1 /**************************************************************************//**
2  * @file     cmsis_armcc_V6.h
3  * @brief    CMSIS Cortex-M Core Function/Instruction Header File
4  * @version  V4.30
5  * @date     20. October 2015
6  ******************************************************************************/
7 /* Copyright (c) 2009 - 2015 ARM LIMITED
8 
9    All rights reserved.
10    Redistribution and use in source and binary forms, with or without
11    modification, are permitted provided that the following conditions are met:
12    - Redistributions of source code must retain the above copyright
13      notice, this list of conditions and the following disclaimer.
14    - Redistributions in binary form must reproduce the above copyright
15      notice, this list of conditions and the following disclaimer in the
16      documentation and/or other materials provided with the distribution.
17    - Neither the name of ARM nor the names of its contributors may be used
18      to endorse or promote products derived from this software without
19      specific prior written permission.
20    *
21    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24    ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
25    LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28    INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29    CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30    ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31    POSSIBILITY OF SUCH DAMAGE.
32    ---------------------------------------------------------------------------*/
33 
34 
35 #ifndef __CMSIS_ARMCC_V6_H
36 #define __CMSIS_ARMCC_V6_H
37 
38 
39 /* ###########################  Core Function Access  ########################### */
40 /** \ingroup  CMSIS_Core_FunctionInterface
41     \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
42   @{
43  */
44 
45 /**
46   \brief   Enable IRQ Interrupts
47   \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
48            Can only be executed in Privileged modes.
49  */
__enable_irq(void)50 __attribute__((always_inline)) __STATIC_INLINE void __enable_irq(void)
51 {
52   __ASM volatile ("cpsie i" : : : "memory");
53 }
54 
55 
56 /**
57   \brief   Disable IRQ Interrupts
58   \details Disables IRQ interrupts by setting the I-bit in the CPSR.
59            Can only be executed in Privileged modes.
60  */
__disable_irq(void)61 __attribute__((always_inline)) __STATIC_INLINE void __disable_irq(void)
62 {
63   __ASM volatile ("cpsid i" : : : "memory");
64 }
65 
66 
67 /**
68   \brief   Get Control Register
69   \details Returns the content of the Control Register.
70   \return               Control Register value
71  */
__get_CONTROL(void)72 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_CONTROL(void)
73 {
74   uint32_t result;
75 
76   __ASM volatile ("MRS %0, control" : "=r" (result) );
77   return(result);
78 }
79 
80 
81 #if  (__ARM_FEATURE_CMSE == 3U)
82 /**
83   \brief   Get Control Register (non-secure)
84   \details Returns the content of the non-secure Control Register when in secure mode.
85   \return               non-secure Control Register value
86  */
__TZ_get_CONTROL_NS(void)87 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_CONTROL_NS(void)
88 {
89   uint32_t result;
90 
91   __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
92   return(result);
93 }
94 #endif
95 
96 
97 /**
98   \brief   Set Control Register
99   \details Writes the given value to the Control Register.
100   \param [in]    control  Control Register value to set
101  */
__set_CONTROL(uint32_t control)102 __attribute__((always_inline)) __STATIC_INLINE void __set_CONTROL(uint32_t control)
103 {
104   __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
105 }
106 
107 
108 #if  (__ARM_FEATURE_CMSE == 3U)
109 /**
110   \brief   Set Control Register (non-secure)
111   \details Writes the given value to the non-secure Control Register when in secure state.
112   \param [in]    control  Control Register value to set
113  */
__TZ_set_CONTROL_NS(uint32_t control)114 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_CONTROL_NS(uint32_t control)
115 {
116   __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
117 }
118 #endif
119 
120 
121 /**
122   \brief   Get IPSR Register
123   \details Returns the content of the IPSR Register.
124   \return               IPSR Register value
125  */
__get_IPSR(void)126 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_IPSR(void)
127 {
128   uint32_t result;
129 
130   __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
131   return(result);
132 }
133 
134 
135 #if  (__ARM_FEATURE_CMSE == 3U)
136 /**
137   \brief   Get IPSR Register (non-secure)
138   \details Returns the content of the non-secure IPSR Register when in secure state.
139   \return               IPSR Register value
140  */
__TZ_get_IPSR_NS(void)141 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_IPSR_NS(void)
142 {
143   uint32_t result;
144 
145   __ASM volatile ("MRS %0, ipsr_ns" : "=r" (result) );
146   return(result);
147 }
148 #endif
149 
150 
151 /**
152   \brief   Get APSR Register
153   \details Returns the content of the APSR Register.
154   \return               APSR Register value
155  */
__get_APSR(void)156 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_APSR(void)
157 {
158   uint32_t result;
159 
160   __ASM volatile ("MRS %0, apsr" : "=r" (result) );
161   return(result);
162 }
163 
164 
165 #if  (__ARM_FEATURE_CMSE == 3U)
166 /**
167   \brief   Get APSR Register (non-secure)
168   \details Returns the content of the non-secure APSR Register when in secure state.
169   \return               APSR Register value
170  */
__TZ_get_APSR_NS(void)171 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_APSR_NS(void)
172 {
173   uint32_t result;
174 
175   __ASM volatile ("MRS %0, apsr_ns" : "=r" (result) );
176   return(result);
177 }
178 #endif
179 
180 
181 /**
182   \brief   Get xPSR Register
183   \details Returns the content of the xPSR Register.
184   \return               xPSR Register value
185  */
__get_xPSR(void)186 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_xPSR(void)
187 {
188   uint32_t result;
189 
190   __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
191   return(result);
192 }
193 
194 
195 #if  (__ARM_FEATURE_CMSE == 3U)
196 /**
197   \brief   Get xPSR Register (non-secure)
198   \details Returns the content of the non-secure xPSR Register when in secure state.
199   \return               xPSR Register value
200  */
__TZ_get_xPSR_NS(void)201 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_xPSR_NS(void)
202 {
203   uint32_t result;
204 
205   __ASM volatile ("MRS %0, xpsr_ns" : "=r" (result) );
206   return(result);
207 }
208 #endif
209 
210 
211 /**
212   \brief   Get Process Stack Pointer
213   \details Returns the current value of the Process Stack Pointer (PSP).
