx armv6t2
15992@itemx armv6z
15993@itemx armv6zk
15994@table @samp
15995@item +fp
15996The VFPv2 floating-point instructions.  The extension @samp{+vfpv2} can be
15997used as an alias for this extension.
15998
15999@item +nofp
16000Disable the floating-point instructions.
16001@end table
16002
16003@item armv7
16004The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
16005@table @samp
16006@item +fp
16007The VFPv3 floating-point instructions, with 16 double-precision
16008registers.  The extension @samp{+vfpv3-d16} can be used as an alias
16009for this extension.  Note that floating-point is not supported by the
16010base ARMv7-M architecture, but is compatible with both the ARMv7-A and
16011ARMv7-R architectures.
16012
16013@item +nofp
16014Disable the floating-point instructions.
16015@end table
16016
16017@item armv7-a
16018@table @samp
16019@item +mp
16020The multiprocessing extension.
16021
16022@item +sec
16023The security extension.
16024
16025@item +fp
16026The VFPv3 floating-point instructions, with 16 double-precision
16027registers.  The extension @samp{+vfpv3-d16} can be used as an alias
16028for this extension.
16029
16030@item +simd
16031The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
16032The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
16033for this extension.
16034
16035@item +vfpv3
16036The VFPv3 floating-point instructions, with 32 double-precision
16037registers.
16038
16039@item +vfpv3-d16-fp16
16040The VFPv3 floating-point instructions, with 16 double-precision
16041registers and the half-precision floating-point conversion operations.
16042
16043@item +vfpv3-fp16
16044The VFPv3 floating-point instructions, with 32 double-precision
16045registers and the half-precision floating-point conversion operations.
16046
16047@item +vfpv4-d16
16048The VFPv4 floating-point instructions, with 16 double-precision
16049registers.
16050
16051@item +vfpv4
16052The VFPv4 floating-point instructions, with 32 double-precision
16053registers.
16054
16055@item +neon-fp16
16056The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
16057the half-precision floating-point conversion operations.
16058
16059@item +neon-vfpv4
16060The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
16061
16062@item +nosimd
16063Disable the Advanced SIMD instructions (does not disable floating point).
16064
16065@item +nofp
16066Disable the floating-point and Advanced SIMD instructions.
16067@end table
16068
16069@item armv7ve
16070The extended version of the ARMv7-A architecture with support for
16071virtualization.
16072@table @samp
16073@item +fp
16074The VFPv4 floating-point instructions, with 16 double-precision registers.
16075The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
16076
16077@item +simd
16078The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.  The
16079extension @samp{+neon-vfpv4} can be used as an alias for this extension.
16080
16081@item +vfpv3-d16
16082The VFPv3 floating-point instructions, with 16 double-precision
16083registers.
16084
16085@item +vfpv3
16086The VFPv3 floating-point instructions, with 32 double-precision
16087registers.
16088
16089@item +vfpv3-d16-fp16
16090The VFPv3 floating-point instructions, with 16 double-precision
16091registers and the half-precision floating-point conversion operations.
16092
16093@item +vfpv3-fp16
16094The VFPv3 floating-point instructions, with 32 double-precision
16095registers and the half-precision floating-point conversion operations.
16096
16097@item +vfpv4-d16
16098The VFPv4 floating-point instructions, with 16 double-precision
16099registers.
16100
16101@item +vfpv4
16102The VFPv4 floating-point instructions, with 32 double-precision
16103registers.
16104
16105@item +neon
16106The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
16107The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
16108
16109@item +neon-fp16
16110The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
16111the half-precision floating-point conversion operations.
16112
16113@item +nosimd
16114Disable the Advanced SIMD instructions (does not disable floating point).
16115
16116@item +nofp
16117Disable the floating-point and Advanced SIMD instructions.
16118@end table
16119
16120@item armv8-a
16121@table @samp
16122@item +crc
16123The Cyclic Redundancy Check (CRC) instructions.
16124@item +simd
16125The ARMv8-A Advanced SIMD and floating-point instructions.
16126@item +crypto
16127The cryptographic instructions.
16128@item +nocrypto
16129Disable the cryptographic instructions.
16130@item +nofp
16131Disable the floating-point, Advanced SIMD and cryptographic instructions.
16132@end table
16133
16134@item armv8.1-a
16135@table @samp
16136@item +simd
16137The ARMv8.1-A Advanced SIMD and floating-point instructions.
16138
16139@item +crypto
16140The cryptographic instructions.  This also enables the Advanced SIMD and
16141floating-point instructions.
16142
16143@item +nocrypto
16144Disable the cryptographic instructions.
16145
16146@item +nofp
16147Disable the floating-point, Advanced SIMD and cryptographic instructions.
16148@end table
16149
16150@item armv8.2-a
16151@itemx armv8.3-a
16152@table @samp
16153@item +fp16
16154The half-precision floating-point data processing instructions.
16155This also enables the Advanced SIMD and floating-point instructions.
16156
16157@item +fp16fml
16158The half-precision floating-point fmla extension.  This also enables
16159the half-precision floating-point extension and Advanced SIMD and
16160floating-point instructions.
16161
16162@item +simd
16163The ARMv8.1-A Advanced SIMD and floating-point instructions.
16164
16165@item +crypto
16166The cryptographic instructions.  This also enables the Advanced SIMD and
16167floating-point instructions.
16168
16169@item +dotprod
16170Enable the Dot Product extension.  This also enables Advanced SIMD instructions.
16171
16172@item +nocrypto
16173Disable the cryptographic extension.
16174
16175@item +nofp
16176Disable the floating-point, Advanced SIMD and cryptographic instructions.
16177@end table
16178
16179@item armv8.4-a
16180@table @samp
16181@item +fp16
16182The half-precision floating-point data processing instructions.
16183This also enables the Advanced SIMD and floating-point instructions as well
16184as the Dot Product extension and the half-precision floating-point fmla
16185extension.
16186
16187@item +simd
16188The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
16189Dot Product extension.
16190
16191@item +crypto
16192The cryptographic instructions.  This also enables the Advanced SIMD and
16193floating-point instructions as well as the Dot Product extension.
16194
16195@item +nocrypto
16196Disable the cryptographic extension.
16197
16198@item +nofp
16199Disable the floating-point, Advanced SIMD and cryptographic instructions.
16200@end table
16201
16202@item armv7-r
16203@table @samp
16204@item +fp.sp
16205The single-precision VFPv3 floating-point instructions.  The extension
16206@samp{+vfpv3xd} can be used as an alias for this extension.
16207
16208@item +fp
16209The VFPv3 floating-point instructions with 16 double-precision registers.
16210The extension +vfpv3-d16 can be used as an alias for this extension.
16211
16212@item +vfpv3xd-d16-fp16
16213The single-precision VFPv3 floating-point instructions with 16 double-precision
16214registers and the half-precision floating-point conversion operations.
16215
16216@item +vfpv3-d16-fp16
16217The VFPv3 floating-point instructions, with 16 double-precision
16218registers and the half-precision floating-point conversion operations.
16219
16220@item +nofp
16221Disable the floating-point extension.
16222
16223@item +idiv
16224The ARM-state integer division instructions.
16225
16226@item +noidiv
16227Disable the ARM-state integer division extension.
16228@end table
16229
16230@item armv7e-m
16231@table @samp
16232@item +fp
16233The single-precision VFPv4 floating-point instructions.
16234
16235@item +fpv5
16236The single-precision FPv5 floating-point instructions.
16237
16238@item +fp.dp
16239The single- and double-precision FPv5 floating-point instructions.
16240
16241@item +nofp
16242Disable the floating-point extensions.
16243@end table
16244
16245@item  armv8-m.main
16246@table @samp
16247@item +dsp
16248The DSP instructions.
16249
16250@item +nodsp
16251Disable the DSP extension.
16252
16253@item +fp
16254The single-precision floating-point instructions.
16255
16256@item +fp.dp
16257The single- and double-precision floating-point instructions.
16258
16259@item +nofp
16260Disable the floating-point extension.
16261@end table
16262
16263@item armv8-r
16264@table @samp
16265@item +crc
16266The Cyclic Redundancy Check (CRC) instructions.
16267@item +fp.sp
16268The single-precision FPv5 floating-point instructions.
16269@item +simd
16270The ARMv8-A Advanced SIMD and floating-point instructions.
16271@item +crypto
16272The cryptographic instructions.
16273@item +nocrypto
16274Disable the cryptographic instructions.
16275@item +nofp
16276Disable the floating-point, Advanced SIMD and cryptographic instructions.
16277@end table
16278
16279@end table
16280
16281@option{-march=native} causes the compiler to auto-detect the architecture
16282of the build computer.  At present, this feature is only supported on
16283GNU/Linux, and not all architectures are recognized.  If the auto-detect
16284is unsuccessful the option has no effect.
16285
16286@item -mtune=@var{name}
16287@opindex mtune
16288This option specifies the name of the target ARM processor for
16289which GCC should tune the performance of the code.
16290For some ARM implementations better performance can be obtained by using
16291this option.
16292Permissible names are: @samp{arm2}, @samp{arm250},
16293@samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
16294@samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
16295@samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
16296@samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
16297@samp{arm720},
16298@samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
16299@samp{arm710t}, @samp{arm720t}, @samp{arm740t},
16300@samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
16301@samp{strongarm1110},
16302@samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
16303@samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
16304@samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
16305@samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
16306@samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
16307@samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
16308@samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
16309@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
16310@samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
16311@samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
16312@samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
16313@samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7},
16314@samp{cortex-r8}, @samp{cortex-r52},
16315@samp{cortex-m33},
16316@samp{cortex-m23},
16317@samp{cortex-m7},
16318@samp{cortex-m4},
16319@samp{cortex-m3},
16320@samp{cortex-m1},
16321@samp{cortex-m0},
16322@samp{cortex-m0plus},
16323@samp{cortex-m1.small-multiply},
16324@samp{cortex-m0.small-multiply},
16325@samp{cortex-m0plus.small-multiply},
16326@samp{exynos-m1},
16327@samp{marvell-pj4},
16328@samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
16329@samp{fa526}, @samp{fa626},
16330@samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
16331@samp{xgene1}.
16332
16333Additionally, this option can specify that GCC should tune the performance
16334of the code for a big.LITTLE system.  Permissible names are:
16335@samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
16336@samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
16337@samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
16338@samp{cortex-a75.cortex-a55}.
16339
16340@option{-mtune=generic-@var{arch}} specifies that GCC should tune the
16341performance for a blend of processors within architecture @var{arch}.
16342The aim is to generate code that run well on the current most popular
16343processors, balancing between optimizations that benefit some CPUs in the
16344range, and avoiding performance pitfalls of other CPUs.  The effects of
16345this option may change in future GCC versions as CPU models come and go.
16346
16347@option{-mtune} permits the same extension options as @option{-mcpu}, but
16348the extension options do not affect the tuning of the generated code.
16349
16350@option{-mtune=native} causes the compiler to auto-detect the CPU
16351of the build computer.  At present, this feature is only supported on
16352GNU/Linux, and not all architectures are recognized.  If the auto-detect is
16353unsuccessful the option has no effect.
16354
16355@item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
16356@opindex mcpu
16357This specifies the name of the target ARM processor.  GCC uses this name
16358to derive the name of the target ARM architecture (as if specified
16359by @option{-march}) and the ARM processor type for which to tune for
16360performance (as if specified by @option{-mtune}).  Where this option
16361is used in conjunction with @option{-march} or @option{-mtune},
16362those options take precedence over the appropriate part of this option.
16363
16364Many of the supported CPUs implement optional architectural
16365extensions.  Where this is so the architectural extensions are
16366normally enabled by default.  If implementations that lack the
16367extension exist, then the extension syntax can be used to disable
16368those extensions that have been omitted.  For floating-point and
16369Advanced SIMD (Neon) instructions, the settings of the options
16370@option{-mfloat-abi} and @option{-mfpu} must also be considered:
16371floating-point and Advanced SIMD instructions will only be used if
16372@option{-mfloat-abi} is not set to @samp{soft}; and any setting of
16373@option{-mfpu} other than @samp{auto} will override the available
16374floating-point and SIMD extension instructions.
16375
16376For example, @samp{cortex-a9} can be found in three major
16377configurations: integer only, with just a floating-point unit or with
16378floating-point and Advanced SIMD.  The default is to enable all the
16379instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
16380be used to disable just the SIMD or both the SIMD and floating-point
16381instructions respectively.
16382
16383Permissible names for this option are the same as those for
16384@option{-mtune}.
16385
16386The following extension options are common to the listed CPUs:
16387
16388@table @samp
16389@item +nodsp
16390Disable the DSP instructions on @samp{cortex-m33}.
16391
16392@item  +nofp
16393Disables the floating-point instructions on @samp{arm9e},
16394@samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
16395@samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
16396@samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
16397@samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
16398Disables the floating-point and SIMD instructions on
16399@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
16400@samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
16401@samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
16402@samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
16403@samp{cortex-a53} and @samp{cortex-a55}.
16404
16405@item +nofp.dp
16406Disables the double-precision component of the floating-point instructions
16407on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52} and
16408@samp{cortex-m7}.
16409
16410@item +nosimd
16411Disables the SIMD (but not floating-point) instructions on
16412@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
16413and @samp{cortex-a9}.
16414
16415@item +crypto
16416Enables the cryptographic instructions on @samp{cortex-a32},
16417@samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
16418@samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
16419@samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
16420@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
16421@samp{cortex-a75.cortex-a55}.
16422@end table
16423
16424Additionally the @samp{generic-armv7-a} pseudo target defaults to
16425VFPv3 with 16 double-precision registers.  It supports the following
16426extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
16427@samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
16428@samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
16429@samp{neon-fp16}, @samp{neon-vfpv4}.  The meanings are the same as for
16430the extensions to @option{-march=armv7-a}.
16431
16432@option{-mcpu=generic-@var{arch}} is also permissible, and is
16433equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
16434See @option{-mtune} for more information.
16435
16436@option{-mcpu=native} causes the compiler to auto-detect the CPU
16437of the build computer.  At present, this feature is only supported on
16438GNU/Linux, and not all architectures are recognized.  If the auto-detect
16439is unsuccessful the option has no effect.
16440
16441@item -mfpu=@var{name}
16442@opindex mfpu
16443This specifies what floating-point hardware (or hardware emulation) is
16444available on the target.  Permissible names are: @samp{auto}, @samp{vfpv2},
16445@samp{vfpv3},
16446@samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
16447@samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
16448@samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
16449@samp{fpv5-d16}, @samp{fpv5-sp-d16},
16450@samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
16451Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
16452is an alias for @samp{vfpv2}.
16453
16454The setting @samp{auto} is the default and is special.  It causes the
16455compiler to select the floating-point and Advanced SIMD instructions
16456based on the settings of @option{-mcpu} and @option{-march}.
16457
16458If the selected floating-point hardware includes the NEON extension
16459(e.g. @option{-mfpu=neon}), note that floating-point
16460operations are not generated by GCC's auto-vectorization pass unless
16461@option{-funsafe-math-optimizations} is also specified.  This is
16462because NEON hardware does not fully implement the IEEE 754 standard for
16463floating-point arithmetic (in particular denormal values are treated as
16464zero), so the use of NEON instructions may lead to a loss of precision.
16465
16466You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
16467
16468@item -mfp16-format=@var{name}
16469@opindex mfp16-format
16470Specify the format of the @code{__fp16} half-precision floating-point type.
16471Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
16472the default is @samp{none}, in which case the @code{__fp16} type is not
16473defined.  @xref{Half-Precision}, for more information.
16474
16475@item -mstructure-size-boundary=@var{n}
16476@opindex mstructure-size-boundary
16477The sizes of all structures and unions are rounded up to a multiple
16478of the number of bits set by this option.  Permissible values are 8, 32
16479and 64.  The default value varies for different toolchains.  For the COFF
16480targeted toolchain the default value is 8.  A value of 64 is only allowed
16481if the underlying ABI supports it.
16482
16483Specifying a larger number can produce faster, more efficient code, but
16484can also increase the size of the program.  Different values are potentially
16485incompatible.  Code compiled with one value cannot necessarily expect to
16486work with code or libraries compiled with another value, if they exchange
16487information using structures or unions.
16488
16489This option is deprecated.
16490
16491@item -mabort-on-noreturn
16492@opindex mabort-on-noreturn
16493Generate a call to the function @code{abort} at the end of a
16494@code{noreturn} function.  It is executed if the function tries to
16495return.
16496
16497@item -mlong-calls
16498@itemx -mno-long-calls
16499@opindex mlong-calls
16500@opindex mno-long-calls
16501Tells the compiler to perform function calls by first loading the
16502address of the function into a register and then performing a subroutine
16503call on this register.  This switch is needed if the target function
16504lies outside of the 64-megabyte addressing range of the offset-based
16505version of subroutine call instruction.
16506
16507Even if this switch is enabled, not all function calls are turned
16508into long calls.  The heuristic is that static functions, functions
16509that have the @code{short_call} attribute, functions that are inside
16510the scope of a @code{#pragma no_long_calls} directive, and functions whose
16511definitions have already been compiled within the current compilation
16512unit are not turned into long calls.  The exceptions to this rule are
16513that weak function definitions, functions with the @code{long_call}
16514attribute or the @code{section} attribute, and functions that are within
16515the scope of a @code{#pragma long_calls} directive are always
16516turned into long calls.
16517
16518This feature is not enabled by default.  Specifying
16519@option{-mno-long-calls} restores the default behavior, as does
16520placing the function calls within the scope of a @code{#pragma
16521long_calls_off} directive.  Note these switches have no effect on how
16522the compiler generates code to handle function calls via function
16523pointers.
16524
16525@item -msingle-pic-base
16526@opindex msingle-pic-base
16527Treat the register used for PIC addressing as read-only, rather than
16528loading it in the prologue for each function.  The runtime system is
16529responsible for initializing this register with an appropriate value
16530before execution begins.
16531
16532@item -mpic-register=@var{reg}
16533@opindex mpic-register
16534Specify the register to be used for PIC addressing.
16535For standard PIC base case, the default is any suitable register
16536determined by compiler.  For single PIC base case, the default is
16537@samp{R9} if target is EABI based or stack-checking is enabled,
16538otherwise the default is @samp{R10}.
16539
16540@item -mpic-data-is-text-relative
16541@opindex mpic-data-is-text-relative
16542Assume that the displacement between the text and data segments is fixed
16543at static link time.  This permits using PC-relative addressing
16544operations to access data known to be in the data segment.  For
16545non-VxWorks RTP targets, this option is enabled by default.  When
16546disabled on such targets, it will enable @option{-msingle-pic-base} by
16547default.
16548
16549@item -mpoke-function-name
16550@opindex mpoke-function-name
16551Write the name of each function into the text section, directly
16552preceding the function prologue.  The generated code is similar to this:
16553
16554@smallexample
16555     t0
16556         .ascii "arm_poke_function_name", 0
16557         .align
16558     t1
16559         .word 0xff000000 + (t1 - t0)
16560     arm_poke_function_name
16561         mov     ip, sp
16562         stmfd   sp!, @{fp, ip, lr, pc@}
16563         sub     fp, ip, #4
16564@end smallexample
16565
16566When performing a stack backtrace, code can inspect the value of
16567@code{pc} stored at @code{fp + 0}.  If the trace function then looks at
16568location @code{pc - 12} and the top 8 bits are set, then we know that
16569there is a function name embedded immediately preceding this location
16570and has length @code{((pc[-3]) & 0xff000000)}.
16571
16572@item -mthumb
16573@itemx -marm
16574@opindex marm
16575@opindex mthumb
16576
16577Select between generating code that executes in ARM and Thumb
16578states.  The default for most configurations is to generate code
16579that executes in ARM state, but the default can be changed by
16580configuring GCC with the @option{--with-mode=}@var{state}
16581configure option.
16582
16583You can also override the ARM and Thumb mode for each function
16584by using the @code{target("thumb")} and @code{target("arm")} function attributes
16585(@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
16586
16587@item -mflip-thumb
16588@opindex mflip-thumb
16589Switch ARM/Thumb modes on alternating functions.
16590This option is provided for regression testing of mixed Thumb/ARM code
16591generation, and is not intended for ordinary use in compiling code.
16592
16593@item -mtpcs-frame
16594@opindex mtpcs-frame
16595Generate a stack frame that is compliant with the Thumb Procedure Call
16596Standard for all non-leaf functions.  (A leaf function is one that does
16597not call any other functions.)  The default is @option{-mno-tpcs-frame}.
16598
16599@item -mtpcs-leaf-frame
16600@opindex mtpcs-leaf-frame
16601Generate a stack frame that is compliant with the Thumb Procedure Call
16602Standard for all leaf functions.  (A leaf function is one that does
16603not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
16604
16605@item -mcallee-super-interworking
16606@opindex mcallee-super-interworking
16607Gives all externally visible functions in the file being compiled an ARM
16608instruction set header which switches to Thumb mode before executing the
16609rest of the function.  This allows these functions to be called from
16610non-interworking code.  This option is not valid in AAPCS configurations
16611because interworking is enabled by default.
16612
16613@item -mcaller-super-interworking
16614@opindex mcaller-super-interworking
16615Allows calls via function pointers (including virtual functions) to
16616execute correctly regardless of whether the target code has been
16617compiled for interworking or not.  There is a small overhead in the cost
16618of executing a function pointer if this option is enabled.  This option
16619is not valid in AAPCS configurations because interworking is enabled
16620by default.
16621
16622@item -mtp=@var{name}
16623@opindex mtp
16624Specify the access model for the thread local storage pointer.  The valid
16625models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
16626@samp{cp15}, which fetches the thread pointer from @code{cp15} directly
16627(supported in the arm6k architecture), and @samp{auto}, which uses the
16628best available method for the selected processor.  The default setting is
16629@samp{auto}.
16630
16631@item -mtls-dialect=@var{dialect}
16632@opindex mtls-dialect
16633Specify the dialect to use for accessing thread local storage.  Two
16634@var{dialect}s are supported---@samp{gnu} and @samp{gnu2}.  The
16635@samp{gnu} dialect selects the original GNU scheme for supporting
16636local and global dynamic TLS models.  The @samp{gnu2} dialect
16637selects the GNU descriptor scheme, which provides better performance
16638for shared libraries.  The GNU descriptor scheme is compatible with
16639the original scheme, but does require new assembler, linker and
16640library support.  Initial and local exec TLS models are unaffected by
16641this option and always use the original scheme.
16642
16643@item -mword-relocations
16644@opindex mword-relocations
16645Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
16646This is enabled by default on targets (uClinux, SymbianOS) where the runtime
16647loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
16648is specified.
16649
16650@item -mfix-cortex-m3-ldrd
16651@opindex mfix-cortex-m3-ldrd
16652Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
16653with overlapping destination and base registers are used.  This option avoids
16654generating these instructions.  This option is enabled by default when
16655@option{-mcpu=cortex-m3} is specified.
16656
16657@item -munaligned-access
16658@itemx -mno-unaligned-access
16659@opindex munaligned-access
16660@opindex mno-unaligned-access
16661Enables (or disables) reading and writing of 16- and 32- bit values
16662from addresses that are not 16- or 32- bit aligned.  By default
16663unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
16664ARMv8-M Baseline architectures, and enabled for all other
16665architectures.  If unaligned access is not enabled then words in packed
16666data structures are accessed a byte at a time.
16667
16668The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
16669generated object file to either true or false, depending upon the
16670setting of this option.  If unaligned access is enabled then the
16671preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
16672defined.
16673
16674@item -mneon-for-64bits
16675@opindex mneon-for-64bits
16676Enables using Neon to handle scalar 64-bits operations. This is
16677disabled by default since the cost of moving data from core registers
16678to Neon is high.
16679
16680@item -mslow-flash-data
16681@opindex mslow-flash-data
16682Assume loading data from flash is slower than fetching instruction.
16683Therefore literal load is minimized for better performance.
16684This option is only supported when compiling for ARMv7 M-profile and
16685off by default.
16686
16687@item -masm-syntax-unified
16688@opindex masm-syntax-unified
16689Assume inline assembler is using unified asm syntax.  The default is
16690currently off which implies divided syntax.  This option has no impact
16691on Thumb2. However, this may change in future releases of GCC.
16692Divided syntax should be considered deprecated.
16693
16694@item -mrestrict-it
16695@opindex mrestrict-it
16696Restricts generation of IT blocks to conform to the rules of ARMv8-A.
16697IT blocks can only contain a single 16-bit instruction from a select
16698set of instructions. This option is on by default for ARMv8-A Thumb mode.
16699
16700@item -mprint-tune-info
16701@opindex mprint-tune-info
16702Print CPU tuning information as comment in assembler file.  This is
16703an option used only for regression testing of the compiler and not
16704intended for ordinary use in compiling code.  This option is disabled
16705by default.
16706
16707@item -mverbose-cost-dump
16708@opindex mverbose-cost-dump
16709Enable verbose cost model dumping in the debug dump files.  This option is
16710provided for use in debugging the compiler.
16711
16712@item -mpure-code
16713@opindex mpure-code
16714Do not allow constant data to be placed in code sections.
16715Additionally, when compiling for ELF object format give all text sections the
16716ELF processor-specific section attribute @code{SHF_ARM_PURECODE}.  This option
16717is only available when generating non-pic code for M-profile targets with the
16718MOVT instruction.
16719
16720@item -mcmse
16721@opindex mcmse
16722Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
16723Development Tools Engineering Specification", which can be found on
16724@url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
16725@end table
16726
16727@node AVR Options
16728@subsection AVR Options
16729@cindex AVR Options
16730
16731These options are defined for AVR implementations:
16732
16733@table @gcctabopt
16734@item -mmcu=@var{mcu}
16735@opindex mmcu
16736Specify Atmel AVR instruction set architectures (ISA) or MCU type.
16737
16738The default for this option is@tie{}@samp{avr2}.
16739
16740GCC supports the following AVR devices and ISAs:
16741
16742@include avr-mmcu.texi
16743
16744@item -mabsdata
16745@opindex mabsdata
16746
16747Assume that all data in static storage can be accessed by LDS / STS
16748instructions.  This option has only an effect on reduced Tiny devices like
16749ATtiny40.  See also the @code{absdata}
16750@ref{AVR Variable Attributes,variable attribute}.
16751
16752@item -maccumulate-args
16753@opindex maccumulate-args
16754Accumulate outgoing function arguments and acquire/release the needed
16755stack space for outgoing function arguments once in function
16756prologue/epilogue.  Without this option, outgoing arguments are pushed
16757before calling a function and popped afterwards.
16758
16759Popping the arguments after the function call can be expensive on
16760AVR so that accumulating the stack space might lead to smaller
16761executables because arguments need not be removed from the
16762stack after such a function call.
16763
16764This option can lead to reduced code size for functions that perform
16765several calls to functions that get their arguments on the stack like
16766calls to printf-like functions.
16767
16768@item -mbranch-cost=@var{cost}
16769@opindex mbranch-cost
16770Set the branch costs for conditional branch instructions to
16771@var{cost}.  Reasonable values for @var{cost} are small, non-negative
16772integers. The default branch cost is 0.
16773
16774@item -mcall-prologues
16775@opindex mcall-prologues
16776Functions prologues/epilogues are expanded as calls to appropriate
16777subroutines.  Code size is smaller.
16778
16779@item -mgas-isr-prologues
16780@opindex mgas-isr-prologues
16781Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
16782instruction supported by GNU Binutils.
16783If this option is on, the feature can still be disabled for individual
16784ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
16785function attribute.  This feature is activated per default
16786if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
16787and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
16788
16789@item -mint8
16790@opindex mint8
16791Assume @code{int} to be 8-bit integer.  This affects the sizes of all types: a
16792@code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
16793and @code{long long} is 4 bytes.  Please note that this option does not
16794conform to the C standards, but it results in smaller code
16795size.
16796
16797@item -mmain-is-OS_task
16798@opindex mmain-is-OS_task
16799Do not save registers in @code{main}.  The effect is the same like
16800attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
16801to @code{main}. It is activated per default if optimization is on.
16802
16803@item -mn-flash=@var{num}
16804@opindex mn-flash
16805Assume that the flash memory has a size of
16806@var{num} times 64@tie{}KiB.
16807
16808@item -mno-interrupts
16809@opindex mno-interrupts
16810Generated code is not compatible with hardware interrupts.
16811Code size is smaller.
16812
16813@item -mrelax
16814@opindex mrelax
16815Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
16816@code{RCALL} resp.@: @code{RJMP} instruction if applicable.
16817Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
16818the assembler's command line and the @option{--relax} option to the
16819linker's command line.
16820
16821Jump relaxing is performed by the linker because jump offsets are not
16822known before code is located. Therefore, the assembler code generated by the
16823compiler is the same, but the instructions in the executable may
16824differ from instructions in the assembler code.
16825
16826Relaxing must be turned on if linker stubs are needed, see the
16827section on @code{EIND} and linker stubs below.
16828
16829@item -mrmw
16830@opindex mrmw
16831Assume that the device supports the Read-Modify-Write
16832instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
16833
16834@item -mshort-calls
16835@opindex mshort-calls
16836
16837Assume that @code{RJMP} and @code{RCALL} can target the whole
16838program memory.
16839
16840This option is used internally for multilib selection.  It is
16841not an optimization option, and you don't need to set it by hand.
16842
16843@item -msp8
16844@opindex msp8
16845Treat the stack pointer register as an 8-bit register,
16846i.e.@: assume the high byte of the stack pointer is zero.
16847In general, you don't need to set this option by hand.
16848
16849This option is used internally by the compiler to select and
16850build multilibs for architectures @code{avr2} and @code{avr25}.
16851These architectures mix devices with and without @code{SPH}.
16852For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
16853the compiler driver adds or removes this option from the compiler
16854proper's command line, because the compiler then knows if the device
16855or architecture has an 8-bit stack pointer and thus no @code{SPH}
16856register or not.
16857
16858@item -mstrict-X
16859@opindex mstrict-X
16860Use address register @code{X} in a way proposed by the hardware.  This means
16861that @code{X} is only used in indirect, post-increment or
16862pre-decrement addressing.
16863
16864Without this option, the @code{X} register may be used in the same way
16865as @code{Y} or @code{Z} which then is emulated by additional
16866instructions.
16867For example, loading a value with @code{X+const} addressing with a
16868small non-negative @code{const < 64} to a register @var{Rn} is
16869performed as
16870
16871@example
16872adiw r26, const   ; X += const
16873ld   @var{Rn}, X        ; @var{Rn} = *X
16874sbiw r26, const   ; X -= const
16875@end example
16876
16877@item -mtiny-stack
16878@opindex mtiny-stack
16879Only change the lower 8@tie{}bits of the stack pointer.
16880
16881@item -mfract-convert-truncate
16882@opindex mfract-convert-truncate
16883Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
16884
16885@item -nodevicelib
16886@opindex nodevicelib
16887Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
16888
16889@item -nodevicespecs
16890@opindex nodevicespecs
16891Don't add @option{-specs=device-specs/specs-<mcu>} to the compiler driver's
16892command line.  The user takes responsibility for supplying the sub-processes
16893like compiler proper, assembler and linker with appropriate command line
16894options.
16895
16896@item -Waddr-space-convert
16897@opindex Waddr-space-convert
16898Warn about conversions between address spaces in the case where the
16899resulting address space is not contained in the incoming address space.
16900
16901@item -Wmisspelled-isr
16902@opindex Wmisspelled-isr
16903Warn if the ISR is misspelled, i.e. without __vector prefix.
16904Enabled by default.
16905@end table
16906
16907@subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
16908@cindex @code{EIND}
16909Pointers in the implementation are 16@tie{}bits wide.
16910The address of a function or label is represented as word address so
16911that indirect jumps and calls can target any code address in the
16912range of 64@tie{}Ki words.
16913
16914In order to facilitate indirect jump on devices with more than 128@tie{}Ki
16915bytes of program memory space, there is a special function register called
16916@code{EIND} that serves as most significant part of the target address
16917when @code{EICALL} or @code{EIJMP} instructions are used.
16918
16919Indirect jumps and calls on these devices are handled as follows by
16920the compiler and are subject to some limitations:
16921
16922@itemize @bullet
16923
16924@item
16925The compiler never sets @code{EIND}.
16926
16927@item
16928The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
16929instructions or might read @code{EIND} directly in order to emulate an
16930indirect call/jump by means of a @code{RET} instruction.
16931
16932@item
16933The compiler assumes that @code{EIND} never changes during the startup
16934code or during the application. In particular, @code{EIND} is not
16935saved/restored in function or interrupt service routine
16936prologue/epilogue.
16937
16938@item
16939For indirect calls to functions and computed goto, the linker
16940generates @emph{stubs}. Stubs are jump pads sometimes also called
16941@emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
16942The stub contains a direct jump to the desired address.
16943
16944@item
16945Linker relaxation must be turned on so that the linker generates
16946the stubs correctly in all situations. See the compiler option
16947@option{-mrelax} and the linker option @option{--relax}.
16948There are corner cases where the linker is supposed to generate stubs
16949but aborts without relaxation and without a helpful error message.
16950
16951@item
16952The default linker script is arranged for code with @code{EIND = 0}.
16953If code is supposed to work for a setup with @code{EIND != 0}, a custom
16954linker script has to be used in order to place the sections whose
16955name start with @code{.trampolines} into the segment where @code{EIND}
16956points to.
16957
16958@item
16959The startup code from libgcc never sets @code{EIND}.
16960Notice that startup code is a blend of code from libgcc and AVR-LibC.
16961For the impact of AVR-LibC on @code{EIND}, see the
16962@w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
16963
16964@item
16965It is legitimate for user-specific startup code to set up @code{EIND}
16966early, for example by means of initialization code located in
16967section @code{.init3}. Such code runs prior to general startup code
16968that initializes RAM and calls constructors, but after the bit
16969of startup code from AVR-LibC that sets @code{EIND} to the segment
16970where the vector table is located.
16971@example
16972#include <avr/io.h>
16973
16974static void
16975__attribute__((section(".init3"),naked,used,no_instrument_function))
16976init3_set_eind (void)
16977@{
16978  __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
16979                  "out %i0,r24" :: "n" (&EIND) : "r24","memory");
16980@}
16981@end example
16982
16983@noindent
16984The @code{__trampolines_start} symbol is defined in the linker script.
16985
16986@item
16987Stubs are generated automatically by the linker if
16988the following two conditions are met:
16989@itemize @minus
16990
16991@item The address of a label is taken by means of the @code{gs} modifier
16992(short for @emph{generate stubs}) like so:
16993@example
16994LDI r24, lo8(gs(@var{func}))
16995LDI r25, hi8(gs(@var{func}))
16996@end example
16997@item The final location of that label is in a code segment
16998@emph{outside} the segment where the stubs are located.
16999@end itemize
17000
17001@item
17002The compiler emits such @code{gs} modifiers for code labels in the
17003following situations:
17004@itemize @minus
17005@item Taking address of a function or code label.
17006@item Computed goto.
17007@item If prologue-save function is used, see @option{-mcall-prologues}
17008command-line option.
17009@item Switch/case dispatch tables. If you do not want such dispatch
17010tables you can specify the @option{-fno-jump-tables} command-line option.
17011@item C and C++ constructors/destructors called during startup/shutdown.
17012@item If the tools hit a @code{gs()} modifier explained above.
17013@end itemize
17014
17015@item
17016Jumping to non-symbolic addresses like so is @emph{not} supported:
17017
17018@example
17019int main (void)
17020@{
17021    /* Call function at word address 0x2 */
17022    return ((int(*)(void)) 0x2)();
17023@}
17024@end example
17025
17026Instead, a stub has to be set up, i.e.@: the function has to be called
17027through a symbol (@code{func_4} in the example):
17028
17029@example
17030int main (void)
17031@{
17032    extern int func_4 (void);
17033
17034    /* Call function at byte address 0x4 */
17035    return func_4();
17036@}
17037@end example
17038
17039and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
17040Alternatively, @code{func_4} can be defined in the linker script.
17041@end itemize
17042
17043@subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
17044@cindex @code{RAMPD}
17045@cindex @code{RAMPX}
17046@cindex @code{RAMPY}
17047@cindex @code{RAMPZ}
17048Some AVR devices support memories larger than the 64@tie{}KiB range
17049that can be accessed with 16-bit pointers.  To access memory locations
17050outside this 64@tie{}KiB range, the content of a @code{RAMP}
17051register is used as high part of the address:
17052The @code{X}, @code{Y}, @code{Z} address register is concatenated
17053with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
17054register, respectively, to get a wide address. Similarly,
17055@code{RAMPD} is used together with direct addressing.
17056
17057@itemize
17058@item
17059The startup code initializes the @code{RAMP} special function
17060registers with zero.
17061
17062@item
17063If a @ref{AVR Named Address Spaces,named address space} other than
17064generic or @code{__flash} is used, then @code{RAMPZ} is set
17065as needed before the operation.
17066
17067@item
17068If the device supports RAM larger than 64@tie{}KiB and the compiler
17069needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
17070is reset to zero after the operation.
17071
17072@item
17073If the device comes with a specific @code{RAMP} register, the ISR
17074prologue/epilogue saves/restores that SFR and initializes it with
17075zero in case the ISR code might (implicitly) use it.
17076
17077@item
17078RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
17079If you use inline assembler to read from locations outside the
1708016-bit address range and change one of the @code{RAMP} registers,
17081you must reset it to zero after the access.
17082
17083@end itemize
17084
17085@subsubsection AVR Built-in Macros
17086
17087GCC defines several built-in macros so that the user code can test
17088for the presence or absence of features.  Almost any of the following
17089built-in macros are deduced from device capabilities and thus
17090triggered by the @option{-mmcu=} command-line option.
17091
17092For even more AVR-specific built-in macros see
17093@ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
17094
17095@table @code
17096
17097@item __AVR_ARCH__
17098Build-in macro that resolves to a decimal number that identifies the
17099architecture and depends on the @option{-mmcu=@var{mcu}} option.
17100Possible values are:
17101
17102@code{2}, @code{25}, @code{3}, @code{31}, @code{35},
17103@code{4}, @code{5}, @code{51}, @code{6}
17104
17105for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
17106@code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
17107
17108respectively and
17109
17110@code{100},
17111@code{102}, @code{103}, @code{104},
17112@code{105}, @code{106}, @code{107}
17113
17114for @var{mcu}=@code{avrtiny},
17115@code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
17116@code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
17117If @var{mcu} specifies a device, this built-in macro is set
17118accordingly. For example, with @option{-mmcu=atmega8} the macro is
17119defined to @code{4}.
17120
17121@item __AVR_@var{Device}__
17122Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
17123the device's name. For example, @option{-mmcu=atmega8} defines the
17124built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
17125@code{__AVR_ATtiny261A__}, etc.
17126
17127The built-in macros' names follow
17128the scheme @code{__AVR_@var{Device}__} where @var{Device} is
17129the device name as from the AVR user manual. The difference between
17130@var{Device} in the built-in macro and @var{device} in
17131@option{-mmcu=@var{device}} is that the latter is always lowercase.
17132
17133If @var{device} is not a device but only a core architecture like
17134@samp{avr51}, this macro is not defined.
17135
17136@item __AVR_DEVICE_NAME__
17137Setting @option{-mmcu=@var{device}} defines this built-in macro to
17138the device's name. For example, with @option{-mmcu=atmega8} the macro
17139is defined to @code{atmega8}.
17140
17141If @var{device} is not a device but only a core architecture like
17142@samp{avr51}, this macro is not defined.
17143
17144@item __AVR_XMEGA__
17145The device / architecture belongs to the XMEGA family of devices.
17146
17147@item __AVR_HAVE_ELPM__
17148The device has the @code{ELPM} instruction.
17149
17150@item __AVR_HAVE_ELPMX__
17151The device has the @code{ELPM R@var{n},Z} and @code{ELPM
17152R@var{n},Z+} instructions.
17153
17154@item __AVR_HAVE_MOVW__
17155The device has the @code{MOVW} instruction to perform 16-bit
17156register-register moves.
17157
17158@item __AVR_HAVE_LPMX__
17159The device has the @code{LPM R@var{n},Z} and
17160@code{LPM R@var{n},Z+} instructions.
17161
17162@item __AVR_HAVE_MUL__
17163The device has a hardware multiplier.
17164
17165@item __AVR_HAVE_JMP_CALL__
17166The device has the @code{JMP} and @code{CALL} instructions.
17167This is the case for devices with more than 8@tie{}KiB of program
17168memory.
17169
17170@item __AVR_HAVE_EIJMP_EICALL__
17171@itemx __AVR_3_BYTE_PC__
17172The device has the @code{EIJMP} and @code{EICALL} instructions.
17173This is the case for devices with more than 128@tie{}KiB of program memory.
17174This also means that the program counter
17175(PC) is 3@tie{}bytes wide.
17176
17177@item __AVR_2_BYTE_PC__
17178The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
17179with up to 128@tie{}KiB of program memory.
17180
17181@item __AVR_HAVE_8BIT_SP__
17182@itemx __AVR_HAVE_16BIT_SP__
17183The stack pointer (SP) register is treated as 8-bit respectively
1718416-bit register by the compiler.
17185The definition of these macros is affected by @option{-mtiny-stack}.
17186
17187@item __AVR_HAVE_SPH__
17188@itemx __AVR_SP8__
17189The device has the SPH (high part of stack pointer) special function
17190register or has an 8-bit stack pointer, respectively.
17191The definition of these macros is affected by @option{-mmcu=} and
17192in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
17193by @option{-msp8}.
17194
17195@item __AVR_HAVE_RAMPD__
17196@itemx __AVR_HAVE_RAMPX__
17197@itemx __AVR_HAVE_RAMPY__
17198@itemx __AVR_HAVE_RAMPZ__
17199The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
17200@code{RAMPZ} special function register, respectively.
17201
17202@item __NO_INTERRUPTS__
17203This macro reflects the @option{-mno-interrupts} command-line option.
17204
17205@item __AVR_ERRATA_SKIP__
17206@itemx __AVR_ERRATA_SKIP_JMP_CALL__
17207Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
17208instructions because of a hardware erratum.  Skip instructions are
17209@code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
17210The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
17211set.
17212
17213@item __AVR_ISA_RMW__
17214The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
17215
17216@item __AVR_SFR_OFFSET__=@var{offset}
17217Instructions that can address I/O special function registers directly
17218like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
17219address as if addressed by an instruction to access RAM like @code{LD}
17220or @code{STS}. This offset depends on the device architecture and has
17221to be subtracted from the RAM address in order to get the
17222respective I/O@tie{}address.
17223
17224@item __AVR_SHORT_CALLS__
17225The @option{-mshort-calls} command line option is set.
17226
17227@item __AVR_PM_BASE_ADDRESS__=@var{addr}
17228Some devices support reading from flash memory by means of @code{LD*}
17229instructions.  The flash memory is seen in the data address space
17230at an offset of @code{__AVR_PM_BASE_ADDRESS__}.  If this macro
17231is not defined, this feature is not available.  If defined,
17232the address space is linear and there is no need to put
17233@code{.rodata} into RAM.  This is handled by the default linker
17234description file, and is currently available for
17235@code{avrtiny} and @code{avrxmega3}.  Even more convenient,
17236there is no need to use address spaces like @code{__flash} or
17237features like attribute @code{progmem} and @code{pgm_read_*}.
17238
17239@item __WITH_AVRLIBC__
17240The compiler is configured to be used together with AVR-Libc.
17241See the @option{--with-avrlibc} configure option.
17242
17243@end table
17244
17245@node Blackfin Options
17246@subsection Blackfin Options
17247@cindex Blackfin Options
17248
17249@table @gcctabopt
17250@item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
17251@opindex mcpu=
17252Specifies the name of the target Blackfin processor.  Currently, @var{cpu}
17253can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
17254@samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
17255@samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
17256@samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
17257@samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
17258@samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
17259@samp{bf561}, @samp{bf592}.
17260
17261The optional @var{sirevision} specifies the silicon revision of the target
17262Blackfin processor.  Any workarounds available for the targeted silicon revision
17263are enabled.  If @var{sirevision} is @samp{none}, no workarounds are enabled.
17264If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
17265are enabled.  The @code{__SILICON_REVISION__} macro is defined to two
17266hexadecimal digits representing the major and minor numbers in the silicon
17267revision.  If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
17268is not defined.  If @var{sirevision} is @samp{any}, the
17269@code{__SILICON_REVISION__} is defined to be @code{0xffff}.
17270If this optional @var{sirevision} is not used, GCC assumes the latest known
17271silicon revision of the targeted Blackfin processor.
17272
17273GCC defines a preprocessor macro for the specified @var{cpu}.
17274For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
17275provided by libgloss to be linked in if @option{-msim} is not given.
17276
17277Without this option, @samp{bf532} is used as the processor by default.
17278
17279Note that support for @samp{bf561} is incomplete.  For @samp{bf561},
17280only the preprocessor macro is defined.
17281
17282@item -msim
17283@opindex msim
17284Specifies that the program will be run on the simulator.  This causes
17285the simulator BSP provided by libgloss to be linked in.  This option
17286has effect only for @samp{bfin-elf} toolchain.
17287Certain other options, such as @option{-mid-shared-library} and
17288@option{-mfdpic}, imply @option{-msim}.
17289
17290@item -momit-leaf-frame-pointer
17291@opindex momit-leaf-frame-pointer
17292Don't keep the frame pointer in a register for leaf functions.  This
17293avoids the instructions to save, set up and restore frame pointers and
17294makes an extra register available in leaf functions.
17295
17296@item -mspecld-anomaly
17297@opindex mspecld-anomaly
17298When enabled, the compiler ensures that the generated code does not
17299contain speculative loads after jump instructions. If this option is used,
17300@code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
17301
17302@item -mno-specld-anomaly
17303@opindex mno-specld-anomaly
17304Don't generate extra code to prevent speculative loads from occurring.
17305
17306@item -mcsync-anomaly
17307@opindex mcsync-anomaly
17308When enabled, the compiler ensures that the generated code does not
17309contain CSYNC or SSYNC instructions too soon after conditional branches.
17310If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
17311
17312@item -mno-csync-anomaly
17313@opindex mno-csync-anomaly
17314Don't generate extra code to prevent CSYNC or SSYNC instructions from
17315occurring too soon after a conditional branch.
17316
17317@item -mlow-64k
17318@opindex mlow-64k
17319When enabled, the compiler is free to take advantage of the knowledge that
17320the entire program fits into the low 64k of memory.
17321
17322@item -mno-low-64k
17323@opindex mno-low-64k
17324Assume that the program is arbitrarily large.  This is the default.
17325
17326@item -mstack-check-l1
17327@opindex mstack-check-l1
17328Do stack checking using information placed into L1 scratchpad memory by the
17329uClinux kernel.
17330
17331@item -mid-shared-library
17332@opindex mid-shared-library
17333Generate code that supports shared libraries via the library ID method.
17334This allows for execute in place and shared libraries in an environment
17335without virtual memory management.  This option implies @option{-fPIC}.
17336With a @samp{bfin-elf} target, this option implies @option{-msim}.
17337
17338@item -mno-id-shared-library
17339@opindex mno-id-shared-library
17340Generate code that doesn't assume ID-based shared libraries are being used.
17341This is the default.
17342
17343@item -mleaf-id-shared-library
17344@opindex mleaf-id-shared-library
17345Generate code that supports shared libraries via the library ID method,
17346but assumes that this library or executable won't link against any other
17347ID shared libraries.  That allows the compiler to use faster code for jumps
17348and calls.
17349
17350@item -mno-leaf-id-shared-library
17351@opindex mno-leaf-id-shared-library
17352Do not assume that the code being compiled won't link against any ID shared
17353libraries.  Slower code is generated for jump and call insns.
17354
17355@item -mshared-library-id=n
17356@opindex mshared-library-id
17357Specifies the identification number of the ID-based shared library being
17358compiled.  Specifying a value of 0 generates more compact code; specifying
17359other values forces the allocation of that number to the current
17360library but is no more space- or time-efficient than omitting this option.
17361
17362@item -msep-data
17363@opindex msep-data
17364Generate code that allows the data segment to be located in a different
17365area of memory from the text segment.  This allows for execute in place in
17366an environment without virtual memory management by eliminating relocations
17367against the text section.
17368
17369@item -mno-sep-data
17370@opindex mno-sep-data
17371Generate code that assumes that the data segment follows the text segment.
17372This is the default.
17373
17374@item -mlong-calls
17375@itemx -mno-long-calls
17376@opindex mlong-calls
17377@opindex mno-long-calls
17378Tells the compiler to perform function calls by first loading the
17379address of the function into a register and then performing a subroutine
17380call on this register.  This switch is needed if the target function
17381lies outside of the 24-bit addressing range of the offset-based
17382version of subroutine call instruction.
17383
17384This feature is not enabled by default.  Specifying
17385@option{-mno-long-calls} restores the default behavior.  Note these
17386switches have no effect on how the compiler generates code to handle
17387function calls via function pointers.
17388
17389@item -mfast-fp
17390@opindex mfast-fp
17391Link with the fast floating-point library. This library relaxes some of
17392the IEEE floating-point standard's rules for checking inputs against
17393Not-a-Number (NAN), in the interest of performance.
17394
17395@item -minline-plt
17396@opindex minline-plt
17397Enable inlining of PLT entries in function calls to functions that are
17398not known to bind locally.  It has no effect without @option{-mfdpic}.
17399
17400@item -mmulticore
17401@opindex mmulticore
17402Build a standalone application for multicore Blackfin processors.
17403This option causes proper start files and link scripts supporting
17404multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
17405It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
17406
17407This option can be used with @option{-mcorea} or @option{-mcoreb}, which
17408selects the one-application-per-core programming model.  Without
17409@option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
17410programming model is used. In this model, the main function of Core B
17411should be named as @code{coreb_main}.
17412
17413If this option is not used, the single-core application programming
17414model is used.
17415
17416@item -mcorea
17417@opindex mcorea
17418Build a standalone application for Core A of BF561 when using
17419the one-application-per-core programming model. Proper start files
17420and link scripts are used to support Core A, and the macro
17421@code{__BFIN_COREA} is defined.
17422This option can only be used in conjunction with @option{-mmulticore}.
17423
17424@item -mcoreb
17425@opindex mcoreb
17426Build a standalone application for Core B of BF561 when using
17427the one-application-per-core programming model. Proper start files
17428and link scripts are used to support Core B, and the macro
17429@code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
17430should be used instead of @code{main}.
17431This option can only be used in conjunction with @option{-mmulticore}.
17432
17433@item -msdram
17434@opindex msdram
17435Build a standalone application for SDRAM. Proper start files and
17436link scripts are used to put the application into SDRAM, and the macro
17437@code{__BFIN_SDRAM} is defined.
17438The loader should initialize SDRAM before loading the application.
17439
17440@item -micplb
17441@opindex micplb
17442Assume that ICPLBs are enabled at run time.  This has an effect on certain
17443anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
17444are enabled; for standalone applications the default is off.
17445@end table
17446
17447@node C6X Options
17448@subsection C6X Options
17449@cindex C6X Options
17450
17451@table @gcctabopt
17452@item -march=@var{name}
17453@opindex march
17454This specifies the name of the target architecture.  GCC uses this
17455name to determine what kind of instructions it can emit when generating
17456assembly code.  Permissible names are: @samp{c62x},
17457@samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
17458
17459@item -mbig-endian
17460@opindex mbig-endian
17461Generate code for a big-endian target.
17462
17463@item -mlittle-endian
17464@opindex mlittle-endian
17465Generate code for a little-endian target.  This is the default.
17466
17467@item -msim
17468@opindex msim
17469Choose startup files and linker script suitable for the simulator.
17470
17471@item -msdata=default
17472@opindex msdata=default
17473Put small global and static data in the @code{.neardata} section,
17474which is pointed to by register @code{B14}.  Put small uninitialized
17475global and static data in the @code{.bss} section, which is adjacent
17476to the @code{.neardata} section.  Put small read-only data into the
17477@code{.rodata} section.  The corresponding sections used for large
17478pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
17479
17480@item -msdata=all
17481@opindex msdata=all
17482Put all data, not just small objects, into the sections reserved for
17483small data, and use addressing relative to the @code{B14} register to
17484access them.
17485
17486@item -msdata=none
17487@opindex msdata=none
17488Make no use of the sections reserved for small data, and use absolute
17489addresses to access all data.  Put all initialized global and static
17490data in the @code{.fardata} section, and all uninitialized data in the
17491@code{.far} section.  Put all constant data into the @code{.const}
17492section.
17493@end table
17494
17495@node CRIS Options
17496@subsection CRIS Options
17497@cindex CRIS Options
17498
17499These options are defined specifically for the CRIS ports.
17500
17501@table @gcctabopt
17502@item -march=@var{architecture-type}
17503@itemx -mcpu=@var{architecture-type}
17504@opindex march
17505@opindex mcpu
17506Generate code for the specified architecture.  The choices for
17507@var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
17508respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
17509Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
17510@samp{v10}.
17511
17512@item -mtune=@var{architecture-type}
17513@opindex mtune
17514Tune to @var{architecture-type} everything applicable about the generated
17515code, except for the ABI and the set of available instructions.  The
17516choices for @var{architecture-type} are the same as for
17517@option{-march=@var{architecture-type}}.
17518
17519@item -mmax-stack-frame=@var{n}
17520@opindex mmax-stack-frame
17521Warn when the stack frame of a function exceeds @var{n} bytes.
17522
17523@item -metrax4
17524@itemx -metrax100
17525@opindex metrax4
17526@opindex metrax100
17527The options @option{-metrax4} and @option{-metrax100} are synonyms for
17528@option{-march=v3} and @option{-march=v8} respectively.
17529
17530@item -mmul-bug-workaround
17531@itemx -mno-mul-bug-workaround
17532@opindex mmul-bug-workaround
17533@opindex mno-mul-bug-workaround
17534Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
17535models where it applies.  This option is active by default.
17536
17537@item -mpdebug
17538@opindex mpdebug
17539Enable CRIS-specific verbose debug-related information in the assembly
17540code.  This option also has the effect of turning off the @samp{#NO_APP}
17541formatted-code indicator to the assembler at the beginning of the
17542assembly file.
17543
17544@item -mcc-init
17545@opindex mcc-init
17546Do not use condition-code results from previous instruction; always emit
17547compare and test instructions before use of condition codes.
17548
17549@item -mno-side-effects
17550@opindex mno-side-effects
17551Do not emit instructions with side effects in addressing modes other than
17552post-increment.
17553
17554@item -mstack-align
17555@itemx -mno-stack-align
17556@itemx -mdata-align
17557@itemx -mno-data-align
17558@itemx -mconst-align
17559@itemx -mno-const-align
17560@opindex mstack-align
17561@opindex mno-stack-align
17562@opindex mdata-align
17563@opindex mno-data-align
17564@opindex mconst-align
17565@opindex mno-const-align
17566These options (@samp{no-} options) arrange (eliminate arrangements) for the
17567stack frame, individual data and constants to be aligned for the maximum
17568single data access size for the chosen CPU model.  The default is to
17569arrange for 32-bit alignment.  ABI details such as structure layout are
17570not affected by these options.
17571
17572@item -m32-bit
17573@itemx -m16-bit
17574@itemx -m8-bit
17575@opindex m32-bit
17576@opindex m16-bit
17577@opindex m8-bit
17578Similar to the stack- data- and const-align options above, these options
17579arrange for stack frame, writable data and constants to all be 32-bit,
1758016-bit or 8-bit aligned.  The default is 32-bit alignment.
17581
17582@item -mno-prologue-epilogue
17583@itemx -mprologue-epilogue
17584@opindex mno-prologue-epilogue
17585@opindex mprologue-epilogue
17586With @option{-mno-prologue-epilogue}, the normal function prologue and
17587epilogue which set up the stack frame are omitted and no return
17588instructions or return sequences are generated in the code.  Use this
17589option only together with visual inspection of the compiled code: no
17590warnings or errors are generated when call-saved registers must be saved,
17591or storage for local variables needs to be allocated.
17592
17593@item -mno-gotplt
17594@itemx -mgotplt
17595@opindex mno-gotplt
17596@opindex mgotplt
17597With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
17598instruction sequences that load addresses for functions from the PLT part
17599of the GOT rather than (traditional on other architectures) calls to the
17600PLT@.  The default is @option{-mgotplt}.
17601
17602@item -melf
17603@opindex melf
17604Legacy no-op option only recognized with the cris-axis-elf and
17605cris-axis-linux-gnu targets.
17606
17607@item -mlinux
17608@opindex mlinux
17609Legacy no-op option only recognized with the cris-axis-linux-gnu target.
17610
17611@item -sim
17612@opindex sim
17613This option, recognized for the cris-axis-elf, arranges
17614to link with input-output functions from a simulator library.  Code,
17615initialized data and zero-initialized data are allocated consecutively.
17616
17617@item -sim2
17618@opindex sim2
17619Like @option{-sim}, but pass linker options to locate initialized data at
176200x40000000 and zero-initialized data at 0x80000000.
17621@end table
17622
17623@node CR16 Options
17624@subsection CR16 Options
17625@cindex CR16 Options
17626
17627These options are defined specifically for the CR16 ports.
17628
17629@table @gcctabopt
17630
17631@item -mmac
17632@opindex mmac
17633Enable the use of multiply-accumulate instructions. Disabled by default.
17634
17635@item -mcr16cplus
17636@itemx -mcr16c
17637@opindex mcr16cplus
17638@opindex mcr16c
17639Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
17640is default.
17641
17642@item -msim
17643@opindex msim
17644Links the library libsim.a which is in compatible with simulator. Applicable
17645to ELF compiler only.
17646
17647@item -mint32
17648@opindex mint32
17649Choose integer type as 32-bit wide.
17650
17651@item -mbit-ops
17652@opindex mbit-ops
17653Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
17654
17655@item -mdata-model=@var{model}
17656@opindex mdata-model
17657Choose a data model. The choices for @var{model} are @samp{near},
17658@samp{far} or @samp{medium}. @samp{medium} is default.
17659However, @samp{far} is not valid with @option{-mcr16c}, as the
17660CR16C architecture does not support the far data model.
17661@end table
17662
17663@node Darwin Options
17664@subsection Darwin Options
17665@cindex Darwin options
17666
17667These options are defined for all architectures running the Darwin operating
17668system.
17669
17670FSF GCC on Darwin does not create ``fat'' object files; it creates
17671an object file for the single architecture that GCC was built to
17672target.  Apple's GCC on Darwin does create ``fat'' files if multiple
17673@option{-arch} options are used; it does so by running the compiler or
17674linker multiple times and joining the results together with
17675@file{lipo}.
