1 /* Opcode table for the ARC.
2    Copyright 1994, 1995, 1997, 1998, 2000, 2001, 2002, 2004
3    Free Software Foundation, Inc.
4    Contributed by Doug Evans (dje@cygnus.com).
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 2, or (at your option)
9    any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software Foundation,
18    Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
19 
20 #include "sysdep.h"
21 #include <stdio.h>
22 #include "ansidecl.h"
23 #include "bfd.h"
24 #include "opcode/arc.h"
25 
26 #define INSERT_FN(fn) \
27 static arc_insn fn PARAMS ((arc_insn, const struct arc_operand *, \
28 			    int, const struct arc_operand_value *, long, \
29 			    const char **))
30 #define EXTRACT_FN(fn) \
31 static long fn PARAMS ((arc_insn *, const struct arc_operand *, \
32 			int, const struct arc_operand_value **, int *))
33 
34 INSERT_FN (insert_reg);
35 INSERT_FN (insert_shimmfinish);
36 INSERT_FN (insert_limmfinish);
37 INSERT_FN (insert_offset);
38 INSERT_FN (insert_base);
39 INSERT_FN (insert_st_syntax);
40 INSERT_FN (insert_ld_syntax);
41 INSERT_FN (insert_addr_wb);
42 INSERT_FN (insert_flag);
43 INSERT_FN (insert_nullify);
44 INSERT_FN (insert_flagfinish);
45 INSERT_FN (insert_cond);
46 INSERT_FN (insert_forcelimm);
47 INSERT_FN (insert_reladdr);
48 INSERT_FN (insert_absaddr);
49 INSERT_FN (insert_jumpflags);
50 INSERT_FN (insert_unopmacro);
51 
52 EXTRACT_FN (extract_reg);
53 EXTRACT_FN (extract_ld_offset);
54 EXTRACT_FN (extract_ld_syntax);
55 EXTRACT_FN (extract_st_offset);
56 EXTRACT_FN (extract_st_syntax);
57 EXTRACT_FN (extract_flag);
58 EXTRACT_FN (extract_cond);
59 EXTRACT_FN (extract_reladdr);
60 EXTRACT_FN (extract_jumpflags);
61 EXTRACT_FN (extract_unopmacro);
62 
63 enum operand {OP_NONE,OP_REG,OP_SHIMM,OP_LIMM};
64 
65 #define OPERANDS 3
66 
67 enum operand ls_operand[OPERANDS];
68 
69 struct arc_opcode *arc_ext_opcodes;
70 struct arc_ext_operand_value *arc_ext_operands;
71 
72 #define LS_VALUE  0
73 #define LS_DEST   0
74 #define LS_BASE   1
75 #define LS_OFFSET 2
76 
77 /* Various types of ARC operands, including insn suffixes.  */
78 
79 /* Insn format values:
80 
81    'a'	REGA		register A field
82    'b'	REGB		register B field
83    'c'	REGC		register C field
84    'S'	SHIMMFINISH	finish inserting a shimm value
85    'L'	LIMMFINISH	finish inserting a limm value
86    'o'	OFFSET		offset in st insns
87    'O'	OFFSET		offset in ld insns
88    '0'	SYNTAX_ST_NE	enforce store insn syntax, no errors
89    '1'	SYNTAX_LD_NE	enforce load insn syntax, no errors
90    '2'  SYNTAX_ST       enforce store insn syntax, errors, last pattern only
91    '3'  SYNTAX_LD       enforce load insn syntax, errors, last pattern only
92    's'  BASE            base in st insn
93    'f'	FLAG		F flag
94    'F'	FLAGFINISH	finish inserting the F flag
95    'G'	FLAGINSN	insert F flag in "flag" insn
96    'n'	DELAY		N field (nullify field)
97    'q'	COND		condition code field
98    'Q'	FORCELIMM	set `cond_p' to 1 to ensure a constant is a limm
99    'B'	BRANCH		branch address (22 bit pc relative)
100    'J'	JUMP		jump address (26 bit absolute)
101    'j'  JUMPFLAGS       optional high order bits of 'J'
102    'z'	SIZE1		size field in ld a,[b,c]
103    'Z'	SIZE10		size field in ld a,[b,shimm]
104    'y'	SIZE22		size field in st c,[b,shimm]
105    'x'	SIGN0		sign extend field ld a,[b,c]
106    'X'	SIGN9		sign extend field ld a,[b,shimm]
107    'w'	ADDRESS3	write-back field in ld a,[b,c]
108    'W'	ADDRESS12	write-back field in ld a,[b,shimm]
109    'v'	ADDRESS24	write-back field in st c,[b,shimm]
110    'e'	CACHEBYPASS5	cache bypass in ld a,[b,c]
111    'E'	CACHEBYPASS14	cache bypass in ld a,[b,shimm]
112    'D'	CACHEBYPASS26	cache bypass in st c,[b,shimm]
113    'U'	UNOPMACRO	fake operand to copy REGB to REGC for unop macros
114 
115    The following modifiers may appear between the % and char (eg: %.f):
116 
117    '.'	MODDOT		'.' prefix must be present
118    'r'	REG		generic register value, for register table
119    'A'	AUXREG		auxiliary register in lr a,[b], sr c,[b]
120 
121    Fields are:
122 
123    CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN  */
124 
125 const struct arc_operand arc_operands[] =
126 {
127 /* place holder (??? not sure if needed).  */
128 #define UNUSED 0
129   { 0, 0, 0, 0, 0, 0 },
130 
131 /* register A or shimm/limm indicator.  */
132 #define REGA (UNUSED + 1)
133   { 'a', 6, ARC_SHIFT_REGA, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
134 
135 /* register B or shimm/limm indicator.  */
136 #define REGB (REGA + 1)
137   { 'b', 6, ARC_SHIFT_REGB, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
138 
139 /* register C or shimm/limm indicator.  */
140 #define REGC (REGB + 1)
141   { 'c', 6, ARC_SHIFT_REGC, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
142 
143 /* fake operand used to insert shimm value into most instructions.  */
144 #define SHIMMFINISH (REGC + 1)
145   { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
146 
147 /* fake operand used to insert limm value into most instructions.  */
148 #define LIMMFINISH (SHIMMFINISH + 1)
149   { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
150 
151 /* shimm operand when there is no reg indicator (st).  */
152 #define ST_OFFSET (LIMMFINISH + 1)
153   { 'o', 9, 0, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_STORE, insert_offset, extract_st_offset },
154 
155 /* shimm operand when there is no reg indicator (ld).  */
156 #define LD_OFFSET (ST_OFFSET + 1)
157   { 'O', 9, 0,ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_LOAD, insert_offset, extract_ld_offset },
158 
159 /* operand for base.  */
160 #define BASE (LD_OFFSET + 1)
161   { 's', 6, ARC_SHIFT_REGB, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED, insert_base, extract_reg},
162 
163 /* 0 enforce syntax for st insns.  */
164 #define SYNTAX_ST_NE (BASE + 1)
165   { '0', 9, 0, ARC_OPERAND_FAKE, insert_st_syntax, extract_st_syntax },
166 
167 /* 1 enforce syntax for ld insns.  */
168 #define SYNTAX_LD_NE (SYNTAX_ST_NE + 1)
169   { '1', 9, 0, ARC_OPERAND_FAKE, insert_ld_syntax, extract_ld_syntax },
170 
171 /* 0 enforce syntax for st insns.  */
172 #define SYNTAX_ST (SYNTAX_LD_NE + 1)
173   { '2', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_st_syntax, extract_st_syntax },
174 
175 /* 0 enforce syntax for ld insns.  */
176 #define SYNTAX_LD (SYNTAX_ST + 1)
177   { '3', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_ld_syntax, extract_ld_syntax },
178 
179 /* flag update bit (insertion is defered until we know how).  */
180 #define FLAG (SYNTAX_LD + 1)
181   { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