214   \return               PSP Register value
215  */
__get_PSP(void)216 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSP(void)
217 {
218   register uint32_t result;
219 
220   __ASM volatile ("MRS %0, psp"  : "=r" (result) );
221   return(result);
222 }
223 
224 
225 #if  (__ARM_FEATURE_CMSE == 3U)
226 /**
227   \brief   Get Process Stack Pointer (non-secure)
228   \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
229   \return               PSP Register value
230  */
__TZ_get_PSP_NS(void)231 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PSP_NS(void)
232 {
233   register uint32_t result;
234 
235   __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
236   return(result);
237 }
238 #endif
239 
240 
241 /**
242   \brief   Set Process Stack Pointer
243   \details Assigns the given value to the Process Stack Pointer (PSP).
244   \param [in]    topOfProcStack  Process Stack Pointer value to set
245  */
__set_PSP(uint32_t topOfProcStack)246 __attribute__((always_inline)) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
247 {
248   __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : "sp");
249 }
250 
251 
252 #if  (__ARM_FEATURE_CMSE == 3U)
253 /**
254   \brief   Set Process Stack Pointer (non-secure)
255   \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
256   \param [in]    topOfProcStack  Process Stack Pointer value to set
257  */
__TZ_set_PSP_NS(uint32_t topOfProcStack)258 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
259 {
260   __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : "sp");
261 }
262 #endif
263 
264 
265 /**
266   \brief   Get Main Stack Pointer
267   \details Returns the current value of the Main Stack Pointer (MSP).
268   \return               MSP Register value
269  */
__get_MSP(void)270 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSP(void)
271 {
272   register uint32_t result;
273 
274   __ASM volatile ("MRS %0, msp" : "=r" (result) );
275   return(result);
276 }
277 
278 
279 #if  (__ARM_FEATURE_CMSE == 3U)
280 /**
281   \brief   Get Main Stack Pointer (non-secure)
282   \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
283   \return               MSP Register value
284  */
__TZ_get_MSP_NS(void)285 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_MSP_NS(void)
286 {
287   register uint32_t result;
288 
289   __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
290   return(result);
291 }
292 #endif
293 
294 
295 /**
296   \brief   Set Main Stack Pointer
297   \details Assigns the given value to the Main Stack Pointer (MSP).
298   \param [in]    topOfMainStack  Main Stack Pointer value to set
299  */
__set_MSP(uint32_t topOfMainStack)300 __attribute__((always_inline)) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
301 {
302   __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : "sp");
303 }
304 
305 
306 #if  (__ARM_FEATURE_CMSE == 3U)
307 /**
308   \brief   Set Main Stack Pointer (non-secure)
309   \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
310   \param [in]    topOfMainStack  Main Stack Pointer value to set
311  */
__TZ_set_MSP_NS(uint32_t topOfMainStack)312 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
313 {
314   __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : "sp");
315 }
316 #endif
317 
318 
319 /**
320   \brief   Get Priority Mask
321   \details Returns the current state of the priority mask bit from the Priority Mask Register.
322   \return               Priority Mask value
323  */
__get_PRIMASK(void)324 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PRIMASK(void)
325 {
326   uint32_t result;
327 
328   __ASM volatile ("MRS %0, primask" : "=r" (result) );
329   return(result);
330 }
331 
332 
333 #if  (__ARM_FEATURE_CMSE == 3U)
334 /**
335   \brief   Get Priority Mask (non-secure)
336   \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
337   \return               Priority Mask value
338  */
__TZ_get_PRIMASK_NS(void)339 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PRIMASK_NS(void)
340 {
341   uint32_t result;
342 
343   __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
344   return(result);
345 }
346 #endif
347 
348 
349 /**
350   \brief   Set Priority Mask
351   \details Assigns the given value to the Priority Mask Register.
352   \param [in]    priMask  Priority Mask
353  */
__set_PRIMASK(uint32_t priMask)354 __attribute__((always_inline)) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
355 {
356   __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
357 }
358 
359 
360 #if  (__ARM_FEATURE_CMSE == 3U)
361 /**
362   \brief   Set Priority Mask (non-secure)
363   \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
364   \param [in]    priMask  Priority Mask
365  */
__TZ_set_PRIMASK_NS(uint32_t priMask)366 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
367 {
368   __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
369 }
370 #endif
371 
372 
373 #if ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U))  /* ToDo:  ARMCC_V6: check if this is ok for cortex >=3 */
374 
375 /**
376   \brief   Enable FIQ
377   \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
378            Can only be executed in Privileged modes.
379  */
__enable_fault_irq(void)380 __attribute__((always_inline)) __STATIC_INLINE void __enable_fault_irq(void)
381 {
382   __ASM volatile ("cpsie f" : : : "memory");
383 }
384 
385 
386 /**
387   \brief   Disable FIQ
388   \details Disables FIQ interrupts by setting the F-bit in the CPSR.
389            Can only be executed in Privileged modes.
390  */
__disable_fault_irq(void)391 __attribute__((always_inline)) __STATIC_INLINE void __disable_fault_irq(void)
392 {
393   __ASM volatile ("cpsid f" : : : "memory");
394 }
395 
396 
397 /**
398   \brief   Get Base Priority
399   \details Returns the current value of the Base Priority register.
400   \return               Base Priority register value
401  */
__get_BASEPRI(void)402 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_BASEPRI(void)
403 {
404   uint32_t result;
405 
406   __ASM volatile ("MRS %0, basepri" : "=r" (result) );
407   return(result);
408 }
409 
410 
411 #if  (__ARM_FEATURE_CMSE == 3U)
412 /**
413   \brief   Get Base Priority (non-secure)
414   \details Returns the current value of the non-secure Base Priority register when in secure state.
415   \return               Base Priority register value
416  */
__TZ_get_BASEPRI_NS(void)417 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_BASEPRI_NS(void)
418 {
419   uint32_t result;
420 
421   __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
422   return(result);
423 }
424 #endif
425 
426 
427 /**
428   \brief   Set Base Priority
429   \details Assigns the given value to the Base Priority register.
430   \param [in]    basePri  Base Priority value to set
431  */
__set_BASEPRI(uint32_t value)432 __attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
433 {
434   __ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");
435 }
436 
437 
438 #if  (__ARM_FEATURE_CMSE == 3U)
439 /**
440   \brief   Set Base Priority (non-secure)
441   \details Assigns the given value to the non-secure Base Priority register when in secure state.
