1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// TLS low level connection and record layer 6 7package tls 8 9import ( 10 "bytes" 11 "crypto/cipher" 12 "crypto/subtle" 13 "crypto/x509" 14 "errors" 15 "fmt" 16 "io" 17 "net" 18 "sync" 19 "sync/atomic" 20 "time" 21) 22 23// A Conn represents a secured connection. 24// It implements the net.Conn interface. 25type Conn struct { 26 // constant 27 conn net.Conn 28 isClient bool 29 30 // constant after handshake; protected by handshakeMutex 31 handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex 32 // handshakeCond, if not nil, indicates that a goroutine is committed 33 // to running the handshake for this Conn. Other goroutines that need 34 // to wait for the handshake can wait on this, under handshakeMutex. 35 handshakeCond *sync.Cond 36 handshakeErr error // error resulting from handshake 37 vers uint16 // TLS version 38 haveVers bool // version has been negotiated 39 config *Config // configuration passed to constructor 40 // handshakeComplete is true if the connection is currently transferring 41 // application data (i.e. is not currently processing a handshake). 42 handshakeComplete bool 43 // handshakes counts the number of handshakes performed on the 44 // connection so far. If renegotiation is disabled then this is either 45 // zero or one. 46 handshakes int 47 didResume bool // whether this connection was a session resumption 48 cipherSuite uint16 49 ocspResponse []byte // stapled OCSP response 50 scts [][]byte // signed certificate timestamps from server 51 peerCertificates []*x509.Certificate 52 // verifiedChains contains the certificate chains that we built, as 53 // opposed to the ones presented by the server. 54 verifiedChains [][]*x509.Certificate 55 // serverName contains the server name indicated by the client, if any. 56 serverName string 57 // secureRenegotiation is true if the server echoed the secure 58 // renegotiation extension. (This is meaningless as a server because 59 // renegotiation is not supported in that case.) 60 secureRenegotiation bool 61 62 // clientFinishedIsFirst is true if the client sent the first Finished 63 // message during the most recent handshake. This is recorded because 64 // the first transmitted Finished message is the tls-unique 65 // channel-binding value. 66 clientFinishedIsFirst bool 67 68 // closeNotifyErr is any error from sending the alertCloseNotify record. 69 closeNotifyErr error 70 // closeNotifySent is true if the Conn attempted to send an 71 // alertCloseNotify record. 72 closeNotifySent bool 73 74 // clientFinished and serverFinished contain the Finished message sent 75 // by the client or server in the most recent handshake. This is 76 // retained to support the renegotiation extension and tls-unique 77 // channel-binding. 78 clientFinished [12]byte 79 serverFinished [12]byte 80 81 clientProtocol string 82 clientProtocolFallback bool 83 84 // input/output 85 in, out halfConn // in.Mutex < out.Mutex 86 rawInput *block // raw input, right off the wire 87 input *block // application data waiting to be read 88 hand bytes.Buffer // handshake data waiting to be read 89 buffering bool // whether records are buffered in sendBuf 90 sendBuf []byte // a buffer of records waiting to be sent 91 92 // bytesSent counts the bytes of application data sent. 93 // packetsSent counts packets. 94 bytesSent int64 95 packetsSent int64 96 97 // warnCount counts the number of consecutive warning alerts received 98 // by Conn.readRecord. Protected by in.Mutex. 99 warnCount int 100 101 // activeCall is an atomic int32; the low bit is whether Close has 102 // been called. the rest of the bits are the number of goroutines 103 // in Conn.Write. 104 activeCall int32 105 106 tmp [16]byte 107} 108 109// Access to net.Conn methods. 110// Cannot just embed net.Conn because that would 111// export the struct field too. 112 113// LocalAddr returns the local network address. 114func (c *Conn) LocalAddr() net.Addr { 115 return c.conn.LocalAddr() 116} 117 118// RemoteAddr returns the remote network address. 119func (c *Conn) RemoteAddr() net.Addr { 120 return c.conn.RemoteAddr() 121} 122 123// SetDeadline sets the read and write deadlines associated with the connection. 124// A zero value for t means Read and Write will not time out. 125// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 126func (c *Conn) SetDeadline(t time.Time) error { 127 return c.conn.SetDeadline(t) 128} 129 130// SetReadDeadline sets the read deadline on the underlying connection. 131// A zero value for t means Read will not time out. 132func (c *Conn) SetReadDeadline(t time.Time) error { 133 return c.conn.SetReadDeadline(t) 134} 135 136// SetWriteDeadline sets the write deadline on the underlying connection. 137// A zero value for t means Write will not time out. 138// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 139func (c *Conn) SetWriteDeadline(t time.Time) error { 140 return c.conn.SetWriteDeadline(t) 141} 142 143// A halfConn represents one direction of the record layer 144// connection, either sending or receiving. 