182 
183 /* fake utility operand to finish 'f' suffix handling.  */
184 #define FLAGFINISH (FLAG + 1)
185   { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
186 
187 /* fake utility operand to set the 'f' flag for the "flag" insn.  */
188 #define FLAGINSN (FLAGFINISH + 1)
189   { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
190 
191 /* branch delay types.  */
192 #define DELAY (FLAGINSN + 1)
193   { 'n', 2, 5, ARC_OPERAND_SUFFIX , insert_nullify, 0 },
194 
195 /* conditions.  */
196 #define COND (DELAY + 1)
197   { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
198 
199 /* set `cond_p' to 1 to ensure a constant is treated as a limm.  */
200 #define FORCELIMM (COND + 1)
201   { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm, 0 },
202 
203 /* branch address; b, bl, and lp insns.  */
204 #define BRANCH (FORCELIMM + 1)
205   { 'B', 20, 7, (ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED) | ARC_OPERAND_ERROR, insert_reladdr, extract_reladdr },
206 
207 /* jump address; j insn (this is basically the same as 'L' except that the
208    value is right shifted by 2).  */
209 #define JUMP (BRANCH + 1)
210   { 'J', 24, 32, ARC_OPERAND_ERROR | (ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE), insert_absaddr, 0 },
211 
212 /* jump flags; j{,l} insn value or'ed into 'J' addr for flag values.  */
213 #define JUMPFLAGS (JUMP + 1)
214   { 'j', 6, 26, ARC_OPERAND_JUMPFLAGS | ARC_OPERAND_ERROR, insert_jumpflags, extract_jumpflags },
215 
216 /* size field, stored in bit 1,2.  */
217 #define SIZE1 (JUMPFLAGS + 1)
218   { 'z', 2, 1, ARC_OPERAND_SUFFIX, 0, 0 },
219 
220 /* size field, stored in bit 10,11.  */
221 #define SIZE10 (SIZE1 + 1)
222   { 'Z', 2, 10, ARC_OPERAND_SUFFIX, 0, 0 },
223 
224 /* size field, stored in bit 22,23.  */
225 #define SIZE22 (SIZE10 + 1)
226   { 'y', 2, 22, ARC_OPERAND_SUFFIX, 0, 0 },
227 
228 /* sign extend field, stored in bit 0.  */
229 #define SIGN0 (SIZE22 + 1)
230   { 'x', 1, 0, ARC_OPERAND_SUFFIX, 0, 0 },
231 
232 /* sign extend field, stored in bit 9.  */
233 #define SIGN9 (SIGN0 + 1)
234   { 'X', 1, 9, ARC_OPERAND_SUFFIX, 0, 0 },
235 
236 /* address write back, stored in bit 3.  */
237 #define ADDRESS3 (SIGN9 + 1)
238   { 'w', 1, 3, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
239 
240 /* address write back, stored in bit 12.  */
241 #define ADDRESS12 (ADDRESS3 + 1)
242   { 'W', 1, 12, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
243 
244 /* address write back, stored in bit 24.  */
245 #define ADDRESS24 (ADDRESS12 + 1)
246   { 'v', 1, 24, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
247 
248 /* cache bypass, stored in bit 5.  */
249 #define CACHEBYPASS5 (ADDRESS24 + 1)
250   { 'e', 1, 5, ARC_OPERAND_SUFFIX, 0, 0 },
251 
252 /* cache bypass, stored in bit 14.  */
253 #define CACHEBYPASS14 (CACHEBYPASS5 + 1)
254   { 'E', 1, 14, ARC_OPERAND_SUFFIX, 0, 0 },
255 
256 /* cache bypass, stored in bit 26.  */
257 #define CACHEBYPASS26 (CACHEBYPASS14 + 1)
258   { 'D', 1, 26, ARC_OPERAND_SUFFIX, 0, 0 },
259 
260 /* unop macro, used to copy REGB to REGC.  */
261 #define UNOPMACRO (CACHEBYPASS26 + 1)
262   { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
263 
264 /* '.' modifier ('.' required).  */
265 #define MODDOT (UNOPMACRO + 1)
266   { '.', 1, 0, ARC_MOD_DOT, 0, 0 },
267 
268 /* Dummy 'r' modifier for the register table.
269    It's called a "dummy" because there's no point in inserting an 'r' into all
270    the %a/%b/%c occurrences in the insn table.  */
271 #define REG (MODDOT + 1)
272   { 'r', 6, 0, ARC_MOD_REG, 0, 0 },
273 
274 /* Known auxiliary register modifier (stored in shimm field).  */
275 #define AUXREG (REG + 1)
276   { 'A', 9, 0, ARC_MOD_AUXREG, 0, 0 },
277 
278 /* end of list place holder.  */
279   { 0, 0, 0, 0, 0, 0 }
280 };
281 
282 /* Given a format letter, yields the index into `arc_operands'.
283    eg: arc_operand_map['a'] = REGA.  */
284 unsigned char arc_operand_map[256];
285 
286 /* ARC instructions.
287 
288    Longer versions of insns must appear before shorter ones (if gas sees
289    "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
290    junk).  This isn't necessary for `ld' because of the trailing ']'.
291 
292    Instructions that are really macros based on other insns must appear
293    before the real insn so they're chosen when disassembling.  Eg: The `mov'
294    insn is really the `and' insn.  */
295 
296 struct arc_opcode arc_opcodes[] =
297 {
298   /* Base case instruction set (core versions 5-8)  */
299 
300   /* "mov" is really an "and".  */
301   { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12), ARC_MACH_5, 0, 0 },
302   /* "asl" is really an "add".  */
303   { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
304   /* "lsl" is really an "add".  */
305   { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
306   /* "nop" is really an "xor".  */
307   { "nop", 0x7fffffff, 0x7fffffff, ARC_MACH_5, 0, 0 },
308   /* "rlc" is really an "adc".  */
309   { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9), ARC_MACH_5, 0, 0 },
310   { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9), ARC_MACH_5, 0, 0 },
311   { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8), ARC_MACH_5, 0, 0 },
312   { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12), ARC_MACH_5, 0, 0 },
313   { "asr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(1), ARC_MACH_5, 0, 0 },
314   { "bic%.q%.f %a,%b,%c%F%S%L",	I(-1), I(14), ARC_MACH_5, 0, 0 },
315   { "b%q%.n %B", I(-1), I(4), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
316   { "bl%q%.n %B", I(-1), I(5), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
317   { "extb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(7), ARC_MACH_5, 0, 0 },
318   { "extw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(8), ARC_MACH_5, 0, 0 },
319   { "flag%.q %b%G%S%L", I(-1)|A(-1)|C(-1), I(3)|A(ARC_REG_SHIMM_UPDATE)|C(0), ARC_MACH_5, 0, 0 },
320   { "brk", 0x1ffffe00, 0x1ffffe00, ARC_MACH_7, 0, 0 },
321   { "sleep", 0x1ffffe01, 0x1ffffe01, ARC_MACH_7, 0, 0 },
322   { "swi", 0x1ffffe02, 0x1ffffe02, ARC_MACH_8, 0, 0 },
323   /* %Q: force cond_p=1 -> no shimm values. This insn allows an
324      optional flags spec.  */
325   { "j%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
326   { "j%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
327   /* This insn allows an optional flags spec.  */
328   { "jl%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
329   { "jl%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
330   /* Put opcode 1 ld insns first so shimm gets prefered over limm.
