1 /* Definitions of target machine for GNU compiler,
2    for Motorola M*CORE Processor.
3    Copyright (C) 1993, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4    Free Software Foundation, Inc.
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify it
9    under the terms of the GNU General Public License as published
10    by the Free Software Foundation; either version 2, or (at your
11    option) any later version.
12 
13    GCC is distributed in the hope that it will be useful, but WITHOUT
14    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16    License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING.  If not, write to the
20    Free Software Foundation, 51 Franklin Street, Fifth Floor,
21    Boston, MA 02110-1301, USA.  */
22 
23 #ifndef GCC_MCORE_H
24 #define GCC_MCORE_H
25 
26 /* RBE: need to move these elsewhere.  */
27 #undef	LIKE_PPC_ABI
28 #define	MCORE_STRUCT_ARGS
29 /* RBE: end of "move elsewhere".  */
30 
31 /* Run-time Target Specification.  */
32 #define TARGET_MCORE
33 
34 /* Get tree.c to declare a target-specific specialization of
35    merge_decl_attributes.  */
36 #define TARGET_DLLIMPORT_DECL_ATTRIBUTES 1
37 
38 #define TARGET_CPU_CPP_BUILTINS()					  \
39   do									  \
40     {									  \
41       builtin_define ("__mcore__");					  \
42       builtin_define ("__MCORE__");					  \
43       if (TARGET_LITTLE_END)						  \
44         builtin_define ("__MCORELE__");					  \
45       else								  \
46         builtin_define ("__MCOREBE__");					  \
47       if (TARGET_M340)							  \
48         builtin_define ("__M340__");					  \
49       else								  \
50         builtin_define ("__M210__");					  \
51     }									  \
52   while (0)
53 
54 /* If -m4align is ever re-enabled then add this line to the definition of CPP_SPEC
55    %{!m4align:-D__MCORE_ALIGN_8__} %{m4align:-D__MCORE__ALIGN_4__}.  */
56 #undef  CPP_SPEC
57 #define CPP_SPEC "%{m210:%{mlittle-endian:%ethe m210 does not have little endian support}}"
58 
59 /* We don't have a -lg library, so don't put it in the list.  */
60 #undef	LIB_SPEC
61 #define LIB_SPEC "%{!shared: %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
62 
63 #undef	ASM_SPEC
64 #define	ASM_SPEC "%{mbig-endian:-EB} %{m210:-cpu=210 -EB}"
65 
66 #undef  LINK_SPEC
67 #define LINK_SPEC "%{mbig-endian:-EB} %{m210:-EB} -X"
68 
69 #define TARGET_DEFAULT	\
70   (MASK_HARDLIT		\
71    | MASK_8ALIGN	\
72    | MASK_DIV		\
73    | MASK_RELAX_IMM	\
74    | MASK_M340		\
75    | MASK_LITTLE_END)
76 
77 #ifndef MULTILIB_DEFAULTS
78 #define MULTILIB_DEFAULTS { "mlittle-endian", "m340" }
79 #endif
80 
81 /* The ability to have 4 byte alignment is being suppressed for now.
82    If this ability is reenabled, you must disable the definition below
83    *and* edit t-mcore to enable multilibs for 4 byte alignment code.  */
84 #undef TARGET_8ALIGN
85 #define TARGET_8ALIGN 1
86 
87 extern char * mcore_current_function_name;
88 
89 /* The MCore ABI says that bitfields are unsigned by default.  */
90 #define CC1_SPEC "-funsigned-bitfields"
91 
92 /* What options are we going to default to specific settings when
93    -O* happens; the user can subsequently override these settings.
94 
95    Omitting the frame pointer is a very good idea on the MCore.
96    Scheduling isn't worth anything on the current MCore implementation.  */
97 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE)	\
98 {						\
99   if (LEVEL)					\
100     {						\
101       flag_no_function_cse = 1;			\
102       flag_omit_frame_pointer = 1;		\
103 						\
104       if (LEVEL >= 2)				\
105         {					\
106           flag_caller_saves = 0;		\
107           flag_schedule_insns = 0;		\
108           flag_schedule_insns_after_reload = 0;	\
109         }					\
110     }						\
111   if (SIZE)					\
112     {						\
113       target_flags &= ~MASK_HARDLIT;		\
114     }						\
115 }
116 
117 /* What options are we going to force to specific settings,
118    regardless of what the user thought he wanted.
