1 //===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the C++ Decl subclasses, other than those for templates
11 /// (found in DeclTemplate.h) and friends (in DeclFriend.h).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_AST_DECLCXX_H
16 #define LLVM_CLANG_AST_DECLCXX_H
17 
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTUnresolvedSet.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExternalASTSource.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/Redeclarable.h"
28 #include "clang/AST/Stmt.h"
29 #include "clang/AST/Type.h"
30 #include "clang/AST/TypeLoc.h"
31 #include "clang/AST/UnresolvedSet.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/Lambda.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/SourceLocation.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/DenseMap.h"
40 #include "llvm/ADT/PointerIntPair.h"
41 #include "llvm/ADT/PointerUnion.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/ADT/iterator_range.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/PointerLikeTypeTraits.h"
47 #include "llvm/Support/TrailingObjects.h"
48 #include <cassert>
49 #include <cstddef>
50 #include <iterator>
51 #include <memory>
52 #include <vector>
53 
54 namespace clang {
55 
56 class ClassTemplateDecl;
57 class ConstructorUsingShadowDecl;
58 class CXXBasePath;
59 class CXXBasePaths;
60 class CXXConstructorDecl;
61 class CXXDestructorDecl;
62 class CXXFinalOverriderMap;
63 class CXXIndirectPrimaryBaseSet;
64 class CXXMethodDecl;
65 class DecompositionDecl;
66 class DiagnosticBuilder;
67 class FriendDecl;
68 class FunctionTemplateDecl;
69 class IdentifierInfo;
70 class MemberSpecializationInfo;
71 class TemplateDecl;
72 class TemplateParameterList;
73 class UsingDecl;
74 
75 /// Represents an access specifier followed by colon ':'.
76 ///
77 /// An objects of this class represents sugar for the syntactic occurrence
78 /// of an access specifier followed by a colon in the list of member
79 /// specifiers of a C++ class definition.
80 ///
81 /// Note that they do not represent other uses of access specifiers,
82 /// such as those occurring in a list of base specifiers.
83 /// Also note that this class has nothing to do with so-called
84 /// "access declarations" (C++98 11.3 [class.access.dcl]).
85 class AccessSpecDecl : public Decl {
86   /// The location of the ':'.
87   SourceLocation ColonLoc;
88 
AccessSpecDecl(AccessSpecifier AS,DeclContext * DC,SourceLocation ASLoc,SourceLocation ColonLoc)89   AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
90                  SourceLocation ASLoc, SourceLocation ColonLoc)
91     : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
92     setAccess(AS);
93   }
94 
AccessSpecDecl(EmptyShell Empty)95   AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
96 
97   virtual void anchor();
98 
99 public:
100   /// The location of the access specifier.
getAccessSpecifierLoc()101   SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
102 
103   /// Sets the location of the access specifier.
setAccessSpecifierLoc(SourceLocation ASLoc)104   void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
105 
106   /// The location of the colon following the access specifier.
getColonLoc()107   SourceLocation getColonLoc() const { return ColonLoc; }
108 
109   /// Sets the location of the colon.
setColonLoc(SourceLocation CLoc)110   void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
111 
getSourceRange()112   SourceRange getSourceRange() const override LLVM_READONLY {
113     return SourceRange(getAccessSpecifierLoc(), getColonLoc());
114   }
115 
Create(ASTContext & C,AccessSpecifier AS,DeclContext * DC,SourceLocation ASLoc,SourceLocation ColonLoc)116   static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
117                                 DeclContext *DC, SourceLocation ASLoc,
118                                 SourceLocation ColonLoc) {
119     return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
120   }
121 
122   static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
123 
124   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)125   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)126   static bool classofKind(Kind K) { return K == AccessSpec; }
127 };
128 
129 /// Represents a base class of a C++ class.
130 ///
131 /// Each CXXBaseSpecifier represents a single, direct base class (or
132 /// struct) of a C++ class (or struct). It specifies the type of that
133 /// base class, whether it is a virtual or non-virtual base, and what
134 /// level of access (public, protected, private) is used for the
135 /// derivation. For example:
136 ///
137 /// \code
138 ///   class A { };
139 ///   class B { };
140 ///   class C : public virtual A, protected B { };
141 /// \endcode
142 ///
143 /// In this code, C will have two CXXBaseSpecifiers, one for "public
144 /// virtual A" and the other for "protected B".