145type halfConn struct { 146 sync.Mutex 147 148 err error // first permanent error 149 version uint16 // protocol version 150 cipher interface{} // cipher algorithm 151 mac macFunction 152 seq [8]byte // 64-bit sequence number 153 bfree *block // list of free blocks 154 additionalData [13]byte // to avoid allocs; interface method args escape 155 156 nextCipher interface{} // next encryption state 157 nextMac macFunction // next MAC algorithm 158 159 // used to save allocating a new buffer for each MAC. 160 inDigestBuf, outDigestBuf []byte 161} 162 163func (hc *halfConn) setErrorLocked(err error) error { 164 hc.err = err 165 return err 166} 167 168// prepareCipherSpec sets the encryption and MAC states 169// that a subsequent changeCipherSpec will use. 170func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { 171 hc.version = version 172 hc.nextCipher = cipher 173 hc.nextMac = mac 174} 175 176// changeCipherSpec changes the encryption and MAC states 177// to the ones previously passed to prepareCipherSpec. 178func (hc *halfConn) changeCipherSpec() error { 179 if hc.nextCipher == nil { 180 return alertInternalError 181 } 182 hc.cipher = hc.nextCipher 183 hc.mac = hc.nextMac 184 hc.nextCipher = nil 185 hc.nextMac = nil 186 for i := range hc.seq { 187 hc.seq[i] = 0 188 } 189 return nil 190} 191 192// incSeq increments the sequence number. 193func (hc *halfConn) incSeq() { 194 for i := 7; i >= 0; i-- { 195 hc.seq[i]++ 196 if hc.seq[i] != 0 { 197 return 198 } 199 } 200 201 // Not allowed to let sequence number wrap. 202 // Instead, must renegotiate before it does. 203 // Not likely enough to bother. 204 panic("TLS: sequence number wraparound") 205} 206 207// extractPadding returns, in constant time, the length of the padding to remove 208// from the end of payload. It also returns a byte which is equal to 255 if the 209// padding was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 210func extractPadding(payload []byte) (toRemove int, good byte) { 211 if len(payload) < 1 { 212 return 0, 0 213 } 214 215 paddingLen := payload[len(payload)-1] 216 t := uint(len(payload)-1) - uint(paddingLen) 217 // if len(payload) >= (paddingLen - 1) then the MSB of t is zero 218 good = byte(int32(^t) >> 31) 219 220 // The maximum possible padding length plus the actual length field 221 toCheck := 256 222 // The length of the padded data is public, so we can use an if here 223 if toCheck > len(payload) { 224 toCheck = len(payload) 225 } 226 227 for i := 0; i < toCheck; i++ { 228 t := uint(paddingLen) - uint(i) 229 // if i <= paddingLen then the MSB of t is zero 230 mask := byte(int32(^t) >> 31) 231 b := payload[len(payload)-1-i] 232 good &^= mask&paddingLen ^ mask&b 233 } 234 235 // We AND together the bits of good and replicate the result across 236 // all the bits. 237 good &= good << 4 238 good &= good << 2 239 good &= good << 1 240 good = uint8(int8(good) >> 7) 241 242 toRemove = int(paddingLen) + 1 243 return 244} 245 246// extractPaddingSSL30 is a replacement for extractPadding in the case that the 247// protocol version is SSLv3. In this version, the contents of the padding 248// are random and cannot be checked. 249func extractPaddingSSL30(payload []byte) (toRemove int, good byte) { 250 if len(payload) < 1 { 251 return 0, 0 252 } 253 254 paddingLen := int(payload[len(payload)-1]) + 1 255 if paddingLen > len(payload) { 256 return 0, 0 257 } 258 259 return paddingLen, 255 260} 261 262func roundUp(a, b int) int { 263 return a + (b-a%b)%b 264} 265 266// cbcMode is an interface for block ciphers using cipher block chaining. 267type cbcMode interface { 268 cipher.BlockMode 269 SetIV([]byte) 270} 271 272// decrypt checks and strips the mac and decrypts the data in b. Returns a 273// success boolean, the number of bytes to skip from the start of the record in 274// order to get the application payload, and an optional alert value. 275func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) { 276 // pull out payload 277 payload := b.data[recordHeaderLen:] 278 279 macSize := 0 280 if hc.mac != nil { 281 macSize = hc.mac.Size() 282 } 283 284 paddingGood := byte(255) 285 paddingLen := 0 286 explicitIVLen := 0 287 288 // decrypt 289 if hc.cipher != nil { 290 switch c := hc.cipher.(type) { 291 case cipher.Stream: 292 c.XORKeyStream(payload, payload) 293 case aead: 294 explicitIVLen = c.explicitNonceLen() 295 if len(payload) < explicitIVLen { 296 return false, 0, alertBadRecordMAC 297 } 298 nonce := payload[:explicitIVLen] 299 payload = payload[explicitIVLen:] 300 301 if len(nonce) == 0 { 302 nonce = hc.seq[:] 303 } 304 305 copy(hc.additionalData[:], hc.seq[:]) 306 copy(hc.additionalData[8:], b.data[:3]) 307 n := len(payload) - c.Overhead() 308 hc.additionalData[11] = byte(n >> 8) 309 hc.additionalData[12] = byte(n) 310 var err error 311 payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:]) 312 if err != nil { 313 return false, 0, alertBadRecordMAC 314 } 315 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 316 case cbcMode: 317 blockSize := c.BlockSize() 318 if hc.version >= VersionTLS11 { 319 explicitIVLen = blockSize 320 } 321 322 if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { 323 return false, 0, alertBadRecordMAC 324 } 325 326 if explicitIVLen > 0 { 327 c.SetIV(payload[:explicitIVLen]) 328 payload = payload[explicitIVLen:] 329 } 330 c.CryptBlocks(payload, payload) 331 if hc.version == VersionSSL30 { 332 paddingLen, paddingGood = extractPaddingSSL30(payload) 333 } else { 334 paddingLen, paddingGood = extractPadding(payload) 335 336 // To protect against CBC padding oracles like Lucky13, the data 337 // past paddingLen (which is secret) is passed to the MAC 338 // function as extra data, to be fed into the HMAC after 339 // computing the digest. This makes the MAC constant time as 340 // long as the digest computation is constant time and does not 341 // affect the subsequent write. 