119    We also use this for some post-processing of options.  */
120 #define OVERRIDE_OPTIONS  mcore_override_options ()
121 
122 /* Target machine storage Layout.  */
123 
124 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  	\
125   if (GET_MODE_CLASS (MODE) == MODE_INT         \
126       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
127     {						\
128       (MODE) = SImode;				\
129       (UNSIGNEDP) = 1;				\
130     }
131 
132 /* Define this if most significant bit is lowest numbered
133    in instructions that operate on numbered bit-fields.  */
134 #define BITS_BIG_ENDIAN  0
135 
136 /* Define this if most significant byte of a word is the lowest numbered.  */
137 #define BYTES_BIG_ENDIAN (! TARGET_LITTLE_END)
138 
139 /* Define this if most significant word of a multiword number is the lowest
140    numbered.  */
141 #define WORDS_BIG_ENDIAN (! TARGET_LITTLE_END)
142 
143 #define LIBGCC2_WORDS_BIG_ENDIAN 1
144 #ifdef __MCORELE__
145 #undef  LIBGCC2_WORDS_BIG_ENDIAN
146 #define LIBGCC2_WORDS_BIG_ENDIAN 0
147 #endif
148 
149 #define MAX_BITS_PER_WORD 32
150 
151 /* Width of a word, in units (bytes).  */
152 #define UNITS_PER_WORD	4
153 
154 /* A C expression for the size in bits of the type `long long' on the
155    target machine.  If you don't define this, the default is two
156    words.  */
157 #define LONG_LONG_TYPE_SIZE 64
158 
159 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
160 #define PARM_BOUNDARY  	32
161 
162 /* Doubles must be aligned to an 8 byte boundary.  */
163 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
164   ((MODE != BLKmode && (GET_MODE_SIZE (MODE) == 8)) \
165    ? BIGGEST_ALIGNMENT : PARM_BOUNDARY)
166 
167 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
168 #define STACK_BOUNDARY  (TARGET_8ALIGN ? 64 : 32)
169 
170 /* Largest increment in UNITS we allow the stack to grow in a single operation.  */
171 extern int mcore_stack_increment;
172 #define STACK_UNITS_MAXSTEP  4096
173 
174 /* Allocation boundary (in *bits*) for the code of a function.  */
175 #define FUNCTION_BOUNDARY  ((TARGET_OVERALIGN_FUNC) ? 32 : 16)
176 
177 /* Alignment of field after `int : 0' in a structure.  */
178 #define EMPTY_FIELD_BOUNDARY  32
179 
180 /* No data type wants to be aligned rounder than this.  */
181 #define BIGGEST_ALIGNMENT  (TARGET_8ALIGN ? 64 : 32)
182 
183 /* The best alignment to use in cases where we have a choice.  */
184 #define FASTEST_ALIGNMENT 32
185 
186 /* Every structures size must be a multiple of 8 bits.  */
187 #define STRUCTURE_SIZE_BOUNDARY 8
188 
189 /* Look at the fundamental type that is used for a bit-field and use
190    that to impose alignment on the enclosing structure.
191    struct s {int a:8}; should have same alignment as "int", not "char".  */
192 #define	PCC_BITFIELD_TYPE_MATTERS	1
193 
194 /* Largest integer machine mode for structures.  If undefined, the default
195    is GET_MODE_SIZE(DImode).  */
196 #define MAX_FIXED_MODE_SIZE 32
197 
198 /* Make strings word-aligned so strcpy from constants will be faster.  */
199 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
200   ((TREE_CODE (EXP) == STRING_CST	\
201     && (ALIGN) < FASTEST_ALIGNMENT)	\
202    ? FASTEST_ALIGNMENT : (ALIGN))
203 
204 /* Make arrays of chars word-aligned for the same reasons.  */
205 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
206   (TREE_CODE (TYPE) == ARRAY_TYPE		\
207    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
208    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
209 
210 /* Set this nonzero if move instructions will actually fail to work
211    when given unaligned data.  */
212 #define STRICT_ALIGNMENT 1
213 
214 /* Standard register usage.  */
215 
216 /* Register allocation for our first guess
217 
218 	r0		stack pointer
219 	r1		scratch, target reg for xtrb?
220 	r2-r7		arguments.
221 	r8-r14		call saved
222 	r15		link register
223 	ap		arg pointer (doesn't really exist, always eliminated)
224 	c               c bit
225 	fp		frame pointer (doesn't really exist, always eliminated)
226 	x19		two control registers.  */
227 
228 /* Number of actual hardware registers.
229    The hardware registers are assigned numbers for the compiler
230    from 0 to just below FIRST_PSEUDO_REGISTER.
231    All registers that the compiler knows about must be given numbers,
232    even those that are not normally considered general registers.
233 
234    MCore has 16 integer registers and 2 control registers + the arg
235    pointer.  */
236 
237 #define FIRST_PSEUDO_REGISTER 20
238 
239 #define R1_REG  1	/* Where literals are forced.  */
240 #define LK_REG	15	/* Overloaded on general register.  */
241 #define AP_REG  16	/* Fake arg pointer register.  */
242 /* RBE: mcore.md depends on CC_REG being set to 17.  */
243 #define CC_REG	17	/* Can't name it C_REG.  */
244 #define FP_REG  18	/* Fake frame pointer register.  */
245 
246 /* Specify the registers used for certain standard purposes.
247    The values of these macros are register numbers.  */
248 
249 
250 #undef PC_REGNUM /* Define this if the program counter is overloaded on a register.  */
251 #define STACK_POINTER_REGNUM 0 /* Register to use for pushing function arguments.  */
252 #define FRAME_POINTER_REGNUM 8 /* When we need FP, use r8.  */
253 
254 /* The assembler's names for the registers.  RFP need not always be used as
255    the Real framepointer; it can also be used as a normal general register.
256    Note that the name `fp' is horribly misleading since `fp' is in fact only
257    the argument-and-return-context pointer.  */
258 #define REGISTER_NAMES  				\
259 {				                   	\
260   "sp", "r1", "r2",  "r3",  "r4",  "r5",  "r6",  "r7", 	\
261   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",	\
262   "apvirtual",  "c", "fpvirtual", "x19" \
263 }
264 
265 /* 1 for registers that have pervasive standard uses
266    and are not available for the register allocator.  */
267 #define FIXED_REGISTERS  \
268  /*  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r10 r11 r12 r13 r14 r15 ap  c  fp x19 */ \
269    { 1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1, 1, 1}
270 
271 /* 1 for registers not available across function calls.
272    These must include the FIXED_REGISTERS and also any
273    registers that can be used without being saved.
274    The latter must include the registers where values are returned
275    and the register where structure-value addresses are passed.