331      "[%b]" is before "[%b,%o]" so 0 offsets don't get printed.  */
332   { "ld%Z%.X%.W%.E %a,[%s]%S%L%1", I(-1)|R(-1,13,1)|R(-1,0,511), I(1)|R(0,13,1)|R(0,0,511), ARC_MACH_5, 0, 0 },
333   { "ld%z%.x%.w%.e %a,[%s]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
334   { "ld%z%.x%.w%.e %a,[%s,%O]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
335   { "ld%Z%.X%.W%.E %a,[%s,%O]%S%L%3", I(-1)|R(-1,13,1),	I(1)|R(0,13,1), ARC_MACH_5, 0, 0 },
336   { "lp%q%.n %B", I(-1), I(6), ARC_MACH_5, 0, 0 },
337   { "lr %a,[%Ab]%S%L", I(-1)|C(-1), I(1)|C(0x10), ARC_MACH_5, 0, 0 },
338   { "lsr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(2), ARC_MACH_5, 0, 0 },
339   { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13), ARC_MACH_5, 0, 0 },
340   { "ror%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(3), ARC_MACH_5, 0, 0 },
341   { "rrc%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(4), ARC_MACH_5, 0, 0 },
342   { "sbc%.q%.f %a,%b,%c%F%S%L",	I(-1), I(11), ARC_MACH_5, 0, 0 },
343   { "sexb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(5), ARC_MACH_5, 0, 0 },
344   { "sexw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(6), ARC_MACH_5, 0, 0 },
345   { "sr %c,[%Ab]%S%L", I(-1)|A(-1), I(2)|A(0x10), ARC_MACH_5, 0, 0 },
346   /* "[%b]" is before "[%b,%o]" so 0 offsets don't get printed.  */
347   { "st%y%.v%.D %c,[%s]%L%S%0", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
348   { "st%y%.v%.D %c,[%s,%o]%S%L%2", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
349   { "sub%.q%.f %a,%b,%c%F%S%L",	I(-1), I(10), ARC_MACH_5, 0, 0 },
350   { "xor%.q%.f %a,%b,%c%F%S%L",	I(-1), I(15), ARC_MACH_5, 0, 0 }
351 };
352 
353 const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
354 
355 const struct arc_operand_value arc_reg_names[] =
356 {
357   /* Core register set r0-r63.  */
358 
359   /* r0-r28 - general purpose registers.  */
360   { "r0", 0, REG, 0 }, { "r1", 1, REG, 0 }, { "r2", 2, REG, 0 },
361   { "r3", 3, REG, 0 }, { "r4", 4, REG, 0 }, { "r5", 5, REG, 0 },
362   { "r6", 6, REG, 0 }, { "r7", 7, REG, 0 }, { "r8", 8, REG, 0 },
363   { "r9", 9, REG, 0 }, { "r10", 10, REG, 0 }, { "r11", 11, REG, 0 },
364   { "r12", 12, REG, 0 }, { "r13", 13, REG, 0 }, { "r14", 14, REG, 0 },
365   { "r15", 15, REG, 0 }, { "r16", 16, REG, 0 }, { "r17", 17, REG, 0 },
366   { "r18", 18, REG, 0 }, { "r19", 19, REG, 0 }, { "r20", 20, REG, 0 },
367   { "r21", 21, REG, 0 }, { "r22", 22, REG, 0 }, { "r23", 23, REG, 0 },
368   { "r24", 24, REG, 0 }, { "r25", 25, REG, 0 }, { "r26", 26, REG, 0 },
369   { "r27", 27, REG, 0 }, { "r28", 28, REG, 0 },
370   /* Maskable interrupt link register.  */
371   { "ilink1", 29, REG, 0 },
372   /* Maskable interrupt link register.  */
373   { "ilink2", 30, REG, 0 },
374   /* Branch-link register.  */
375   { "blink", 31, REG, 0 },
376 
377   /* r32-r59 reserved for extensions.  */
378   { "r32", 32, REG, 0 }, { "r33", 33, REG, 0 }, { "r34", 34, REG, 0 },
379   { "r35", 35, REG, 0 }, { "r36", 36, REG, 0 }, { "r37", 37, REG, 0 },
380   { "r38", 38, REG, 0 }, { "r39", 39, REG, 0 }, { "r40", 40, REG, 0 },
381   { "r41", 41, REG, 0 }, { "r42", 42, REG, 0 }, { "r43", 43, REG, 0 },
382   { "r44", 44, REG, 0 }, { "r45", 45, REG, 0 }, { "r46", 46, REG, 0 },
383   { "r47", 47, REG, 0 }, { "r48", 48, REG, 0 }, { "r49", 49, REG, 0 },
384   { "r50", 50, REG, 0 }, { "r51", 51, REG, 0 }, { "r52", 52, REG, 0 },
385   { "r53", 53, REG, 0 }, { "r54", 54, REG, 0 }, { "r55", 55, REG, 0 },
386   { "r56", 56, REG, 0 }, { "r57", 57, REG, 0 }, { "r58", 58, REG, 0 },
387   { "r59", 59, REG, 0 },
388 
389   /* Loop count register (24 bits).  */
390   { "lp_count", 60, REG, 0 },
391   /* Short immediate data indicator setting flags.  */
392   { "r61", 61, REG, ARC_REGISTER_READONLY },
393   /* Long immediate data indicator setting flags.  */
394   { "r62", 62, REG, ARC_REGISTER_READONLY },
395   /* Short immediate data indicator not setting flags.  */
396   { "r63", 63, REG, ARC_REGISTER_READONLY },
397 
398   /* Small-data base register.  */
399   { "gp", 26, REG, 0 },
400   /* Frame pointer.  */
401   { "fp", 27, REG, 0 },
402   /* Stack pointer.  */
403   { "sp", 28, REG, 0 },
404 
405   { "r29", 29, REG, 0 },
406   { "r30", 30, REG, 0 },
407   { "r31", 31, REG, 0 },
408   { "r60", 60, REG, 0 },
409 
410   /* Auxiliary register set.  */
411 
412   /* Auxiliary register address map:
413      0xffffffff-0xffffff00 (-1..-256) - customer shimm allocation
414      0xfffffeff-0x80000000 - customer limm allocation
415      0x7fffffff-0x00000100 - ARC limm allocation
416      0x000000ff-0x00000000 - ARC shimm allocation  */
417 
418   /* Base case auxiliary registers (shimm address).  */
419   { "status",         0x00, AUXREG, 0 },
420   { "semaphore",      0x01, AUXREG, 0 },
421   { "lp_start",       0x02, AUXREG, 0 },
422   { "lp_end",         0x03, AUXREG, 0 },
423   { "identity",       0x04, AUXREG, ARC_REGISTER_READONLY },
424   { "debug",          0x05, AUXREG, 0 },
425 };
426 
427 const int arc_reg_names_count =
428   sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
429 
430 /* The suffix table.
431    Operands with the same name must be stored together.  */
432 
433 const struct arc_operand_value arc_suffixes[] =
434 {
435   /* Entry 0 is special, default values aren't printed by the disassembler.  */
436   { "", 0, -1, 0 },
437 
438   /* Base case condition codes.  */
439   { "al", 0, COND, 0 },
440   { "ra", 0, COND, 0 },
441   { "eq", 1, COND, 0 },
442   { "z", 1, COND, 0 },
443   { "ne", 2, COND, 0 },
444   { "nz", 2, COND, 0 },
445   { "pl", 3, COND, 0 },
446   { "p", 3, COND, 0 },
447   { "mi", 4, COND, 0 },
448   { "n", 4, COND, 0 },
449   { "cs", 5, COND, 0 },
450   { "c", 5, COND, 0 },
451   { "lo", 5, COND, 0 },
452   { "cc", 6, COND, 0 },
453   { "nc", 6, COND, 0 },
454   { "hs", 6, COND, 0 },
455   { "vs", 7, COND, 0 },
456   { "v", 7, COND, 0 },
457   { "vc", 8, COND, 0 },
458   { "nv", 8, COND, 0 },
459   { "gt", 9, COND, 0 },
460   { "ge", 10, COND, 0 },
461   { "lt", 11, COND, 0 },
462   { "le", 12, COND, 0 },
463   { "hi", 13, COND, 0 },
464   { "ls", 14, COND, 0 },
465   { "pnz", 15, COND, 0 },
466 
467   /* Condition codes 16-31 reserved for extensions.  */
468 
469   { "f", 1, FLAG, 0 },
470 
471   { "nd", ARC_DELAY_NONE, DELAY, 0 },
472   { "d", ARC_DELAY_NORMAL, DELAY, 0 },
473   { "jd", ARC_DELAY_JUMP, DELAY, 0 },
474 
475   { "b", 1, SIZE1, 0 },
476   { "b", 1, SIZE10, 0 },
477   { "b", 1, SIZE22, 0 },
478   { "w", 2, SIZE1, 0 },
479   { "w", 2, SIZE10, 0 },
480   { "w", 2, SIZE22, 0 },
481   { "x", 1, SIGN0, 0 },
482   { "x", 1, SIGN9, 0 },
483   { "a", 1, ADDRESS3, 0 },
484   { "a", 1, ADDRESS12, 0 },
485   { "a", 1, ADDRESS24, 0 },
486 
487   { "di", 1, CACHEBYPASS5, 0 },
488   { "di", 1, CACHEBYPASS14, 0 },
489   { "di", 1, CACHEBYPASS26, 0 },
490 };
491 
492 const int arc_suffixes_count =
493   sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
494 
495 /* Indexed by first letter of opcode.  Points to chain of opcodes with same
496    first letter.  */
497 static struct arc_opcode *opcode_map[26 + 1];
498 
499 /* Indexed by insn code.  Points to chain of opcodes with same insn code.  */
500 static struct arc_opcode *icode_map[32];
501 
502 /* Configuration flags.  */
503 
504 /* Various ARC_HAVE_XXX bits.  */
505 static int cpu_type;
506 
507 /* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value.  */
508 
509 int
arc_get_opcode_mach(bfd_mach,big_p)510 arc_get_opcode_mach (bfd_mach, big_p)
511      int bfd_mach, big_p;
512 {
513   static int mach_type_map[] =
514   {
515     ARC_MACH_5,
516     ARC_MACH_6,
517     ARC_MACH_7,
518     ARC_MACH_8
519   };
520   return mach_type_map[bfd_mach - bfd_mach_arc_5] | (big_p ? ARC_MACH_BIG : 0);
521 }
522 
523 /* Initialize any tables that need it.
524    Must be called once at start up (or when first needed).
525 
526    FLAGS is a set of bits that say what version of the cpu we have,
527    and in particular at least (one of) ARC_MACH_XXX.  */
528 
529 void
arc_opcode_init_tables(flags)530 arc_opcode_init_tables (flags)
531      int flags;
532 {
533   static int init_p = 0;
534 
535   cpu_type = flags;
536 
537   /* We may be intentionally called more than once (for example gdb will call
538      us each time the user switches cpu).  These tables only need to be init'd
539      once though.  */
540   if (!init_p)
541     {
542       register int i,n;
543 
544       memset (arc_operand_map, 0, sizeof (arc_operand_map));
545       n = sizeof (arc_operands) / sizeof (arc_operands[0]);
546       for (i = 0; i < n; ++i)
547 	arc_operand_map[arc_operands[i].fmt] = i;
548 
549       memset (opcode_map, 0, sizeof (opcode_map));
550       memset (icode_map, 0, sizeof (icode_map));
551       /* Scan the table backwards so macros appear at the front.  */
552       for (i = arc_opcodes_count - 1; i >= 0; --i)
553 	{
554 	  int opcode_hash = ARC_HASH_OPCODE (arc_opcodes[i].syntax);
555 	  int icode_hash = ARC_HASH_ICODE (arc_opcodes[i].value);
556 
557 	  arc_opcodes[i].next_asm = opcode_map[opcode_hash];
558 	  opcode_map[opcode_hash] = &arc_opcodes[i];
559 
560 	  arc_opcodes[i].next_dis = icode_map[icode_hash];
561 	  icode_map[icode_hash] = &arc_opcodes[i];
562 	}
563 
564       init_p = 1;
565     }
566 }
567 
568 /* Return non-zero if OPCODE is supported on the specified cpu.