145 class CXXBaseSpecifier {
146   /// The source code range that covers the full base
147   /// specifier, including the "virtual" (if present) and access
148   /// specifier (if present).
149   SourceRange Range;
150 
151   /// The source location of the ellipsis, if this is a pack
152   /// expansion.
153   SourceLocation EllipsisLoc;
154 
155   /// Whether this is a virtual base class or not.
156   unsigned Virtual : 1;
157 
158   /// Whether this is the base of a class (true) or of a struct (false).
159   ///
160   /// This determines the mapping from the access specifier as written in the
161   /// source code to the access specifier used for semantic analysis.
162   unsigned BaseOfClass : 1;
163 
164   /// Access specifier as written in the source code (may be AS_none).
165   ///
166   /// The actual type of data stored here is an AccessSpecifier, but we use
167   /// "unsigned" here to work around a VC++ bug.
168   unsigned Access : 2;
169 
170   /// Whether the class contains a using declaration
171   /// to inherit the named class's constructors.
172   unsigned InheritConstructors : 1;
173 
174   /// The type of the base class.
175   ///
176   /// This will be a class or struct (or a typedef of such). The source code
177   /// range does not include the \c virtual or the access specifier.
178   TypeSourceInfo *BaseTypeInfo;
179 
180 public:
181   CXXBaseSpecifier() = default;
CXXBaseSpecifier(SourceRange R,bool V,bool BC,AccessSpecifier A,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)182   CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
183                    TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
184     : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
185       Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
186 
187   /// Retrieves the source range that contains the entire base specifier.
getSourceRange()188   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
getBeginLoc()189   SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
getEndLoc()190   SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
191 
192   /// Get the location at which the base class type was written.
getBaseTypeLoc()193   SourceLocation getBaseTypeLoc() const LLVM_READONLY {
194     return BaseTypeInfo->getTypeLoc().getBeginLoc();
195   }
196 
197   /// Determines whether the base class is a virtual base class (or not).
isVirtual()198   bool isVirtual() const { return Virtual; }
199 
200   /// Determine whether this base class is a base of a class declared
201   /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
isBaseOfClass()202   bool isBaseOfClass() const { return BaseOfClass; }
203 
204   /// Determine whether this base specifier is a pack expansion.
isPackExpansion()205   bool isPackExpansion() const { return EllipsisLoc.isValid(); }
206 
207   /// Determine whether this base class's constructors get inherited.
getInheritConstructors()208   bool getInheritConstructors() const { return InheritConstructors; }
209 
210   /// Set that this base class's constructors should be inherited.
211   void setInheritConstructors(bool Inherit = true) {
212     InheritConstructors = Inherit;
213   }
214 
215   /// For a pack expansion, determine the location of the ellipsis.
getEllipsisLoc()216   SourceLocation getEllipsisLoc() const {
217     return EllipsisLoc;
218   }
219 
220   /// Returns the access specifier for this base specifier.
221   ///
222   /// This is the actual base specifier as used for semantic analysis, so
223   /// the result can never be AS_none. To retrieve the access specifier as
224   /// written in the source code, use getAccessSpecifierAsWritten().
getAccessSpecifier()225   AccessSpecifier getAccessSpecifier() const {
226     if ((AccessSpecifier)Access == AS_none)
227       return BaseOfClass? AS_private : AS_public;
228     else
229       return (AccessSpecifier)Access;
230   }
231 
232   /// Retrieves the access specifier as written in the source code
233   /// (which may mean that no access specifier was explicitly written).
234   ///
235   /// Use getAccessSpecifier() to retrieve the access specifier for use in
236   /// semantic analysis.
getAccessSpecifierAsWritten()237   AccessSpecifier getAccessSpecifierAsWritten() const {
238     return (AccessSpecifier)Access;
239   }
240 
241   /// Retrieves the type of the base class.