276    Aside from that, you can include as many other registers as you like.  */
277 
278 /* RBE: r15 {link register} not available across calls,
279    But we don't mark it that way here....  */
280 #define CALL_USED_REGISTERS \
281  /*  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r10 r11 r12 r13 r14 r15 ap  c   fp x19 */ \
282    { 1,  1,  1,  1,  1,  1,  1,  1,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  1, 1}
283 
284 /* The order in which register should be allocated.  */
285 #define REG_ALLOC_ORDER  \
286  /* r7  r6  r5  r4  r3  r2  r15 r14 r13 r12 r11 r10  r9  r8  r1  r0  ap  c   fp x19*/ \
287   {  7,  6,  5,  4,  3,  2,  15, 14, 13, 12, 11, 10,  9,  8,  1,  0, 16, 17, 18, 19}
288 
289 /* Return number of consecutive hard regs needed starting at reg REGNO
290    to hold something of mode MODE.
291    This is ordinarily the length in words of a value of mode MODE
292    but can be less for certain modes in special long registers.
293 
294    On the MCore regs are UNITS_PER_WORD bits wide; */
295 #define HARD_REGNO_NREGS(REGNO, MODE)  \
296    (((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
297 
298 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
299    We may keep double values in even registers.  */
300 #define HARD_REGNO_MODE_OK(REGNO, MODE)  \
301   ((TARGET_8ALIGN && GET_MODE_SIZE (MODE) > UNITS_PER_WORD) ? (((REGNO) & 1) == 0) : (REGNO < 18))
302 
303 /* Value is 1 if it is a good idea to tie two pseudo registers
304    when one has mode MODE1 and one has mode MODE2.
305    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
306    for any hard reg, then this must be 0 for correct output.  */
307 #define MODES_TIEABLE_P(MODE1, MODE2) \
308   ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
309 
310 /* Value should be nonzero if functions must have frame pointers.
311    Zero means the frame pointer need not be set up (and parms may be accessed
312    via the stack pointer) in functions that seem suitable.  */
313 #define FRAME_POINTER_REQUIRED	0
314 
315 /* Definitions for register eliminations.
316 
317    We have two registers that can be eliminated on the MCore.  First, the
318    frame pointer register can often be eliminated in favor of the stack
319    pointer register.  Secondly, the argument pointer register can always be
320    eliminated; it is replaced with either the stack or frame pointer.  */
321 
322 /* Base register for access to arguments of the function.  */
323 #define ARG_POINTER_REGNUM	16
324 
325 /* Register in which the static-chain is passed to a function.  */
326 #define STATIC_CHAIN_REGNUM	1
327 
328 /* This is an array of structures.  Each structure initializes one pair
329    of eliminable registers.  The "from" register number is given first,
330    followed by "to".  Eliminations of the same "from" register are listed
331    in order of preference.  */
332 #define ELIMINABLE_REGS				\
333 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
334  { ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},	\
335  { ARG_POINTER_REGNUM,   FRAME_POINTER_REGNUM},}
336 
337 /* Given FROM and TO register numbers, say whether this elimination
338    is allowed.  */
339 #define CAN_ELIMINATE(FROM, TO) \
340   (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
341 
342 /* Define the offset between two registers, one to be eliminated, and the other
343    its replacement, at the start of a routine.  */
344 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
345   OFFSET = mcore_initial_elimination_offset (FROM, TO)
346 
347 /* Define the classes of registers for register constraints in the
348    machine description.  Also define ranges of constants.
349 
350    One of the classes must always be named ALL_REGS and include all hard regs.
351    If there is more than one class, another class must be named NO_REGS
352    and contain no registers.
353 
354    The name GENERAL_REGS must be the name of a class (or an alias for
355    another name such as ALL_REGS).  This is the class of registers
356    that is allowed by "g" or "r" in a register constraint.
357    Also, registers outside this class are allocated only when
358    instructions express preferences for them.
359 
360    The classes must be numbered in nondecreasing order; that is,
361    a larger-numbered class must never be contained completely
362    in a smaller-numbered class.
363 
364    For any two classes, it is very desirable that there be another
365    class that represents their union.  */
366 
367 /* The MCore has only general registers. There are
368    also some special purpose registers: the T bit register, the
369    procedure Link and the Count Registers.  */
370 enum reg_class
371 {
372   NO_REGS,
373   ONLYR1_REGS,
374   LRW_REGS,
375   GENERAL_REGS,
376   C_REGS,
377   ALL_REGS,
378   LIM_REG_CLASSES
379 };
380 
381 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
382 
383 /* Give names of register classes as strings for dump file.  */
384 #define REG_CLASS_NAMES  \
385 {			\
386   "NO_REGS",		\
387   "ONLYR1_REGS",	\
388   "LRW_REGS",		\
389   "GENERAL_REGS",	\
390   "C_REGS",		\
391   "ALL_REGS",		\
392 }
393 
394 /* Define which registers fit in which classes.
395    This is an initializer for a vector of HARD_REG_SET
396    of length N_REG_CLASSES.  */
397 
398 /* ??? STACK_POINTER_REGNUM should be excluded from LRW_REGS.  */
399 #define REG_CLASS_CONTENTS      	\
400 {					\
401   {0x000000},  /* NO_REGS       */	\
402   {0x000002},  /* ONLYR1_REGS   */	\
403   {0x007FFE},  /* LRW_REGS      */	\
404   {0x01FFFF},  /* GENERAL_REGS  */	\
405   {0x020000},  /* C_REGS        */	\
406   {0x0FFFFF}   /* ALL_REGS      */	\
407 }
408 
409 /* The same information, inverted:
410    Return the class number of the smallest class containing
411    reg number REGNO.  This could be a conditional expression
412    or could index an array.  */
413 
414 extern const int regno_reg_class[FIRST_PSEUDO_REGISTER];
415 #define REGNO_REG_CLASS(REGNO) regno_reg_class[REGNO]
416 
417 /* When defined, the compiler allows registers explicitly used in the
418    rtl to be used as spill registers but prevents the compiler from
419    extending the lifetime of these registers.  */
420 #define SMALL_REGISTER_CLASSES 1
421 
422 /* The class value for index registers, and the one for base regs.  */
423 #define INDEX_REG_CLASS  NO_REGS
424 #define BASE_REG_CLASS	 GENERAL_REGS
425 
426 /* Get reg_class from a letter such as appears in the machine
427    description.  */
428 extern const enum reg_class reg_class_from_letter[];
429 
430 #define REG_CLASS_FROM_LETTER(C) \
431    (ISLOWER (C) ? reg_class_from_letter[(C) - 'a'] : NO_REGS)
432 
433 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
434    can be used to stand for particular ranges of immediate operands.