569    Cpu selection is made when calling `arc_opcode_init_tables'.  */
570 
571 int
arc_opcode_supported(opcode)572 arc_opcode_supported (opcode)
573      const struct arc_opcode *opcode;
574 {
575   if (ARC_OPCODE_CPU (opcode->flags) <= cpu_type)
576     return 1;
577   return 0;
578 }
579 
580 /* Return the first insn in the chain for assembling INSN.  */
581 
582 const struct arc_opcode *
arc_opcode_lookup_asm(insn)583 arc_opcode_lookup_asm (insn)
584      const char *insn;
585 {
586   return opcode_map[ARC_HASH_OPCODE (insn)];
587 }
588 
589 /* Return the first insn in the chain for disassembling INSN.  */
590 
591 const struct arc_opcode *
arc_opcode_lookup_dis(insn)592 arc_opcode_lookup_dis (insn)
593      unsigned int insn;
594 {
595   return icode_map[ARC_HASH_ICODE (insn)];
596 }
597 
598 /* Nonzero if we've seen an 'f' suffix (in certain insns).  */
599 static int flag_p;
600 
601 /* Nonzero if we've finished processing the 'f' suffix.  */
602 static int flagshimm_handled_p;
603 
604 /* Nonzero if we've seen a 'a' suffix (address writeback).  */
605 static int addrwb_p;
606 
607 /* Nonzero if we've seen a 'q' suffix (condition code).  */
608 static int cond_p;
609 
610 /* Nonzero if we've inserted a nullify condition.  */
611 static int nullify_p;
612 
613 /* The value of the a nullify condition we inserted.  */
614 static int nullify;
615 
616 /* Nonzero if we've inserted jumpflags.  */
617 static int jumpflags_p;
618 
619 /* Nonzero if we've inserted a shimm.  */
620 static int shimm_p;
621 
622 /* The value of the shimm we inserted (each insn only gets one but it can
623    appear multiple times).  */
624 static int shimm;
625 
626 /* Nonzero if we've inserted a limm (during assembly) or seen a limm
627    (during disassembly).  */
628 static int limm_p;
629 
630 /* The value of the limm we inserted.  Each insn only gets one but it can
631    appear multiple times.  */
632 static long limm;
633 
634 /* Insertion functions.  */
635 
636 /* Called by the assembler before parsing an instruction.  */
637 
638 void
arc_opcode_init_insert()639 arc_opcode_init_insert ()
640 {
641   int i;
642 
643   for(i = 0; i < OPERANDS; i++)
644     ls_operand[i] = OP_NONE;
645 
646   flag_p = 0;
647   flagshimm_handled_p = 0;
648   cond_p = 0;
649   addrwb_p = 0;
650   shimm_p = 0;
651   limm_p = 0;
652   jumpflags_p = 0;
653   nullify_p = 0;
654   nullify = 0; /* the default is important.  */
655 }
656 
657 /* Called by the assembler to see if the insn has a limm operand.
658    Also called by the disassembler to see if the insn contains a limm.  */
659 
660 int
arc_opcode_limm_p(limmp)661 arc_opcode_limm_p (limmp)
662      long *limmp;
663 {
664   if (limmp)
665     *limmp = limm;
666   return limm_p;
667 }
668 
669 /* Insert a value into a register field.
670    If REG is NULL, then this is actually a constant.
671 
672    We must also handle auxiliary registers for lr/sr insns.  */
673 
674 static arc_insn
insert_reg(insn,operand,mods,reg,value,errmsg)675 insert_reg (insn, operand, mods, reg, value, errmsg)
676      arc_insn insn;
677      const struct arc_operand *operand;
678      int mods;
679      const struct arc_operand_value *reg;
680      long value;
681      const char **errmsg;
682 {
683   static char buf[100];
684   enum operand op_type = OP_NONE;
685 
686   if (reg == NULL)
687     {
688       /* We have a constant that also requires a value stored in a register
689 	 field.  Handle these by updating the register field and saving the
690 	 value for later handling by either %S (shimm) or %L (limm).  */
691 
692       /* Try to use a shimm value before a limm one.  */
693       if (ARC_SHIMM_CONST_P (value)
694 	  /* If we've seen a conditional suffix we have to use a limm.  */
695 	  && !cond_p
696 	  /* If we already have a shimm value that is different than ours
697 	     we have to use a limm.  */
698 	  && (!shimm_p || shimm == value))
699 	{
700 	  int marker;
701 
702 	  op_type = OP_SHIMM;
703 	  /* forget about shimm as dest mlm.  */
704 
705 	  if ('a' != operand->fmt)
706 	    {
707 	      shimm_p = 1;
708 	      shimm = value;
709 	      flagshimm_handled_p = 1;
710 	      marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
711 	    }
712 	  else
713 	    {
714 	      /* don't request flag setting on shimm as dest.  */
715 	      marker = ARC_REG_SHIMM;
716 	    }
717 	  insn |= marker << operand->shift;
718 	  /* insn |= value & 511; - done later.  */
719 	}
720       /* We have to use a limm.  If we've already seen one they must match.  */
721       else if (!limm_p || limm == value)
722 	{
723 	  op_type = OP_LIMM;
724 	  limm_p = 1;
725 	  limm = value;
726 	  insn |= ARC_REG_LIMM << operand->shift;
727 	  /* The constant is stored later.  */
728 	}
729       else
730 	{
731 	  *errmsg = "unable to fit different valued constants into instruction";
732 	}
733     }
734   else
735     {
736       /* We have to handle both normal and auxiliary registers.  */
737 
738       if (reg->type == AUXREG)
739 	{
740 	  if (!(mods & ARC_MOD_AUXREG))
741 	    *errmsg = "auxiliary register not allowed here";
742 	  else
743 	    {
744 	      if ((insn & I(-1)) == I(2)) /* check for use validity.  */
745 		{
746 		  if (reg->flags & ARC_REGISTER_READONLY)
747 		    *errmsg = "attempt to set readonly register";
748 		}
749 	      else
750 		{
751 		  if (reg->flags & ARC_REGISTER_WRITEONLY)
752 		    *errmsg = "attempt to read writeonly register";
753 		}
754 	      insn |= ARC_REG_SHIMM << operand->shift;
755 	      insn |= reg->value << arc_operands[reg->type].shift;
756 	    }
757 	}
758       else
759 	{
760 	  /* check for use validity.  */
761 	  if ('a' == operand->fmt || ((insn & I(-1)) < I(2)))
762 	    {
763 	      if (reg->flags & ARC_REGISTER_READONLY)
764 		*errmsg = "attempt to set readonly register";
765 	    }
766 	  if ('a' != operand->fmt)
767 	    {
768 	      if (reg->flags & ARC_REGISTER_WRITEONLY)
769 		*errmsg = "attempt to read writeonly register";
770 	    }
771 	  /* We should never get an invalid register number here.  */
772 	  if ((unsigned int) reg->value > 60)
773 	    {
774 	      sprintf (buf, "invalid register number `%d'", reg->value);
775 	      *errmsg = buf;
776 	    }
777 	  insn |= reg->value << operand->shift;
778 	  op_type = OP_REG;
779 	}
780     }
781 
782   switch (operand->fmt)
783     {
784     case 'a':
785       ls_operand[LS_DEST] = op_type;
786       break;
787     case 's':
788       ls_operand[LS_BASE] = op_type;
789       break;
790     case 'c':
791       if ((insn & I(-1)) == I(2))
792 	ls_operand[LS_VALUE] = op_type;
793       else
794 	ls_operand[LS_OFFSET] = op_type;
795       break;
796     case 'o': case 'O':
797       ls_operand[LS_OFFSET] = op_type;
798       break;
799     }
800 
801   return insn;
802 }
803 
804 /* Called when we see an 'f' flag.  */
805 
806 static arc_insn
insert_flag(insn,operand,mods,reg,value,errmsg)807 insert_flag (insn, operand, mods, reg, value, errmsg)
808      arc_insn insn;
809      const struct arc_operand *operand ATTRIBUTE_UNUSED;
810      int mods ATTRIBUTE_UNUSED;
811      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
812      long value ATTRIBUTE_UNUSED;
813      const char **errmsg ATTRIBUTE_UNUSED;
814 {
815   /* We can't store anything in the insn until we've parsed the registers.