17676
17677The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
17678@samp{i686}) is determined by the flags that specify the ISA
17679that GCC is targeting, like @option{-mcpu} or @option{-march}.  The
17680@option{-force_cpusubtype_ALL} option can be used to override this.
17681
17682The Darwin tools vary in their behavior when presented with an ISA
17683mismatch.  The assembler, @file{as}, only permits instructions to
17684be used that are valid for the subtype of the file it is generating,
17685so you cannot put 64-bit instructions in a @samp{ppc750} object file.
17686The linker for shared libraries, @file{/usr/bin/libtool}, fails
17687and prints an error if asked to create a shared library with a less
17688restrictive subtype than its input files (for instance, trying to put
17689a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
17690for executables, @command{ld}, quietly gives the executable the most
17691restrictive subtype of any of its input files.
17692
17693@table @gcctabopt
17694@item -F@var{dir}
17695@opindex F
17696Add the framework directory @var{dir} to the head of the list of
17697directories to be searched for header files.  These directories are
17698interleaved with those specified by @option{-I} options and are
17699scanned in a left-to-right order.
17700
17701A framework directory is a directory with frameworks in it.  A
17702framework is a directory with a @file{Headers} and/or
17703@file{PrivateHeaders} directory contained directly in it that ends
17704in @file{.framework}.  The name of a framework is the name of this
17705directory excluding the @file{.framework}.  Headers associated with
17706the framework are found in one of those two directories, with
17707@file{Headers} being searched first.  A subframework is a framework
17708directory that is in a framework's @file{Frameworks} directory.
17709Includes of subframework headers can only appear in a header of a
17710framework that contains the subframework, or in a sibling subframework
17711header.  Two subframeworks are siblings if they occur in the same
17712framework.  A subframework should not have the same name as a
17713framework; a warning is issued if this is violated.  Currently a
17714subframework cannot have subframeworks; in the future, the mechanism
17715may be extended to support this.  The standard frameworks can be found
17716in @file{/System/Library/Frameworks} and
17717@file{/Library/Frameworks}.  An example include looks like
17718@code{#include <Framework/header.h>}, where @file{Framework} denotes
17719the name of the framework and @file{header.h} is found in the
17720@file{PrivateHeaders} or @file{Headers} directory.
17721
17722@item -iframework@var{dir}
17723@opindex iframework
17724Like @option{-F} except the directory is a treated as a system
17725directory.  The main difference between this @option{-iframework} and
17726@option{-F} is that with @option{-iframework} the compiler does not
17727warn about constructs contained within header files found via
17728@var{dir}.  This option is valid only for the C family of languages.
17729
17730@item -gused
17731@opindex gused
17732Emit debugging information for symbols that are used.  For stabs
17733debugging format, this enables @option{-feliminate-unused-debug-symbols}.
17734This is by default ON@.
17735
17736@item -gfull
17737@opindex gfull
17738Emit debugging information for all symbols and types.
17739
17740@item -mmacosx-version-min=@var{version}
17741The earliest version of MacOS X that this executable will run on
17742is @var{version}.  Typical values of @var{version} include @code{10.1},
17743@code{10.2}, and @code{10.3.9}.
17744
17745If the compiler was built to use the system's headers by default,
17746then the default for this option is the system version on which the
17747compiler is running, otherwise the default is to make choices that
17748are compatible with as many systems and code bases as possible.
17749
17750@item -mkernel
17751@opindex mkernel
17752Enable kernel development mode.  The @option{-mkernel} option sets
17753@option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
17754@option{-fno-exceptions}, @option{-fno-non-call-exceptions},
17755@option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
17756applicable.  This mode also sets @option{-mno-altivec},
17757@option{-msoft-float}, @option{-fno-builtin} and
17758@option{-mlong-branch} for PowerPC targets.
17759
17760@item -mone-byte-bool
17761@opindex mone-byte-bool
17762Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
17763By default @code{sizeof(bool)} is @code{4} when compiling for
17764Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
17765option has no effect on x86.
17766
17767@strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
17768to generate code that is not binary compatible with code generated
17769without that switch.  Using this switch may require recompiling all
17770other modules in a program, including system libraries.  Use this
17771switch to conform to a non-default data model.
17772
17773@item -mfix-and-continue
17774@itemx -ffix-and-continue
17775@itemx -findirect-data
17776@opindex mfix-and-continue
17777@opindex ffix-and-continue
17778@opindex findirect-data
17779Generate code suitable for fast turnaround development, such as to
17780allow GDB to dynamically load @file{.o} files into already-running
17781programs.  @option{-findirect-data} and @option{-ffix-and-continue}
17782are provided for backwards compatibility.
17783
17784@item -all_load
17785@opindex all_load
17786Loads all members of static archive libraries.
17787See man ld(1) for more information.
17788
17789@item -arch_errors_fatal
17790@opindex arch_errors_fatal
17791Cause the errors having to do with files that have the wrong architecture
17792to be fatal.
17793
17794@item -bind_at_load
17795@opindex bind_at_load
17796Causes the output file to be marked such that the dynamic linker will
17797bind all undefined references when the file is loaded or launched.
17798
17799@item -bundle
17800@opindex bundle
17801Produce a Mach-o bundle format file.
17802See man ld(1) for more information.
17803
17804@item -bundle_loader @var{executable}
17805@opindex bundle_loader
17806This option specifies the @var{executable} that will load the build
17807output file being linked.  See man ld(1) for more information.
17808
17809@item -dynamiclib
17810@opindex dynamiclib
17811When passed this option, GCC produces a dynamic library instead of
17812an executable when linking, using the Darwin @file{libtool} command.
17813
17814@item -force_cpusubtype_ALL
17815@opindex force_cpusubtype_ALL
17816This causes GCC's output file to have the @samp{ALL} subtype, instead of
17817one controlled by the @option{-mcpu} or @option{-march} option.
17818
17819@item -allowable_client  @var{client_name}
17820@itemx -client_name
17821@itemx -compatibility_version
17822@itemx -current_version
17823@itemx -dead_strip
17824@itemx -dependency-file
17825@itemx -dylib_file
17826@itemx -dylinker_install_name
17827@itemx -dynamic
17828@itemx -exported_symbols_list
17829@itemx -filelist
17830@need 800
17831@itemx -flat_namespace
17832@itemx -force_flat_namespace
17833@itemx -headerpad_max_install_names
17834@itemx -image_base
17835@itemx -init
17836@itemx -install_name
17837@itemx -keep_private_externs
17838@itemx -multi_module
17839@itemx -multiply_defined
17840@itemx -multiply_defined_unused
17841@need 800
17842@itemx -noall_load
17843@itemx -no_dead_strip_inits_and_terms
17844@itemx -nofixprebinding
17845@itemx -nomultidefs
17846@itemx -noprebind
17847@itemx -noseglinkedit
17848@itemx -pagezero_size
17849@itemx -prebind
17850@itemx -prebind_all_twolevel_modules
17851@itemx -private_bundle
17852@need 800
17853@itemx -read_only_relocs
17854@itemx -sectalign
17855@itemx -sectobjectsymbols
17856@itemx -whyload
17857@itemx -seg1addr
17858@itemx -sectcreate
17859@itemx -sectobjectsymbols
17860@itemx -sectorder
17861@itemx -segaddr
17862@itemx -segs_read_only_addr
17863@need 800
17864@itemx -segs_read_write_addr
17865@itemx -seg_addr_table
17866@itemx -seg_addr_table_filename
17867@itemx -seglinkedit
17868@itemx -segprot
17869@itemx -segs_read_only_addr
17870@itemx -segs_read_write_addr
17871@itemx -single_module
17872@itemx -static
17873@itemx -sub_library
17874@need 800
17875@itemx -sub_umbrella
17876@itemx -twolevel_namespace
17877@itemx -umbrella
17878@itemx -undefined
17879@itemx -unexported_symbols_list
17880@itemx -weak_reference_mismatches
17881@itemx -whatsloaded
17882@opindex allowable_client
17883@opindex client_name
17884@opindex compatibility_version
17885@opindex current_version
17886@opindex dead_strip
17887@opindex dependency-file
17888@opindex dylib_file
17889@opindex dylinker_install_name
17890@opindex dynamic
17891@opindex exported_symbols_list
17892@opindex filelist
17893@opindex flat_namespace
17894@opindex force_flat_namespace
17895@opindex headerpad_max_install_names
17896@opindex image_base
17897@opindex init
17898@opindex install_name
17899@opindex keep_private_externs
17900@opindex multi_module
17901@opindex multiply_defined
17902@opindex multiply_defined_unused
17903@opindex noall_load
17904@opindex no_dead_strip_inits_and_terms
17905@opindex nofixprebinding
17906@opindex nomultidefs
17907@opindex noprebind
17908@opindex noseglinkedit
17909@opindex pagezero_size
17910@opindex prebind
17911@opindex prebind_all_twolevel_modules
17912@opindex private_bundle
17913@opindex read_only_relocs
17914@opindex sectalign
17915@opindex sectobjectsymbols
17916@opindex whyload
17917@opindex seg1addr
17918@opindex sectcreate
17919@opindex sectobjectsymbols
17920@opindex sectorder
17921@opindex segaddr
17922@opindex segs_read_only_addr
17923@opindex segs_read_write_addr
17924@opindex seg_addr_table
17925@opindex seg_addr_table_filename
17926@opindex seglinkedit
17927@opindex segprot
17928@opindex segs_read_only_addr
17929@opindex segs_read_write_addr
17930@opindex single_module
17931@opindex static
17932@opindex sub_library
17933@opindex sub_umbrella
17934@opindex twolevel_namespace
17935@opindex umbrella
17936@opindex undefined
17937@opindex unexported_symbols_list
17938@opindex weak_reference_mismatches
17939@opindex whatsloaded
17940These options are passed to the Darwin linker.  The Darwin linker man page
17941describes them in detail.
17942@end table
17943
17944@node DEC Alpha Options
17945@subsection DEC Alpha Options
17946
17947These @samp{-m} options are defined for the DEC Alpha implementations:
17948
17949@table @gcctabopt
17950@item -mno-soft-float
17951@itemx -msoft-float
17952@opindex mno-soft-float
17953@opindex msoft-float
17954Use (do not use) the hardware floating-point instructions for
17955floating-point operations.  When @option{-msoft-float} is specified,
17956functions in @file{libgcc.a} are used to perform floating-point
17957operations.  Unless they are replaced by routines that emulate the
17958floating-point operations, or compiled in such a way as to call such
17959emulations routines, these routines issue floating-point
17960operations.   If you are compiling for an Alpha without floating-point
17961operations, you must ensure that the library is built so as not to call
17962them.
17963
17964Note that Alpha implementations without floating-point operations are
17965required to have floating-point registers.
17966
17967@item -mfp-reg
17968@itemx -mno-fp-regs
17969@opindex mfp-reg
17970@opindex mno-fp-regs
17971Generate code that uses (does not use) the floating-point register set.
17972@option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
17973register set is not used, floating-point operands are passed in integer
17974registers as if they were integers and floating-point results are passed
17975in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
17976so any function with a floating-point argument or return value called by code
17977compiled with @option{-mno-fp-regs} must also be compiled with that
17978option.
17979
17980A typical use of this option is building a kernel that does not use,
17981and hence need not save and restore, any floating-point registers.
17982
17983@item -mieee
17984@opindex mieee
17985The Alpha architecture implements floating-point hardware optimized for
17986maximum performance.  It is mostly compliant with the IEEE floating-point
17987standard.  However, for full compliance, software assistance is
17988required.  This option generates code fully IEEE-compliant code
17989@emph{except} that the @var{inexact-flag} is not maintained (see below).
17990If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
17991defined during compilation.  The resulting code is less efficient but is
17992able to correctly support denormalized numbers and exceptional IEEE
17993values such as not-a-number and plus/minus infinity.  Other Alpha
17994compilers call this option @option{-ieee_with_no_inexact}.
17995
17996@item -mieee-with-inexact
17997@opindex mieee-with-inexact
17998This is like @option{-mieee} except the generated code also maintains
17999the IEEE @var{inexact-flag}.  Turning on this option causes the
18000generated code to implement fully-compliant IEEE math.  In addition to
18001@code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
18002macro.  On some Alpha implementations the resulting code may execute
18003significantly slower than the code generated by default.  Since there is
18004very little code that depends on the @var{inexact-flag}, you should
18005normally not specify this option.  Other Alpha compilers call this
18006option @option{-ieee_with_inexact}.
18007
18008@item -mfp-trap-mode=@var{trap-mode}
18009@opindex mfp-trap-mode
18010This option controls what floating-point related traps are enabled.
18011Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
18012The trap mode can be set to one of four values:
18013
18014@table @samp
18015@item n
18016This is the default (normal) setting.  The only traps that are enabled
18017are the ones that cannot be disabled in software (e.g., division by zero
18018trap).
18019
18020@item u
18021In addition to the traps enabled by @samp{n}, underflow traps are enabled
18022as well.
18023
18024@item su
18025Like @samp{u}, but the instructions are marked to be safe for software
18026completion (see Alpha architecture manual for details).
18027
18028@item sui
18029Like @samp{su}, but inexact traps are enabled as well.
18030@end table
18031
18032@item -mfp-rounding-mode=@var{rounding-mode}
18033@opindex mfp-rounding-mode
18034Selects the IEEE rounding mode.  Other Alpha compilers call this option
18035@option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
18036of:
18037
18038@table @samp
18039@item n
18040Normal IEEE rounding mode.  Floating-point numbers are rounded towards
18041the nearest machine number or towards the even machine number in case
18042of a tie.
18043
18044@item m
18045Round towards minus infinity.
18046
18047@item c
18048Chopped rounding mode.  Floating-point numbers are rounded towards zero.
18049
18050@item d
18051Dynamic rounding mode.  A field in the floating-point control register
18052(@var{fpcr}, see Alpha architecture reference manual) controls the
18053rounding mode in effect.  The C library initializes this register for
18054rounding towards plus infinity.  Thus, unless your program modifies the
18055@var{fpcr}, @samp{d} corresponds to round towards plus infinity.
18056@end table
18057
18058@item -mtrap-precision=@var{trap-precision}
18059@opindex mtrap-precision
18060In the Alpha architecture, floating-point traps are imprecise.  This
18061means without software assistance it is impossible to recover from a
18062floating trap and program execution normally needs to be terminated.
18063GCC can generate code that can assist operating system trap handlers
18064in determining the exact location that caused a floating-point trap.
18065Depending on the requirements of an application, different levels of
18066precisions can be selected:
18067
18068@table @samp
18069@item p
18070Program precision.  This option is the default and means a trap handler
18071can only identify which program caused a floating-point exception.
18072
18073@item f
18074Function precision.  The trap handler can determine the function that
18075caused a floating-point exception.
18076
18077@item i
18078Instruction precision.  The trap handler can determine the exact
18079instruction that caused a floating-point exception.
18080@end table
18081
18082Other Alpha compilers provide the equivalent options called
18083@option{-scope_safe} and @option{-resumption_safe}.
18084
18085@item -mieee-conformant
18086@opindex mieee-conformant
18087This option marks the generated code as IEEE conformant.  You must not
18088use this option unless you also specify @option{-mtrap-precision=i} and either
18089@option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
18090is to emit the line @samp{.eflag 48} in the function prologue of the
18091generated assembly file.
18092
18093@item -mbuild-constants
18094@opindex mbuild-constants
18095Normally GCC examines a 32- or 64-bit integer constant to
18096see if it can construct it from smaller constants in two or three
18097instructions.  If it cannot, it outputs the constant as a literal and
18098generates code to load it from the data segment at run time.
18099
18100Use this option to require GCC to construct @emph{all} integer constants
18101using code, even if it takes more instructions (the maximum is six).
18102
18103You typically use this option to build a shared library dynamic
18104loader.  Itself a shared library, it must relocate itself in memory
18105before it can find the variables and constants in its own data segment.
18106
18107@item -mbwx
18108@itemx -mno-bwx
18109@itemx -mcix
18110@itemx -mno-cix
18111@itemx -mfix
18112@itemx -mno-fix
18113@itemx -mmax
18114@itemx -mno-max
18115@opindex mbwx
18116@opindex mno-bwx
18117@opindex mcix
18118@opindex mno-cix
18119@opindex mfix
18120@opindex mno-fix
18121@opindex mmax
18122@opindex mno-max
18123Indicate whether GCC should generate code to use the optional BWX,
18124CIX, FIX and MAX instruction sets.  The default is to use the instruction
18125sets supported by the CPU type specified via @option{-mcpu=} option or that
18126of the CPU on which GCC was built if none is specified.
18127
18128@item -mfloat-vax
18129@itemx -mfloat-ieee
18130@opindex mfloat-vax
18131@opindex mfloat-ieee
18132Generate code that uses (does not use) VAX F and G floating-point
18133arithmetic instead of IEEE single and double precision.
18134
18135@item -mexplicit-relocs
18136@itemx -mno-explicit-relocs
18137@opindex mexplicit-relocs
18138@opindex mno-explicit-relocs
18139Older Alpha assemblers provided no way to generate symbol relocations
18140except via assembler macros.  Use of these macros does not allow
18141optimal instruction scheduling.  GNU binutils as of version 2.12
18142supports a new syntax that allows the compiler to explicitly mark
18143which relocations should apply to which instructions.  This option
18144is mostly useful for debugging, as GCC detects the capabilities of
18145the assembler when it is built and sets the default accordingly.
18146
18147@item -msmall-data
18148@itemx -mlarge-data
18149@opindex msmall-data
18150@opindex mlarge-data
18151When @option{-mexplicit-relocs} is in effect, static data is
18152accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
18153is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
18154(the @code{.sdata} and @code{.sbss} sections) and are accessed via
1815516-bit relocations off of the @code{$gp} register.  This limits the
18156size of the small data area to 64KB, but allows the variables to be
18157directly accessed via a single instruction.
18158
18159The default is @option{-mlarge-data}.  With this option the data area
18160is limited to just below 2GB@.  Programs that require more than 2GB of
18161data must use @code{malloc} or @code{mmap} to allocate the data in the
18162heap instead of in the program's data segment.
18163
18164When generating code for shared libraries, @option{-fpic} implies
18165@option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
18166
18167@item -msmall-text
18168@itemx -mlarge-text
18169@opindex msmall-text
18170@opindex mlarge-text
18171When @option{-msmall-text} is used, the compiler assumes that the
18172code of the entire program (or shared library) fits in 4MB, and is
18173thus reachable with a branch instruction.  When @option{-msmall-data}
18174is used, the compiler can assume that all local symbols share the
18175same @code{$gp} value, and thus reduce the number of instructions
18176required for a function call from 4 to 1.
18177
18178The default is @option{-mlarge-text}.
18179
18180@item -mcpu=@var{cpu_type}
18181@opindex mcpu
18182Set the instruction set and instruction scheduling parameters for
18183machine type @var{cpu_type}.  You can specify either the @samp{EV}
18184style name or the corresponding chip number.  GCC supports scheduling
18185parameters for the EV4, EV5 and EV6 family of processors and
18186chooses the default values for the instruction set from the processor
18187you specify.  If you do not specify a processor type, GCC defaults
18188to the processor on which the compiler was built.
18189
18190Supported values for @var{cpu_type} are
18191
18192@table @samp
18193@item ev4
18194@itemx ev45
18195@itemx 21064
18196Schedules as an EV4 and has no instruction set extensions.
18197
18198@item ev5
18199@itemx 21164
18200Schedules as an EV5 and has no instruction set extensions.
18201
18202@item ev56
18203@itemx 21164a
18204Schedules as an EV5 and supports the BWX extension.
18205
18206@item pca56
18207@itemx 21164pc
18208@itemx 21164PC
18209Schedules as an EV5 and supports the BWX and MAX extensions.
18210
18211@item ev6
18212@itemx 21264
18213Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
18214
18215@item ev67
18216@itemx 21264a
18217Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
18218@end table
18219
18220Native toolchains also support the value @samp{native},
18221which selects the best architecture option for the host processor.
18222@option{-mcpu=native} has no effect if GCC does not recognize
18223the processor.
18224
18225@item -mtune=@var{cpu_type}
18226@opindex mtune
18227Set only the instruction scheduling parameters for machine type
18228@var{cpu_type}.  The instruction set is not changed.
18229
18230Native toolchains also support the value @samp{native},
18231which selects the best architecture option for the host processor.
18232@option{-mtune=native} has no effect if GCC does not recognize
18233the processor.
18234
18235@item -mmemory-latency=@var{time}
18236@opindex mmemory-latency
18237Sets the latency the scheduler should assume for typical memory
18238references as seen by the application.  This number is highly
18239dependent on the memory access patterns used by the application
18240and the size of the external cache on the machine.
18241
18242Valid options for @var{time} are
18243
18244@table @samp
18245@item @var{number}
18246A decimal number representing clock cycles.
18247
18248@item L1
18249@itemx L2
18250@itemx L3
18251@itemx main
18252The compiler contains estimates of the number of clock cycles for
18253``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
18254(also called Dcache, Scache, and Bcache), as well as to main memory.
18255Note that L3 is only valid for EV5.
18256
18257@end table
18258@end table
18259
18260@node FR30 Options
18261@subsection FR30 Options
18262@cindex FR30 Options
18263
18264These options are defined specifically for the FR30 port.
18265
18266@table @gcctabopt
18267
18268@item -msmall-model
18269@opindex msmall-model
18270Use the small address space model.  This can produce smaller code, but
18271it does assume that all symbolic values and addresses fit into a
1827220-bit range.
18273
18274@item -mno-lsim
18275@opindex mno-lsim
18276Assume that runtime support has been provided and so there is no need
18277to include the simulator library (@file{libsim.a}) on the linker
18278command line.
18279
18280@end table
18281
18282@node FT32 Options
18283@subsection FT32 Options
18284@cindex FT32 Options
18285
18286These options are defined specifically for the FT32 port.
18287
18288@table @gcctabopt
18289
18290@item -msim
18291@opindex msim
18292Specifies that the program will be run on the simulator.  This causes
18293an alternate runtime startup and library to be linked.
18294You must not use this option when generating programs that will run on
18295real hardware; you must provide your own runtime library for whatever
18296I/O functions are needed.
18297
18298@item -mlra
18299@opindex mlra
18300Enable Local Register Allocation.  This is still experimental for FT32,
18301so by default the compiler uses standard reload.
18302
18303@item -mnodiv
18304@opindex mnodiv
18305Do not use div and mod instructions.
18306
18307@item -mft32b
18308@opindex mft32b
18309Enable use of the extended instructions of the FT32B processor.
18310
18311@item -mcompress
18312@opindex mcompress
18313Compress all code using the Ft32B code compression scheme.
18314
18315@item -mnopm
18316@opindex  mnopm
18317Do not generate code that reads program memory.
18318
18319@end table
18320
18321@node FRV Options
18322@subsection FRV Options
18323@cindex FRV Options
18324
18325@table @gcctabopt
18326@item -mgpr-32
18327@opindex mgpr-32
18328
18329Only use the first 32 general-purpose registers.
18330
18331@item -mgpr-64
18332@opindex mgpr-64
18333
18334Use all 64 general-purpose registers.
18335
18336@item -mfpr-32
18337@opindex mfpr-32
18338
18339Use only the first 32 floating-point registers.
18340
18341@item -mfpr-64
18342@opindex mfpr-64
18343
18344Use all 64 floating-point registers.
18345
18346@item -mhard-float
18347@opindex mhard-float
18348
18349Use hardware instructions for floating-point operations.
18350
18351@item -msoft-float
18352@opindex msoft-float
18353
18354Use library routines for floating-point operations.
18355
18356@item -malloc-cc
18357@opindex malloc-cc
18358
18359Dynamically allocate condition code registers.
18360
18361@item -mfixed-cc
18362@opindex mfixed-cc
18363
18364Do not try to dynamically allocate condition code registers, only
18365use @code{icc0} and @code{fcc0}.
18366
18367@item -mdword
18368@opindex mdword
18369
18370Change ABI to use double word insns.
18371
18372@item -mno-dword
18373@opindex mno-dword
18374
18375Do not use double word instructions.
18376
18377@item -mdouble
18378@opindex mdouble
18379
18380Use floating-point double instructions.
18381
18382@item -mno-double
18383@opindex mno-double
18384
18385Do not use floating-point double instructions.
18386
18387@item -mmedia
18388@opindex mmedia
18389
18390Use media instructions.
18391
18392@item -mno-media
18393@opindex mno-media
18394
18395Do not use media instructions.
18396
18397@item -mmuladd
18398@opindex mmuladd
18399
18400Use multiply and add/subtract instructions.
18401
18402@item -mno-muladd
18403@opindex mno-muladd
18404
18405Do not use multiply and add/subtract instructions.
18406
18407@item -mfdpic
18408@opindex mfdpic
18409
18410Select the FDPIC ABI, which uses function descriptors to represent
18411pointers to functions.  Without any PIC/PIE-related options, it
18412implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
18413assumes GOT entries and small data are within a 12-bit range from the
18414GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
18415are computed with 32 bits.
18416With a @samp{bfin-elf} target, this option implies @option{-msim}.
18417
18418@item -minline-plt
18419@opindex minline-plt
18420
18421Enable inlining of PLT entries in function calls to functions that are
18422not known to bind locally.  It has no effect without @option{-mfdpic}.
18423It's enabled by default if optimizing for speed and compiling for
18424shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
18425optimization option such as @option{-O3} or above is present in the
18426command line.
18427
18428@item -mTLS
18429@opindex mTLS
18430
18431Assume a large TLS segment when generating thread-local code.
18432
18433@item -mtls
18434@opindex mtls
18435
18436Do not assume a large TLS segment when generating thread-local code.
18437
18438@item -mgprel-ro
18439@opindex mgprel-ro
18440
18441Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
18442that is known to be in read-only sections.  It's enabled by default,
18443except for @option{-fpic} or @option{-fpie}: even though it may help
18444make the global offset table smaller, it trades 1 instruction for 4.
18445With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
18446one of which may be shared by multiple symbols, and it avoids the need
18447for a GOT entry for the referenced symbol, so it's more likely to be a
18448win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
18449
18450@item -multilib-library-pic
18451@opindex multilib-library-pic
18452
18453Link with the (library, not FD) pic libraries.  It's implied by
18454@option{-mlibrary-pic}, as well as by @option{-fPIC} and
18455@option{-fpic} without @option{-mfdpic}.  You should never have to use
18456it explicitly.
18457
18458@item -mlinked-fp
18459@opindex mlinked-fp
18460
18461Follow the EABI requirement of always creating a frame pointer whenever
18462a stack frame is allocated.  This option is enabled by default and can
18463be disabled with @option{-mno-linked-fp}.
18464
18465@item -mlong-calls
18466@opindex mlong-calls
18467
18468Use indirect addressing to call functions outside the current
18469compilation unit.  This allows the functions to be placed anywhere
18470within the 32-bit address space.
18471
18472@item -malign-labels
18473@opindex malign-labels
18474
18475Try to align labels to an 8-byte boundary by inserting NOPs into the
18476previous packet.  This option only has an effect when VLIW packing
18477is enabled.  It doesn't create new packets; it merely adds NOPs to
18478existing ones.
18479
18480@item -mlibrary-pic
18481@opindex mlibrary-pic
18482
18483Generate position-independent EABI code.
18484
18485@item -macc-4
18486@opindex macc-4
18487
18488Use only the first four media accumulator registers.
18489
18490@item -macc-8
18491@opindex macc-8
18492
18493Use all eight media accumulator registers.
18494
18495@item -mpack
18496@opindex mpack
18497
18498Pack VLIW instructions.
18499
18500@item -mno-pack
18501@opindex mno-pack
18502
18503Do not pack VLIW instructions.
18504
18505@item -mno-eflags
18506@opindex mno-eflags
18507
18508Do not mark ABI switches in e_flags.
18509
18510@item -mcond-move
18511@opindex mcond-move
18512
18513Enable the use of conditional-move instructions (default).
18514
18515This switch is mainly for debugging the compiler and will likely be removed
18516in a future version.
18517
18518@item -mno-cond-move
18519@opindex mno-cond-move
18520
18521Disable the use of conditional-move instructions.
18522
18523This switch is mainly for debugging the compiler and will likely be removed
18524in a future version.
18525
18526@item -mscc
18527@opindex mscc
18528
18529Enable the use of conditional set instructions (default).
18530
18531This switch is mainly for debugging the compiler and will likely be removed
18532in a future version.
18533
18534@item -mno-scc
18535@opindex mno-scc
18536
18537Disable the use of conditional set instructions.
18538
18539This switch is mainly for debugging the compiler and will likely be removed
18540in a future version.
18541
18542@item -mcond-exec
18543@opindex mcond-exec
18544
18545Enable the use of conditional execution (default).
18546
18547This switch is mainly for debugging the compiler and will likely be removed
18548in a future version.
18549
18550@item -mno-cond-exec
18551@opindex mno-cond-exec
18552
18553Disable the use of conditional execution.
18554
18555This switch is mainly for debugging the compiler and will likely be removed
18556in a future version.
18557
18558@item -mvliw-branch
18559@opindex mvliw-branch
18560
18561Run a pass to pack branches into VLIW instructions (default).
18562
18563This switch is mainly for debugging the compiler and will likely be removed
18564in a future version.
18565
18566@item -mno-vliw-branch
18567@opindex mno-vliw-branch
18568
18569Do not run a pass to pack branches into VLIW instructions.
18570
18571This switch is mainly for debugging the compiler and will likely be removed
18572in a future version.
18573
18574@item -mmulti-cond-exec
18575@opindex mmulti-cond-exec
18576
18577Enable optimization of @code{&&} and @code{||} in conditional execution
18578(default).
18579
18580This switch is mainly for debugging the compiler and will likely be removed
18581in a future version.
18582
18583@item -mno-multi-cond-exec
18584@opindex mno-multi-cond-exec
18585
18586Disable optimization of @code{&&} and @code{||} in conditional execution.
18587
18588This switch is mainly for debugging the compiler and will likely be removed
18589in a future version.
18590
18591@item -mnested-cond-exec
18592@opindex mnested-cond-exec
18593
18594Enable nested conditional execution optimizations (default).
18595
18596This switch is mainly for debugging the compiler and will likely be removed
18597in a future version.
18598
18599@item -mno-nested-cond-exec
18600@opindex mno-nested-cond-exec
18601
18602Disable nested conditional execution optimizations.
18603
18604This switch is mainly for debugging the compiler and will likely be removed
18605in a future version.
18606
18607@item -moptimize-membar
18608@opindex moptimize-membar
18609
18610This switch removes redundant @code{membar} instructions from the
18611compiler-generated code.  It is enabled by default.
18612
18613@item -mno-optimize-membar
18614@opindex mno-optimize-membar
18615
18616This switch disables the automatic removal of redundant @code{membar}
18617instructions from the generated code.
18618
18619@item -mtomcat-stats
18620@opindex mtomcat-stats
18621
18622Cause gas to print out tomcat statistics.
18623
18624@item -mcpu=@var{cpu}
18625@opindex mcpu
18626
18627Select the processor type for which to generate code.  Possible values are
18628@samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
18629@samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
18630
18631@end table
18632
18633@node GNU/Linux Options
18634@subsection GNU/Linux Options
18635
18636These @samp{-m} options are defined for GNU/Linux targets:
18637
18638@table @gcctabopt
18639@item -mglibc
18640@opindex mglibc
18641Use the GNU C library.  This is the default except
18642on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
18643@samp{*-*-linux-*android*} targets.
18644
18645@item -muclibc
18646@opindex muclibc
18647Use uClibc C library.  This is the default on
18648@samp{*-*-linux-*uclibc*} targets.
18649
18650@item -mmusl
18651@opindex mmusl
18652Use the musl C library.  This is the default on
18653@samp{*-*-linux-*musl*} targets.
18654
18655@item -mbionic
18656@opindex mbionic
18657Use Bionic C library.  This is the default on
18658@samp{*-*-linux-*android*} targets.
18659
18660@item -mandroid
18661@opindex mandroid
18662Compile code compatible with Android platform.  This is the default on
18663@samp{*-*-linux-*android*} targets.
18664
18665When compiling, this option enables @option{-mbionic}, @option{-fPIC},
18666@option{-fno-exceptions} and @option{-fno-rtti} by default.  When linking,
18667this option makes the GCC driver pass Android-specific options to the linker.
18668Finally, this option causes the preprocessor macro @code{__ANDROID__}
18669to be defined.
18670
18671@item -tno-android-cc
18672@opindex tno-android-cc
18673Disable compilation effects of @option{-mandroid}, i.e., do not enable
18674@option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
18675@option{-fno-rtti} by default.
18676
18677@item -tno-android-ld
18678@opindex tno-android-ld
18679Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
18680linking options to the linker.
18681
18682@end table
18683
18684@node H8/300 Options
18685@subsection H8/300 Options
18686
18687These @samp{-m} options are defined for the H8/300 implementations:
18688
18689@table @gcctabopt
18690@item -mrelax
18691@opindex mrelax
18692Shorten some address references at link time, when possible; uses the
18693linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
18694ld, Using ld}, for a fuller description.
18695
18696@item -mh
18697@opindex mh
18698Generate code for the H8/300H@.
18699
18700@item -ms
18701@opindex ms
18702Generate code for the H8S@.
18703
18704@item -mn
18705@opindex mn
18706Generate code for the H8S and H8/300H in the normal mode.  This switch
18707must be used either with @option{-mh} or @option{-ms}.
18708
18709@item -ms2600
18710@opindex ms2600
18711Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
18712
18713@item -mexr
18714@opindex mexr
18715Extended registers are stored on stack before execution of function
18716with monitor attribute. Default option is @option{-mexr}.
18717This option is valid only for H8S targets.
18718
18719@item -mno-exr
18720@opindex mno-exr
18721Extended registers are not stored on stack before execution of function
18722with monitor attribute. Default option is @option{-mno-exr}.
18723This option is valid only for H8S targets.
18724
18725@item -mint32
18726@opindex mint32
18727Make @code{int} data 32 bits by default.
18728
18729@item -malign-300
18730@opindex malign-300
18731On the H8/300H and H8S, use the same alignment rules as for the H8/300.
18732The default for the H8/300H and H8S is to align longs and floats on
187334-byte boundaries.
18734@option{-malign-300} causes them to be aligned on 2-byte boundaries.
18735This option has no effect on the H8/300.
18736@end table
18737
18738@node HPPA Options
18739@subsection HPPA Options
18740@cindex HPPA Options
18741
18742These @samp{-m} options are defined for the HPPA family of computers:
18743
18744@table @gcctabopt
18745@item -march=@var{architecture-type}
18746@opindex march
18747Generate code for the specified architecture.  The choices for
18748@var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
187491.1, and @samp{2.0} for PA 2.0 processors.  Refer to
18750@file{/usr/lib/sched.models} on an HP-UX system to determine the proper
18751architecture option for your machine.  Code compiled for lower numbered
18752architectures runs on higher numbered architectures, but not the
18753other way around.
18754
18755@item -mpa-risc-1-0
18756@itemx -mpa-risc-1-1
18757@itemx -mpa-risc-2-0
18758@opindex mpa-risc-1-0
18759@opindex mpa-risc-1-1
18760@opindex mpa-risc-2-0
18761Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
18762
18763@item -mcaller-copies
18764@opindex mcaller-copies
18765The caller copies function arguments passed by hidden reference.  This
18766option should be used with care as it is not compatible with the default
1876732-bit runtime.  However, only aggregates larger than eight bytes are
18768passed by hidden reference and the option provides better compatibility
18769with OpenMP.
18770
18771@item -mjump-in-delay
18772@opindex mjump-in-delay
18773This option is ignored and provided for compatibility purposes only.
18774
18775@item -mdisable-fpregs
18776@opindex mdisable-fpregs
18777Prevent floating-point registers from being used in any manner.  This is
18778necessary for compiling kernels that perform lazy context switching of
18779floating-point registers.  If you use this option and attempt to perform
18780floating-point operations, the compiler aborts.
18781
18782@item -mdisable-indexing
18783@opindex mdisable-indexing
18784Prevent the compiler from using indexing address modes.  This avoids some
18785rather obscure problems when compiling MIG generated code under MACH@.
18786
18787@item -mno-space-regs
18788@opindex mno-space-regs
18789Generate code that assumes the target has no space registers.  This allows
18790GCC to generate faster indirect calls and use unscaled index address modes.
18791
18792Such code is suitable for level 0 PA systems and kernels.
18793
18794@item -mfast-indirect-calls
18795@opindex mfast-indirect-calls
18796Generate code that assumes calls never cross space boundaries.  This
18797allows GCC to emit code that performs faster indirect calls.
18798
18799This option does not work in the presence of shared libraries or nested
18800functions.
18801
18802@item -mfixed-range=@var{register-range}
18803@opindex mfixed-range
18804Generate code treating the given register range as fixed registers.
18805A fixed register is one that the register allocator cannot use.  This is
18806useful when compiling kernel code.  A register range is specified as
18807two registers separated by a dash.  Multiple register ranges can be
18808specified separated by a comma.
18809
18810@item -mlong-load-store
18811@opindex mlong-load-store
18812Generate 3-instruction load and store sequences as sometimes required by
18813the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
18814the HP compilers.
18815
18816@item -mportable-runtime
18817@opindex mportable-runtime
18818Use the portable calling conventions proposed by HP for ELF systems.
18819
18820@item -mgas
18821@opindex mgas
18822Enable the use of assembler directives only GAS understands.
18823
18824@item -mschedule=@var{cpu-type}
18825@opindex mschedule
18826Schedule code according to the constraints for the machine type
18827@var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
18828@samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
18829to @file{/usr/lib/sched.models} on an HP-UX system to determine the
18830proper scheduling option for your machine.  The default scheduling is
18831@samp{8000}.
18832
18833@item -mlinker-opt
18834@opindex mlinker-opt
18835Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
18836debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
18837linkers in which they give bogus error messages when linking some programs.
18838
18839@item -msoft-float
18840@opindex msoft-float
18841Generate output containing library calls for floating point.
18842@strong{Warning:} the requisite libraries are not available for all HPPA
18843targets.  Normally the facilities of the machine's usual C compiler are
18844used, but this cannot be done directly in cross-compilation.  You must make
18845your own arrangements to provide suitable library functions for
18846cross-compilation.
18847
18848@option{-msoft-float} changes the calling convention in the output file;
18849therefore, it is only useful if you compile @emph{all} of a program with
18850this option.  In particular, you need to compile @file{libgcc.a}, the
18851library that comes with GCC, with @option{-msoft-float} in order for
18852this to work.
18853
18854@item -msio
18855@opindex msio
18856Generate the predefine, @code{_SIO}, for server IO@.  The default is
18857@option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
18858@code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
18859options are available under HP-UX and HI-UX@.
18860
18861@item -mgnu-ld
18862@opindex mgnu-ld
18863Use options specific to GNU @command{ld}.
18864This passes @option{-shared} to @command{ld} when
18865building a shared library.  It is the default when GCC is configured,
18866explicitly or implicitly, with the GNU linker.  This option does not
18867affect which @command{ld} is called; it only changes what parameters
18868are passed to that @command{ld}.
18869The @command{ld} that is called is determined by the
18870@option{--with-ld} configure option, GCC's program search path, and
18871finally by the user's @env{PATH}.  The linker used by GCC can be printed
18872using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
18873on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18874
18875@item -mhp-ld
18876@opindex mhp-ld
18877Use options specific to HP @command{ld}.
18878This passes @option{-b} to @command{ld} when building
18879a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
18880links.  It is the default when GCC is configured, explicitly or
18881implicitly, with the HP linker.  This option does not affect
18882which @command{ld} is called; it only changes what parameters are passed to that
18883@command{ld}.
18884The @command{ld} that is called is determined by the @option{--with-ld}
18885configure option, GCC's program search path, and finally by the user's
18886@env{PATH}.  The linker used by GCC can be printed using @samp{which
18887`gcc -print-prog-name=ld`}.  This option is only available on the 64-bit
18888HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18889
18890@item -mlong-calls
18891@opindex mno-long-calls
18892Generate code that uses long call sequences.  This ensures that a call
18893is always able to reach linker generated stubs.  The default is to generate
18894long calls only when the distance from the call site to the beginning
18895of the function or translation unit, as the case may be, exceeds a
18896predefined limit set by the branch type being used.  The limits for
18897normal calls are 7,600,000 and 240,000 bytes, respectively for the
18898PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
18899240,000 bytes.
18900
18901Distances are measured from the beginning of functions when using the
18902@option{-ffunction-sections} option, or when using the @option{-mgas}
18903and @option{-mno-portable-runtime} options together under HP-UX with
18904the SOM linker.
18905
18906It is normally not desirable to use this option as it degrades
18907performance.  However, it may be useful in large applications,
18908particularly when partial linking is used to build the application.
18909
18910The types of long calls used depends on the capabilities of the
18911assembler and linker, and the type of code being generated.  The
18912impact on systems that support long absolute calls, and long pic
18913symbol-difference or pc-relative calls should be relatively small.
18914However, an indirect call is used on 32-bit ELF systems in pic code
18915and it is quite long.
18916
18917@item -munix=@var{unix-std}
18918@opindex march
18919Generate compiler predefines and select a startfile for the specified
18920UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
18921and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
18922is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
1892311.11 and later.  The default values are @samp{93} for HP-UX 10.00,
18924@samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
18925and later.
18926
18927@option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
18928@option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
18929and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
18930@option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
18931@code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
18932@code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
18933
18934It is @emph{important} to note that this option changes the interfaces
18935for various library routines.  It also affects the operational behavior
18936of the C library.  Thus, @emph{extreme} care is needed in using this
18937option.
18938
18939Library code that is intended to operate with more than one UNIX
18940standard must test, set and restore the variable @code{__xpg4_extended_mask}
18941as appropriate.  Most GNU software doesn't provide this capability.
18942
18943@item -nolibdld
18944@opindex nolibdld
18945Suppress the generation of link options to search libdld.sl when the
18946@option{-static} option is specified on HP-UX 10 and later.
18947
18948@item -static
18949@opindex static
18950The HP-UX implementation of setlocale in libc has a dependency on
18951libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
18952when the @option{-static} option is specified, special link options
18953are needed to resolve this dependency.
18954
18955On HP-UX 10 and later, the GCC driver adds the necessary options to
18956link with libdld.sl when the @option{-static} option is specified.
18957This causes the resulting binary to be dynamic.  On the 64-bit port,
18958the linkers generate dynamic binaries by default in any case.  The
18959@option{-nolibdld} option can be used to prevent the GCC driver from
18960adding these link options.
18961
18962@item -threads
18963@opindex threads
18964Add support for multithreading with the @dfn{dce thread} library
18965under HP-UX@.  This option sets flags for both the preprocessor and
18966linker.
18967@end table
18968
18969@node IA-64 Options
18970@subsection IA-64 Options
18971@cindex IA-64 Options
18972
18973These are the @samp{-m} options defined for the Intel IA-64 architecture.
18974
18975@table @gcctabopt
18976@item -mbig-endian
18977@opindex mbig-endian
18978Generate code for a big-endian target.  This is the default for HP-UX@.
18979
18980@item -mlittle-endian
18981@opindex mlittle-endian
18982Generate code for a little-endian target.  This is the default for AIX5
18983and GNU/Linux.
18984
18985@item -mgnu-as
18986@itemx -mno-gnu-as
18987@opindex mgnu-as
18988@opindex mno-gnu-as
18989Generate (or don't) code for the GNU assembler.  This is the default.
18990@c Also, this is the default if the configure option @option{--with-gnu-as}
18991@c is used.
18992
18993@item -mgnu-ld
18994@itemx -mno-gnu-ld
18995@opindex mgnu-ld
18996@opindex mno-gnu-ld
18997Generate (or don't) code for the GNU linker.  This is the default.
18998@c Also, this is the default if the configure option @option{--with-gnu-ld}
18999@c is used.
19000
19001@item -mno-pic
19002@opindex mno-pic
19003Generate code that does not use a global pointer register.  The result
19004is not position independent code, and violates the IA-64 ABI@.
19005
19006@item -mvolatile-asm-stop
19007@itemx -mno-volatile-asm-stop
19008@opindex mvolatile-asm-stop
19009@opindex mno-volatile-asm-stop
19010Generate (or don't) a stop bit immediately before and after volatile asm
19011statements.
19012
19013@item -mregister-names
19014@itemx -mno-register-names
19015@opindex mregister-names
19016@opindex mno-register-names
19017Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
19018the stacked registers.  This may make assembler output more readable.
19019
19020@item -mno-sdata
19021@itemx -msdata
19022@opindex mno-sdata
19023@opindex msdata
19024Disable (or enable) optimizations that use the small data section.  This may
19025be useful for working around optimizer bugs.
19026
19027@item -mconstant-gp
19028@opindex mconstant-gp
19029Generate code that uses a single constant global pointer value.  This is
19030useful when compiling kernel code.
19031
19032@item -mauto-pic
19033@opindex mauto-pic
19034Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
19035This is useful when compiling firmware code.
19036
19037@item -minline-float-divide-min-latency
19038@opindex minline-float-divide-min-latency
19039Generate code for inline divides of floating-point values
19040using the minimum latency algorithm.
19041
19042@item -minline-float-divide-max-throughput
19043@opindex minline-float-divide-max-throughput
19044Generate code for inline divides of floating-point values
19045using the maximum throughput algorithm.
19046
19047@item -mno-inline-float-divide
19048@opindex mno-inline-float-divide
19049Do not generate inline code for divides of floating-point values.
19050
19051@item -minline-int-divide-min-latency
19052@opindex minline-int-divide-min-latency
19053Generate code for inline divides of integer values
19054using the minimum latency algorithm.
19055
19056@item -minline-int-divide-max-throughput
19057@opindex minline-int-divide-max-throughput
19058Generate code for inline divides of integer values
19059using the maximum throughput algorithm.
19060
19061@item -mno-inline-int-divide
19062@opindex mno-inline-int-divide
19063Do not generate inline code for divides of integer values.
19064
19065@item -minline-sqrt-min-latency
19066@opindex minline-sqrt-min-latency
19067Generate code for inline square roots
19068using the minimum latency algorithm.
19069
19070@item -minline-sqrt-max-throughput
19071@opindex minline-sqrt-max-throughput
19072Generate code for inline square roots
19073using the maximum throughput algorithm.
19074
19075@item -mno-inline-sqrt
19076@opindex mno-inline-sqrt
19077Do not generate inline code for @code{sqrt}.
19078
19079@item -mfused-madd
19080@itemx -mno-fused-madd
19081@opindex mfused-madd
19082@opindex mno-fused-madd
19083Do (don't) generate code that uses the fused multiply/add or multiply/subtract
19084instructions.  The default is to use these instructions.
19085
19086@item -mno-dwarf2-asm
19087@itemx -mdwarf2-asm
19088@opindex mno-dwarf2-asm
19089@opindex mdwarf2-asm
19090Don't (or do) generate assembler code for the DWARF line number debugging
19091info.  This may be useful when not using the GNU assembler.
19092
19093@item -mearly-stop-bits
19094@itemx -mno-early-stop-bits
19095@opindex mearly-stop-bits
19096@opindex mno-early-stop-bits
19097Allow stop bits to be placed earlier than immediately preceding the
19098instruction that triggered the stop bit.  This can improve instruction
19099scheduling, but does not always do so.
19100
19101@item -mfixed-range=@var{register-range}
19102@opindex mfixed-range
19103Generate code treating the given register range as fixed registers.
19104A fixed register is one that the register allocator cannot use.  This is
19105useful when compiling kernel code.  A register range is specified as
19106two registers separated by a dash.  Multiple register ranges can be
19107specified separated by a comma.
19108
19109@item -mtls-size=@var{tls-size}
19110@opindex mtls-size
19111Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
1911264.
19113
19114@item -mtune=@var{cpu-type}
19115@opindex mtune
19116Tune the instruction scheduling for a particular CPU, Valid values are
19117@samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
19118and @samp{mckinley}.
19119
19120@item -milp32
19121@itemx -mlp64
19122@opindex milp32
19123@opindex mlp64
19124Generate code for a 32-bit or 64-bit environment.
19125The 32-bit environment sets int, long and pointer to 32 bits.
19126The 64-bit environment sets int to 32 bits and long and pointer
19127to 64 bits.  These are HP-UX specific flags.
19128
19129@item -mno-sched-br-data-spec
19130@itemx -msched-br-data-spec
19131@opindex mno-sched-br-data-spec
19132@opindex msched-br-data-spec
19133(Dis/En)able data speculative scheduling before reload.
19134This results in generation of @code{ld.a} instructions and
19135the corresponding check instructions (@code{ld.c} / @code{chk.a}).
19136The default setting is disabled.
19137
19138@item -msched-ar-data-spec
19139@itemx -mno-sched-ar-data-spec
19140@opindex msched-ar-data-spec
19141@opindex mno-sched-ar-data-spec
19142(En/Dis)able data speculative scheduling after reload.
19143This results in generation of @code{ld.a} instructions and
19144the corresponding check instructions (@code{ld.c} / @code{chk.a}).
19145The default setting is enabled.
19146
19147@item -mno-sched-control-spec
19148@itemx -msched-control-spec
19149@opindex mno-sched-control-spec
19150@opindex msched-control-spec
19151(Dis/En)able control speculative scheduling.  This feature is
19152available only during region scheduling (i.e.@: before reload).
19153This results in generation of the @code{ld.s} instructions and
19154the corresponding check instructions @code{chk.s}.
19155The default setting is disabled.
19156
19157@item -msched-br-in-data-spec
19158@itemx -mno-sched-br-in-data-spec
19159@opindex msched-br-in-data-spec
19160@opindex mno-sched-br-in-data-spec
19161(En/Dis)able speculative scheduling of the instructions that
19162are dependent on the data speculative loads before reload.
19163This is effective only with @option{-msched-br-data-spec} enabled.
19164The default setting is enabled.
19165
19166@item -msched-ar-in-data-spec
19167@itemx -mno-sched-ar-in-data-spec
19168@opindex msched-ar-in-data-spec
19169@opindex mno-sched-ar-in-data-spec
19170(En/Dis)able speculative scheduling of the instructions that
19171are dependent on the data speculative loads after reload.
19172This is effective only with @option{-msched-ar-data-spec} enabled.
19173The default setting is enabled.
19174
19175@item -msched-in-control-spec
19176@itemx -mno-sched-in-control-spec
19177@opindex msched-in-control-spec
19178@opindex mno-sched-in-control-spec
19179(En/Dis)able speculative scheduling of the instructions that
19180are dependent on the control speculative loads.
19181This is effective only with @option{-msched-control-spec} enabled.
19182The default setting is enabled.
19183
19184@item -mno-sched-prefer-non-data-spec-insns
19185@itemx -msched-prefer-non-data-spec-insns
19186@opindex mno-sched-prefer-non-data-spec-insns
19187@opindex msched-prefer-non-data-spec-insns
19188If enabled, data-speculative instructions are chosen for schedule
19189only if there are no other choices at the moment.  This makes
19190the use of the data speculation much more conservative.
19191The default setting is disabled.
19192
19193@item -mno-sched-prefer-non-control-spec-insns
19194@itemx -msched-prefer-non-control-spec-insns
19195@opindex mno-sched-prefer-non-control-spec-insns
19196@opindex msched-prefer-non-control-spec-insns
19197If enabled, control-speculative instructions are chosen for schedule
19198only if there are no other choices at the moment.  This makes
19199the use of the control speculation much more conservative.
19200The default setting is disabled.
19201
19202@item -mno-sched-count-spec-in-critical-path
19203@itemx -msched-count-spec-in-critical-path
19204@opindex mno-sched-count-spec-in-critical-path
19205@opindex msched-count-spec-in-critical-path
19206If enabled, speculative dependencies are considered during
19207computation of the instructions priorities.  This makes the use of the
19208speculation a bit more conservative.
19209The default setting is disabled.
19210
19211@item -msched-spec-ldc
19212@opindex msched-spec-ldc
19213Use a simple data speculation check.  This option is on by default.
19214
19215@item -msched-control-spec-ldc
19216@opindex msched-spec-ldc
19217Use a simple check for control speculation.  This option is on by default.
19218
19219@item -msched-stop-bits-after-every-cycle
19220@opindex msched-stop-bits-after-every-cycle
19221Place a stop bit after every cycle when scheduling.  This option is on
19222by default.
19223
19224@item -msched-fp-mem-deps-zero-cost
19225@opindex msched-fp-mem-deps-zero-cost
19226Assume that floating-point stores and loads are not likely to cause a conflict
19227when placed into the same instruction group.  This option is disabled by
19228default.
19229
19230@item -msel-sched-dont-check-control-spec
19231@opindex msel-sched-dont-check-control-spec
19232Generate checks for control speculation in selective scheduling.
19233This flag is disabled by default.
19234
19235@item -msched-max-memory-insns=@var{max-insns}
19236@opindex msched-max-memory-insns
19237Limit on the number of memory insns per instruction group, giving lower
19238priority to subsequent memory insns attempting to schedule in the same
19239instruction group. Frequently useful to prevent cache bank conflicts.
19240The default value is 1.
19241
19242@item -msched-max-memory-insns-hard-limit
19243@opindex msched-max-memory-insns-hard-limit
19244Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
19245disallowing more than that number in an instruction group.
19246Otherwise, the limit is ``soft'', meaning that non-memory operations
19247are preferred when the limit is reached, but memory operations may still
19248be scheduled.
19249
19250@end table
19251
19252@node LM32 Options
19253@subsection LM32 Options
19254@cindex LM32 options
19255
19256These @option{-m} options are defined for the LatticeMico32 architecture:
19257
19258@table @gcctabopt
19259@item -mbarrel-shift-enabled
19260@opindex mbarrel-shift-enabled
19261Enable barrel-shift instructions.
19262
19263@item -mdivide-enabled
19264@opindex mdivide-enabled
19265Enable divide and modulus instructions.
19266
19267@item -mmultiply-enabled
19268@opindex multiply-enabled
19269Enable multiply instructions.
19270
19271@item -msign-extend-enabled
19272@opindex msign-extend-enabled
19273Enable sign extend instructions.
19274
19275@item -muser-enabled
19276@opindex muser-enabled
19277Enable user-defined instructions.
19278
19279@end table
19280
19281@node M32C Options
19282@subsection M32C Options
19283@cindex M32C options
19284
19285@table @gcctabopt
19286@item -mcpu=@var{name}
19287@opindex mcpu=
19288Select the CPU for which code is generated.  @var{name} may be one of
19289@samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
19290/60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
19291the M32C/80 series.
19292
19293@item -msim
19294@opindex msim
19295Specifies that the program will be run on the simulator.  This causes
19296an alternate runtime library to be linked in which supports, for
19297example, file I/O@.  You must not use this option when generating
19298programs that will run on real hardware; you must provide your own
19299runtime library for whatever I/O functions are needed.
19300
19301@item -memregs=@var{number}
19302@opindex memregs=
19303Specifies the number of memory-based pseudo-registers GCC uses
19304during code generation.  These pseudo-registers are used like real
19305registers, so there is a tradeoff between GCC's ability to fit the
19306code into available registers, and the performance penalty of using
19307memory instead of registers.  Note that all modules in a program must
19308be compiled with the same value for this option.  Because of that, you
19309must not use this option with GCC's default runtime libraries.
19310
19311@end table
19312
19313@node M32R/D Options
19314@subsection M32R/D Options
19315@cindex M32R/D options
19316
19317These @option{-m} options are defined for Renesas M32R/D architectures:
19318
19319@table @gcctabopt
19320@item -m32r2
19321@opindex m32r2
19322Generate code for the M32R/2@.
19323
19324@item -m32rx
19325@opindex m32rx
19326Generate code for the M32R/X@.
19327
19328@item -m32r
19329@opindex m32r
19330Generate code for the M32R@.  This is the default.
19331
19332@item -mmodel=small
19333@opindex mmodel=small
19334Assume all objects live in the lower 16MB of memory (so that their addresses
19335can be loaded with the @code{ld24} instruction), and assume all subroutines
19336are reachable with the @code{bl} instruction.
19337This is the default.
19338
19339The addressability of a particular object can be set with the
19340@code{model} attribute.
19341
19342@item -mmodel=medium
19343@opindex mmodel=medium
19344Assume objects may be anywhere in the 32-bit address space (the compiler
19345generates @code{seth/add3} instructions to load their addresses), and
19346assume all subroutines are reachable with the @code{bl} instruction.
19347
19348@item -mmodel=large
19349@opindex mmodel=large
19350Assume objects may be anywhere in the 32-bit address space (the compiler
19351generates @code{seth/add3} instructions to load their addresses), and
19352assume subroutines may not be reachable with the @code{bl} instruction
19353(the compiler generates the much slower @code{seth/add3/jl}
19354instruction sequence).
19355
19356@item -msdata=none
19357@opindex msdata=none
19358Disable use of the small data area.  Variables are put into
19359one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
19360@code{section} attribute has been specified).
19361This is the default.
19362
19363The small data area consists of sections @code{.sdata} and @code{.sbss}.
19364Objects may be explicitly put in the small data area with the
19365@code{section} attribute using one of these sections.
19366
19367@item -msdata=sdata
19368@opindex msdata=sdata
19369Put small global and static data in the small data area, but do not
19370generate special code to reference them.
19371
19372@item -msdata=use
19373@opindex msdata=use
19374Put small global and static data in the small data area, and generate
19375special instructions to reference them.
19376
19377@item -G @var{num}
19378@opindex G
19379@cindex smaller data references
19380Put global and static objects less than or equal to @var{num} bytes
19381into the small data or BSS sections instead of the normal data or BSS
19382sections.  The default value of @var{num} is 8.
19383The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
19384for this option to have any effect.
19385
19386All modules should be compiled with the same @option{-G @var{num}} value.
19387Compiling with different values of @var{num} may or may not work; if it
19388doesn't the linker gives an error message---incorrect code is not
19389generated.
19390
19391@item -mdebug
19392@opindex mdebug
19393Makes the M32R-specific code in the compiler display some statistics
19394that might help in debugging programs.
19395
19396@item -malign-loops
19397@opindex malign-loops
19398Align all loops to a 32-byte boundary.
19399
19400@item -mno-align-loops
19401@opindex mno-align-loops
19402Do not enforce a 32-byte alignment for loops.  This is the default.
19403
19404@item -missue-rate=@var{number}
19405@opindex missue-rate=@var{number}
19406Issue @var{number} instructions per cycle.  @var{number} can only be 1
19407or 2.
19408
19409@item -mbranch-cost=@var{number}
19410@opindex mbranch-cost=@var{number}
19411@var{number} can only be 1 or 2.  If it is 1 then branches are
19412preferred over conditional code, if it is 2, then the opposite applies.