242   ///
243   /// This type will always be an unqualified class type.
getType()244   QualType getType() const {
245     return BaseTypeInfo->getType().getUnqualifiedType();
246   }
247 
248   /// Retrieves the type and source location of the base class.
getTypeSourceInfo()249   TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
250 };
251 
252 /// Represents a C++ struct/union/class.
253 class CXXRecordDecl : public RecordDecl {
254   friend class ASTDeclReader;
255   friend class ASTDeclWriter;
256   friend class ASTNodeImporter;
257   friend class ASTReader;
258   friend class ASTRecordWriter;
259   friend class ASTWriter;
260   friend class DeclContext;
261   friend class LambdaExpr;
262 
263   friend void FunctionDecl::setPure(bool);
264   friend void TagDecl::startDefinition();
265 
266   /// Values used in DefinitionData fields to represent special members.
267   enum SpecialMemberFlags {
268     SMF_DefaultConstructor = 0x1,
269     SMF_CopyConstructor = 0x2,
270     SMF_MoveConstructor = 0x4,
271     SMF_CopyAssignment = 0x8,
272     SMF_MoveAssignment = 0x10,
273     SMF_Destructor = 0x20,
274     SMF_All = 0x3f
275   };
276 
277   struct DefinitionData {
278     #define FIELD(Name, Width, Merge) \
279     unsigned Name : Width;
280     #include "CXXRecordDeclDefinitionBits.def"
281 
282     /// Whether this class describes a C++ lambda.
283     unsigned IsLambda : 1;
284 
285     /// Whether we are currently parsing base specifiers.
286     unsigned IsParsingBaseSpecifiers : 1;
287 
288     /// True when visible conversion functions are already computed
289     /// and are available.
290     unsigned ComputedVisibleConversions : 1;
291 
292     unsigned HasODRHash : 1;
293 
294     /// A hash of parts of the class to help in ODR checking.
295     unsigned ODRHash = 0;
296 
297     /// The number of base class specifiers in Bases.
298     unsigned NumBases = 0;
299 
300     /// The number of virtual base class specifiers in VBases.
301     unsigned NumVBases = 0;
302 
303     /// Base classes of this class.
304     ///
305     /// FIXME: This is wasted space for a union.
306     LazyCXXBaseSpecifiersPtr Bases;
307 
308     /// direct and indirect virtual base classes of this class.
309     LazyCXXBaseSpecifiersPtr VBases;
310 
311     /// The conversion functions of this C++ class (but not its
312     /// inherited conversion functions).
313     ///
314     /// Each of the entries in this overload set is a CXXConversionDecl.
315     LazyASTUnresolvedSet Conversions;
316 
317     /// The conversion functions of this C++ class and all those
318     /// inherited conversion functions that are visible in this class.
319     ///
320     /// Each of the entries in this overload set is a CXXConversionDecl or a
321     /// FunctionTemplateDecl.
322     LazyASTUnresolvedSet VisibleConversions;
323 
324     /// The declaration which defines this record.
325     CXXRecordDecl *Definition;
326 
327     /// The first friend declaration in this class, or null if there
328     /// aren't any.
329     ///
330     /// This is actually currently stored in reverse order.
331     LazyDeclPtr FirstFriend;
332 
333     DefinitionData(CXXRecordDecl *D);
334 
335     /// Retrieve the set of direct base classes.
getBasesDefinitionData336     CXXBaseSpecifier *getBases() const {
337       if (!Bases.isOffset())
338         return Bases.get(nullptr);
339       return getBasesSlowCase();
340     }
341 
342     /// Retrieve the set of virtual base classes.
getVBasesDefinitionData343     CXXBaseSpecifier *getVBases() const {
344       if (!VBases.isOffset())
345         return VBases.get(nullptr);
346       return getVBasesSlowCase();
347     }
348 
basesDefinitionData349     ArrayRef<CXXBaseSpecifier> bases() const {
350       return llvm::makeArrayRef(getBases(), NumBases);
351     }
352 
vbasesDefinitionData353     ArrayRef<CXXBaseSpecifier> vbases() const {
354       return llvm::makeArrayRef(getVBases(), NumVBases);
355     }
356 
357   private:
358     CXXBaseSpecifier *getBasesSlowCase() const;
359     CXXBaseSpecifier *getVBasesSlowCase() const;
360   };
361 
362   struct DefinitionData *DefinitionData;
363 
364   /// Describes a C++ closure type (generated by a lambda expression).