816      Just record the fact that we've got this flag.  `insert_reg' will use it
817      to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100).  */
818   flag_p = 1;
819   return insn;
820 }
821 
822 /* Called when we see an nullify condition.  */
823 
824 static arc_insn
insert_nullify(insn,operand,mods,reg,value,errmsg)825 insert_nullify (insn, operand, mods, reg, value, errmsg)
826      arc_insn insn;
827      const struct arc_operand *operand;
828      int mods ATTRIBUTE_UNUSED;
829      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
830      long value;
831      const char **errmsg ATTRIBUTE_UNUSED;
832 {
833   nullify_p = 1;
834   insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
835   nullify = value;
836   return insn;
837 }
838 
839 /* Called after completely building an insn to ensure the 'f' flag gets set
840    properly.  This is needed because we don't know how to set this flag until
841    we've parsed the registers.  */
842 
843 static arc_insn
insert_flagfinish(insn,operand,mods,reg,value,errmsg)844 insert_flagfinish (insn, operand, mods, reg, value, errmsg)
845      arc_insn insn;
846      const struct arc_operand *operand;
847      int mods ATTRIBUTE_UNUSED;
848      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
849      long value ATTRIBUTE_UNUSED;
850      const char **errmsg ATTRIBUTE_UNUSED;
851 {
852   if (flag_p && !flagshimm_handled_p)
853     {
854       if (shimm_p)
855 	abort ();
856       flagshimm_handled_p = 1;
857       insn |= (1 << operand->shift);
858     }
859   return insn;
860 }
861 
862 /* Called when we see a conditional flag (eg: .eq).  */
863 
864 static arc_insn
insert_cond(insn,operand,mods,reg,value,errmsg)865 insert_cond (insn, operand, mods, reg, value, errmsg)
866      arc_insn insn;
867      const struct arc_operand *operand;
868      int mods ATTRIBUTE_UNUSED;
869      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
870      long value;
871      const char **errmsg ATTRIBUTE_UNUSED;
872 {
873   cond_p = 1;
874   insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
875   return insn;
876 }
877 
878 /* Used in the "j" instruction to prevent constants from being interpreted as
879    shimm values (which the jump insn doesn't accept).  This can also be used
880    to force the use of limm values in other situations (eg: ld r0,[foo] uses
881    this).
882    ??? The mechanism is sound.  Access to it is a bit klunky right now.  */
883 
884 static arc_insn
insert_forcelimm(insn,operand,mods,reg,value,errmsg)885 insert_forcelimm (insn, operand, mods, reg, value, errmsg)
886      arc_insn insn;
887      const struct arc_operand *operand ATTRIBUTE_UNUSED;
888      int mods ATTRIBUTE_UNUSED;
889      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
890      long value ATTRIBUTE_UNUSED;
891      const char **errmsg ATTRIBUTE_UNUSED;
892 {
893   cond_p = 1;
894   return insn;
895 }
896 
897 static arc_insn
insert_addr_wb(insn,operand,mods,reg,value,errmsg)898 insert_addr_wb (insn, operand, mods, reg, value, errmsg)
899      arc_insn insn;
900      const struct arc_operand *operand;
901      int mods ATTRIBUTE_UNUSED;
902      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
903      long value ATTRIBUTE_UNUSED;
904      const char **errmsg ATTRIBUTE_UNUSED;
905 {
906   addrwb_p = 1 << operand->shift;
907   return insn;
908 }
909 
910 static arc_insn
insert_base(insn,operand,mods,reg,value,errmsg)911 insert_base (insn, operand, mods, reg, value, errmsg)
912      arc_insn insn;
913      const struct arc_operand *operand;
914      int mods;
915      const struct arc_operand_value *reg;
916      long value;
917      const char **errmsg;
918 {
919   if (reg != NULL)
920     {
921       arc_insn myinsn;
922       myinsn = insert_reg (0, operand,mods, reg, value, errmsg) >> operand->shift;
923       insn |= B(myinsn);
924       ls_operand[LS_BASE] = OP_REG;
925     }
926   else if (ARC_SHIMM_CONST_P (value) && !cond_p)
927     {
928       if (shimm_p && value != shimm)
929 	{
930 	  /* convert the previous shimm operand to a limm.  */
931 	  limm_p = 1;
932 	  limm = shimm;
933 	  insn &= ~C(-1); /* we know where the value is in insn.  */
934 	  insn |= C(ARC_REG_LIMM);
935 	  ls_operand[LS_VALUE] = OP_LIMM;
936 	}
937       insn |= ARC_REG_SHIMM << operand->shift;
938       shimm_p = 1;
939       shimm = value;
940       ls_operand[LS_BASE] = OP_SHIMM;
941       ls_operand[LS_OFFSET] = OP_SHIMM;
942     }
943   else
944     {
945       if (limm_p && value != limm)
946 	{
947 	  *errmsg = "too many long constants";
948 	  return insn;
949 	}
950       limm_p = 1;
951       limm = value;
952       insn |= B(ARC_REG_LIMM);
953       ls_operand[LS_BASE] = OP_LIMM;
954     }
955 
956   return insn;
957 }
958 
959 /* Used in ld/st insns to handle the offset field. We don't try to
960    match operand syntax here. we catch bad combinations later.  */
961 
962 static arc_insn
insert_offset(insn,operand,mods,reg,value,errmsg)963 insert_offset (insn, operand, mods, reg, value, errmsg)
964      arc_insn insn;
965      const struct arc_operand *operand;
966      int mods;
967      const struct arc_operand_value *reg;
968      long value;
969      const char **errmsg;
970 {
971   long minval, maxval;
972 
973   if (reg != NULL)
974     {
975       arc_insn myinsn;
976       myinsn = insert_reg (0,operand,mods,reg,value,errmsg) >> operand->shift;
977       ls_operand[LS_OFFSET] = OP_REG;
978       if (operand->flags & ARC_OPERAND_LOAD) /* not if store, catch it later.  */
979 	if ((insn & I(-1)) != I(1)) /* not if opcode == 1, catch it later.  */
980 	  insn |= C(myinsn);
981     }
982   else
983     {
984       /* This is *way* more general than necessary, but maybe some day it'll
985 	 be useful.  */
986       if (operand->flags & ARC_OPERAND_SIGNED)
987 	{
988 	  minval = -(1 << (operand->bits - 1));
989 	  maxval = (1 << (operand->bits - 1)) - 1;
990 	}
991       else
992 	{
993 	  minval = 0;
994 	  maxval = (1 << operand->bits) - 1;
995 	}
996       if ((cond_p && !limm_p) || (value < minval || value > maxval))
997 	{
998 	  if (limm_p && value != limm)
999 	    {
1000 	      *errmsg = "too many long constants";
1001 	    }
1002 	  else
1003 	    {
1004 	      limm_p = 1;
1005 	      limm = value;
1006 	      if (operand->flags & ARC_OPERAND_STORE)
1007 		insn |= B(ARC_REG_LIMM);
1008 	      if (operand->flags & ARC_OPERAND_LOAD)
1009 		insn |= C(ARC_REG_LIMM);
1010 	      ls_operand[LS_OFFSET] = OP_LIMM;
1011 	    }
1012 	}
1013       else
1014 	{
1015 	  if ((value < minval || value > maxval))
1016 	    *errmsg = "need too many limms";
1017 	  else if (shimm_p && value != shimm)
1018 	    {
1019 	      /* check for bad operand combinations before we lose info about them.  */
1020 	      if ((insn & I(-1)) == I(1))
1021 		{
1022 		  *errmsg = "to many shimms in load";
1023 		  goto out;
1024 		}
1025 	      if (limm_p && operand->flags & ARC_OPERAND_LOAD)
1026 		{
1027 		  *errmsg = "too many long constants";
1028 		  goto out;
1029 		}
1030 	      /* convert what we thought was a shimm to a limm.  */
1031 	      limm_p = 1;
1032 	      limm = shimm;
1033 	      if (ls_operand[LS_VALUE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1034 		{
1035 		  insn &= ~C(-1);
1036 		  insn |= C(ARC_REG_LIMM);
1037 		  ls_operand[LS_VALUE] = OP_LIMM;
1038 		}
1039 	      if (ls_operand[LS_BASE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1040 		{
1041 		  insn &= ~B(-1);
1042 		  insn |= B(ARC_REG_LIMM);
1043 		  ls_operand[LS_BASE] = OP_LIMM;
1044 		}
1045 	    }
1046 	  shimm = value;
1047 	  shimm_p = 1;
1048 	  ls_operand[LS_OFFSET] = OP_SHIMM;
1049 	}
1050     }
1051  out:
1052   return insn;
1053 }
1054 
1055 /* Used in st insns to do final disasemble syntax check.  */
1056 
1057 static long
extract_st_syntax(insn,operand,mods,opval,invalid)1058 extract_st_syntax (insn, operand, mods, opval, invalid)
1059      arc_insn *insn;
1060      const struct arc_operand *operand ATTRIBUTE_UNUSED;
1061      int mods ATTRIBUTE_UNUSED;