19413
19414@item -mflush-trap=@var{number}
19415@opindex mflush-trap=@var{number}
19416Specifies the trap number to use to flush the cache.  The default is
1941712.  Valid numbers are between 0 and 15 inclusive.
19418
19419@item -mno-flush-trap
19420@opindex mno-flush-trap
19421Specifies that the cache cannot be flushed by using a trap.
19422
19423@item -mflush-func=@var{name}
19424@opindex mflush-func=@var{name}
19425Specifies the name of the operating system function to call to flush
19426the cache.  The default is @samp{_flush_cache}, but a function call
19427is only used if a trap is not available.
19428
19429@item -mno-flush-func
19430@opindex mno-flush-func
19431Indicates that there is no OS function for flushing the cache.
19432
19433@end table
19434
19435@node M680x0 Options
19436@subsection M680x0 Options
19437@cindex M680x0 options
19438
19439These are the @samp{-m} options defined for M680x0 and ColdFire processors.
19440The default settings depend on which architecture was selected when
19441the compiler was configured; the defaults for the most common choices
19442are given below.
19443
19444@table @gcctabopt
19445@item -march=@var{arch}
19446@opindex march
19447Generate code for a specific M680x0 or ColdFire instruction set
19448architecture.  Permissible values of @var{arch} for M680x0
19449architectures are: @samp{68000}, @samp{68010}, @samp{68020},
19450@samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}.  ColdFire
19451architectures are selected according to Freescale's ISA classification
19452and the permissible values are: @samp{isaa}, @samp{isaaplus},
19453@samp{isab} and @samp{isac}.
19454
19455GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
19456code for a ColdFire target.  The @var{arch} in this macro is one of the
19457@option{-march} arguments given above.
19458
19459When used together, @option{-march} and @option{-mtune} select code
19460that runs on a family of similar processors but that is optimized
19461for a particular microarchitecture.
19462
19463@item -mcpu=@var{cpu}
19464@opindex mcpu
19465Generate code for a specific M680x0 or ColdFire processor.
19466The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
19467@samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
19468and @samp{cpu32}.  The ColdFire @var{cpu}s are given by the table
19469below, which also classifies the CPUs into families:
19470
19471@multitable @columnfractions 0.20 0.80
19472@item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
19473@item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
19474@item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
19475@item @samp{5206e} @tab @samp{5206e}
19476@item @samp{5208} @tab @samp{5207} @samp{5208}
19477@item @samp{5211a} @tab @samp{5210a} @samp{5211a}
19478@item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
19479@item @samp{5216} @tab @samp{5214} @samp{5216}
19480@item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
19481@item @samp{5225} @tab @samp{5224} @samp{5225}
19482@item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
19483@item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
19484@item @samp{5249} @tab @samp{5249}
19485@item @samp{5250} @tab @samp{5250}
19486@item @samp{5271} @tab @samp{5270} @samp{5271}
19487@item @samp{5272} @tab @samp{5272}
19488@item @samp{5275} @tab @samp{5274} @samp{5275}
19489@item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
19490@item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
19491@item @samp{5307} @tab @samp{5307}
19492@item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
19493@item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
19494@item @samp{5407} @tab @samp{5407}
19495@item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
19496@end multitable
19497
19498@option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
19499@var{arch} is compatible with @var{cpu}.  Other combinations of
19500@option{-mcpu} and @option{-march} are rejected.
19501
19502GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
19503@var{cpu} is selected.  It also defines @code{__mcf_family_@var{family}},
19504where the value of @var{family} is given by the table above.
19505
19506@item -mtune=@var{tune}
19507@opindex mtune
19508Tune the code for a particular microarchitecture within the
19509constraints set by @option{-march} and @option{-mcpu}.
19510The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
19511@samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
19512and @samp{cpu32}.  The ColdFire microarchitectures
19513are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
19514
19515You can also use @option{-mtune=68020-40} for code that needs
19516to run relatively well on 68020, 68030 and 68040 targets.
19517@option{-mtune=68020-60} is similar but includes 68060 targets
19518as well.  These two options select the same tuning decisions as
19519@option{-m68020-40} and @option{-m68020-60} respectively.
19520
19521GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
19522when tuning for 680x0 architecture @var{arch}.  It also defines
19523@code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
19524option is used.  If GCC is tuning for a range of architectures,
19525as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
19526it defines the macros for every architecture in the range.
19527
19528GCC also defines the macro @code{__m@var{uarch}__} when tuning for
19529ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
19530of the arguments given above.
19531
19532@item -m68000
19533@itemx -mc68000
19534@opindex m68000
19535@opindex mc68000
19536Generate output for a 68000.  This is the default
19537when the compiler is configured for 68000-based systems.
19538It is equivalent to @option{-march=68000}.
19539
19540Use this option for microcontrollers with a 68000 or EC000 core,
19541including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
19542
19543@item -m68010
19544@opindex m68010
19545Generate output for a 68010.  This is the default
19546when the compiler is configured for 68010-based systems.
19547It is equivalent to @option{-march=68010}.
19548
19549@item -m68020
19550@itemx -mc68020
19551@opindex m68020
19552@opindex mc68020
19553Generate output for a 68020.  This is the default
19554when the compiler is configured for 68020-based systems.
19555It is equivalent to @option{-march=68020}.
19556
19557@item -m68030
19558@opindex m68030
19559Generate output for a 68030.  This is the default when the compiler is
19560configured for 68030-based systems.  It is equivalent to
19561@option{-march=68030}.
19562
19563@item -m68040
19564@opindex m68040
19565Generate output for a 68040.  This is the default when the compiler is
19566configured for 68040-based systems.  It is equivalent to
19567@option{-march=68040}.
19568
19569This option inhibits the use of 68881/68882 instructions that have to be
19570emulated by software on the 68040.  Use this option if your 68040 does not
19571have code to emulate those instructions.
19572
19573@item -m68060
19574@opindex m68060
19575Generate output for a 68060.  This is the default when the compiler is
19576configured for 68060-based systems.  It is equivalent to
19577@option{-march=68060}.
19578
19579This option inhibits the use of 68020 and 68881/68882 instructions that
19580have to be emulated by software on the 68060.  Use this option if your 68060
19581does not have code to emulate those instructions.
19582
19583@item -mcpu32
19584@opindex mcpu32
19585Generate output for a CPU32.  This is the default
19586when the compiler is configured for CPU32-based systems.
19587It is equivalent to @option{-march=cpu32}.
19588
19589Use this option for microcontrollers with a
19590CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
1959168336, 68340, 68341, 68349 and 68360.
19592
19593@item -m5200
19594@opindex m5200
19595Generate output for a 520X ColdFire CPU@.  This is the default
19596when the compiler is configured for 520X-based systems.
19597It is equivalent to @option{-mcpu=5206}, and is now deprecated
19598in favor of that option.
19599
19600Use this option for microcontroller with a 5200 core, including
19601the MCF5202, MCF5203, MCF5204 and MCF5206.
19602
19603@item -m5206e
19604@opindex m5206e
19605Generate output for a 5206e ColdFire CPU@.  The option is now
19606deprecated in favor of the equivalent @option{-mcpu=5206e}.
19607
19608@item -m528x
19609@opindex m528x
19610Generate output for a member of the ColdFire 528X family.
19611The option is now deprecated in favor of the equivalent
19612@option{-mcpu=528x}.
19613
19614@item -m5307
19615@opindex m5307
19616Generate output for a ColdFire 5307 CPU@.  The option is now deprecated
19617in favor of the equivalent @option{-mcpu=5307}.
19618
19619@item -m5407
19620@opindex m5407
19621Generate output for a ColdFire 5407 CPU@.  The option is now deprecated
19622in favor of the equivalent @option{-mcpu=5407}.
19623
19624@item -mcfv4e
19625@opindex mcfv4e
19626Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
19627This includes use of hardware floating-point instructions.
19628The option is equivalent to @option{-mcpu=547x}, and is now
19629deprecated in favor of that option.
19630
19631@item -m68020-40
19632@opindex m68020-40
19633Generate output for a 68040, without using any of the new instructions.
19634This results in code that can run relatively efficiently on either a
1963568020/68881 or a 68030 or a 68040.  The generated code does use the
1963668881 instructions that are emulated on the 68040.
19637
19638The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
19639
19640@item -m68020-60
19641@opindex m68020-60
19642Generate output for a 68060, without using any of the new instructions.
19643This results in code that can run relatively efficiently on either a
1964468020/68881 or a 68030 or a 68040.  The generated code does use the
1964568881 instructions that are emulated on the 68060.
19646
19647The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
19648
19649@item -mhard-float
19650@itemx -m68881
19651@opindex mhard-float
19652@opindex m68881
19653Generate floating-point instructions.  This is the default for 68020
19654and above, and for ColdFire devices that have an FPU@.  It defines the
19655macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
19656on ColdFire targets.
19657
19658@item -msoft-float
19659@opindex msoft-float
19660Do not generate floating-point instructions; use library calls instead.
19661This is the default for 68000, 68010, and 68832 targets.  It is also
19662the default for ColdFire devices that have no FPU.
19663
19664@item -mdiv
19665@itemx -mno-div
19666@opindex mdiv
19667@opindex mno-div
19668Generate (do not generate) ColdFire hardware divide and remainder
19669instructions.  If @option{-march} is used without @option{-mcpu},
19670the default is ``on'' for ColdFire architectures and ``off'' for M680x0
19671architectures.  Otherwise, the default is taken from the target CPU
19672(either the default CPU, or the one specified by @option{-mcpu}).  For
19673example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
19674@option{-mcpu=5206e}.
19675
19676GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
19677
19678@item -mshort
19679@opindex mshort
19680Consider type @code{int} to be 16 bits wide, like @code{short int}.
19681Additionally, parameters passed on the stack are also aligned to a
1968216-bit boundary even on targets whose API mandates promotion to 32-bit.
19683
19684@item -mno-short
19685@opindex mno-short
19686Do not consider type @code{int} to be 16 bits wide.  This is the default.
19687
19688@item -mnobitfield
19689@itemx -mno-bitfield
19690@opindex mnobitfield
19691@opindex mno-bitfield
19692Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
19693and @option{-m5200} options imply @w{@option{-mnobitfield}}.
19694
19695@item -mbitfield
19696@opindex mbitfield
19697Do use the bit-field instructions.  The @option{-m68020} option implies
19698@option{-mbitfield}.  This is the default if you use a configuration
19699designed for a 68020.
19700
19701@item -mrtd
19702@opindex mrtd
19703Use a different function-calling convention, in which functions
19704that take a fixed number of arguments return with the @code{rtd}
19705instruction, which pops their arguments while returning.  This
19706saves one instruction in the caller since there is no need to pop
19707the arguments there.
19708
19709This calling convention is incompatible with the one normally
19710used on Unix, so you cannot use it if you need to call libraries
19711compiled with the Unix compiler.
19712
19713Also, you must provide function prototypes for all functions that
19714take variable numbers of arguments (including @code{printf});
19715otherwise incorrect code is generated for calls to those
19716functions.
19717
19718In addition, seriously incorrect code results if you call a
19719function with too many arguments.  (Normally, extra arguments are
19720harmlessly ignored.)
19721
19722The @code{rtd} instruction is supported by the 68010, 68020, 68030,
1972368040, 68060 and CPU32 processors, but not by the 68000 or 5200.
19724
19725@item -mno-rtd
19726@opindex mno-rtd
19727Do not use the calling conventions selected by @option{-mrtd}.
19728This is the default.
19729
19730@item -malign-int
19731@itemx -mno-align-int
19732@opindex malign-int
19733@opindex mno-align-int
19734Control whether GCC aligns @code{int}, @code{long}, @code{long long},
19735@code{float}, @code{double}, and @code{long double} variables on a 32-bit
19736boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
19737Aligning variables on 32-bit boundaries produces code that runs somewhat
19738faster on processors with 32-bit busses at the expense of more memory.
19739
19740@strong{Warning:} if you use the @option{-malign-int} switch, GCC
19741aligns structures containing the above types differently than
19742most published application binary interface specifications for the m68k.
19743
19744@item -mpcrel
19745@opindex mpcrel
19746Use the pc-relative addressing mode of the 68000 directly, instead of
19747using a global offset table.  At present, this option implies @option{-fpic},
19748allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
19749not presently supported with @option{-mpcrel}, though this could be supported for
1975068020 and higher processors.
19751
19752@item -mno-strict-align
19753@itemx -mstrict-align
19754@opindex mno-strict-align
19755@opindex mstrict-align
19756Do not (do) assume that unaligned memory references are handled by
19757the system.
19758
19759@item -msep-data
19760Generate code that allows the data segment to be located in a different
19761area of memory from the text segment.  This allows for execute-in-place in
19762an environment without virtual memory management.  This option implies
19763@option{-fPIC}.
19764
19765@item -mno-sep-data
19766Generate code that assumes that the data segment follows the text segment.
19767This is the default.
19768
19769@item -mid-shared-library
19770Generate code that supports shared libraries via the library ID method.
19771This allows for execute-in-place and shared libraries in an environment
19772without virtual memory management.  This option implies @option{-fPIC}.
19773
19774@item -mno-id-shared-library
19775Generate code that doesn't assume ID-based shared libraries are being used.
19776This is the default.
19777
19778@item -mshared-library-id=n
19779Specifies the identification number of the ID-based shared library being
19780compiled.  Specifying a value of 0 generates more compact code; specifying
19781other values forces the allocation of that number to the current
19782library, but is no more space- or time-efficient than omitting this option.
19783
19784@item -mxgot
19785@itemx -mno-xgot
19786@opindex mxgot
19787@opindex mno-xgot
19788When generating position-independent code for ColdFire, generate code
19789that works if the GOT has more than 8192 entries.  This code is
19790larger and slower than code generated without this option.  On M680x0
19791processors, this option is not needed; @option{-fPIC} suffices.
19792
19793GCC normally uses a single instruction to load values from the GOT@.
19794While this is relatively efficient, it only works if the GOT
19795is smaller than about 64k.  Anything larger causes the linker
19796to report an error such as:
19797
19798@cindex relocation truncated to fit (ColdFire)
19799@smallexample
19800relocation truncated to fit: R_68K_GOT16O foobar
19801@end smallexample
19802
19803If this happens, you should recompile your code with @option{-mxgot}.
19804It should then work with very large GOTs.  However, code generated with
19805@option{-mxgot} is less efficient, since it takes 4 instructions to fetch
19806the value of a global symbol.
19807
19808Note that some linkers, including newer versions of the GNU linker,
19809can create multiple GOTs and sort GOT entries.  If you have such a linker,
19810you should only need to use @option{-mxgot} when compiling a single
19811object file that accesses more than 8192 GOT entries.  Very few do.
19812
19813These options have no effect unless GCC is generating
19814position-independent code.
19815
19816@item -mlong-jump-table-offsets
19817@opindex mlong-jump-table-offsets
19818Use 32-bit offsets in @code{switch} tables.  The default is to use
1981916-bit offsets.
19820
19821@end table
19822
19823@node MCore Options
19824@subsection MCore Options
19825@cindex MCore options
19826
19827These are the @samp{-m} options defined for the Motorola M*Core
19828processors.
19829
19830@table @gcctabopt
19831
19832@item -mhardlit
19833@itemx -mno-hardlit
19834@opindex mhardlit
19835@opindex mno-hardlit
19836Inline constants into the code stream if it can be done in two
19837instructions or less.
19838
19839@item -mdiv
19840@itemx -mno-div
19841@opindex mdiv
19842@opindex mno-div
19843Use the divide instruction.  (Enabled by default).
19844
19845@item -mrelax-immediate
19846@itemx -mno-relax-immediate
19847@opindex mrelax-immediate
19848@opindex mno-relax-immediate
19849Allow arbitrary-sized immediates in bit operations.
19850
19851@item -mwide-bitfields
19852@itemx -mno-wide-bitfields
19853@opindex mwide-bitfields
19854@opindex mno-wide-bitfields
19855Always treat bit-fields as @code{int}-sized.
19856
19857@item -m4byte-functions
19858@itemx -mno-4byte-functions
19859@opindex m4byte-functions
19860@opindex mno-4byte-functions
19861Force all functions to be aligned to a 4-byte boundary.
19862
19863@item -mcallgraph-data
19864@itemx -mno-callgraph-data
19865@opindex mcallgraph-data
19866@opindex mno-callgraph-data
19867Emit callgraph information.
19868
19869@item -mslow-bytes
19870@itemx -mno-slow-bytes
19871@opindex mslow-bytes
19872@opindex mno-slow-bytes
19873Prefer word access when reading byte quantities.
19874
19875@item -mlittle-endian
19876@itemx -mbig-endian
19877@opindex mlittle-endian
19878@opindex mbig-endian
19879Generate code for a little-endian target.
19880
19881@item -m210
19882@itemx -m340
19883@opindex m210
19884@opindex m340
19885Generate code for the 210 processor.
19886
19887@item -mno-lsim
19888@opindex mno-lsim
19889Assume that runtime support has been provided and so omit the
19890simulator library (@file{libsim.a)} from the linker command line.
19891
19892@item -mstack-increment=@var{size}
19893@opindex mstack-increment
19894Set the maximum amount for a single stack increment operation.  Large
19895values can increase the speed of programs that contain functions
19896that need a large amount of stack space, but they can also trigger a
19897segmentation fault if the stack is extended too much.  The default
19898value is 0x1000.
19899
19900@end table
19901
19902@node MeP Options
19903@subsection MeP Options
19904@cindex MeP options
19905
19906@table @gcctabopt
19907
19908@item -mabsdiff
19909@opindex mabsdiff
19910Enables the @code{abs} instruction, which is the absolute difference
19911between two registers.
19912
19913@item -mall-opts
19914@opindex mall-opts
19915Enables all the optional instructions---average, multiply, divide, bit
19916operations, leading zero, absolute difference, min/max, clip, and
19917saturation.
19918
19919
19920@item -maverage
19921@opindex maverage
19922Enables the @code{ave} instruction, which computes the average of two
19923registers.
19924
19925@item -mbased=@var{n}
19926@opindex mbased=
19927Variables of size @var{n} bytes or smaller are placed in the
19928@code{.based} section by default.  Based variables use the @code{$tp}
19929register as a base register, and there is a 128-byte limit to the
19930@code{.based} section.
19931
19932@item -mbitops
19933@opindex mbitops
19934Enables the bit operation instructions---bit test (@code{btstm}), set
19935(@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
19936test-and-set (@code{tas}).
19937
19938@item -mc=@var{name}
19939@opindex mc=
19940Selects which section constant data is placed in.  @var{name} may
19941be @samp{tiny}, @samp{near}, or @samp{far}.
19942
19943@item -mclip
19944@opindex mclip
19945Enables the @code{clip} instruction.  Note that @option{-mclip} is not
19946useful unless you also provide @option{-mminmax}.
19947
19948@item -mconfig=@var{name}
19949@opindex mconfig=
19950Selects one of the built-in core configurations.  Each MeP chip has
19951one or more modules in it; each module has a core CPU and a variety of
19952coprocessors, optional instructions, and peripherals.  The
19953@code{MeP-Integrator} tool, not part of GCC, provides these
19954configurations through this option; using this option is the same as
19955using all the corresponding command-line options.  The default
19956configuration is @samp{default}.
19957
19958@item -mcop
19959@opindex mcop
19960Enables the coprocessor instructions.  By default, this is a 32-bit
19961coprocessor.  Note that the coprocessor is normally enabled via the
19962@option{-mconfig=} option.
19963
19964@item -mcop32
19965@opindex mcop32
19966Enables the 32-bit coprocessor's instructions.
19967
19968@item -mcop64
19969@opindex mcop64
19970Enables the 64-bit coprocessor's instructions.
19971
19972@item -mivc2
19973@opindex mivc2
19974Enables IVC2 scheduling.  IVC2 is a 64-bit VLIW coprocessor.
19975
19976@item -mdc
19977@opindex mdc
19978Causes constant variables to be placed in the @code{.near} section.
19979
19980@item -mdiv
19981@opindex mdiv
19982Enables the @code{div} and @code{divu} instructions.
19983
19984@item -meb
19985@opindex meb
19986Generate big-endian code.
19987
19988@item -mel
19989@opindex mel
19990Generate little-endian code.
19991
19992@item -mio-volatile
19993@opindex mio-volatile
19994Tells the compiler that any variable marked with the @code{io}
19995attribute is to be considered volatile.
19996
19997@item -ml
19998@opindex ml
19999Causes variables to be assigned to the @code{.far} section by default.
20000
20001@item -mleadz
20002@opindex mleadz
20003Enables the @code{leadz} (leading zero) instruction.
20004
20005@item -mm
20006@opindex mm
20007Causes variables to be assigned to the @code{.near} section by default.
20008
20009@item -mminmax
20010@opindex mminmax
20011Enables the @code{min} and @code{max} instructions.
20012
20013@item -mmult
20014@opindex mmult
20015Enables the multiplication and multiply-accumulate instructions.
20016
20017@item -mno-opts
20018@opindex mno-opts
20019Disables all the optional instructions enabled by @option{-mall-opts}.
20020
20021@item -mrepeat
20022@opindex mrepeat
20023Enables the @code{repeat} and @code{erepeat} instructions, used for
20024low-overhead looping.
20025
20026@item -ms
20027@opindex ms
20028Causes all variables to default to the @code{.tiny} section.  Note
20029that there is a 65536-byte limit to this section.  Accesses to these
20030variables use the @code{%gp} base register.
20031
20032@item -msatur
20033@opindex msatur
20034Enables the saturation instructions.  Note that the compiler does not
20035currently generate these itself, but this option is included for
20036compatibility with other tools, like @code{as}.
20037
20038@item -msdram
20039@opindex msdram
20040Link the SDRAM-based runtime instead of the default ROM-based runtime.
20041
20042@item -msim
20043@opindex msim
20044Link the simulator run-time libraries.
20045
20046@item -msimnovec
20047@opindex msimnovec
20048Link the simulator runtime libraries, excluding built-in support
20049for reset and exception vectors and tables.
20050
20051@item -mtf
20052@opindex mtf
20053Causes all functions to default to the @code{.far} section.  Without
20054this option, functions default to the @code{.near} section.
20055
20056@item -mtiny=@var{n}
20057@opindex mtiny=
20058Variables that are @var{n} bytes or smaller are allocated to the
20059@code{.tiny} section.  These variables use the @code{$gp} base
20060register.  The default for this option is 4, but note that there's a
2006165536-byte limit to the @code{.tiny} section.
20062
20063@end table
20064
20065@node MicroBlaze Options
20066@subsection MicroBlaze Options
20067@cindex MicroBlaze Options
20068
20069@table @gcctabopt
20070
20071@item -msoft-float
20072@opindex msoft-float
20073Use software emulation for floating point (default).
20074
20075@item -mhard-float
20076@opindex mhard-float
20077Use hardware floating-point instructions.
20078
20079@item -mmemcpy
20080@opindex mmemcpy
20081Do not optimize block moves, use @code{memcpy}.
20082
20083@item -mno-clearbss
20084@opindex mno-clearbss
20085This option is deprecated.  Use @option{-fno-zero-initialized-in-bss} instead.
20086
20087@item -mcpu=@var{cpu-type}
20088@opindex mcpu=
20089Use features of, and schedule code for, the given CPU.
20090Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
20091where @var{X} is a major version, @var{YY} is the minor version, and
20092@var{Z} is compatibility code.  Example values are @samp{v3.00.a},
20093@samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
20094
20095@item -mxl-soft-mul
20096@opindex mxl-soft-mul
20097Use software multiply emulation (default).
20098
20099@item -mxl-soft-div
20100@opindex mxl-soft-div
20101Use software emulation for divides (default).
20102
20103@item -mxl-barrel-shift
20104@opindex mxl-barrel-shift
20105Use the hardware barrel shifter.
20106
20107@item -mxl-pattern-compare
20108@opindex mxl-pattern-compare
20109Use pattern compare instructions.
20110
20111@item -msmall-divides
20112@opindex msmall-divides
20113Use table lookup optimization for small signed integer divisions.
20114
20115@item -mxl-stack-check
20116@opindex mxl-stack-check
20117This option is deprecated.  Use @option{-fstack-check} instead.
20118
20119@item -mxl-gp-opt
20120@opindex mxl-gp-opt
20121Use GP-relative @code{.sdata}/@code{.sbss} sections.
20122
20123@item -mxl-multiply-high
20124@opindex mxl-multiply-high
20125Use multiply high instructions for high part of 32x32 multiply.
20126
20127@item -mxl-float-convert
20128@opindex mxl-float-convert
20129Use hardware floating-point conversion instructions.
20130
20131@item -mxl-float-sqrt
20132@opindex mxl-float-sqrt
20133Use hardware floating-point square root instruction.
20134
20135@item -mbig-endian
20136@opindex mbig-endian
20137Generate code for a big-endian target.
20138
20139@item -mlittle-endian
20140@opindex mlittle-endian
20141Generate code for a little-endian target.
20142
20143@item -mxl-reorder
20144@opindex mxl-reorder
20145Use reorder instructions (swap and byte reversed load/store).
20146
20147@item -mxl-mode-@var{app-model}
20148Select application model @var{app-model}.  Valid models are
20149@table @samp
20150@item executable
20151normal executable (default), uses startup code @file{crt0.o}.
20152
20153@item xmdstub
20154for use with Xilinx Microprocessor Debugger (XMD) based
20155software intrusive debug agent called xmdstub. This uses startup file
20156@file{crt1.o} and sets the start address of the program to 0x800.
20157
20158@item bootstrap
20159for applications that are loaded using a bootloader.
20160This model uses startup file @file{crt2.o} which does not contain a processor
20161reset vector handler. This is suitable for transferring control on a
20162processor reset to the bootloader rather than the application.
20163
20164@item novectors
20165for applications that do not require any of the
20166MicroBlaze vectors. This option may be useful for applications running
20167within a monitoring application. This model uses @file{crt3.o} as a startup file.
20168@end table
20169
20170Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
20171@option{-mxl-mode-@var{app-model}}.
20172
20173@end table
20174
20175@node MIPS Options
20176@subsection MIPS Options
20177@cindex MIPS options
20178
20179@table @gcctabopt
20180
20181@item -EB
20182@opindex EB
20183Generate big-endian code.
20184
20185@item -EL
20186@opindex EL
20187Generate little-endian code.  This is the default for @samp{mips*el-*-*}
20188configurations.
20189
20190@item -march=@var{arch}
20191@opindex march
20192Generate code that runs on @var{arch}, which can be the name of a
20193generic MIPS ISA, or the name of a particular processor.
20194The ISA names are:
20195@samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
20196@samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
20197@samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
20198@samp{mips64r5} and @samp{mips64r6}.
20199The processor names are:
20200@samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
20201@samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
20202@samp{5kc}, @samp{5kf},
20203@samp{20kc},
20204@samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
20205@samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
20206@samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
20207@samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
20208@samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
20209@samp{i6400},
20210@samp{interaptiv},
20211@samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
20212@samp{m4k},
20213@samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
20214@samp{m5100}, @samp{m5101},
20215@samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
20216@samp{orion},
20217@samp{p5600},
20218@samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
20219@samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
20220@samp{rm7000}, @samp{rm9000},
20221@samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
20222@samp{sb1},
20223@samp{sr71000},
20224@samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
20225@samp{vr5000}, @samp{vr5400}, @samp{vr5500},
20226@samp{xlr} and @samp{xlp}.
20227The special value @samp{from-abi} selects the
20228most compatible architecture for the selected ABI (that is,
20229@samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
20230
20231The native Linux/GNU toolchain also supports the value @samp{native},
20232which selects the best architecture option for the host processor.
20233@option{-march=native} has no effect if GCC does not recognize
20234the processor.
20235
20236In processor names, a final @samp{000} can be abbreviated as @samp{k}
20237(for example, @option{-march=r2k}).  Prefixes are optional, and
20238@samp{vr} may be written @samp{r}.
20239
20240Names of the form @samp{@var{n}f2_1} refer to processors with
20241FPUs clocked at half the rate of the core, names of the form
20242@samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
20243rate as the core, and names of the form @samp{@var{n}f3_2} refer to
20244processors with FPUs clocked a ratio of 3:2 with respect to the core.
20245For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
20246for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
20247accepted as synonyms for @samp{@var{n}f1_1}.
20248
20249GCC defines two macros based on the value of this option.  The first
20250is @code{_MIPS_ARCH}, which gives the name of target architecture, as
20251a string.  The second has the form @code{_MIPS_ARCH_@var{foo}},
20252where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
20253For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
20254to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
20255
20256Note that the @code{_MIPS_ARCH} macro uses the processor names given
20257above.  In other words, it has the full prefix and does not
20258abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
20259the macro names the resolved architecture (either @code{"mips1"} or
20260@code{"mips3"}).  It names the default architecture when no
20261@option{-march} option is given.
20262
20263@item -mtune=@var{arch}
20264@opindex mtune
20265Optimize for @var{arch}.  Among other things, this option controls
20266the way instructions are scheduled, and the perceived cost of arithmetic
20267operations.  The list of @var{arch} values is the same as for
20268@option{-march}.
20269
20270When this option is not used, GCC optimizes for the processor
20271specified by @option{-march}.  By using @option{-march} and
20272@option{-mtune} together, it is possible to generate code that
20273runs on a family of processors, but optimize the code for one
20274particular member of that family.
20275
20276@option{-mtune} defines the macros @code{_MIPS_TUNE} and
20277@code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
20278@option{-march} ones described above.
20279
20280@item -mips1
20281@opindex mips1
20282Equivalent to @option{-march=mips1}.
20283
20284@item -mips2
20285@opindex mips2
20286Equivalent to @option{-march=mips2}.
20287
20288@item -mips3
20289@opindex mips3
20290Equivalent to @option{-march=mips3}.
20291
20292@item -mips4
20293@opindex mips4
20294Equivalent to @option{-march=mips4}.
20295
20296@item -mips32
20297@opindex mips32
20298Equivalent to @option{-march=mips32}.
20299
20300@item -mips32r3
20301@opindex mips32r3
20302Equivalent to @option{-march=mips32r3}.
20303
20304@item -mips32r5
20305@opindex mips32r5
20306Equivalent to @option{-march=mips32r5}.
20307
20308@item -mips32r6
20309@opindex mips32r6
20310Equivalent to @option{-march=mips32r6}.
20311
20312@item -mips64
20313@opindex mips64
20314Equivalent to @option{-march=mips64}.
20315
20316@item -mips64r2
20317@opindex mips64r2
20318Equivalent to @option{-march=mips64r2}.
20319
20320@item -mips64r3
20321@opindex mips64r3
20322Equivalent to @option{-march=mips64r3}.
20323
20324@item -mips64r5
20325@opindex mips64r5
20326Equivalent to @option{-march=mips64r5}.
20327
20328@item -mips64r6
20329@opindex mips64r6
20330Equivalent to @option{-march=mips64r6}.
20331
20332@item -mips16
20333@itemx -mno-mips16
20334@opindex mips16
20335@opindex mno-mips16
20336Generate (do not generate) MIPS16 code.  If GCC is targeting a
20337MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
20338
20339MIPS16 code generation can also be controlled on a per-function basis
20340by means of @code{mips16} and @code{nomips16} attributes.
20341@xref{Function Attributes}, for more information.
20342
20343@item -mflip-mips16
20344@opindex mflip-mips16
20345Generate MIPS16 code on alternating functions.  This option is provided
20346for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
20347not intended for ordinary use in compiling user code.
20348
20349@item -minterlink-compressed
20350@itemx -mno-interlink-compressed
20351@opindex minterlink-compressed
20352@opindex mno-interlink-compressed
20353Require (do not require) that code using the standard (uncompressed) MIPS ISA
20354be link-compatible with MIPS16 and microMIPS code, and vice versa.
20355
20356For example, code using the standard ISA encoding cannot jump directly
20357to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
20358@option{-minterlink-compressed} therefore disables direct jumps unless GCC
20359knows that the target of the jump is not compressed.
20360
20361@item -minterlink-mips16
20362@itemx -mno-interlink-mips16
20363@opindex minterlink-mips16
20364@opindex mno-interlink-mips16
20365Aliases of @option{-minterlink-compressed} and
20366@option{-mno-interlink-compressed}.  These options predate the microMIPS ASE
20367and are retained for backwards compatibility.
20368
20369@item -mabi=32
20370@itemx -mabi=o64
20371@itemx -mabi=n32
20372@itemx -mabi=64
20373@itemx -mabi=eabi
20374@opindex mabi=32
20375@opindex mabi=o64
20376@opindex mabi=n32
20377@opindex mabi=64
20378@opindex mabi=eabi
20379Generate code for the given ABI@.
20380
20381Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
20382generates 64-bit code when you select a 64-bit architecture, but you
20383can use @option{-mgp32} to get 32-bit code instead.
20384
20385For information about the O64 ABI, see
20386@uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
20387
20388GCC supports a variant of the o32 ABI in which floating-point registers
20389are 64 rather than 32 bits wide.  You can select this combination with
20390@option{-mabi=32} @option{-mfp64}.  This ABI relies on the @code{mthc1}
20391and @code{mfhc1} instructions and is therefore only supported for
20392MIPS32R2, MIPS32R3 and MIPS32R5 processors.
20393
20394The register assignments for arguments and return values remain the
20395same, but each scalar value is passed in a single 64-bit register
20396rather than a pair of 32-bit registers.  For example, scalar
20397floating-point values are returned in @samp{$f0} only, not a
20398@samp{$f0}/@samp{$f1} pair.  The set of call-saved registers also
20399remains the same in that the even-numbered double-precision registers
20400are saved.
20401
20402Two additional variants of the o32 ABI are supported to enable
20403a transition from 32-bit to 64-bit registers.  These are FPXX
20404(@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
20405The FPXX extension mandates that all code must execute correctly
20406when run using 32-bit or 64-bit registers.  The code can be interlinked
20407with either FP32 or FP64, but not both.
20408The FP64A extension is similar to the FP64 extension but forbids the
20409use of odd-numbered single-precision registers.  This can be used
20410in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
20411processors and allows both FP32 and FP64A code to interlink and
20412run in the same process without changing FPU modes.
20413
20414@item -mabicalls
20415@itemx -mno-abicalls
20416@opindex mabicalls
20417@opindex mno-abicalls
20418Generate (do not generate) code that is suitable for SVR4-style
20419dynamic objects.  @option{-mabicalls} is the default for SVR4-based
20420systems.
20421
20422@item -mshared
20423@itemx -mno-shared
20424Generate (do not generate) code that is fully position-independent,
20425and that can therefore be linked into shared libraries.  This option
20426only affects @option{-mabicalls}.
20427
20428All @option{-mabicalls} code has traditionally been position-independent,
20429regardless of options like @option{-fPIC} and @option{-fpic}.  However,
20430as an extension, the GNU toolchain allows executables to use absolute
20431accesses for locally-binding symbols.  It can also use shorter GP
20432initialization sequences and generate direct calls to locally-defined
20433functions.  This mode is selected by @option{-mno-shared}.
20434
20435@option{-mno-shared} depends on binutils 2.16 or higher and generates
20436objects that can only be linked by the GNU linker.  However, the option
20437does not affect the ABI of the final executable; it only affects the ABI
20438of relocatable objects.  Using @option{-mno-shared} generally makes
20439executables both smaller and quicker.
20440
20441@option{-mshared} is the default.
20442
20443@item -mplt
20444@itemx -mno-plt
20445@opindex mplt
20446@opindex mno-plt
20447Assume (do not assume) that the static and dynamic linkers
20448support PLTs and copy relocations.  This option only affects
20449@option{-mno-shared -mabicalls}.  For the n64 ABI, this option
20450has no effect without @option{-msym32}.
20451
20452You can make @option{-mplt} the default by configuring
20453GCC with @option{--with-mips-plt}.  The default is
20454@option{-mno-plt} otherwise.
20455
20456@item -mxgot
20457@itemx -mno-xgot
20458@opindex mxgot
20459@opindex mno-xgot
20460Lift (do not lift) the usual restrictions on the size of the global
20461offset table.
20462
20463GCC normally uses a single instruction to load values from the GOT@.
20464While this is relatively efficient, it only works if the GOT
20465is smaller than about 64k.  Anything larger causes the linker
20466to report an error such as:
20467
20468@cindex relocation truncated to fit (MIPS)
20469@smallexample
20470relocation truncated to fit: R_MIPS_GOT16 foobar
20471@end smallexample
20472
20473If this happens, you should recompile your code with @option{-mxgot}.
20474This works with very large GOTs, although the code is also
20475less efficient, since it takes three instructions to fetch the
20476value of a global symbol.
20477
20478Note that some linkers can create multiple GOTs.  If you have such a
20479linker, you should only need to use @option{-mxgot} when a single object
20480file accesses more than 64k's worth of GOT entries.  Very few do.
20481
20482These options have no effect unless GCC is generating position
20483independent code.
20484
20485@item -mgp32
20486@opindex mgp32
20487Assume that general-purpose registers are 32 bits wide.
20488
20489@item -mgp64
20490@opindex mgp64
20491Assume that general-purpose registers are 64 bits wide.
20492
20493@item -mfp32
20494@opindex mfp32
20495Assume that floating-point registers are 32 bits wide.
20496
20497@item -mfp64
20498@opindex mfp64
20499Assume that floating-point registers are 64 bits wide.
20500
20501@item -mfpxx
20502@opindex mfpxx
20503Do not assume the width of floating-point registers.
20504
20505@item -mhard-float
20506@opindex mhard-float
20507Use floating-point coprocessor instructions.
20508
20509@item -msoft-float
20510@opindex msoft-float
20511Do not use floating-point coprocessor instructions.  Implement
20512floating-point calculations using library calls instead.
20513
20514@item -mno-float
20515@opindex mno-float
20516Equivalent to @option{-msoft-float}, but additionally asserts that the
20517program being compiled does not perform any floating-point operations.
20518This option is presently supported only by some bare-metal MIPS
20519configurations, where it may select a special set of libraries
20520that lack all floating-point support (including, for example, the
20521floating-point @code{printf} formats).
20522If code compiled with @option{-mno-float} accidentally contains
20523floating-point operations, it is likely to suffer a link-time
20524or run-time failure.
20525
20526@item -msingle-float
20527@opindex msingle-float
20528Assume that the floating-point coprocessor only supports single-precision
20529operations.
20530
20531@item -mdouble-float
20532@opindex mdouble-float
20533Assume that the floating-point coprocessor supports double-precision
20534operations.  This is the default.
20535
20536@item -modd-spreg
20537@itemx -mno-odd-spreg
20538@opindex modd-spreg
20539@opindex mno-odd-spreg
20540Enable the use of odd-numbered single-precision floating-point registers
20541for the o32 ABI.  This is the default for processors that are known to
20542support these registers.  When using the o32 FPXX ABI, @option{-mno-odd-spreg}
20543is set by default.
20544
20545@item -mabs=2008
20546@itemx -mabs=legacy
20547@opindex mabs=2008
20548@opindex mabs=legacy
20549These options control the treatment of the special not-a-number (NaN)
20550IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
20551@code{neg.@i{fmt}} machine instructions.
20552
20553By default or when @option{-mabs=legacy} is used the legacy
20554treatment is selected.  In this case these instructions are considered
20555arithmetic and avoided where correct operation is required and the
20556input operand might be a NaN.  A longer sequence of instructions that
20557manipulate the sign bit of floating-point datum manually is used
20558instead unless the @option{-ffinite-math-only} option has also been
20559specified.
20560
20561The @option{-mabs=2008} option selects the IEEE 754-2008 treatment.  In
20562this case these instructions are considered non-arithmetic and therefore
20563operating correctly in all cases, including in particular where the
20564input operand is a NaN.  These instructions are therefore always used
20565for the respective operations.
20566
20567@item -mnan=2008
20568@itemx -mnan=legacy
20569@opindex mnan=2008
20570@opindex mnan=legacy
20571These options control the encoding of the special not-a-number (NaN)
20572IEEE 754 floating-point data.
20573
20574The @option{-mnan=legacy} option selects the legacy encoding.  In this
20575case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
20576significand field being 0, whereas signaling NaNs (sNaNs) are denoted
20577by the first bit of their trailing significand field being 1.
20578
20579The @option{-mnan=2008} option selects the IEEE 754-2008 encoding.  In
20580this case qNaNs are denoted by the first bit of their trailing
20581significand field being 1, whereas sNaNs are denoted by the first bit of
20582their trailing significand field being 0.
20583
20584The default is @option{-mnan=legacy} unless GCC has been configured with
20585@option{--with-nan=2008}.
20586
20587@item -mllsc
20588@itemx -mno-llsc
20589@opindex mllsc
20590@opindex mno-llsc
20591Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
20592implement atomic memory built-in functions.  When neither option is
20593specified, GCC uses the instructions if the target architecture
20594supports them.
20595
20596@option{-mllsc} is useful if the runtime environment can emulate the
20597instructions and @option{-mno-llsc} can be useful when compiling for
20598nonstandard ISAs.  You can make either option the default by
20599configuring GCC with @option{--with-llsc} and @option{--without-llsc}
20600respectively.  @option{--with-llsc} is the default for some
20601configurations; see the installation documentation for details.
20602
20603@item -mdsp
20604@itemx -mno-dsp
20605@opindex mdsp
20606@opindex mno-dsp
20607Use (do not use) revision 1 of the MIPS DSP ASE@.
20608@xref{MIPS DSP Built-in Functions}.  This option defines the
20609preprocessor macro @code{__mips_dsp}.  It also defines
20610@code{__mips_dsp_rev} to 1.
20611
20612@item -mdspr2
20613@itemx -mno-dspr2
20614@opindex mdspr2
20615@opindex mno-dspr2
20616Use (do not use) revision 2 of the MIPS DSP ASE@.
20617@xref{MIPS DSP Built-in Functions}.  This option defines the
20618preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
20619It also defines @code{__mips_dsp_rev} to 2.
20620
20621@item -msmartmips
20622@itemx -mno-smartmips
20623@opindex msmartmips
20624@opindex mno-smartmips
20625Use (do not use) the MIPS SmartMIPS ASE.
20626
20627@item -mpaired-single
20628@itemx -mno-paired-single
20629@opindex mpaired-single
20630@opindex mno-paired-single
20631Use (do not use) paired-single floating-point instructions.
20632@xref{MIPS Paired-Single Support}.  This option requires
20633hardware floating-point support to be enabled.
20634
20635@item -mdmx
20636@itemx -mno-mdmx
20637@opindex mdmx
20638@opindex mno-mdmx
20639Use (do not use) MIPS Digital Media Extension instructions.
20640This option can only be used when generating 64-bit code and requires
20641hardware floating-point support to be enabled.
20642
20643@item -mips3d
20644@itemx -mno-mips3d
20645@opindex mips3d
20646@opindex mno-mips3d
20647Use (do not use) the MIPS-3D ASE@.  @xref{MIPS-3D Built-in Functions}.
20648The option @option{-mips3d} implies @option{-mpaired-single}.
20649
20650@item -mmicromips
20651@itemx -mno-micromips
20652@opindex mmicromips
20653@opindex mno-mmicromips
20654Generate (do not generate) microMIPS code.
20655
20656MicroMIPS code generation can also be controlled on a per-function basis
20657by means of @code{micromips} and @code{nomicromips} attributes.
20658@xref{Function Attributes}, for more information.
20659
20660@item -mmt
20661@itemx -mno-mt
20662@opindex mmt
20663@opindex mno-mt
20664Use (do not use) MT Multithreading instructions.
20665
20666@item -mmcu
20667@itemx -mno-mcu
20668@opindex mmcu
20669@opindex mno-mcu
20670Use (do not use) the MIPS MCU ASE instructions.
20671
20672@item -meva
20673@itemx -mno-eva
20674@opindex meva
20675@opindex mno-eva
20676Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
20677
20678@item -mvirt
20679@itemx -mno-virt
20680@opindex mvirt
20681@opindex mno-virt
20682Use (do not use) the MIPS Virtualization (VZ) instructions.
20683
20684@item -mxpa
20685@itemx -mno-xpa
20686@opindex mxpa
20687@opindex mno-xpa
20688Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
20689
20690@item -mlong64
20691@opindex mlong64
20692Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
20693an explanation of the default and the way that the pointer size is
20694determined.
20695
20696@item -mlong32
20697@opindex mlong32
20698Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
20699
20700The default size of @code{int}s, @code{long}s and pointers depends on
20701the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
20702uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
2070332-bit @code{long}s.  Pointers are the same size as @code{long}s,
20704or the same size as integer registers, whichever is smaller.
20705
20706@item -msym32
20707@itemx -mno-sym32
20708@opindex msym32
20709@opindex mno-sym32
20710Assume (do not assume) that all symbols have 32-bit values, regardless
20711of the selected ABI@.  This option is useful in combination with
20712@option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
20713to generate shorter and faster references to symbolic addresses.
20714
20715@item -G @var{num}
20716@opindex G
20717Put definitions of externally-visible data in a small data section
20718if that data is no bigger than @var{num} bytes.  GCC can then generate
20719more efficient accesses to the data; see @option{-mgpopt} for details.
20720
20721The default @option{-G} option depends on the configuration.
20722
20723@item -mlocal-sdata
20724@itemx -mno-local-sdata
20725@opindex mlocal-sdata
20726@opindex mno-local-sdata
20727Extend (do not extend) the @option{-G} behavior to local data too,
20728such as to static variables in C@.  @option{-mlocal-sdata} is the
20729default for all configurations.
20730
20731If the linker complains that an application is using too much small data,
20732you might want to try rebuilding the less performance-critical parts with
20733@option{-mno-local-sdata}.  You might also want to build large
20734libraries with @option{-mno-local-sdata}, so that the libraries leave
20735more room for the main program.
20736
20737@item -mextern-sdata
20738@itemx -mno-extern-sdata
20739@opindex mextern-sdata
20740@opindex mno-extern-sdata
20741Assume (do not assume) that externally-defined data is in
20742a small data section if the size of that data is within the @option{-G} limit.
20743@option{-mextern-sdata} is the default for all configurations.
20744
20745If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
20746@var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
20747that is no bigger than @var{num} bytes, you must make sure that @var{Var}
20748is placed in a small data section.  If @var{Var} is defined by another
20749module, you must either compile that module with a high-enough
20750@option{-G} setting or attach a @code{section} attribute to @var{Var}'s
20751definition.  If @var{Var} is common, you must link the application
20752with a high-enough @option{-G} setting.
20753
20754The easiest way of satisfying these restrictions is to compile
20755and link every module with the same @option{-G} option.  However,
20756you may wish to build a library that supports several different
20757small data limits.  You can do this by compiling the library with
20758the highest supported @option{-G} setting and additionally using
20759@option{-mno-extern-sdata} to stop the library from making assumptions
20760about externally-defined data.
20761
20762@item -mgpopt
20763@itemx -mno-gpopt
20764@opindex mgpopt
20765@opindex mno-gpopt
20766Use (do not use) GP-relative accesses for symbols that are known to be
20767in a small data section; see @option{-G}, @option{-mlocal-sdata} and
20768@option{-mextern-sdata}.  @option{-mgpopt} is the default for all
20769configurations.
20770
20771@option{-mno-gpopt} is useful for cases where the @code{$gp} register
20772might not hold the value of @code{_gp}.  For example, if the code is
20773part of a library that might be used in a boot monitor, programs that
20774call boot monitor routines pass an unknown value in @code{$gp}.
20775(In such situations, the boot monitor itself is usually compiled
20776with @option{-G0}.)
20777
20778@option{-mno-gpopt} implies @option{-mno-local-sdata} and
20779@option{-mno-extern-sdata}.
20780
20781@item -membedded-data
20782@itemx -mno-embedded-data
20783@opindex membedded-data
20784@opindex mno-embedded-data
20785Allocate variables to the read-only data section first if possible, then
20786next in the small data section if possible, otherwise in data.  This gives
20787slightly slower code than the default, but reduces the amount of RAM required
20788when executing, and thus may be preferred for some embedded systems.
20789
20790@item -muninit-const-in-rodata
20791@itemx -mno-uninit-const-in-rodata
20792@opindex muninit-const-in-rodata
20793@opindex mno-uninit-const-in-rodata
20794Put uninitialized @code{const} variables in the read-only data section.
20795This option is only meaningful in conjunction with @option{-membedded-data}.
20796
20797@item -mcode-readable=@var{setting}
20798@opindex mcode-readable
20799Specify whether GCC may generate code that reads from executable sections.
20800There are three possible settings:
20801
20802@table @gcctabopt
20803@item -mcode-readable=yes
20804Instructions may freely access executable sections.  This is the
20805default setting.
20806
20807@item -mcode-readable=pcrel
20808MIPS16 PC-relative load instructions can access executable sections,
20809but other instructions must not do so.  This option is useful on 4KSc
20810and 4KSd processors when the code TLBs have the Read Inhibit bit set.
20811It is also useful on processors that can be configured to have a dual
20812instruction/data SRAM interface and that, like the M4K, automatically
20813redirect PC-relative loads to the instruction RAM.
20814
20815@item -mcode-readable=no
20816Instructions must not access executable sections.  This option can be
20817useful on targets that are configured to have a dual instruction/data
20818SRAM interface but that (unlike the M4K) do not automatically redirect
20819PC-relative loads to the instruction RAM.
20820@end table
20821
20822@item -msplit-addresses
20823@itemx -mno-split-addresses
20824@opindex msplit-addresses
20825@opindex mno-split-addresses
20826Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
20827relocation operators.  This option has been superseded by
20828@option{-mexplicit-relocs} but is retained for backwards compatibility.
20829
20830@item -mexplicit-relocs
20831@itemx -mno-explicit-relocs
20832@opindex mexplicit-relocs
20833@opindex mno-explicit-relocs
20834Use (do not use) assembler relocation operators when dealing with symbolic
20835addresses.  The alternative, selected by @option{-mno-explicit-relocs},
20836is to use assembler macros instead.
20837
20838@option{-mexplicit-relocs} is the default if GCC was configured
20839to use an assembler that supports relocation operators.
20840
20841@item -mcheck-zero-division
20842@itemx -mno-check-zero-division
20843@opindex mcheck-zero-division
20844@opindex mno-check-zero-division
20845Trap (do not trap) on integer division by zero.
20846
20847The default is @option{-mcheck-zero-division}.
20848
20849@item -mdivide-traps
20850@itemx -mdivide-breaks
20851@opindex mdivide-traps
20852@opindex mdivide-breaks
20853MIPS systems check for division by zero by generating either a
20854conditional trap or a break instruction.  Using traps results in
20855smaller code, but is only supported on MIPS II and later.  Also, some
20856versions of the Linux kernel have a bug that prevents trap from
20857generating the proper signal (@code{SIGFPE}).  Use @option{-mdivide-traps} to
20858allow conditional traps on architectures that support them and
20859@option{-mdivide-breaks} to force the use of breaks.
20860
20861The default is usually @option{-mdivide-traps}, but this can be
20862overridden at configure time using @option{--with-divide=breaks}.
20863Divide-by-zero checks can be completely disabled using
20864@option{-mno-check-zero-division}.
20865
20866@item -mload-store-pairs
20867@itemx -mno-load-store-pairs
20868@opindex mload-store-pairs
20869@opindex mno-load-store-pairs
20870Enable (disable) an optimization that pairs consecutive load or store
20871instructions to enable load/store bonding.  This option is enabled by
20872default but only takes effect when the selected architecture is known
20873to support bonding.
20874
20875@item -mmemcpy
20876@itemx -mno-memcpy
20877@opindex mmemcpy
20878@opindex mno-memcpy
20879Force (do not force) the use of @code{memcpy} for non-trivial block
20880moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
20881most constant-sized copies.
20882
20883@item -mlong-calls
20884@itemx -mno-long-calls
20885@opindex mlong-calls
20886@opindex mno-long-calls
20887Disable (do not disable) use of the @code{jal} instruction.  Calling
20888functions using @code{jal} is more efficient but requires the caller
20889and callee to be in the same 256 megabyte segment.
20890
20891This option has no effect on abicalls code.  The default is
20892@option{-mno-long-calls}.
20893
20894@item -mmad
20895@itemx -mno-mad
20896@opindex mmad
20897@opindex mno-mad
20898Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
20899instructions, as provided by the R4650 ISA@.
20900
20901@item -mimadd
20902@itemx -mno-imadd
20903@opindex mimadd
20904@opindex mno-imadd
20905Enable (disable) use of the @code{madd} and @code{msub} integer
20906instructions.  The default is @option{-mimadd} on architectures
20907that support @code{madd} and @code{msub} except for the 74k
20908architecture where it was found to generate slower code.
20909
20910@item -mfused-madd
20911@itemx -mno-fused-madd
20912@opindex mfused-madd
20913@opindex mno-fused-madd
20914Enable (disable) use of the floating-point multiply-accumulate
20915instructions, when they are available.  The default is
20916@option{-mfused-madd}.
20917
20918On the R8000 CPU when multiply-accumulate instructions are used,
20919the intermediate product is calculated to infinite precision
20920and is not subject to the FCSR Flush to Zero bit.  This may be
20921undesirable in some circumstances.  On other processors the result
20922is numerically identical to the equivalent computation using
20923separate multiply, add, subtract and negate instructions.
20924
20925@item -nocpp
20926@opindex nocpp
20927Tell the MIPS assembler to not run its preprocessor over user
20928assembler files (with a @samp{.s} suffix) when assembling them.
20929
20930@item -mfix-24k
20931@itemx -mno-fix-24k
20932@opindex mfix-24k
20933@opindex mno-fix-24k
20934Work around the 24K E48 (lost data on stores during refill) errata.
20935The workarounds are implemented by the assembler rather than by GCC@.
20936
20937@item -mfix-r4000
20938@itemx -mno-fix-r4000
20939@opindex mfix-r4000
20940@opindex mno-fix-r4000
20941Work around certain R4000 CPU errata:
20942@itemize @minus
20943@item
20944A double-word or a variable shift may give an incorrect result if executed
20945immediately after starting an integer division.
20946@item
20947A double-word or a variable shift may give an incorrect result if executed
20948while an integer multiplication is in progress.
20949@item
20950An integer division may give an incorrect result if started in a delay slot
20951of a taken branch or a jump.
20952@end itemize
20953
20954@item -mfix-r4400
20955@itemx -mno-fix-r4400
20956@opindex mfix-r4400
20957@opindex mno-fix-r4400
20958Work around certain R4400 CPU errata:
20959@itemize @minus
20960@item
20961A double-word or a variable shift may give an incorrect result if executed
20962immediately after starting an integer division.
20963@end itemize
20964
20965@item -mfix-r10000
20966@itemx -mno-fix-r10000
20967@opindex mfix-r10000
20968@opindex mno-fix-r10000
20969Work around certain R10000 errata:
20970@itemize @minus
20971@item
20972@code{ll}/@code{sc} sequences may not behave atomically on revisions
20973prior to 3.0.  They may deadlock on revisions 2.6 and earlier.
20974@end itemize
20975
20976This option can only be used if the target architecture supports
20977branch-likely instructions.  @option{-mfix-r10000} is the default when
20978@option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
20979otherwise.
20980
20981@item -mfix-rm7000
20982@itemx -mno-fix-rm7000
20983@opindex mfix-rm7000
20984Work around the RM7000 @code{dmult}/@code{dmultu} errata.  The
20985workarounds are implemented by the assembler rather than by GCC@.
20986
20987@item -mfix-vr4120
20988@itemx -mno-fix-vr4120
20989@opindex mfix-vr4120
20990Work around certain VR4120 errata:
20991@itemize @minus
20992@item
20993@code{dmultu} does not always produce the correct result.
20994@item
20995@code{div} and @code{ddiv} do not always produce the correct result if one
20996of the operands is negative.
20997@end itemize
20998The workarounds for the division errata rely on special functions in
20999@file{libgcc.a}.  At present, these functions are only provided by
21000the @code{mips64vr*-elf} configurations.
21001
21002Other VR4120 errata require a NOP to be inserted between certain pairs of
21003instructions.  These errata are handled by the assembler, not by GCC itself.
21004
21005@item -mfix-vr4130
21006@opindex mfix-vr4130
21007Work around the VR4130 @code{mflo}/@code{mfhi} errata.  The
21008workarounds are implemented by the assembler rather than by GCC,
21009although GCC avoids using @code{mflo} and @code{mfhi} if the
21010VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
21011instructions are available instead.
21012
21013@item -mfix-sb1
21014@itemx -mno-fix-sb1
21015@opindex mfix-sb1
21016Work around certain SB-1 CPU core errata.
21017(This flag currently works around the SB-1 revision 2
21018``F1'' and ``F2'' floating-point errata.)
21019
21020@item -mr10k-cache-barrier=@var{setting}
21021@opindex mr10k-cache-barrier
21022Specify whether GCC should insert cache barriers to avoid the
21023side effects of speculation on R10K processors.
21024
21025In common with many processors, the R10K tries to predict the outcome
21026of a conditional branch and speculatively executes instructions from
21027the ``taken'' branch.  It later aborts these instructions if the
21028predicted outcome is wrong.  However, on the R10K, even aborted
21029instructions can have side effects.
21030
21031This problem only affects kernel stores and, depending on the system,
21032kernel loads.  As an example, a speculatively-executed store may load
21033the target memory into cache and mark the cache line as dirty, even if
21034the store itself is later aborted.  If a DMA operation writes to the
21035same area of memory before the ``dirty'' line is flushed, the cached
21036data overwrites the DMA-ed data.  See the R10K processor manual
21037for a full description, including other potential problems.
21038
21039One workaround is to insert cache barrier instructions before every memory
21040access that might be speculatively executed and that might have side
21041effects even if aborted.  @option{-mr10k-cache-barrier=@var{setting}}
21042controls GCC's implementation of this workaround.  It assumes that
21043aborted accesses to any byte in the following regions does not have
21044side effects:
21045
21046@enumerate
21047@item
21048the memory occupied by the current function's stack frame;
21049
21050@item
21051the memory occupied by an incoming stack argument;
21052
21053@item
21054the memory occupied by an object with a link-time-constant address.
21055@end enumerate
21056
21057It is the kernel's responsibility to ensure that speculative
21058accesses to these regions are indeed safe.
21059
21060If the input program contains a function declaration such as:
21061
21062@smallexample
21063void foo (void);
21064@end smallexample
21065
21066then the implementation of @code{foo} must allow @code{j foo} and
21067@code{jal foo} to be executed speculatively.  GCC honors this
21068restriction for functions it compiles itself.  It expects non-GCC
21069functions (such as hand-written assembly code) to do the same.
21070
21071The option has three forms:
21072
21073@table @gcctabopt
21074@item -mr10k-cache-barrier=load-store
21075Insert a cache barrier before a load or store that might be
21076speculatively executed and that might have side effects even
21077if aborted.