365   struct LambdaDefinitionData : public DefinitionData {
366     using Capture = LambdaCapture;
367 
368     /// Whether this lambda is known to be dependent, even if its
369     /// context isn't dependent.
370     ///
371     /// A lambda with a non-dependent context can be dependent if it occurs
372     /// within the default argument of a function template, because the
373     /// lambda will have been created with the enclosing context as its
374     /// declaration context, rather than function. This is an unfortunate
375     /// artifact of having to parse the default arguments before.
376     unsigned Dependent : 1;
377 
378     /// Whether this lambda is a generic lambda.
379     unsigned IsGenericLambda : 1;
380 
381     /// The Default Capture.
382     unsigned CaptureDefault : 2;
383 
384     /// The number of captures in this lambda is limited 2^NumCaptures.
385     unsigned NumCaptures : 15;
386 
387     /// The number of explicit captures in this lambda.
388     unsigned NumExplicitCaptures : 13;
389 
390     /// Has known `internal` linkage.
391     unsigned HasKnownInternalLinkage : 1;
392 
393     /// The number used to indicate this lambda expression for name
394     /// mangling in the Itanium C++ ABI.
395     unsigned ManglingNumber : 31;
396 
397     /// The declaration that provides context for this lambda, if the
398     /// actual DeclContext does not suffice. This is used for lambdas that
399     /// occur within default arguments of function parameters within the class
400     /// or within a data member initializer.
401     LazyDeclPtr ContextDecl;
402 
403     /// The list of captures, both explicit and implicit, for this
404     /// lambda.
405     Capture *Captures = nullptr;
406 
407     /// The type of the call method.
408     TypeSourceInfo *MethodTyInfo;
409 
LambdaDefinitionDataLambdaDefinitionData410     LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent,
411                          bool IsGeneric, LambdaCaptureDefault CaptureDefault)
412         : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
413           CaptureDefault(CaptureDefault), NumCaptures(0),
414           NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0),
415           MethodTyInfo(Info) {
416       IsLambda = true;
417 
418       // C++1z [expr.prim.lambda]p4:
419       //   This class type is not an aggregate type.
420       Aggregate = false;
421       PlainOldData = false;
422     }
423   };
424 
dataPtr()425   struct DefinitionData *dataPtr() const {
426     // Complete the redecl chain (if necessary).
427     getMostRecentDecl();
428     return DefinitionData;
429   }
430 
data()431   struct DefinitionData &data() const {
432     auto *DD = dataPtr();
433     assert(DD && "queried property of class with no definition");
434     return *DD;
435   }
436 
getLambdaData()437   struct LambdaDefinitionData &getLambdaData() const {
438     // No update required: a merged definition cannot change any lambda
439     // properties.
440     auto *DD = DefinitionData;
441     assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
442     return static_cast<LambdaDefinitionData&>(*DD);
443   }
444 
445   /// The template or declaration that this declaration
446   /// describes or was instantiated from, respectively.
447   ///
448   /// For non-templates, this value will be null. For record
449   /// declarations that describe a class template, this will be a
450   /// pointer to a ClassTemplateDecl. For member
451   /// classes of class template specializations, this will be the
452   /// MemberSpecializationInfo referring to the member class that was
453   /// instantiated or specialized.
454   llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
455       TemplateOrInstantiation;
456 
457   /// Called from setBases and addedMember to notify the class that a
458   /// direct or virtual base class or a member of class type has been added.
459   void addedClassSubobject(CXXRecordDecl *Base);
460 
461   /// Notify the class that member has been added.
462   ///
463   /// This routine helps maintain information about the class based on which
464   /// members have been added. It will be invoked by DeclContext::addDecl()
465   /// whenever a member is added to this record.
466   void addedMember(Decl *D);
467 
468   void markedVirtualFunctionPure();
469 
470   /// Get the head of our list of friend declarations, possibly
471   /// deserializing the friends from an external AST source.
472   FriendDecl *getFirstFriend() const;
473 
474   /// Determine whether this class has an empty base class subobject of type X
475   /// or of one of the types that might be at offset 0 within X (per the C++
476   /// "standard layout" rules).