442   \param [in]    basePri  Base Priority value to set
443  */
__TZ_set_BASEPRI_NS(uint32_t value)444 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_BASEPRI_NS(uint32_t value)
445 {
446   __ASM volatile ("MSR basepri_ns, %0" : : "r" (value) : "memory");
447 }
448 #endif
449 
450 
451 /**
452   \brief   Set Base Priority with condition
453   \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
454            or the new value increases the BASEPRI priority level.
455   \param [in]    basePri  Base Priority value to set
456  */
__set_BASEPRI_MAX(uint32_t value)457 __attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value)
458 {
459   __ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory");
460 }
461 
462 
463 #if  (__ARM_FEATURE_CMSE == 3U)
464 /**
465   \brief   Set Base Priority with condition (non_secure)
466   \details Assigns the given value to the non-secure Base Priority register when in secure state only if BASEPRI masking is disabled,
467 	       or the new value increases the BASEPRI priority level.
468   \param [in]    basePri  Base Priority value to set
469  */
__TZ_set_BASEPRI_MAX_NS(uint32_t value)470 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_BASEPRI_MAX_NS(uint32_t value)
471 {
472   __ASM volatile ("MSR basepri_max_ns, %0" : : "r" (value) : "memory");
473 }
474 #endif
475 
476 
477 /**
478   \brief   Get Fault Mask
479   \details Returns the current value of the Fault Mask register.
480   \return               Fault Mask register value
481  */
__get_FAULTMASK(void)482 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
483 {
484   uint32_t result;
485 
486   __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
487   return(result);
488 }
489 
490 
491 #if  (__ARM_FEATURE_CMSE == 3U)
492 /**
493   \brief   Get Fault Mask (non-secure)
494   \details Returns the current value of the non-secure Fault Mask register when in secure state.
495   \return               Fault Mask register value
496  */
__TZ_get_FAULTMASK_NS(void)497 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_FAULTMASK_NS(void)
498 {
499   uint32_t result;
500 
501   __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
502   return(result);
503 }
504 #endif
505 
506 
507 /**
508   \brief   Set Fault Mask
509   \details Assigns the given value to the Fault Mask register.
510   \param [in]    faultMask  Fault Mask value to set
511  */
__set_FAULTMASK(uint32_t faultMask)512 __attribute__((always_inline)) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
513 {
514   __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
515 }
516 
517 
518 #if  (__ARM_FEATURE_CMSE == 3U)
519 /**
520   \brief   Set Fault Mask (non-secure)
521   \details Assigns the given value to the non-secure Fault Mask register when in secure state.
522   \param [in]    faultMask  Fault Mask value to set
523  */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)524 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
525 {
526   __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
527 }
528 #endif
529 
530 
531 #endif /* ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_8M__ == 1U)) */
532 
533 
534 #if (__ARM_ARCH_8M__ == 1U)
535 
536 /**
537   \brief   Get Process Stack Pointer Limit
538   \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
539   \return               PSPLIM Register value
540  */
__get_PSPLIM(void)541 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSPLIM(void)
542 {
543   register uint32_t result;
544 
545   __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
546   return(result);
547 }
548 
549 
550 #if  (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M')     /* ToDo:  ARMCC_V6: check predefined macro for mainline */
551 /**
552   \brief   Get Process Stack Pointer Limit (non-secure)
553   \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
554   \return               PSPLIM Register value
555  */
__TZ_get_PSPLIM_NS(void)556 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PSPLIM_NS(void)
557 {
558   register uint32_t result;
559 
560   __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
561   return(result);
562 }
563 #endif
564 
565 
566 /**
567   \brief   Set Process Stack Pointer Limit
568   \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
569   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
570  */
__set_PSPLIM(uint32_t ProcStackPtrLimit)571 __attribute__((always_inline)) __STATIC_INLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
572 {
573   __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
574 }
575 
576 
577 #if  (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M')     /* ToDo:  ARMCC_V6: check predefined macro for mainline */
578 /**
579   \brief   Set Process Stack Pointer (non-secure)
580   \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
581   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
582  */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)583 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
584 {
585   __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
586 }
587 #endif
588 
589 
590 /**
591   \brief   Get Main Stack Pointer Limit
592   \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
593   \return               MSPLIM Register value
594  */
__get_MSPLIM(void)595 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSPLIM(void)
596 {
597   register uint32_t result;
598 
599   __ASM volatile ("MRS %0, msplim" : "=r" (result) );
600 
601   return(result);
602 }
603 
604 
605 #if  (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M')     /* ToDo:  ARMCC_V6: check predefined macro for mainline */
606 /**
607   \brief   Get Main Stack Pointer Limit (non-secure)
608   \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
609   \return               MSPLIM Register value
610  */
__TZ_get_MSPLIM_NS(void)611 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_MSPLIM_NS(void)
612 {
613   register uint32_t result;
614 
615   __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
616   return(result);
617 }
618 #endif
619 
620 
621 /**
622   \brief   Set Main Stack Pointer Limit
623   \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
624   \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
625  */
__set_MSPLIM(uint32_t MainStackPtrLimit)626 __attribute__((always_inline)) __STATIC_INLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
627 {
628   __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
629 }
630 
631 
632 #if  (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M')     /* ToDo:  ARMCC_V6: check predefined macro for mainline */
633 /**
634   \brief   Set Main Stack Pointer Limit (non-secure)
635   \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
636   \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
637  */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)638 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
639 {
640   __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
641 }
642 #endif
643 
644 #endif /* (__ARM_ARCH_8M__ == 1U) */
645 
646 
647 #if ((__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U))  /* ToDo:  ARMCC_V6: check if this is ok for cortex >=4 */
648 
649 /**
650   \brief   Get FPSCR
651   \details eturns the current value of the Floating Point Status/Control register.
652   \return               Floating Point Status/Control register value
653  */
654 #define __get_FPSCR      __builtin_arm_get_fpscr
655 #if 0
656 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FPSCR(void)
657 {
658 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
659   uint32_t result;
660 
661   __ASM volatile ("");                                 /* Empty asm statement works as a scheduling barrier */
662   __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
663   __ASM volatile ("");
664   return(result);
665 #else
666    return(0);
667 #endif
668 }
669 #endif
670 
671 #if  (__ARM_FEATURE_CMSE == 3U)
672 /**
673   \brief   Get FPSCR (non-secure)
674   \details Returns the current value of the non-secure Floating Point Status/Control register when in secure state.