21078
21079@item -mr10k-cache-barrier=store
21080Insert a cache barrier before a store that might be speculatively
21081executed and that might have side effects even if aborted.
21082
21083@item -mr10k-cache-barrier=none
21084Disable the insertion of cache barriers.  This is the default setting.
21085@end table
21086
21087@item -mflush-func=@var{func}
21088@itemx -mno-flush-func
21089@opindex mflush-func
21090Specifies the function to call to flush the I and D caches, or to not
21091call any such function.  If called, the function must take the same
21092arguments as the common @code{_flush_func}, that is, the address of the
21093memory range for which the cache is being flushed, the size of the
21094memory range, and the number 3 (to flush both caches).  The default
21095depends on the target GCC was configured for, but commonly is either
21096@code{_flush_func} or @code{__cpu_flush}.
21097
21098@item mbranch-cost=@var{num}
21099@opindex mbranch-cost
21100Set the cost of branches to roughly @var{num} ``simple'' instructions.
21101This cost is only a heuristic and is not guaranteed to produce
21102consistent results across releases.  A zero cost redundantly selects
21103the default, which is based on the @option{-mtune} setting.
21104
21105@item -mbranch-likely
21106@itemx -mno-branch-likely
21107@opindex mbranch-likely
21108@opindex mno-branch-likely
21109Enable or disable use of Branch Likely instructions, regardless of the
21110default for the selected architecture.  By default, Branch Likely
21111instructions may be generated if they are supported by the selected
21112architecture.  An exception is for the MIPS32 and MIPS64 architectures
21113and processors that implement those architectures; for those, Branch
21114Likely instructions are not be generated by default because the MIPS32
21115and MIPS64 architectures specifically deprecate their use.
21116
21117@item -mcompact-branches=never
21118@itemx -mcompact-branches=optimal
21119@itemx -mcompact-branches=always
21120@opindex mcompact-branches=never
21121@opindex mcompact-branches=optimal
21122@opindex mcompact-branches=always
21123These options control which form of branches will be generated.  The
21124default is @option{-mcompact-branches=optimal}.
21125
21126The @option{-mcompact-branches=never} option ensures that compact branch
21127instructions will never be generated.
21128
21129The @option{-mcompact-branches=always} option ensures that a compact
21130branch instruction will be generated if available.  If a compact branch
21131instruction is not available, a delay slot form of the branch will be
21132used instead.
21133
21134This option is supported from MIPS Release 6 onwards.
21135
21136The @option{-mcompact-branches=optimal} option will cause a delay slot
21137branch to be used if one is available in the current ISA and the delay
21138slot is successfully filled.  If the delay slot is not filled, a compact
21139branch will be chosen if one is available.
21140
21141@item -mfp-exceptions
21142@itemx -mno-fp-exceptions
21143@opindex mfp-exceptions
21144Specifies whether FP exceptions are enabled.  This affects how
21145FP instructions are scheduled for some processors.
21146The default is that FP exceptions are
21147enabled.
21148
21149For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
2115064-bit code, then we can use both FP pipes.  Otherwise, we can only use one
21151FP pipe.
21152
21153@item -mvr4130-align
21154@itemx -mno-vr4130-align
21155@opindex mvr4130-align
21156The VR4130 pipeline is two-way superscalar, but can only issue two
21157instructions together if the first one is 8-byte aligned.  When this
21158option is enabled, GCC aligns pairs of instructions that it
21159thinks should execute in parallel.
21160
21161This option only has an effect when optimizing for the VR4130.
21162It normally makes code faster, but at the expense of making it bigger.
21163It is enabled by default at optimization level @option{-O3}.
21164
21165@item -msynci
21166@itemx -mno-synci
21167@opindex msynci
21168Enable (disable) generation of @code{synci} instructions on
21169architectures that support it.  The @code{synci} instructions (if
21170enabled) are generated when @code{__builtin___clear_cache} is
21171compiled.
21172
21173This option defaults to @option{-mno-synci}, but the default can be
21174overridden by configuring GCC with @option{--with-synci}.
21175
21176When compiling code for single processor systems, it is generally safe
21177to use @code{synci}.  However, on many multi-core (SMP) systems, it
21178does not invalidate the instruction caches on all cores and may lead
21179to undefined behavior.
21180
21181@item -mrelax-pic-calls
21182@itemx -mno-relax-pic-calls
21183@opindex mrelax-pic-calls
21184Try to turn PIC calls that are normally dispatched via register
21185@code{$25} into direct calls.  This is only possible if the linker can
21186resolve the destination at link time and if the destination is within
21187range for a direct call.
21188
21189@option{-mrelax-pic-calls} is the default if GCC was configured to use
21190an assembler and a linker that support the @code{.reloc} assembly
21191directive and @option{-mexplicit-relocs} is in effect.  With
21192@option{-mno-explicit-relocs}, this optimization can be performed by the
21193assembler and the linker alone without help from the compiler.
21194
21195@item -mmcount-ra-address
21196@itemx -mno-mcount-ra-address
21197@opindex mmcount-ra-address
21198@opindex mno-mcount-ra-address
21199Emit (do not emit) code that allows @code{_mcount} to modify the
21200calling function's return address.  When enabled, this option extends
21201the usual @code{_mcount} interface with a new @var{ra-address}
21202parameter, which has type @code{intptr_t *} and is passed in register
21203@code{$12}.  @code{_mcount} can then modify the return address by
21204doing both of the following:
21205@itemize
21206@item
21207Returning the new address in register @code{$31}.
21208@item
21209Storing the new address in @code{*@var{ra-address}},
21210if @var{ra-address} is nonnull.
21211@end itemize
21212
21213The default is @option{-mno-mcount-ra-address}.
21214
21215@item -mframe-header-opt
21216@itemx -mno-frame-header-opt
21217@opindex mframe-header-opt
21218Enable (disable) frame header optimization in the o32 ABI.  When using the
21219o32 ABI, calling functions will allocate 16 bytes on the stack for the called
21220function to write out register arguments.  When enabled, this optimization
21221will suppress the allocation of the frame header if it can be determined that
21222it is unused.
21223
21224This optimization is off by default at all optimization levels.
21225
21226@item -mlxc1-sxc1
21227@itemx -mno-lxc1-sxc1
21228@opindex mlxc1-sxc1
21229When applicable, enable (disable) the generation of @code{lwxc1},
21230@code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions.  Enabled by default.
21231
21232@item -mmadd4
21233@itemx -mno-madd4
21234@opindex mmadd4
21235When applicable, enable (disable) the generation of 4-operand @code{madd.s},
21236@code{madd.d} and related instructions.  Enabled by default.
21237
21238@end table
21239
21240@node MMIX Options
21241@subsection MMIX Options
21242@cindex MMIX Options
21243
21244These options are defined for the MMIX:
21245
21246@table @gcctabopt
21247@item -mlibfuncs
21248@itemx -mno-libfuncs
21249@opindex mlibfuncs
21250@opindex mno-libfuncs
21251Specify that intrinsic library functions are being compiled, passing all
21252values in registers, no matter the size.
21253
21254@item -mepsilon
21255@itemx -mno-epsilon
21256@opindex mepsilon
21257@opindex mno-epsilon
21258Generate floating-point comparison instructions that compare with respect
21259to the @code{rE} epsilon register.
21260
21261@item -mabi=mmixware
21262@itemx -mabi=gnu
21263@opindex mabi=mmixware
21264@opindex mabi=gnu
21265Generate code that passes function parameters and return values that (in
21266the called function) are seen as registers @code{$0} and up, as opposed to
21267the GNU ABI which uses global registers @code{$231} and up.
21268
21269@item -mzero-extend
21270@itemx -mno-zero-extend
21271@opindex mzero-extend
21272@opindex mno-zero-extend
21273When reading data from memory in sizes shorter than 64 bits, use (do not
21274use) zero-extending load instructions by default, rather than
21275sign-extending ones.
21276
21277@item -mknuthdiv
21278@itemx -mno-knuthdiv
21279@opindex mknuthdiv
21280@opindex mno-knuthdiv
21281Make the result of a division yielding a remainder have the same sign as
21282the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
21283remainder follows the sign of the dividend.  Both methods are
21284arithmetically valid, the latter being almost exclusively used.
21285
21286@item -mtoplevel-symbols
21287@itemx -mno-toplevel-symbols
21288@opindex mtoplevel-symbols
21289@opindex mno-toplevel-symbols
21290Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
21291code can be used with the @code{PREFIX} assembly directive.
21292
21293@item -melf
21294@opindex melf
21295Generate an executable in the ELF format, rather than the default
21296@samp{mmo} format used by the @command{mmix} simulator.
21297
21298@item -mbranch-predict
21299@itemx -mno-branch-predict
21300@opindex mbranch-predict
21301@opindex mno-branch-predict
21302Use (do not use) the probable-branch instructions, when static branch
21303prediction indicates a probable branch.
21304
21305@item -mbase-addresses
21306@itemx -mno-base-addresses
21307@opindex mbase-addresses
21308@opindex mno-base-addresses
21309Generate (do not generate) code that uses @emph{base addresses}.  Using a
21310base address automatically generates a request (handled by the assembler
21311and the linker) for a constant to be set up in a global register.  The
21312register is used for one or more base address requests within the range 0
21313to 255 from the value held in the register.  The generally leads to short
21314and fast code, but the number of different data items that can be
21315addressed is limited.  This means that a program that uses lots of static
21316data may require @option{-mno-base-addresses}.
21317
21318@item -msingle-exit
21319@itemx -mno-single-exit
21320@opindex msingle-exit
21321@opindex mno-single-exit
21322Force (do not force) generated code to have a single exit point in each
21323function.
21324@end table
21325
21326@node MN10300 Options
21327@subsection MN10300 Options
21328@cindex MN10300 options
21329
21330These @option{-m} options are defined for Matsushita MN10300 architectures:
21331
21332@table @gcctabopt
21333@item -mmult-bug
21334@opindex mmult-bug
21335Generate code to avoid bugs in the multiply instructions for the MN10300
21336processors.  This is the default.
21337
21338@item -mno-mult-bug
21339@opindex mno-mult-bug
21340Do not generate code to avoid bugs in the multiply instructions for the
21341MN10300 processors.
21342
21343@item -mam33
21344@opindex mam33
21345Generate code using features specific to the AM33 processor.
21346
21347@item -mno-am33
21348@opindex mno-am33
21349Do not generate code using features specific to the AM33 processor.  This
21350is the default.
21351
21352@item -mam33-2
21353@opindex mam33-2
21354Generate code using features specific to the AM33/2.0 processor.
21355
21356@item -mam34
21357@opindex mam34
21358Generate code using features specific to the AM34 processor.
21359
21360@item -mtune=@var{cpu-type}
21361@opindex mtune
21362Use the timing characteristics of the indicated CPU type when
21363scheduling instructions.  This does not change the targeted processor
21364type.  The CPU type must be one of @samp{mn10300}, @samp{am33},
21365@samp{am33-2} or @samp{am34}.
21366
21367@item -mreturn-pointer-on-d0
21368@opindex mreturn-pointer-on-d0
21369When generating a function that returns a pointer, return the pointer
21370in both @code{a0} and @code{d0}.  Otherwise, the pointer is returned
21371only in @code{a0}, and attempts to call such functions without a prototype
21372result in errors.  Note that this option is on by default; use
21373@option{-mno-return-pointer-on-d0} to disable it.
21374
21375@item -mno-crt0
21376@opindex mno-crt0
21377Do not link in the C run-time initialization object file.
21378
21379@item -mrelax
21380@opindex mrelax
21381Indicate to the linker that it should perform a relaxation optimization pass
21382to shorten branches, calls and absolute memory addresses.  This option only
21383has an effect when used on the command line for the final link step.
21384
21385This option makes symbolic debugging impossible.
21386
21387@item -mliw
21388@opindex mliw
21389Allow the compiler to generate @emph{Long Instruction Word}
21390instructions if the target is the @samp{AM33} or later.  This is the
21391default.  This option defines the preprocessor macro @code{__LIW__}.
21392
21393@item -mnoliw
21394@opindex mnoliw
21395Do not allow the compiler to generate @emph{Long Instruction Word}
21396instructions.  This option defines the preprocessor macro
21397@code{__NO_LIW__}.
21398
21399@item -msetlb
21400@opindex msetlb
21401Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
21402instructions if the target is the @samp{AM33} or later.  This is the
21403default.  This option defines the preprocessor macro @code{__SETLB__}.
21404
21405@item -mnosetlb
21406@opindex mnosetlb
21407Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
21408instructions.  This option defines the preprocessor macro
21409@code{__NO_SETLB__}.
21410
21411@end table
21412
21413@node Moxie Options
21414@subsection Moxie Options
21415@cindex Moxie Options
21416
21417@table @gcctabopt
21418
21419@item -meb
21420@opindex meb
21421Generate big-endian code.  This is the default for @samp{moxie-*-*}
21422configurations.
21423
21424@item -mel
21425@opindex mel
21426Generate little-endian code.
21427
21428@item -mmul.x
21429@opindex mmul.x
21430Generate mul.x and umul.x instructions.  This is the default for
21431@samp{moxiebox-*-*} configurations.
21432
21433@item -mno-crt0
21434@opindex mno-crt0
21435Do not link in the C run-time initialization object file.
21436
21437@end table
21438
21439@node MSP430 Options
21440@subsection MSP430 Options
21441@cindex MSP430 Options
21442
21443These options are defined for the MSP430:
21444
21445@table @gcctabopt
21446
21447@item -masm-hex
21448@opindex masm-hex
21449Force assembly output to always use hex constants.  Normally such
21450constants are signed decimals, but this option is available for
21451testsuite and/or aesthetic purposes.
21452
21453@item -mmcu=
21454@opindex mmcu=
21455Select the MCU to target.  This is used to create a C preprocessor
21456symbol based upon the MCU name, converted to upper case and pre- and
21457post-fixed with @samp{__}.  This in turn is used by the
21458@file{msp430.h} header file to select an MCU-specific supplementary
21459header file.
21460
21461The option also sets the ISA to use.  If the MCU name is one that is
21462known to only support the 430 ISA then that is selected, otherwise the
21463430X ISA is selected.  A generic MCU name of @samp{msp430} can also be
21464used to select the 430 ISA.  Similarly the generic @samp{msp430x} MCU
21465name selects the 430X ISA.
21466
21467In addition an MCU-specific linker script is added to the linker
21468command line.  The script's name is the name of the MCU with
21469@file{.ld} appended.  Thus specifying @option{-mmcu=xxx} on the @command{gcc}
21470command line defines the C preprocessor symbol @code{__XXX__} and
21471cause the linker to search for a script called @file{xxx.ld}.
21472
21473This option is also passed on to the assembler.
21474
21475@item -mwarn-mcu
21476@itemx -mno-warn-mcu
21477@opindex mwarn-mcu
21478@opindex mno-warn-mcu
21479This option enables or disables warnings about conflicts between the
21480MCU name specified by the @option{-mmcu} option and the ISA set by the
21481@option{-mcpu} option and/or the hardware multiply support set by the
21482@option{-mhwmult} option.  It also toggles warnings about unrecognized
21483MCU names.  This option is on by default.
21484
21485@item -mcpu=
21486@opindex mcpu=
21487Specifies the ISA to use.  Accepted values are @samp{msp430},
21488@samp{msp430x} and @samp{msp430xv2}.  This option is deprecated.  The
21489@option{-mmcu=} option should be used to select the ISA.
21490
21491@item -msim
21492@opindex msim
21493Link to the simulator runtime libraries and linker script.  Overrides
21494any scripts that would be selected by the @option{-mmcu=} option.
21495
21496@item -mlarge
21497@opindex mlarge
21498Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
21499
21500@item -msmall
21501@opindex msmall
21502Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
21503
21504@item -mrelax
21505@opindex mrelax
21506This option is passed to the assembler and linker, and allows the
21507linker to perform certain optimizations that cannot be done until
21508the final link.
21509
21510@item mhwmult=
21511@opindex mhwmult=
21512Describes the type of hardware multiply supported by the target.
21513Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
21514for the original 16-bit-only multiply supported by early MCUs.
21515@samp{32bit} for the 16/32-bit multiply supported by later MCUs and
21516@samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
21517A value of @samp{auto} can also be given.  This tells GCC to deduce
21518the hardware multiply support based upon the MCU name provided by the
21519@option{-mmcu} option.  If no @option{-mmcu} option is specified or if
21520the MCU name is not recognized then no hardware multiply support is
21521assumed.  @code{auto} is the default setting.
21522
21523Hardware multiplies are normally performed by calling a library
21524routine.  This saves space in the generated code.  When compiling at
21525@option{-O3} or higher however the hardware multiplier is invoked
21526inline.  This makes for bigger, but faster code.
21527
21528The hardware multiply routines disable interrupts whilst running and
21529restore the previous interrupt state when they finish.  This makes
21530them safe to use inside interrupt handlers as well as in normal code.
21531
21532@item -minrt
21533@opindex minrt
21534Enable the use of a minimum runtime environment - no static
21535initializers or constructors.  This is intended for memory-constrained
21536devices.  The compiler includes special symbols in some objects
21537that tell the linker and runtime which code fragments are required.
21538
21539@item -mcode-region=
21540@itemx -mdata-region=
21541@opindex mcode-region
21542@opindex mdata-region
21543These options tell the compiler where to place functions and data that
21544do not have one of the @code{lower}, @code{upper}, @code{either} or
21545@code{section} attributes.  Possible values are @code{lower},
21546@code{upper}, @code{either} or @code{any}.  The first three behave
21547like the corresponding attribute.  The fourth possible value -
21548@code{any} - is the default.  It leaves placement entirely up to the
21549linker script and how it assigns the standard sections
21550(@code{.text}, @code{.data}, etc) to the memory regions.
21551
21552@item -msilicon-errata=
21553@opindex msilicon-errata
21554This option passes on a request to assembler to enable the fixes for
21555the named silicon errata.
21556
21557@item -msilicon-errata-warn=
21558@opindex msilicon-errata-warn
21559This option passes on a request to the assembler to enable warning
21560messages when a silicon errata might need to be applied.
21561
21562@end table
21563
21564@node NDS32 Options
21565@subsection NDS32 Options
21566@cindex NDS32 Options
21567
21568These options are defined for NDS32 implementations:
21569
21570@table @gcctabopt
21571
21572@item -mbig-endian
21573@opindex mbig-endian
21574Generate code in big-endian mode.
21575
21576@item -mlittle-endian
21577@opindex mlittle-endian
21578Generate code in little-endian mode.
21579
21580@item -mreduced-regs
21581@opindex mreduced-regs
21582Use reduced-set registers for register allocation.
21583
21584@item -mfull-regs
21585@opindex mfull-regs
21586Use full-set registers for register allocation.
21587
21588@item -mcmov
21589@opindex mcmov
21590Generate conditional move instructions.
21591
21592@item -mno-cmov
21593@opindex mno-cmov
21594Do not generate conditional move instructions.
21595
21596@item -mext-perf
21597@opindex mperf-ext
21598Generate performance extension instructions.
21599
21600@item -mno-ext-perf
21601@opindex mno-perf-ext
21602Do not generate performance extension instructions.
21603
21604@item -mext-perf2
21605@opindex mperf-ext
21606Generate performance extension 2 instructions.
21607
21608@item -mno-ext-perf2
21609@opindex mno-perf-ext
21610Do not generate performance extension 2 instructions.
21611
21612@item -mext-string
21613@opindex mperf-ext
21614Generate string extension instructions.
21615
21616@item -mno-ext-string
21617@opindex mno-perf-ext
21618Do not generate string extension instructions.
21619
21620@item -mv3push
21621@opindex mv3push
21622Generate v3 push25/pop25 instructions.
21623
21624@item -mno-v3push
21625@opindex mno-v3push
21626Do not generate v3 push25/pop25 instructions.
21627
21628@item -m16-bit
21629@opindex m16-bit
21630Generate 16-bit instructions.
21631
21632@item -mno-16-bit
21633@opindex mno-16-bit
21634Do not generate 16-bit instructions.
21635
21636@item -misr-vector-size=@var{num}
21637@opindex misr-vector-size
21638Specify the size of each interrupt vector, which must be 4 or 16.
21639
21640@item -mcache-block-size=@var{num}
21641@opindex mcache-block-size
21642Specify the size of each cache block,
21643which must be a power of 2 between 4 and 512.
21644
21645@item -march=@var{arch}
21646@opindex march
21647Specify the name of the target architecture.
21648
21649@item -mcmodel=@var{code-model}
21650@opindex mcmodel
21651Set the code model to one of
21652@table @asis
21653@item @samp{small}
21654All the data and read-only data segments must be within 512KB addressing space.
21655The text segment must be within 16MB addressing space.
21656@item @samp{medium}
21657The data segment must be within 512KB while the read-only data segment can be
21658within 4GB addressing space.  The text segment should be still within 16MB
21659addressing space.
21660@item @samp{large}
21661All the text and data segments can be within 4GB addressing space.
21662@end table
21663
21664@item -mctor-dtor
21665@opindex mctor-dtor
21666Enable constructor/destructor feature.
21667
21668@item -mrelax
21669@opindex mrelax
21670Guide linker to relax instructions.
21671
21672@end table
21673
21674@node Nios II Options
21675@subsection Nios II Options
21676@cindex Nios II options
21677@cindex Altera Nios II options
21678
21679These are the options defined for the Altera Nios II processor.
21680
21681@table @gcctabopt
21682
21683@item -G @var{num}
21684@opindex G
21685@cindex smaller data references
21686Put global and static objects less than or equal to @var{num} bytes
21687into the small data or BSS sections instead of the normal data or BSS
21688sections.  The default value of @var{num} is 8.
21689
21690@item -mgpopt=@var{option}
21691@itemx -mgpopt
21692@itemx -mno-gpopt
21693@opindex mgpopt
21694@opindex mno-gpopt
21695Generate (do not generate) GP-relative accesses.  The following
21696@var{option} names are recognized:
21697
21698@table @samp
21699
21700@item none
21701Do not generate GP-relative accesses.
21702
21703@item local
21704Generate GP-relative accesses for small data objects that are not
21705external, weak, or uninitialized common symbols.
21706Also use GP-relative addressing for objects that
21707have been explicitly placed in a small data section via a @code{section}
21708attribute.
21709
21710@item global
21711As for @samp{local}, but also generate GP-relative accesses for
21712small data objects that are external, weak, or common.  If you use this option,
21713you must ensure that all parts of your program (including libraries) are
21714compiled with the same @option{-G} setting.
21715
21716@item data
21717Generate GP-relative accesses for all data objects in the program.  If you
21718use this option, the entire data and BSS segments
21719of your program must fit in 64K of memory and you must use an appropriate
21720linker script to allocate them within the addressable range of the
21721global pointer.
21722
21723@item all
21724Generate GP-relative addresses for function pointers as well as data
21725pointers.  If you use this option, the entire text, data, and BSS segments
21726of your program must fit in 64K of memory and you must use an appropriate
21727linker script to allocate them within the addressable range of the
21728global pointer.
21729
21730@end table
21731
21732@option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
21733@option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
21734
21735The default is @option{-mgpopt} except when @option{-fpic} or
21736@option{-fPIC} is specified to generate position-independent code.
21737Note that the Nios II ABI does not permit GP-relative accesses from
21738shared libraries.
21739
21740You may need to specify @option{-mno-gpopt} explicitly when building
21741programs that include large amounts of small data, including large
21742GOT data sections.  In this case, the 16-bit offset for GP-relative
21743addressing may not be large enough to allow access to the entire
21744small data section.
21745
21746@item -mgprel-sec=@var{regexp}
21747@opindex mgprel-sec
21748This option specifies additional section names that can be accessed via
21749GP-relative addressing.  It is most useful in conjunction with
21750@code{section} attributes on variable declarations
21751(@pxref{Common Variable Attributes}) and a custom linker script.
21752The @var{regexp} is a POSIX Extended Regular Expression.
21753
21754This option does not affect the behavior of the @option{-G} option, and
21755the specified sections are in addition to the standard @code{.sdata}
21756and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
21757
21758@item -mr0rel-sec=@var{regexp}
21759@opindex mr0rel-sec
21760This option specifies names of sections that can be accessed via a
2176116-bit offset from @code{r0}; that is, in the low 32K or high 32K
21762of the 32-bit address space.  It is most useful in conjunction with
21763@code{section} attributes on variable declarations
21764(@pxref{Common Variable Attributes}) and a custom linker script.
21765The @var{regexp} is a POSIX Extended Regular Expression.
21766
21767In contrast to the use of GP-relative addressing for small data,
21768zero-based addressing is never generated by default and there are no
21769conventional section names used in standard linker scripts for sections
21770in the low or high areas of memory.
21771
21772@item -mel
21773@itemx -meb
21774@opindex mel
21775@opindex meb
21776Generate little-endian (default) or big-endian (experimental) code,
21777respectively.
21778
21779@item -march=@var{arch}
21780@opindex march
21781This specifies the name of the target Nios II architecture.  GCC uses this
21782name to determine what kind of instructions it can emit when generating
21783assembly code.  Permissible names are: @samp{r1}, @samp{r2}.
21784
21785The preprocessor macro @code{__nios2_arch__} is available to programs,
21786with value 1 or 2, indicating the targeted ISA level.
21787
21788@item -mbypass-cache
21789@itemx -mno-bypass-cache
21790@opindex mno-bypass-cache
21791@opindex mbypass-cache
21792Force all load and store instructions to always bypass cache by
21793using I/O variants of the instructions. The default is not to
21794bypass the cache.
21795
21796@item -mno-cache-volatile
21797@itemx -mcache-volatile
21798@opindex mcache-volatile
21799@opindex mno-cache-volatile
21800Volatile memory access bypass the cache using the I/O variants of
21801the load and store instructions. The default is not to bypass the cache.
21802
21803@item -mno-fast-sw-div
21804@itemx -mfast-sw-div
21805@opindex mno-fast-sw-div
21806@opindex mfast-sw-div
21807Do not use table-based fast divide for small numbers. The default
21808is to use the fast divide at @option{-O3} and above.
21809
21810@item -mno-hw-mul
21811@itemx -mhw-mul
21812@itemx -mno-hw-mulx
21813@itemx -mhw-mulx
21814@itemx -mno-hw-div
21815@itemx -mhw-div
21816@opindex mno-hw-mul
21817@opindex mhw-mul
21818@opindex mno-hw-mulx
21819@opindex mhw-mulx
21820@opindex mno-hw-div
21821@opindex mhw-div
21822Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
21823instructions by the compiler. The default is to emit @code{mul}
21824and not emit @code{div} and @code{mulx}.
21825
21826@item -mbmx
21827@itemx -mno-bmx
21828@itemx -mcdx
21829@itemx -mno-cdx
21830Enable or disable generation of Nios II R2 BMX (bit manipulation) and
21831CDX (code density) instructions.  Enabling these instructions also
21832requires @option{-march=r2}.  Since these instructions are optional
21833extensions to the R2 architecture, the default is not to emit them.
21834
21835@item -mcustom-@var{insn}=@var{N}
21836@itemx -mno-custom-@var{insn}
21837@opindex mcustom-@var{insn}
21838@opindex mno-custom-@var{insn}
21839Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
21840custom instruction with encoding @var{N} when generating code that uses
21841@var{insn}.  For example, @option{-mcustom-fadds=253} generates custom
21842instruction 253 for single-precision floating-point add operations instead
21843of the default behavior of using a library call.
21844
21845The following values of @var{insn} are supported.  Except as otherwise
21846noted, floating-point operations are expected to be implemented with
21847normal IEEE 754 semantics and correspond directly to the C operators or the
21848equivalent GCC built-in functions (@pxref{Other Builtins}).
21849
21850Single-precision floating point:
21851@table @asis
21852
21853@item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
21854Binary arithmetic operations.
21855
21856@item @samp{fnegs}
21857Unary negation.
21858
21859@item @samp{fabss}
21860Unary absolute value.
21861
21862@item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
21863Comparison operations.
21864
21865@item @samp{fmins}, @samp{fmaxs}
21866Floating-point minimum and maximum.  These instructions are only
21867generated if @option{-ffinite-math-only} is specified.
21868
21869@item @samp{fsqrts}
21870Unary square root operation.
21871
21872@item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
21873Floating-point trigonometric and exponential functions.  These instructions
21874are only generated if @option{-funsafe-math-optimizations} is also specified.
21875
21876@end table
21877
21878Double-precision floating point:
21879@table @asis
21880
21881@item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
21882Binary arithmetic operations.
21883
21884@item @samp{fnegd}
21885Unary negation.
21886
21887@item @samp{fabsd}
21888Unary absolute value.
21889
21890@item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
21891Comparison operations.
21892
21893@item @samp{fmind}, @samp{fmaxd}
21894Double-precision minimum and maximum.  These instructions are only
21895generated if @option{-ffinite-math-only} is specified.
21896
21897@item @samp{fsqrtd}
21898Unary square root operation.
21899
21900@item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
21901Double-precision trigonometric and exponential functions.  These instructions
21902are only generated if @option{-funsafe-math-optimizations} is also specified.
21903
21904@end table
21905
21906Conversions:
21907@table @asis
21908@item @samp{fextsd}
21909Conversion from single precision to double precision.
21910
21911@item @samp{ftruncds}
21912Conversion from double precision to single precision.
21913
21914@item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
21915Conversion from floating point to signed or unsigned integer types, with
21916truncation towards zero.
21917
21918@item @samp{round}
21919Conversion from single-precision floating point to signed integer,
21920rounding to the nearest integer and ties away from zero.
21921This corresponds to the @code{__builtin_lroundf} function when
21922@option{-fno-math-errno} is used.
21923
21924@item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
21925Conversion from signed or unsigned integer types to floating-point types.
21926
21927@end table
21928
21929In addition, all of the following transfer instructions for internal
21930registers X and Y must be provided to use any of the double-precision
21931floating-point instructions.  Custom instructions taking two
21932double-precision source operands expect the first operand in the
2193364-bit register X.  The other operand (or only operand of a unary
21934operation) is given to the custom arithmetic instruction with the
21935least significant half in source register @var{src1} and the most
21936significant half in @var{src2}.  A custom instruction that returns a
21937double-precision result returns the most significant 32 bits in the
21938destination register and the other half in 32-bit register Y.
21939GCC automatically generates the necessary code sequences to write
21940register X and/or read register Y when double-precision floating-point
21941instructions are used.
21942
21943@table @asis
21944
21945@item @samp{fwrx}
21946Write @var{src1} into the least significant half of X and @var{src2} into
21947the most significant half of X.
21948
21949@item @samp{fwry}
21950Write @var{src1} into Y.
21951
21952@item @samp{frdxhi}, @samp{frdxlo}
21953Read the most or least (respectively) significant half of X and store it in
21954@var{dest}.
21955
21956@item @samp{frdy}
21957Read the value of Y and store it into @var{dest}.
21958@end table
21959
21960Note that you can gain more local control over generation of Nios II custom
21961instructions by using the @code{target("custom-@var{insn}=@var{N}")}
21962and @code{target("no-custom-@var{insn}")} function attributes
21963(@pxref{Function Attributes})
21964or pragmas (@pxref{Function Specific Option Pragmas}).
21965
21966@item -mcustom-fpu-cfg=@var{name}
21967@opindex mcustom-fpu-cfg
21968
21969This option enables a predefined, named set of custom instruction encodings
21970(see @option{-mcustom-@var{insn}} above).
21971Currently, the following sets are defined:
21972
21973@option{-mcustom-fpu-cfg=60-1} is equivalent to:
21974@gccoptlist{-mcustom-fmuls=252 @gol
21975-mcustom-fadds=253 @gol
21976-mcustom-fsubs=254 @gol
21977-fsingle-precision-constant}
21978
21979@option{-mcustom-fpu-cfg=60-2} is equivalent to:
21980@gccoptlist{-mcustom-fmuls=252 @gol
21981-mcustom-fadds=253 @gol
21982-mcustom-fsubs=254 @gol
21983-mcustom-fdivs=255 @gol
21984-fsingle-precision-constant}
21985
21986@option{-mcustom-fpu-cfg=72-3} is equivalent to:
21987@gccoptlist{-mcustom-floatus=243 @gol
21988-mcustom-fixsi=244 @gol
21989-mcustom-floatis=245 @gol
21990-mcustom-fcmpgts=246 @gol
21991-mcustom-fcmples=249 @gol
21992-mcustom-fcmpeqs=250 @gol
21993-mcustom-fcmpnes=251 @gol
21994-mcustom-fmuls=252 @gol
21995-mcustom-fadds=253 @gol
21996-mcustom-fsubs=254 @gol
21997-mcustom-fdivs=255 @gol
21998-fsingle-precision-constant}
21999
22000Custom instruction assignments given by individual
22001@option{-mcustom-@var{insn}=} options override those given by
22002@option{-mcustom-fpu-cfg=}, regardless of the
22003order of the options on the command line.
22004
22005Note that you can gain more local control over selection of a FPU
22006configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
22007function attribute (@pxref{Function Attributes})
22008or pragma (@pxref{Function Specific Option Pragmas}).
22009
22010@end table
22011
22012These additional @samp{-m} options are available for the Altera Nios II
22013ELF (bare-metal) target:
22014
22015@table @gcctabopt
22016
22017@item -mhal
22018@opindex mhal
22019Link with HAL BSP.  This suppresses linking with the GCC-provided C runtime
22020startup and termination code, and is typically used in conjunction with
22021@option{-msys-crt0=} to specify the location of the alternate startup code
22022provided by the HAL BSP.
22023
22024@item -msmallc
22025@opindex msmallc
22026Link with a limited version of the C library, @option{-lsmallc}, rather than
22027Newlib.
22028
22029@item -msys-crt0=@var{startfile}
22030@opindex msys-crt0
22031@var{startfile} is the file name of the startfile (crt0) to use
22032when linking.  This option is only useful in conjunction with @option{-mhal}.
22033
22034@item -msys-lib=@var{systemlib}
22035@opindex msys-lib
22036@var{systemlib} is the library name of the library that provides
22037low-level system calls required by the C library,
22038e.g. @code{read} and @code{write}.
22039This option is typically used to link with a library provided by a HAL BSP.
22040
22041@end table
22042
22043@node Nvidia PTX Options
22044@subsection Nvidia PTX Options
22045@cindex Nvidia PTX options
22046@cindex nvptx options
22047
22048These options are defined for Nvidia PTX:
22049
22050@table @gcctabopt
22051
22052@item -m32
22053@itemx -m64
22054@opindex m32
22055@opindex m64
22056Generate code for 32-bit or 64-bit ABI.
22057
22058@item -mmainkernel
22059@opindex mmainkernel
22060Link in code for a __main kernel.  This is for stand-alone instead of
22061offloading execution.
22062
22063@item -moptimize
22064@opindex moptimize
22065Apply partitioned execution optimizations.  This is the default when any
22066level of optimization is selected.
22067
22068@item -msoft-stack
22069@opindex msoft-stack
22070Generate code that does not use @code{.local} memory
22071directly for stack storage. Instead, a per-warp stack pointer is
22072maintained explicitly. This enables variable-length stack allocation (with
22073variable-length arrays or @code{alloca}), and when global memory is used for
22074underlying storage, makes it possible to access automatic variables from other
22075threads, or with atomic instructions. This code generation variant is used
22076for OpenMP offloading, but the option is exposed on its own for the purpose
22077of testing the compiler; to generate code suitable for linking into programs
22078using OpenMP offloading, use option @option{-mgomp}.
22079
22080@item -muniform-simt
22081@opindex muniform-simt
22082Switch to code generation variant that allows to execute all threads in each
22083warp, while maintaining memory state and side effects as if only one thread
22084in each warp was active outside of OpenMP SIMD regions.  All atomic operations
22085and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
22086current lane index equals the master lane index), and the register being
22087assigned is copied via a shuffle instruction from the master lane.  Outside of
22088SIMD regions lane 0 is the master; inside, each thread sees itself as the
22089master.  Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
22090all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
22091regions).  Each thread can bitwise-and the bitmask at position @code{tid.y}
22092with current lane index to compute the master lane index.
22093
22094@item -mgomp
22095@opindex mgomp
22096Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
22097@option{-muniform-simt} options, and selects corresponding multilib variant.
22098
22099@end table
22100
22101@node PDP-11 Options
22102@subsection PDP-11 Options
22103@cindex PDP-11 Options
22104
22105These options are defined for the PDP-11:
22106
22107@table @gcctabopt
22108@item -mfpu
22109@opindex mfpu
22110Use hardware FPP floating point.  This is the default.  (FIS floating
22111point on the PDP-11/40 is not supported.)
22112
22113@item -msoft-float
22114@opindex msoft-float
22115Do not use hardware floating point.
22116
22117@item -mac0
22118@opindex mac0
22119Return floating-point results in ac0 (fr0 in Unix assembler syntax).
22120
22121@item -mno-ac0
22122@opindex mno-ac0
22123Return floating-point results in memory.  This is the default.
22124
22125@item -m40
22126@opindex m40
22127Generate code for a PDP-11/40.
22128
22129@item -m45
22130@opindex m45
22131Generate code for a PDP-11/45.  This is the default.
22132
22133@item -m10
22134@opindex m10
22135Generate code for a PDP-11/10.
22136
22137@item -mbcopy-builtin
22138@opindex mbcopy-builtin
22139Use inline @code{movmemhi} patterns for copying memory.  This is the
22140default.
22141
22142@item -mbcopy
22143@opindex mbcopy
22144Do not use inline @code{movmemhi} patterns for copying memory.
22145
22146@item -mint16
22147@itemx -mno-int32
22148@opindex mint16
22149@opindex mno-int32
22150Use 16-bit @code{int}.  This is the default.
22151
22152@item -mint32
22153@itemx -mno-int16
22154@opindex mint32
22155@opindex mno-int16
22156Use 32-bit @code{int}.
22157
22158@item -mfloat64
22159@itemx -mno-float32
22160@opindex mfloat64
22161@opindex mno-float32
22162Use 64-bit @code{float}.  This is the default.
22163
22164@item -mfloat32
22165@itemx -mno-float64
22166@opindex mfloat32
22167@opindex mno-float64
22168Use 32-bit @code{float}.
22169
22170@item -mabshi
22171@opindex mabshi
22172Use @code{abshi2} pattern.  This is the default.
22173
22174@item -mno-abshi
22175@opindex mno-abshi
22176Do not use @code{abshi2} pattern.
22177
22178@item -mbranch-expensive
22179@opindex mbranch-expensive
22180Pretend that branches are expensive.  This is for experimenting with
22181code generation only.
22182
22183@item -mbranch-cheap
22184@opindex mbranch-cheap
22185Do not pretend that branches are expensive.  This is the default.
22186
22187@item -munix-asm
22188@opindex munix-asm
22189Use Unix assembler syntax.  This is the default when configured for
22190@samp{pdp11-*-bsd}.
22191
22192@item -mdec-asm
22193@opindex mdec-asm
22194Use DEC assembler syntax.  This is the default when configured for any
22195PDP-11 target other than @samp{pdp11-*-bsd}.
22196@end table
22197
22198@node picoChip Options
22199@subsection picoChip Options
22200@cindex picoChip options
22201
22202These @samp{-m} options are defined for picoChip implementations:
22203
22204@table @gcctabopt
22205
22206@item -mae=@var{ae_type}
22207@opindex mcpu
22208Set the instruction set, register set, and instruction scheduling
22209parameters for array element type @var{ae_type}.  Supported values
22210for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
22211
22212@option{-mae=ANY} selects a completely generic AE type.  Code
22213generated with this option runs on any of the other AE types.  The
22214code is not as efficient as it would be if compiled for a specific
22215AE type, and some types of operation (e.g., multiplication) do not
22216work properly on all types of AE.
22217
22218@option{-mae=MUL} selects a MUL AE type.  This is the most useful AE type
22219for compiled code, and is the default.
22220
22221@option{-mae=MAC} selects a DSP-style MAC AE.  Code compiled with this
22222option may suffer from poor performance of byte (char) manipulation,
22223since the DSP AE does not provide hardware support for byte load/stores.
22224
22225@item -msymbol-as-address
22226Enable the compiler to directly use a symbol name as an address in a
22227load/store instruction, without first loading it into a
22228register.  Typically, the use of this option generates larger
22229programs, which run faster than when the option isn't used.  However, the
22230results vary from program to program, so it is left as a user option,
22231rather than being permanently enabled.
22232
22233@item -mno-inefficient-warnings
22234Disables warnings about the generation of inefficient code.  These
22235warnings can be generated, for example, when compiling code that
22236performs byte-level memory operations on the MAC AE type.  The MAC AE has
22237no hardware support for byte-level memory operations, so all byte
22238load/stores must be synthesized from word load/store operations.  This is
22239inefficient and a warning is generated to indicate
22240that you should rewrite the code to avoid byte operations, or to target
22241an AE type that has the necessary hardware support.  This option disables
22242these warnings.
22243
22244@end table
22245
22246@node PowerPC Options
22247@subsection PowerPC Options
22248@cindex PowerPC options
22249
22250These are listed under @xref{RS/6000 and PowerPC Options}.
22251
22252@node PowerPC SPE Options
22253@subsection PowerPC SPE Options
22254@cindex PowerPC SPE options
22255
22256These @samp{-m} options are defined for PowerPC SPE:
22257@table @gcctabopt
22258@item -mmfcrf
22259@itemx -mno-mfcrf
22260@itemx -mpopcntb
22261@itemx -mno-popcntb
22262@opindex mmfcrf
22263@opindex mno-mfcrf
22264@opindex mpopcntb
22265@opindex mno-popcntb
22266You use these options to specify which instructions are available on the
22267processor you are using.  The default value of these options is
22268determined when configuring GCC@.  Specifying the
22269@option{-mcpu=@var{cpu_type}} overrides the specification of these
22270options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
22271rather than the options listed above.
22272
22273The @option{-mmfcrf} option allows GCC to generate the move from
22274condition register field instruction implemented on the POWER4
22275processor and other processors that support the PowerPC V2.01
22276architecture.
22277The @option{-mpopcntb} option allows GCC to generate the popcount and
22278double-precision FP reciprocal estimate instruction implemented on the
22279POWER5 processor and other processors that support the PowerPC V2.02
22280architecture.
22281
22282@item -mcpu=@var{cpu_type}
22283@opindex mcpu
22284Set architecture type, register usage, and
22285instruction scheduling parameters for machine type @var{cpu_type}.
22286Supported values for @var{cpu_type} are @samp{8540}, @samp{8548},
22287and @samp{native}.
22288
22289@option{-mcpu=powerpc} specifies pure 32-bit PowerPC (either
22290endian), with an appropriate, generic processor model assumed for
22291scheduling purposes.
22292
22293Specifying @samp{native} as cpu type detects and selects the
22294architecture option that corresponds to the host processor of the
22295system performing the compilation.
22296@option{-mcpu=native} has no effect if GCC does not recognize the
22297processor.
22298
22299The other options specify a specific processor.  Code generated under
22300those options runs best on that processor, and may not run at all on
22301others.
22302
22303The @option{-mcpu} options automatically enable or disable the
22304following options:
22305
22306@gccoptlist{-mhard-float  -mmfcrf  -mmultiple @gol
22307-mpopcntb -mpopcntd @gol
22308-msingle-float -mdouble-float @gol
22309-mfloat128}
22310
22311The particular options set for any particular CPU varies between
22312compiler versions, depending on what setting seems to produce optimal
22313code for that CPU; it doesn't necessarily reflect the actual hardware's
22314capabilities.  If you wish to set an individual option to a particular
22315value, you may specify it after the @option{-mcpu} option, like
22316@option{-mcpu=8548}.
22317
22318@item -mtune=@var{cpu_type}
22319@opindex mtune
22320Set the instruction scheduling parameters for machine type
22321@var{cpu_type}, but do not set the architecture type or register usage,
22322as @option{-mcpu=@var{cpu_type}} does.  The same
22323values for @var{cpu_type} are used for @option{-mtune} as for
22324@option{-mcpu}.  If both are specified, the code generated uses the
22325architecture and registers set by @option{-mcpu}, but the
22326scheduling parameters set by @option{-mtune}.
22327
22328@item -msecure-plt
22329@opindex msecure-plt
22330Generate code that allows @command{ld} and @command{ld.so}
22331to build executables and shared
22332libraries with non-executable @code{.plt} and @code{.got} sections.
22333This is a PowerPC
2233432-bit SYSV ABI option.
22335
22336@item -mbss-plt
22337@opindex mbss-plt
22338Generate code that uses a BSS @code{.plt} section that @command{ld.so}
22339fills in, and
22340requires @code{.plt} and @code{.got}
22341sections that are both writable and executable.
22342This is a PowerPC 32-bit SYSV ABI option.
22343
22344@item -misel
22345@itemx -mno-isel
22346@opindex misel
22347@opindex mno-isel
22348This switch enables or disables the generation of ISEL instructions.
22349
22350@item -misel=@var{yes/no}
22351This switch has been deprecated.  Use @option{-misel} and
22352@option{-mno-isel} instead.
22353
22354@item -mspe
22355@itemx -mno-spe
22356@opindex mspe
22357@opindex mno-spe
22358This switch enables or disables the generation of SPE simd
22359instructions.
22360
22361@item -mspe=@var{yes/no}
22362This option has been deprecated.  Use @option{-mspe} and
22363@option{-mno-spe} instead.
22364
22365@item -mfloat128
22366@itemx -mno-float128
22367@opindex mfloat128
22368@opindex mno-float128
22369Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
22370and use either software emulation for IEEE 128-bit floating point or
22371hardware instructions.
22372
22373@item -mfloat-gprs=@var{yes/single/double/no}
22374@itemx -mfloat-gprs
22375@opindex mfloat-gprs
22376This switch enables or disables the generation of floating-point
22377operations on the general-purpose registers for architectures that
22378support it.
22379
22380The argument @samp{yes} or @samp{single} enables the use of
22381single-precision floating-point operations.
22382
22383The argument @samp{double} enables the use of single and
22384double-precision floating-point operations.
22385
22386The argument @samp{no} disables floating-point operations on the
22387general-purpose registers.
22388
22389This option is currently only available on the MPC854x.
22390
22391@item -mfull-toc
22392@itemx -mno-fp-in-toc
22393@itemx -mno-sum-in-toc
22394@itemx -mminimal-toc
22395@opindex mfull-toc
22396@opindex mno-fp-in-toc
22397@opindex mno-sum-in-toc
22398@opindex mminimal-toc
22399Modify generation of the TOC (Table Of Contents), which is created for
22400every executable file.  The @option{-mfull-toc} option is selected by
22401default.  In that case, GCC allocates at least one TOC entry for
22402each unique non-automatic variable reference in your program.  GCC
22403also places floating-point constants in the TOC@.  However, only
2240416,384 entries are available in the TOC@.
22405
22406If you receive a linker error message that saying you have overflowed
22407the available TOC space, you can reduce the amount of TOC space used
22408with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
22409@option{-mno-fp-in-toc} prevents GCC from putting floating-point
22410constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
22411generate code to calculate the sum of an address and a constant at
22412run time instead of putting that sum into the TOC@.  You may specify one
22413or both of these options.  Each causes GCC to produce very slightly
22414slower and larger code at the expense of conserving TOC space.
22415
22416If you still run out of space in the TOC even when you specify both of
22417these options, specify @option{-mminimal-toc} instead.  This option causes
22418GCC to make only one TOC entry for every file.  When you specify this
22419option, GCC produces code that is slower and larger but which
22420uses extremely little TOC space.  You may wish to use this option
22421only on files that contain less frequently-executed code.
22422
22423@item -maix32
22424@opindex maix32
22425Disables the 64-bit ABI.  GCC defaults to @option{-maix32}.
22426
22427@item -mxl-compat
22428@itemx -mno-xl-compat
22429@opindex mxl-compat
22430@opindex mno-xl-compat
22431Produce code that conforms more closely to IBM XL compiler semantics
22432when using AIX-compatible ABI@.  Pass floating-point arguments to
22433prototyped functions beyond the register save area (RSA) on the stack
22434in addition to argument FPRs.  Do not assume that most significant
22435double in 128-bit long double value is properly rounded when comparing
22436values and converting to double.  Use XL symbol names for long double
22437support routines.
22438
22439The AIX calling convention was extended but not initially documented to
22440handle an obscure K&R C case of calling a function that takes the
22441address of its arguments with fewer arguments than declared.  IBM XL
22442compilers access floating-point arguments that do not fit in the
22443RSA from the stack when a subroutine is compiled without
22444optimization.  Because always storing floating-point arguments on the
22445stack is inefficient and rarely needed, this option is not enabled by
22446default and only is necessary when calling subroutines compiled by IBM
22447XL compilers without optimization.
22448
22449@item -malign-natural
22450@itemx -malign-power
22451@opindex malign-natural
22452@opindex malign-power
22453On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
22454@option{-malign-natural} overrides the ABI-defined alignment of larger
22455types, such as floating-point doubles, on their natural size-based boundary.
22456The option @option{-malign-power} instructs GCC to follow the ABI-specified
22457alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
22458
22459On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
22460is not supported.
22461
22462@item -msoft-float
22463@itemx -mhard-float
22464@opindex msoft-float
22465@opindex mhard-float
22466Generate code that does not use (uses) the floating-point register set.
22467Software floating-point emulation is provided if you use the
22468@option{-msoft-float} option, and pass the option to GCC when linking.
22469
22470@item -msingle-float
22471@itemx -mdouble-float
22472@opindex msingle-float
22473@opindex mdouble-float
22474Generate code for single- or double-precision floating-point operations.
22475@option{-mdouble-float} implies @option{-msingle-float}.
22476
22477@item -mmultiple
22478@itemx -mno-multiple
22479@opindex mmultiple
22480@opindex mno-multiple
22481Generate code that uses (does not use) the load multiple word
22482instructions and the store multiple word instructions.  These
22483instructions are generated by default on POWER systems, and not
22484generated on PowerPC systems.  Do not use @option{-mmultiple} on little-endian
22485PowerPC systems, since those instructions do not work when the
22486processor is in little-endian mode.  The exceptions are PPC740 and
22487PPC750 which permit these instructions in little-endian mode.
22488
22489@item -mupdate
22490@itemx -mno-update
22491@opindex mupdate
22492@opindex mno-update
22493Generate code that uses (does not use) the load or store instructions
22494that update the base register to the address of the calculated memory
22495location.  These instructions are generated by default.  If you use
22496@option{-mno-update}, there is a small window between the time that the
22497stack pointer is updated and the address of the previous frame is
22498stored, which means code that walks the stack frame across interrupts or
22499signals may get corrupted data.
22500
22501@item -mavoid-indexed-addresses
22502@itemx -mno-avoid-indexed-addresses
22503@opindex mavoid-indexed-addresses
22504@opindex mno-avoid-indexed-addresses
22505Generate code that tries to avoid (not avoid) the use of indexed load
22506or store instructions. These instructions can incur a performance
22507penalty on Power6 processors in certain situations, such as when
22508stepping through large arrays that cross a 16M boundary.  This option
22509is enabled by default when targeting Power6 and disabled otherwise.
22510
22511@item -mfused-madd
22512@itemx -mno-fused-madd
22513@opindex mfused-madd
22514@opindex mno-fused-madd
22515Generate code that uses (does not use) the floating-point multiply and
22516accumulate instructions.  These instructions are generated by default
22517if hardware floating point is used.  The machine-dependent
22518@option{-mfused-madd} option is now mapped to the machine-independent
22519@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
22520mapped to @option{-ffp-contract=off}.
22521
22522@item -mno-strict-align
22523@itemx -mstrict-align
22524@opindex mno-strict-align
22525@opindex mstrict-align
22526On System V.4 and embedded PowerPC systems do not (do) assume that
22527unaligned memory references are handled by the system.
22528
22529@item -mrelocatable
22530@itemx -mno-relocatable
22531@opindex mrelocatable
22532@opindex mno-relocatable
22533Generate code that allows (does not allow) a static executable to be
22534relocated to a different address at run time.  A simple embedded
22535PowerPC system loader should relocate the entire contents of
22536@code{.got2} and 4-byte locations listed in the @code{.fixup} section,
22537a table of 32-bit addresses generated by this option.  For this to
22538work, all objects linked together must be compiled with
22539@option{-mrelocatable} or @option{-mrelocatable-lib}.
22540@option{-mrelocatable} code aligns the stack to an 8-byte boundary.
22541
22542@item -mrelocatable-lib
22543@itemx -mno-relocatable-lib
22544@opindex mrelocatable-lib
22545@opindex mno-relocatable-lib
22546Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
22547@code{.fixup} section to allow static executables to be relocated at
22548run time, but @option{-mrelocatable-lib} does not use the smaller stack
22549alignment of @option{-mrelocatable}.  Objects compiled with
22550@option{-mrelocatable-lib} may be linked with objects compiled with
22551any combination of the @option{-mrelocatable} options.
22552
22553@item -mno-toc
22554@itemx -mtoc
22555@opindex mno-toc
22556@opindex mtoc
22557On System V.4 and embedded PowerPC systems do not (do) assume that
22558register 2 contains a pointer to a global area pointing to the addresses
22559used in the program.
22560
22561@item -mlittle
22562@itemx -mlittle-endian
22563@opindex mlittle
22564@opindex mlittle-endian
22565On System V.4 and embedded PowerPC systems compile code for the
22566processor in little-endian mode.  The @option{-mlittle-endian} option is
22567the same as @option{-mlittle}.
22568
22569@item -mbig
22570@itemx -mbig-endian
22571@opindex mbig
22572@opindex mbig-endian
22573On System V.4 and embedded PowerPC systems compile code for the
22574processor in big-endian mode.  The @option{-mbig-endian} option is
22575the same as @option{-mbig}.
22576
22577@item -mdynamic-no-pic
22578@opindex mdynamic-no-pic
22579On Darwin and Mac OS X systems, compile code so that it is not
22580relocatable, but that its external references are relocatable.  The
22581resulting code is suitable for applications, but not shared
22582libraries.
22583
22584@item -msingle-pic-base
22585@opindex msingle-pic-base
22586Treat the register used for PIC addressing as read-only, rather than
22587loading it in the prologue for each function.  The runtime system is
22588responsible for initializing this register with an appropriate value
22589before execution begins.
22590
22591@item -mprioritize-restricted-insns=@var{priority}
22592@opindex mprioritize-restricted-insns
22593This option controls the priority that is assigned to
22594dispatch-slot restricted instructions during the second scheduling
22595pass.  The argument @var{priority} takes the value @samp{0}, @samp{1},
22596or @samp{2} to assign no, highest, or second-highest (respectively)
22597priority to dispatch-slot restricted
22598instructions.
22599
22600@item -msched-costly-dep=@var{dependence_type}
22601@opindex msched-costly-dep
22602This option controls which dependences are considered costly
22603by the target during instruction scheduling.  The argument
22604@var{dependence_type} takes one of the following values:
22605
22606@table @asis
22607@item @samp{no}
22608No dependence is costly.
22609
22610@item @samp{all}
22611All dependences are costly.
22612
22613@item @samp{true_store_to_load}
22614A true dependence from store to load is costly.
22615
22616@item @samp{store_to_load}
22617Any dependence from store to load is costly.
22618
22619@item @var{number}
22620Any dependence for which the latency is greater than or equal to
22621@var{number} is costly.
22622@end table
22623
22624@item -minsert-sched-nops=@var{scheme}
22625@opindex minsert-sched-nops
22626This option controls which NOP insertion scheme is used during
22627the second scheduling pass.  The argument @var{scheme} takes one of the
22628following values:
22629
22630@table @asis
22631@item @samp{no}
22632Don't insert NOPs.
22633
22634@item @samp{pad}
22635Pad with NOPs any dispatch group that has vacant issue slots,
22636according to the scheduler's grouping.
22637
22638@item @samp{regroup_exact}
22639Insert NOPs to force costly dependent insns into
22640separate groups.  Insert exactly as many NOPs as needed to force an insn
22641to a new group, according to the estimated processor grouping.
22642
22643@item @var{number}
22644Insert NOPs to force costly dependent insns into
22645separate groups.  Insert @var{number} NOPs to force an insn to a new group.
22646@end table
22647
22648@item -mcall-sysv
22649@opindex mcall-sysv
22650On System V.4 and embedded PowerPC systems compile code using calling
22651conventions that adhere to the March 1995 draft of the System V
22652Application Binary Interface, PowerPC processor supplement.  This is the
22653default unless you configured GCC using @samp{powerpc-*-eabiaix}.
22654
22655@item -mcall-sysv-eabi
22656@itemx -mcall-eabi
22657@opindex mcall-sysv-eabi
22658@opindex mcall-eabi
22659Specify both @option{-mcall-sysv} and @option{-meabi} options.
22660
22661@item -mcall-sysv-noeabi
22662@opindex mcall-sysv-noeabi
22663Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
22664
22665@item -mcall-aixdesc
22666@opindex m
22667On System V.4 and embedded PowerPC systems compile code for the AIX
22668operating system.
22669
22670@item -mcall-linux
22671@opindex mcall-linux
22672On System V.4 and embedded PowerPC systems compile code for the
22673Linux-based GNU system.
22674
22675@item -mcall-freebsd
22676@opindex mcall-freebsd
22677On System V.4 and embedded PowerPC systems compile code for the
22678FreeBSD operating system.
22679
22680@item -mcall-netbsd
22681@opindex mcall-netbsd
22682On System V.4 and embedded PowerPC systems compile code for the
22683NetBSD operating system.
22684
22685@item -mcall-openbsd
22686@opindex mcall-netbsd
22687On System V.4 and embedded PowerPC systems compile code for the
22688OpenBSD operating system.
22689
22690@item -maix-struct-return
22691@opindex maix-struct-return
22692Return all structures in memory (as specified by the AIX ABI)@.
22693
22694@item -msvr4-struct-return
22695@opindex msvr4-struct-return
22696Return structures smaller than 8 bytes in registers (as specified by the
22697SVR4 ABI)@.
22698
22699@item -mabi=@var{abi-type}
22700@opindex mabi
22701Extend the current ABI with a particular extension, or remove such extension.
22702Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
22703@samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
22704@samp{elfv1}, @samp{elfv2}@.
22705
22706@item -mabi=spe
22707@opindex mabi=spe
22708Extend the current ABI with SPE ABI extensions.  This does not change
22709the default ABI, instead it adds the SPE ABI extensions to the current
22710ABI@.
22711
22712@item -mabi=no-spe
22713@opindex mabi=no-spe
22714Disable Book-E SPE ABI extensions for the current ABI@.
22715
22716@item -mabi=ibmlongdouble
22717@opindex mabi=ibmlongdouble
22718Change the current ABI to use IBM extended-precision long double.