342 } 343 default: 344 panic("unknown cipher type") 345 } 346 } 347 348 // check, strip mac 349 if hc.mac != nil { 350 if len(payload) < macSize { 351 return false, 0, alertBadRecordMAC 352 } 353 354 // strip mac off payload, b.data 355 n := len(payload) - macSize - paddingLen 356 n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 } 357 b.data[3] = byte(n >> 8) 358 b.data[4] = byte(n) 359 remoteMAC := payload[n : n+macSize] 360 localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n], payload[n+macSize:]) 361 362 if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { 363 return false, 0, alertBadRecordMAC 364 } 365 hc.inDigestBuf = localMAC 366 367 b.resize(recordHeaderLen + explicitIVLen + n) 368 } 369 hc.incSeq() 370 371 return true, recordHeaderLen + explicitIVLen, 0 372} 373 374// padToBlockSize calculates the needed padding block, if any, for a payload. 375// On exit, prefix aliases payload and extends to the end of the last full 376// block of payload. finalBlock is a fresh slice which contains the contents of 377// any suffix of payload as well as the needed padding to make finalBlock a 378// full block. 379func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) { 380 overrun := len(payload) % blockSize 381 paddingLen := blockSize - overrun 382 prefix = payload[:len(payload)-overrun] 383 finalBlock = make([]byte, blockSize) 384 copy(finalBlock, payload[len(payload)-overrun:]) 385 for i := overrun; i < blockSize; i++ { 386 finalBlock[i] = byte(paddingLen - 1) 387 } 388 return 389} 390 391// encrypt encrypts and macs the data in b. 392func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) { 393 // mac 394 if hc.mac != nil { 395 mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:], nil) 396 397 n := len(b.data) 398 b.resize(n + len(mac)) 399 copy(b.data[n:], mac) 400 hc.outDigestBuf = mac 401 } 402 403 payload := b.data[recordHeaderLen:] 404 405 // encrypt 406 if hc.cipher != nil { 407 switch c := hc.cipher.(type) { 408 case cipher.Stream: 409 c.XORKeyStream(payload, payload) 410 case aead: 411 payloadLen := len(b.data) - recordHeaderLen - explicitIVLen 412 b.resize(len(b.data) + c.Overhead()) 413 nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 414 if len(nonce) == 0 { 415 nonce = hc.seq[:] 416 } 417 payload := b.data[recordHeaderLen+explicitIVLen:] 418 payload = payload[:payloadLen] 419 420 copy(hc.additionalData[:], hc.seq[:]) 421 copy(hc.additionalData[8:], b.data[:3]) 422 hc.additionalData[11] = byte(payloadLen >> 8) 423 hc.additionalData[12] = byte(payloadLen) 424 425 c.Seal(payload[:0], nonce, payload, hc.additionalData[:]) 426 case cbcMode: 427 blockSize := c.BlockSize() 428 if explicitIVLen > 0 { 429 c.SetIV(payload[:explicitIVLen]) 430 payload = payload[explicitIVLen:] 431 } 432 prefix, finalBlock := padToBlockSize(payload, blockSize) 433 b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) 434 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) 435 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) 436 default: 437 panic("unknown cipher type") 438 } 439 } 440 441 // update length to include MAC and any block padding needed. 442 n := len(b.data) - recordHeaderLen 443 b.data[3] = byte(n >> 8) 444 b.data[4] = byte(n) 445 hc.incSeq() 446 447 return true, 0 448} 449 450// A block is a simple data buffer. 451type block struct { 452 data []byte 453 off int // index for Read 454 link *block 455} 456 457// resize resizes block to be n bytes, growing if necessary. 458func (b *block) resize(n int) { 459 if n > cap(b.data) { 460 b.reserve(n) 461 } 462 b.data = b.data[0:n] 463} 464 465// reserve makes sure that block contains a capacity of at least n bytes. 466func (b *block) reserve(n int) { 467 if cap(b.data) >= n { 468 return 469 } 470 m := cap(b.data) 471 if m == 0 { 472 m = 1024 473 } 474 for m < n { 475 m *= 2 476 } 477 data := make([]byte, len(b.data), m) 478 copy(data, b.data) 479 b.data = data 480} 481 482// readFromUntil reads from r into b until b contains at least n bytes 483// or else returns an error. 484func (b *block) readFromUntil(r io.Reader, n int) error { 485 // quick case 486 if len(b.data) >= n { 487 return nil 488 } 489 490 // read until have enough. 491 b.reserve(n) 492 for { 493 m, err := r.Read(b.data[len(b.data):cap(b.data)]) 494 b.data = b.data[0 : len(b.data)+m] 495 if len(b.data) >= n { 496 // TODO(bradfitz,agl): slightly suspicious 497 // that we're throwing away r.Read's err here. 498 break 499 } 500 if err != nil { 501 return err 502 } 503 } 504 return nil 505} 506 507func (b *block) Read(p []byte) (n int, err error) { 508 n = copy(p, b.data[b.off:]) 509 b.off += n 510 return 511} 512 513// newBlock allocates a new block, from hc's free list if possible. 