675   \return               Floating Point Status/Control register value
676  */
__TZ_get_FPSCR_NS(void)677 __attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_FPSCR_NS(void)
678 {
679 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
680   uint32_t result;
681 
682   __ASM volatile ("");                                 /* Empty asm statement works as a scheduling barrier */
683   __ASM volatile ("VMRS %0, fpscr_ns" : "=r" (result) );
684   __ASM volatile ("");
685   return(result);
686 #else
687    return(0);
688 #endif
689 }
690 #endif
691 
692 
693 /**
694   \brief   Set FPSCR
695   \details Assigns the given value to the Floating Point Status/Control register.
696   \param [in]    fpscr  Floating Point Status/Control value to set
697  */
698 #define __set_FPSCR      __builtin_arm_set_fpscr
699 #if 0
700 __attribute__((always_inline)) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
701 {
702 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
703   __ASM volatile ("");                                 /* Empty asm statement works as a scheduling barrier */
704   __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");
705   __ASM volatile ("");
706 #endif
707 }
708 #endif
709 
710 #if  (__ARM_FEATURE_CMSE == 3U)
711 /**
712   \brief   Set FPSCR (non-secure)
713   \details Assigns the given value to the non-secure Floating Point Status/Control register when in secure state.
714   \param [in]    fpscr  Floating Point Status/Control value to set
715  */
__TZ_set_FPSCR_NS(uint32_t fpscr)716 __attribute__((always_inline)) __STATIC_INLINE void __TZ_set_FPSCR_NS(uint32_t fpscr)
717 {
718 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
719   __ASM volatile ("");                                 /* Empty asm statement works as a scheduling barrier */
720   __ASM volatile ("VMSR fpscr_ns, %0" : : "r" (fpscr) : "vfpcc");
721   __ASM volatile ("");
722 #endif
723 }
724 #endif
725 
726 #endif /* ((__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U)) */
727 
728 
729 
730 /*@} end of CMSIS_Core_RegAccFunctions */
731 
732 
733 /* ##########################  Core Instruction Access  ######################### */
734 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
735   Access to dedicated instructions
736   @{
737 */
738 
739 /* Define macros for porting to both thumb1 and thumb2.
740  * For thumb1, use low register (r0-r7), specified by constraint "l"
741  * Otherwise, use general registers, specified by constraint "r" */
742 #if defined (__thumb__) && !defined (__thumb2__)
743 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
744 #define __CMSIS_GCC_USE_REG(r) "l" (r)
745 #else
746 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
747 #define __CMSIS_GCC_USE_REG(r) "r" (r)
748 #endif
749 
750 /**
751   \brief   No Operation
752   \details No Operation does nothing. This instruction can be used for code alignment purposes.
753  */
754 #define __NOP          __builtin_arm_nop
755 
756 /**
757   \brief   Wait For Interrupt
758   \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
759  */
760 #define __WFI          __builtin_arm_wfi
761 
762 
763 /**
764   \brief   Wait For Event
765   \details Wait For Event is a hint instruction that permits the processor to enter
766            a low-power state until one of a number of events occurs.
767  */
768 #define __WFE          __builtin_arm_wfe
769 
770 
771 /**
772   \brief   Send Event
773   \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
774  */
775 #define __SEV          __builtin_arm_sev
776 
777 
778 /**
779   \brief   Instruction Synchronization Barrier
780   \details Instruction Synchronization Barrier flushes the pipeline in the processor,
781            so that all instructions following the ISB are fetched from cache or memory,
782            after the instruction has been completed.
783  */
784 #define __ISB()        __builtin_arm_isb(0xF);
785 
786 /**
787   \brief   Data Synchronization Barrier
788   \details Acts as a special kind of Data Memory Barrier.
789            It completes when all explicit memory accesses before this instruction complete.
790  */
791 #define __DSB()        __builtin_arm_dsb(0xF);
792 
793 
794 /**
795   \brief   Data Memory Barrier
796   \details Ensures the apparent order of the explicit memory operations before
797            and after the instruction, without ensuring their completion.
798  */
799 #define __DMB()        __builtin_arm_dmb(0xF);
800 
801 
802 /**
803   \brief   Reverse byte order (32 bit)
804   \details Reverses the byte order in integer value.
805   \param [in]    value  Value to reverse
806   \return               Reversed value
807  */
808 #define __REV          __builtin_bswap32
809 
810 
811 /**
812   \brief   Reverse byte order (16 bit)
813   \details Reverses the byte order in two unsigned short values.
814   \param [in]    value  Value to reverse
815   \return               Reversed value
816  */
817 #define __REV16          __builtin_bswap16                           /* ToDo:  ARMCC_V6: check if __builtin_bswap16 could be used */
818 #if 0
819 __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
820 {
821   uint32_t result;
822 
823   __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
824   return(result);
825 }
826 #endif
827 
828 
829 /**
830   \brief   Reverse byte order in signed short value
831   \details Reverses the byte order in a signed short value with sign extension to integer.
832   \param [in]    value  Value to reverse
833   \return               Reversed value
834  */
835                                                           /* ToDo:  ARMCC_V6: check if __builtin_bswap16 could be used */
__REVSH(int32_t value)836 __attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
837 {
838   int32_t result;
839 
840   __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
841   return(result);
842 }
843 
844 
845 /**
846   \brief   Rotate Right in unsigned value (32 bit)
847   \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
848   \param [in]    op1  Value to rotate
849   \param [in]    op2  Number of Bits to rotate
850   \return               Rotated value
851  */
__ROR(uint32_t op1,uint32_t op2)852 __attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
853 {
854   return (op1 >> op2) | (op1 << (32U - op2));
855 }
856 
857 
858 /**
859   \brief   Breakpoint
860   \details Causes the processor to enter Debug state.
861             Debug tools can use this to investigate system state when the instruction at a particular address is reached.
862     \param [in]    value  is ignored by the processor.
