1 //===-- tsan_interceptors_mac.cc ------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Mac-specific interceptors.
11 //===----------------------------------------------------------------------===//
12 
13 #include "sanitizer_common/sanitizer_platform.h"
14 #if SANITIZER_MAC
15 
16 #include "interception/interception.h"
17 #include "tsan_interceptors.h"
18 #include "tsan_interface.h"
19 #include "tsan_interface_ann.h"
20 
21 #include <libkern/OSAtomic.h>
22 
23 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
24 #include <xpc/xpc.h>
25 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
26 
27 typedef long long_t;  // NOLINT
28 
29 namespace __tsan {
30 
31 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
32 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
33 // actually aliases of each other, and we cannot have different interceptors for
34 // them, because they're actually the same function.  Thus, we have to stay
35 // conservative and treat the non-barrier versions as mo_acq_rel.
36 static const morder kMacOrderBarrier = mo_acq_rel;
37 static const morder kMacOrderNonBarrier = mo_acq_rel;
38 
39 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
40   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
41     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
42     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
43   }
44 
45 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
46   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
47     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
48     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
49   }
50 
51 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
52   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
53     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
54     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
55   }
56 
57 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
58                                      mo)                                    \
59   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
60     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
61     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
62   }
63 
64 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
65   m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
66     kMacOrderNonBarrier)                                                       \
67   m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
68     kMacOrderBarrier)                                                          \
69   m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
70     kMacOrderNonBarrier)                                                       \
71   m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
72     kMacOrderBarrier)
73 
74 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
75   m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
76     kMacOrderNonBarrier)                                                       \
77   m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
78     kMacOrderBarrier)                                                          \
79   m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
80     kMacOrderNonBarrier)                                                       \
81   m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
82     __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
83 
OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd,fetch_add,OSATOMIC_INTERCEPTOR_PLUS_X)84 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
85                                  OSATOMIC_INTERCEPTOR_PLUS_X)
86 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
87                                  OSATOMIC_INTERCEPTOR_PLUS_1)
88 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
89                                  OSATOMIC_INTERCEPTOR_MINUS_1)
90 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
91                               OSATOMIC_INTERCEPTOR)
92 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
93                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
94 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
95                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
96 
97 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
98   TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
99     SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
100     return tsan_atomic_f##_compare_exchange_strong(                         \
101         (tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,             \
102         kMacOrderNonBarrier, kMacOrderNonBarrier);                          \
103   }                                                                         \
104                                                                             \
105   TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
106                    t volatile *ptr) {                                       \
107     SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
108     return tsan_atomic_f##_compare_exchange_strong(                         \
109         (tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,             \
110         kMacOrderBarrier, kMacOrderNonBarrier);                             \
111   }
112 
113 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
114 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
115                           long_t)
116 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
117                           void *)
118 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
119                           int32_t)
120 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
121                           int64_t)
122 
123 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)          \
124   TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) { \
125     SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                       \
126     char *byte_ptr = ((char *)ptr) + (n >> 3);                \
127     char bit = 0x80u >> (n & 7);                              \
128     char mask = clear ? ~bit : bit;                           \
129     char orig_byte = op((a8 *)byte_ptr, mask, mo);            \
130     return orig_byte & bit;                                   \
131   }
132 
133 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
134   OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
135   OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
136 
137 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