514func (hc *halfConn) newBlock() *block { 515 b := hc.bfree 516 if b == nil { 517 return new(block) 518 } 519 hc.bfree = b.link 520 b.link = nil 521 b.resize(0) 522 return b 523} 524 525// freeBlock returns a block to hc's free list. 526// The protocol is such that each side only has a block or two on 527// its free list at a time, so there's no need to worry about 528// trimming the list, etc. 529func (hc *halfConn) freeBlock(b *block) { 530 b.link = hc.bfree 531 hc.bfree = b 532} 533 534// splitBlock splits a block after the first n bytes, 535// returning a block with those n bytes and a 536// block with the remainder. the latter may be nil. 537func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { 538 if len(b.data) <= n { 539 return b, nil 540 } 541 bb := hc.newBlock() 542 bb.resize(len(b.data) - n) 543 copy(bb.data, b.data[n:]) 544 b.data = b.data[0:n] 545 return b, bb 546} 547 548// RecordHeaderError results when a TLS record header is invalid. 549type RecordHeaderError struct { 550 // Msg contains a human readable string that describes the error. 551 Msg string 552 // RecordHeader contains the five bytes of TLS record header that 553 // triggered the error. 554 RecordHeader [5]byte 555} 556 557func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } 558 559func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) { 560 err.Msg = msg 561 copy(err.RecordHeader[:], c.rawInput.data) 562 return err 563} 564 565// readRecord reads the next TLS record from the connection 566// and updates the record layer state. 567// c.in.Mutex <= L; c.input == nil. 568func (c *Conn) readRecord(want recordType) error { 569 // Caller must be in sync with connection: 570 // handshake data if handshake not yet completed, 571 // else application data. 572 switch want { 573 default: 574 c.sendAlert(alertInternalError) 575 return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) 576 case recordTypeHandshake, recordTypeChangeCipherSpec: 577 if c.handshakeComplete { 578 c.sendAlert(alertInternalError) 579 return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake")) 580 } 581 case recordTypeApplicationData: 582 if !c.handshakeComplete { 583 c.sendAlert(alertInternalError) 584 return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake")) 585 } 586 } 587 588Again: 589 if c.rawInput == nil { 590 c.rawInput = c.in.newBlock() 591 } 592 b := c.rawInput 593 594 // Read header, payload. 595 if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { 596 // RFC suggests that EOF without an alertCloseNotify is 597 // an error, but popular web sites seem to do this, 598 // so we can't make it an error. 599 // if err == io.EOF { 600 // err = io.ErrUnexpectedEOF 601 // } 602 if e, ok := err.(net.Error); !ok || !e.Temporary() { 603 c.in.setErrorLocked(err) 604 } 605 return err 606 } 607 typ := recordType(b.data[0]) 608 609 // No valid TLS record has a type of 0x80, however SSLv2 handshakes 610 // start with a uint16 length where the MSB is set and the first record 611 // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests 612 // an SSLv2 client. 613 if want == recordTypeHandshake && typ == 0x80 { 614 c.sendAlert(alertProtocolVersion) 615 return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received")) 616 } 617 618 vers := uint16(b.data[1])<<8 | uint16(b.data[2]) 619 n := int(b.data[3])<<8 | int(b.data[4]) 620 if c.haveVers && vers != c.vers { 621 c.sendAlert(alertProtocolVersion) 622 msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers) 623 return c.in.setErrorLocked(c.newRecordHeaderError(msg)) 624 } 625 if n > maxCiphertext { 626 c.sendAlert(alertRecordOverflow) 627 msg := fmt.Sprintf("oversized record received with length %d", n) 628 return c.in.setErrorLocked(c.newRecordHeaderError(msg)) 629 } 630 if !c.haveVers { 631 // First message, be extra suspicious: this might not be a TLS 632 // client. Bail out before reading a full 'body', if possible. 633 // The current max version is 3.3 so if the version is >= 16.0, 634 // it's probably not real. 635 if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 { 636 c.sendAlert(alertUnexpectedMessage) 637 return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake")) 638 } 639 } 640 if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { 641 if err == io.EOF { 642 err = io.ErrUnexpectedEOF 643 } 644 if e, ok := err.(net.Error); !ok || !e.Temporary() { 645 c.in.setErrorLocked(err) 646 } 647 return err 648 } 649 650 // Process message. 651 b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) 652 ok, off, alertValue := c.in.decrypt(b) 653 if !ok { 654 c.in.freeBlock(b) 655 return c.in.setErrorLocked(c.sendAlert(alertValue)) 656 } 657 b.off = off 658 data := b.data[b.off:] 659 if len(data) > maxPlaintext { 660 err := c.sendAlert(alertRecordOverflow) 661 c.in.freeBlock(b) 662 return c.in.setErrorLocked(err) 663 } 664 665 if typ != recordTypeAlert && len(data) > 0 { 666 // this is a valid non-alert message: reset the count of alerts 667 c.warnCount = 0 668 } 669 670 switch typ { 671 default: 672 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 673 674 case recordTypeAlert: 675 if len(data) != 2 { 676 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 677 break 678 } 679 if alert(data[1]) == alertCloseNotify { 680 c.in.setErrorLocked(io.EOF) 681 break 682 } 683 switch data[0] { 684 case alertLevelWarning: 685 // drop on the floor 686 c.in.freeBlock(b) 687 688 c.warnCount++ 689 if c.warnCount > maxWarnAlertCount { 690 c.sendAlert(alertUnexpectedMessage) 691 return c.in.setErrorLocked(errors.New("tls: too many warn alerts")) 692 } 693 694 goto Again 695 case alertLevelError: 696 c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) 697 default: 698 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 699 } 700 701 case recordTypeChangeCipherSpec: 702 if typ != want || len(data) != 1 || data[0] != 1 { 703 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 704 break 705 } 706 // Handshake messages are not allowed to fragment across the CCS 707 if c.hand.Len() > 0 { 708 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 709 break 710 } 711 err := c.in.changeCipherSpec() 712 if err != nil { 713 c.in.setErrorLocked(c.sendAlert(err.