477   bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
478                                                const CXXRecordDecl *X);
479 
480 protected:
481   CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
482                 SourceLocation StartLoc, SourceLocation IdLoc,
483                 IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
484 
485 public:
486   /// Iterator that traverses the base classes of a class.
487   using base_class_iterator = CXXBaseSpecifier *;
488 
489   /// Iterator that traverses the base classes of a class.
490   using base_class_const_iterator = const CXXBaseSpecifier *;
491 
getCanonicalDecl()492   CXXRecordDecl *getCanonicalDecl() override {
493     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
494   }
495 
getCanonicalDecl()496   const CXXRecordDecl *getCanonicalDecl() const {
497     return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
498   }
499 
getPreviousDecl()500   CXXRecordDecl *getPreviousDecl() {
501     return cast_or_null<CXXRecordDecl>(
502             static_cast<RecordDecl *>(this)->getPreviousDecl());
503   }
504 
getPreviousDecl()505   const CXXRecordDecl *getPreviousDecl() const {
506     return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
507   }
508 
getMostRecentDecl()509   CXXRecordDecl *getMostRecentDecl() {
510     return cast<CXXRecordDecl>(
511             static_cast<RecordDecl *>(this)->getMostRecentDecl());
512   }
513 
getMostRecentDecl()514   const CXXRecordDecl *getMostRecentDecl() const {
515     return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
516   }
517 
getMostRecentNonInjectedDecl()518   CXXRecordDecl *getMostRecentNonInjectedDecl() {
519     CXXRecordDecl *Recent =
520         static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
521     while (Recent->isInjectedClassName()) {
522       // FIXME: Does injected class name need to be in the redeclarations chain?
523       assert(Recent->getPreviousDecl());
524       Recent = Recent->getPreviousDecl();
525     }
526     return Recent;
527   }
528 
getMostRecentNonInjectedDecl()529   const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
530     return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
531   }
532 
getDefinition()533   CXXRecordDecl *getDefinition() const {
534     // We only need an update if we don't already know which
535     // declaration is the definition.
536     auto *DD = DefinitionData ? DefinitionData : dataPtr();
537     return DD ? DD->Definition : nullptr;
538   }
539 
hasDefinition()540   bool hasDefinition() const { return DefinitionData || dataPtr(); }
541 
542   static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
543                                SourceLocation StartLoc, SourceLocation IdLoc,
544                                IdentifierInfo *Id,
545                                CXXRecordDecl *PrevDecl = nullptr,
546                                bool DelayTypeCreation = false);
547   static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
548                                      TypeSourceInfo *Info, SourceLocation Loc,
549                                      bool DependentLambda, bool IsGeneric,
550                                      LambdaCaptureDefault CaptureDefault);
551   static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
552 
isDynamicClass()553   bool isDynamicClass() const {
554     return data().Polymorphic || data().NumVBases != 0;
555   }
556 
557   /// @returns true if class is dynamic or might be dynamic because the
558   /// definition is incomplete of dependent.
mayBeDynamicClass()559   bool mayBeDynamicClass() const {
560     return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
561   }
562 
563   /// @returns true if class is non dynamic or might be non dynamic because the
564   /// definition is incomplete of dependent.
mayBeNonDynamicClass()565   bool mayBeNonDynamicClass() const {
566     return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
567   }
568 
setIsParsingBaseSpecifiers()569   void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
570 
isParsingBaseSpecifiers()571   bool isParsingBaseSpecifiers() const {
572     return data().IsParsingBaseSpecifiers;
573   }
574 
575   unsigned getODRHash() const;
576 
577   /// Sets the base classes of this struct or class.