863                    If required, a debugger can use it to store additional information about the breakpoint.
864  */
865 #define __BKPT(value)                       __ASM volatile ("bkpt "#value)
866 
867 
868 /**
869   \brief   Reverse bit order of value
870   \details Reverses the bit order of the given value.
871   \param [in]    value  Value to reverse
872   \return               Reversed value
873  */
874                                                           /* ToDo:  ARMCC_V6: check if __builtin_arm_rbit is supported */
__RBIT(uint32_t value)875 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
876 {
877   uint32_t result;
878 
879 #if ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U))  /* ToDo:  ARMCC_V6: check if this is ok for cortex >=3 */
880    __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
881 #else
882   int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */
883 
884   result = value;                      /* r will be reversed bits of v; first get LSB of v */
885   for (value >>= 1U; value; value >>= 1U)
886   {
887     result <<= 1U;
888     result |= value & 1U;
889     s--;
890   }
891   result <<= s;                        /* shift when v's highest bits are zero */
892 #endif
893   return(result);
894 }
895 
896 
897 /**
898   \brief   Count leading zeros
899   \details Counts the number of leading zeros of a data value.
900   \param [in]  value  Value to count the leading zeros
901   \return             number of leading zeros in value
902  */
903 #define __CLZ             __builtin_clz
904 
905 
906 #if ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U))  /* ToDo:  ARMCC_V6: check if this is ok for cortex >=3 */
907 
908 /**
909   \brief   LDR Exclusive (8 bit)
910   \details Executes a exclusive LDR instruction for 8 bit value.
911   \param [in]    ptr  Pointer to data
912   \return             value of type uint8_t at (*ptr)
913  */
914 #define __LDREXB        (uint8_t)__builtin_arm_ldrex
915 
916 
917 /**
918   \brief   LDR Exclusive (16 bit)
919   \details Executes a exclusive LDR instruction for 16 bit values.
920   \param [in]    ptr  Pointer to data
921   \return        value of type uint16_t at (*ptr)
922  */
923 #define __LDREXH        (uint16_t)__builtin_arm_ldrex
924 
925 
926 /**
927   \brief   LDR Exclusive (32 bit)
928   \details Executes a exclusive LDR instruction for 32 bit values.
929   \param [in]    ptr  Pointer to data
930   \return        value of type uint32_t at (*ptr)
931  */
932 #define __LDREXW        (uint32_t)__builtin_arm_ldrex
933 
934 
935 /**
936   \brief   STR Exclusive (8 bit)
937   \details Executes a exclusive STR instruction for 8 bit values.
938   \param [in]  value  Value to store
939   \param [in]    ptr  Pointer to location
940   \return          0  Function succeeded
941   \return          1  Function failed
942  */
943 #define __STREXB        (uint32_t)__builtin_arm_strex
944 
945 
946 /**
947   \brief   STR Exclusive (16 bit)
948   \details Executes a exclusive STR instruction for 16 bit values.
949   \param [in]  value  Value to store
950   \param [in]    ptr  Pointer to location
951   \return          0  Function succeeded
952   \return          1  Function failed
953  */
954 #define __STREXH        (uint32_t)__builtin_arm_strex
955 
956 
957 /**
958   \brief   STR Exclusive (32 bit)
959   \details Executes a exclusive STR instruction for 32 bit values.
960   \param [in]  value  Value to store
961   \param [in]    ptr  Pointer to location
962   \return          0  Function succeeded
963   \return          1  Function failed
964  */
965 #define __STREXW        (uint32_t)__builtin_arm_strex
966 
967 
968 /**
969   \brief   Remove the exclusive lock
970   \details Removes the exclusive lock which is created by LDREX.
971  */
972 #define __CLREX             __builtin_arm_clrex
973 
974 
975 /**
976   \brief   Signed Saturate
977   \details Saturates a signed value.
978   \param [in]  value  Value to be saturated
979   \param [in]    sat  Bit position to saturate to (1..32)
980   \return             Saturated value
981  */
982 /*#define __SSAT             __builtin_arm_ssat*/
983 #define __SSAT(ARG1,ARG2) \
984 ({                          \
985   int32_t __RES, __ARG1 = (ARG1); \
986   __ASM ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
987   __RES; \
988  })
989 
990 
991 /**
992   \brief   Unsigned Saturate
993   \details Saturates an unsigned value.
994   \param [in]  value  Value to be saturated
995   \param [in]    sat  Bit position to saturate to (0..31)
996   \return             Saturated value
997  */
998 #define __USAT             __builtin_arm_usat
999 #if 0
1000 #define __USAT(ARG1,ARG2) \
1001 ({                          \
1002   uint32_t __RES, __ARG1 = (ARG1); \
1003   __ASM ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1004   __RES; \
1005  })
1006 #endif
1007 
1008 
1009 /**
1010   \brief   Rotate Right with Extend (32 bit)
1011   \details Moves each bit of a bitstring right by one bit.
1012            The carry input is shifted in at the left end of the bitstring.
1013   \param [in]    value  Value to rotate
1014   \return               Rotated value
1015  */
__RRX(uint32_t value)1016 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
1017 {
1018   uint32_t result;
1019 
1020   __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1021   return(result);
1022 }
1023 
1024 
1025 /**
1026   \brief   LDRT Unprivileged (8 bit)
1027   \details Executes a Unprivileged LDRT instruction for 8 bit value.
1028   \param [in]    ptr  Pointer to data
1029   \return             value of type uint8_t at (*ptr)
1030  */
__LDRBT(volatile uint8_t * ptr)1031 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1032 {
1033     uint32_t result;
1034 
1035    __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1036    return ((uint8_t) result);    /* Add explicit type cast here */
1037 }
1038 
1039 
1040 /**
1041   \brief   LDRT Unprivileged (16 bit)
1042   \details Executes a Unprivileged LDRT instruction for 16 bit values.
1043   \param [in]    ptr  Pointer to data
1044   \return        value of type uint16_t at (*ptr)
1045  */
__LDRHT(volatile uint16_t * ptr)1046 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1047 {
1048     uint32_t result;
1049 
1050    __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1051    return ((uint16_t) result);    /* Add explicit type cast here */
1052 }
1053 
1054 
1055 /**
1056   \brief   LDRT Unprivileged (32 bit)
1057   \details Executes a Unprivileged LDRT instruction for 32 bit values.