(alert))) 714 } 715 716 case recordTypeApplicationData: 717 if typ != want { 718 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 719 break 720 } 721 c.input = b 722 b = nil 723 724 case recordTypeHandshake: 725 // TODO(rsc): Should at least pick off connection close. 726 if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) { 727 return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation)) 728 } 729 c.hand.Write(data) 730 } 731 732 if b != nil { 733 c.in.freeBlock(b) 734 } 735 return c.in.err 736} 737 738// sendAlert sends a TLS alert message. 739// c.out.Mutex <= L. 740func (c *Conn) sendAlertLocked(err alert) error { 741 switch err { 742 case alertNoRenegotiation, alertCloseNotify: 743 c.tmp[0] = alertLevelWarning 744 default: 745 c.tmp[0] = alertLevelError 746 } 747 c.tmp[1] = byte(err) 748 749 _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) 750 if err == alertCloseNotify { 751 // closeNotify is a special case in that it isn't an error. 752 return writeErr 753 } 754 755 return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 756} 757 758// sendAlert sends a TLS alert message. 759// L < c.out.Mutex. 760func (c *Conn) sendAlert(err alert) error { 761 c.out.Lock() 762 defer c.out.Unlock() 763 return c.sendAlertLocked(err) 764} 765 766const ( 767 // tcpMSSEstimate is a conservative estimate of the TCP maximum segment 768 // size (MSS). A constant is used, rather than querying the kernel for 769 // the actual MSS, to avoid complexity. The value here is the IPv6 770 // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 771 // bytes) and a TCP header with timestamps (32 bytes). 772 tcpMSSEstimate = 1208 773 774 // recordSizeBoostThreshold is the number of bytes of application data 775 // sent after which the TLS record size will be increased to the 776 // maximum. 777 recordSizeBoostThreshold = 128 * 1024 778) 779 780// maxPayloadSizeForWrite returns the maximum TLS payload size to use for the 781// next application data record. There is the following trade-off: 782// 783// - For latency-sensitive applications, such as web browsing, each TLS 784// record should fit in one TCP segment. 785// - For throughput-sensitive applications, such as large file transfers, 786// larger TLS records better amortize framing and encryption overheads. 787// 788// A simple heuristic that works well in practice is to use small records for 789// the first 1MB of data, then use larger records for subsequent data, and 790// reset back to smaller records after the connection becomes idle. See "High 791// Performance Web Networking", Chapter 4, or: 792// https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ 793// 794// In the interests of simplicity and determinism, this code does not attempt 795// to reset the record size once the connection is idle, however. 796// 797// c.out.Mutex <= L. 798func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int { 799 if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { 800 return maxPlaintext 801 } 802 803 if c.bytesSent >= recordSizeBoostThreshold { 804 return maxPlaintext 805 } 806 807 // Subtract TLS overheads to get the maximum payload size. 808 macSize := 0 809 if c.out.mac != nil { 810 macSize = c.out.mac.Size() 811 } 812 813 payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen 814 if c.out.cipher != nil { 815 switch ciph := c.out.cipher.(type) { 816 case cipher.Stream: 817 payloadBytes -= macSize 818 case cipher.AEAD: 819 payloadBytes -= ciph.Overhead() 820 case cbcMode: 821 blockSize := ciph.BlockSize() 822 // The payload must fit in a multiple of blockSize, with 823 // room for at least one padding byte. 824 payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 825 // The MAC is appended before padding so affects the 826 // payload size directly. 827 payloadBytes -= macSize 828 default: 829 panic("unknown cipher type") 830 } 831 } 832 833 // Allow packet growth in arithmetic progression up to max. 834 pkt := c.packetsSent 835 c.packetsSent++ 836 if pkt > 1000 { 837 return maxPlaintext // avoid overflow in multiply below 838 } 839 840 n := payloadBytes * int(pkt+1) 841 if n > maxPlaintext { 842 n = maxPlaintext 843 } 844 return n 845} 846 847// c.out.Mutex <= L. 848func (c *Conn) write(data []byte) (int, error) { 849 if c.buffering { 850 c.sendBuf = append(c.sendBuf, data...) 851 return len(data), nil 852 } 853 854 n, err := c.conn.Write(data) 855 c.bytesSent += int64(n) 856 return n, err 857} 858 859func (c *Conn) flush() (int, error) { 860 if len(c.sendBuf) == 0 { 861 return 0, nil 862 } 863 864 n, err := c.conn.Write(c.sendBuf) 865 c.bytesSent += int64(n) 866 c.sendBuf = nil 867 c.buffering = false 868 return n, err 869} 870 871// writeRecordLocked writes a TLS record with the given type and payload to the 872// connection and updates the record layer state. 