138 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
139                             true)
140 
141 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
142                  size_t offset) {
143   SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
144   __tsan_release(item);
145   REAL(OSAtomicEnqueue)(list, item, offset);
146 }
147 
TSAN_INTERCEPTOR(void *,OSAtomicDequeue,OSQueueHead * list,size_t offset)148 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
149   SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
150   void *item = REAL(OSAtomicDequeue)(list, offset);
151   if (item) __tsan_acquire(item);
152   return item;
153 }
154 
155 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
156 #if !SANITIZER_IOS
157 
TSAN_INTERCEPTOR(void,OSAtomicFifoEnqueue,OSFifoQueueHead * list,void * item,size_t offset)158 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
159                  size_t offset) {
160   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
161   __tsan_release(item);
162   REAL(OSAtomicFifoEnqueue)(list, item, offset);
163 }
164 
TSAN_INTERCEPTOR(void *,OSAtomicFifoDequeue,OSFifoQueueHead * list,size_t offset)165 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
166                  size_t offset) {
167   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
168   void *item = REAL(OSAtomicFifoDequeue)(list, offset);
169   if (item) __tsan_acquire(item);
170   return item;
171 }
172 
173 #endif
174 
TSAN_INTERCEPTOR(void,OSSpinLockLock,volatile OSSpinLock * lock)175 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
176   CHECK(!cur_thread()->is_dead);
177   if (!cur_thread()->is_inited) {
178     return REAL(OSSpinLockLock)(lock);
179   }
180   SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
181   REAL(OSSpinLockLock)(lock);
182   Acquire(thr, pc, (uptr)lock);
183 }
184 
TSAN_INTERCEPTOR(bool,OSSpinLockTry,volatile OSSpinLock * lock)185 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
186   CHECK(!cur_thread()->is_dead);
187   if (!cur_thread()->is_inited) {
188     return REAL(OSSpinLockTry)(lock);
189   }
190   SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
191   bool result = REAL(OSSpinLockTry)(lock);
192   if (result)
193     Acquire(thr, pc, (uptr)lock);
194   return result;
195 }
196 
TSAN_INTERCEPTOR(void,OSSpinLockUnlock,volatile OSSpinLock * lock)197 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
198   CHECK(!cur_thread()->is_dead);
199   if (!cur_thread()->is_inited) {
200     return REAL(OSSpinLockUnlock)(lock);
201   }
202   SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
203   Release(thr, pc, (uptr)lock);
204   REAL(OSSpinLockUnlock)(lock);
205 }
206 
TSAN_INTERCEPTOR(void,os_lock_lock,void * lock)207 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
208   CHECK(!cur_thread()->is_dead);
209   if (!cur_thread()->is_inited) {
210     return REAL(os_lock_lock)(lock);
211   }
212   SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
213   REAL(os_lock_lock)(lock);
214   Acquire(thr, pc, (uptr)lock);
215 }
216 
TSAN_INTERCEPTOR(bool,os_lock_trylock,void * lock)217 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
218   CHECK(!cur_thread()->is_dead);
219   if (!cur_thread()->is_inited) {
220     return REAL(os_lock_trylock)(lock);
221   }
222   SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
223   bool result = REAL(os_lock_trylock)(lock);
224   if (result)
225     Acquire(thr, pc, (uptr)lock);
226   return result;
227 }
228 
TSAN_INTERCEPTOR(void,os_lock_unlock,void * lock)229 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
230   CHECK(!cur_thread()->is_dead);
231   if (!cur_thread()->is_inited) {
232     return REAL(os_lock_unlock)(lock);
233   }
234   SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
235   Release(thr, pc, (uptr)lock);
236   REAL(os_lock_unlock)(lock);
237 }
238 
239 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
240 
TSAN_INTERCEPTOR(void,xpc_connection_set_event_handler,xpc_connection_t connection,xpc_handler_t handler)241 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
242                  xpc_connection_t connection, xpc_handler_t handler) {
243   SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
244                           handler);
245   Release(thr, pc, (uptr)connection);
246   xpc_handler_t new_handler = ^(xpc_object_t object) {
247     {
248       SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
249       Acquire(thr, pc, (uptr)connection);
250     }
251     handler(object);
252   };
253   REAL(xpc_connection_set_event_handler)(connection, new_handler);
254 }
255 
TSAN_INTERCEPTOR(void,xpc_connection_send_barrier,xpc_connection_t connection,dispatch_block_t barrier)256 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
257                  dispatch_block_t barrier) {
258   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
259   Release(thr, pc, (uptr)connection);
260   dispatch_block_t new_barrier = ^() {
261     {
262       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
263       Acquire(thr, pc, (uptr)connection);
264     }
265     barrier();
266   };
267   REAL(xpc_connection_send_barrier)(connection, new_barrier);
268 }
269 
TSAN_INTERCEPTOR(void,xpc_connection_send_message_with_reply,xpc_connection_t connection,xpc_object_t message,dispatch_queue_t replyq,xpc_handler_t handler)270 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
271                  xpc_connection_t connection, xpc_object_t message,
272                  dispatch_queue_t replyq, xpc_handler_t handler) {
273   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
274                           message, replyq, handler);
275   Release(thr, pc, (uptr)connection);
276   xpc_handler_t new_handler = ^(xpc_object_t object) {
277     {
278       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
279       Acquire(thr, pc, (uptr)connection);
280     }
281     handler(object);
282   };
283   REAL(xpc_connection_send_message_with_reply)
284   (connection, message, replyq, new_handler);
285 }
286 
TSAN_INTERCEPTOR(void,xpc_connection_cancel,xpc_connection_t connection)287 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
288   SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
289   Release(thr, pc, (uptr)connection);
290   REAL(xpc_connection_cancel)(connection);
291 }
292 
293 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
294 
295 // On macOS, libc++ is always linked dynamically, so intercepting works the
296 // usual way.