22719This is not likely to work if your system defaults to using IEEE
22720extended-precision long double.  If you change the long double type
22721from IEEE extended-precision, the compiler will issue a warning unless
22722you use the @option{-Wno-psabi} option.  Requires @option{-mlong-double-128}
22723to be enabled.
22724
22725@item -mabi=ieeelongdouble
22726@opindex mabi=ieeelongdouble
22727Change the current ABI to use IEEE extended-precision long double.
22728This is not likely to work if your system defaults to using IBM
22729extended-precision long double.  If you change the long double type
22730from IBM extended-precision, the compiler will issue a warning unless
22731you use the @option{-Wno-psabi} option.  Requires @option{-mlong-double-128}
22732to be enabled.
22733
22734@item -mabi=elfv1
22735@opindex mabi=elfv1
22736Change the current ABI to use the ELFv1 ABI.
22737This is the default ABI for big-endian PowerPC 64-bit Linux.
22738Overriding the default ABI requires special system support and is
22739likely to fail in spectacular ways.
22740
22741@item -mabi=elfv2
22742@opindex mabi=elfv2
22743Change the current ABI to use the ELFv2 ABI.
22744This is the default ABI for little-endian PowerPC 64-bit Linux.
22745Overriding the default ABI requires special system support and is
22746likely to fail in spectacular ways.
22747
22748@item -mgnu-attribute
22749@itemx -mno-gnu-attribute
22750@opindex mgnu-attribute
22751@opindex mno-gnu-attribute
22752Emit .gnu_attribute assembly directives to set tag/value pairs in a
22753.gnu.attributes section that specify ABI variations in function
22754parameters or return values.
22755
22756@item -mprototype
22757@itemx -mno-prototype
22758@opindex mprototype
22759@opindex mno-prototype
22760On System V.4 and embedded PowerPC systems assume that all calls to
22761variable argument functions are properly prototyped.  Otherwise, the
22762compiler must insert an instruction before every non-prototyped call to
22763set or clear bit 6 of the condition code register (@code{CR}) to
22764indicate whether floating-point values are passed in the floating-point
22765registers in case the function takes variable arguments.  With
22766@option{-mprototype}, only calls to prototyped variable argument functions
22767set or clear the bit.
22768
22769@item -msim
22770@opindex msim
22771On embedded PowerPC systems, assume that the startup module is called
22772@file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
22773@file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}
22774configurations.
22775
22776@item -mmvme
22777@opindex mmvme
22778On embedded PowerPC systems, assume that the startup module is called
22779@file{crt0.o} and the standard C libraries are @file{libmvme.a} and
22780@file{libc.a}.
22781
22782@item -mads
22783@opindex mads
22784On embedded PowerPC systems, assume that the startup module is called
22785@file{crt0.o} and the standard C libraries are @file{libads.a} and
22786@file{libc.a}.
22787
22788@item -myellowknife
22789@opindex myellowknife
22790On embedded PowerPC systems, assume that the startup module is called
22791@file{crt0.o} and the standard C libraries are @file{libyk.a} and
22792@file{libc.a}.
22793
22794@item -mvxworks
22795@opindex mvxworks
22796On System V.4 and embedded PowerPC systems, specify that you are
22797compiling for a VxWorks system.
22798
22799@item -memb
22800@opindex memb
22801On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
22802header to indicate that @samp{eabi} extended relocations are used.
22803
22804@item -meabi
22805@itemx -mno-eabi
22806@opindex meabi
22807@opindex mno-eabi
22808On System V.4 and embedded PowerPC systems do (do not) adhere to the
22809Embedded Applications Binary Interface (EABI), which is a set of
22810modifications to the System V.4 specifications.  Selecting @option{-meabi}
22811means that the stack is aligned to an 8-byte boundary, a function
22812@code{__eabi} is called from @code{main} to set up the EABI
22813environment, and the @option{-msdata} option can use both @code{r2} and
22814@code{r13} to point to two separate small data areas.  Selecting
22815@option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
22816no EABI initialization function is called from @code{main}, and the
22817@option{-msdata} option only uses @code{r13} to point to a single
22818small data area.  The @option{-meabi} option is on by default if you
22819configured GCC using one of the @samp{powerpc*-*-eabi*} options.
22820
22821@item -msdata=eabi
22822@opindex msdata=eabi
22823On System V.4 and embedded PowerPC systems, put small initialized
22824@code{const} global and static data in the @code{.sdata2} section, which
22825is pointed to by register @code{r2}.  Put small initialized
22826non-@code{const} global and static data in the @code{.sdata} section,
22827which is pointed to by register @code{r13}.  Put small uninitialized
22828global and static data in the @code{.sbss} section, which is adjacent to
22829the @code{.sdata} section.  The @option{-msdata=eabi} option is
22830incompatible with the @option{-mrelocatable} option.  The
22831@option{-msdata=eabi} option also sets the @option{-memb} option.
22832
22833@item -msdata=sysv
22834@opindex msdata=sysv
22835On System V.4 and embedded PowerPC systems, put small global and static
22836data in the @code{.sdata} section, which is pointed to by register
22837@code{r13}.  Put small uninitialized global and static data in the
22838@code{.sbss} section, which is adjacent to the @code{.sdata} section.
22839The @option{-msdata=sysv} option is incompatible with the
22840@option{-mrelocatable} option.
22841
22842@item -msdata=default
22843@itemx -msdata
22844@opindex msdata=default
22845@opindex msdata
22846On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
22847compile code the same as @option{-msdata=eabi}, otherwise compile code the
22848same as @option{-msdata=sysv}.
22849
22850@item -msdata=data
22851@opindex msdata=data
22852On System V.4 and embedded PowerPC systems, put small global
22853data in the @code{.sdata} section.  Put small uninitialized global
22854data in the @code{.sbss} section.  Do not use register @code{r13}
22855to address small data however.  This is the default behavior unless
22856other @option{-msdata} options are used.
22857
22858@item -msdata=none
22859@itemx -mno-sdata
22860@opindex msdata=none
22861@opindex mno-sdata
22862On embedded PowerPC systems, put all initialized global and static data
22863in the @code{.data} section, and all uninitialized data in the
22864@code{.bss} section.
22865
22866@item -mblock-move-inline-limit=@var{num}
22867@opindex mblock-move-inline-limit
22868Inline all block moves (such as calls to @code{memcpy} or structure
22869copies) less than or equal to @var{num} bytes.  The minimum value for
22870@var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
22871targets.  The default value is target-specific.
22872
22873@item -G @var{num}
22874@opindex G
22875@cindex smaller data references (PowerPC)
22876@cindex .sdata/.sdata2 references (PowerPC)
22877On embedded PowerPC systems, put global and static items less than or
22878equal to @var{num} bytes into the small data or BSS sections instead of
22879the normal data or BSS section.  By default, @var{num} is 8.  The
22880@option{-G @var{num}} switch is also passed to the linker.
22881All modules should be compiled with the same @option{-G @var{num}} value.
22882
22883@item -mregnames
22884@itemx -mno-regnames
22885@opindex mregnames
22886@opindex mno-regnames
22887On System V.4 and embedded PowerPC systems do (do not) emit register
22888names in the assembly language output using symbolic forms.
22889
22890@item -mlongcall
22891@itemx -mno-longcall
22892@opindex mlongcall
22893@opindex mno-longcall
22894By default assume that all calls are far away so that a longer and more
22895expensive calling sequence is required.  This is required for calls
22896farther than 32 megabytes (33,554,432 bytes) from the current location.
22897A short call is generated if the compiler knows
22898the call cannot be that far away.  This setting can be overridden by
22899the @code{shortcall} function attribute, or by @code{#pragma
22900longcall(0)}.
22901
22902Some linkers are capable of detecting out-of-range calls and generating
22903glue code on the fly.  On these systems, long calls are unnecessary and
22904generate slower code.  As of this writing, the AIX linker can do this,
22905as can the GNU linker for PowerPC/64.  It is planned to add this feature
22906to the GNU linker for 32-bit PowerPC systems as well.
22907
22908In the future, GCC may ignore all longcall specifications
22909when the linker is known to generate glue.
22910
22911@item -mtls-markers
22912@itemx -mno-tls-markers
22913@opindex mtls-markers
22914@opindex mno-tls-markers
22915Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
22916specifying the function argument.  The relocation allows the linker to
22917reliably associate function call with argument setup instructions for
22918TLS optimization, which in turn allows GCC to better schedule the
22919sequence.
22920
22921@item -mrecip
22922@itemx -mno-recip
22923@opindex mrecip
22924This option enables use of the reciprocal estimate and
22925reciprocal square root estimate instructions with additional
22926Newton-Raphson steps to increase precision instead of doing a divide or
22927square root and divide for floating-point arguments.  You should use
22928the @option{-ffast-math} option when using @option{-mrecip} (or at
22929least @option{-funsafe-math-optimizations},
22930@option{-ffinite-math-only}, @option{-freciprocal-math} and
22931@option{-fno-trapping-math}).  Note that while the throughput of the
22932sequence is generally higher than the throughput of the non-reciprocal
22933instruction, the precision of the sequence can be decreased by up to 2
22934ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
22935roots.
22936
22937@item -mrecip=@var{opt}
22938@opindex mrecip=opt
22939This option controls which reciprocal estimate instructions
22940may be used.  @var{opt} is a comma-separated list of options, which may
22941be preceded by a @code{!} to invert the option:
22942
22943@table @samp
22944
22945@item all
22946Enable all estimate instructions.
22947
22948@item default
22949Enable the default instructions, equivalent to @option{-mrecip}.
22950
22951@item none
22952Disable all estimate instructions, equivalent to @option{-mno-recip}.
22953
22954@item div
22955Enable the reciprocal approximation instructions for both
22956single and double precision.
22957
22958@item divf
22959Enable the single-precision reciprocal approximation instructions.
22960
22961@item divd
22962Enable the double-precision reciprocal approximation instructions.
22963
22964@item rsqrt
22965Enable the reciprocal square root approximation instructions for both
22966single and double precision.
22967
22968@item rsqrtf
22969Enable the single-precision reciprocal square root approximation instructions.
22970
22971@item rsqrtd
22972Enable the double-precision reciprocal square root approximation instructions.
22973
22974@end table
22975
22976So, for example, @option{-mrecip=all,!rsqrtd} enables
22977all of the reciprocal estimate instructions, except for the
22978@code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
22979which handle the double-precision reciprocal square root calculations.
22980
22981@item -mrecip-precision
22982@itemx -mno-recip-precision
22983@opindex mrecip-precision
22984Assume (do not assume) that the reciprocal estimate instructions
22985provide higher-precision estimates than is mandated by the PowerPC
22986ABI.  Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
22987@option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
22988The double-precision square root estimate instructions are not generated by
22989default on low-precision machines, since they do not provide an
22990estimate that converges after three steps.
22991
22992@item -mpointers-to-nested-functions
22993@itemx -mno-pointers-to-nested-functions
22994@opindex mpointers-to-nested-functions
22995Generate (do not generate) code to load up the static chain register
22996(@code{r11}) when calling through a pointer on AIX and 64-bit Linux
22997systems where a function pointer points to a 3-word descriptor giving
22998the function address, TOC value to be loaded in register @code{r2}, and
22999static chain value to be loaded in register @code{r11}.  The
23000@option{-mpointers-to-nested-functions} is on by default.  You cannot
23001call through pointers to nested functions or pointers
23002to functions compiled in other languages that use the static chain if
23003you use @option{-mno-pointers-to-nested-functions}.
23004
23005@item -msave-toc-indirect
23006@itemx -mno-save-toc-indirect
23007@opindex msave-toc-indirect
23008Generate (do not generate) code to save the TOC value in the reserved
23009stack location in the function prologue if the function calls through
23010a pointer on AIX and 64-bit Linux systems.  If the TOC value is not
23011saved in the prologue, it is saved just before the call through the
23012pointer.  The @option{-mno-save-toc-indirect} option is the default.
23013
23014@item -mcompat-align-parm
23015@itemx -mno-compat-align-parm
23016@opindex mcompat-align-parm
23017Generate (do not generate) code to pass structure parameters with a
23018maximum alignment of 64 bits, for compatibility with older versions
23019of GCC.
23020
23021Older versions of GCC (prior to 4.9.0) incorrectly did not align a
23022structure parameter on a 128-bit boundary when that structure contained
23023a member requiring 128-bit alignment.  This is corrected in more
23024recent versions of GCC.  This option may be used to generate code
23025that is compatible with functions compiled with older versions of
23026GCC.
23027
23028The @option{-mno-compat-align-parm} option is the default.
23029
23030@item -mstack-protector-guard=@var{guard}
23031@itemx -mstack-protector-guard-reg=@var{reg}
23032@itemx -mstack-protector-guard-offset=@var{offset}
23033@itemx -mstack-protector-guard-symbol=@var{symbol}
23034@opindex mstack-protector-guard
23035@opindex mstack-protector-guard-reg
23036@opindex mstack-protector-guard-offset
23037@opindex mstack-protector-guard-symbol
23038Generate stack protection code using canary at @var{guard}.  Supported
23039locations are @samp{global} for global canary or @samp{tls} for per-thread
23040canary in the TLS block (the default with GNU libc version 2.4 or later).
23041
23042With the latter choice the options
23043@option{-mstack-protector-guard-reg=@var{reg}} and
23044@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
23045which register to use as base register for reading the canary, and from what
23046offset from that base register. The default for those is as specified in the
23047relevant ABI.  @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
23048the offset with a symbol reference to a canary in the TLS block.
23049@end table
23050
23051
23052@node RISC-V Options
23053@subsection RISC-V Options
23054@cindex RISC-V Options
23055
23056These command-line options are defined for RISC-V targets:
23057
23058@table @gcctabopt
23059@item -mbranch-cost=@var{n}
23060@opindex mbranch-cost
23061Set the cost of branches to roughly @var{n} instructions.
23062
23063@item -mplt
23064@itemx -mno-plt
23065@opindex plt
23066When generating PIC code, do or don't allow the use of PLTs. Ignored for
23067non-PIC.  The default is @option{-mplt}.
23068
23069@item -mabi=@var{ABI-string}
23070@opindex mabi
23071Specify integer and floating-point calling convention.  @var{ABI-string}
23072contains two parts: the size of integer types and the registers used for
23073floating-point types.  For example @samp{-march=rv64ifd -mabi=lp64d} means that
23074@samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
2307532-bit), and that floating-point values up to 64 bits wide are passed in F
23076registers.  Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
23077allows the compiler to generate code that uses the F and D extensions but only
23078allows floating-point values up to 32 bits long to be passed in registers; or
23079@samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
23080passed in registers.
23081
23082The default for this argument is system dependent, users who want a specific
23083calling convention should specify one explicitly.  The valid calling
23084conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
23085@samp{lp64f}, and @samp{lp64d}.  Some calling conventions are impossible to
23086implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
23087invalid because the ABI requires 64-bit values be passed in F registers, but F
23088registers are only 32 bits wide.
23089
23090@item -mfdiv
23091@itemx -mno-fdiv
23092@opindex mfdiv
23093Do or don't use hardware floating-point divide and square root instructions.
23094This requires the F or D extensions for floating-point registers.  The default
23095is to use them if the specified architecture has these instructions.
23096
23097@item -mdiv
23098@itemx -mno-div
23099@opindex mdiv
23100Do or don't use hardware instructions for integer division.  This requires the
23101M extension.  The default is to use them if the specified architecture has
23102these instructions.
23103
23104@item -march=@var{ISA-string}
23105@opindex march
23106Generate code for given RISC-V ISA (e.g.@ @samp{rv64im}).  ISA strings must be
23107lower-case.  Examples include @samp{rv64i}, @samp{rv32g}, and @samp{rv32imaf}.
23108
23109@item -mtune=@var{processor-string}
23110@opindex mtune
23111Optimize the output for the given processor, specified by microarchitecture
23112name.
23113
23114@item -mpreferred-stack-boundary=@var{num}
23115@opindex mpreferred-stack-boundary
23116Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
23117byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
23118the default is 4 (16 bytes or 128-bits).
23119
23120@strong{Warning:} If you use this switch, then you must build all modules with
23121the same value, including any libraries.  This includes the system libraries
23122and startup modules.
23123
23124@item -msmall-data-limit=@var{n}
23125@opindex msmall-data-limit
23126Put global and static data smaller than @var{n} bytes into a special section
23127(on some targets).
23128
23129@item -msave-restore
23130@itemx -mno-save-restore
23131@opindex msave-restore
23132Do or don't use smaller but slower prologue and epilogue code that uses
23133library function calls.  The default is to use fast inline prologues and
23134epilogues.
23135
23136@item -mstrict-align
23137@itemx -mno-strict-align
23138@opindex mstrict-align
23139Do not or do generate unaligned memory accesses.  The default is set depending
23140on whether the processor we are optimizing for supports fast unaligned access
23141or not.
23142
23143@item -mcmodel=medlow
23144@opindex mcmodel=medlow
23145Generate code for the medium-low code model. The program and its statically
23146defined symbols must lie within a single 2 GiB address range and must lie
23147between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
23148statically or dynamically linked. This is the default code model.
23149
23150@item -mcmodel=medany
23151@opindex mcmodel=medany
23152Generate code for the medium-any code model. The program and its statically
23153defined symbols must be within any single 2 GiB address range. Programs can be
23154statically or dynamically linked.
23155
23156@item -mexplicit-relocs
23157@itemx -mno-exlicit-relocs
23158Use or do not use assembler relocation operators when dealing with symbolic
23159addresses.  The alternative is to use assembler macros instead, which may
23160limit optimization.
23161
23162@item -mrelax
23163@itemx -mno-relax
23164Take advantage of linker relaxations to reduce the number of instructions
23165required to materialize symbol addresses. The default is to take advantage of
23166linker relaxations.
23167
23168@end table
23169
23170@node RL78 Options
23171@subsection RL78 Options
23172@cindex RL78 Options
23173
23174@table @gcctabopt
23175
23176@item -msim
23177@opindex msim
23178Links in additional target libraries to support operation within a
23179simulator.
23180
23181@item -mmul=none
23182@itemx -mmul=g10
23183@itemx -mmul=g13
23184@itemx -mmul=g14
23185@itemx -mmul=rl78
23186@opindex mmul
23187Specifies the type of hardware multiplication and division support to
23188be used.  The simplest is @code{none}, which uses software for both
23189multiplication and division.  This is the default.  The @code{g13}
23190value is for the hardware multiply/divide peripheral found on the
23191RL78/G13 (S2 core) targets.  The @code{g14} value selects the use of
23192the multiplication and division instructions supported by the RL78/G14
23193(S3 core) parts.  The value @code{rl78} is an alias for @code{g14} and
23194the value @code{mg10} is an alias for @code{none}.
23195
23196In addition a C preprocessor macro is defined, based upon the setting
23197of this option.  Possible values are: @code{__RL78_MUL_NONE__},
23198@code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
23199
23200@item -mcpu=g10
23201@itemx -mcpu=g13
23202@itemx -mcpu=g14
23203@itemx -mcpu=rl78
23204@opindex mcpu
23205Specifies the RL78 core to target.  The default is the G14 core, also
23206known as an S3 core or just RL78.  The G13 or S2 core does not have
23207multiply or divide instructions, instead it uses a hardware peripheral
23208for these operations.  The G10 or S1 core does not have register
23209banks, so it uses a different calling convention.
23210
23211If this option is set it also selects the type of hardware multiply
23212support to use, unless this is overridden by an explicit
23213@option{-mmul=none} option on the command line.  Thus specifying
23214@option{-mcpu=g13} enables the use of the G13 hardware multiply
23215peripheral and specifying @option{-mcpu=g10} disables the use of
23216hardware multiplications altogether.
23217
23218Note, although the RL78/G14 core is the default target, specifying
23219@option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
23220change the behavior of the toolchain since it also enables G14
23221hardware multiply support.  If these options are not specified on the
23222command line then software multiplication routines will be used even
23223though the code targets the RL78 core.  This is for backwards
23224compatibility with older toolchains which did not have hardware
23225multiply and divide support.
23226
23227In addition a C preprocessor macro is defined, based upon the setting
23228of this option.  Possible values are: @code{__RL78_G10__},
23229@code{__RL78_G13__} or @code{__RL78_G14__}.
23230
23231@item -mg10
23232@itemx -mg13
23233@itemx -mg14
23234@itemx -mrl78
23235@opindex mg10
23236@opindex mg13
23237@opindex mg14
23238@opindex mrl78
23239These are aliases for the corresponding @option{-mcpu=} option.  They
23240are provided for backwards compatibility.
23241
23242@item -mallregs
23243@opindex mallregs
23244Allow the compiler to use all of the available registers.  By default
23245registers @code{r24..r31} are reserved for use in interrupt handlers.
23246With this option enabled these registers can be used in ordinary
23247functions as well.
23248
23249@item -m64bit-doubles
23250@itemx -m32bit-doubles
23251@opindex m64bit-doubles
23252@opindex m32bit-doubles
23253Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
23254or 32 bits (@option{-m32bit-doubles}) in size.  The default is
23255@option{-m32bit-doubles}.
23256
23257@item -msave-mduc-in-interrupts
23258@itemx -mno-save-mduc-in-interrupts
23259@opindex msave-mduc-in-interrupts
23260@opindex mno-save-mduc-in-interrupts
23261Specifies that interrupt handler functions should preserve the
23262MDUC registers.  This is only necessary if normal code might use
23263the MDUC registers, for example because it performs multiplication
23264and division operations.  The default is to ignore the MDUC registers
23265as this makes the interrupt handlers faster.  The target option -mg13
23266needs to be passed for this to work as this feature is only available
23267on the G13 target (S2 core).  The MDUC registers will only be saved
23268if the interrupt handler performs a multiplication or division
23269operation or it calls another function.
23270
23271@end table
23272
23273@node RS/6000 and PowerPC Options
23274@subsection IBM RS/6000 and PowerPC Options
23275@cindex RS/6000 and PowerPC Options
23276@cindex IBM RS/6000 and PowerPC Options
23277
23278These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
23279@table @gcctabopt
23280@item -mpowerpc-gpopt
23281@itemx -mno-powerpc-gpopt
23282@itemx -mpowerpc-gfxopt
23283@itemx -mno-powerpc-gfxopt
23284@need 800
23285@itemx -mpowerpc64
23286@itemx -mno-powerpc64
23287@itemx -mmfcrf
23288@itemx -mno-mfcrf
23289@itemx -mpopcntb
23290@itemx -mno-popcntb
23291@itemx -mpopcntd
23292@itemx -mno-popcntd
23293@itemx -mfprnd
23294@itemx -mno-fprnd
23295@need 800
23296@itemx -mcmpb
23297@itemx -mno-cmpb
23298@itemx -mmfpgpr
23299@itemx -mno-mfpgpr
23300@itemx -mhard-dfp
23301@itemx -mno-hard-dfp
23302@opindex mpowerpc-gpopt
23303@opindex mno-powerpc-gpopt
23304@opindex mpowerpc-gfxopt
23305@opindex mno-powerpc-gfxopt
23306@opindex mpowerpc64
23307@opindex mno-powerpc64
23308@opindex mmfcrf
23309@opindex mno-mfcrf
23310@opindex mpopcntb
23311@opindex mno-popcntb
23312@opindex mpopcntd
23313@opindex mno-popcntd
23314@opindex mfprnd
23315@opindex mno-fprnd
23316@opindex mcmpb
23317@opindex mno-cmpb
23318@opindex mmfpgpr
23319@opindex mno-mfpgpr
23320@opindex mhard-dfp
23321@opindex mno-hard-dfp
23322You use these options to specify which instructions are available on the
23323processor you are using.  The default value of these options is
23324determined when configuring GCC@.  Specifying the
23325@option{-mcpu=@var{cpu_type}} overrides the specification of these
23326options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
23327rather than the options listed above.
23328
23329Specifying @option{-mpowerpc-gpopt} allows
23330GCC to use the optional PowerPC architecture instructions in the
23331General Purpose group, including floating-point square root.  Specifying
23332@option{-mpowerpc-gfxopt} allows GCC to
23333use the optional PowerPC architecture instructions in the Graphics
23334group, including floating-point select.
23335
23336The @option{-mmfcrf} option allows GCC to generate the move from
23337condition register field instruction implemented on the POWER4
23338processor and other processors that support the PowerPC V2.01
23339architecture.
23340The @option{-mpopcntb} option allows GCC to generate the popcount and
23341double-precision FP reciprocal estimate instruction implemented on the
23342POWER5 processor and other processors that support the PowerPC V2.02
23343architecture.
23344The @option{-mpopcntd} option allows GCC to generate the popcount
23345instruction implemented on the POWER7 processor and other processors
23346that support the PowerPC V2.06 architecture.
23347The @option{-mfprnd} option allows GCC to generate the FP round to
23348integer instructions implemented on the POWER5+ processor and other
23349processors that support the PowerPC V2.03 architecture.
23350The @option{-mcmpb} option allows GCC to generate the compare bytes
23351instruction implemented on the POWER6 processor and other processors
23352that support the PowerPC V2.05 architecture.
23353The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
23354general-purpose register instructions implemented on the POWER6X
23355processor and other processors that support the extended PowerPC V2.05
23356architecture.
23357The @option{-mhard-dfp} option allows GCC to generate the decimal
23358floating-point instructions implemented on some POWER processors.
23359
23360The @option{-mpowerpc64} option allows GCC to generate the additional
2336164-bit instructions that are found in the full PowerPC64 architecture
23362and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
23363@option{-mno-powerpc64}.
23364
23365@item -mcpu=@var{cpu_type}
23366@opindex mcpu
23367Set architecture type, register usage, and
23368instruction scheduling parameters for machine type @var{cpu_type}.
23369Supported values for @var{cpu_type} are @samp{401}, @samp{403},
23370@samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
23371@samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
23372@samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
23373@samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
23374@samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
23375@samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
23376@samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
23377@samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
23378@samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
23379@samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
23380@samp{rs64}, and @samp{native}.
23381
23382@option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
23383@option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
23384endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
23385architecture machine types, with an appropriate, generic processor
23386model assumed for scheduling purposes.
23387
23388Specifying @samp{native} as cpu type detects and selects the
23389architecture option that corresponds to the host processor of the
23390system performing the compilation.
23391@option{-mcpu=native} has no effect if GCC does not recognize the
23392processor.
23393
23394The other options specify a specific processor.  Code generated under
23395those options runs best on that processor, and may not run at all on
23396others.
23397
23398The @option{-mcpu} options automatically enable or disable the
23399following options:
23400
23401@gccoptlist{-maltivec  -mfprnd  -mhard-float  -mmfcrf  -mmultiple @gol
23402-mpopcntb -mpopcntd  -mpowerpc64 @gol
23403-mpowerpc-gpopt  -mpowerpc-gfxopt  -msingle-float -mdouble-float @gol
23404-msimple-fpu  -mmulhw  -mdlmzb  -mmfpgpr -mvsx @gol
23405-mcrypto -mhtm -mpower8-fusion -mpower8-vector @gol
23406-mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
23407
23408The particular options set for any particular CPU varies between
23409compiler versions, depending on what setting seems to produce optimal
23410code for that CPU; it doesn't necessarily reflect the actual hardware's
23411capabilities.  If you wish to set an individual option to a particular
23412value, you may specify it after the @option{-mcpu} option, like
23413@option{-mcpu=970 -mno-altivec}.
23414
23415On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
23416not enabled or disabled by the @option{-mcpu} option at present because
23417AIX does not have full support for these options.  You may still
23418enable or disable them individually if you're sure it'll work in your
23419environment.
23420
23421@item -mtune=@var{cpu_type}
23422@opindex mtune
23423Set the instruction scheduling parameters for machine type
23424@var{cpu_type}, but do not set the architecture type or register usage,
23425as @option{-mcpu=@var{cpu_type}} does.  The same
23426values for @var{cpu_type} are used for @option{-mtune} as for
23427@option{-mcpu}.  If both are specified, the code generated uses the
23428architecture and registers set by @option{-mcpu}, but the
23429scheduling parameters set by @option{-mtune}.
23430
23431@item -mcmodel=small
23432@opindex mcmodel=small
23433Generate PowerPC64 code for the small model: The TOC is limited to
2343464k.
23435
23436@item -mcmodel=medium
23437@opindex mcmodel=medium
23438Generate PowerPC64 code for the medium model: The TOC and other static
23439data may be up to a total of 4G in size.  This is the default for 64-bit
23440Linux.
23441
23442@item -mcmodel=large
23443@opindex mcmodel=large
23444Generate PowerPC64 code for the large model: The TOC may be up to 4G
23445in size.  Other data and code is only limited by the 64-bit address
23446space.
23447
23448@item -maltivec
23449@itemx -mno-altivec
23450@opindex maltivec
23451@opindex mno-altivec
23452Generate code that uses (does not use) AltiVec instructions, and also
23453enable the use of built-in functions that allow more direct access to
23454the AltiVec instruction set.  You may also need to set
23455@option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
23456enhancements.
23457
23458When @option{-maltivec} is used, rather than @option{-maltivec=le} or
23459@option{-maltivec=be}, the element order for AltiVec intrinsics such
23460as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
23461match array element order corresponding to the endianness of the
23462target.  That is, element zero identifies the leftmost element in a
23463vector register when targeting a big-endian platform, and identifies
23464the rightmost element in a vector register when targeting a
23465little-endian platform.
23466
23467@item -maltivec=be
23468@opindex maltivec=be
23469Generate AltiVec instructions using big-endian element order,
23470regardless of whether the target is big- or little-endian.  This is
23471the default when targeting a big-endian platform.  Using this option
23472is currently deprecated.  Support for this feature will be removed in
23473GCC 9.
23474
23475The element order is used to interpret element numbers in AltiVec
23476intrinsics such as @code{vec_splat}, @code{vec_extract}, and
23477@code{vec_insert}.  By default, these match array element order
23478corresponding to the endianness for the target.
23479
23480@item -maltivec=le
23481@opindex maltivec=le
23482Generate AltiVec instructions using little-endian element order,
23483regardless of whether the target is big- or little-endian.  This is
23484the default when targeting a little-endian platform.  This option is
23485currently ignored when targeting a big-endian platform.
23486
23487The element order is used to interpret element numbers in AltiVec
23488intrinsics such as @code{vec_splat}, @code{vec_extract}, and
23489@code{vec_insert}.  By default, these match array element order
23490corresponding to the endianness for the target.
23491
23492@item -mvrsave
23493@itemx -mno-vrsave
23494@opindex mvrsave
23495@opindex mno-vrsave
23496Generate VRSAVE instructions when generating AltiVec code.
23497
23498@item -msecure-plt
23499@opindex msecure-plt
23500Generate code that allows @command{ld} and @command{ld.so}
23501to build executables and shared
23502libraries with non-executable @code{.plt} and @code{.got} sections.
23503This is a PowerPC
2350432-bit SYSV ABI option.
23505
23506@item -mbss-plt
23507@opindex mbss-plt
23508Generate code that uses a BSS @code{.plt} section that @command{ld.so}
23509fills in, and
23510requires @code{.plt} and @code{.got}
23511sections that are both writable and executable.
23512This is a PowerPC 32-bit SYSV ABI option.
23513
23514@item -misel
23515@itemx -mno-isel
23516@opindex misel
23517@opindex mno-isel
23518This switch enables or disables the generation of ISEL instructions.
23519
23520@item -misel=@var{yes/no}
23521This switch has been deprecated.  Use @option{-misel} and
23522@option{-mno-isel} instead.
23523
23524@item -mpaired
23525@itemx -mno-paired
23526@opindex mpaired
23527@opindex mno-paired
23528This switch enables or disables the generation of PAIRED simd
23529instructions.
23530
23531@item -mvsx
23532@itemx -mno-vsx
23533@opindex mvsx
23534@opindex mno-vsx
23535Generate code that uses (does not use) vector/scalar (VSX)
23536instructions, and also enable the use of built-in functions that allow
23537more direct access to the VSX instruction set.
23538
23539@item -mcrypto
23540@itemx -mno-crypto
23541@opindex mcrypto
23542@opindex mno-crypto
23543Enable the use (disable) of the built-in functions that allow direct
23544access to the cryptographic instructions that were added in version
235452.07 of the PowerPC ISA.
23546
23547@item -mhtm
23548@itemx -mno-htm
23549@opindex mhtm
23550@opindex mno-htm
23551Enable (disable) the use of the built-in functions that allow direct
23552access to the Hardware Transactional Memory (HTM) instructions that
23553were added in version 2.07 of the PowerPC ISA.
23554
23555@item -mpower8-fusion
23556@itemx -mno-power8-fusion
23557@opindex mpower8-fusion
23558@opindex mno-power8-fusion
23559Generate code that keeps (does not keeps) some integer operations
23560adjacent so that the instructions can be fused together on power8 and
23561later processors.
23562
23563@item -mpower8-vector
23564@itemx -mno-power8-vector
23565@opindex mpower8-vector
23566@opindex mno-power8-vector
23567Generate code that uses (does not use) the vector and scalar
23568instructions that were added in version 2.07 of the PowerPC ISA.  Also
23569enable the use of built-in functions that allow more direct access to
23570the vector instructions.
23571
23572@item -mquad-memory
23573@itemx -mno-quad-memory
23574@opindex mquad-memory
23575@opindex mno-quad-memory
23576Generate code that uses (does not use) the non-atomic quad word memory
23577instructions.  The @option{-mquad-memory} option requires use of
2357864-bit mode.
23579
23580@item -mquad-memory-atomic
23581@itemx -mno-quad-memory-atomic
23582@opindex mquad-memory-atomic
23583@opindex mno-quad-memory-atomic
23584Generate code that uses (does not use) the atomic quad word memory
23585instructions.  The @option{-mquad-memory-atomic} option requires use of
2358664-bit mode.
23587
23588@item -mfloat128
23589@itemx -mno-float128
23590@opindex mfloat128
23591@opindex mno-float128
23592Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
23593and use either software emulation for IEEE 128-bit floating point or
23594hardware instructions.
23595
23596The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
23597@option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
23598use the IEEE 128-bit floating point support.  The IEEE 128-bit
23599floating point support only works on PowerPC Linux systems.
23600
23601The default for @option{-mfloat128} is enabled on PowerPC Linux
23602systems using the VSX instruction set, and disabled on other systems.
23603
23604If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
23605@option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
23606point support will also enable the generation of ISA 3.0 IEEE 128-bit
23607floating point instructions.  Otherwise, if you do not specify to
23608generate ISA 3.0 instructions or you are targeting a 32-bit big endian
23609system, IEEE 128-bit floating point will be done with software
23610emulation.
23611
23612@item -mfloat128-hardware
23613@itemx -mno-float128-hardware
23614@opindex mfloat128-hardware
23615@opindex mno-float128-hardware
23616Enable/disable using ISA 3.0 hardware instructions to support the
23617@var{__float128} data type.
23618
23619The default for @option{-mfloat128-hardware} is enabled on PowerPC
23620Linux systems using the ISA 3.0 instruction set, and disabled on other
23621systems.
23622
23623@item -m32
23624@itemx -m64
23625@opindex m32
23626@opindex m64
23627Generate code for 32-bit or 64-bit environments of Darwin and SVR4
23628targets (including GNU/Linux).  The 32-bit environment sets int, long
23629and pointer to 32 bits and generates code that runs on any PowerPC
23630variant.  The 64-bit environment sets int to 32 bits and long and
23631pointer to 64 bits, and generates code for PowerPC64, as for
23632@option{-mpowerpc64}.
23633
23634@item -mfull-toc
23635@itemx -mno-fp-in-toc
23636@itemx -mno-sum-in-toc
23637@itemx -mminimal-toc
23638@opindex mfull-toc
23639@opindex mno-fp-in-toc
23640@opindex mno-sum-in-toc
23641@opindex mminimal-toc
23642Modify generation of the TOC (Table Of Contents), which is created for
23643every executable file.  The @option{-mfull-toc} option is selected by
23644default.  In that case, GCC allocates at least one TOC entry for
23645each unique non-automatic variable reference in your program.  GCC
23646also places floating-point constants in the TOC@.  However, only
2364716,384 entries are available in the TOC@.
23648
23649If you receive a linker error message that saying you have overflowed
23650the available TOC space, you can reduce the amount of TOC space used
23651with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
23652@option{-mno-fp-in-toc} prevents GCC from putting floating-point
23653constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
23654generate code to calculate the sum of an address and a constant at
23655run time instead of putting that sum into the TOC@.  You may specify one
23656or both of these options.  Each causes GCC to produce very slightly
23657slower and larger code at the expense of conserving TOC space.
23658
23659If you still run out of space in the TOC even when you specify both of
23660these options, specify @option{-mminimal-toc} instead.  This option causes
23661GCC to make only one TOC entry for every file.  When you specify this
23662option, GCC produces code that is slower and larger but which
23663uses extremely little TOC space.  You may wish to use this option
23664only on files that contain less frequently-executed code.
23665
23666@item -maix64
23667@itemx -maix32
23668@opindex maix64
23669@opindex maix32
23670Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
23671@code{long} type, and the infrastructure needed to support them.
23672Specifying @option{-maix64} implies @option{-mpowerpc64},
23673while @option{-maix32} disables the 64-bit ABI and
23674implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
23675
23676@item -mxl-compat
23677@itemx -mno-xl-compat
23678@opindex mxl-compat
23679@opindex mno-xl-compat
23680Produce code that conforms more closely to IBM XL compiler semantics
23681when using AIX-compatible ABI@.  Pass floating-point arguments to
23682prototyped functions beyond the register save area (RSA) on the stack
23683in addition to argument FPRs.  Do not assume that most significant
23684double in 128-bit long double value is properly rounded when comparing
23685values and converting to double.  Use XL symbol names for long double
23686support routines.
23687
23688The AIX calling convention was extended but not initially documented to
23689handle an obscure K&R C case of calling a function that takes the
23690address of its arguments with fewer arguments than declared.  IBM XL
23691compilers access floating-point arguments that do not fit in the
23692RSA from the stack when a subroutine is compiled without
23693optimization.  Because always storing floating-point arguments on the
23694stack is inefficient and rarely needed, this option is not enabled by
23695default and only is necessary when calling subroutines compiled by IBM
23696XL compilers without optimization.
23697
23698@item -mpe
23699@opindex mpe
23700Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
23701application written to use message passing with special startup code to
23702enable the application to run.  The system must have PE installed in the
23703standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
23704must be overridden with the @option{-specs=} option to specify the
23705appropriate directory location.  The Parallel Environment does not
23706support threads, so the @option{-mpe} option and the @option{-pthread}
23707option are incompatible.
23708
23709@item -malign-natural
23710@itemx -malign-power
23711@opindex malign-natural
23712@opindex malign-power
23713On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
23714@option{-malign-natural} overrides the ABI-defined alignment of larger
23715types, such as floating-point doubles, on their natural size-based boundary.
23716The option @option{-malign-power} instructs GCC to follow the ABI-specified
23717alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
23718
23719On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
23720is not supported.
23721
23722@item -msoft-float
23723@itemx -mhard-float
23724@opindex msoft-float
23725@opindex mhard-float
23726Generate code that does not use (uses) the floating-point register set.
23727Software floating-point emulation is provided if you use the
23728@option{-msoft-float} option, and pass the option to GCC when linking.
23729
23730@item -msingle-float
23731@itemx -mdouble-float
23732@opindex msingle-float
23733@opindex mdouble-float
23734Generate code for single- or double-precision floating-point operations.
23735@option{-mdouble-float} implies @option{-msingle-float}.
23736
23737@item -msimple-fpu
23738@opindex msimple-fpu
23739Do not generate @code{sqrt} and @code{div} instructions for hardware
23740floating-point unit.
23741
23742@item -mfpu=@var{name}
23743@opindex mfpu
23744Specify type of floating-point unit.  Valid values for @var{name} are
23745@samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
23746@samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
23747@samp{sp_full} (equivalent to @option{-msingle-float}),
23748and @samp{dp_full} (equivalent to @option{-mdouble-float}).
23749
23750@item -mxilinx-fpu
23751@opindex mxilinx-fpu
23752Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
23753
23754@item -mmultiple
23755@itemx -mno-multiple
23756@opindex mmultiple
23757@opindex mno-multiple
23758Generate code that uses (does not use) the load multiple word
23759instructions and the store multiple word instructions.  These
23760instructions are generated by default on POWER systems, and not
23761generated on PowerPC systems.  Do not use @option{-mmultiple} on little-endian
23762PowerPC systems, since those instructions do not work when the
23763processor is in little-endian mode.  The exceptions are PPC740 and
23764PPC750 which permit these instructions in little-endian mode.
23765
23766@item -mupdate
23767@itemx -mno-update
23768@opindex mupdate
23769@opindex mno-update
23770Generate code that uses (does not use) the load or store instructions
23771that update the base register to the address of the calculated memory
23772location.  These instructions are generated by default.  If you use
23773@option{-mno-update}, there is a small window between the time that the
23774stack pointer is updated and the address of the previous frame is
23775stored, which means code that walks the stack frame across interrupts or
23776signals may get corrupted data.
23777
23778@item -mavoid-indexed-addresses
23779@itemx -mno-avoid-indexed-addresses
23780@opindex mavoid-indexed-addresses
23781@opindex mno-avoid-indexed-addresses
23782Generate code that tries to avoid (not avoid) the use of indexed load
23783or store instructions. These instructions can incur a performance
23784penalty on Power6 processors in certain situations, such as when
23785stepping through large arrays that cross a 16M boundary.  This option
23786is enabled by default when targeting Power6 and disabled otherwise.
23787
23788@item -mfused-madd
23789@itemx -mno-fused-madd
23790@opindex mfused-madd
23791@opindex mno-fused-madd
23792Generate code that uses (does not use) the floating-point multiply and
23793accumulate instructions.  These instructions are generated by default
23794if hardware floating point is used.  The machine-dependent
23795@option{-mfused-madd} option is now mapped to the machine-independent
23796@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
23797mapped to @option{-ffp-contract=off}.
23798
23799@item -mmulhw
23800@itemx -mno-mulhw
23801@opindex mmulhw
23802@opindex mno-mulhw
23803Generate code that uses (does not use) the half-word multiply and
23804multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
23805These instructions are generated by default when targeting those
23806processors.
23807
23808@item -mdlmzb
23809@itemx -mno-dlmzb
23810@opindex mdlmzb
23811@opindex mno-dlmzb
23812Generate code that uses (does not use) the string-search @samp{dlmzb}
23813instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
23814generated by default when targeting those processors.
23815
23816@item -mno-bit-align
23817@itemx -mbit-align
23818@opindex mno-bit-align
23819@opindex mbit-align
23820On System V.4 and embedded PowerPC systems do not (do) force structures
23821and unions that contain bit-fields to be aligned to the base type of the
23822bit-field.
23823
23824For example, by default a structure containing nothing but 8
23825@code{unsigned} bit-fields of length 1 is aligned to a 4-byte
23826boundary and has a size of 4 bytes.  By using @option{-mno-bit-align},
23827the structure is aligned to a 1-byte boundary and is 1 byte in
23828size.
23829
23830@item -mno-strict-align
23831@itemx -mstrict-align
23832@opindex mno-strict-align
23833@opindex mstrict-align
23834On System V.4 and embedded PowerPC systems do not (do) assume that
23835unaligned memory references are handled by the system.
23836
23837@item -mrelocatable
23838@itemx -mno-relocatable
23839@opindex mrelocatable
23840@opindex mno-relocatable
23841Generate code that allows (does not allow) a static executable to be
23842relocated to a different address at run time.  A simple embedded
23843PowerPC system loader should relocate the entire contents of
23844@code{.got2} and 4-byte locations listed in the @code{.fixup} section,
23845a table of 32-bit addresses generated by this option.  For this to
23846work, all objects linked together must be compiled with
23847@option{-mrelocatable} or @option{-mrelocatable-lib}.
23848@option{-mrelocatable} code aligns the stack to an 8-byte boundary.
23849
23850@item -mrelocatable-lib
23851@itemx -mno-relocatable-lib
23852@opindex mrelocatable-lib
23853@opindex mno-relocatable-lib
23854Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
23855@code{.fixup} section to allow static executables to be relocated at
23856run time, but @option{-mrelocatable-lib} does not use the smaller stack
23857alignment of @option{-mrelocatable}.  Objects compiled with
23858@option{-mrelocatable-lib} may be linked with objects compiled with
23859any combination of the @option{-mrelocatable} options.
23860
23861@item -mno-toc
23862@itemx -mtoc
23863@opindex mno-toc
23864@opindex mtoc
23865On System V.4 and embedded PowerPC systems do not (do) assume that
23866register 2 contains a pointer to a global area pointing to the addresses
23867used in the program.
23868
23869@item -mlittle
23870@itemx -mlittle-endian
23871@opindex mlittle
23872@opindex mlittle-endian
23873On System V.4 and embedded PowerPC systems compile code for the
23874processor in little-endian mode.  The @option{-mlittle-endian} option is
23875the same as @option{-mlittle}.
23876
23877@item -mbig
23878@itemx -mbig-endian
23879@opindex mbig
23880@opindex mbig-endian
23881On System V.4 and embedded PowerPC systems compile code for the
23882processor in big-endian mode.  The @option{-mbig-endian} option is
23883the same as @option{-mbig}.
23884
23885@item -mdynamic-no-pic
23886@opindex mdynamic-no-pic
23887On Darwin and Mac OS X systems, compile code so that it is not
23888relocatable, but that its external references are relocatable.  The
23889resulting code is suitable for applications, but not shared
23890libraries.
23891
23892@item -msingle-pic-base
23893@opindex msingle-pic-base
23894Treat the register used for PIC addressing as read-only, rather than
23895loading it in the prologue for each function.  The runtime system is
23896responsible for initializing this register with an appropriate value
23897before execution begins.
23898
23899@item -mprioritize-restricted-insns=@var{priority}
23900@opindex mprioritize-restricted-insns
23901This option controls the priority that is assigned to
23902dispatch-slot restricted instructions during the second scheduling
23903pass.  The argument @var{priority} takes the value @samp{0}, @samp{1},
23904or @samp{2} to assign no, highest, or second-highest (respectively)
23905priority to dispatch-slot restricted
23906instructions.
23907
23908@item -msched-costly-dep=@var{dependence_type}
23909@opindex msched-costly-dep
23910This option controls which dependences are considered costly
23911by the target during instruction scheduling.  The argument
23912@var{dependence_type} takes one of the following values:
23913
23914@table @asis
23915@item @samp{no}
23916No dependence is costly.
23917
23918@item @samp{all}
23919All dependences are costly.
23920
23921@item @samp{true_store_to_load}
23922A true dependence from store to load is costly.
23923
23924@item @samp{store_to_load}
23925Any dependence from store to load is costly.
23926
23927@item @var{number}
23928Any dependence for which the latency is greater than or equal to
23929@var{number} is costly.
23930@end table
23931
23932@item -minsert-sched-nops=@var{scheme}
23933@opindex minsert-sched-nops
23934This option controls which NOP insertion scheme is used during
23935the second scheduling pass.  The argument @var{scheme} takes one of the
23936following values:
23937
23938@table @asis
23939@item @samp{no}
23940Don't insert NOPs.
23941
23942@item @samp{pad}
23943Pad with NOPs any dispatch group that has vacant issue slots,
23944according to the scheduler's grouping.
23945
23946@item @samp{regroup_exact}
23947Insert NOPs to force costly dependent insns into
23948separate groups.  Insert exactly as many NOPs as needed to force an insn
23949to a new group, according to the estimated processor grouping.
23950
23951@item @var{number}
23952Insert NOPs to force costly dependent insns into
23953separate groups.  Insert @var{number} NOPs to force an insn to a new group.
23954@end table
23955
23956@item -mcall-sysv
23957@opindex mcall-sysv
23958On System V.4 and embedded PowerPC systems compile code using calling
23959conventions that adhere to the March 1995 draft of the System V
23960Application Binary Interface, PowerPC processor supplement.  This is the
23961default unless you configured GCC using @samp{powerpc-*-eabiaix}.
23962
23963@item -mcall-sysv-eabi
23964@itemx -mcall-eabi
23965@opindex mcall-sysv-eabi
23966@opindex mcall-eabi
23967Specify both @option{-mcall-sysv} and @option{-meabi} options.
23968
23969@item -mcall-sysv-noeabi
23970@opindex mcall-sysv-noeabi
23971Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
23972
23973@item -mcall-aixdesc
23974@opindex m
23975On System V.4 and embedded PowerPC systems compile code for the AIX
23976operating system.
23977
23978@item -mcall-linux
23979@opindex mcall-linux
23980On System V.4 and embedded PowerPC systems compile code for the
23981Linux-based GNU system.
23982
23983@item -mcall-freebsd
23984@opindex mcall-freebsd
23985On System V.4 and embedded PowerPC systems compile code for the
23986FreeBSD operating system.
23987
23988@item -mcall-netbsd
23989@opindex mcall-netbsd
23990On System V.4 and embedded PowerPC systems compile code for the
23991NetBSD operating system.
23992
23993@item -mcall-openbsd
23994@opindex mcall-netbsd
23995On System V.4 and embedded PowerPC systems compile code for the
23996OpenBSD operating system.
23997
23998@item -mtraceback=@var{traceback_type}
23999@opindex mtraceback
24000Select the type of traceback table. Valid values for @var{traceback_type}
24001are @samp{full}, @samp{part}, and @samp{no}.
24002
24003@item -maix-struct-return
24004@opindex maix-struct-return
24005Return all structures in memory (as specified by the AIX ABI)@.
24006
24007@item -msvr4-struct-return
24008@opindex msvr4-struct-return
24009Return structures smaller than 8 bytes in registers (as specified by the
24010SVR4 ABI)@.
24011
24012@item -mabi=@var{abi-type}
24013@opindex mabi
24014Extend the current ABI with a particular extension, or remove such extension.
24015Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
24016@samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
24017@samp{elfv1}, @samp{elfv2}@.
24018
24019@item -mabi=ibmlongdouble
24020@opindex mabi=ibmlongdouble
24021Change the current ABI to use IBM extended-precision long double.
24022This is not likely to work if your system defaults to using IEEE
24023extended-precision long double.  If you change the long double type
24024from IEEE extended-precision, the compiler will issue a warning unless
24025you use the @option{-Wno-psabi} option.  Requires @option{-mlong-double-128}
24026to be enabled.
24027
24028@item -mabi=ieeelongdouble
24029@opindex mabi=ieeelongdouble
24030Change the current ABI to use IEEE extended-precision long double.
24031This is not likely to work if your system defaults to using IBM
24032extended-precision long double.  If you change the long double type
24033from IBM extended-precision, the compiler will issue a warning unless
24034you use the @option{-Wno-psabi} option.  Requires @option{-mlong-double-128}
24035to be enabled.
24036
24037@item -mabi=elfv1
24038@opindex mabi=elfv1
24039Change the current ABI to use the ELFv1 ABI.
24040This is the default ABI for big-endian PowerPC 64-bit Linux.
24041Overriding the default ABI requires special system support and is
24042likely to fail in spectacular ways.
24043
24044@item -mabi=elfv2
24045@opindex mabi=elfv2
24046Change the current ABI to use the ELFv2 ABI.
24047This is the default ABI for little-endian PowerPC 64-bit Linux.
24048Overriding the default ABI requires special system support and is
24049likely to fail in spectacular ways.
24050
24051@item -mgnu-attribute
24052@itemx -mno-gnu-attribute
24053@opindex mgnu-attribute
24054@opindex mno-gnu-attribute
24055Emit .gnu_attribute assembly directives to set tag/value pairs in a
24056.gnu.attributes section that specify ABI variations in function
24057parameters or return values.
24058
24059@item -mprototype
24060@itemx -mno-prototype
24061@opindex mprototype
24062@opindex mno-prototype
24063On System V.4 and embedded PowerPC systems assume that all calls to
24064variable argument functions are properly prototyped.  Otherwise, the
24065compiler must insert an instruction before every non-prototyped call to
24066set or clear bit 6 of the condition code register (@code{CR}) to
24067indicate whether floating-point values are passed in the floating-point
24068registers in case the function takes variable arguments.  With
24069@option{-mprototype}, only calls to prototyped variable argument functions
24070set or clear the bit.
24071
24072@item -msim
24073@opindex msim
24074On embedded PowerPC systems, assume that the startup module is called
24075@file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
24076@file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}
24077configurations.
24078
24079@item -mmvme
24080@opindex mmvme
24081On embedded PowerPC systems, assume that the startup module is called
24082@file{crt0.o} and the standard C libraries are @file{libmvme.a} and
24083@file{libc.a}.
24084
24085@item -mads
24086@opindex mads
24087On embedded PowerPC systems, assume that the startup module is called
24088@file{crt0.o} and the standard C libraries are @file{libads.a} and
24089@file{libc.a}.
24090
24091@item -myellowknife
24092@opindex myellowknife
24093On embedded PowerPC systems, assume that the startup module is called
24094@file{crt0.o} and the standard C libraries are @file{libyk.a} and
24095@file{libc.a}.
24096
24097@item -mvxworks
24098@opindex mvxworks
24099On System V.4 and embedded PowerPC systems, specify that you are
24100compiling for a VxWorks system.
24101
24102@item -memb
24103@opindex memb
24104On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
24105header to indicate that @samp{eabi} extended relocations are used.
24106
24107@item -meabi
24108@itemx -mno-eabi
24109@opindex meabi
24110@opindex mno-eabi
24111On System V.4 and embedded PowerPC systems do (do not) adhere to the
24112Embedded Applications Binary Interface (EABI), which is a set of
24113modifications to the System V.4 specifications.  Selecting @option{-meabi}
24114means that the stack is aligned to an 8-byte boundary, a function
24115@code{__eabi} is called from @code{main} to set up the EABI
24116environment, and the @option{-msdata} option can use both @code{r2} and
24117@code{r13} to point to two separate small data areas.  Selecting
24118@option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
24119no EABI initialization function is called from @code{main}, and the
24120@option{-msdata} option only uses @code{r13} to point to a single
24121small data area.  The @option{-meabi} option is on by default if you
24122configured GCC using one of the @samp{powerpc*-*-eabi*} options.
24123
24124@item -msdata=eabi
24125@opindex msdata=eabi
24126On System V.4 and embedded PowerPC systems, put small initialized
24127@code{const} global and static data in the @code{.sdata2} section, which
24128is pointed to by register @code{r2}.  Put small initialized
24129non-@code{const} global and static data in the @code{.sdata} section,
24130which is pointed to by register @code{r13}.  Put small uninitialized
24131global and static data in the @code{.sbss} section, which is adjacent to
24132the @code{.sdata} section.  The @option{-msdata=eabi} option is
24133incompatible with the @option{-mrelocatable} option.  The
24134@option{-msdata=eabi} option also sets the @option{-memb} option.
24135
24136@item -msdata=sysv
24137@opindex msdata=sysv
24138On System V.4 and embedded PowerPC systems, put small global and static
24139data in the @code{.sdata} section, which is pointed to by register
24140@code{r13}.  Put small uninitialized global and static data in the
24141@code{.sbss} section, which is adjacent to the @code{.sdata} section.
24142The @option{-msdata=sysv} option is incompatible with the
24143@option{-mrelocatable} option.
24144
24145@item -msdata=default
24146@itemx -msdata
24147@opindex msdata=default
24148@opindex msdata
24149On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
24150compile code the same as @option{-msdata=eabi}, otherwise compile code the
24151same as @option{-msdata=sysv}.
24152
24153@item -msdata=data
24154@opindex msdata=data
24155On System V.4 and embedded PowerPC systems, put small global
24156data in the @code{.sdata} section.  Put small uninitialized global
24157data in the @code{.sbss} section.  Do not use register @code{r13}
24158to address small data however.  This is the default behavior unless
24159other @option{-msdata} options are used.
24160
24161@item -msdata=none
24162@itemx -mno-sdata
24163@opindex msdata=none
24164@opindex mno-sdata
24165On embedded PowerPC systems, put all initialized global and static data
24166in the @code{.data} section, and all uninitialized data in the
24167@code{.bss} section.
24168
24169@item -mreadonly-in-sdata
24170@itemx -mreadonly-in-sdata
24171@opindex mreadonly-in-sdata
24172@opindex mno-readonly-in-sdata
24173Put read-only objects in the @code{.sdata} section as well.  This is the
24174default.
24175
24176@item -mblock-move-inline-limit=@var{num}
24177@opindex mblock-move-inline-limit
24178Inline all block moves (such as calls to @code{memcpy} or structure
24179copies) less than or equal to @var{num} bytes.  The minimum value for
24180@var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
24181targets.  The default value is target-specific.
24182
24183@item -mblock-compare-inline-limit=@var{num}
24184@opindex mblock-compare-inline-limit
24185Generate non-looping inline code for all block compares (such as calls
24186to @code{memcmp} or structure compares) less than or equal to @var{num}
24187bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
24188block compare is disabled. The default value is target-specific.
24189
24190@item -mblock-compare-inline-loop-limit=@var{num}
24191@opindex mblock-compare-inline-loop-limit
24192Generate an inline expansion using loop code for all block compares that
24193are less than or equal to @var{num} bytes, but greater than the limit
24194for non-loop inline block compare expansion. If the block length is not
24195constant, at most @var{num} bytes will be compared before @code{memcmp}
24196is called to compare the remainder of the block. The default value is
24197target-specific.
24198
24199@item -mstring-compare-inline-limit=@var{num}
24200@opindex mstring-compare-inline-limit
24201Generate at most @var{num} pairs of load instructions to compare the
24202string inline. If the difference or end of string is not found at the
24203end of the inline compare a call to @code{strcmp} or @code{strncmp} will
24204take care of the rest of the comparison. The default is 8 pairs of
24205loads, which will compare 64 bytes on a 64-bit target and 32 bytes on a
2420632-bit target.
24207
24208@item -G @var{num}
24209@opindex G
24210@cindex smaller data references (PowerPC)
24211@cindex .sdata/.sdata2 references (PowerPC)
24212On embedded PowerPC systems, put global and static items less than or
24213equal to @var{num} bytes into the small data or BSS sections instead of
24214the normal data or BSS section.  By default, @var{num} is 8.  The
24215@option{-G @var{num}} switch is also passed to the linker.
24216All modules should be compiled with the same @option{-G @var{num}} value.
24217
24218@item -mregnames
24219@itemx -mno-regnames
24220@opindex mregnames
24221@opindex mno-regnames
24222On System V.4 and embedded PowerPC systems do (do not) emit register
24223names in the assembly language output using symbolic forms.
24224
24225@item -mlongcall
24226@itemx -mno-longcall
24227@opindex mlongcall
24228@opindex mno-longcall
24229By default assume that all calls are far away so that a longer and more
24230expensive calling sequence is required.  This is required for calls
24231farther than 32 megabytes (33,554,432 bytes) from the current location.