873// c.out.Mutex <= L. 874func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { 875 b := c.out.newBlock() 876 defer c.out.freeBlock(b) 877 878 var n int 879 for len(data) > 0 { 880 explicitIVLen := 0 881 explicitIVIsSeq := false 882 883 var cbc cbcMode 884 if c.out.version >= VersionTLS11 { 885 var ok bool 886 if cbc, ok = c.out.cipher.(cbcMode); ok { 887 explicitIVLen = cbc.BlockSize() 888 } 889 } 890 if explicitIVLen == 0 { 891 if c, ok := c.out.cipher.(aead); ok { 892 explicitIVLen = c.explicitNonceLen() 893 894 // The AES-GCM construction in TLS has an 895 // explicit nonce so that the nonce can be 896 // random. However, the nonce is only 8 bytes 897 // which is too small for a secure, random 898 // nonce. Therefore we use the sequence number 899 // as the nonce. 900 explicitIVIsSeq = explicitIVLen > 0 901 } 902 } 903 m := len(data) 904 if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload { 905 m = maxPayload 906 } 907 b.resize(recordHeaderLen + explicitIVLen + m) 908 b.data[0] = byte(typ) 909 vers := c.vers 910 if vers == 0 { 911 // Some TLS servers fail if the record version is 912 // greater than TLS 1.0 for the initial ClientHello. 913 vers = VersionTLS10 914 } 915 b.data[1] = byte(vers >> 8) 916 b.data[2] = byte(vers) 917 b.data[3] = byte(m >> 8) 918 b.data[4] = byte(m) 919 if explicitIVLen > 0 { 920 explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 921 if explicitIVIsSeq { 922 copy(explicitIV, c.out.seq[:]) 923 } else { 924 if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil { 925 return n, err 926 } 927 } 928 } 929 copy(b.data[recordHeaderLen+explicitIVLen:], data) 930 c.out.encrypt(b, explicitIVLen) 931 if _, err := c.write(b.data); err != nil { 932 return n, err 933 } 934 n += m 935 data = data[m:] 936 } 937 938 if typ == recordTypeChangeCipherSpec { 939 if err := c.out.changeCipherSpec(); err != nil { 940 return n, c.sendAlertLocked(err.(alert)) 941 } 942 } 943 944 return n, nil 945} 946 947// writeRecord writes a TLS record with the given type and payload to the 948// connection and updates the record layer state. 949// L < c.out.Mutex. 950func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) { 951 c.out.Lock() 952 defer c.out.Unlock() 953 954 return c.writeRecordLocked(typ, data) 955} 956 957// readHandshake reads the next handshake message from 958// the record layer. 959// c.in.Mutex < L; c.out.Mutex < L. 960func (c *Conn) readHandshake() (interface{}, error) { 961 for c.hand.Len() < 4 { 962 if err := c.in.err; err != nil { 963 return nil, err 964 } 965 if err := c.readRecord(recordTypeHandshake); err != nil { 966 return nil, err 967 } 968 } 969 970 data := c.hand.Bytes() 971 n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) 972 if n > maxHandshake { 973 c.sendAlertLocked(alertInternalError) 974 return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)) 975 } 976 for c.hand.Len() < 4+n { 977 if err := c.in.err; err != nil { 978 return nil, err 979 } 980 if err := c.readRecord(recordTypeHandshake); err != nil { 981 return nil, err 982 } 983 } 984 data = c.hand.Next(4 + n) 985 var m handshakeMessage 986 switch data[0] { 987 case typeHelloRequest: 988 m = new(helloRequestMsg) 989 case typeClientHello: 990 m = new(clientHelloMsg) 991 case typeServerHello: 992 m = new(serverHelloMsg) 993 case typeNewSessionTicket: 994 m = new(newSessionTicketMsg) 995 case typeCertificate: 996 m = new(certificateMsg) 997 case typeCertificateRequest: 998 m = &certificateRequestMsg{ 999 hasSignatureAndHash: c.vers >= VersionTLS12, 1000 } 1001 case typeCertificateStatus: 1002 m = new(certificateStatusMsg) 1003 case typeServerKeyExchange: 1004 m = new(serverKeyExchangeMsg) 1005 case typeServerHelloDone: 1006 m = new(serverHelloDoneMsg) 1007 case typeClientKeyExchange: 1008 m = new(clientKeyExchangeMsg) 1009 case typeCertificateVerify: 1010 m = &certificateVerifyMsg{ 1011 hasSignatureAndHash: c.vers >= VersionTLS12, 1012 } 1013 case typeNextProtocol: 1014 m = new(nextProtoMsg) 1015 case typeFinished: 1016 m = new(finishedMsg) 1017 default: 1018 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1019 } 1020 1021 // The handshake message unmarshalers 1022 // expect to be able to keep references to data, 1023 // so pass in a fresh copy that won't be overwritten. 1024 data = append([]byte(nil), data...) 1025 1026 if !m.unmarshal(data) { 1027 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1028 } 1029 return m, nil 1030} 1031 1032var ( 1033 errClosed = errors.New("tls: use of closed connection") 1034 errShutdown = errors.New("tls: protocol is shutdown") 1035) 1036 1037// Write writes data to the connection. 1038func (c *Conn) Write(b []byte) (int, error) { 1039 // interlock with Close below 1040 for { 1041 x := atomic.LoadInt32(&c.activeCall) 1042 if x&1 != 0 { 1043 return 0, errClosed 1044 } 1045 if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) { 1046 defer atomic.AddInt32(&c.activeCall, -2) 1047 break 1048 } 1049 } 1050 1051 if err := c.Handshake(); err != nil { 1052 return 0, err 1053 } 1054 1055 c.out.Lock() 1056 defer c.out.Unlock() 1057 1058 if err := c.out.err; err != nil { 1059 return 0, err 1060 } 1061 1062 if !c.handshakeComplete { 1063 return 0, alertInternalError 1064 } 1065 1066 if c.closeNotifySent { 1067 return 0, errShutdown 1068 } 1069 1070 // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext 1071 // attack when using block mode ciphers due to predictable IVs. 1072 // This can be prevented by splitting each Application Data 1073 // record into two records, effectively randomizing the IV. 1074 // 1075 // http://www.openssl.org/~bodo/tls-cbc.txt 1076 // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 1077 // http://www.imperialviolet.org/2012/01/15/beastfollowup.html 1078 1079 var m int 1080 if len(b) > 1 && c.vers <= VersionTLS10 { 1081 if _, ok := c.out.cipher.