1062      const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1063      int *invalid;
1064 {
1065 #define ST_SYNTAX(V,B,O) \
1066 ((ls_operand[LS_VALUE]  == (V) && \
1067   ls_operand[LS_BASE]   == (B) && \
1068   ls_operand[LS_OFFSET] == (O)))
1069 
1070   if (!((ST_SYNTAX(OP_REG,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1071 	|| ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1072 	|| (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1073 	|| (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (insn[0] & 511) == 0)
1074 	|| ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1075 	|| ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_SHIMM)
1076 	|| ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1077 	|| (ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1078 	|| ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1079 	|| ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1080 	|| ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1081 	|| ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1082 	|| ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE)
1083 	|| ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1084     *invalid = 1;
1085   return 0;
1086 }
1087 
1088 int
arc_limm_fixup_adjust(insn)1089 arc_limm_fixup_adjust(insn)
1090      arc_insn insn;
1091 {
1092   int retval = 0;
1093 
1094   /* check for st shimm,[limm].  */
1095   if ((insn & (I(-1) | C(-1) | B(-1))) ==
1096       (I(2) | C(ARC_REG_SHIMM) | B(ARC_REG_LIMM)))
1097     {
1098       retval = insn & 0x1ff;
1099       if (retval & 0x100) /* sign extend 9 bit offset.  */
1100 	retval |= ~0x1ff;
1101     }
1102   return -retval; /* negate offset for return.  */
1103 }
1104 
1105 /* Used in st insns to do final syntax check.  */
1106 
1107 static arc_insn
insert_st_syntax(insn,operand,mods,reg,value,errmsg)1108 insert_st_syntax (insn, operand, mods, reg, value, errmsg)
1109      arc_insn insn;
1110      const struct arc_operand *operand ATTRIBUTE_UNUSED;
1111      int mods ATTRIBUTE_UNUSED;
1112      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1113      long value ATTRIBUTE_UNUSED;
1114      const char **errmsg;
1115 {
1116   if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm != 0)
1117     {
1118       /* change an illegal insn into a legal one, it's easier to
1119 	 do it here than to try to handle it during operand scan.  */
1120       limm_p = 1;
1121       limm = shimm;
1122       shimm_p = 0;
1123       shimm = 0;
1124       insn = insn & ~(C(-1) | 511);
1125       insn |= ARC_REG_LIMM << ARC_SHIFT_REGC;
1126       ls_operand[LS_VALUE] = OP_LIMM;
1127     }
1128 
1129   if (ST_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE))
1130     {
1131       /* try to salvage this syntax.  */
1132       if (shimm & 0x1) /* odd shimms won't work.  */
1133 	{
1134 	  if (limm_p) /* do we have a limm already?  */
1135 	    {
1136 	      *errmsg = "impossible store";
1137 	    }
1138 	  limm_p = 1;
1139 	  limm = shimm;
1140 	  shimm = 0;
1141 	  shimm_p = 0;
1142 	  insn = insn & ~(B(-1) | 511);
1143 	  insn |= B(ARC_REG_LIMM);
1144 	  ls_operand[LS_BASE] = OP_LIMM;
1145 	}
1146       else
1147 	{
1148 	  shimm >>= 1;
1149 	  insn = insn & ~511;
1150 	  insn |= shimm;
1151 	  ls_operand[LS_OFFSET] = OP_SHIMM;
1152 	}
1153     }
1154   if (ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE))
1155     {
1156       limm += arc_limm_fixup_adjust(insn);
1157     }
1158   if (!(ST_SYNTAX(OP_REG,OP_REG,OP_NONE)
1159 	|| ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1160 	|| ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1161 	|| ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1162 	|| (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (shimm == 0))
1163 	|| ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1164 	|| ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE)
1165 	|| ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1166 	|| ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1167 	|| ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1168 	|| ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE)
1169 	|| ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1170     *errmsg = "st operand error";
1171   if (addrwb_p)
1172     {
1173       if (ls_operand[LS_BASE] != OP_REG)
1174 	*errmsg = "address writeback not allowed";
1175       insn |= addrwb_p;
1176     }
1177   if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm)
1178     *errmsg = "store value must be zero";
1179   return insn;
1180 }
1181 
1182 /* Used in ld insns to do final syntax check.  */
1183 
1184 static arc_insn
insert_ld_syntax(insn,operand,mods,reg,value,errmsg)1185 insert_ld_syntax (insn, operand, mods, reg, value, errmsg)
1186      arc_insn insn;
1187      const struct arc_operand *operand ATTRIBUTE_UNUSED;
1188      int mods ATTRIBUTE_UNUSED;
1189      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1190      long value ATTRIBUTE_UNUSED;
1191      const char **errmsg;
1192 {
1193 #define LD_SYNTAX(D,B,O) \
1194 ((ls_operand[LS_DEST]  == (D) && \
1195   ls_operand[LS_BASE]   == (B) && \
1196   ls_operand[LS_OFFSET] == (O)))
1197 
1198   int test = insn & I(-1);
1199 
1200   if (!(test == I(1)))
1201     {
1202       if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1203 	   || ls_operand[LS_OFFSET] == OP_SHIMM))
1204 	*errmsg = "invalid load/shimm insn";
1205     }
1206   if (!(LD_SYNTAX(OP_REG,OP_REG,OP_NONE)
1207 	|| LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1208 	|| LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1209 	|| (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1210 	|| (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1211 	|| LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1212 	|| (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1213     *errmsg = "ld operand error";
1214   if (addrwb_p)
1215     {
1216       if (ls_operand[LS_BASE] != OP_REG)
1217 	*errmsg = "address writeback not allowed";
1218       insn |= addrwb_p;
1219     }
1220   return insn;
1221 }
1222 
1223 /* Used in ld insns to do final syntax check.  */
1224 
1225 static long
extract_ld_syntax(insn,operand,mods,opval,invalid)1226 extract_ld_syntax (insn, operand, mods, opval, invalid)
1227      arc_insn *insn;
1228      const struct arc_operand *operand ATTRIBUTE_UNUSED;
1229      int mods ATTRIBUTE_UNUSED;
1230      const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1231      int *invalid;
1232 {
1233   int test = insn[0] & I(-1);
1234 
1235   if (!(test == I(1)))
1236     {
1237       if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1238 	   || ls_operand[LS_OFFSET] == OP_SHIMM))
1239 	*invalid = 1;
1240     }
1241   if (!((LD_SYNTAX(OP_REG,OP_REG,OP_NONE) && (test == I(1)))
1242 	|| LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1243 	|| LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1244 	|| (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1245 	|| (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1246 	|| (LD_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) && (shimm == 0))
1247 	|| LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1248 	|| (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1249     *invalid = 1;
1250   return 0;
1251 }
1252 
1253 /* Called at the end of processing normal insns (eg: add) to insert a shimm
1254    value (if present) into the insn.  */
1255 
1256 static arc_insn
insert_shimmfinish(insn,operand,mods,reg,value,errmsg)1257 insert_shimmfinish (insn, operand, mods, reg, value, errmsg)
1258      arc_insn insn;
1259      const struct arc_operand *operand;
1260      int mods ATTRIBUTE_UNUSED;
1261      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1262      long value ATTRIBUTE_UNUSED;
1263      const char **errmsg ATTRIBUTE_UNUSED;
1264 {
1265   if (shimm_p)
1266     insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
1267   return insn;
1268 }
1269 
1270 /* Called at the end of processing normal insns (eg: add) to insert a limm
1271    value (if present) into the insn.