435    This macro defines what the ranges are.
436    C is the letter, and VALUE is a constant value.
437    Return 1 if VALUE is in the range specified by C.
438 	I: loadable by movi (0..127)
439 	J: arithmetic operand 1..32
440 	K: shift operand 0..31
441 	L: negative arithmetic operand -1..-32
442 	M: powers of two, constants loadable by bgeni
443 	N: powers of two minus 1, constants loadable by bmaski, including -1
444         O: allowed by cmov with two constants +/- 1 of each other
445         P: values we will generate 'inline' -- without an 'lrw'
446 
447    Others defined for use after reload
448         Q: constant 1
449 	R: a label
450         S: 0/1/2 cleared bits out of 32	[for bclri's]
451         T: 2 set bits out of 32	[for bseti's]
452         U: constant 0
453         xxxS: 1 cleared bit out of 32 (complement of power of 2). for bclri
454         xxxT: 2 cleared bits out of 32. for pairs of bclris.  */
455 #define CONST_OK_FOR_I(VALUE) (((int)(VALUE)) >= 0 && ((int)(VALUE)) <= 0x7f)
456 #define CONST_OK_FOR_J(VALUE) (((int)(VALUE)) >  0 && ((int)(VALUE)) <= 32)
457 #define CONST_OK_FOR_L(VALUE) (((int)(VALUE)) <  0 && ((int)(VALUE)) >= -32)
458 #define CONST_OK_FOR_K(VALUE) (((int)(VALUE)) >= 0 && ((int)(VALUE)) <= 31)
459 #define CONST_OK_FOR_M(VALUE) (exact_log2 (VALUE) >= 0)
460 #define CONST_OK_FOR_N(VALUE) (((int)(VALUE)) == -1 || exact_log2 ((VALUE) + 1) >= 0)
461 #define CONST_OK_FOR_O(VALUE) (CONST_OK_FOR_I(VALUE) || \
462                                CONST_OK_FOR_M(VALUE) || \
463                                CONST_OK_FOR_N(VALUE) || \
464                                CONST_OK_FOR_M((int)(VALUE) - 1) || \
465                                CONST_OK_FOR_N((int)(VALUE) + 1))
466 
467 #define CONST_OK_FOR_P(VALUE) (mcore_const_ok_for_inline (VALUE))
468 
469 #define CONST_OK_FOR_LETTER_P(VALUE, C)     \
470      ((C) == 'I' ? CONST_OK_FOR_I (VALUE)   \
471     : (C) == 'J' ? CONST_OK_FOR_J (VALUE)   \
472     : (C) == 'L' ? CONST_OK_FOR_L (VALUE)   \
473     : (C) == 'K' ? CONST_OK_FOR_K (VALUE)   \
474     : (C) == 'M' ? CONST_OK_FOR_M (VALUE)   \
475     : (C) == 'N' ? CONST_OK_FOR_N (VALUE)   \
476     : (C) == 'P' ? CONST_OK_FOR_P (VALUE)   \
477     : (C) == 'O' ? CONST_OK_FOR_O (VALUE)   \
478     : 0)
479 
480 /* Similar, but for floating constants, and defining letters G and H.
481    Here VALUE is the CONST_DOUBLE rtx itself.  */
482 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
483    ((C) == 'G' ? CONST_OK_FOR_I (CONST_DOUBLE_HIGH (VALUE)) \
484 	      && CONST_OK_FOR_I (CONST_DOUBLE_LOW (VALUE))  \
485     : 0)
486 
487 /* Letters in the range `Q' through `U' in a register constraint string
488    may be defined in a machine-dependent fashion to stand for arbitrary
489    operand types.  */
490 #define EXTRA_CONSTRAINT(OP, C)				\
491   ((C) == 'R' ? (GET_CODE (OP) == MEM			\
492 		 && GET_CODE (XEXP (OP, 0)) == LABEL_REF) \
493    : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
494                    && mcore_num_zeros (INTVAL (OP)) <= 2) \
495    : (C) == 'T' ? (GET_CODE (OP) == CONST_INT \
496                    && mcore_num_ones (INTVAL (OP)) == 2) \
497    : (C) == 'Q' ? (GET_CODE (OP) == CONST_INT \
498                    && INTVAL(OP) == 1) \
499    : (C) == 'U' ? (GET_CODE (OP) == CONST_INT \
500                    && INTVAL(OP) == 0) \
501    : 0)
502 
503 /* Given an rtx X being reloaded into a reg required to be
504    in class CLASS, return the class of reg to actually use.
505    In general this is just CLASS; but on some machines
506    in some cases it is preferable to use a more restrictive class.  */
507 #define PREFERRED_RELOAD_CLASS(X, CLASS) mcore_reload_class (X, CLASS)
508 
509 /* Return the register class of a scratch register needed to copy IN into
510    or out of a register in CLASS in MODE.  If it can be done directly,
511    NO_REGS is returned.  */
512 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
513   mcore_secondary_reload_class (CLASS, MODE, X)
514 
515 /* Return the maximum number of consecutive registers
516    needed to represent mode MODE in a register of class CLASS.