297 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
298 
299 namespace {
300 struct fake_shared_weak_count {
301   volatile a64 shared_owners;
302   volatile a64 shared_weak_owners;
303   virtual void _unused_0x0() = 0;
304   virtual void _unused_0x8() = 0;
305   virtual void on_zero_shared() = 0;
306   virtual void _unused_0x18() = 0;
307   virtual void on_zero_shared_weak() = 0;
308 };
309 }  // namespace
310 
311 // The following code adds libc++ interceptors for:
312 //     void __shared_weak_count::__release_shared() _NOEXCEPT;
313 //     bool __shared_count::__release_shared() _NOEXCEPT;
314 // Shared and weak pointers in C++ maintain reference counts via atomics in
315 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
316 // destructor code. These interceptors re-implements the whole functions so that
317 // the mo_acq_rel semantics of the atomic decrement are visible.
318 //
319 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
320 // object and call the original function, because it would have a race between
321 // the sync and the destruction of the object.  Calling both under a lock will
322 // not work because the destructor can invoke this interceptor again (and even
323 // in a different thread, so recursive locks don't help).
324 
STDCXX_INTERCEPTOR(void,_ZNSt3__119__shared_weak_count16__release_sharedEv,fake_shared_weak_count * o)325 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
326                    fake_shared_weak_count *o) {
327   if (!flags()->shared_ptr_interceptor)
328     return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
329 
330   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
331                           o);
332   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
333     Acquire(thr, pc, (uptr)&o->shared_owners);
334     o->on_zero_shared();
335     if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
336         0) {
337       Acquire(thr, pc, (uptr)&o->shared_weak_owners);
338       o->on_zero_shared_weak();
339     }
340   }
341 }
342 
STDCXX_INTERCEPTOR(bool,_ZNSt3__114__shared_count16__release_sharedEv,fake_shared_weak_count * o)343 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
344                    fake_shared_weak_count *o) {
345   if (!flags()->shared_ptr_interceptor)
346     return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
347 
348   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
349   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
350     Acquire(thr, pc, (uptr)&o->shared_owners);
351     o->on_zero_shared();
352     return true;
353   }
354   return false;
355 }
356 
357 namespace {
358 struct call_once_callback_args {
359   void (*orig_func)(void *arg);
360   void *orig_arg;
361   void *flag;
362 };
363 
call_once_callback_wrapper(void * arg)364 void call_once_callback_wrapper(void *arg) {
365   call_once_callback_args *new_args = (call_once_callback_args *)arg;
366   new_args->orig_func(new_args->orig_arg);
367   __tsan_release(new_args->flag);
368 }
369 }  // namespace
370 
371 // This adds a libc++ interceptor for:
372 //     void __call_once(volatile unsigned long&, void*, void(*)(void*));
373 // C++11 call_once is implemented via an internal function __call_once which is
374 // inside libc++.dylib, and the atomic release store inside it is thus
375 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
376 // function and performs an explicit Release after the user code has run.
STDCXX_INTERCEPTOR(void,_ZNSt3__111__call_onceERVmPvPFvS2_E,void * flag,void * arg,void (* func)(void * arg))377 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
378                    void *arg, void (*func)(void *arg)) {
379   call_once_callback_args new_args = {func, arg, flag};
380   REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
381                                             call_once_callback_wrapper);
382 }
383 
384 }  // namespace __tsan
385 
386 #endif  // SANITIZER_MAC
387