(cipher.BlockMode); ok { 1082 n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) 1083 if err != nil { 1084 return n, c.out.setErrorLocked(err) 1085 } 1086 m, b = 1, b[1:] 1087 } 1088 } 1089 1090 n, err := c.writeRecordLocked(recordTypeApplicationData, b) 1091 return n + m, c.out.setErrorLocked(err) 1092} 1093 1094// handleRenegotiation processes a HelloRequest handshake message. 1095// c.in.Mutex <= L 1096func (c *Conn) handleRenegotiation() error { 1097 msg, err := c.readHandshake() 1098 if err != nil { 1099 return err 1100 } 1101 1102 _, ok := msg.(*helloRequestMsg) 1103 if !ok { 1104 c.sendAlert(alertUnexpectedMessage) 1105 return alertUnexpectedMessage 1106 } 1107 1108 if !c.isClient { 1109 return c.sendAlert(alertNoRenegotiation) 1110 } 1111 1112 switch c.config.Renegotiation { 1113 case RenegotiateNever: 1114 return c.sendAlert(alertNoRenegotiation) 1115 case RenegotiateOnceAsClient: 1116 if c.handshakes > 1 { 1117 return c.sendAlert(alertNoRenegotiation) 1118 } 1119 case RenegotiateFreelyAsClient: 1120 // Ok. 1121 default: 1122 c.sendAlert(alertInternalError) 1123 return errors.New("tls: unknown Renegotiation value") 1124 } 1125 1126 c.handshakeMutex.Lock() 1127 defer c.handshakeMutex.Unlock() 1128 1129 c.handshakeComplete = false 1130 if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil { 1131 c.handshakes++ 1132 } 1133 return c.handshakeErr 1134} 1135 1136// Read can be made to time out and return a net.Error with Timeout() == true 1137// after a fixed time limit; see SetDeadline and SetReadDeadline. 1138func (c *Conn) Read(b []byte) (n int, err error) { 1139 if err = c.Handshake(); err != nil { 1140 return 1141 } 1142 if len(b) == 0 { 1143 // Put this after Handshake, in case people were calling 1144 // Read(nil) for the side effect of the Handshake. 1145 return 1146 } 1147 1148 c.in.Lock() 1149 defer c.in.Unlock() 1150 1151 // Some OpenSSL servers send empty records in order to randomize the 1152 // CBC IV. So this loop ignores a limited number of empty records. 1153 const maxConsecutiveEmptyRecords = 100 1154 for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { 1155 for c.input == nil && c.in.err == nil { 1156 if err := c.readRecord(recordTypeApplicationData); err != nil { 1157 // Soft error, like EAGAIN 1158 return 0, err 1159 } 1160 if c.hand.Len() > 0 { 1161 // We received handshake bytes, indicating the 1162 // start of a renegotiation. 1163 if err := c.handleRenegotiation(); err != nil { 1164 return 0, err 1165 } 1166 } 1167 } 1168 if err := c.in.err; err != nil { 1169 return 0, err 1170 } 1171 1172 n, err = c.input.Read(b) 1173 if c.input.off >= len(c.input.data) { 1174 c.in.freeBlock(c.input) 1175 c.input = nil 1176 } 1177 1178 // If a close-notify alert is waiting, read it so that 1179 // we can return (n, EOF) instead of (n, nil), to signal 1180 // to the HTTP response reading goroutine that the 1181 // connection is now closed. This eliminates a race 1182 // where the HTTP response reading goroutine would 1183 // otherwise not observe the EOF until its next read, 1184 // by which time a client goroutine might have already 1185 // tried to reuse the HTTP connection for a new 1186 // request. 1187 // See https://codereview.appspot.com/76400046 1188 // and https://golang.org/issue/3514 1189 if ri := c.rawInput; ri != nil && 1190 n != 0 && err == nil && 1191 c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { 1192 if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { 1193 err = recErr // will be io.EOF on closeNotify 1194 } 1195 } 1196 1197 if n != 0 || err != nil { 1198 return n, err 1199 } 1200 } 1201 1202 return 0, io.ErrNoProgress 1203} 1204 1205// Close closes the connection. 1206func (c *Conn) Close() error { 1207 // Interlock with Conn.Write above. 1208 var x int32 1209 for { 1210 x = atomic.LoadInt32(&c.activeCall) 1211 if x&1 != 0 { 1212 return errClosed 1213 } 1214 if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) { 1215 break 1216 } 1217 } 1218 if x != 0 { 1219 // io.Writer and io.Closer should not be used concurrently. 1220 // If Close is called while a Write is currently in-flight, 1221 // interpret that as a sign that this Close is really just 1222 // being used to break the Write and/or clean up resources and 1223 // avoid sending the alertCloseNotify, which may block 1224 // waiting on handshakeMutex or the c.out mutex. 1225 return c.conn.Close() 1226 } 1227 1228 var alertErr error 1229 1230 c.handshakeMutex.Lock() 1231 if c.handshakeComplete { 1232 alertErr = c.closeNotify() 1233 } 1234 c.handshakeMutex.Unlock() 1235 1236 if err := c.conn.Close(); err != nil { 1237 return err 1238 } 1239 return alertErr 1240} 1241 1242var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete") 1243 1244// CloseWrite shuts down the writing side of the connection. It should only be 1245// called once the handshake has completed and does not call CloseWrite on the 1246// underlying connection. Most callers should just use Close. 