517 
518    On MCore this is the size of MODE in words.  */
519 #define CLASS_MAX_NREGS(CLASS, MODE)  \
520      (ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
521 
522 /* Stack layout; function entry, exit and calling.  */
523 
524 /* Define the number of register that can hold parameters.
525    These two macros are used only in other macro definitions below.  */
526 #define NPARM_REGS 6
527 #define FIRST_PARM_REG 2
528 #define FIRST_RET_REG 2
529 
530 /* Define this if pushing a word on the stack
531    makes the stack pointer a smaller address.  */
532 #define STACK_GROWS_DOWNWARD
533 
534 /* Offset within stack frame to start allocating local variables at.
535    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
536    first local allocated.  Otherwise, it is the offset to the BEGINNING
537    of the first local allocated.  */
538 #define STARTING_FRAME_OFFSET  0
539 
540 /* If defined, the maximum amount of space required for outgoing arguments
541    will be computed and placed into the variable
542    `current_function_outgoing_args_size'.  No space will be pushed
543    onto the stack for each call; instead, the function prologue should
544    increase the stack frame size by this amount.  */
545 #define ACCUMULATE_OUTGOING_ARGS 1
546 
547 /* Offset of first parameter from the argument pointer register value.  */
548 #define FIRST_PARM_OFFSET(FNDECL)  0
549 
550 /* Value is the number of byte of arguments automatically
551    popped when returning from a subroutine call.
552    FUNTYPE is the data type of the function (as a tree),
553    or for a library call it is an identifier node for the subroutine name.
554    SIZE is the number of bytes of arguments passed on the stack.
555 
556    On the MCore, the callee does not pop any of its arguments that were passed
557    on the stack.  */
558 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
559 
560 /* Define how to find the value returned by a function.
561    VALTYPE is the data type of the value (as a tree).
562    If the precise function being called is known, FUNC is its FUNCTION_DECL;
563    otherwise, FUNC is 0.  */
564 #define FUNCTION_VALUE(VALTYPE, FUNC)  mcore_function_value (VALTYPE, FUNC)
565 
566 /* Don't default to pcc-struct-return, because gcc is the only compiler, and
567    we want to retain compatibility with older gcc versions.  */
568 #define DEFAULT_PCC_STRUCT_RETURN 0
569 
570 /* Define how to find the value returned by a library function
571    assuming the value has mode MODE.  */
572 #define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, FIRST_RET_REG)
573 
574 /* 1 if N is a possible register number for a function value.
575    On the MCore, only r4 can return results.  */
576 #define FUNCTION_VALUE_REGNO_P(REGNO)  ((REGNO) == FIRST_RET_REG)
577 
578 /* 1 if N is a possible register number for function argument passing.  */
579 #define FUNCTION_ARG_REGNO_P(REGNO)  \
580   ((REGNO) >= FIRST_PARM_REG && (REGNO) < (NPARM_REGS + FIRST_PARM_REG))
581 
582 /* Define a data type for recording info about an argument list
583    during the scan of that argument list.  This data type should
584    hold all necessary information about the function itself
585    and about the args processed so far, enough to enable macros
586    such as FUNCTION_ARG to determine where the next arg should go.
587 
588    On MCore, this is a single integer, which is a number of words
589    of arguments scanned so far (including the invisible argument,
590    if any, which holds the structure-value-address).
591    Thus NARGREGS or more means all following args should go on the stack.  */
592 #define CUMULATIVE_ARGS  int
593 
594 #define ROUND_ADVANCE(SIZE)	\
595   ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
596 
597 /* Round a register number up to a proper boundary for an arg of mode
598    MODE.
599 
600    We round to an even reg for things larger than a word.  */
601 #define ROUND_REG(X, MODE) 				\
602   ((TARGET_8ALIGN 					\
603    && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) 	\
604    ? ((X) + ((X) & 1)) : (X))
605 
606 
607 /* Initialize a variable CUM of type CUMULATIVE_ARGS
608    for a call to a function whose data type is FNTYPE.
609    For a library call, FNTYPE is 0.
610 
611    On MCore, the offset always starts at 0: the first parm reg is always
612    the same reg.  */
613 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
614   ((CUM) = 0)
615 
616 /* Update the data in CUM to advance over an argument
617    of mode MODE and data type TYPE.
618    (TYPE is null for libcalls where that information may not be
619    available.)  */
620 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	   \
621  ((CUM) = (ROUND_REG ((CUM), (MODE))			   \
622 	   + ((NAMED) * mcore_num_arg_regs (MODE, TYPE)))) \
623 
624 /* Define where to put the arguments to a function.  */
625 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
626   mcore_function_arg (CUM, MODE, TYPE, NAMED)
627 
628 /* Call the function profiler with a given profile label.  */
629 #define FUNCTION_PROFILER(STREAM,LABELNO)		\
630 {							\
631   fprintf (STREAM, "	trap	1\n");			\
632   fprintf (STREAM, "	.align	2\n");			\
633   fprintf (STREAM, "	.long	LP%d\n", (LABELNO));	\
634 }
635 
636 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
637    the stack pointer does not matter.  The value is tested only in
638    functions that have frame pointers.
639    No definition is equivalent to always zero.  */
640 #define EXIT_IGNORE_STACK 0
641 
642 /* Output assembler code for a block containing the constant parts
643    of a trampoline, leaving space for the variable parts.