1058   \param [in]    ptr  Pointer to data
1059   \return        value of type uint32_t at (*ptr)
1060  */
__LDRT(volatile uint32_t * ptr)1061 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *ptr)
1062 {
1063     uint32_t result;
1064 
1065    __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1066    return(result);
1067 }
1068 
1069 
1070 /**
1071   \brief   STRT Unprivileged (8 bit)
1072   \details Executes a Unprivileged STRT instruction for 8 bit values.
1073   \param [in]  value  Value to store
1074   \param [in]    ptr  Pointer to location
1075  */
__STRBT(uint8_t value,volatile uint8_t * ptr)1076 __attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1077 {
1078    __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1079 }
1080 
1081 
1082 /**
1083   \brief   STRT Unprivileged (16 bit)
1084   \details Executes a Unprivileged STRT instruction for 16 bit values.
1085   \param [in]  value  Value to store
1086   \param [in]    ptr  Pointer to location
1087  */
__STRHT(uint16_t value,volatile uint16_t * ptr)1088 __attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1089 {
1090    __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1091 }
1092 
1093 
1094 /**
1095   \brief   STRT Unprivileged (32 bit)
1096   \details Executes a Unprivileged STRT instruction for 32 bit values.
1097   \param [in]  value  Value to store
1098   \param [in]    ptr  Pointer to location
1099  */
__STRT(uint32_t value,volatile uint32_t * ptr)1100 __attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1101 {
1102    __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1103 }
1104 
1105 #endif /* ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U)) */
1106 
1107 
1108 #if (__ARM_ARCH_8M__ == 1U)
1109 
1110 /**
1111   \brief   Load-Acquire (8 bit)
1112   \details Executes a LDAB instruction for 8 bit value.
1113   \param [in]    ptr  Pointer to data
1114   \return             value of type uint8_t at (*ptr)
1115  */
__LDAB(volatile uint8_t * ptr)1116 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDAB(volatile uint8_t *ptr)
1117 {
1118     uint32_t result;
1119 
1120    __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1121    return ((uint8_t) result);
1122 }
1123 
1124 
1125 /**
1126   \brief   Load-Acquire (16 bit)
1127   \details Executes a LDAH instruction for 16 bit values.
1128   \param [in]    ptr  Pointer to data
1129   \return        value of type uint16_t at (*ptr)
1130  */
__LDAH(volatile uint16_t * ptr)1131 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDAH(volatile uint16_t *ptr)
1132 {
1133     uint32_t result;
1134 
1135    __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1136    return ((uint16_t) result);
1137 }
1138 
1139 
1140 /**
1141   \brief   Load-Acquire (32 bit)
1142   \details Executes a LDA instruction for 32 bit values.
1143   \param [in]    ptr  Pointer to data
1144   \return        value of type uint32_t at (*ptr)
1145  */
__LDA(volatile uint32_t * ptr)1146 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDA(volatile uint32_t *ptr)
1147 {
1148     uint32_t result;
1149 
1150    __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1151    return(result);
1152 }
1153 
1154 
1155 /**
1156   \brief   Store-Release (8 bit)
1157   \details Executes a STLB instruction for 8 bit values.
1158   \param [in]  value  Value to store
1159   \param [in]    ptr  Pointer to location
1160  */
__STLB(uint8_t value,volatile uint8_t * ptr)1161 __attribute__((always_inline)) __STATIC_INLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1162 {
1163    __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1164 }
1165 
1166 
1167 /**
1168   \brief   Store-Release (16 bit)
1169   \details Executes a STLH instruction for 16 bit values.
1170   \param [in]  value  Value to store
1171   \param [in]    ptr  Pointer to location
1172  */
__STLH(uint16_t value,volatile uint16_t * ptr)1173 __attribute__((always_inline)) __STATIC_INLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1174 {
1175    __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1176 }
1177 
1178 
1179 /**
1180   \brief   Store-Release (32 bit)
1181   \details Executes a STL instruction for 32 bit values.
1182   \param [in]  value  Value to store
1183   \param [in]    ptr  Pointer to location
1184  */
__STL(uint32_t value,volatile uint32_t * ptr)1185 __attribute__((always_inline)) __STATIC_INLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1186 {
1187    __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1188 }
1189 
1190 
1191 /**
1192   \brief   Load-Acquire Exclusive (8 bit)
1193   \details Executes a LDAB exclusive instruction for 8 bit value.
1194   \param [in]    ptr  Pointer to data
1195   \return             value of type uint8_t at (*ptr)
1196  */
1197 #define     __LDAEXB                 (uint8_t)__builtin_arm_ldaex
1198 
1199 
1200 /**
1201   \brief   Load-Acquire Exclusive (16 bit)
1202   \details Executes a LDAH exclusive instruction for 16 bit values.
1203   \param [in]    ptr  Pointer to data
1204   \return        value of type uint16_t at (*ptr)
1205  */
1206 #define     __LDAEXH                 (uint16_t)__builtin_arm_ldaex
1207 
1208 
1209 /**
1210   \brief   Load-Acquire Exclusive (32 bit)
1211   \details Executes a LDA exclusive instruction for 32 bit values.
1212   \param [in]    ptr  Pointer to data
1213   \return        value of type uint32_t at (*ptr)
1214  */
1215 #define     __LDAEX                  (uint32_t)__builtin_arm_ldaex
1216 
1217 
1218 /**
1219   \brief   Store-Release Exclusive (8 bit)
1220   \details Executes a STLB exclusive instruction for 8 bit values.
1221   \param [in]  value  Value to store
1222   \param [in]    ptr  Pointer to location
1223   \return          0  Function succeeded
1224   \return          1  Function failed
1225  */
1226 #define     __STLEXB                 (uint32_t)__builtin_arm_stlex
1227 
1228 
1229 /**
1230   \brief   Store-Release Exclusive (16 bit)
1231   \details Executes a STLH exclusive instruction for 16 bit values.
1232   \param [in]  value  Value to store
1233   \param [in]    ptr  Pointer to location
1234   \return          0  Function succeeded
1235   \return          1  Function failed
1236  */
1237 #define     __STLEXH                 (uint32_t)__builtin_arm_stlex
1238 
1239 
1240 /**
1241   \brief   Store-Release Exclusive (32 bit)
1242   \details Executes a STL exclusive instruction for 32 bit values.