24232A short call is generated if the compiler knows
24233the call cannot be that far away.  This setting can be overridden by
24234the @code{shortcall} function attribute, or by @code{#pragma
24235longcall(0)}.
24236
24237Some linkers are capable of detecting out-of-range calls and generating
24238glue code on the fly.  On these systems, long calls are unnecessary and
24239generate slower code.  As of this writing, the AIX linker can do this,
24240as can the GNU linker for PowerPC/64.  It is planned to add this feature
24241to the GNU linker for 32-bit PowerPC systems as well.
24242
24243On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
24244callee, L42}, plus a @dfn{branch island} (glue code).  The two target
24245addresses represent the callee and the branch island.  The
24246Darwin/PPC linker prefers the first address and generates a @code{bl
24247callee} if the PPC @code{bl} instruction reaches the callee directly;
24248otherwise, the linker generates @code{bl L42} to call the branch
24249island.  The branch island is appended to the body of the
24250calling function; it computes the full 32-bit address of the callee
24251and jumps to it.
24252
24253On Mach-O (Darwin) systems, this option directs the compiler emit to
24254the glue for every direct call, and the Darwin linker decides whether
24255to use or discard it.
24256
24257In the future, GCC may ignore all longcall specifications
24258when the linker is known to generate glue.
24259
24260@item -mtls-markers
24261@itemx -mno-tls-markers
24262@opindex mtls-markers
24263@opindex mno-tls-markers
24264Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
24265specifying the function argument.  The relocation allows the linker to
24266reliably associate function call with argument setup instructions for
24267TLS optimization, which in turn allows GCC to better schedule the
24268sequence.
24269
24270@item -mrecip
24271@itemx -mno-recip
24272@opindex mrecip
24273This option enables use of the reciprocal estimate and
24274reciprocal square root estimate instructions with additional
24275Newton-Raphson steps to increase precision instead of doing a divide or
24276square root and divide for floating-point arguments.  You should use
24277the @option{-ffast-math} option when using @option{-mrecip} (or at
24278least @option{-funsafe-math-optimizations},
24279@option{-ffinite-math-only}, @option{-freciprocal-math} and
24280@option{-fno-trapping-math}).  Note that while the throughput of the
24281sequence is generally higher than the throughput of the non-reciprocal
24282instruction, the precision of the sequence can be decreased by up to 2
24283ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
24284roots.
24285
24286@item -mrecip=@var{opt}
24287@opindex mrecip=opt
24288This option controls which reciprocal estimate instructions
24289may be used.  @var{opt} is a comma-separated list of options, which may
24290be preceded by a @code{!} to invert the option:
24291
24292@table @samp
24293
24294@item all
24295Enable all estimate instructions.
24296
24297@item default
24298Enable the default instructions, equivalent to @option{-mrecip}.
24299
24300@item none
24301Disable all estimate instructions, equivalent to @option{-mno-recip}.
24302
24303@item div
24304Enable the reciprocal approximation instructions for both
24305single and double precision.
24306
24307@item divf
24308Enable the single-precision reciprocal approximation instructions.
24309
24310@item divd
24311Enable the double-precision reciprocal approximation instructions.
24312
24313@item rsqrt
24314Enable the reciprocal square root approximation instructions for both
24315single and double precision.
24316
24317@item rsqrtf
24318Enable the single-precision reciprocal square root approximation instructions.
24319
24320@item rsqrtd
24321Enable the double-precision reciprocal square root approximation instructions.
24322
24323@end table
24324
24325So, for example, @option{-mrecip=all,!rsqrtd} enables
24326all of the reciprocal estimate instructions, except for the
24327@code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
24328which handle the double-precision reciprocal square root calculations.
24329
24330@item -mrecip-precision
24331@itemx -mno-recip-precision
24332@opindex mrecip-precision
24333Assume (do not assume) that the reciprocal estimate instructions
24334provide higher-precision estimates than is mandated by the PowerPC
24335ABI.  Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
24336@option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
24337The double-precision square root estimate instructions are not generated by
24338default on low-precision machines, since they do not provide an
24339estimate that converges after three steps.
24340
24341@item -mveclibabi=@var{type}
24342@opindex mveclibabi
24343Specifies the ABI type to use for vectorizing intrinsics using an
24344external library.  The only type supported at present is @samp{mass},
24345which specifies to use IBM's Mathematical Acceleration Subsystem
24346(MASS) libraries for vectorizing intrinsics using external libraries.
24347GCC currently emits calls to @code{acosd2}, @code{acosf4},
24348@code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
24349@code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
24350@code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
24351@code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
24352@code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
24353@code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
24354@code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
24355@code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
24356@code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
24357@code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
24358@code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
24359@code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
24360@code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
24361for power7.  Both @option{-ftree-vectorize} and
24362@option{-funsafe-math-optimizations} must also be enabled.  The MASS
24363libraries must be specified at link time.
24364
24365@item -mfriz
24366@itemx -mno-friz
24367@opindex mfriz
24368Generate (do not generate) the @code{friz} instruction when the
24369@option{-funsafe-math-optimizations} option is used to optimize
24370rounding of floating-point values to 64-bit integer and back to floating
24371point.  The @code{friz} instruction does not return the same value if
24372the floating-point number is too large to fit in an integer.
24373
24374@item -mpointers-to-nested-functions
24375@itemx -mno-pointers-to-nested-functions
24376@opindex mpointers-to-nested-functions
24377Generate (do not generate) code to load up the static chain register
24378(@code{r11}) when calling through a pointer on AIX and 64-bit Linux
24379systems where a function pointer points to a 3-word descriptor giving
24380the function address, TOC value to be loaded in register @code{r2}, and
24381static chain value to be loaded in register @code{r11}.  The
24382@option{-mpointers-to-nested-functions} is on by default.  You cannot
24383call through pointers to nested functions or pointers
24384to functions compiled in other languages that use the static chain if
24385you use @option{-mno-pointers-to-nested-functions}.
24386
24387@item -msave-toc-indirect
24388@itemx -mno-save-toc-indirect
24389@opindex msave-toc-indirect
24390Generate (do not generate) code to save the TOC value in the reserved
24391stack location in the function prologue if the function calls through
24392a pointer on AIX and 64-bit Linux systems.  If the TOC value is not
24393saved in the prologue, it is saved just before the call through the
24394pointer.  The @option{-mno-save-toc-indirect} option is the default.
24395
24396@item -mcompat-align-parm
24397@itemx -mno-compat-align-parm
24398@opindex mcompat-align-parm
24399Generate (do not generate) code to pass structure parameters with a
24400maximum alignment of 64 bits, for compatibility with older versions
24401of GCC.
24402
24403Older versions of GCC (prior to 4.9.0) incorrectly did not align a
24404structure parameter on a 128-bit boundary when that structure contained
24405a member requiring 128-bit alignment.  This is corrected in more
24406recent versions of GCC.  This option may be used to generate code
24407that is compatible with functions compiled with older versions of
24408GCC.
24409
24410The @option{-mno-compat-align-parm} option is the default.
24411
24412@item -mstack-protector-guard=@var{guard}
24413@itemx -mstack-protector-guard-reg=@var{reg}
24414@itemx -mstack-protector-guard-offset=@var{offset}
24415@itemx -mstack-protector-guard-symbol=@var{symbol}
24416@opindex mstack-protector-guard
24417@opindex mstack-protector-guard-reg
24418@opindex mstack-protector-guard-offset
24419@opindex mstack-protector-guard-symbol
24420Generate stack protection code using canary at @var{guard}.  Supported
24421locations are @samp{global} for global canary or @samp{tls} for per-thread
24422canary in the TLS block (the default with GNU libc version 2.4 or later).
24423
24424With the latter choice the options
24425@option{-mstack-protector-guard-reg=@var{reg}} and
24426@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
24427which register to use as base register for reading the canary, and from what
24428offset from that base register. The default for those is as specified in the
24429relevant ABI.  @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
24430the offset with a symbol reference to a canary in the TLS block.
24431@end table
24432
24433@node RX Options
24434@subsection RX Options
24435@cindex RX Options
24436
24437These command-line options are defined for RX targets:
24438
24439@table @gcctabopt
24440@item -m64bit-doubles
24441@itemx -m32bit-doubles
24442@opindex m64bit-doubles
24443@opindex m32bit-doubles
24444Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
24445or 32 bits (@option{-m32bit-doubles}) in size.  The default is
24446@option{-m32bit-doubles}.  @emph{Note} RX floating-point hardware only
24447works on 32-bit values, which is why the default is
24448@option{-m32bit-doubles}.
24449
24450@item -fpu
24451@itemx -nofpu
24452@opindex fpu
24453@opindex nofpu
24454Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
24455floating-point hardware.  The default is enabled for the RX600
24456series and disabled for the RX200 series.
24457
24458Floating-point instructions are only generated for 32-bit floating-point
24459values, however, so the FPU hardware is not used for doubles if the
24460@option{-m64bit-doubles} option is used.
24461
24462@emph{Note} If the @option{-fpu} option is enabled then
24463@option{-funsafe-math-optimizations} is also enabled automatically.
24464This is because the RX FPU instructions are themselves unsafe.
24465
24466@item -mcpu=@var{name}
24467@opindex mcpu
24468Selects the type of RX CPU to be targeted.  Currently three types are
24469supported, the generic @samp{RX600} and @samp{RX200} series hardware and
24470the specific @samp{RX610} CPU.  The default is @samp{RX600}.
24471
24472The only difference between @samp{RX600} and @samp{RX610} is that the
24473@samp{RX610} does not support the @code{MVTIPL} instruction.
24474
24475The @samp{RX200} series does not have a hardware floating-point unit
24476and so @option{-nofpu} is enabled by default when this type is
24477selected.
24478
24479@item -mbig-endian-data
24480@itemx -mlittle-endian-data
24481@opindex mbig-endian-data
24482@opindex mlittle-endian-data
24483Store data (but not code) in the big-endian format.  The default is
24484@option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
24485format.
24486
24487@item -msmall-data-limit=@var{N}
24488@opindex msmall-data-limit
24489Specifies the maximum size in bytes of global and static variables
24490which can be placed into the small data area.  Using the small data
24491area can lead to smaller and faster code, but the size of area is
24492limited and it is up to the programmer to ensure that the area does
24493not overflow.  Also when the small data area is used one of the RX's
24494registers (usually @code{r13}) is reserved for use pointing to this
24495area, so it is no longer available for use by the compiler.  This
24496could result in slower and/or larger code if variables are pushed onto
24497the stack instead of being held in this register.
24498
24499Note, common variables (variables that have not been initialized) and
24500constants are not placed into the small data area as they are assigned
24501to other sections in the output executable.
24502
24503The default value is zero, which disables this feature.  Note, this
24504feature is not enabled by default with higher optimization levels
24505(@option{-O2} etc) because of the potentially detrimental effects of
24506reserving a register.  It is up to the programmer to experiment and
24507discover whether this feature is of benefit to their program.  See the
24508description of the @option{-mpid} option for a description of how the
24509actual register to hold the small data area pointer is chosen.
24510
24511@item -msim
24512@itemx -mno-sim
24513@opindex msim
24514@opindex mno-sim
24515Use the simulator runtime.  The default is to use the libgloss
24516board-specific runtime.
24517
24518@item -mas100-syntax
24519@itemx -mno-as100-syntax
24520@opindex mas100-syntax
24521@opindex mno-as100-syntax
24522When generating assembler output use a syntax that is compatible with
24523Renesas's AS100 assembler.  This syntax can also be handled by the GAS
24524assembler, but it has some restrictions so it is not generated by default.
24525
24526@item -mmax-constant-size=@var{N}
24527@opindex mmax-constant-size
24528Specifies the maximum size, in bytes, of a constant that can be used as
24529an operand in a RX instruction.  Although the RX instruction set does
24530allow constants of up to 4 bytes in length to be used in instructions,
24531a longer value equates to a longer instruction.  Thus in some
24532circumstances it can be beneficial to restrict the size of constants
24533that are used in instructions.  Constants that are too big are instead
24534placed into a constant pool and referenced via register indirection.
24535
24536The value @var{N} can be between 0 and 4.  A value of 0 (the default)
24537or 4 means that constants of any size are allowed.
24538
24539@item -mrelax
24540@opindex mrelax
24541Enable linker relaxation.  Linker relaxation is a process whereby the
24542linker attempts to reduce the size of a program by finding shorter
24543versions of various instructions.  Disabled by default.
24544
24545@item -mint-register=@var{N}
24546@opindex mint-register
24547Specify the number of registers to reserve for fast interrupt handler
24548functions.  The value @var{N} can be between 0 and 4.  A value of 1
24549means that register @code{r13} is reserved for the exclusive use
24550of fast interrupt handlers.  A value of 2 reserves @code{r13} and
24551@code{r12}.  A value of 3 reserves @code{r13}, @code{r12} and
24552@code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
24553A value of 0, the default, does not reserve any registers.
24554
24555@item -msave-acc-in-interrupts
24556@opindex msave-acc-in-interrupts
24557Specifies that interrupt handler functions should preserve the
24558accumulator register.  This is only necessary if normal code might use
24559the accumulator register, for example because it performs 64-bit
24560multiplications.  The default is to ignore the accumulator as this
24561makes the interrupt handlers faster.
24562
24563@item -mpid
24564@itemx -mno-pid
24565@opindex mpid
24566@opindex mno-pid
24567Enables the generation of position independent data.  When enabled any
24568access to constant data is done via an offset from a base address
24569held in a register.  This allows the location of constant data to be
24570determined at run time without requiring the executable to be
24571relocated, which is a benefit to embedded applications with tight
24572memory constraints.  Data that can be modified is not affected by this
24573option.
24574
24575Note, using this feature reserves a register, usually @code{r13}, for
24576the constant data base address.  This can result in slower and/or
24577larger code, especially in complicated functions.
24578
24579The actual register chosen to hold the constant data base address
24580depends upon whether the @option{-msmall-data-limit} and/or the
24581@option{-mint-register} command-line options are enabled.  Starting
24582with register @code{r13} and proceeding downwards, registers are
24583allocated first to satisfy the requirements of @option{-mint-register},
24584then @option{-mpid} and finally @option{-msmall-data-limit}.  Thus it
24585is possible for the small data area register to be @code{r8} if both
24586@option{-mint-register=4} and @option{-mpid} are specified on the
24587command line.
24588
24589By default this feature is not enabled.  The default can be restored
24590via the @option{-mno-pid} command-line option.
24591
24592@item -mno-warn-multiple-fast-interrupts
24593@itemx -mwarn-multiple-fast-interrupts
24594@opindex mno-warn-multiple-fast-interrupts
24595@opindex mwarn-multiple-fast-interrupts
24596Prevents GCC from issuing a warning message if it finds more than one
24597fast interrupt handler when it is compiling a file.  The default is to
24598issue a warning for each extra fast interrupt handler found, as the RX
24599only supports one such interrupt.
24600
24601@item -mallow-string-insns
24602@itemx -mno-allow-string-insns
24603@opindex mallow-string-insns
24604@opindex mno-allow-string-insns
24605Enables or disables the use of the string manipulation instructions
24606@code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
24607@code{SWHILE} and also the @code{RMPA} instruction.  These
24608instructions may prefetch data, which is not safe to do if accessing
24609an I/O register.  (See section 12.2.7 of the RX62N Group User's Manual
24610for more information).
24611
24612The default is to allow these instructions, but it is not possible for
24613GCC to reliably detect all circumstances where a string instruction
24614might be used to access an I/O register, so their use cannot be
24615disabled automatically.  Instead it is reliant upon the programmer to
24616use the @option{-mno-allow-string-insns} option if their program
24617accesses I/O space.
24618
24619When the instructions are enabled GCC defines the C preprocessor
24620symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
24621symbol @code{__RX_DISALLOW_STRING_INSNS__}.
24622
24623@item -mjsr
24624@itemx -mno-jsr
24625@opindex mjsr
24626@opindex mno-jsr
24627Use only (or not only) @code{JSR} instructions to access functions.
24628This option can be used when code size exceeds the range of @code{BSR}
24629instructions.  Note that @option{-mno-jsr} does not mean to not use
24630@code{JSR} but instead means that any type of branch may be used.
24631@end table
24632
24633@emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
24634has special significance to the RX port when used with the
24635@code{interrupt} function attribute.  This attribute indicates a
24636function intended to process fast interrupts.  GCC ensures
24637that it only uses the registers @code{r10}, @code{r11}, @code{r12}
24638and/or @code{r13} and only provided that the normal use of the
24639corresponding registers have been restricted via the
24640@option{-ffixed-@var{reg}} or @option{-mint-register} command-line
24641options.
24642
24643@node S/390 and zSeries Options
24644@subsection S/390 and zSeries Options
24645@cindex S/390 and zSeries Options
24646
24647These are the @samp{-m} options defined for the S/390 and zSeries architecture.
24648
24649@table @gcctabopt
24650@item -mhard-float
24651@itemx -msoft-float
24652@opindex mhard-float
24653@opindex msoft-float
24654Use (do not use) the hardware floating-point instructions and registers
24655for floating-point operations.  When @option{-msoft-float} is specified,
24656functions in @file{libgcc.a} are used to perform floating-point
24657operations.  When @option{-mhard-float} is specified, the compiler
24658generates IEEE floating-point instructions.  This is the default.
24659
24660@item -mhard-dfp
24661@itemx -mno-hard-dfp
24662@opindex mhard-dfp
24663@opindex mno-hard-dfp
24664Use (do not use) the hardware decimal-floating-point instructions for
24665decimal-floating-point operations.  When @option{-mno-hard-dfp} is
24666specified, functions in @file{libgcc.a} are used to perform
24667decimal-floating-point operations.  When @option{-mhard-dfp} is
24668specified, the compiler generates decimal-floating-point hardware
24669instructions.  This is the default for @option{-march=z9-ec} or higher.
24670
24671@item -mlong-double-64
24672@itemx -mlong-double-128
24673@opindex mlong-double-64
24674@opindex mlong-double-128
24675These switches control the size of @code{long double} type. A size
24676of 64 bits makes the @code{long double} type equivalent to the @code{double}
24677type. This is the default.
24678
24679@item -mbackchain
24680@itemx -mno-backchain
24681@opindex mbackchain
24682@opindex mno-backchain
24683Store (do not store) the address of the caller's frame as backchain pointer
24684into the callee's stack frame.
24685A backchain may be needed to allow debugging using tools that do not understand
24686DWARF call frame information.
24687When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
24688at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
24689the backchain is placed into the topmost word of the 96/160 byte register
24690save area.
24691
24692In general, code compiled with @option{-mbackchain} is call-compatible with
24693code compiled with @option{-mmo-backchain}; however, use of the backchain
24694for debugging purposes usually requires that the whole binary is built with
24695@option{-mbackchain}.  Note that the combination of @option{-mbackchain},
24696@option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
24697to build a linux kernel use @option{-msoft-float}.
24698
24699The default is to not maintain the backchain.
24700
24701@item -mpacked-stack
24702@itemx -mno-packed-stack
24703@opindex mpacked-stack
24704@opindex mno-packed-stack
24705Use (do not use) the packed stack layout.  When @option{-mno-packed-stack} is
24706specified, the compiler uses the all fields of the 96/160 byte register save
24707area only for their default purpose; unused fields still take up stack space.
24708When @option{-mpacked-stack} is specified, register save slots are densely
24709packed at the top of the register save area; unused space is reused for other
24710purposes, allowing for more efficient use of the available stack space.
24711However, when @option{-mbackchain} is also in effect, the topmost word of
24712the save area is always used to store the backchain, and the return address
24713register is always saved two words below the backchain.
24714
24715As long as the stack frame backchain is not used, code generated with
24716@option{-mpacked-stack} is call-compatible with code generated with
24717@option{-mno-packed-stack}.  Note that some non-FSF releases of GCC 2.95 for
24718S/390 or zSeries generated code that uses the stack frame backchain at run
24719time, not just for debugging purposes.  Such code is not call-compatible
24720with code compiled with @option{-mpacked-stack}.  Also, note that the
24721combination of @option{-mbackchain},
24722@option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
24723to build a linux kernel use @option{-msoft-float}.
24724
24725The default is to not use the packed stack layout.
24726
24727@item -msmall-exec
24728@itemx -mno-small-exec
24729@opindex msmall-exec
24730@opindex mno-small-exec
24731Generate (or do not generate) code using the @code{bras} instruction
24732to do subroutine calls.
24733This only works reliably if the total executable size does not
24734exceed 64k.  The default is to use the @code{basr} instruction instead,
24735which does not have this limitation.
24736
24737@item -m64
24738@itemx -m31
24739@opindex m64
24740@opindex m31
24741When @option{-m31} is specified, generate code compliant to the
24742GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
24743code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
24744particular to generate 64-bit instructions.  For the @samp{s390}
24745targets, the default is @option{-m31}, while the @samp{s390x}
24746targets default to @option{-m64}.
24747
24748@item -mzarch
24749@itemx -mesa
24750@opindex mzarch
24751@opindex mesa
24752When @option{-mzarch} is specified, generate code using the
24753instructions available on z/Architecture.
24754When @option{-mesa} is specified, generate code using the
24755instructions available on ESA/390.  Note that @option{-mesa} is
24756not possible with @option{-m64}.
24757When generating code compliant to the GNU/Linux for S/390 ABI,
24758the default is @option{-mesa}.  When generating code compliant
24759to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
24760
24761@item -mhtm
24762@itemx -mno-htm
24763@opindex mhtm
24764@opindex mno-htm
24765The @option{-mhtm} option enables a set of builtins making use of
24766instructions available with the transactional execution facility
24767introduced with the IBM zEnterprise EC12 machine generation
24768@ref{S/390 System z Built-in Functions}.
24769@option{-mhtm} is enabled by default when using @option{-march=zEC12}.
24770
24771@item -mvx
24772@itemx -mno-vx
24773@opindex mvx
24774@opindex mno-vx
24775When @option{-mvx} is specified, generate code using the instructions
24776available with the vector extension facility introduced with the IBM
24777z13 machine generation.
24778This option changes the ABI for some vector type values with regard to
24779alignment and calling conventions.  In case vector type values are
24780being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
24781command will be added to mark the resulting binary with the ABI used.
24782@option{-mvx} is enabled by default when using @option{-march=z13}.
24783
24784@item -mzvector
24785@itemx -mno-zvector
24786@opindex mzvector
24787@opindex mno-zvector
24788The @option{-mzvector} option enables vector language extensions and
24789builtins using instructions available with the vector extension
24790facility introduced with the IBM z13 machine generation.
24791This option adds support for @samp{vector} to be used as a keyword to
24792define vector type variables and arguments.  @samp{vector} is only
24793available when GNU extensions are enabled.  It will not be expanded
24794when requesting strict standard compliance e.g. with @option{-std=c99}.
24795In addition to the GCC low-level builtins @option{-mzvector} enables
24796a set of builtins added for compatibility with AltiVec-style
24797implementations like Power and Cell.  In order to make use of these
24798builtins the header file @file{vecintrin.h} needs to be included.
24799@option{-mzvector} is disabled by default.
24800
24801@item -mmvcle
24802@itemx -mno-mvcle
24803@opindex mmvcle
24804@opindex mno-mvcle
24805Generate (or do not generate) code using the @code{mvcle} instruction
24806to perform block moves.  When @option{-mno-mvcle} is specified,
24807use a @code{mvc} loop instead.  This is the default unless optimizing for
24808size.
24809
24810@item -mdebug
24811@itemx -mno-debug
24812@opindex mdebug
24813@opindex mno-debug
24814Print (or do not print) additional debug information when compiling.
24815The default is to not print debug information.
24816
24817@item -march=@var{cpu-type}
24818@opindex march
24819Generate code that runs on @var{cpu-type}, which is the name of a
24820system representing a certain processor type.  Possible values for
24821@var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
24822@samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
24823@samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
24824@samp{z14}/@samp{arch12}, and @samp{native}.
24825
24826The default is @option{-march=z900}.  @samp{g5}/@samp{arch3} and
24827@samp{g6} are deprecated and will be removed with future releases.
24828
24829Specifying @samp{native} as cpu type can be used to select the best
24830architecture option for the host processor.
24831@option{-march=native} has no effect if GCC does not recognize the
24832processor.
24833
24834@item -mtune=@var{cpu-type}
24835@opindex mtune
24836Tune to @var{cpu-type} everything applicable about the generated code,
24837except for the ABI and the set of available instructions.
24838The list of @var{cpu-type} values is the same as for @option{-march}.
24839The default is the value used for @option{-march}.
24840
24841@item -mtpf-trace
24842@itemx -mno-tpf-trace
24843@opindex mtpf-trace
24844@opindex mno-tpf-trace
24845Generate code that adds (does not add) in TPF OS specific branches to trace
24846routines in the operating system.  This option is off by default, even
24847when compiling for the TPF OS@.
24848
24849@item -mfused-madd
24850@itemx -mno-fused-madd
24851@opindex mfused-madd
24852@opindex mno-fused-madd
24853Generate code that uses (does not use) the floating-point multiply and
24854accumulate instructions.  These instructions are generated by default if
24855hardware floating point is used.
24856
24857@item -mwarn-framesize=@var{framesize}
24858@opindex mwarn-framesize
24859Emit a warning if the current function exceeds the given frame size.  Because
24860this is a compile-time check it doesn't need to be a real problem when the program
24861runs.  It is intended to identify functions that most probably cause
24862a stack overflow.  It is useful to be used in an environment with limited stack
24863size e.g.@: the linux kernel.
24864
24865@item -mwarn-dynamicstack
24866@opindex mwarn-dynamicstack
24867Emit a warning if the function calls @code{alloca} or uses dynamically-sized
24868arrays.  This is generally a bad idea with a limited stack size.
24869
24870@item -mstack-guard=@var{stack-guard}
24871@itemx -mstack-size=@var{stack-size}
24872@opindex mstack-guard
24873@opindex mstack-size
24874If these options are provided the S/390 back end emits additional instructions in
24875the function prologue that trigger a trap if the stack size is @var{stack-guard}
24876bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
24877If the @var{stack-guard} option is omitted the smallest power of 2 larger than
24878the frame size of the compiled function is chosen.
24879These options are intended to be used to help debugging stack overflow problems.
24880The additionally emitted code causes only little overhead and hence can also be
24881used in production-like systems without greater performance degradation.  The given
24882values have to be exact powers of 2 and @var{stack-size} has to be greater than
24883@var{stack-guard} without exceeding 64k.
24884In order to be efficient the extra code makes the assumption that the stack starts
24885at an address aligned to the value given by @var{stack-size}.
24886The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
24887
24888@item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
24889@opindex mhotpatch
24890If the hotpatch option is enabled, a ``hot-patching'' function
24891prologue is generated for all functions in the compilation unit.
24892The funtion label is prepended with the given number of two-byte
24893NOP instructions (@var{pre-halfwords}, maximum 1000000).  After
24894the label, 2 * @var{post-halfwords} bytes are appended, using the
24895largest NOP like instructions the architecture allows (maximum
248961000000).
24897
24898If both arguments are zero, hotpatching is disabled.
24899
24900This option can be overridden for individual functions with the
24901@code{hotpatch} attribute.
24902@end table
24903
24904@node Score Options
24905@subsection Score Options
24906@cindex Score Options
24907
24908These options are defined for Score implementations:
24909
24910@table @gcctabopt
24911@item -meb
24912@opindex meb
24913Compile code for big-endian mode.  This is the default.
24914
24915@item -mel
24916@opindex mel
24917Compile code for little-endian mode.
24918
24919@item -mnhwloop
24920@opindex mnhwloop
24921Disable generation of @code{bcnz} instructions.
24922
24923@item -muls
24924@opindex muls
24925Enable generation of unaligned load and store instructions.
24926
24927@item -mmac
24928@opindex mmac
24929Enable the use of multiply-accumulate instructions. Disabled by default.
24930
24931@item -mscore5
24932@opindex mscore5
24933Specify the SCORE5 as the target architecture.
24934
24935@item -mscore5u
24936@opindex mscore5u
24937Specify the SCORE5U of the target architecture.
24938
24939@item -mscore7
24940@opindex mscore7
24941Specify the SCORE7 as the target architecture. This is the default.
24942
24943@item -mscore7d
24944@opindex mscore7d
24945Specify the SCORE7D as the target architecture.
24946@end table
24947
24948@node SH Options
24949@subsection SH Options
24950
24951These @samp{-m} options are defined for the SH implementations:
24952
24953@table @gcctabopt
24954@item -m1
24955@opindex m1
24956Generate code for the SH1.
24957
24958@item -m2
24959@opindex m2
24960Generate code for the SH2.
24961
24962@item -m2e
24963Generate code for the SH2e.
24964
24965@item -m2a-nofpu
24966@opindex m2a-nofpu
24967Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
24968that the floating-point unit is not used.
24969
24970@item -m2a-single-only
24971@opindex m2a-single-only
24972Generate code for the SH2a-FPU, in such a way that no double-precision
24973floating-point operations are used.
24974
24975@item -m2a-single
24976@opindex m2a-single
24977Generate code for the SH2a-FPU assuming the floating-point unit is in
24978single-precision mode by default.
24979
24980@item -m2a
24981@opindex m2a
24982Generate code for the SH2a-FPU assuming the floating-point unit is in
24983double-precision mode by default.
24984
24985@item -m3
24986@opindex m3
24987Generate code for the SH3.
24988
24989@item -m3e
24990@opindex m3e
24991Generate code for the SH3e.
24992
24993@item -m4-nofpu
24994@opindex m4-nofpu
24995Generate code for the SH4 without a floating-point unit.
24996
24997@item -m4-single-only
24998@opindex m4-single-only
24999Generate code for the SH4 with a floating-point unit that only
25000supports single-precision arithmetic.
25001
25002@item -m4-single
25003@opindex m4-single
25004Generate code for the SH4 assuming the floating-point unit is in
25005single-precision mode by default.
25006
25007@item -m4
25008@opindex m4
25009Generate code for the SH4.
25010
25011@item -m4-100
25012@opindex m4-100
25013Generate code for SH4-100.
25014
25015@item -m4-100-nofpu
25016@opindex m4-100-nofpu
25017Generate code for SH4-100 in such a way that the
25018floating-point unit is not used.
25019
25020@item -m4-100-single
25021@opindex m4-100-single
25022Generate code for SH4-100 assuming the floating-point unit is in
25023single-precision mode by default.
25024
25025@item -m4-100-single-only
25026@opindex m4-100-single-only
25027Generate code for SH4-100 in such a way that no double-precision
25028floating-point operations are used.
25029
25030@item -m4-200
25031@opindex m4-200
25032Generate code for SH4-200.
25033
25034@item -m4-200-nofpu
25035@opindex m4-200-nofpu
25036Generate code for SH4-200 without in such a way that the
25037floating-point unit is not used.
25038
25039@item -m4-200-single
25040@opindex m4-200-single
25041Generate code for SH4-200 assuming the floating-point unit is in
25042single-precision mode by default.
25043
25044@item -m4-200-single-only
25045@opindex m4-200-single-only
25046Generate code for SH4-200 in such a way that no double-precision
25047floating-point operations are used.
25048
25049@item -m4-300
25050@opindex m4-300
25051Generate code for SH4-300.
25052
25053@item -m4-300-nofpu
25054@opindex m4-300-nofpu
25055Generate code for SH4-300 without in such a way that the
25056floating-point unit is not used.
25057
25058@item -m4-300-single
25059@opindex m4-300-single
25060Generate code for SH4-300 in such a way that no double-precision
25061floating-point operations are used.
25062
25063@item -m4-300-single-only
25064@opindex m4-300-single-only
25065Generate code for SH4-300 in such a way that no double-precision
25066floating-point operations are used.
25067
25068@item -m4-340
25069@opindex m4-340
25070Generate code for SH4-340 (no MMU, no FPU).
25071
25072@item -m4-500
25073@opindex m4-500
25074Generate code for SH4-500 (no FPU).  Passes @option{-isa=sh4-nofpu} to the
25075assembler.
25076
25077@item -m4a-nofpu
25078@opindex m4a-nofpu
25079Generate code for the SH4al-dsp, or for a SH4a in such a way that the
25080floating-point unit is not used.
25081
25082@item -m4a-single-only
25083@opindex m4a-single-only
25084Generate code for the SH4a, in such a way that no double-precision
25085floating-point operations are used.
25086
25087@item -m4a-single
25088@opindex m4a-single
25089Generate code for the SH4a assuming the floating-point unit is in
25090single-precision mode by default.
25091
25092@item -m4a
25093@opindex m4a
25094Generate code for the SH4a.
25095
25096@item -m4al
25097@opindex m4al
25098Same as @option{-m4a-nofpu}, except that it implicitly passes
25099@option{-dsp} to the assembler.  GCC doesn't generate any DSP
25100instructions at the moment.
25101
25102@item -mb
25103@opindex mb
25104Compile code for the processor in big-endian mode.
25105
25106@item -ml
25107@opindex ml
25108Compile code for the processor in little-endian mode.
25109
25110@item -mdalign
25111@opindex mdalign
25112Align doubles at 64-bit boundaries.  Note that this changes the calling
25113conventions, and thus some functions from the standard C library do
25114not work unless you recompile it first with @option{-mdalign}.
25115
25116@item -mrelax
25117@opindex mrelax
25118Shorten some address references at link time, when possible; uses the
25119linker option @option{-relax}.
25120
25121@item -mbigtable
25122@opindex mbigtable
25123Use 32-bit offsets in @code{switch} tables.  The default is to use
2512416-bit offsets.
25125
25126@item -mbitops
25127@opindex mbitops
25128Enable the use of bit manipulation instructions on SH2A.
25129
25130@item -mfmovd
25131@opindex mfmovd
25132Enable the use of the instruction @code{fmovd}.  Check @option{-mdalign} for
25133alignment constraints.
25134
25135@item -mrenesas
25136@opindex mrenesas
25137Comply with the calling conventions defined by Renesas.
25138
25139@item -mno-renesas
25140@opindex mno-renesas
25141Comply with the calling conventions defined for GCC before the Renesas
25142conventions were available.  This option is the default for all
25143targets of the SH toolchain.
25144
25145@item -mnomacsave
25146@opindex mnomacsave
25147Mark the @code{MAC} register as call-clobbered, even if
25148@option{-mrenesas} is given.
25149
25150@item -mieee
25151@itemx -mno-ieee
25152@opindex mieee
25153@opindex mno-ieee
25154Control the IEEE compliance of floating-point comparisons, which affects the
25155handling of cases where the result of a comparison is unordered.  By default
25156@option{-mieee} is implicitly enabled.  If @option{-ffinite-math-only} is
25157enabled @option{-mno-ieee} is implicitly set, which results in faster
25158floating-point greater-equal and less-equal comparisons.  The implicit settings
25159can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
25160
25161@item -minline-ic_invalidate
25162@opindex minline-ic_invalidate
25163Inline code to invalidate instruction cache entries after setting up
25164nested function trampolines.
25165This option has no effect if @option{-musermode} is in effect and the selected
25166code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
25167instruction.
25168If the selected code generation option does not allow the use of the @code{icbi}
25169instruction, and @option{-musermode} is not in effect, the inlined code
25170manipulates the instruction cache address array directly with an associative
25171write.  This not only requires privileged mode at run time, but it also
25172fails if the cache line had been mapped via the TLB and has become unmapped.
25173
25174@item -misize
25175@opindex misize
25176Dump instruction size and location in the assembly code.
25177
25178@item -mpadstruct
25179@opindex mpadstruct
25180This option is deprecated.  It pads structures to multiple of 4 bytes,
25181which is incompatible with the SH ABI@.
25182
25183@item -matomic-model=@var{model}
25184@opindex matomic-model=@var{model}
25185Sets the model of atomic operations and additional parameters as a comma
25186separated list.  For details on the atomic built-in functions see
25187@ref{__atomic Builtins}.  The following models and parameters are supported:
25188
25189@table @samp
25190
25191@item none
25192Disable compiler generated atomic sequences and emit library calls for atomic
25193operations.  This is the default if the target is not @code{sh*-*-linux*}.
25194
25195@item soft-gusa
25196Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
25197built-in functions.  The generated atomic sequences require additional support
25198from the interrupt/exception handling code of the system and are only suitable
25199for SH3* and SH4* single-core systems.  This option is enabled by default when
25200the target is @code{sh*-*-linux*} and SH3* or SH4*.  When the target is SH4A,
25201this option also partially utilizes the hardware atomic instructions
25202@code{movli.l} and @code{movco.l} to create more efficient code, unless
25203@samp{strict} is specified.
25204
25205@item soft-tcb
25206Generate software atomic sequences that use a variable in the thread control
25207block.  This is a variation of the gUSA sequences which can also be used on
25208SH1* and SH2* targets.  The generated atomic sequences require additional
25209support from the interrupt/exception handling code of the system and are only
25210suitable for single-core systems.  When using this model, the @samp{gbr-offset=}
25211parameter has to be specified as well.
25212
25213@item soft-imask
25214Generate software atomic sequences that temporarily disable interrupts by
25215setting @code{SR.IMASK = 1111}.  This model works only when the program runs
25216in privileged mode and is only suitable for single-core systems.  Additional
25217support from the interrupt/exception handling code of the system is not
25218required.  This model is enabled by default when the target is
25219@code{sh*-*-linux*} and SH1* or SH2*.
25220
25221@item hard-llcs
25222Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
25223instructions only.  This is only available on SH4A and is suitable for
25224multi-core systems.  Since the hardware instructions support only 32 bit atomic
25225variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
25226Code compiled with this option is also compatible with other software
25227atomic model interrupt/exception handling systems if executed on an SH4A
25228system.  Additional support from the interrupt/exception handling code of the
25229system is not required for this model.
25230
25231@item gbr-offset=
25232This parameter specifies the offset in bytes of the variable in the thread
25233control block structure that should be used by the generated atomic sequences
25234when the @samp{soft-tcb} model has been selected.  For other models this
25235parameter is ignored.  The specified value must be an integer multiple of four
25236and in the range 0-1020.
25237
25238@item strict
25239This parameter prevents mixed usage of multiple atomic models, even if they
25240are compatible, and makes the compiler generate atomic sequences of the
25241specified model only.
25242
25243@end table
25244
25245@item -mtas
25246@opindex mtas
25247Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
25248Notice that depending on the particular hardware and software configuration
25249this can degrade overall performance due to the operand cache line flushes
25250that are implied by the @code{tas.b} instruction.  On multi-core SH4A
25251processors the @code{tas.b} instruction must be used with caution since it
25252can result in data corruption for certain cache configurations.
25253
25254@item -mprefergot
25255@opindex mprefergot
25256When generating position-independent code, emit function calls using
25257the Global Offset Table instead of the Procedure Linkage Table.
25258
25259@item -musermode
25260@itemx -mno-usermode
25261@opindex musermode
25262@opindex mno-usermode
25263Don't allow (allow) the compiler generating privileged mode code.  Specifying
25264@option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
25265inlined code would not work in user mode.  @option{-musermode} is the default
25266when the target is @code{sh*-*-linux*}.  If the target is SH1* or SH2*
25267@option{-musermode} has no effect, since there is no user mode.
25268
25269@item -multcost=@var{number}
25270@opindex multcost=@var{number}
25271Set the cost to assume for a multiply insn.
25272
25273@item -mdiv=@var{strategy}
25274@opindex mdiv=@var{strategy}
25275Set the division strategy to be used for integer division operations.
25276@var{strategy} can be one of:
25277
25278@table @samp
25279
25280@item call-div1
25281Calls a library function that uses the single-step division instruction
25282@code{div1} to perform the operation.  Division by zero calculates an
25283unspecified result and does not trap.  This is the default except for SH4,
25284SH2A and SHcompact.
25285
25286@item call-fp
25287Calls a library function that performs the operation in double precision
25288floating point.  Division by zero causes a floating-point exception.  This is
25289the default for SHcompact with FPU.  Specifying this for targets that do not
25290have a double precision FPU defaults to @code{call-div1}.
25291
25292@item call-table
25293Calls a library function that uses a lookup table for small divisors and
25294the @code{div1} instruction with case distinction for larger divisors.  Division
25295by zero calculates an unspecified result and does not trap.  This is the default
25296for SH4.  Specifying this for targets that do not have dynamic shift
25297instructions defaults to @code{call-div1}.
25298
25299@end table
25300
25301When a division strategy has not been specified the default strategy is
25302selected based on the current target.  For SH2A the default strategy is to
25303use the @code{divs} and @code{divu} instructions instead of library function
25304calls.
25305
25306@item -maccumulate-outgoing-args
25307@opindex maccumulate-outgoing-args
25308Reserve space once for outgoing arguments in the function prologue rather
25309than around each call.  Generally beneficial for performance and size.  Also
25310needed for unwinding to avoid changing the stack frame around conditional code.
25311
25312@item -mdivsi3_libfunc=@var{name}
25313@opindex mdivsi3_libfunc=@var{name}
25314Set the name of the library function used for 32-bit signed division to
25315@var{name}.
25316This only affects the name used in the @samp{call} division strategies, and
25317the compiler still expects the same sets of input/output/clobbered registers as
25318if this option were not present.
25319
25320@item -mfixed-range=@var{register-range}
25321@opindex mfixed-range
25322Generate code treating the given register range as fixed registers.
25323A fixed register is one that the register allocator can not use.  This is
25324useful when compiling kernel code.  A register range is specified as
25325two registers separated by a dash.  Multiple register ranges can be
25326specified separated by a comma.
25327
25328@item -mbranch-cost=@var{num}
25329@opindex mbranch-cost=@var{num}
25330Assume @var{num} to be the cost for a branch instruction.  Higher numbers
25331make the compiler try to generate more branch-free code if possible.
25332If not specified the value is selected depending on the processor type that
25333is being compiled for.
25334
25335@item -mzdcbranch
25336@itemx -mno-zdcbranch
25337@opindex mzdcbranch
25338@opindex mno-zdcbranch
25339Assume (do not assume) that zero displacement conditional branch instructions
25340@code{bt} and @code{bf} are fast.  If @option{-mzdcbranch} is specified, the
25341compiler prefers zero displacement branch code sequences.  This is
25342enabled by default when generating code for SH4 and SH4A.  It can be explicitly
25343disabled by specifying @option{-mno-zdcbranch}.
25344
25345@item -mcbranch-force-delay-slot
25346@opindex mcbranch-force-delay-slot
25347Force the usage of delay slots for conditional branches, which stuffs the delay
25348slot with a @code{nop} if a suitable instruction cannot be found.  By default
25349this option is disabled.  It can be enabled to work around hardware bugs as
25350found in the original SH7055.
25351
25352@item -mfused-madd
25353@itemx -mno-fused-madd
25354@opindex mfused-madd
25355@opindex mno-fused-madd
25356Generate code that uses (does not use) the floating-point multiply and
25357accumulate instructions.  These instructions are generated by default
25358if hardware floating point is used.  The machine-dependent
25359@option{-mfused-madd} option is now mapped to the machine-independent
25360@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
25361mapped to @option{-ffp-contract=off}.
25362
25363@item -mfsca
25364@itemx -mno-fsca
25365@opindex mfsca
25366@opindex mno-fsca
25367Allow or disallow the compiler to emit the @code{fsca} instruction for sine
25368and cosine approximations.  The option @option{-mfsca} must be used in
25369combination with @option{-funsafe-math-optimizations}.  It is enabled by default
25370when generating code for SH4A.  Using @option{-mno-fsca} disables sine and cosine
25371approximations even if @option{-funsafe-math-optimizations} is in effect.
25372
25373@item -mfsrra
25374@itemx -mno-fsrra
25375@opindex mfsrra
25376@opindex mno-fsrra
25377Allow or disallow the compiler to emit the @code{fsrra} instruction for
25378reciprocal square root approximations.  The option @option{-mfsrra} must be used
25379in combination with @option{-funsafe-math-optimizations} and
25380@option{-ffinite-math-only}.  It is enabled by default when generating code for
25381SH4A.  Using @option{-mno-fsrra} disables reciprocal square root approximations
25382even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
25383in effect.
25384
25385@item -mpretend-cmove
25386@opindex mpretend-cmove
25387Prefer zero-displacement conditional branches for conditional move instruction
25388patterns.  This can result in faster code on the SH4 processor.
25389
25390@item -mfdpic
25391@opindex fdpic
25392Generate code using the FDPIC ABI.
25393
25394@end table
25395
25396@node Solaris 2 Options
25397@subsection Solaris 2 Options
25398@cindex Solaris 2 options
25399
25400These @samp{-m} options are supported on Solaris 2:
25401
25402@table @gcctabopt
25403@item -mclear-hwcap
25404@opindex mclear-hwcap
25405@option{-mclear-hwcap} tells the compiler to remove the hardware
25406capabilities generated by the Solaris assembler.  This is only necessary
25407when object files use ISA extensions not supported by the current
25408machine, but check at runtime whether or not to use them.
25409
25410@item -mimpure-text
25411@opindex mimpure-text
25412@option{-mimpure-text}, used in addition to @option{-shared}, tells
25413the compiler to not pass @option{-z text} to the linker when linking a
25414shared object.  Using this option, you can link position-dependent
25415code into a shared object.
25416
25417@option{-mimpure-text} suppresses the ``relocations remain against
25418allocatable but non-writable sections'' linker error message.
25419However, the necessary relocations trigger copy-on-write, and the
25420shared object is not actually shared across processes.  Instead of
25421using @option{-mimpure-text}, you should compile all source code with
25422@option{-fpic} or @option{-fPIC}.
25423
25424@end table
25425
25426These switches are supported in addition to the above on Solaris 2:
25427
25428@table @gcctabopt
25429@item -pthreads
25430@opindex pthreads
25431This is a synonym for @option{-pthread}.
25432@end table
25433
25434@node SPARC Options
25435@subsection SPARC Options
25436@cindex SPARC options
25437
25438These @samp{-m} options are supported on the SPARC:
25439
25440@table @gcctabopt
25441@item -mno-app-regs
25442@itemx -mapp-regs
25443@opindex mno-app-regs
25444@opindex mapp-regs
25445Specify @option{-mapp-regs} to generate output using the global registers
254462 through 4, which the SPARC SVR4 ABI reserves for applications.  Like the
25447global register 1, each global register 2 through 4 is then treated as an
25448allocable register that is clobbered by function calls.  This is the default.
25449
25450To be fully SVR4 ABI-compliant at the cost of some performance loss,
25451specify @option{-mno-app-regs}.  You should compile libraries and system
25452software with this option.
25453
25454@item -mflat
25455@itemx -mno-flat
25456@opindex mflat
25457@opindex mno-flat
25458With @option{-mflat}, the compiler does not generate save/restore instructions
25459and uses a ``flat'' or single register window model.  This model is compatible
25460with the regular register window model.  The local registers and the input
25461registers (0--5) are still treated as ``call-saved'' registers and are
25462saved on the stack as needed.
25463
25464With @option{-mno-flat} (the default), the compiler generates save/restore
25465instructions (except for leaf functions).  This is the normal operating mode.
25466
25467@item -mfpu
25468@itemx -mhard-float
25469@opindex mfpu
25470@opindex mhard-float
25471Generate output containing floating-point instructions.  This is the
25472default.
25473
25474@item -mno-fpu
25475@itemx -msoft-float
25476@opindex mno-fpu
25477@opindex msoft-float
25478Generate output containing library calls for floating point.
25479@strong{Warning:} the requisite libraries are not available for all SPARC
25480targets.  Normally the facilities of the machine's usual C compiler are
25481used, but this cannot be done directly in cross-compilation.  You must make
25482your own arrangements to provide suitable library functions for
25483cross-compilation.  The embedded targets @samp{sparc-*-aout} and
25484@samp{sparclite-*-*} do provide software floating-point support.
25485
25486@option{-msoft-float} changes the calling convention in the output file;
25487therefore, it is only useful if you compile @emph{all} of a program with
25488this option.  In particular, you need to compile @file{libgcc.a}, the
25489library that comes with GCC, with @option{-msoft-float} in order for
25490this to work.
25491
25492@item -mhard-quad-float
25493@opindex mhard-quad-float
25494Generate output containing quad-word (long double) floating-point
25495instructions.
25496
25497@item -msoft-quad-float
25498@opindex msoft-quad-float
25499Generate output containing library calls for quad-word (long double)
25500floating-point instructions.  The functions called are those specified
25501in the SPARC ABI@.  This is the default.
25502
25503As of this writing, there are no SPARC implementations that have hardware
25504support for the quad-word floating-point instructions.  They all invoke
25505a trap handler for one of these instructions, and then the trap handler
25506emulates the effect of the instruction.  Because of the trap handler overhead,
25507this is much slower than calling the ABI library routines.  Thus the
25508@option{-msoft-quad-float} option is the default.
25509
25510@item -mno-unaligned-doubles
25511@itemx -munaligned-doubles
25512@opindex mno-unaligned-doubles
25513@opindex munaligned-doubles
25514Assume that doubles have 8-byte alignment.  This is the default.
25515
25516With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
25517alignment only if they are contained in another type, or if they have an
25518absolute address.  Otherwise, it assumes they have 4-byte alignment.
25519Specifying this option avoids some rare compatibility problems with code
25520generated by other compilers.  It is not the default because it results
25521in a performance loss, especially for floating-point code.
25522
25523@item -muser-mode
25524@itemx -mno-user-mode
25525@opindex muser-mode
25526@opindex mno-user-mode
25527Do not generate code that can only run in supervisor mode.  This is relevant
25528only for the @code{casa} instruction emitted for the LEON3 processor.  This
25529is the default.
25530
25531@item -mfaster-structs
25532@itemx -mno-faster-structs
25533@opindex mfaster-structs
25534@opindex mno-faster-structs
25535With @option{-mfaster-structs}, the compiler assumes that structures
25536should have 8-byte alignment.  This enables the use of pairs of
25537@code{ldd} and @code{std} instructions for copies in structure
25538assignment, in place of twice as many @code{ld} and @code{st} pairs.
25539However, the use of this changed alignment directly violates the SPARC
25540ABI@.  Thus, it's intended only for use on targets where the developer
25541acknowledges that their resulting code is not directly in line with
25542the rules of the ABI@.
25543
25544@item -mstd-struct-return
25545@itemx -mno-std-struct-return
25546@opindex mstd-struct-return
25547@opindex mno-std-struct-return
25548With @option{-mstd-struct-return}, the compiler generates checking code
25549in functions returning structures or unions to detect size mismatches
25550between the two sides of function calls, as per the 32-bit ABI@.
25551
25552The default is @option{-mno-std-struct-return}.  This option has no effect
25553in 64-bit mode.
25554
25555@item -mlra
25556@itemx -mno-lra
25557@opindex mlra
25558@opindex mno-lra
25559Enable Local Register Allocation.  This is the default for SPARC since GCC 7
25560so @option{-mno-lra} needs to be passed to get old Reload.
25561
25562@item -mcpu=@var{cpu_type}
25563@opindex mcpu
25564Set the instruction set, register set, and instruction scheduling parameters
25565for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
25566@samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
25567@samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
25568@samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
25569@samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
25570@samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
25571
25572Native Solaris and GNU/Linux toolchains also support the value @samp{native},
25573which selects the best architecture option for the host processor.
25574@option{-mcpu=native} has no effect if GCC does not recognize
25575the processor.
25576
25577Default instruction scheduling parameters are used for values that select
25578an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
25579@samp{sparclite}, @samp{sparclet}, @samp{v9}.
25580
25581Here is a list of each supported architecture and their supported
25582implementations.
25583
25584@table @asis
25585@item v7
25586cypress, leon3v7
25587
25588@item v8
25589supersparc, hypersparc, leon, leon3
25590
25591@item sparclite
25592f930, f934, sparclite86x
25593
25594@item sparclet
25595tsc701
25596
25597@item v9
25598ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
25599niagara7, m8
25600@end table
25601
25602By default (unless configured otherwise), GCC generates code for the V7
25603variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
25604additionally optimizes it for the Cypress CY7C602 chip, as used in the
25605SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
25606SPARCStation 1, 2, IPX etc.
25607
25608With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
25609architecture.  The only difference from V7 code is that the compiler emits
25610the integer multiply and integer divide instructions which exist in SPARC-V8
25611but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
25612optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
256132000 series.
25614
25615With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
25616the SPARC architecture.  This adds the integer multiply, integer divide step
25617and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
25618With @option{-mcpu=f930}, the compiler additionally optimizes it for the
25619Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@.  With
25620@option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
25621MB86934 chip, which is the more recent SPARClite with FPU@.
25622
25623With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
25624the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
25625integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
25626but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
25627optimizes it for the TEMIC SPARClet chip.
25628
25629With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
25630architecture.  This adds 64-bit integer and floating-point move instructions,
256313 additional floating-point condition code registers and conditional move
25632instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
25633optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
25634@option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
25635Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
25636@option{-mcpu=niagara}, the compiler additionally optimizes it for
25637Sun UltraSPARC T1 chips.  With @option{-mcpu=niagara2}, the compiler
25638additionally optimizes it for Sun UltraSPARC T2 chips. With
25639@option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
25640UltraSPARC T3 chips.  With @option{-mcpu=niagara4}, the compiler
25641additionally optimizes it for Sun UltraSPARC T4 chips.  With
25642@option{-mcpu=niagara7}, the compiler additionally optimizes it for
25643Oracle SPARC M7 chips.  With @option{-mcpu=m8}, the compiler
25644additionally optimizes it for Oracle M8 chips.
25645
25646@item -mtune=@var{cpu_type}
25647@opindex mtune
25648Set the instruction scheduling parameters for machine type
25649@var{cpu_type}, but do not set the instruction set or register set that the
25650option @option{-mcpu=@var{cpu_type}} does.
25651
25652The same values for @option{-mcpu=@var{cpu_type}} can be used for
25653@option{-mtune=@var{cpu_type}}, but the only useful values are those
25654that select a particular CPU implementation.  Those are
25655@samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
25656@samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
25657@samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
25658@samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
25659@samp{niagara4}, @samp{niagara7} and @samp{m8}.  With native Solaris
25660and GNU/Linux toolchains, @samp{native} can also be used.
25661
25662@item -mv8plus
25663@itemx -mno-v8plus
25664@opindex mv8plus
25665@opindex mno-v8plus
25666With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@.  The
25667difference from the V8 ABI is that the global and out registers are
25668considered 64 bits wide.  This is enabled by default on Solaris in 32-bit
25669mode for all SPARC-V9 processors.
25670
25671@item -mvis
25672@itemx -mno-vis
25673@opindex mvis
25674@opindex mno-vis
25675With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
25676Visual Instruction Set extensions.  The default is @option{-mno-vis}.
25677
25678@item -mvis2
25679@itemx -mno-vis2
25680@opindex mvis2
25681@opindex mno-vis2
25682With @option{-mvis2}, GCC generates code that takes advantage of
25683version 2.0 of the UltraSPARC Visual Instruction Set extensions.  The
25684default is @option{-mvis2} when targeting a cpu that supports such
25685instructions, such as UltraSPARC-III and later.  Setting @option{-mvis2}
25686also sets @option{-mvis}.
25687
25688@item -mvis3
25689@itemx -mno-vis3
25690@opindex mvis3
25691@opindex mno-vis3
25692With @option{-mvis3}, GCC generates code that takes advantage of
25693version 3.0 of the UltraSPARC Visual Instruction Set extensions.  The
25694default is @option{-mvis3} when targeting a cpu that supports such
25695instructions, such as niagara-3 and later.  Setting @option{-mvis3}
25696also sets @option{-mvis2} and @option{-mvis}.
25697
25698@item -mvis4
25699@itemx -mno-vis4
25700@opindex mvis4
25701@opindex mno-vis4
25702With @option{-mvis4}, GCC generates code that takes advantage of
25703version 4.0 of the UltraSPARC Visual Instruction Set extensions.  The
25704default is @option{-mvis4} when targeting a cpu that supports such
25705instructions, such as niagara-7 and later.  Setting @option{-mvis4}
25706also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
25707
25708@item -mvis4b
25709@itemx -mno-vis4b
25710@opindex mvis4b
25711@opindex mno-vis4b
25712With @option{-mvis4b}, GCC generates code that takes advantage of
25713version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
25714the additional VIS instructions introduced in the Oracle SPARC
25715Architecture 2017.  The default is @option{-mvis4b} when targeting a
25716cpu that supports such instructions, such as m8 and later.  Setting
25717@option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
25718@option{-mvis2} and @option{-mvis}.
25719
25720@item -mcbcond
25721@itemx -mno-cbcond
25722@opindex mcbcond
25723@opindex mno-cbcond
25724With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
25725Compare-and-Branch-on-Condition instructions.  The default is @option{-mcbcond}
25726when targeting a CPU that supports such instructions, such as Niagara-4 and
25727later.
25728
25729@item -mfmaf
25730@itemx -mno-fmaf
25731@opindex mfmaf
25732@opindex mno-fmaf
25733With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
25734Fused Multiply-Add Floating-point instructions.  The default is @option{-mfmaf}
25735when targeting a CPU that supports such instructions, such as Niagara-3 and
25736later.
25737
25738@item -mfsmuld
25739@itemx -mno-fsmuld
25740@opindex mfsmuld
25741@opindex mno-fsmuld
25742With @option{-mfsmuld}, GCC generates code that takes advantage of the
25743Floating-point Multiply Single to Double (FsMULd) instruction.  The default is
25744@option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
25745or V9 with FPU except @option{-mcpu=leon}.
25746
25747@item -mpopc
25748@itemx -mno-popc
25749@opindex mpopc
25750@opindex mno-popc
25751With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
25752Population Count instruction.  The default is @option{-mpopc}
25753when targeting a CPU that supports such an instruction, such as Niagara-2 and
25754later.
25755
25756@item -msubxc
25757@itemx -mno-subxc
25758@opindex msubxc
25759@opindex mno-subxc
25760With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
25761Subtract-Extended-with-Carry instruction.  The default is @option{-msubxc}
25762when targeting a CPU that supports such an instruction, such as Niagara-7 and
25763later.
25764
25765@item -mfix-at697f
25766@opindex mfix-at697f
25767Enable the documented workaround for the single erratum of the Atmel AT697F
25768processor (which corresponds to erratum #13 of the AT697E processor).
25769
25770@item -mfix-ut699
25771@opindex mfix-ut699
25772Enable the documented workarounds for the floating-point errata and the data
25773cache nullify errata of the UT699 processor.
25774
25775@item -mfix-ut700
25776@opindex mfix-ut700
25777Enable the documented workaround for the back-to-back store errata of
25778the UT699E/UT700 processor.
25779
25780@item -mfix-gr712rc
25781@opindex mfix-gr712rc
25782Enable the documented workaround for the back-to-back store errata of
25783the GR712RC processor.