644 
645    On the MCore, the trampoline looks like:
646    	lrw	r1,  function
647      	lrw	r13, area
648    	jmp	r13
649    	or	r0, r0
650     .literals                                                */
651 #define TRAMPOLINE_TEMPLATE(FILE)  		\
652 {						\
653   fprintf ((FILE), "	.short	0x7102\n");	\
654   fprintf ((FILE), "	.short	0x7d02\n");	\
655   fprintf ((FILE), "	.short	0x00cd\n");     \
656   fprintf ((FILE), "	.short	0x1e00\n");	\
657   fprintf ((FILE), "	.long	0\n");		\
658   fprintf ((FILE), "	.long	0\n");		\
659 }
660 
661 /* Length in units of the trampoline for entering a nested function.  */
662 #define TRAMPOLINE_SIZE  12
663 
664 /* Alignment required for a trampoline in bits.  */
665 #define TRAMPOLINE_ALIGNMENT  32
666 
667 /* Emit RTL insns to initialize the variable parts of a trampoline.
668    FNADDR is an RTX for the address of the function's pure code.
669    CXT is an RTX for the static chain value for the function.  */
670 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)  \
671 {									\
672   emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 8)),	\
673 		  (CXT));						\
674   emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 12)),	\
675 		  (FNADDR));						\
676 }
677 
678 /* Macros to check register numbers against specific register classes.  */
679 
680 /* These assume that REGNO is a hard or pseudo reg number.
681    They give nonzero only if REGNO is a hard reg of the suitable class
682    or a pseudo reg currently allocated to a suitable hard reg.
683    Since they use reg_renumber, they are safe only once reg_renumber
684    has been allocated, which happens in local-alloc.c.  */
685 #define REGNO_OK_FOR_BASE_P(REGNO)  \
686   ((REGNO) < AP_REG || (unsigned) reg_renumber[(REGNO)] < AP_REG)
687 
688 #define REGNO_OK_FOR_INDEX_P(REGNO)   0
689 
690 /* Maximum number of registers that can appear in a valid memory
691    address.  */
692 #define MAX_REGS_PER_ADDRESS 1
693 
694 /* Recognize any constant value that is a valid address.  */
695 #define CONSTANT_ADDRESS_P(X) 	 (GET_CODE (X) == LABEL_REF)
696 
697 /* Nonzero if the constant value X is a legitimate general operand.
698    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
699 
700    On the MCore, allow anything but a double.  */
701 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE(X) != CONST_DOUBLE)
702 
703 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
704    and check its validity for a certain class.
705    We have two alternate definitions for each of them.
706    The usual definition accepts all pseudo regs; the other rejects
707    them unless they have been allocated suitable hard regs.
708    The symbol REG_OK_STRICT causes the latter definition to be used.  */
709 #ifndef REG_OK_STRICT
710 
711 /* Nonzero if X is a hard reg that can be used as a base reg
712    or if it is a pseudo reg.  */
713 #define REG_OK_FOR_BASE_P(X) \
714     	(REGNO (X) <= 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
715 
716 /* Nonzero if X is a hard reg that can be used as an index
717    or if it is a pseudo reg.  */
718 #define REG_OK_FOR_INDEX_P(X)	0
719 
720 #else
721 
722 /* Nonzero if X is a hard reg that can be used as a base reg.  */
723 #define REG_OK_FOR_BASE_P(X)	\
724 	REGNO_OK_FOR_BASE_P (REGNO (X))
725 
726 /* Nonzero if X is a hard reg that can be used as an index.  */
727 #define REG_OK_FOR_INDEX_P(X)	0
728 
729 #endif
730 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
731    that is a valid memory address for an instruction.
732    The MODE argument is the machine mode for the MEM expression
733    that wants to use this address.
734 
735    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.  */
736 #define BASE_REGISTER_RTX_P(X)  \
737   (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
738 
739 #define INDEX_REGISTER_RTX_P(X)  \
740   (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
741 
742 
743 /* Jump to LABEL if X is a valid address RTX.  This must also take
744    REG_OK_STRICT into account when deciding about valid registers, but it uses
745    the above macros so we are in luck.
746 
747    Allow  REG
748 	  REG+disp
749 
750    A legitimate index for a QI is 0..15, for HI is 0..30, for SI is 0..60,
751    and for DI is 0..56 because we use two SI loads, etc.  */
752 #define GO_IF_LEGITIMATE_INDEX(MODE, REGNO, OP, LABEL)			\
753   do									\
754     {									\
755       if (GET_CODE (OP) == CONST_INT) 					\
756         {								\
757 	  if (GET_MODE_SIZE (MODE) >= 4					\
758 	      && (((unsigned)INTVAL (OP)) % 4) == 0			\
759 	      &&  ((unsigned)INTVAL (OP)) <= 64 - GET_MODE_SIZE (MODE))	\
760 	    goto LABEL;							\
761 	  if (GET_MODE_SIZE (MODE) == 2 				\
762 	      && (((unsigned)INTVAL (OP)) % 2) == 0			\
763 	      &&  ((unsigned)INTVAL (OP)) <= 30)			\
764 	    goto LABEL;							\
765 	  if (GET_MODE_SIZE (MODE) == 1 				\
766 	      && ((unsigned)INTVAL (OP)) <= 15)				\
767 	    goto LABEL;							\
768         }								\
769     }									\
770   while (0)
771 
772 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)                  \
773 { 								  \
774   if (BASE_REGISTER_RTX_P (X))					  \
775     goto LABEL;							  \
776   else if (GET_CODE (X) == PLUS || GET_CODE (X) == LO_SUM) 	  \
777     {								  \
778       rtx xop0 = XEXP (X,0);					  \
779       rtx xop1 = XEXP (X,1);					  \
780       if (BASE_REGISTER_RTX_P (xop0))				  \
781 	GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
782       if (BASE_REGISTER_RTX_P (xop1))				  \
783 	GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
784     }								  \
785 }
786 
787 /* Go to LABEL if ADDR (a legitimate address expression)