1243   \param [in]  value  Value to store
1244   \param [in]    ptr  Pointer to location
1245   \return          0  Function succeeded
1246   \return          1  Function failed
1247  */
1248 #define     __STLEX                  (uint32_t)__builtin_arm_stlex
1249 
1250 #endif /* (__ARM_ARCH_8M__ == 1U) */
1251 
1252 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1253 
1254 
1255 /* ###################  Compiler specific Intrinsics  ########################### */
1256 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1257   Access to dedicated SIMD instructions
1258   @{
1259 */
1260 
1261 #if (__ARM_FEATURE_DSP == 1U)        /* ToDo:  ARMCC_V6: This should be ARCH >= ARMv7-M + SIMD */
1262 
__SADD8(uint32_t op1,uint32_t op2)1263 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1264 {
1265   uint32_t result;
1266 
1267   __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1268   return(result);
1269 }
1270 
__QADD8(uint32_t op1,uint32_t op2)1271 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1272 {
1273   uint32_t result;
1274 
1275   __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1276   return(result);
1277 }
1278 
__SHADD8(uint32_t op1,uint32_t op2)1279 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1280 {
1281   uint32_t result;
1282 
1283   __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1284   return(result);
1285 }
1286 
__UADD8(uint32_t op1,uint32_t op2)1287 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1288 {
1289   uint32_t result;
1290 
1291   __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1292   return(result);
1293 }
1294 
__UQADD8(uint32_t op1,uint32_t op2)1295 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1296 {
1297   uint32_t result;
1298 
1299   __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1300   return(result);
1301 }
1302 
__UHADD8(uint32_t op1,uint32_t op2)1303 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1304 {
1305   uint32_t result;
1306 
1307   __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1308   return(result);
1309 }
1310 
1311 
__SSUB8(uint32_t op1,uint32_t op2)1312 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1313 {
1314   uint32_t result;
1315 
1316   __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1317   return(result);
1318 }
1319 
__QSUB8(uint32_t op1,uint32_t op2)1320 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1321 {
1322   uint32_t result;
1323 
1324   __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1325   return(result);
1326 }
1327 
__SHSUB8(uint32_t op1,uint32_t op2)1328 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1329 {
1330   uint32_t result;
1331 
1332   __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1333   return(result);
1334 }
1335 
__USUB8(uint32_t op1,uint32_t op2)1336 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1337 {
1338   uint32_t result;
1339 
1340   __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1341   return(result);
1342 }
1343 
__UQSUB8(uint32_t op1,uint32_t op2)1344 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1345 {
1346   uint32_t result;
1347 
1348   __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1349   return(result);
1350 }
1351 
__UHSUB8(uint32_t op1,uint32_t op2)1352 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1353 {
1354   uint32_t result;
1355 
1356   __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1357   return(result);
1358 }
1359 
1360 
__SADD16(uint32_t op1,uint32_t op2)1361 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1362 {
1363   uint32_t result;
1364 
1365   __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1366   return(result);
1367 }
1368 
__QADD16(uint32_t op1,uint32_t op2)1369 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1370 {
1371   uint32_t result;
1372 
1373   __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1374   return(result);
1375 }
1376 
__SHADD16(uint32_t op1,uint32_t op2)1377 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1378 {
1379   uint32_t result;
1380 
1381   __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1382   return(result);
1383 }
1384 
__UADD16(uint32_t op1,uint32_t op2)1385 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1386 {
1387   uint32_t result;
1388 
1389   __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1390   return(result);
1391 }
1392 
__UQADD16(uint32_t op1,uint32_t op2)1393 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1394 {
1395   uint32_t result;
1396 
1397   __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1398   return(result);
1399 }
1400 
__UHADD16(uint32_t op1,uint32_t op2)1401 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1402 {
1403   uint32_t result;
1404 
1405   __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1406   return(result);
1407 }
1408 
__SSUB16(uint32_t op1,uint32_t op2)1409 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1410 {
1411   uint32_t result;
1412 
1413   __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1414   return(result);
1415 }
1416 
__QSUB16(uint32_t op1,uint32_t op2)1417 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1418 {
1419   uint32_t result;
1420 
1421   __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1422   return(result);
1423 }
1424 
__SHSUB16(uint32_t op1,uint32_t op2)1425 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1426 {
1427   uint32_t result;
1428 
1429   __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1430   return(result);
1431 }
1432 
__USUB16(uint32_t op1,uint32_t op2)1433 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1434 {
1435   uint32_t result;
1436 
1437   __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1438   return(result);
1439 }
1440 
__UQSUB16(uint32_t op1,uint32_t op2)1441 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1442 {
1443   uint32_t result;
1444 
1445   __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1446   return(result);
1447 }
1448 
__UHSUB16(uint32_t op1,uint32_t op2)1449 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1450 {
1451   uint32_t result;
1452 
1453   __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1454   return(result);
1455 }
1456 
__SASX(uint32_t op1,uint32_t op2)1457 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1458 {
1459   uint32_t result;
1460 
1461   __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1462   return(result);
1463 }
1464 
__QASX(uint32_t op1,uint32_t op2)1465 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1466 {
1467   uint32_t result;
1468 
1469   __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1470   return(result);
1471 }
1472 
__SHASX(uint32_t op1,uint32_t op2)1473 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1474 {
1475   uint32_t result;
1476 
1477   __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1478   return(result);
1479 }
1480 
__UASX(uint32_t op1,uint32_t op2)1481 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1482 {
1483   uint32_t result;
1484 
1485   __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1486   return(result);
1487 }
1488 
__UQASX(uint32_t op1,uint32_t op2)1489 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1490 {
1491   uint32_t result;
1492 
1493   __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1494   return(result);
1495 }
1496 
__UHASX(uint32_t op1,uint32_t op2)1497 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1498 {
1499   uint32_t result;
1500 
1501   __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1502   return(result);
1503 }
1504 
__SSAX(uint32_t op1,uint32_t op2)1505 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1506 {
1507   uint32_t result;
1508 
1509   __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1510   return(result);
1511 }
1512 
__QSAX(uint32_t op1,uint32_t op2)1513 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1514 {
1515   uint32_t result;
1516 
1517   __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1518   return(result);
1519 }
1520 
__SHSAX(uint32_t op1,uint32_t op2)1521 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1522 {
1523   uint32_t result;