1272 
1273    Note that this function is only intended to handle instructions (with 4 byte
1274    immediate operands).  It is not intended to handle data.  */
1275 
1276 /* ??? Actually, there's nothing for us to do as we can't call frag_more, the
1277    caller must do that.  The extract fns take a pointer to two words.  The
1278    insert fns could be converted and then we could do something useful, but
1279    then the reloc handlers would have to know to work on the second word of
1280    a 2 word quantity.  That's too much so we don't handle them.  */
1281 
1282 static arc_insn
insert_limmfinish(insn,operand,mods,reg,value,errmsg)1283 insert_limmfinish (insn, operand, mods, reg, value, errmsg)
1284      arc_insn insn;
1285      const struct arc_operand *operand ATTRIBUTE_UNUSED;
1286      int mods ATTRIBUTE_UNUSED;
1287      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1288      long value ATTRIBUTE_UNUSED;
1289      const char **errmsg ATTRIBUTE_UNUSED;
1290 {
1291 #if 0
1292   if (limm_p)
1293     ; /* nothing to do, gas does it.  */
1294 #endif
1295   return insn;
1296 }
1297 
1298 static arc_insn
insert_jumpflags(insn,operand,mods,reg,value,errmsg)1299 insert_jumpflags (insn, operand, mods, reg, value, errmsg)
1300      arc_insn insn;
1301      const struct arc_operand *operand;
1302      int mods ATTRIBUTE_UNUSED;
1303      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1304      long value;
1305      const char **errmsg;
1306 {
1307   if (!flag_p)
1308     {
1309       *errmsg = "jump flags, but no .f seen";
1310     }
1311   if (!limm_p)
1312     {
1313       *errmsg = "jump flags, but no limm addr";
1314     }
1315   if (limm & 0xfc000000)
1316     {
1317       *errmsg = "flag bits of jump address limm lost";
1318     }
1319   if (limm & 0x03000000)
1320     {
1321       *errmsg = "attempt to set HR bits";
1322     }
1323   if ((value & ((1 << operand->bits) - 1)) != value)
1324     {
1325       *errmsg = "bad jump flags value";
1326     }
1327   jumpflags_p = 1;
1328   limm = ((limm & ((1 << operand->shift) - 1))
1329 	  | ((value & ((1 << operand->bits) - 1)) << operand->shift));
1330   return insn;
1331 }
1332 
1333 /* Called at the end of unary operand macros to copy the B field to C.  */
1334 
1335 static arc_insn
insert_unopmacro(insn,operand,mods,reg,value,errmsg)1336 insert_unopmacro (insn, operand, mods, reg, value, errmsg)
1337      arc_insn insn;
1338      const struct arc_operand *operand;
1339      int mods ATTRIBUTE_UNUSED;
1340      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1341      long value ATTRIBUTE_UNUSED;
1342      const char **errmsg ATTRIBUTE_UNUSED;
1343 {
1344   insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
1345   return insn;
1346 }
1347 
1348 /* Insert a relative address for a branch insn (b, bl, or lp).  */
1349 
1350 static arc_insn
insert_reladdr(insn,operand,mods,reg,value,errmsg)1351 insert_reladdr (insn, operand, mods, reg, value, errmsg)
1352      arc_insn insn;
1353      const struct arc_operand *operand;
1354      int mods ATTRIBUTE_UNUSED;
1355      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1356      long value;
1357      const char **errmsg;
1358 {
1359   if (value & 3)
1360     *errmsg = "branch address not on 4 byte boundary";
1361   insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift;
1362   return insn;
1363 }
1364 
1365 /* Insert a limm value as a 26 bit address right shifted 2 into the insn.
1366 
1367    Note that this function is only intended to handle instructions (with 4 byte
1368    immediate operands).  It is not intended to handle data.  */
1369 
1370 /* ??? Actually, there's little for us to do as we can't call frag_more, the
1371    caller must do that.  The extract fns take a pointer to two words.  The
1372    insert fns could be converted and then we could do something useful, but
1373    then the reloc handlers would have to know to work on the second word of
1374    a 2 word quantity.  That's too much so we don't handle them.
1375 
1376    We do check for correct usage of the nullify suffix, or we
1377    set the default correctly, though.  */
1378 
1379 static arc_insn
insert_absaddr(insn,operand,mods,reg,value,errmsg)1380 insert_absaddr (insn, operand, mods, reg, value, errmsg)
1381      arc_insn insn;
1382      const struct arc_operand *operand ATTRIBUTE_UNUSED;
1383      int mods ATTRIBUTE_UNUSED;
1384      const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1385      long value ATTRIBUTE_UNUSED;
1386      const char **errmsg;
1387 {
1388   if (limm_p)
1389     {
1390       /* if it is a jump and link, .jd must be specified.  */
1391       if (insn & R(-1,9,1))
1392 	{
1393 	  if (!nullify_p)
1394 	    {
1395 	      insn |=  0x02 << 5;  /* default nullify to .jd.  */
1396 	    }
1397 	  else
1398 	    {
1399 	      if (nullify != 0x02)
1400 		{
1401 		  *errmsg = "must specify .jd or no nullify suffix";
1402 		}
1403 	    }
1404 	}
1405     }
1406   return insn;
1407 }
1408 
1409 /* Extraction functions.
1410 
1411    The suffix extraction functions' return value is redundant since it can be
1412    obtained from (*OPVAL)->value.  However, the boolean suffixes don't have
1413    a suffix table entry for the "false" case, so values of zero must be
1414    obtained from the return value (*OPVAL == NULL).  */
1415 
1416 static const struct arc_operand_value *lookup_register (int type, long regno);
1417 
1418 /* Called by the disassembler before printing an instruction.  */
1419 
1420 void
arc_opcode_init_extract()1421 arc_opcode_init_extract ()
1422 {
1423   arc_opcode_init_insert();
1424 }
1425 
1426 /* As we're extracting registers, keep an eye out for the 'f' indicator
1427    (ARC_REG_SHIMM_UPDATE).  If we find a register (not a constant marker,
1428    like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
1429 
1430    We must also handle auxiliary registers for lr/sr insns.  They are just
1431    constants with special names.  */
1432 
1433 static long
extract_reg(insn,operand,mods,opval,invalid)1434 extract_reg (insn, operand, mods, opval, invalid)
1435      arc_insn *insn;
1436      const struct arc_operand *operand;
1437      int mods;
1438      const struct arc_operand_value **opval;
1439      int *invalid ATTRIBUTE_UNUSED;
1440 {
1441   int regno;
1442   long value;
1443   enum operand op_type;
1444 
1445   /* Get the register number.  */
1446   regno = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1447 
1448   /* Is it a constant marker?  */
1449   if (regno == ARC_REG_SHIMM)
1450     {
1451       op_type = OP_SHIMM;
1452       /* always return zero if dest is a shimm  mlm.  */
1453 
1454       if ('a' != operand->fmt)
1455 	{
1456 	  value = *insn & 511;
1457 	  if ((operand->flags & ARC_OPERAND_SIGNED)
1458 	      && (value & 256))
1459 	    value -= 512;
1460 	  if (!flagshimm_handled_p)
1461 	    flag_p = 0;
1462 	  flagshimm_handled_p = 1;
1463 	}
1464       else
1465 	{
1466 	  value = 0;
1467 	}
1468     }
1469   else if (regno == ARC_REG_SHIMM_UPDATE)
1470     {
1471       op_type = OP_SHIMM;
1472 
1473       /* always return zero if dest is a shimm  mlm.  */
1474 
1475       if ('a' != operand->fmt)
1476 	{
1477 	  value = *insn & 511;
1478 	  if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1479 	    value -= 512;
1480 	}
1481       else
1482 	{
1483 	  value = 0;
1484 	}
1485       flag_p = 1;
1486       flagshimm_handled_p = 1;
1487     }
1488   else if (regno == ARC_REG_LIMM)
1489     {
1490       op_type = OP_LIMM;
1491       value = insn[1];
1492       limm_p = 1;
1493       /* if this is a jump instruction (j,jl), show new pc correctly.  */
1494       if (0x07 == ((*insn & I(-1)) >> 27))
1495 	{
1496 	  value = (value & 0xffffff);
1497 	}
1498     }
1499   /* It's a register, set OPVAL (that's the only way we distinguish registers
1500      from constants here).  */
1501   else
1502     {
1503       const struct arc_operand_value *reg = lookup_register (REG, regno);
1504       op_type = OP_REG;
1505 
1506       if (reg == NULL)
1507 	abort ();
1508       if (opval != NULL)
1509 	*opval = reg;
1510       value = regno;
1511     }
1512 
1513   /* If this field takes an auxiliary register, see if it's a known one.  */
1514   if ((mods & ARC_MOD_AUXREG)
1515       && ARC_REG_CONSTANT_P (regno))
1516     {
1517       const struct arc_operand_value *reg = lookup_register (AUXREG, value);
1518 
1519       /* This is really a constant, but tell the caller it has a special
1520 	 name.  */
1521       if (reg != NULL && opval != NULL)
1522 	*opval = reg;
1523     }
1524   switch(operand->fmt)
1525     {
1526     case 'a':
1527       ls_operand[LS_DEST] = op_type;
1528       break;
1529     case 's':
1530       ls_operand[LS_BASE] = op_type;
1531       break;
1532     case 'c':
1533       if ((insn[0]& I(-1)) == I(2))
1534 	ls_operand[LS_VALUE] = op_type;
1535       else
1536 	ls_operand[LS_OFFSET] = op_type;
1537       break;
1538     case 'o': case 'O':
1539       ls_operand[LS_OFFSET] = op_type;
1540       break;
1541     }
1542 
1543   return value;
1544 }
1545 
1546 /* Return the value of the "flag update" field for shimm insns.