788    has an effect that depends on the machine mode it is used for.  */
789 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
790 {									\
791   if (   GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC	\
792       || GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC)	\
793     goto LABEL;								\
794 }
795 
796 /* Specify the machine mode that this machine uses
797    for the index in the tablejump instruction.  */
798 #define CASE_VECTOR_MODE SImode
799 
800 /* 'char' is signed by default.  */
801 #define DEFAULT_SIGNED_CHAR  0
802 
803 /* The type of size_t unsigned int.  */
804 #define SIZE_TYPE "unsigned int"
805 
806 /* Max number of bytes we can move from memory to memory
807    in one reasonably fast instruction.  */
808 #define MOVE_MAX 4
809 
810 /* Define if operations between registers always perform the operation
811    on the full register even if a narrower mode is specified.  */
812 #define WORD_REGISTER_OPERATIONS
813 
814 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
815    will either zero-extend or sign-extend.  The value of this macro should
816    be the code that says which one of the two operations is implicitly
817    done, UNKNOWN if none.  */
818 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
819 
820 /* Nonzero if access to memory by bytes is slow and undesirable.  */
821 #define SLOW_BYTE_ACCESS TARGET_SLOW_BYTES
822 
823 /* Shift counts are truncated to 6-bits (0 to 63) instead of the expected
824    5-bits, so we can not define SHIFT_COUNT_TRUNCATED to true for this
825    target.  */
826 #define SHIFT_COUNT_TRUNCATED 0
827 
828 /* All integers have the same format so truncation is easy.  */
829 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC)  1
830 
831 /* Define this if addresses of constant functions
832    shouldn't be put through pseudo regs where they can be cse'd.
833    Desirable on machines where ordinary constants are expensive
834    but a CALL with constant address is cheap.  */
835 /* Why is this defined??? -- dac */
836 #define NO_FUNCTION_CSE 1
837 
838 /* The machine modes of pointers and functions.  */
839 #define Pmode          SImode
840 #define FUNCTION_MODE  Pmode
841 
842 /* Compute extra cost of moving data between one register class
843    and another.  All register moves are cheap.  */
844 #define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) 2
845 
846 #define WORD_REGISTER_OPERATIONS
847 
848 /* Assembler output control.  */
849 #define ASM_COMMENT_START "\t//"
850 
851 #define ASM_APP_ON	"// inline asm begin\n"
852 #define ASM_APP_OFF	"// inline asm end\n"
853 
854 #define FILE_ASM_OP     "\t.file\n"
855 
856 /* Switch to the text or data segment.  */
857 #define TEXT_SECTION_ASM_OP  "\t.text"
858 #define DATA_SECTION_ASM_OP  "\t.data"
859 
860 #undef  EXTRA_SECTIONS
861 #define EXTRA_SECTIONS SUBTARGET_EXTRA_SECTIONS
862 
863 #undef  EXTRA_SECTION_FUNCTIONS
864 #define EXTRA_SECTION_FUNCTIONS			\
865   SUBTARGET_EXTRA_SECTION_FUNCTIONS		\
866   SWITCH_SECTION_FUNCTION
867 
868 /* Switch to SECTION (an `enum in_section').
869 
870    ??? This facility should be provided by GCC proper.
871    The problem is that we want to temporarily switch sections in
872    ASM_DECLARE_OBJECT_NAME and then switch back to the original section
873    afterwards.  */
874 #define SWITCH_SECTION_FUNCTION					\
875 static void switch_to_section (enum in_section, tree);		\
876 static void							\
877 switch_to_section (enum in_section section, tree decl)		\
878 {								\
879   switch (section)						\
880     {								\
881       case in_text: text_section (); break;			\
882       case in_unlikely_executed_text: unlikely_text_section (); break;   \
883       case in_data: data_section (); break;			\
884       case in_named: named_section (decl, NULL, 0); break;	\
885       SUBTARGET_SWITCH_SECTIONS      				\
886       default: gcc_unreachable (); 				\
887     }								\
888 }
889 
890 /* Switch into a generic section.  */
891 #undef TARGET_ASM_NAMED_SECTION
892 #define TARGET_ASM_NAMED_SECTION  mcore_asm_named_section
893 
894 /* This is how to output an insn to push a register on the stack.
895    It need not be very fast code.  */
896 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
897   fprintf (FILE, "\tsubi\t %s,%d\n\tstw\t %s,(%s)\n",	\
898 	   reg_names[STACK_POINTER_REGNUM],		\
899 	   (STACK_BOUNDARY / BITS_PER_UNIT),		\
900 	   reg_names[REGNO],				\
901 	   reg_names[STACK_POINTER_REGNUM])
902 
903 /* Length in instructions of the code output by ASM_OUTPUT_REG_PUSH.  */
904 #define REG_PUSH_LENGTH 2
905 
906 /* This is how to output an insn to pop a register from the stack.  */
907 #define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
908   fprintf (FILE, "\tldw\t %s,(%s)\n\taddi\t %s,%d\n",	\
909 	   reg_names[REGNO],				\
910 	   reg_names[STACK_POINTER_REGNUM],		\
911 	   reg_names[STACK_POINTER_REGNUM],		\
912 	   (STACK_BOUNDARY / BITS_PER_UNIT))
913 
914 
915 /* Output a reference to a label.  */
916 #undef  ASM_OUTPUT_LABELREF
917 #define ASM_OUTPUT_LABELREF(STREAM, NAME)  \
918   fprintf (STREAM, "%s%s", USER_LABEL_PREFIX, \
919 	   (* targetm.strip_name_encoding) (NAME))
920 
921 /* This is how to output an assembler line
922    that says to advance the location counter
923    to a multiple of 2**LOG bytes.  */
924 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
925   if ((LOG) != 0)			\
926     fprintf (FILE, "\t.align\t%d\n", LOG)
927 
928 #ifndef ASM_DECLARE_RESULT
929 #define ASM_DECLARE_RESULT(FILE, RESULT)
930 #endif
931 
932 #define MULTIPLE_SYMBOL_SPACES 1
933 
934 #define SUPPORTS_ONE_ONLY 1
935 
936 /* A pair of macros to output things for the callgraph data.