1247func (c *Conn) CloseWrite() error { 1248 c.handshakeMutex.Lock() 1249 defer c.handshakeMutex.Unlock() 1250 if !c.handshakeComplete { 1251 return errEarlyCloseWrite 1252 } 1253 1254 return c.closeNotify() 1255} 1256 1257func (c *Conn) closeNotify() error { 1258 c.out.Lock() 1259 defer c.out.Unlock() 1260 1261 if !c.closeNotifySent { 1262 c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify) 1263 c.closeNotifySent = true 1264 } 1265 return c.closeNotifyErr 1266} 1267 1268// Handshake runs the client or server handshake 1269// protocol if it has not yet been run. 1270// Most uses of this package need not call Handshake 1271// explicitly: the first Read or Write will call it automatically. 1272func (c *Conn) Handshake() error { 1273 // c.handshakeErr and c.handshakeComplete are protected by 1274 // c.handshakeMutex. In order to perform a handshake, we need to lock 1275 // c.in also and c.handshakeMutex must be locked after c.in. 1276 // 1277 // However, if a Read() operation is hanging then it'll be holding the 1278 // lock on c.in and so taking it here would cause all operations that 1279 // need to check whether a handshake is pending (such as Write) to 1280 // block. 1281 // 1282 // Thus we first take c.handshakeMutex to check whether a handshake is 1283 // needed. 1284 // 1285 // If so then, previously, this code would unlock handshakeMutex and 1286 // then lock c.in and handshakeMutex in the correct order to run the 1287 // handshake. The problem was that it was possible for a Read to 1288 // complete the handshake once handshakeMutex was unlocked and then 1289 // keep c.in while waiting for network data. Thus a concurrent 1290 // operation could be blocked on c.in. 1291 // 1292 // Thus handshakeCond is used to signal that a goroutine is committed 1293 // to running the handshake and other goroutines can wait on it if they 1294 // need. handshakeCond is protected by handshakeMutex. 1295 c.handshakeMutex.Lock() 1296 defer c.handshakeMutex.Unlock() 1297 1298 for { 1299 if err := c.handshakeErr; err != nil { 1300 return err 1301 } 1302 if c.handshakeComplete { 1303 return nil 1304 } 1305 if c.handshakeCond == nil { 1306 break 1307 } 1308 1309 c.handshakeCond.Wait() 1310 } 1311 1312 // Set handshakeCond to indicate that this goroutine is committing to 1313 // running the handshake. 1314 c.handshakeCond = sync.NewCond(&c.handshakeMutex) 1315 c.handshakeMutex.Unlock() 1316 1317 c.in.Lock() 1318 defer c.in.Unlock() 1319 1320 c.handshakeMutex.Lock() 1321 1322 // The handshake cannot have completed when handshakeMutex was unlocked 1323 // because this goroutine set handshakeCond. 1324 if c.handshakeErr != nil || c.handshakeComplete { 1325 panic("handshake should not have been able to complete after handshakeCond was set") 1326 } 1327 1328 if c.isClient { 1329 c.handshakeErr = c.clientHandshake() 1330 } else { 1331 c.handshakeErr = c.serverHandshake() 1332 } 1333 if c.handshakeErr == nil { 1334 c.handshakes++ 1335 } else { 1336 // If an error occurred during the hadshake try to flush the 1337 // alert that might be left in the buffer. 1338 c.flush() 1339 } 1340 1341 if c.handshakeErr == nil && !c.handshakeComplete { 1342 panic("handshake should have had a result.") 1343 } 1344 1345 // Wake any other goroutines that are waiting for this handshake to 1346 // complete. 1347 c.handshakeCond.Broadcast() 1348 c.handshakeCond = nil 1349 1350 return c.handshakeErr 1351} 1352 1353// ConnectionState returns basic TLS details about the connection. 1354func (c *Conn) ConnectionState() ConnectionState { 1355 c.handshakeMutex.Lock() 1356 defer c.handshakeMutex.Unlock() 1357 1358 var state ConnectionState 1359 state.HandshakeComplete = c.handshakeComplete 1360 state.ServerName = c.serverName 1361 1362 if c.handshakeComplete { 1363 state.Version = c.vers 1364 state.NegotiatedProtocol = c.clientProtocol 1365 state.DidResume = c.didResume 1366 state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback 1367 state.CipherSuite = c.cipherSuite 1368 state.PeerCertificates = c.peerCertificates 1369 state.VerifiedChains = c.verifiedChains 1370 state.SignedCertificateTimestamps = c.scts 1371 state.OCSPResponse = c.ocspResponse 1372 if !c.didResume { 1373 if c.clientFinishedIsFirst { 1374 state.TLSUnique = c.clientFinished[:] 1375 } else { 1376 state.TLSUnique = c.serverFinished[:] 1377 } 1378 } 1379 } 1380 1381 return state 1382} 1383 1384// OCSPResponse returns the stapled OCSP response from the TLS server, if 1385// any. (Only valid for client connections.) 1386func (c *Conn) OCSPResponse() []byte { 1387 c.handshakeMutex.Lock() 1388 defer c.handshakeMutex.Unlock() 1389 1390 return c.ocspResponse 1391} 1392 1393// VerifyHostname checks that the peer certificate chain is valid for 1394// connecting to host. If so, it returns nil; if not, it returns an error 1395// describing the problem. 1396func (c *Conn) VerifyHostname(host string) error { 1397 c.handshakeMutex.Lock() 1398 defer c.handshakeMutex.Unlock() 1399 if !c.isClient { 1400 return errors.New("tls: VerifyHostname called on TLS server connection") 1401 } 1402 if !c.handshakeComplete { 1403 return errors.New("tls: handshake has not yet been performed") 1404 } 1405 if len(c.verifiedChains) == 0 { 1406 return errors.New("tls: handshake did not verify certificate chain") 1407 } 1408 return c.peerCertificates[0].VerifyHostname(host) 1409} 1410