25784@end table
25785
25786These @samp{-m} options are supported in addition to the above
25787on SPARC-V9 processors in 64-bit environments:
25788
25789@table @gcctabopt
25790@item -m32
25791@itemx -m64
25792@opindex m32
25793@opindex m64
25794Generate code for a 32-bit or 64-bit environment.
25795The 32-bit environment sets int, long and pointer to 32 bits.
25796The 64-bit environment sets int to 32 bits and long and pointer
25797to 64 bits.
25798
25799@item -mcmodel=@var{which}
25800@opindex mcmodel
25801Set the code model to one of
25802
25803@table @samp
25804@item medlow
25805The Medium/Low code model: 64-bit addresses, programs
25806must be linked in the low 32 bits of memory.  Programs can be statically
25807or dynamically linked.
25808
25809@item medmid
25810The Medium/Middle code model: 64-bit addresses, programs
25811must be linked in the low 44 bits of memory, the text and data segments must
25812be less than 2GB in size and the data segment must be located within 2GB of
25813the text segment.
25814
25815@item medany
25816The Medium/Anywhere code model: 64-bit addresses, programs
25817may be linked anywhere in memory, the text and data segments must be less
25818than 2GB in size and the data segment must be located within 2GB of the
25819text segment.
25820
25821@item embmedany
25822The Medium/Anywhere code model for embedded systems:
2582364-bit addresses, the text and data segments must be less than 2GB in
25824size, both starting anywhere in memory (determined at link time).  The
25825global register %g4 points to the base of the data segment.  Programs
25826are statically linked and PIC is not supported.
25827@end table
25828
25829@item -mmemory-model=@var{mem-model}
25830@opindex mmemory-model
25831Set the memory model in force on the processor to one of
25832
25833@table @samp
25834@item default
25835The default memory model for the processor and operating system.
25836
25837@item rmo
25838Relaxed Memory Order
25839
25840@item pso
25841Partial Store Order
25842
25843@item tso
25844Total Store Order
25845
25846@item sc
25847Sequential Consistency
25848@end table
25849
25850These memory models are formally defined in Appendix D of the SPARC-V9
25851architecture manual, as set in the processor's @code{PSTATE.MM} field.
25852
25853@item -mstack-bias
25854@itemx -mno-stack-bias
25855@opindex mstack-bias
25856@opindex mno-stack-bias
25857With @option{-mstack-bias}, GCC assumes that the stack pointer, and
25858frame pointer if present, are offset by @minus{}2047 which must be added back
25859when making stack frame references.  This is the default in 64-bit mode.
25860Otherwise, assume no such offset is present.
25861@end table
25862
25863@node SPU Options
25864@subsection SPU Options
25865@cindex SPU options
25866
25867These @samp{-m} options are supported on the SPU:
25868
25869@table @gcctabopt
25870@item -mwarn-reloc
25871@itemx -merror-reloc
25872@opindex mwarn-reloc
25873@opindex merror-reloc
25874
25875The loader for SPU does not handle dynamic relocations.  By default, GCC
25876gives an error when it generates code that requires a dynamic
25877relocation.  @option{-mno-error-reloc} disables the error,
25878@option{-mwarn-reloc} generates a warning instead.
25879
25880@item -msafe-dma
25881@itemx -munsafe-dma
25882@opindex msafe-dma
25883@opindex munsafe-dma
25884
25885Instructions that initiate or test completion of DMA must not be
25886reordered with respect to loads and stores of the memory that is being
25887accessed.
25888With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
25889memory accesses, but that can lead to inefficient code in places where the
25890memory is known to not change.  Rather than mark the memory as volatile,
25891you can use @option{-msafe-dma} to tell the compiler to treat
25892the DMA instructions as potentially affecting all memory.
25893
25894@item -mbranch-hints
25895@opindex mbranch-hints
25896
25897By default, GCC generates a branch hint instruction to avoid
25898pipeline stalls for always-taken or probably-taken branches.  A hint
25899is not generated closer than 8 instructions away from its branch.
25900There is little reason to disable them, except for debugging purposes,
25901or to make an object a little bit smaller.
25902
25903@item -msmall-mem
25904@itemx -mlarge-mem
25905@opindex msmall-mem
25906@opindex mlarge-mem
25907
25908By default, GCC generates code assuming that addresses are never larger
25909than 18 bits.  With @option{-mlarge-mem} code is generated that assumes
25910a full 32-bit address.
25911
25912@item -mstdmain
25913@opindex mstdmain
25914
25915By default, GCC links against startup code that assumes the SPU-style
25916main function interface (which has an unconventional parameter list).
25917With @option{-mstdmain}, GCC links your program against startup
25918code that assumes a C99-style interface to @code{main}, including a
25919local copy of @code{argv} strings.
25920
25921@item -mfixed-range=@var{register-range}
25922@opindex mfixed-range
25923Generate code treating the given register range as fixed registers.
25924A fixed register is one that the register allocator cannot use.  This is
25925useful when compiling kernel code.  A register range is specified as
25926two registers separated by a dash.  Multiple register ranges can be
25927specified separated by a comma.
25928
25929@item -mea32
25930@itemx -mea64
25931@opindex mea32
25932@opindex mea64
25933Compile code assuming that pointers to the PPU address space accessed
25934via the @code{__ea} named address space qualifier are either 32 or 64
25935bits wide.  The default is 32 bits.  As this is an ABI-changing option,
25936all object code in an executable must be compiled with the same setting.
25937
25938@item -maddress-space-conversion
25939@itemx -mno-address-space-conversion
25940@opindex maddress-space-conversion
25941@opindex mno-address-space-conversion
25942Allow/disallow treating the @code{__ea} address space as superset
25943of the generic address space.  This enables explicit type casts
25944between @code{__ea} and generic pointer as well as implicit
25945conversions of generic pointers to @code{__ea} pointers.  The
25946default is to allow address space pointer conversions.
25947
25948@item -mcache-size=@var{cache-size}
25949@opindex mcache-size
25950This option controls the version of libgcc that the compiler links to an
25951executable and selects a software-managed cache for accessing variables
25952in the @code{__ea} address space with a particular cache size.  Possible
25953options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
25954and @samp{128}.  The default cache size is 64KB.
25955
25956@item -matomic-updates
25957@itemx -mno-atomic-updates
25958@opindex matomic-updates
25959@opindex mno-atomic-updates
25960This option controls the version of libgcc that the compiler links to an
25961executable and selects whether atomic updates to the software-managed
25962cache of PPU-side variables are used.  If you use atomic updates, changes
25963to a PPU variable from SPU code using the @code{__ea} named address space
25964qualifier do not interfere with changes to other PPU variables residing
25965in the same cache line from PPU code.  If you do not use atomic updates,
25966such interference may occur; however, writing back cache lines is
25967more efficient.  The default behavior is to use atomic updates.
25968
25969@item -mdual-nops
25970@itemx -mdual-nops=@var{n}
25971@opindex mdual-nops
25972By default, GCC inserts NOPs to increase dual issue when it expects
25973it to increase performance.  @var{n} can be a value from 0 to 10.  A
25974smaller @var{n} inserts fewer NOPs.  10 is the default, 0 is the
25975same as @option{-mno-dual-nops}.  Disabled with @option{-Os}.
25976
25977@item -mhint-max-nops=@var{n}
25978@opindex mhint-max-nops
25979Maximum number of NOPs to insert for a branch hint.  A branch hint must
25980be at least 8 instructions away from the branch it is affecting.  GCC
25981inserts up to @var{n} NOPs to enforce this, otherwise it does not
25982generate the branch hint.
25983
25984@item -mhint-max-distance=@var{n}
25985@opindex mhint-max-distance
25986The encoding of the branch hint instruction limits the hint to be within
25987256 instructions of the branch it is affecting.  By default, GCC makes
25988sure it is within 125.
25989
25990@item -msafe-hints
25991@opindex msafe-hints
25992Work around a hardware bug that causes the SPU to stall indefinitely.
25993By default, GCC inserts the @code{hbrp} instruction to make sure
25994this stall won't happen.
25995
25996@end table
25997
25998@node System V Options
25999@subsection Options for System V
26000
26001These additional options are available on System V Release 4 for
26002compatibility with other compilers on those systems:
26003
26004@table @gcctabopt
26005@item -G
26006@opindex G
26007Create a shared object.
26008It is recommended that @option{-symbolic} or @option{-shared} be used instead.
26009
26010@item -Qy
26011@opindex Qy
26012Identify the versions of each tool used by the compiler, in a
26013@code{.ident} assembler directive in the output.
26014
26015@item -Qn
26016@opindex Qn
26017Refrain from adding @code{.ident} directives to the output file (this is
26018the default).
26019
26020@item -YP,@var{dirs}
26021@opindex YP
26022Search the directories @var{dirs}, and no others, for libraries
26023specified with @option{-l}.
26024
26025@item -Ym,@var{dir}
26026@opindex Ym
26027Look in the directory @var{dir} to find the M4 preprocessor.
26028The assembler uses this option.
26029@c This is supposed to go with a -Yd for predefined M4 macro files, but
26030@c the generic assembler that comes with Solaris takes just -Ym.
26031@end table
26032
26033@node TILE-Gx Options
26034@subsection TILE-Gx Options
26035@cindex TILE-Gx options
26036
26037These @samp{-m} options are supported on the TILE-Gx:
26038
26039@table @gcctabopt
26040@item -mcmodel=small
26041@opindex mcmodel=small
26042Generate code for the small model.  The distance for direct calls is
26043limited to 500M in either direction.  PC-relative addresses are 32
26044bits.  Absolute addresses support the full address range.
26045
26046@item -mcmodel=large
26047@opindex mcmodel=large
26048Generate code for the large model.  There is no limitation on call
26049distance, pc-relative addresses, or absolute addresses.
26050
26051@item -mcpu=@var{name}
26052@opindex mcpu
26053Selects the type of CPU to be targeted.  Currently the only supported
26054type is @samp{tilegx}.
26055
26056@item -m32
26057@itemx -m64
26058@opindex m32
26059@opindex m64
26060Generate code for a 32-bit or 64-bit environment.  The 32-bit
26061environment sets int, long, and pointer to 32 bits.  The 64-bit
26062environment sets int to 32 bits and long and pointer to 64 bits.
26063
26064@item -mbig-endian
26065@itemx -mlittle-endian
26066@opindex mbig-endian
26067@opindex mlittle-endian
26068Generate code in big/little endian mode, respectively.
26069@end table
26070
26071@node TILEPro Options
26072@subsection TILEPro Options
26073@cindex TILEPro options
26074
26075These @samp{-m} options are supported on the TILEPro:
26076
26077@table @gcctabopt
26078@item -mcpu=@var{name}
26079@opindex mcpu
26080Selects the type of CPU to be targeted.  Currently the only supported
26081type is @samp{tilepro}.
26082
26083@item -m32
26084@opindex m32
26085Generate code for a 32-bit environment, which sets int, long, and
26086pointer to 32 bits.  This is the only supported behavior so the flag
26087is essentially ignored.
26088@end table
26089
26090@node V850 Options
26091@subsection V850 Options
26092@cindex V850 Options
26093
26094These @samp{-m} options are defined for V850 implementations:
26095
26096@table @gcctabopt
26097@item -mlong-calls
26098@itemx -mno-long-calls
26099@opindex mlong-calls
26100@opindex mno-long-calls
26101Treat all calls as being far away (near).  If calls are assumed to be
26102far away, the compiler always loads the function's address into a
26103register, and calls indirect through the pointer.
26104
26105@item -mno-ep
26106@itemx -mep
26107@opindex mno-ep
26108@opindex mep
26109Do not optimize (do optimize) basic blocks that use the same index
26110pointer 4 or more times to copy pointer into the @code{ep} register, and
26111use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
26112option is on by default if you optimize.
26113
26114@item -mno-prolog-function
26115@itemx -mprolog-function
26116@opindex mno-prolog-function
26117@opindex mprolog-function
26118Do not use (do use) external functions to save and restore registers
26119at the prologue and epilogue of a function.  The external functions
26120are slower, but use less code space if more than one function saves
26121the same number of registers.  The @option{-mprolog-function} option
26122is on by default if you optimize.
26123
26124@item -mspace
26125@opindex mspace
26126Try to make the code as small as possible.  At present, this just turns
26127on the @option{-mep} and @option{-mprolog-function} options.
26128
26129@item -mtda=@var{n}
26130@opindex mtda
26131Put static or global variables whose size is @var{n} bytes or less into
26132the tiny data area that register @code{ep} points to.  The tiny data
26133area can hold up to 256 bytes in total (128 bytes for byte references).
26134
26135@item -msda=@var{n}
26136@opindex msda
26137Put static or global variables whose size is @var{n} bytes or less into
26138the small data area that register @code{gp} points to.  The small data
26139area can hold up to 64 kilobytes.
26140
26141@item -mzda=@var{n}
26142@opindex mzda
26143Put static or global variables whose size is @var{n} bytes or less into
26144the first 32 kilobytes of memory.
26145
26146@item -mv850
26147@opindex mv850
26148Specify that the target processor is the V850.
26149
26150@item -mv850e3v5
26151@opindex mv850e3v5
26152Specify that the target processor is the V850E3V5.  The preprocessor
26153constant @code{__v850e3v5__} is defined if this option is used.
26154
26155@item -mv850e2v4
26156@opindex mv850e2v4
26157Specify that the target processor is the V850E3V5.  This is an alias for
26158the @option{-mv850e3v5} option.
26159
26160@item -mv850e2v3
26161@opindex mv850e2v3
26162Specify that the target processor is the V850E2V3.  The preprocessor
26163constant @code{__v850e2v3__} is defined if this option is used.
26164
26165@item -mv850e2
26166@opindex mv850e2
26167Specify that the target processor is the V850E2.  The preprocessor
26168constant @code{__v850e2__} is defined if this option is used.
26169
26170@item -mv850e1
26171@opindex mv850e1
26172Specify that the target processor is the V850E1.  The preprocessor
26173constants @code{__v850e1__} and @code{__v850e__} are defined if
26174this option is used.
26175
26176@item -mv850es
26177@opindex mv850es
26178Specify that the target processor is the V850ES.  This is an alias for
26179the @option{-mv850e1} option.
26180
26181@item -mv850e
26182@opindex mv850e
26183Specify that the target processor is the V850E@.  The preprocessor
26184constant @code{__v850e__} is defined if this option is used.
26185
26186If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
26187nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
26188are defined then a default target processor is chosen and the
26189relevant @samp{__v850*__} preprocessor constant is defined.
26190
26191The preprocessor constants @code{__v850} and @code{__v851__} are always
26192defined, regardless of which processor variant is the target.
26193
26194@item -mdisable-callt
26195@itemx -mno-disable-callt
26196@opindex mdisable-callt
26197@opindex mno-disable-callt
26198This option suppresses generation of the @code{CALLT} instruction for the
26199v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
26200architecture.
26201
26202This option is enabled by default when the RH850 ABI is
26203in use (see @option{-mrh850-abi}), and disabled by default when the
26204GCC ABI is in use.  If @code{CALLT} instructions are being generated
26205then the C preprocessor symbol @code{__V850_CALLT__} is defined.
26206
26207@item -mrelax
26208@itemx -mno-relax
26209@opindex mrelax
26210@opindex mno-relax
26211Pass on (or do not pass on) the @option{-mrelax} command-line option
26212to the assembler.
26213
26214@item -mlong-jumps
26215@itemx -mno-long-jumps
26216@opindex mlong-jumps
26217@opindex mno-long-jumps
26218Disable (or re-enable) the generation of PC-relative jump instructions.
26219
26220@item -msoft-float
26221@itemx -mhard-float
26222@opindex msoft-float
26223@opindex mhard-float
26224Disable (or re-enable) the generation of hardware floating point
26225instructions.  This option is only significant when the target
26226architecture is @samp{V850E2V3} or higher.  If hardware floating point
26227instructions are being generated then the C preprocessor symbol
26228@code{__FPU_OK__} is defined, otherwise the symbol
26229@code{__NO_FPU__} is defined.
26230
26231@item -mloop
26232@opindex mloop
26233Enables the use of the e3v5 LOOP instruction.  The use of this
26234instruction is not enabled by default when the e3v5 architecture is
26235selected because its use is still experimental.
26236
26237@item -mrh850-abi
26238@itemx -mghs
26239@opindex mrh850-abi
26240@opindex mghs
26241Enables support for the RH850 version of the V850 ABI.  This is the
26242default.  With this version of the ABI the following rules apply:
26243
26244@itemize
26245@item
26246Integer sized structures and unions are returned via a memory pointer
26247rather than a register.
26248
26249@item
26250Large structures and unions (more than 8 bytes in size) are passed by
26251value.
26252
26253@item
26254Functions are aligned to 16-bit boundaries.
26255
26256@item
26257The @option{-m8byte-align} command-line option is supported.
26258
26259@item
26260The @option{-mdisable-callt} command-line option is enabled by
26261default.  The @option{-mno-disable-callt} command-line option is not
26262supported.
26263@end itemize
26264
26265When this version of the ABI is enabled the C preprocessor symbol
26266@code{__V850_RH850_ABI__} is defined.
26267
26268@item -mgcc-abi
26269@opindex mgcc-abi
26270Enables support for the old GCC version of the V850 ABI.  With this
26271version of the ABI the following rules apply:
26272
26273@itemize
26274@item
26275Integer sized structures and unions are returned in register @code{r10}.
26276
26277@item
26278Large structures and unions (more than 8 bytes in size) are passed by
26279reference.
26280
26281@item
26282Functions are aligned to 32-bit boundaries, unless optimizing for
26283size.
26284
26285@item
26286The @option{-m8byte-align} command-line option is not supported.
26287
26288@item
26289The @option{-mdisable-callt} command-line option is supported but not
26290enabled by default.
26291@end itemize
26292
26293When this version of the ABI is enabled the C preprocessor symbol
26294@code{__V850_GCC_ABI__} is defined.
26295
26296@item -m8byte-align
26297@itemx -mno-8byte-align
26298@opindex m8byte-align
26299@opindex mno-8byte-align
26300Enables support for @code{double} and @code{long long} types to be
26301aligned on 8-byte boundaries.  The default is to restrict the
26302alignment of all objects to at most 4-bytes.  When
26303@option{-m8byte-align} is in effect the C preprocessor symbol
26304@code{__V850_8BYTE_ALIGN__} is defined.
26305
26306@item -mbig-switch
26307@opindex mbig-switch
26308Generate code suitable for big switch tables.  Use this option only if
26309the assembler/linker complain about out of range branches within a switch
26310table.
26311
26312@item -mapp-regs
26313@opindex mapp-regs
26314This option causes r2 and r5 to be used in the code generated by
26315the compiler.  This setting is the default.
26316
26317@item -mno-app-regs
26318@opindex mno-app-regs
26319This option causes r2 and r5 to be treated as fixed registers.
26320
26321@end table
26322
26323@node VAX Options
26324@subsection VAX Options
26325@cindex VAX options
26326
26327These @samp{-m} options are defined for the VAX:
26328
26329@table @gcctabopt
26330@item -munix
26331@opindex munix
26332Do not output certain jump instructions (@code{aobleq} and so on)
26333that the Unix assembler for the VAX cannot handle across long
26334ranges.
26335
26336@item -mgnu
26337@opindex mgnu
26338Do output those jump instructions, on the assumption that the
26339GNU assembler is being used.
26340
26341@item -mg
26342@opindex mg
26343Output code for G-format floating-point numbers instead of D-format.
26344@end table
26345
26346@node Visium Options
26347@subsection Visium Options
26348@cindex Visium options
26349
26350@table @gcctabopt
26351
26352@item -mdebug
26353@opindex mdebug
26354A program which performs file I/O and is destined to run on an MCM target
26355should be linked with this option.  It causes the libraries libc.a and
26356libdebug.a to be linked.  The program should be run on the target under
26357the control of the GDB remote debugging stub.
26358
26359@item -msim
26360@opindex msim
26361A program which performs file I/O and is destined to run on the simulator
26362should be linked with option.  This causes libraries libc.a and libsim.a to
26363be linked.
26364
26365@item -mfpu
26366@itemx -mhard-float
26367@opindex mfpu
26368@opindex mhard-float
26369Generate code containing floating-point instructions.  This is the
26370default.
26371
26372@item -mno-fpu
26373@itemx -msoft-float
26374@opindex mno-fpu
26375@opindex msoft-float
26376Generate code containing library calls for floating-point.
26377
26378@option{-msoft-float} changes the calling convention in the output file;
26379therefore, it is only useful if you compile @emph{all} of a program with
26380this option.  In particular, you need to compile @file{libgcc.a}, the
26381library that comes with GCC, with @option{-msoft-float} in order for
26382this to work.
26383
26384@item -mcpu=@var{cpu_type}
26385@opindex mcpu
26386Set the instruction set, register set, and instruction scheduling parameters
26387for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
26388@samp{mcm}, @samp{gr5} and @samp{gr6}.
26389
26390@samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
26391
26392By default (unless configured otherwise), GCC generates code for the GR5
26393variant of the Visium architecture.
26394
26395With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
26396architecture.  The only difference from GR5 code is that the compiler will
26397generate block move instructions.
26398
26399@item -mtune=@var{cpu_type}
26400@opindex mtune
26401Set the instruction scheduling parameters for machine type @var{cpu_type},
26402but do not set the instruction set or register set that the option
26403@option{-mcpu=@var{cpu_type}} would.
26404
26405@item -msv-mode
26406@opindex msv-mode
26407Generate code for the supervisor mode, where there are no restrictions on
26408the access to general registers.  This is the default.
26409
26410@item -muser-mode
26411@opindex muser-mode
26412Generate code for the user mode, where the access to some general registers
26413is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
26414mode; on the GR6, only registers r29 to r31 are affected.
26415@end table
26416
26417@node VMS Options
26418@subsection VMS Options
26419
26420These @samp{-m} options are defined for the VMS implementations:
26421
26422@table @gcctabopt
26423@item -mvms-return-codes
26424@opindex mvms-return-codes
26425Return VMS condition codes from @code{main}. The default is to return POSIX-style
26426condition (e.g.@ error) codes.
26427
26428@item -mdebug-main=@var{prefix}
26429@opindex mdebug-main=@var{prefix}
26430Flag the first routine whose name starts with @var{prefix} as the main
26431routine for the debugger.
26432
26433@item -mmalloc64
26434@opindex mmalloc64
26435Default to 64-bit memory allocation routines.
26436
26437@item -mpointer-size=@var{size}
26438@opindex mpointer-size=@var{size}
26439Set the default size of pointers. Possible options for @var{size} are
26440@samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
26441for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
26442The later option disables @code{pragma pointer_size}.
26443@end table
26444
26445@node VxWorks Options
26446@subsection VxWorks Options
26447@cindex VxWorks Options
26448
26449The options in this section are defined for all VxWorks targets.
26450Options specific to the target hardware are listed with the other
26451options for that target.
26452
26453@table @gcctabopt
26454@item -mrtp
26455@opindex mrtp
26456GCC can generate code for both VxWorks kernels and real time processes
26457(RTPs).  This option switches from the former to the latter.  It also
26458defines the preprocessor macro @code{__RTP__}.
26459
26460@item -non-static
26461@opindex non-static
26462Link an RTP executable against shared libraries rather than static
26463libraries.  The options @option{-static} and @option{-shared} can
26464also be used for RTPs (@pxref{Link Options}); @option{-static}
26465is the default.
26466
26467@item -Bstatic
26468@itemx -Bdynamic
26469@opindex Bstatic
26470@opindex Bdynamic
26471These options are passed down to the linker.  They are defined for
26472compatibility with Diab.
26473
26474@item -Xbind-lazy
26475@opindex Xbind-lazy
26476Enable lazy binding of function calls.  This option is equivalent to
26477@option{-Wl,-z,now} and is defined for compatibility with Diab.
26478
26479@item -Xbind-now
26480@opindex Xbind-now
26481Disable lazy binding of function calls.  This option is the default and
26482is defined for compatibility with Diab.
26483@end table
26484
26485@node x86 Options
26486@subsection x86 Options
26487@cindex x86 Options
26488
26489These @samp{-m} options are defined for the x86 family of computers.
26490
26491@table @gcctabopt
26492
26493@item -march=@var{cpu-type}
26494@opindex march
26495Generate instructions for the machine type @var{cpu-type}.  In contrast to
26496@option{-mtune=@var{cpu-type}}, which merely tunes the generated code
26497for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
26498to generate code that may not run at all on processors other than the one
26499indicated.  Specifying @option{-march=@var{cpu-type}} implies
26500@option{-mtune=@var{cpu-type}}.
26501
26502The choices for @var{cpu-type} are:
26503
26504@table @samp
26505@item native
26506This selects the CPU to generate code for at compilation time by determining
26507the processor type of the compiling machine.  Using @option{-march=native}
26508enables all instruction subsets supported by the local machine (hence
26509the result might not run on different machines).  Using @option{-mtune=native}
26510produces code optimized for the local machine under the constraints
26511of the selected instruction set.
26512
26513@item x86-64
26514A generic CPU with 64-bit extensions.
26515
26516@item i386
26517Original Intel i386 CPU@.
26518
26519@item i486
26520Intel i486 CPU@.  (No scheduling is implemented for this chip.)
26521
26522@item i586
26523@itemx pentium
26524Intel Pentium CPU with no MMX support.
26525
26526@item lakemont
26527Intel Lakemont MCU, based on Intel Pentium CPU.
26528
26529@item pentium-mmx
26530Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
26531
26532@item pentiumpro
26533Intel Pentium Pro CPU@.
26534
26535@item i686
26536When used with @option{-march}, the Pentium Pro
26537instruction set is used, so the code runs on all i686 family chips.
26538When used with @option{-mtune}, it has the same meaning as @samp{generic}.
26539
26540@item pentium2
26541Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
26542support.
26543
26544@item pentium3
26545@itemx pentium3m
26546Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
26547set support.
26548
26549@item pentium-m
26550Intel Pentium M; low-power version of Intel Pentium III CPU
26551with MMX, SSE and SSE2 instruction set support.  Used by Centrino notebooks.
26552
26553@item pentium4
26554@itemx pentium4m
26555Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
26556
26557@item prescott
26558Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
26559set support.
26560
26561@item nocona
26562Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
26563SSE2 and SSE3 instruction set support.
26564
26565@item core2
26566Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
26567instruction set support.
26568
26569@item nehalem
26570Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
26571SSE4.1, SSE4.2 and POPCNT instruction set support.
26572
26573@item westmere
26574Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
26575SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
26576
26577@item sandybridge
26578Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
26579SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
26580
26581@item ivybridge
26582Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
26583SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
26584instruction set support.
26585
26586@item haswell
26587Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
26588SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26589BMI, BMI2 and F16C instruction set support.
26590
26591@item broadwell
26592Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
26593SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26594BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
26595
26596@item skylake
26597Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
26598SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26599BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
26600XSAVES instruction set support.
26601
26602@item bonnell
26603Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
26604instruction set support.
26605
26606@item silvermont
26607Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
26608SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
26609
26610@item knl
26611Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
26612SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26613BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
26614AVX512CD instruction set support.
26615
26616@item knm
26617Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
26618SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26619BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
26620AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
26621
26622@item skylake-avx512
26623Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
26624SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26625BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
26626CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
26627
26628@item cannonlake
26629Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
26630SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
26631RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
26632XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
26633AVX512IFMA, SHA and UMIP instruction set support.
26634
26635@item icelake-client
26636Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
26637SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
26638RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
26639XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
26640AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
26641AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
26642
26643@item icelake-server
26644Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
26645SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
26646RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
26647XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
26648AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
26649AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
26650set support.
26651
26652@item k6
26653AMD K6 CPU with MMX instruction set support.
26654
26655@item k6-2
26656@itemx k6-3
26657Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
26658
26659@item athlon
26660@itemx athlon-tbird
26661AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
26662support.
26663
26664@item athlon-4
26665@itemx athlon-xp
26666@itemx athlon-mp
26667Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
26668instruction set support.
26669
26670@item k8
26671@itemx opteron
26672@itemx athlon64
26673@itemx athlon-fx
26674Processors based on the AMD K8 core with x86-64 instruction set support,
26675including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
26676(This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
26677instruction set extensions.)
26678
26679@item k8-sse3
26680@itemx opteron-sse3
26681@itemx athlon64-sse3
26682Improved versions of AMD K8 cores with SSE3 instruction set support.
26683
26684@item amdfam10
26685@itemx barcelona
26686CPUs based on AMD Family 10h cores with x86-64 instruction set support.  (This
26687supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
26688instruction set extensions.)
26689
26690@item bdver1
26691CPUs based on AMD Family 15h cores with x86-64 instruction set support.  (This
26692supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
26693SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
26694@item bdver2
26695AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
26696supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
26697SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
26698extensions.)
26699@item bdver3
26700AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
26701supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
26702PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
2670364-bit instruction set extensions.
26704@item bdver4
26705AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
26706supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
26707AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
26708SSE4.2, ABM and 64-bit instruction set extensions.
26709
26710@item znver1
26711AMD Family 17h core based CPUs with x86-64 instruction set support.  (This
26712supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
26713SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
26714SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
26715instruction set extensions.
26716
26717@item btver1
26718CPUs based on AMD Family 14h cores with x86-64 instruction set support.  (This
26719supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
26720instruction set extensions.)
26721
26722@item btver2
26723CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
26724includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
26725SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
26726
26727@item winchip-c6
26728IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
26729set support.
26730
26731@item winchip2
26732IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
26733instruction set support.
26734
26735@item c3
26736VIA C3 CPU with MMX and 3DNow!@: instruction set support.
26737(No scheduling is implemented for this chip.)
26738
26739@item c3-2
26740VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
26741(No scheduling is implemented for this chip.)
26742
26743@item c7
26744VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
26745(No scheduling is implemented for this chip.)
26746
26747@item samuel-2
26748VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
26749(No scheduling is implemented for this chip.)
26750
26751@item nehemiah
26752VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
26753(No scheduling is implemented for this chip.)
26754
26755@item esther
26756VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
26757(No scheduling is implemented for this chip.)
26758
26759@item eden-x2
26760VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
26761(No scheduling is implemented for this chip.)
26762
26763@item eden-x4
26764VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
26765AVX and AVX2 instruction set support.
26766(No scheduling is implemented for this chip.)
26767
26768@item nano
26769Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
26770instruction set support.
26771(No scheduling is implemented for this chip.)
26772
26773@item nano-1000
26774VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
26775instruction set support.
26776(No scheduling is implemented for this chip.)
26777
26778@item nano-2000
26779VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
26780instruction set support.
26781(No scheduling is implemented for this chip.)
26782
26783@item nano-3000
26784VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
26785instruction set support.
26786(No scheduling is implemented for this chip.)
26787
26788@item nano-x2
26789VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
26790instruction set support.
26791(No scheduling is implemented for this chip.)
26792
26793@item nano-x4
26794VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
26795instruction set support.
26796(No scheduling is implemented for this chip.)
26797
26798@item geode
26799AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
26800@end table
26801
26802@item -mtune=@var{cpu-type}
26803@opindex mtune
26804Tune to @var{cpu-type} everything applicable about the generated code, except
26805for the ABI and the set of available instructions.
26806While picking a specific @var{cpu-type} schedules things appropriately
26807for that particular chip, the compiler does not generate any code that
26808cannot run on the default machine type unless you use a
26809@option{-march=@var{cpu-type}} option.
26810For example, if GCC is configured for i686-pc-linux-gnu
26811then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
26812but still runs on i686 machines.
26813
26814The choices for @var{cpu-type} are the same as for @option{-march}.
26815In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
26816
26817@table @samp
26818@item generic
26819Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
26820If you know the CPU on which your code will run, then you should use
26821the corresponding @option{-mtune} or @option{-march} option instead of
26822@option{-mtune=generic}.  But, if you do not know exactly what CPU users
26823of your application will have, then you should use this option.
26824
26825As new processors are deployed in the marketplace, the behavior of this
26826option will change.  Therefore, if you upgrade to a newer version of
26827GCC, code generation controlled by this option will change to reflect
26828the processors
26829that are most common at the time that version of GCC is released.
26830
26831There is no @option{-march=generic} option because @option{-march}
26832indicates the instruction set the compiler can use, and there is no
26833generic instruction set applicable to all processors.  In contrast,
26834@option{-mtune} indicates the processor (or, in this case, collection of
26835processors) for which the code is optimized.
26836
26837@item intel
26838Produce code optimized for the most current Intel processors, which are
26839Haswell and Silvermont for this version of GCC.  If you know the CPU
26840on which your code will run, then you should use the corresponding
26841@option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
26842But, if you want your application performs better on both Haswell and
26843Silvermont, then you should use this option.
26844
26845As new Intel processors are deployed in the marketplace, the behavior of
26846this option will change.  Therefore, if you upgrade to a newer version of
26847GCC, code generation controlled by this option will change to reflect
26848the most current Intel processors at the time that version of GCC is
26849released.
26850
26851There is no @option{-march=intel} option because @option{-march} indicates
26852the instruction set the compiler can use, and there is no common
26853instruction set applicable to all processors.  In contrast,
26854@option{-mtune} indicates the processor (or, in this case, collection of
26855processors) for which the code is optimized.
26856@end table
26857
26858@item -mcpu=@var{cpu-type}
26859@opindex mcpu
26860A deprecated synonym for @option{-mtune}.
26861
26862@item -mfpmath=@var{unit}
26863@opindex mfpmath
26864Generate floating-point arithmetic for selected unit @var{unit}.  The choices
26865for @var{unit} are:
26866
26867@table @samp
26868@item 387
26869Use the standard 387 floating-point coprocessor present on the majority of chips and
26870emulated otherwise.  Code compiled with this option runs almost everywhere.
26871The temporary results are computed in 80-bit precision instead of the precision
26872specified by the type, resulting in slightly different results compared to most
26873of other chips.  See @option{-ffloat-store} for more detailed description.
26874
26875This is the default choice for non-Darwin x86-32 targets.
26876
26877@item sse
26878Use scalar floating-point instructions present in the SSE instruction set.
26879This instruction set is supported by Pentium III and newer chips,
26880and in the AMD line
26881by Athlon-4, Athlon XP and Athlon MP chips.  The earlier version of the SSE
26882instruction set supports only single-precision arithmetic, thus the double and
26883extended-precision arithmetic are still done using 387.  A later version, present
26884only in Pentium 4 and AMD x86-64 chips, supports double-precision
26885arithmetic too.
26886
26887For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
26888or @option{-msse2} switches to enable SSE extensions and make this option
26889effective.  For the x86-64 compiler, these extensions are enabled by default.
26890
26891The resulting code should be considerably faster in the majority of cases and avoid
26892the numerical instability problems of 387 code, but may break some existing
26893code that expects temporaries to be 80 bits.
26894
26895This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
26896and the default choice for x86-32 targets with the SSE2 instruction set
26897when @option{-ffast-math} is enabled.
26898
26899@item sse,387
26900@itemx sse+387
26901@itemx both
26902Attempt to utilize both instruction sets at once.  This effectively doubles the
26903amount of available registers, and on chips with separate execution units for
26904387 and SSE the execution resources too.  Use this option with care, as it is
26905still experimental, because the GCC register allocator does not model separate
26906functional units well, resulting in unstable performance.
26907@end table
26908
26909@item -masm=@var{dialect}
26910@opindex masm=@var{dialect}
26911Output assembly instructions using selected @var{dialect}.  Also affects
26912which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
26913extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
26914order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
26915not support @samp{intel}.
26916
26917@item -mieee-fp
26918@itemx -mno-ieee-fp
26919@opindex mieee-fp
26920@opindex mno-ieee-fp
26921Control whether or not the compiler uses IEEE floating-point
26922comparisons.  These correctly handle the case where the result of a
26923comparison is unordered.
26924
26925@item -m80387
26926@itemx -mhard-float
26927@opindex 80387
26928@opindex mhard-float
26929Generate output containing 80387 instructions for floating point.
26930
26931@item -mno-80387
26932@itemx -msoft-float
26933@opindex no-80387
26934@opindex msoft-float
26935Generate output containing library calls for floating point.
26936
26937@strong{Warning:} the requisite libraries are not part of GCC@.
26938Normally the facilities of the machine's usual C compiler are used, but
26939this cannot be done directly in cross-compilation.  You must make your
26940own arrangements to provide suitable library functions for
26941cross-compilation.
26942
26943On machines where a function returns floating-point results in the 80387
26944register stack, some floating-point opcodes may be emitted even if
26945@option{-msoft-float} is used.
26946
26947@item -mno-fp-ret-in-387
26948@opindex mno-fp-ret-in-387
26949Do not use the FPU registers for return values of functions.
26950
26951The usual calling convention has functions return values of types
26952@code{float} and @code{double} in an FPU register, even if there
26953is no FPU@.  The idea is that the operating system should emulate
26954an FPU@.
26955
26956The option @option{-mno-fp-ret-in-387} causes such values to be returned
26957in ordinary CPU registers instead.
26958
26959@item -mno-fancy-math-387
26960@opindex mno-fancy-math-387
26961Some 387 emulators do not support the @code{sin}, @code{cos} and
26962@code{sqrt} instructions for the 387.  Specify this option to avoid
26963generating those instructions.  This option is the default on
26964OpenBSD and NetBSD@.  This option is overridden when @option{-march}
26965indicates that the target CPU always has an FPU and so the
26966instruction does not need emulation.  These
26967instructions are not generated unless you also use the
26968@option{-funsafe-math-optimizations} switch.
26969
26970@item -malign-double
26971@itemx -mno-align-double
26972@opindex malign-double
26973@opindex mno-align-double
26974Control whether GCC aligns @code{double}, @code{long double}, and
26975@code{long long} variables on a two-word boundary or a one-word
26976boundary.  Aligning @code{double} variables on a two-word boundary
26977produces code that runs somewhat faster on a Pentium at the
26978expense of more memory.
26979
26980On x86-64, @option{-malign-double} is enabled by default.
26981
26982@strong{Warning:} if you use the @option{-malign-double} switch,
26983structures containing the above types are aligned differently than
26984the published application binary interface specifications for the x86-32
26985and are not binary compatible with structures in code compiled
26986without that switch.
26987
26988@item -m96bit-long-double
26989@itemx -m128bit-long-double
26990@opindex m96bit-long-double
26991@opindex m128bit-long-double
26992These switches control the size of @code{long double} type.  The x86-32
26993application binary interface specifies the size to be 96 bits,
26994so @option{-m96bit-long-double} is the default in 32-bit mode.
26995
26996Modern architectures (Pentium and newer) prefer @code{long double}
26997to be aligned to an 8- or 16-byte boundary.  In arrays or structures
26998conforming to the ABI, this is not possible.  So specifying
26999@option{-m128bit-long-double} aligns @code{long double}
27000to a 16-byte boundary by padding the @code{long double} with an additional
2700132-bit zero.
27002
27003In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
27004its ABI specifies that @code{long double} is aligned on 16-byte boundary.
27005
27006Notice that neither of these options enable any extra precision over the x87
27007standard of 80 bits for a @code{long double}.
27008
27009@strong{Warning:} if you override the default value for your target ABI, this
27010changes the size of
27011structures and arrays containing @code{long double} variables,
27012as well as modifying the function calling convention for functions taking
27013@code{long double}.  Hence they are not binary-compatible
27014with code compiled without that switch.
27015
27016@item -mlong-double-64
27017@itemx -mlong-double-80
27018@itemx -mlong-double-128
27019@opindex mlong-double-64
27020@opindex mlong-double-80
27021@opindex mlong-double-128
27022These switches control the size of @code{long double} type. A size
27023of 64 bits makes the @code{long double} type equivalent to the @code{double}
27024type. This is the default for 32-bit Bionic C library.  A size
27025of 128 bits makes the @code{long double} type equivalent to the
27026@code{__float128} type. This is the default for 64-bit Bionic C library.
27027
27028@strong{Warning:} if you override the default value for your target ABI, this
27029changes the size of
27030structures and arrays containing @code{long double} variables,
27031as well as modifying the function calling convention for functions taking
27032@code{long double}.  Hence they are not binary-compatible
27033with code compiled without that switch.
27034
27035@item -malign-data=@var{type}
27036@opindex malign-data
27037Control how GCC aligns variables.  Supported values for @var{type} are
27038@samp{compat} uses increased alignment value compatible uses GCC 4.8
27039and earlier, @samp{abi} uses alignment value as specified by the
27040psABI, and @samp{cacheline} uses increased alignment value to match
27041the cache line size.  @samp{compat} is the default.
27042
27043@item -mlarge-data-threshold=@var{threshold}
27044@opindex mlarge-data-threshold
27045When @option{-mcmodel=medium} is specified, data objects larger than
27046@var{threshold} are placed in the large data section.  This value must be the
27047same across all objects linked into the binary, and defaults to 65535.
27048
27049@item -mrtd
27050@opindex mrtd
27051Use a different function-calling convention, in which functions that
27052take a fixed number of arguments return with the @code{ret @var{num}}
27053instruction, which pops their arguments while returning.  This saves one
27054instruction in the caller since there is no need to pop the arguments
27055there.
27056
27057You can specify that an individual function is called with this calling
27058sequence with the function attribute @code{stdcall}.  You can also
27059override the @option{-mrtd} option by using the function attribute
27060@code{cdecl}.  @xref{Function Attributes}.
27061
27062@strong{Warning:} this calling convention is incompatible with the one
27063normally used on Unix, so you cannot use it if you need to call
27064libraries compiled with the Unix compiler.
27065
27066Also, you must provide function prototypes for all functions that
27067take variable numbers of arguments (including @code{printf});
27068otherwise incorrect code is generated for calls to those
27069functions.
27070
27071In addition, seriously incorrect code results if you call a
27072function with too many arguments.  (Normally, extra arguments are
27073harmlessly ignored.)
27074
27075@item -mregparm=@var{num}
27076@opindex mregparm
27077Control how many registers are used to pass integer arguments.  By
27078default, no registers are used to pass arguments, and at most 3
27079registers can be used.  You can control this behavior for a specific
27080function by using the function attribute @code{regparm}.
27081@xref{Function Attributes}.
27082
27083@strong{Warning:} if you use this switch, and
27084@var{num} is nonzero, then you must build all modules with the same
27085value, including any libraries.  This includes the system libraries and
27086startup modules.
27087
27088@item -msseregparm
27089@opindex msseregparm
27090Use SSE register passing conventions for float and double arguments
27091and return values.  You can control this behavior for a specific
27092function by using the function attribute @code{sseregparm}.
27093@xref{Function Attributes}.
27094
27095@strong{Warning:} if you use this switch then you must build all
27096modules with the same value, including any libraries.  This includes
27097the system libraries and startup modules.
27098
27099@item -mvect8-ret-in-mem
27100@opindex mvect8-ret-in-mem
27101Return 8-byte vectors in memory instead of MMX registers.  This is the
27102default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
27103Studio compilers until version 12.  Later compiler versions (starting
27104with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
27105is the default on Solaris@tie{}10 and later.  @emph{Only} use this option if
27106you need to remain compatible with existing code produced by those
27107previous compiler versions or older versions of GCC@.
27108
27109@item -mpc32
27110@itemx -mpc64
27111@itemx -mpc80
27112@opindex mpc32
27113@opindex mpc64
27114@opindex mpc80
27115
27116Set 80387 floating-point precision to 32, 64 or 80 bits.  When @option{-mpc32}
27117is specified, the significands of results of floating-point operations are
27118rounded to 24 bits (single precision); @option{-mpc64} rounds the
27119significands of results of floating-point operations to 53 bits (double
27120precision) and @option{-mpc80} rounds the significands of results of
27121floating-point operations to 64 bits (extended double precision), which is
27122the default.  When this option is used, floating-point operations in higher
27123precisions are not available to the programmer without setting the FPU
27124control word explicitly.
27125
27126Setting the rounding of floating-point operations to less than the default
2712780 bits can speed some programs by 2% or more.  Note that some mathematical
27128libraries assume that extended-precision (80-bit) floating-point operations
27129are enabled by default; routines in such libraries could suffer significant
27130loss of accuracy, typically through so-called ``catastrophic cancellation'',
27131when this option is used to set the precision to less than extended precision.
27132
27133@item -mstackrealign
27134@opindex mstackrealign
27135Realign the stack at entry.  On the x86, the @option{-mstackrealign}
27136option generates an alternate prologue and epilogue that realigns the
27137run-time stack if necessary.  This supports mixing legacy codes that keep
271384-byte stack alignment with modern codes that keep 16-byte stack alignment for
27139SSE compatibility.  See also the attribute @code{force_align_arg_pointer},
27140applicable to individual functions.
27141
27142@item -mpreferred-stack-boundary=@var{num}
27143@opindex mpreferred-stack-boundary
27144Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
27145byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
27146the default is 4 (16 bytes or 128 bits).
27147
27148@strong{Warning:} When generating code for the x86-64 architecture with
27149SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
27150used to keep the stack boundary aligned to 8 byte boundary.  Since
27151x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
27152intended to be used in controlled environment where stack space is
27153important limitation.  This option leads to wrong code when functions
27154compiled with 16 byte stack alignment (such as functions from a standard
27155library) are called with misaligned stack.  In this case, SSE
27156instructions may lead to misaligned memory access traps.  In addition,
27157variable arguments are handled incorrectly for 16 byte aligned
27158objects (including x87 long double and __int128), leading to wrong
27159results.  You must build all modules with
27160@option{-mpreferred-stack-boundary=3}, including any libraries.  This
27161includes the system libraries and startup modules.
27162
27163@item -mincoming-stack-boundary=@var{num}
27164@opindex mincoming-stack-boundary
27165Assume the incoming stack is aligned to a 2 raised to @var{num} byte
27166boundary.  If @option{-mincoming-stack-boundary} is not specified,
27167the one specified by @option{-mpreferred-stack-boundary} is used.
27168
27169On Pentium and Pentium Pro, @code{double} and @code{long double} values
27170should be aligned to an 8-byte boundary (see @option{-malign-double}) or
27171suffer significant run time performance penalties.  On Pentium III, the
27172Streaming SIMD Extension (SSE) data type @code{__m128} may not work
27173properly if it is not 16-byte aligned.
27174
27175To ensure proper alignment of this values on the stack, the stack boundary
27176must be as aligned as that required by any value stored on the stack.
27177Further, every function must be generated such that it keeps the stack
27178aligned.  Thus calling a function compiled with a higher preferred
27179stack boundary from a function compiled with a lower preferred stack
27180boundary most likely misaligns the stack.  It is recommended that
27181libraries that use callbacks always use the default setting.
27182
27183This extra alignment does consume extra stack space, and generally
27184increases code size.  Code that is sensitive to stack space usage, such
27185as embedded systems and operating system kernels, may want to reduce the
27186preferred alignment to @option{-mpreferred-stack-boundary=2}.
27187
27188@need 200
27189@item -mmmx
27190@opindex mmmx
27191@need 200
27192@itemx -msse
27193@opindex msse
27194@need 200
27195@itemx -msse2
27196@opindex msse2
27197@need 200
27198@itemx -msse3
27199@opindex msse3
27200@need 200
27201@itemx -mssse3
27202@opindex mssse3
27203@need 200
27204@itemx -msse4
27205@opindex msse4
27206@need 200
27207@itemx -msse4a
27208@opindex msse4a
27209@need 200
27210@itemx -msse4.1
27211@opindex msse4.1
27212@need 200
27213@itemx -msse4.2
27214@opindex msse4.2
27215@need 200
27216@itemx -mavx
27217@opindex mavx
27218@need 200
27219@itemx -mavx2
27220@opindex mavx2
27221@need 200
27222@itemx -mavx512f
27223@opindex mavx512f
27224@need 200
27225@itemx -mavx512pf
27226@opindex mavx512pf
27227@need 200
27228@itemx -mavx512er
27229@opindex mavx512er
27230@need 200
27231@itemx -mavx512cd
27232@opindex mavx512cd
27233@need 200
27234@itemx -mavx512vl
27235@opindex mavx512vl
27236@need 200
27237@itemx -mavx512bw
27238@opindex mavx512bw
27239@need 200
27240@itemx -mavx512dq
27241@opindex mavx512dq
27242@need 200
27243@itemx -mavx512ifma
27244@opindex mavx512ifma
27245@need 200
27246@itemx -mavx512vbmi
27247@opindex mavx512vbmi
27248@need 200
27249@itemx -msha
27250@opindex msha
27251@need 200
27252@itemx -maes
27253@opindex maes
27254@need 200
27255@itemx -mpclmul
27256@opindex mpclmul
27257@need 200
27258@itemx -mclflushopt
27259@opindex mclflushopt
27260@need 200
27261@itemx -mclwb
27262@opindex mclwb
27263@need 200
27264@itemx -mfsgsbase
27265@opindex mfsgsbase
27266@need 200
27267@itemx -mrdrnd
27268@opindex mrdrnd
27269@need 200
27270@itemx -mf16c
27271@opindex mf16c
27272@need 200
27273@itemx -mfma
27274@opindex mfma
27275@need 200
27276@itemx -mpconfig
27277@opindex mpconfig
27278@need 200
27279@itemx -mwbnoinvd
27280@opindex mwbnoinvd
27281@need 200
27282@itemx -mfma4
27283@opindex mfma4
27284@need 200
27285@itemx -mprfchw
27286@opindex mprfchw
27287@need 200
27288@itemx -mrdpid
27289@opindex mrdpid
27290@need 200
27291@itemx -mprefetchwt1
27292@opindex mprefetchwt1
27293@need 200
27294@itemx -mrdseed
27295@opindex mrdseed
27296@need 200
27297@itemx -msgx
27298@opindex msgx
27299@need 200
27300@itemx -mxop
27301@opindex mxop
27302@need 200
27303@itemx -mlwp
27304@opindex mlwp
27305@need 200
27306@itemx -m3dnow
27307@opindex m3dnow
27308@need 200
27309@itemx -m3dnowa
27310@opindex m3dnowa
27311@need 200
27312@itemx -mpopcnt
27313@opindex mpopcnt
27314@need 200
27315@itemx -mabm
27316@opindex mabm
27317@need 200
27318@itemx -madx
27319@opindex madx
27320@need 200
27321@itemx -mbmi
27322@opindex mbmi
27323@need 200
27324@itemx -mbmi2
27325@opindex mbmi2
27326@need 200
27327@itemx -mlzcnt
27328@opindex mlzcnt
27329@need 200
27330@itemx -mfxsr
27331@opindex mfxsr
27332@need 200
27333@itemx -mxsave
27334@opindex mxsave
27335@need 200
27336@itemx -mxsaveopt
27337@opindex mxsaveopt
27338@need 200
27339@itemx -mxsavec
27340@opindex mxsavec
27341@need 200
27342@itemx -mxsaves
27343@opindex mxsaves
27344@need 200
27345@itemx -mrtm
27346@opindex mrtm
27347@need 200
27348@itemx -mhle
27349@opindex mhle
27350@need 200
27351@itemx -mtbm
27352@opindex mtbm
27353@need 200
27354@itemx -mmpx
27355@opindex mmpx
27356@need 200
27357@itemx -mmwaitx
27358@opindex mmwaitx
27359@need 200
27360@itemx -mclzero
27361@opindex mclzero
27362@need 200
27363@itemx -mpku
27364@opindex mpku
27365@need 200
27366@itemx -mavx512vbmi2
27367@opindex mavx512vbmi2
27368@need 200
27369@itemx -mgfni
27370@opindex mgfni
27371@need 200
27372@itemx -mvaes
27373@opindex mvaes
27374@need 200
27375@itemx -mvpclmulqdq
27376@opindex mvpclmulqdq
27377@need 200
27378@itemx -mavx512bitalg
27379@opindex mavx512bitalg
27380@need 200
27381@itemx -mmovdiri
27382@opindex mmovdiri
27383@need 200
27384@itemx -mmovdir64b
27385@opindex mmovdir64b
27386@need 200
27387@itemx -mavx512vpopcntdq
27388@opindex mavx512vpopcntdq
27389@need 200
27390@itemx -mavx5124fmaps
27391@opindex mavx5124fmaps
27392@need 200
27393@itemx -mavx512vnni
27394@opindex mavx512vnni
27395@need 200
27396@itemx -mavx5124vnniw
27397@opindex mavx5124vnniw
27398These switches enable the use of instructions in the MMX, SSE,
27399SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF,
27400AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA,
27401AES, PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, RDRND, F16C, FMA, PCONFIG,
27402WBNOINVD, FMA4, PREFETCHW, RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP,
274033DNow!@:, enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE,
27404XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MPX, MWAITX, CLZERO, PKU, AVX512VBMI2,
27405GFNI, VAES, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B,
27406AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, or AVX5124VNNIW
27407extended instruction sets.  Each has a corresponding @option{-mno-} option to
27408disable use of these instructions.
27409
27410These extensions are also available as built-in functions: see
27411@ref{x86 Built-in Functions}, for details of the functions enabled and
27412disabled by these switches.
27413
27414To generate SSE/SSE2 instructions automatically from floating-point
27415code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
27416
27417GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
27418generates new AVX instructions or AVX equivalence for all SSEx instructions
27419when needed.
27420
27421These options enable GCC to use these extended instructions in
27422generated code, even without @option{-mfpmath=sse}.  Applications that
27423perform run-time CPU detection must compile separate files for each
27424supported architecture, using the appropriate flags.  In particular,
27425the file containing the CPU detection code should be compiled without
27426these options.
27427
27428@item -mdump-tune-features
27429@opindex mdump-tune-features
27430This option instructs GCC to dump the names of the x86 performance
27431tuning features and default settings. The names can be used in
27432@option{-mtune-ctrl=@var{feature-list}}.
27433
27434@item -mtune-ctrl=@var{feature-list}
27435@opindex mtune-ctrl=@var{feature-list}
27436This option is used to do fine grain control of x86 code generation features.
27437@var{feature-list} is a comma separated list of @var{feature} names. See also
27438@option{-mdump-tune-features}. When specified, the @var{feature} is turned
27439on if it is not preceded with @samp{^}, otherwise, it is turned off.
27440@option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
27441developers. Using it may lead to code paths not covered by testing and can
27442potentially result in compiler ICEs or runtime errors.
27443
27444@item -mno-default
27445@opindex mno-default
27446This option instructs GCC to turn off all tunable features. See also
27447@option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
27448
27449@item -mcld
27450@opindex mcld
27451This option instructs GCC to emit a @code{cld} instruction in the prologue
27452of functions that use string instructions.  String instructions depend on
27453the DF flag to select between autoincrement or autodecrement mode.  While the
27454ABI specifies the DF flag to be cleared on function entry, some operating
27455systems violate this specification by not clearing the DF flag in their
27456exception dispatchers.  The exception handler can be invoked with the DF flag
27457set, which leads to wrong direction mode when string instructions are used.
27458This option can be enabled by default on 32-bit x86 targets by configuring
27459GCC with the @option{--enable-cld} configure option.  Generation of @code{cld}
27460instructions can be suppressed with the @option{-mno-cld} compiler option
27461in this case.
27462
27463@item -mvzeroupper
27464@opindex mvzeroupper
27465This option instructs GCC to emit a @code{vzeroupper} instruction
27466before a transfer of control flow out of the function to minimize
27467the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
27468intrinsics.
27469
27470@item -mprefer-avx128
27471@opindex mprefer-avx128
27472This option instructs GCC to use 128-bit AVX instructions instead of
27473256-bit AVX instructions in the auto-vectorizer.
27474
27475@item -mprefer-vector-width=@var{opt}
27476@opindex mprefer-vector-width
27477This option instructs GCC to use @var{opt}-bit vector width in instructions
27478instead of default on the selected platform.
27479
27480@table @samp
27481@item none
27482No extra limitations applied to GCC other than defined by the selected platform.
27483
27484@item 128
27485Prefer 128-bit vector width for instructions.
27486
27487@item 256
27488Prefer 256-bit vector width for instructions.
27489
27490@item 512
27491Prefer 512-bit vector width for instructions.
27492@end table
27493
27494@item -mcx16
27495@opindex mcx16
27496This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
27497code to implement compare-and-exchange operations on 16-byte aligned 128-bit
27498objects.  This is useful for atomic updates of data structures exceeding one
27499machine word in size.  The compiler uses this instruction to implement
27500@ref{__sync Builtins}.  However, for @ref{__atomic Builtins} operating on
27501128-bit integers, a library call is always used.
27502
27503@item -msahf
27504@opindex msahf
27505This option enables generation of @code{SAHF} instructions in 64-bit code.
27506Early Intel Pentium 4 CPUs with Intel 64 support,
27507prior to the introduction of Pentium 4 G1 step in December 2005,
27508lacked the @code{LAHF} and @code{SAHF} instructions
27509which are supported by AMD64.
27510These are load and store instructions, respectively, for certain status flags.
27511In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
27512@code{drem}, and @code{remainder} built-in functions;
27513see @ref{Other Builtins} for details.
27514
27515@item -mmovbe
27516@opindex mmovbe
27517This option enables use of the @code{movbe} instruction to implement
27518@code{__builtin_bswap32} and @code{__builtin_bswap64}.
27519
27520@item -mshstk
27521@opindex mshstk
27522The @option{-mshstk} option enables shadow stack built-in functions
27523from x86 Control-flow Enforcement Technology (CET).
27524
27525@item -mcrc32
27526@opindex mcrc32
27527This option enables built-in functions @code{__builtin_ia32_crc32qi},
27528@code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
27529@code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
27530
27531@item -mrecip
27532@opindex mrecip
27533This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
27534(and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
27535with an additional Newton-Raphson step
27536to increase precision instead of @code{DIVSS} and @code{SQRTSS}
27537(and their vectorized
27538variants) for single-precision floating-point arguments.  These instructions
27539are generated only when @option{-funsafe-math-optimizations} is enabled
27540together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
27541Note that while the throughput of the sequence is higher than the throughput
27542of the non-reciprocal instruction, the precision of the sequence can be
27543decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
27544
27545Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
27546(or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
27547combination), and doesn't need @option{-mrecip}.
27548
27549Also note that GCC emits the above sequence with additional Newton-Raphson step
27550for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
27551already with @option{-ffast-math} (or the above option combination), and
27552doesn't need @option{-mrecip}.
27553
27554@item -mrecip=@var{opt}
27555@opindex mrecip=opt
27556This option controls which reciprocal estimate instructions
27557may be used.  @var{opt} is a comma-separated list of options, which may
27558be preceded by a @samp{!} to invert the option:
27559
27560@table @samp
27561@item all
27562Enable all estimate instructions.
27563
27564@item default
27565Enable the default instructions, equivalent to @option{-mrecip}.
27566
27567@item none
27568Disable all estimate instructions, equivalent to @option{-mno-recip}.