937    VALUE means (to the tools that reads this info later):
938   	0 a call from src to dst
939   	1 the call is special (e.g. dst is "unknown" or "alloca")
940   	2 the call is special (e.g., the src is a table instead of routine)
941 
942    Frame sizes are augmented with timestamps to help later tools
943    differentiate between static entities with same names in different
944    files.  */
945 extern long mcore_current_compilation_timestamp;
946 #define	ASM_OUTPUT_CG_NODE(FILE,SRCNAME,VALUE)				\
947   do									\
948     {									\
949       if (mcore_current_compilation_timestamp == 0)			\
950         mcore_current_compilation_timestamp = time (0);			\
951       fprintf ((FILE),"\t.equ\t__$frame$size$_%s_$_%08lx,%d\n",		\
952              (SRCNAME), mcore_current_compilation_timestamp, (VALUE));	\
953     }									\
954   while (0)
955 
956 #define	ASM_OUTPUT_CG_EDGE(FILE,SRCNAME,DSTNAME,VALUE)		\
957   do								\
958     {								\
959       fprintf ((FILE),"\t.equ\t__$function$call$_%s_$_%s,%d\n",	\
960              (SRCNAME), (DSTNAME), (VALUE));			\
961     }								\
962   while (0)
963 
964 /* Globalizing directive for a label.  */
965 #define GLOBAL_ASM_OP "\t.export\t"
966 
967 /* The prefix to add to user-visible assembler symbols.  */
968 #undef  USER_LABEL_PREFIX
969 #define USER_LABEL_PREFIX ""
970 
971 /* Make an internal label into a string.  */
972 #undef  ASM_GENERATE_INTERNAL_LABEL
973 #define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM)  \
974   sprintf (STRING, "*.%s%ld", PREFIX, (long) NUM)
975 
976 /* Jump tables must be 32 bit aligned.  */
977 #undef  ASM_OUTPUT_CASE_LABEL
978 #define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) \
979   fprintf (STREAM, "\t.align 2\n.%s%d:\n", PREFIX, NUM);
980 
981 /* Output a relative address. Not needed since jump tables are absolute
982    but we must define it anyway.  */
983 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL)  \
984   fputs ("- - - ASM_OUTPUT_ADDR_DIFF_ELT called!\n", STREAM)
985 
986 /* Output an element of a dispatch table.  */
987 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE)  \
988     fprintf (STREAM, "\t.long\t.L%d\n", VALUE)
989 
990 /* Output various types of constants.  */
991 
992 /* This is how to output an assembler line
993    that says to advance the location counter by SIZE bytes.  */
994 #undef  ASM_OUTPUT_SKIP
995 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
996   fprintf (FILE, "\t.fill %d, 1\n", (int)(SIZE))
997 
998 /* This says how to output an assembler line
999    to define a global common symbol, with alignment information.  */
1000 /* XXX - for now we ignore the alignment.  */
1001 #undef  ASM_OUTPUT_ALIGNED_COMMON
1002 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN)	\
1003   do								\
1004     {								\
1005       if (mcore_dllexport_name_p (NAME))			\
1006 	MCORE_EXPORT_NAME (FILE, NAME)				\
1007       if (! mcore_dllimport_name_p (NAME))			\
1008         {							\
1009           fputs ("\t.comm\t", FILE);				\
1010           assemble_name (FILE, NAME);				\
1011           fprintf (FILE, ",%lu\n", (unsigned long)(SIZE));	\
1012         }							\
1013     }								\
1014   while (0)
1015 
1016 /* This says how to output an assembler line
1017    to define a local common symbol....  */
1018 #undef  ASM_OUTPUT_LOCAL
1019 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)	\
1020   (fputs ("\t.lcomm\t", FILE),				\
1021   assemble_name (FILE, NAME),				\
1022   fprintf (FILE, ",%d\n", (int)SIZE))
1023 
1024 /* ... and how to define a local common symbol whose alignment
1025    we wish to specify.  ALIGN comes in as bits, we have to turn
1026    it into bytes.  */
1027 #undef  ASM_OUTPUT_ALIGNED_LOCAL
1028 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN)		\
1029   do									\
1030     {									\
1031       fputs ("\t.bss\t", (FILE));					\
1032       assemble_name ((FILE), (NAME));					\
1033       fprintf ((FILE), ",%d,%d\n", (int)(SIZE), (ALIGN) / BITS_PER_UNIT);\
1034     }									\
1035   while (0)
1036 
1037 /* Print operand X (an rtx) in assembler syntax to file FILE.
1038    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1039    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1040 #define PRINT_OPERAND(STREAM, X, CODE)  mcore_print_operand (STREAM, X, CODE)
1041 
1042 /* Print a memory address as an operand to reference that memory location.  */
1043 #define PRINT_OPERAND_ADDRESS(STREAM,X)  mcore_print_operand_address (STREAM, X)
1044 
1045 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1046   ((CHAR)=='.' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '!')
1047 
1048 #endif /* ! GCC_MCORE_H */
1049