1524 
1525   __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1526   return(result);
1527 }
1528 
__USAX(uint32_t op1,uint32_t op2)1529 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1530 {
1531   uint32_t result;
1532 
1533   __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1534   return(result);
1535 }
1536 
__UQSAX(uint32_t op1,uint32_t op2)1537 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1538 {
1539   uint32_t result;
1540 
1541   __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1542   return(result);
1543 }
1544 
__UHSAX(uint32_t op1,uint32_t op2)1545 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1546 {
1547   uint32_t result;
1548 
1549   __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1550   return(result);
1551 }
1552 
__USAD8(uint32_t op1,uint32_t op2)1553 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1554 {
1555   uint32_t result;
1556 
1557   __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1558   return(result);
1559 }
1560 
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1561 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1562 {
1563   uint32_t result;
1564 
1565   __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1566   return(result);
1567 }
1568 
1569 #define __SSAT16(ARG1,ARG2) \
1570 ({                          \
1571   uint32_t __RES, __ARG1 = (ARG1); \
1572   __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1573   __RES; \
1574  })
1575 
1576 #define __USAT16(ARG1,ARG2) \
1577 ({                          \
1578   uint32_t __RES, __ARG1 = (ARG1); \
1579   __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1580   __RES; \
1581  })
1582 
__UXTB16(uint32_t op1)1583 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
1584 {
1585   uint32_t result;
1586 
1587   __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1588   return(result);
1589 }
1590 
__UXTAB16(uint32_t op1,uint32_t op2)1591 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1592 {
1593   uint32_t result;
1594 
1595   __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1596   return(result);
1597 }
1598 
__SXTB16(uint32_t op1)1599 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
1600 {
1601   uint32_t result;
1602 
1603   __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1604   return(result);
1605 }
1606 
__SXTAB16(uint32_t op1,uint32_t op2)1607 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1608 {
1609   uint32_t result;
1610 
1611   __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1612   return(result);
1613 }
1614 
__SMUAD(uint32_t op1,uint32_t op2)1615 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
1616 {
1617   uint32_t result;
1618 
1619   __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1620   return(result);
1621 }
1622 
__SMUADX(uint32_t op1,uint32_t op2)1623 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1624 {
1625   uint32_t result;
1626 
1627   __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1628   return(result);
1629 }
1630 
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)1631 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1632 {
1633   uint32_t result;
1634 
1635   __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1636   return(result);
1637 }
1638 
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)1639 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1640 {
1641   uint32_t result;
1642 
1643   __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1644   return(result);
1645 }
1646 
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)1647 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1648 {
1649   union llreg_u{
1650     uint32_t w32[2];
1651     uint64_t w64;
1652   } llr;
1653   llr.w64 = acc;
1654 
1655 #ifndef __ARMEB__   /* Little endian */
1656   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1657 #else               /* Big endian */
1658   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1659 #endif
1660 
1661   return(llr.w64);
1662 }
1663 
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)1664 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1665 {
1666   union llreg_u{
1667     uint32_t w32[2];
1668     uint64_t w64;
1669   } llr;
1670   llr.w64 = acc;
1671 
1672 #ifndef __ARMEB__   /* Little endian */
1673   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1674 #else               /* Big endian */
1675   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1676 #endif
1677 
1678   return(llr.w64);
1679 }
1680 
__SMUSD(uint32_t op1,uint32_t op2)1681 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
1682 {
1683   uint32_t result;
1684 
1685   __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1686   return(result);
1687 }
1688 
__SMUSDX(uint32_t op1,uint32_t op2)1689 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1690 {
1691   uint32_t result;
1692 
1693   __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1694   return(result);
1695 }
1696 
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)1697 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1698 {
1699   uint32_t result;
1700 
1701   __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1702   return(result);
1703 }
1704 
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)1705 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1706 {
1707   uint32_t result;
1708 
1709   __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1710   return(result);
1711 }
1712 
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)1713 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1714 {
1715   union llreg_u{
1716     uint32_t w32[2];
1717     uint64_t w64;
1718   } llr;
1719   llr.w64 = acc;
1720 
1721 #ifndef __ARMEB__   /* Little endian */
1722   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1723 #else               /* Big endian */
1724   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1725 #endif
1726 
1727   return(llr.w64);
1728 }
1729 
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)1730 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1731 {
1732   union llreg_u{
1733     uint32_t w32[2];
1734     uint64_t w64;
1735   } llr;
1736   llr.w64 = acc;
1737 
1738 #ifndef __ARMEB__   /* Little endian */
1739   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1740 #else               /* Big endian */
1741   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1742 #endif
1743 
1744   return(llr.w64);
1745 }
1746 
__SEL(uint32_t op1,uint32_t op2)1747 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
1748 {
1749   uint32_t result;
1750 
1751   __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1752   return(result);
1753 }
1754 
__QADD(int32_t op1,int32_t op2)1755 __attribute__((always_inline)) __STATIC_INLINE  int32_t __QADD( int32_t op1,  int32_t op2)
1756 {
1757   int32_t result;
1758 
1759   __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1760   return(result);
1761 }
1762 
__QSUB(int32_t op1,int32_t op2)1763 __attribute__((always_inline)) __STATIC_INLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
1764 {
1765   int32_t result;
1766 
1767   __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1768   return(result);
1769 }
1770 
1771 #define __PKHBT(ARG1,ARG2,ARG3) \
1772 ({                          \
1773   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1774   __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
1775   __RES; \
1776  })
1777 
1778 #define __PKHTB(ARG1,ARG2,ARG3) \
1779 ({                          \
1780   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1781   if (ARG3 == 0) \
1782     __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
1783   else \
1784     __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
1785   __RES; \
1786  })
1787 
__SMMLA(int32_t op1,int32_t op2,int32_t op3)1788 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1789 {
1790  int32_t result;
1791 
1792  __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
1793  return(result);
1794 }
1795 
1796 #endif /* (__ARM_FEATURE_DSP == 1U) */
1797 /*@} end of group CMSIS_SIMD_intrinsics */
1798 
1799 
1800 #endif /* __CMSIS_ARMCC_V6_H */
1801