27569
27570@item div
27571Enable the approximation for scalar division.
27572
27573@item vec-div
27574Enable the approximation for vectorized division.
27575
27576@item sqrt
27577Enable the approximation for scalar square root.
27578
27579@item vec-sqrt
27580Enable the approximation for vectorized square root.
27581@end table
27582
27583So, for example, @option{-mrecip=all,!sqrt} enables
27584all of the reciprocal approximations, except for square root.
27585
27586@item -mveclibabi=@var{type}
27587@opindex mveclibabi
27588Specifies the ABI type to use for vectorizing intrinsics using an
27589external library.  Supported values for @var{type} are @samp{svml}
27590for the Intel short
27591vector math library and @samp{acml} for the AMD math core library.
27592To use this option, both @option{-ftree-vectorize} and
27593@option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
27594ABI-compatible library must be specified at link time.
27595
27596GCC currently emits calls to @code{vmldExp2},
27597@code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
27598@code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
27599@code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
27600@code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
27601@code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
27602@code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
27603@code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
27604@code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
27605@code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
27606function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
27607@code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
27608@code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
27609@code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
27610@code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
27611when @option{-mveclibabi=acml} is used.
27612
27613@item -mabi=@var{name}
27614@opindex mabi
27615Generate code for the specified calling convention.  Permissible values
27616are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
27617@samp{ms} for the Microsoft ABI.  The default is to use the Microsoft
27618ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
27619You can control this behavior for specific functions by
27620using the function attributes @code{ms_abi} and @code{sysv_abi}.
27621@xref{Function Attributes}.
27622
27623@item -mforce-indirect-call
27624@opindex mforce-indirect-call
27625Force all calls to functions to be indirect. This is useful
27626when using Intel Processor Trace where it generates more precise timing
27627information for function calls.
27628
27629@item -mcall-ms2sysv-xlogues
27630@opindex mcall-ms2sysv-xlogues
27631@opindex mno-call-ms2sysv-xlogues
27632Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
27633System V ABI function must consider RSI, RDI and XMM6-15 as clobbered.  By
27634default, the code for saving and restoring these registers is emitted inline,
27635resulting in fairly lengthy prologues and epilogues.  Using
27636@option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
27637use stubs in the static portion of libgcc to perform these saves and restores,
27638thus reducing function size at the cost of a few extra instructions.
27639
27640@item -mtls-dialect=@var{type}
27641@opindex mtls-dialect
27642Generate code to access thread-local storage using the @samp{gnu} or
27643@samp{gnu2} conventions.  @samp{gnu} is the conservative default;
27644@samp{gnu2} is more efficient, but it may add compile- and run-time
27645requirements that cannot be satisfied on all systems.
27646
27647@item -mpush-args
27648@itemx -mno-push-args
27649@opindex mpush-args
27650@opindex mno-push-args
27651Use PUSH operations to store outgoing parameters.  This method is shorter
27652and usually equally fast as method using SUB/MOV operations and is enabled
27653by default.  In some cases disabling it may improve performance because of
27654improved scheduling and reduced dependencies.
27655
27656@item -maccumulate-outgoing-args
27657@opindex maccumulate-outgoing-args
27658If enabled, the maximum amount of space required for outgoing arguments is
27659computed in the function prologue.  This is faster on most modern CPUs
27660because of reduced dependencies, improved scheduling and reduced stack usage
27661when the preferred stack boundary is not equal to 2.  The drawback is a notable
27662increase in code size.  This switch implies @option{-mno-push-args}.
27663
27664@item -mthreads
27665@opindex mthreads
27666Support thread-safe exception handling on MinGW.  Programs that rely
27667on thread-safe exception handling must compile and link all code with the
27668@option{-mthreads} option.  When compiling, @option{-mthreads} defines
27669@option{-D_MT}; when linking, it links in a special thread helper library
27670@option{-lmingwthrd} which cleans up per-thread exception-handling data.
27671
27672@item -mms-bitfields
27673@itemx -mno-ms-bitfields
27674@opindex mms-bitfields
27675@opindex mno-ms-bitfields
27676
27677Enable/disable bit-field layout compatible with the native Microsoft
27678Windows compiler.
27679
27680If @code{packed} is used on a structure, or if bit-fields are used,
27681it may be that the Microsoft ABI lays out the structure differently
27682than the way GCC normally does.  Particularly when moving packed
27683data between functions compiled with GCC and the native Microsoft compiler
27684(either via function call or as data in a file), it may be necessary to access
27685either format.
27686
27687This option is enabled by default for Microsoft Windows
27688targets.  This behavior can also be controlled locally by use of variable
27689or type attributes.  For more information, see @ref{x86 Variable Attributes}
27690and @ref{x86 Type Attributes}.
27691
27692The Microsoft structure layout algorithm is fairly simple with the exception
27693of the bit-field packing.
27694The padding and alignment of members of structures and whether a bit-field
27695can straddle a storage-unit boundary are determine by these rules:
27696
27697@enumerate
27698@item Structure members are stored sequentially in the order in which they are
27699declared: the first member has the lowest memory address and the last member
27700the highest.
27701
27702@item Every data object has an alignment requirement.  The alignment requirement
27703for all data except structures, unions, and arrays is either the size of the
27704object or the current packing size (specified with either the
27705@code{aligned} attribute or the @code{pack} pragma),
27706whichever is less.  For structures, unions, and arrays,
27707the alignment requirement is the largest alignment requirement of its members.
27708Every object is allocated an offset so that:
27709
27710@smallexample
27711offset % alignment_requirement == 0
27712@end smallexample
27713
27714@item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
27715unit if the integral types are the same size and if the next bit-field fits
27716into the current allocation unit without crossing the boundary imposed by the
27717common alignment requirements of the bit-fields.
27718@end enumerate
27719
27720MSVC interprets zero-length bit-fields in the following ways:
27721
27722@enumerate
27723@item If a zero-length bit-field is inserted between two bit-fields that
27724are normally coalesced, the bit-fields are not coalesced.
27725
27726For example:
27727
27728@smallexample
27729struct
27730 @{
27731   unsigned long bf_1 : 12;
27732   unsigned long : 0;
27733   unsigned long bf_2 : 12;
27734 @} t1;
27735@end smallexample
27736
27737@noindent
27738The size of @code{t1} is 8 bytes with the zero-length bit-field.  If the
27739zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
27740
27741@item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
27742alignment of the zero-length bit-field is greater than the member that follows it,
27743@code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
27744
27745For example:
27746
27747@smallexample
27748struct
27749 @{
27750   char foo : 4;
27751   short : 0;
27752   char bar;
27753 @} t2;
27754
27755struct
27756 @{
27757   char foo : 4;
27758   short : 0;
27759   double bar;
27760 @} t3;
27761@end smallexample
27762
27763@noindent
27764For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
27765Accordingly, the size of @code{t2} is 4.  For @code{t3}, the zero-length
27766bit-field does not affect the alignment of @code{bar} or, as a result, the size
27767of the structure.
27768
27769Taking this into account, it is important to note the following:
27770
27771@enumerate
27772@item If a zero-length bit-field follows a normal bit-field, the type of the
27773zero-length bit-field may affect the alignment of the structure as whole. For
27774example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
27775normal bit-field, and is of type short.
27776
27777@item Even if a zero-length bit-field is not followed by a normal bit-field, it may
27778still affect the alignment of the structure:
27779
27780@smallexample
27781struct
27782 @{
27783   char foo : 6;
27784   long : 0;
27785 @} t4;
27786@end smallexample
27787
27788@noindent
27789Here, @code{t4} takes up 4 bytes.
27790@end enumerate
27791
27792@item Zero-length bit-fields following non-bit-field members are ignored:
27793
27794@smallexample
27795struct
27796 @{
27797   char foo;
27798   long : 0;
27799   char bar;
27800 @} t5;
27801@end smallexample
27802
27803@noindent
27804Here, @code{t5} takes up 2 bytes.
27805@end enumerate
27806
27807
27808@item -mno-align-stringops
27809@opindex mno-align-stringops
27810Do not align the destination of inlined string operations.  This switch reduces
27811code size and improves performance in case the destination is already aligned,
27812but GCC doesn't know about it.
27813
27814@item -minline-all-stringops
27815@opindex minline-all-stringops
27816By default GCC inlines string operations only when the destination is
27817known to be aligned to least a 4-byte boundary.
27818This enables more inlining and increases code
27819size, but may improve performance of code that depends on fast
27820@code{memcpy}, @code{strlen},
27821and @code{memset} for short lengths.
27822
27823@item -minline-stringops-dynamically
27824@opindex minline-stringops-dynamically
27825For string operations of unknown size, use run-time checks with
27826inline code for small blocks and a library call for large blocks.
27827
27828@item -mstringop-strategy=@var{alg}
27829@opindex mstringop-strategy=@var{alg}
27830Override the internal decision heuristic for the particular algorithm to use
27831for inlining string operations.  The allowed values for @var{alg} are:
27832
27833@table @samp
27834@item rep_byte
27835@itemx rep_4byte
27836@itemx rep_8byte
27837Expand using i386 @code{rep} prefix of the specified size.
27838
27839@item byte_loop
27840@itemx loop
27841@itemx unrolled_loop
27842Expand into an inline loop.
27843
27844@item libcall
27845Always use a library call.
27846@end table
27847
27848@item -mmemcpy-strategy=@var{strategy}
27849@opindex mmemcpy-strategy=@var{strategy}
27850Override the internal decision heuristic to decide if @code{__builtin_memcpy}
27851should be inlined and what inline algorithm to use when the expected size
27852of the copy operation is known. @var{strategy}
27853is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
27854@var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
27855the max byte size with which inline algorithm @var{alg} is allowed.  For the last
27856triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
27857in the list must be specified in increasing order.  The minimal byte size for
27858@var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
27859preceding range.
27860
27861@item -mmemset-strategy=@var{strategy}
27862@opindex mmemset-strategy=@var{strategy}
27863The option is similar to @option{-mmemcpy-strategy=} except that it is to control
27864@code{__builtin_memset} expansion.
27865
27866@item -momit-leaf-frame-pointer
27867@opindex momit-leaf-frame-pointer
27868Don't keep the frame pointer in a register for leaf functions.  This
27869avoids the instructions to save, set up, and restore frame pointers and
27870makes an extra register available in leaf functions.  The option
27871@option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
27872which might make debugging harder.
27873
27874@item -mtls-direct-seg-refs
27875@itemx -mno-tls-direct-seg-refs
27876@opindex mtls-direct-seg-refs
27877Controls whether TLS variables may be accessed with offsets from the
27878TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
27879or whether the thread base pointer must be added.  Whether or not this
27880is valid depends on the operating system, and whether it maps the
27881segment to cover the entire TLS area.
27882
27883For systems that use the GNU C Library, the default is on.
27884
27885@item -msse2avx
27886@itemx -mno-sse2avx
27887@opindex msse2avx
27888Specify that the assembler should encode SSE instructions with VEX
27889prefix.  The option @option{-mavx} turns this on by default.
27890
27891@item -mfentry
27892@itemx -mno-fentry
27893@opindex mfentry
27894If profiling is active (@option{-pg}), put the profiling
27895counter call before the prologue.
27896Note: On x86 architectures the attribute @code{ms_hook_prologue}
27897isn't possible at the moment for @option{-mfentry} and @option{-pg}.
27898
27899@item -mrecord-mcount
27900@itemx -mno-record-mcount
27901@opindex mrecord-mcount
27902If profiling is active (@option{-pg}), generate a __mcount_loc section
27903that contains pointers to each profiling call. This is useful for
27904automatically patching and out calls.
27905
27906@item -mnop-mcount
27907@itemx -mno-nop-mcount
27908@opindex mnop-mcount
27909If profiling is active (@option{-pg}), generate the calls to
27910the profiling functions as NOPs. This is useful when they
27911should be patched in later dynamically. This is likely only
27912useful together with @option{-mrecord-mcount}.
27913
27914@item -mskip-rax-setup
27915@itemx -mno-skip-rax-setup
27916@opindex mskip-rax-setup
27917When generating code for the x86-64 architecture with SSE extensions
27918disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
27919register when there are no variable arguments passed in vector registers.
27920
27921@strong{Warning:} Since RAX register is used to avoid unnecessarily
27922saving vector registers on stack when passing variable arguments, the
27923impacts of this option are callees may waste some stack space,
27924misbehave or jump to a random location.  GCC 4.4 or newer don't have
27925those issues, regardless the RAX register value.
27926
27927@item -m8bit-idiv
27928@itemx -mno-8bit-idiv
27929@opindex m8bit-idiv
27930On some processors, like Intel Atom, 8-bit unsigned integer divide is
27931much faster than 32-bit/64-bit integer divide.  This option generates a
27932run-time check.  If both dividend and divisor are within range of 0
27933to 255, 8-bit unsigned integer divide is used instead of
2793432-bit/64-bit integer divide.
27935
27936@item -mavx256-split-unaligned-load
27937@itemx -mavx256-split-unaligned-store
27938@opindex mavx256-split-unaligned-load
27939@opindex mavx256-split-unaligned-store
27940Split 32-byte AVX unaligned load and store.
27941
27942@item -mstack-protector-guard=@var{guard}
27943@itemx -mstack-protector-guard-reg=@var{reg}
27944@itemx -mstack-protector-guard-offset=@var{offset}
27945@opindex mstack-protector-guard
27946@opindex mstack-protector-guard-reg
27947@opindex mstack-protector-guard-offset
27948Generate stack protection code using canary at @var{guard}.  Supported
27949locations are @samp{global} for global canary or @samp{tls} for per-thread
27950canary in the TLS block (the default).  This option has effect only when
27951@option{-fstack-protector} or @option{-fstack-protector-all} is specified.
27952
27953With the latter choice the options
27954@option{-mstack-protector-guard-reg=@var{reg}} and
27955@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
27956which segment register (@code{%fs} or @code{%gs}) to use as base register
27957for reading the canary, and from what offset from that base register.
27958The default for those is as specified in the relevant ABI.
27959
27960@item -mmitigate-rop
27961@opindex mmitigate-rop
27962Try to avoid generating code sequences that contain unintended return
27963opcodes, to mitigate against certain forms of attack. At the moment,
27964this option is limited in what it can do and should not be relied
27965on to provide serious protection.
27966
27967@item -mgeneral-regs-only
27968@opindex mgeneral-regs-only
27969Generate code that uses only the general-purpose registers.  This
27970prevents the compiler from using floating-point, vector, mask and bound
27971registers.
27972
27973@item -mindirect-branch=@var{choice}
27974@opindex -mindirect-branch
27975Convert indirect call and jump with @var{choice}.  The default is
27976@samp{keep}, which keeps indirect call and jump unmodified.
27977@samp{thunk} converts indirect call and jump to call and return thunk.
27978@samp{thunk-inline} converts indirect call and jump to inlined call
27979and return thunk.  @samp{thunk-extern} converts indirect call and jump
27980to external call and return thunk provided in a separate object file.
27981You can control this behavior for a specific function by using the
27982function attribute @code{indirect_branch}.  @xref{Function Attributes}.
27983
27984Note that @option{-mcmodel=large} is incompatible with
27985@option{-mindirect-branch=thunk} and
27986@option{-mindirect-branch=thunk-extern} since the thunk function may
27987not be reachable in the large code model.
27988
27989Note that @option{-mindirect-branch=thunk-extern} is incompatible with
27990@option{-fcf-protection=branch} and @option{-fcheck-pointer-bounds}
27991since the external thunk can not be modified to disable control-flow
27992check.
27993
27994@item -mfunction-return=@var{choice}
27995@opindex -mfunction-return
27996Convert function return with @var{choice}.  The default is @samp{keep},
27997which keeps function return unmodified.  @samp{thunk} converts function
27998return to call and return thunk.  @samp{thunk-inline} converts function
27999return to inlined call and return thunk.  @samp{thunk-extern} converts
28000function return to external call and return thunk provided in a separate
28001object file.  You can control this behavior for a specific function by
28002using the function attribute @code{function_return}.
28003@xref{Function Attributes}.
28004
28005Note that @option{-mcmodel=large} is incompatible with
28006@option{-mfunction-return=thunk} and
28007@option{-mfunction-return=thunk-extern} since the thunk function may
28008not be reachable in the large code model.
28009
28010
28011@item -mindirect-branch-register
28012@opindex -mindirect-branch-register
28013Force indirect call and jump via register.
28014
28015@end table
28016
28017These @samp{-m} switches are supported in addition to the above
28018on x86-64 processors in 64-bit environments.
28019
28020@table @gcctabopt
28021@item -m32
28022@itemx -m64
28023@itemx -mx32
28024@itemx -m16
28025@itemx -miamcu
28026@opindex m32
28027@opindex m64
28028@opindex mx32
28029@opindex m16
28030@opindex miamcu
28031Generate code for a 16-bit, 32-bit or 64-bit environment.
28032The @option{-m32} option sets @code{int}, @code{long}, and pointer types
28033to 32 bits, and
28034generates code that runs on any i386 system.
28035
28036The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
28037types to 64 bits, and generates code for the x86-64 architecture.
28038For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
28039and @option{-mdynamic-no-pic} options.
28040
28041The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
28042to 32 bits, and
28043generates code for the x86-64 architecture.
28044
28045The @option{-m16} option is the same as @option{-m32}, except for that
28046it outputs the @code{.code16gcc} assembly directive at the beginning of
28047the assembly output so that the binary can run in 16-bit mode.
28048
28049The @option{-miamcu} option generates code which conforms to Intel MCU
28050psABI.  It requires the @option{-m32} option to be turned on.
28051
28052@item -mno-red-zone
28053@opindex mno-red-zone
28054Do not use a so-called ``red zone'' for x86-64 code.  The red zone is mandated
28055by the x86-64 ABI; it is a 128-byte area beyond the location of the
28056stack pointer that is not modified by signal or interrupt handlers
28057and therefore can be used for temporary data without adjusting the stack
28058pointer.  The flag @option{-mno-red-zone} disables this red zone.
28059
28060@item -mcmodel=small
28061@opindex mcmodel=small
28062Generate code for the small code model: the program and its symbols must
28063be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
28064Programs can be statically or dynamically linked.  This is the default
28065code model.
28066
28067@item -mcmodel=kernel
28068@opindex mcmodel=kernel
28069Generate code for the kernel code model.  The kernel runs in the
28070negative 2 GB of the address space.
28071This model has to be used for Linux kernel code.
28072
28073@item -mcmodel=medium
28074@opindex mcmodel=medium
28075Generate code for the medium model: the program is linked in the lower 2
28076GB of the address space.  Small symbols are also placed there.  Symbols
28077with sizes larger than @option{-mlarge-data-threshold} are put into
28078large data or BSS sections and can be located above 2GB.  Programs can
28079be statically or dynamically linked.
28080
28081@item -mcmodel=large
28082@opindex mcmodel=large
28083Generate code for the large model.  This model makes no assumptions
28084about addresses and sizes of sections.
28085
28086@item -maddress-mode=long
28087@opindex maddress-mode=long
28088Generate code for long address mode.  This is only supported for 64-bit
28089and x32 environments.  It is the default address mode for 64-bit
28090environments.
28091
28092@item -maddress-mode=short
28093@opindex maddress-mode=short
28094Generate code for short address mode.  This is only supported for 32-bit
28095and x32 environments.  It is the default address mode for 32-bit and
28096x32 environments.
28097@end table
28098
28099@node x86 Windows Options
28100@subsection x86 Windows Options
28101@cindex x86 Windows Options
28102@cindex Windows Options for x86
28103
28104These additional options are available for Microsoft Windows targets:
28105
28106@table @gcctabopt
28107@item -mconsole
28108@opindex mconsole
28109This option
28110specifies that a console application is to be generated, by
28111instructing the linker to set the PE header subsystem type
28112required for console applications.
28113This option is available for Cygwin and MinGW targets and is
28114enabled by default on those targets.
28115
28116@item -mdll
28117@opindex mdll
28118This option is available for Cygwin and MinGW targets.  It
28119specifies that a DLL---a dynamic link library---is to be
28120generated, enabling the selection of the required runtime
28121startup object and entry point.
28122
28123@item -mnop-fun-dllimport
28124@opindex mnop-fun-dllimport
28125This option is available for Cygwin and MinGW targets.  It
28126specifies that the @code{dllimport} attribute should be ignored.
28127
28128@item -mthread
28129@opindex mthread
28130This option is available for MinGW targets. It specifies
28131that MinGW-specific thread support is to be used.
28132
28133@item -municode
28134@opindex municode
28135This option is available for MinGW-w64 targets.  It causes
28136the @code{UNICODE} preprocessor macro to be predefined, and
28137chooses Unicode-capable runtime startup code.
28138
28139@item -mwin32
28140@opindex mwin32
28141This option is available for Cygwin and MinGW targets.  It
28142specifies that the typical Microsoft Windows predefined macros are to
28143be set in the pre-processor, but does not influence the choice
28144of runtime library/startup code.
28145
28146@item -mwindows
28147@opindex mwindows
28148This option is available for Cygwin and MinGW targets.  It
28149specifies that a GUI application is to be generated by
28150instructing the linker to set the PE header subsystem type
28151appropriately.
28152
28153@item -fno-set-stack-executable
28154@opindex fno-set-stack-executable
28155This option is available for MinGW targets. It specifies that
28156the executable flag for the stack used by nested functions isn't
28157set. This is necessary for binaries running in kernel mode of
28158Microsoft Windows, as there the User32 API, which is used to set executable
28159privileges, isn't available.
28160
28161@item -fwritable-relocated-rdata
28162@opindex fno-writable-relocated-rdata
28163This option is available for MinGW and Cygwin targets.  It specifies
28164that relocated-data in read-only section is put into the @code{.data}
28165section.  This is a necessary for older runtimes not supporting
28166modification of @code{.rdata} sections for pseudo-relocation.
28167
28168@item -mpe-aligned-commons
28169@opindex mpe-aligned-commons
28170This option is available for Cygwin and MinGW targets.  It
28171specifies that the GNU extension to the PE file format that
28172permits the correct alignment of COMMON variables should be
28173used when generating code.  It is enabled by default if
28174GCC detects that the target assembler found during configuration
28175supports the feature.
28176@end table
28177
28178See also under @ref{x86 Options} for standard options.
28179
28180@node Xstormy16 Options
28181@subsection Xstormy16 Options
28182@cindex Xstormy16 Options
28183
28184These options are defined for Xstormy16:
28185
28186@table @gcctabopt
28187@item -msim
28188@opindex msim
28189Choose startup files and linker script suitable for the simulator.
28190@end table
28191
28192@node Xtensa Options
28193@subsection Xtensa Options
28194@cindex Xtensa Options
28195
28196These options are supported for Xtensa targets:
28197
28198@table @gcctabopt
28199@item -mconst16
28200@itemx -mno-const16
28201@opindex mconst16
28202@opindex mno-const16
28203Enable or disable use of @code{CONST16} instructions for loading
28204constant values.  The @code{CONST16} instruction is currently not a
28205standard option from Tensilica.  When enabled, @code{CONST16}
28206instructions are always used in place of the standard @code{L32R}
28207instructions.  The use of @code{CONST16} is enabled by default only if
28208the @code{L32R} instruction is not available.
28209
28210@item -mfused-madd
28211@itemx -mno-fused-madd
28212@opindex mfused-madd
28213@opindex mno-fused-madd
28214Enable or disable use of fused multiply/add and multiply/subtract
28215instructions in the floating-point option.  This has no effect if the
28216floating-point option is not also enabled.  Disabling fused multiply/add
28217and multiply/subtract instructions forces the compiler to use separate
28218instructions for the multiply and add/subtract operations.  This may be
28219desirable in some cases where strict IEEE 754-compliant results are
28220required: the fused multiply add/subtract instructions do not round the
28221intermediate result, thereby producing results with @emph{more} bits of
28222precision than specified by the IEEE standard.  Disabling fused multiply
28223add/subtract instructions also ensures that the program output is not
28224sensitive to the compiler's ability to combine multiply and add/subtract
28225operations.
28226
28227@item -mserialize-volatile
28228@itemx -mno-serialize-volatile
28229@opindex mserialize-volatile
28230@opindex mno-serialize-volatile
28231When this option is enabled, GCC inserts @code{MEMW} instructions before
28232@code{volatile} memory references to guarantee sequential consistency.
28233The default is @option{-mserialize-volatile}.  Use
28234@option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
28235
28236@item -mforce-no-pic
28237@opindex mforce-no-pic
28238For targets, like GNU/Linux, where all user-mode Xtensa code must be
28239position-independent code (PIC), this option disables PIC for compiling
28240kernel code.
28241
28242@item -mtext-section-literals
28243@itemx -mno-text-section-literals
28244@opindex mtext-section-literals
28245@opindex mno-text-section-literals
28246These options control the treatment of literal pools.  The default is
28247@option{-mno-text-section-literals}, which places literals in a separate
28248section in the output file.  This allows the literal pool to be placed
28249in a data RAM/ROM, and it also allows the linker to combine literal
28250pools from separate object files to remove redundant literals and
28251improve code size.  With @option{-mtext-section-literals}, the literals
28252are interspersed in the text section in order to keep them as close as
28253possible to their references.  This may be necessary for large assembly
28254files.  Literals for each function are placed right before that function.
28255
28256@item -mauto-litpools
28257@itemx -mno-auto-litpools
28258@opindex mauto-litpools
28259@opindex mno-auto-litpools
28260These options control the treatment of literal pools.  The default is
28261@option{-mno-auto-litpools}, which places literals in a separate
28262section in the output file unless @option{-mtext-section-literals} is
28263used.  With @option{-mauto-litpools} the literals are interspersed in
28264the text section by the assembler.  Compiler does not produce explicit
28265@code{.literal} directives and loads literals into registers with
28266@code{MOVI} instructions instead of @code{L32R} to let the assembler
28267do relaxation and place literals as necessary.  This option allows
28268assembler to create several literal pools per function and assemble
28269very big functions, which may not be possible with
28270@option{-mtext-section-literals}.
28271
28272@item -mtarget-align
28273@itemx -mno-target-align
28274@opindex mtarget-align
28275@opindex mno-target-align
28276When this option is enabled, GCC instructs the assembler to
28277automatically align instructions to reduce branch penalties at the
28278expense of some code density.  The assembler attempts to widen density
28279instructions to align branch targets and the instructions following call
28280instructions.  If there are not enough preceding safe density
28281instructions to align a target, no widening is performed.  The
28282default is @option{-mtarget-align}.  These options do not affect the
28283treatment of auto-aligned instructions like @code{LOOP}, which the
28284assembler always aligns, either by widening density instructions or
28285by inserting NOP instructions.
28286
28287@item -mlongcalls
28288@itemx -mno-longcalls
28289@opindex mlongcalls
28290@opindex mno-longcalls
28291When this option is enabled, GCC instructs the assembler to translate
28292direct calls to indirect calls unless it can determine that the target
28293of a direct call is in the range allowed by the call instruction.  This
28294translation typically occurs for calls to functions in other source
28295files.  Specifically, the assembler translates a direct @code{CALL}
28296instruction into an @code{L32R} followed by a @code{CALLX} instruction.
28297The default is @option{-mno-longcalls}.  This option should be used in
28298programs where the call target can potentially be out of range.  This
28299option is implemented in the assembler, not the compiler, so the
28300assembly code generated by GCC still shows direct call
28301instructions---look at the disassembled object code to see the actual
28302instructions.  Note that the assembler uses an indirect call for
28303every cross-file call, not just those that really are out of range.
28304@end table
28305
28306@node zSeries Options
28307@subsection zSeries Options
28308@cindex zSeries options
28309
28310These are listed under @xref{S/390 and zSeries Options}.
28311
28312
28313@c man end
28314
28315@node Spec Files
28316@section Specifying Subprocesses and the Switches to Pass to Them
28317@cindex Spec Files
28318
28319@command{gcc} is a driver program.  It performs its job by invoking a
28320sequence of other programs to do the work of compiling, assembling and
28321linking.  GCC interprets its command-line parameters and uses these to
28322deduce which programs it should invoke, and which command-line options
28323it ought to place on their command lines.  This behavior is controlled
28324by @dfn{spec strings}.  In most cases there is one spec string for each
28325program that GCC can invoke, but a few programs have multiple spec
28326strings to control their behavior.  The spec strings built into GCC can
28327be overridden by using the @option{-specs=} command-line switch to specify
28328a spec file.
28329
28330@dfn{Spec files} are plain-text files that are used to construct spec
28331strings.  They consist of a sequence of directives separated by blank
28332lines.  The type of directive is determined by the first non-whitespace
28333character on the line, which can be one of the following:
28334
28335@table @code
28336@item %@var{command}
28337Issues a @var{command} to the spec file processor.  The commands that can
28338appear here are:
28339
28340@table @code
28341@item %include <@var{file}>
28342@cindex @code{%include}
28343Search for @var{file} and insert its text at the current point in the
28344specs file.
28345
28346@item %include_noerr <@var{file}>
28347@cindex @code{%include_noerr}
28348Just like @samp{%include}, but do not generate an error message if the include
28349file cannot be found.
28350
28351@item %rename @var{old_name} @var{new_name}
28352@cindex @code{%rename}
28353Rename the spec string @var{old_name} to @var{new_name}.
28354
28355@end table
28356
28357@item *[@var{spec_name}]:
28358This tells the compiler to create, override or delete the named spec
28359string.  All lines after this directive up to the next directive or
28360blank line are considered to be the text for the spec string.  If this
28361results in an empty string then the spec is deleted.  (Or, if the
28362spec did not exist, then nothing happens.)  Otherwise, if the spec
28363does not currently exist a new spec is created.  If the spec does
28364exist then its contents are overridden by the text of this
28365directive, unless the first character of that text is the @samp{+}
28366character, in which case the text is appended to the spec.
28367
28368@item [@var{suffix}]:
28369Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
28370and up to the next directive or blank line are considered to make up the
28371spec string for the indicated suffix.  When the compiler encounters an
28372input file with the named suffix, it processes the spec string in
28373order to work out how to compile that file.  For example:
28374
28375@smallexample
28376.ZZ:
28377z-compile -input %i
28378@end smallexample
28379
28380This says that any input file whose name ends in @samp{.ZZ} should be
28381passed to the program @samp{z-compile}, which should be invoked with the
28382command-line switch @option{-input} and with the result of performing the
28383@samp{%i} substitution.  (See below.)
28384
28385As an alternative to providing a spec string, the text following a
28386suffix directive can be one of the following:
28387
28388@table @code
28389@item @@@var{language}
28390This says that the suffix is an alias for a known @var{language}.  This is
28391similar to using the @option{-x} command-line switch to GCC to specify a
28392language explicitly.  For example:
28393
28394@smallexample
28395.ZZ:
28396@@c++
28397@end smallexample
28398
28399Says that .ZZ files are, in fact, C++ source files.
28400
28401@item #@var{name}
28402This causes an error messages saying:
28403
28404@smallexample
28405@var{name} compiler not installed on this system.
28406@end smallexample
28407@end table
28408
28409GCC already has an extensive list of suffixes built into it.
28410This directive adds an entry to the end of the list of suffixes, but
28411since the list is searched from the end backwards, it is effectively
28412possible to override earlier entries using this technique.
28413
28414@end table
28415
28416GCC has the following spec strings built into it.  Spec files can
28417override these strings or create their own.  Note that individual
28418targets can also add their own spec strings to this list.
28419
28420@smallexample
28421asm          Options to pass to the assembler
28422asm_final    Options to pass to the assembler post-processor
28423cpp          Options to pass to the C preprocessor
28424cc1          Options to pass to the C compiler
28425cc1plus      Options to pass to the C++ compiler
28426endfile      Object files to include at the end of the link
28427link         Options to pass to the linker
28428lib          Libraries to include on the command line to the linker
28429libgcc       Decides which GCC support library to pass to the linker
28430linker       Sets the name of the linker
28431predefines   Defines to be passed to the C preprocessor
28432signed_char  Defines to pass to CPP to say whether @code{char} is signed
28433             by default
28434startfile    Object files to include at the start of the link
28435@end smallexample
28436
28437Here is a small example of a spec file:
28438
28439@smallexample
28440%rename lib                 old_lib
28441
28442*lib:
28443--start-group -lgcc -lc -leval1 --end-group %(old_lib)
28444@end smallexample
28445
28446This example renames the spec called @samp{lib} to @samp{old_lib} and
28447then overrides the previous definition of @samp{lib} with a new one.
28448The new definition adds in some extra command-line options before
28449including the text of the old definition.
28450
28451@dfn{Spec strings} are a list of command-line options to be passed to their
28452corresponding program.  In addition, the spec strings can contain
28453@samp{%}-prefixed sequences to substitute variable text or to
28454conditionally insert text into the command line.  Using these constructs
28455it is possible to generate quite complex command lines.
28456
28457Here is a table of all defined @samp{%}-sequences for spec
28458strings.  Note that spaces are not generated automatically around the
28459results of expanding these sequences.  Therefore you can concatenate them
28460together or combine them with constant text in a single argument.
28461
28462@table @code
28463@item %%
28464Substitute one @samp{%} into the program name or argument.
28465
28466@item %i
28467Substitute the name of the input file being processed.
28468
28469@item %b
28470Substitute the basename of the input file being processed.
28471This is the substring up to (and not including) the last period
28472and not including the directory.
28473
28474@item %B
28475This is the same as @samp{%b}, but include the file suffix (text after
28476the last period).
28477
28478@item %d
28479Marks the argument containing or following the @samp{%d} as a
28480temporary file name, so that that file is deleted if GCC exits
28481successfully.  Unlike @samp{%g}, this contributes no text to the
28482argument.
28483
28484@item %g@var{suffix}
28485Substitute a file name that has suffix @var{suffix} and is chosen
28486once per compilation, and mark the argument in the same way as
28487@samp{%d}.  To reduce exposure to denial-of-service attacks, the file
28488name is now chosen in a way that is hard to predict even when previously
28489chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
28490might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
28491the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
28492treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
28493was simply substituted with a file name chosen once per compilation,
28494without regard to any appended suffix (which was therefore treated
28495just like ordinary text), making such attacks more likely to succeed.
28496
28497@item %u@var{suffix}
28498Like @samp{%g}, but generates a new temporary file name
28499each time it appears instead of once per compilation.
28500
28501@item %U@var{suffix}
28502Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
28503new one if there is no such last file name.  In the absence of any
28504@samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
28505the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
28506involves the generation of two distinct file names, one
28507for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
28508simply substituted with a file name chosen for the previous @samp{%u},
28509without regard to any appended suffix.
28510
28511@item %j@var{suffix}
28512Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
28513writable, and if @option{-save-temps} is not used;
28514otherwise, substitute the name
28515of a temporary file, just like @samp{%u}.  This temporary file is not
28516meant for communication between processes, but rather as a junk
28517disposal mechanism.
28518
28519@item %|@var{suffix}
28520@itemx %m@var{suffix}
28521Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
28522@samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
28523all.  These are the two most common ways to instruct a program that it
28524should read from standard input or write to standard output.  If you
28525need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
28526construct: see for example @file{f/lang-specs.h}.
28527
28528@item %.@var{SUFFIX}
28529Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
28530when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
28531terminated by the next space or %.
28532
28533@item %w
28534Marks the argument containing or following the @samp{%w} as the
28535designated output file of this compilation.  This puts the argument
28536into the sequence of arguments that @samp{%o} substitutes.
28537
28538@item %o
28539Substitutes the names of all the output files, with spaces
28540automatically placed around them.  You should write spaces
28541around the @samp{%o} as well or the results are undefined.
28542@samp{%o} is for use in the specs for running the linker.
28543Input files whose names have no recognized suffix are not compiled
28544at all, but they are included among the output files, so they are
28545linked.
28546
28547@item %O
28548Substitutes the suffix for object files.  Note that this is
28549handled specially when it immediately follows @samp{%g, %u, or %U},
28550because of the need for those to form complete file names.  The
28551handling is such that @samp{%O} is treated exactly as if it had already
28552been substituted, except that @samp{%g, %u, and %U} do not currently
28553support additional @var{suffix} characters following @samp{%O} as they do
28554following, for example, @samp{.o}.
28555
28556@item %p
28557Substitutes the standard macro predefinitions for the
28558current target machine.  Use this when running @command{cpp}.
28559
28560@item %P
28561Like @samp{%p}, but puts @samp{__} before and after the name of each
28562predefined macro, except for macros that start with @samp{__} or with
28563@samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
28564C@.
28565
28566@item %I
28567Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
28568@option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
28569@option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
28570and @option{-imultilib} as necessary.
28571
28572@item %s
28573Current argument is the name of a library or startup file of some sort.
28574Search for that file in a standard list of directories and substitute
28575the full name found.  The current working directory is included in the
28576list of directories scanned.
28577
28578@item %T
28579Current argument is the name of a linker script.  Search for that file
28580in the current list of directories to scan for libraries. If the file
28581is located insert a @option{--script} option into the command line
28582followed by the full path name found.  If the file is not found then
28583generate an error message.  Note: the current working directory is not
28584searched.
28585
28586@item %e@var{str}
28587Print @var{str} as an error message.  @var{str} is terminated by a newline.
28588Use this when inconsistent options are detected.
28589
28590@item %(@var{name})
28591Substitute the contents of spec string @var{name} at this point.
28592
28593@item %x@{@var{option}@}
28594Accumulate an option for @samp{%X}.
28595
28596@item %X
28597Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
28598spec string.
28599
28600@item %Y
28601Output the accumulated assembler options specified by @option{-Wa}.
28602
28603@item %Z
28604Output the accumulated preprocessor options specified by @option{-Wp}.
28605
28606@item %a
28607Process the @code{asm} spec.  This is used to compute the
28608switches to be passed to the assembler.
28609
28610@item %A
28611Process the @code{asm_final} spec.  This is a spec string for
28612passing switches to an assembler post-processor, if such a program is
28613needed.
28614
28615@item %l
28616Process the @code{link} spec.  This is the spec for computing the
28617command line passed to the linker.  Typically it makes use of the
28618@samp{%L %G %S %D and %E} sequences.
28619
28620@item %D
28621Dump out a @option{-L} option for each directory that GCC believes might
28622contain startup files.  If the target supports multilibs then the
28623current multilib directory is prepended to each of these paths.
28624
28625@item %L
28626Process the @code{lib} spec.  This is a spec string for deciding which
28627libraries are included on the command line to the linker.
28628
28629@item %G
28630Process the @code{libgcc} spec.  This is a spec string for deciding
28631which GCC support library is included on the command line to the linker.
28632
28633@item %S
28634Process the @code{startfile} spec.  This is a spec for deciding which
28635object files are the first ones passed to the linker.  Typically
28636this might be a file named @file{crt0.o}.
28637
28638@item %E
28639Process the @code{endfile} spec.  This is a spec string that specifies
28640the last object files that are passed to the linker.
28641
28642@item %C
28643Process the @code{cpp} spec.  This is used to construct the arguments
28644to be passed to the C preprocessor.
28645
28646@item %1
28647Process the @code{cc1} spec.  This is used to construct the options to be
28648passed to the actual C compiler (@command{cc1}).
28649
28650@item %2
28651Process the @code{cc1plus} spec.  This is used to construct the options to be
28652passed to the actual C++ compiler (@command{cc1plus}).
28653
28654@item %*
28655Substitute the variable part of a matched option.  See below.
28656Note that each comma in the substituted string is replaced by
28657a single space.
28658
28659@item %<S
28660Remove all occurrences of @code{-S} from the command line.  Note---this
28661command is position dependent.  @samp{%} commands in the spec string
28662before this one see @code{-S}, @samp{%} commands in the spec string
28663after this one do not.
28664
28665@item %:@var{function}(@var{args})
28666Call the named function @var{function}, passing it @var{args}.
28667@var{args} is first processed as a nested spec string, then split
28668into an argument vector in the usual fashion.  The function returns
28669a string which is processed as if it had appeared literally as part
28670of the current spec.
28671
28672The following built-in spec functions are provided:
28673
28674@table @code
28675@item @code{getenv}
28676The @code{getenv} spec function takes two arguments: an environment
28677variable name and a string.  If the environment variable is not
28678defined, a fatal error is issued.  Otherwise, the return value is the
28679value of the environment variable concatenated with the string.  For
28680example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
28681
28682@smallexample
28683%:getenv(TOPDIR /include)
28684@end smallexample
28685
28686expands to @file{/path/to/top/include}.
28687
28688@item @code{if-exists}
28689The @code{if-exists} spec function takes one argument, an absolute
28690pathname to a file.  If the file exists, @code{if-exists} returns the
28691pathname.  Here is a small example of its usage:
28692
28693@smallexample
28694*startfile:
28695crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
28696@end smallexample
28697
28698@item @code{if-exists-else}
28699The @code{if-exists-else} spec function is similar to the @code{if-exists}
28700spec function, except that it takes two arguments.  The first argument is
28701an absolute pathname to a file.  If the file exists, @code{if-exists-else}
28702returns the pathname.  If it does not exist, it returns the second argument.
28703This way, @code{if-exists-else} can be used to select one file or another,
28704based on the existence of the first.  Here is a small example of its usage:
28705
28706@smallexample
28707*startfile:
28708crt0%O%s %:if-exists(crti%O%s) \
28709%:if-exists-else(crtbeginT%O%s crtbegin%O%s)
28710@end smallexample
28711
28712@item @code{replace-outfile}
28713The @code{replace-outfile} spec function takes two arguments.  It looks for the
28714first argument in the outfiles array and replaces it with the second argument.  Here
28715is a small example of its usage:
28716
28717@smallexample
28718%@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
28719@end smallexample
28720
28721@item @code{remove-outfile}
28722The @code{remove-outfile} spec function takes one argument.  It looks for the
28723first argument in the outfiles array and removes it.  Here is a small example
28724its usage:
28725
28726@smallexample
28727%:remove-outfile(-lm)
28728@end smallexample
28729
28730@item @code{pass-through-libs}
28731The @code{pass-through-libs} spec function takes any number of arguments.  It
28732finds any @option{-l} options and any non-options ending in @file{.a} (which it
28733assumes are the names of linker input library archive files) and returns a
28734result containing all the found arguments each prepended by
28735@option{-plugin-opt=-pass-through=} and joined by spaces.  This list is
28736intended to be passed to the LTO linker plugin.
28737
28738@smallexample
28739%:pass-through-libs(%G %L %G)
28740@end smallexample
28741
28742@item @code{print-asm-header}
28743The @code{print-asm-header} function takes no arguments and simply
28744prints a banner like:
28745
28746@smallexample
28747Assembler options
28748=================
28749
28750Use "-Wa,OPTION" to pass "OPTION" to the assembler.
28751@end smallexample
28752
28753It is used to separate compiler options from assembler options
28754in the @option{--target-help} output.
28755@end table
28756
28757@item %@{S@}
28758Substitutes the @code{-S} switch, if that switch is given to GCC@.
28759If that switch is not specified, this substitutes nothing.  Note that
28760the leading dash is omitted when specifying this option, and it is
28761automatically inserted if the substitution is performed.  Thus the spec
28762string @samp{%@{foo@}} matches the command-line option @option{-foo}
28763and outputs the command-line option @option{-foo}.
28764
28765@item %W@{S@}
28766Like %@{@code{S}@} but mark last argument supplied within as a file to be
28767deleted on failure.
28768
28769@item %@{S*@}
28770Substitutes all the switches specified to GCC whose names start
28771with @code{-S}, but which also take an argument.  This is used for
28772switches like @option{-o}, @option{-D}, @option{-I}, etc.
28773GCC considers @option{-o foo} as being
28774one switch whose name starts with @samp{o}.  %@{o*@} substitutes this
28775text, including the space.  Thus two arguments are generated.
28776
28777@item %@{S*&T*@}
28778Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
28779(the order of @code{S} and @code{T} in the spec is not significant).
28780There can be any number of ampersand-separated variables; for each the
28781wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
28782
28783@item %@{S:X@}
28784Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
28785
28786@item %@{!S:X@}
28787Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
28788
28789@item %@{S*:X@}
28790Substitutes @code{X} if one or more switches whose names start with
28791@code{-S} are specified to GCC@.  Normally @code{X} is substituted only
28792once, no matter how many such switches appeared.  However, if @code{%*}
28793appears somewhere in @code{X}, then @code{X} is substituted once
28794for each matching switch, with the @code{%*} replaced by the part of
28795that switch matching the @code{*}.
28796
28797If @code{%*} appears as the last part of a spec sequence then a space
28798is added after the end of the last substitution.  If there is more
28799text in the sequence, however, then a space is not generated.  This
28800allows the @code{%*} substitution to be used as part of a larger
28801string.  For example, a spec string like this:
28802
28803@smallexample
28804%@{mcu=*:--script=%*/memory.ld@}
28805@end smallexample
28806
28807@noindent
28808when matching an option like @option{-mcu=newchip} produces:
28809
28810@smallexample
28811--script=newchip/memory.ld
28812@end smallexample
28813
28814@item %@{.S:X@}
28815Substitutes @code{X}, if processing a file with suffix @code{S}.
28816
28817@item %@{!.S:X@}
28818Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
28819
28820@item %@{,S:X@}
28821Substitutes @code{X}, if processing a file for language @code{S}.
28822
28823@item %@{!,S:X@}
28824Substitutes @code{X}, if not processing a file for language @code{S}.
28825
28826@item %@{S|P:X@}
28827Substitutes @code{X} if either @code{-S} or @code{-P} is given to
28828GCC@.  This may be combined with @samp{!}, @samp{.}, @samp{,}, and
28829@code{*} sequences as well, although they have a stronger binding than
28830the @samp{|}.  If @code{%*} appears in @code{X}, all of the
28831alternatives must be starred, and only the first matching alternative
28832is substituted.
28833
28834For example, a spec string like this:
28835
28836@smallexample
28837%@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
28838@end smallexample
28839
28840@noindent
28841outputs the following command-line options from the following input
28842command-line options:
28843
28844@smallexample
28845fred.c        -foo -baz
28846jim.d         -bar -boggle
28847-d fred.c     -foo -baz -boggle
28848-d jim.d      -bar -baz -boggle
28849@end smallexample
28850
28851@item %@{S:X; T:Y; :D@}
28852
28853If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
28854given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
28855be as many clauses as you need.  This may be combined with @code{.},
28856@code{,}, @code{!}, @code{|}, and @code{*} as needed.
28857
28858
28859@end table
28860
28861The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
28862or similar construct can use a backslash to ignore the special meaning
28863of the character following it, thus allowing literal matching of a
28864character that is otherwise specially treated.  For example,
28865@samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
28866@option{-std=iso9899:1999} option is given.
28867
28868The conditional text @code{X} in a @samp{%@{S:X@}} or similar
28869construct may contain other nested @samp{%} constructs or spaces, or
28870even newlines.  They are processed as usual, as described above.
28871Trailing white space in @code{X} is ignored.  White space may also
28872appear anywhere on the left side of the colon in these constructs,
28873except between @code{.} or @code{*} and the corresponding word.
28874
28875The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
28876handled specifically in these constructs.  If another value of
28877@option{-O} or the negated form of a @option{-f}, @option{-m}, or
28878@option{-W} switch is found later in the command line, the earlier
28879switch value is ignored, except with @{@code{S}*@} where @code{S} is
28880just one letter, which passes all matching options.
28881
28882The character @samp{|} at the beginning of the predicate text is used to
28883indicate that a command should be piped to the following command, but
28884only if @option{-pipe} is specified.
28885
28886It is built into GCC which switches take arguments and which do not.
28887(You might think it would be useful to generalize this to allow each
28888compiler's spec to say which switches take arguments.  But this cannot
28889be done in a consistent fashion.  GCC cannot even decide which input
28890files have been specified without knowing which switches take arguments,
28891and it must know which input files to compile in order to tell which
28892compilers to run).
28893
28894GCC also knows implicitly that arguments starting in @option{-l} are to be
28895treated as compiler output files, and passed to the linker in their
28896proper position among the other output files.
28897
28898@node Environment Variables
28899@section Environment Variables Affecting GCC
28900@cindex environment variables
28901
28902@c man begin ENVIRONMENT
28903This section describes several environment variables that affect how GCC
28904operates.  Some of them work by specifying directories or prefixes to use
28905when searching for various kinds of files.  Some are used to specify other
28906aspects of the compilation environment.
28907
28908Note that you can also specify places to search using options such as
28909@option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
28910take precedence over places specified using environment variables, which
28911in turn take precedence over those specified by the configuration of GCC@.
28912@xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
28913GNU Compiler Collection (GCC) Internals}.
28914
28915@table @env
28916@item LANG
28917@itemx LC_CTYPE
28918@c @itemx LC_COLLATE
28919@itemx LC_MESSAGES
28920@c @itemx LC_MONETARY
28921@c @itemx LC_NUMERIC
28922@c @itemx LC_TIME
28923@itemx LC_ALL
28924@findex LANG
28925@findex LC_CTYPE
28926@c @findex LC_COLLATE
28927@findex LC_MESSAGES
28928@c @findex LC_MONETARY
28929@c @findex LC_NUMERIC
28930@c @findex LC_TIME
28931@findex LC_ALL
28932@cindex locale
28933These environment variables control the way that GCC uses
28934localization information which allows GCC to work with different
28935national conventions.  GCC inspects the locale categories
28936@env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
28937so.  These locale categories can be set to any value supported by your
28938installation.  A typical value is @samp{en_GB.UTF-8} for English in the United
28939Kingdom encoded in UTF-8.
28940
28941The @env{LC_CTYPE} environment variable specifies character
28942classification.  GCC uses it to determine the character boundaries in
28943a string; this is needed for some multibyte encodings that contain quote
28944and escape characters that are otherwise interpreted as a string
28945end or escape.
28946
28947The @env{LC_MESSAGES} environment variable specifies the language to
28948use in diagnostic messages.
28949
28950If the @env{LC_ALL} environment variable is set, it overrides the value
28951of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
28952and @env{LC_MESSAGES} default to the value of the @env{LANG}
28953environment variable.  If none of these variables are set, GCC
28954defaults to traditional C English behavior.
28955
28956@item TMPDIR
28957@findex TMPDIR
28958If @env{TMPDIR} is set, it specifies the directory to use for temporary
28959files.  GCC uses temporary files to hold the output of one stage of
28960compilation which is to be used as input to the next stage: for example,
28961the output of the preprocessor, which is the input to the compiler
28962proper.
28963
28964@item GCC_COMPARE_DEBUG
28965@findex GCC_COMPARE_DEBUG
28966Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
28967@option{-fcompare-debug} to the compiler driver.  See the documentation
28968of this option for more details.
28969
28970@item GCC_EXEC_PREFIX
28971@findex GCC_EXEC_PREFIX
28972If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
28973names of the subprograms executed by the compiler.  No slash is added
28974when this prefix is combined with the name of a subprogram, but you can
28975specify a prefix that ends with a slash if you wish.
28976
28977If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
28978an appropriate prefix to use based on the pathname it is invoked with.
28979
28980If GCC cannot find the subprogram using the specified prefix, it
28981tries looking in the usual places for the subprogram.
28982
28983The default value of @env{GCC_EXEC_PREFIX} is
28984@file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
28985the installed compiler. In many cases @var{prefix} is the value
28986of @code{prefix} when you ran the @file{configure} script.
28987
28988Other prefixes specified with @option{-B} take precedence over this prefix.
28989
28990This prefix is also used for finding files such as @file{crt0.o} that are
28991used for linking.
28992
28993In addition, the prefix is used in an unusual way in finding the
28994directories to search for header files.  For each of the standard
28995directories whose name normally begins with @samp{/usr/local/lib/gcc}
28996(more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
28997replacing that beginning with the specified prefix to produce an
28998alternate directory name.  Thus, with @option{-Bfoo/}, GCC searches
28999@file{foo/bar} just before it searches the standard directory
29000@file{/usr/local/lib/bar}.
29001If a standard directory begins with the configured
29002@var{prefix} then the value of @var{prefix} is replaced by
29003@env{GCC_EXEC_PREFIX} when looking for header files.
29004
29005@item COMPILER_PATH
29006@findex COMPILER_PATH
29007The value of @env{COMPILER_PATH} is a colon-separated list of
29008directories, much like @env{PATH}.  GCC tries the directories thus
29009specified when searching for subprograms, if it cannot find the
29010subprograms using @env{GCC_EXEC_PREFIX}.
29011
29012@item LIBRARY_PATH
29013@findex LIBRARY_PATH
29014The value of @env{LIBRARY_PATH} is a colon-separated list of
29015directories, much like @env{PATH}.  When configured as a native compiler,
29016GCC tries the directories thus specified when searching for special
29017linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}.  Linking
29018using GCC also uses these directories when searching for ordinary
29019libraries for the @option{-l} option (but directories specified with
29020@option{-L} come first).
29021
29022@item LANG
29023@findex LANG
29024@cindex locale definition
29025This variable is used to pass locale information to the compiler.  One way in
29026which this information is used is to determine the character set to be used
29027when character literals, string literals and comments are parsed in C and C++.
29028When the compiler is configured to allow multibyte characters,
29029the following values for @env{LANG} are recognized:
29030
29031@table @samp
29032@item C-JIS
29033Recognize JIS characters.
29034@item C-SJIS
29035Recognize SJIS characters.
29036@item C-EUCJP
29037Recognize EUCJP characters.
29038@end table
29039
29040If @env{LANG} is not defined, or if it has some other value, then the
29041compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
29042recognize and translate multibyte characters.
29043@end table
29044
29045@noindent
29046Some additional environment variables affect the behavior of the
29047preprocessor.
29048
29049@include cppenv.texi
29050
29051@c man end
29052
29053@node Precompiled Headers
29054@section Using Precompiled Headers
29055@cindex precompiled headers
29056@cindex speed of compilation
29057
29058Often large projects have many header files that are included in every
29059source file.  The time the compiler takes to process these header files
29060over and over again can account for nearly all of the time required to
29061build the project.  To make builds faster, GCC allows you to
29062@dfn{precompile} a header file.
29063
29064To create a precompiled header file, simply compile it as you would any
29065other file, if necessary using the @option{-x} option to make the driver
29066treat it as a C or C++ header file.  You may want to use a
29067tool like @command{make} to keep the precompiled header up-to-date when
29068the headers it contains change.
29069
29070A precompiled header file is searched for when @code{#include} is
29071seen in the compilation.  As it searches for the included file
29072(@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
29073compiler looks for a precompiled header in each directory just before it
29074looks for the include file in that directory.  The name searched for is
29075the name specified in the @code{#include} with @samp{.gch} appended.  If
29076the precompiled header file cannot be used, it is ignored.
29077
29078For instance, if you have @code{#include "all.h"}, and you have
29079@file{all.h.gch} in the same directory as @file{all.h}, then the
29080precompiled header file is used if possible, and the original
29081header is used otherwise.
29082
29083Alternatively, you might decide to put the precompiled header file in a
29084directory and use @option{-I} to ensure that directory is searched
29085before (or instead of) the directory containing the original header.
29086Then, if you want to check that the precompiled header file is always
29087used, you can put a file of the same name as the original header in this
29088directory containing an @code{#error} command.
29089
29090This also works with @option{-include}.  So yet another way to use
29091precompiled headers, good for projects not designed with precompiled
29092header files in mind, is to simply take most of the header files used by
29093a project, include them from another header file, precompile that header
29094file, and @option{-include} the precompiled header.  If the header files
29095have guards against multiple inclusion, they are skipped because
29096they've already been included (in the precompiled header).
29097
29098If you need to precompile the same header file for different
29099languages, targets, or compiler options, you can instead make a
29100@emph{directory} named like @file{all.h.gch}, and put each precompiled
29101header in the directory, perhaps using @option{-o}.  It doesn't matter
29102what you call the files in the directory; every precompiled header in
29103the directory is considered.  The first precompiled header
29104encountered in the directory that is valid for this compilation is
29105used; they're searched in no particular order.
29106
29107There are many other possibilities, limited only by your imagination,
29108good sense, and the constraints of your build system.
29109
29110A precompiled header file can be used only when these conditions apply:
29111
29112@itemize
29113@item
29114Only one precompiled header can be used in a particular compilation.
29115
29116@item
29117A precompiled header cannot be used once the first C token is seen.  You
29118can have preprocessor directives before a precompiled header; you cannot
29119include a precompiled header from inside another header.
29120
29121@item
29122The precompiled header file must be produced for the same language as
29123the current compilation.  You cannot use a C precompiled header for a C++
29124compilation.
29125
29126@item
29127The precompiled header file must have been produced by the same compiler
29128binary as the current compilation is using.
29129
29130@item
29131Any macros defined before the precompiled header is included must
29132either be defined in the same way as when the precompiled header was
29133generated, or must not affect the precompiled header, which usually
29134means that they don't appear in the precompiled header at all.
29135
29136The @option{-D} option is one way to define a macro before a
29137precompiled header is included; using a @code{#define} can also do it.
29138There are also some options that define macros implicitly, like
29139@option{-O} and @option{-Wdeprecated}; the same rule applies to macros
29140defined this way.
29141
29142@item If debugging information is output when using the precompiled
29143header, using @option{-g} or similar, the same kind of debugging information
29144must have been output when building the precompiled header.  However,
29145a precompiled header built using @option{-g} can be used in a compilation
29146when no debugging information is being output.
29147
29148@item The same @option{-m} options must generally be used when building
29149and using the precompiled header.  @xref{Submodel Options},
29150for any cases where this rule is relaxed.
29151
29152@item Each of the following options must be the same when building and using
29153the precompiled header:
29154
29155@gccoptlist{-fexceptions}
29156
29157@item
29158Some other command-line options starting with @option{-f},
29159@option{-p}, or @option{-O} must be defined in the same way as when
29160the precompiled header was generated.  At present, it's not clear
29161which options are safe to change and which are not; the safest choice
29162is to use exactly the same options when generating and using the
29163precompiled header.  The following are known to be safe:
29164
29165@gccoptlist{-fmessage-length=  -fpreprocessed  -fsched-interblock @gol
29166-fsched-spec  -fsched-spec-load  -fsched-spec-load-dangerous @gol
29167-fsched-verbose=@var{number}  -fschedule-insns  -fvisibility= @gol
29168-pedantic-errors}
29169
29170@end itemize
29171
29172For all of these except the last, the compiler automatically
29173ignores the precompiled header if the conditions aren't met.  If you
29174find an option combination that doesn't work and doesn't cause the
29175precompiled header to be ignored, please consider filing a bug report,
29176see @ref{Bugs}.
29177
29178If you do use differing options when generating and using the
29179precompiled header, the actual behavior is a mixture of the
29180behavior for the options.  For instance, if you use @option{-g} to
29181generate the precompiled header but not when using it, you may or may
29182not get debugging information for routines in the precompiled header.
29183