1547    This value is actually stored in the register field.  */
1548 
1549 static long
extract_flag(insn,operand,mods,opval,invalid)1550 extract_flag (insn, operand, mods, opval, invalid)
1551      arc_insn *insn;
1552      const struct arc_operand *operand;
1553      int mods ATTRIBUTE_UNUSED;
1554      const struct arc_operand_value **opval;
1555      int *invalid ATTRIBUTE_UNUSED;
1556 {
1557   int f;
1558   const struct arc_operand_value *val;
1559 
1560   if (flagshimm_handled_p)
1561     f = flag_p != 0;
1562   else
1563     f = (*insn & (1 << operand->shift)) != 0;
1564 
1565   /* There is no text for zero values.  */
1566   if (f == 0)
1567     return 0;
1568   flag_p = 1;
1569   val = arc_opcode_lookup_suffix (operand, 1);
1570   if (opval != NULL && val != NULL)
1571     *opval = val;
1572   return val->value;
1573 }
1574 
1575 /* Extract the condition code (if it exists).
1576    If we've seen a shimm value in this insn (meaning that the insn can't have
1577    a condition code field), then we don't store anything in OPVAL and return
1578    zero.  */
1579 
1580 static long
extract_cond(insn,operand,mods,opval,invalid)1581 extract_cond (insn, operand, mods, opval, invalid)
1582      arc_insn *insn;
1583      const struct arc_operand *operand;
1584      int mods ATTRIBUTE_UNUSED;
1585      const struct arc_operand_value **opval;
1586      int *invalid ATTRIBUTE_UNUSED;
1587 {
1588   long cond;
1589   const struct arc_operand_value *val;
1590 
1591   if (flagshimm_handled_p)
1592     return 0;
1593 
1594   cond = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1595   val = arc_opcode_lookup_suffix (operand, cond);
1596 
1597   /* Ignore NULL values of `val'.  Several condition code values are
1598      reserved for extensions.  */
1599   if (opval != NULL && val != NULL)
1600     *opval = val;
1601   return cond;
1602 }
1603 
1604 /* Extract a branch address.
1605    We return the value as a real address (not right shifted by 2).  */
1606 
1607 static long
extract_reladdr(insn,operand,mods,opval,invalid)1608 extract_reladdr (insn, operand, mods, opval, invalid)
1609      arc_insn *insn;
1610      const struct arc_operand *operand;
1611      int mods ATTRIBUTE_UNUSED;
1612      const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1613      int *invalid ATTRIBUTE_UNUSED;
1614 {
1615   long addr;
1616 
1617   addr = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1618   if ((operand->flags & ARC_OPERAND_SIGNED)
1619       && (addr & (1 << (operand->bits - 1))))
1620     addr -= 1 << operand->bits;
1621   return addr << 2;
1622 }
1623 
1624 /* extract the flags bits from a j or jl long immediate.  */
1625 static long
extract_jumpflags(insn,operand,mods,opval,invalid)1626 extract_jumpflags(insn, operand, mods, opval, invalid)
1627      arc_insn *insn;
1628      const struct arc_operand *operand;
1629      int mods ATTRIBUTE_UNUSED;
1630      const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1631      int *invalid;
1632 {
1633   if (!flag_p || !limm_p)
1634     *invalid = 1;
1635   return ((flag_p && limm_p)
1636 	  ? (insn[1] >> operand->shift) & ((1 << operand->bits) -1): 0);
1637 }
1638 
1639 /* extract st insn's offset.  */
1640 
1641 static long
extract_st_offset(insn,operand,mods,opval,invalid)1642 extract_st_offset (insn, operand, mods, opval, invalid)
1643      arc_insn *insn;
1644      const struct arc_operand *operand;
1645      int mods ATTRIBUTE_UNUSED;
1646      const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1647      int *invalid;
1648 {
1649   int value = 0;
1650 
1651   if (ls_operand[LS_VALUE] != OP_SHIMM || ls_operand[LS_BASE] != OP_LIMM)
1652     {
1653       value = insn[0] & 511;
1654       if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1655 	value -= 512;
1656       if (value)
1657 	ls_operand[LS_OFFSET] = OP_SHIMM;
1658     }
1659   else
1660     {
1661       *invalid = 1;
1662     }
1663   return(value);
1664 }
1665 
1666 /* extract ld insn's offset.  */
1667 
1668 static long
extract_ld_offset(insn,operand,mods,opval,invalid)1669 extract_ld_offset (insn, operand, mods, opval, invalid)
1670      arc_insn *insn;
1671      const struct arc_operand *operand;
1672      int mods;
1673      const struct arc_operand_value **opval;
1674      int *invalid;
1675 {
1676   int test = insn[0] & I(-1);
1677   int value;
1678 
1679   if (test)
1680     {
1681       value = insn[0] & 511;
1682       if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1683 	value -= 512;
1684       if (value)
1685 	ls_operand[LS_OFFSET] = OP_SHIMM;
1686       return(value);
1687     }
1688   /* if it isn't in the insn, it's concealed behind reg 'c'.  */
1689   return extract_reg (insn, &arc_operands[arc_operand_map['c']],
1690 		      mods, opval, invalid);
1691 }
1692 
1693 /* The only thing this does is set the `invalid' flag if B != C.
1694    This is needed because the "mov" macro appears before it's real insn "and"
1695    and we don't want the disassembler to confuse them.  */
1696 
1697 static long
extract_unopmacro(insn,operand,mods,opval,invalid)1698 extract_unopmacro (insn, operand, mods, opval, invalid)
1699      arc_insn *insn;
1700      const struct arc_operand *operand ATTRIBUTE_UNUSED;
1701      int mods ATTRIBUTE_UNUSED;
1702      const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1703      int *invalid;
1704 {
1705   /* This misses the case where B == ARC_REG_SHIMM_UPDATE &&
1706      C == ARC_REG_SHIMM (or vice versa).  No big deal.  Those insns will get
1707      printed as "and"s.  */
1708   if (((*insn >> ARC_SHIFT_REGB) & ARC_MASK_REG)
1709       != ((*insn >> ARC_SHIFT_REGC) & ARC_MASK_REG))
1710     if (invalid != NULL)
1711       *invalid = 1;
1712   return 0;
1713 }
1714 
1715 /* Utility for the extraction functions to return the index into
1716    `arc_suffixes'.  */
1717 
1718 const struct arc_operand_value *
arc_opcode_lookup_suffix(type,value)1719 arc_opcode_lookup_suffix (type, value)
1720      const struct arc_operand *type;
1721      int value;
1722 {
1723   register const struct arc_operand_value *v,*end;
1724   struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1725 
1726   while (ext_oper)
1727     {
1728       if (type == &arc_operands[ext_oper->operand.type]
1729 	  && value == ext_oper->operand.value)
1730 	return (&ext_oper->operand);
1731       ext_oper = ext_oper->next;
1732     }
1733 
1734   /* ??? This is a little slow and can be speeded up.  */
1735 
1736   for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
1737     if (type == &arc_operands[v->type]
1738 	&& value == v->value)
1739       return v;
1740   return 0;
1741 }
1742 
1743 static const struct arc_operand_value *
lookup_register(type,regno)1744 lookup_register (type, regno)
1745      int type;
1746      long regno;
1747 {
1748   register const struct arc_operand_value *r,*end;
1749   struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1750 
1751   while (ext_oper)
1752     {
1753       if (ext_oper->operand.type == type && ext_oper->operand.value == regno)
1754 	return (&ext_oper->operand);
1755       ext_oper = ext_oper->next;
1756     }
1757 
1758   if (type == REG)
1759     return &arc_reg_names[regno];
1760 
1761   /* ??? This is a little slow and can be speeded up.  */
1762 
1763   for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
1764        r < end; ++r)
1765     if (type == r->type	&& regno == r->value)
1766       return r;
1767   return 0;
1768 }
1769 
1770 int
arc_insn_is_j(insn)1771 arc_insn_is_j(insn)
1772      arc_insn insn;
1773 {
1774   return (insn & (I(-1))) == I(0x7);
1775 }
1776 
1777 int
arc_insn_not_jl(insn)1778 arc_insn_not_jl(insn)
1779      arc_insn insn;
1780 {
1781   return ((insn & (I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1)))
1782 	  != (I(0x7) | R(-1,9,1)));
1783 }
1784 
1785 int
arc_operand_type(int opertype)1786 arc_operand_type(int opertype)
1787 {
1788   switch (opertype)
1789     {
1790     case 0:
1791       return(COND);
1792       break;
1793     case 1:
1794       return(REG);
1795       break;
1796     case 2:
1797       return(AUXREG);
1798       break;
1799     }
1800   return -1;
1801 }
1802 
1803 struct arc_operand_value *
get_ext_suffix(s)1804 get_ext_suffix(s)
1805      char *s;
1806 {
1807   struct arc_ext_operand_value *suffix = arc_ext_operands;
1808 
1809   while (suffix)
1810     {
1811       if ((COND == suffix->operand.type)
1812 	  && !strcmp(s,suffix->operand.name))
1813 	return(&suffix->operand);
1814       suffix = suffix->next;
1815     }
1816   return NULL;
1817 }
1818 
1819 int
arc_get_noshortcut_flag()1820 arc_get_noshortcut_flag()
1821 {
1822   return ARC_REGISTER_NOSHORT_CUT;
1823 }
1824