578   void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
579 
580   /// Retrieves the number of base classes of this class.
getNumBases()581   unsigned getNumBases() const { return data().NumBases; }
582 
583   using base_class_range = llvm::iterator_range<base_class_iterator>;
584   using base_class_const_range =
585       llvm::iterator_range<base_class_const_iterator>;
586 
bases()587   base_class_range bases() {
588     return base_class_range(bases_begin(), bases_end());
589   }
bases()590   base_class_const_range bases() const {
591     return base_class_const_range(bases_begin(), bases_end());
592   }
593 
bases_begin()594   base_class_iterator bases_begin() { return data().getBases(); }
bases_begin()595   base_class_const_iterator bases_begin() const { return data().getBases(); }
bases_end()596   base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
bases_end()597   base_class_const_iterator bases_end() const {
598     return bases_begin() + data().NumBases;
599   }
600 
601   /// Retrieves the number of virtual base classes of this class.
getNumVBases()602   unsigned getNumVBases() const { return data().NumVBases; }
603 
vbases()604   base_class_range vbases() {
605     return base_class_range(vbases_begin(), vbases_end());
606   }
vbases()607   base_class_const_range vbases() const {
608     return base_class_const_range(vbases_begin(), vbases_end());
609   }
610 
vbases_begin()611   base_class_iterator vbases_begin() { return data().getVBases(); }
vbases_begin()612   base_class_const_iterator vbases_begin() const { return data().getVBases(); }
vbases_end()613   base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
vbases_end()614   base_class_const_iterator vbases_end() const {
615     return vbases_begin() + data().NumVBases;
616   }
617 
618   /// Determine whether this class has any dependent base classes which
619   /// are not the current instantiation.
620   bool hasAnyDependentBases() const;
621 
622   /// Iterator access to method members.  The method iterator visits
623   /// all method members of the class, including non-instance methods,
624   /// special methods, etc.
625   using method_iterator = specific_decl_iterator<CXXMethodDecl>;
626   using method_range =
627       llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
628 
methods()629   method_range methods() const {
630     return method_range(method_begin(), method_end());
631   }
632 
633   /// Method begin iterator.  Iterates in the order the methods
634   /// were declared.
method_begin()635   method_iterator method_begin() const {
636     return method_iterator(decls_begin());
637   }
638 
639   /// Method past-the-end iterator.
method_end()640   method_iterator method_end() const {
641     return method_iterator(decls_end());
642   }
643 
644   /// Iterator access to constructor members.
645   using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
646   using ctor_range =
647       llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
648 
ctors()649   ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
650 
ctor_begin()651   ctor_iterator ctor_begin() const {
652     return ctor_iterator(decls_begin());
653   }
654 
ctor_end()655   ctor_iterator ctor_end() const {
656     return ctor_iterator(decls_end());
657   }
658 
659   /// An iterator over friend declarations.  All of these are defined
660   /// in DeclFriend.h.
661   class friend_iterator;
662   using friend_range = llvm::iterator_range<friend_iterator>;
663 
664   friend_range friends() const;
665   friend_iterator friend_begin() const;
666   friend_iterator friend_end() const;
667   void pushFriendDecl(FriendDecl *FD);
668 
669   /// Determines whether this record has any friends.
hasFriends()670   bool hasFriends() const {
671     return data().FirstFriend.isValid();
672   }
673 
674   /// \c true if a defaulted copy constructor for this class would be
675   /// deleted.
defaultedCopyConstructorIsDeleted()676   bool defaultedCopyConstructorIsDeleted() const {
677     assert((!needsOverloadResolutionForCopyConstructor() ||
678             (data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&
679            "this property has not yet been computed by Sema");
680     return data().DefaultedCopyConstructorIsDeleted;
681   }
682 
683   /// \c true if a defaulted move constructor for this class would be
684   /// deleted.
defaultedMoveConstructorIsDeleted()685   bool defaultedMoveConstructorIsDeleted() const {
686     assert((!needsOverloadResolutionForMoveConstructor() ||
687             (data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&
688            "this property has not yet been computed by Sema");
689     return data().DefaultedMoveConstructorIsDeleted;
690   }
691 
692   /// \c true if a defaulted destructor for this class would be deleted.
defaultedDestructorIsDeleted()693   bool defaultedDestructorIsDeleted() const {
694     assert((!needsOverloadResolutionForDestructor() ||
695             (data().DeclaredSpecialMembers & SMF_Destructor)) &&
696            "this property has not yet been computed by Sema");
697     return data().DefaultedDestructorIsDeleted;
698   }
699 
700   /// \c true if we know for sure that this class has a single,
701   /// accessible, unambiguous copy constructor that is not deleted.
hasSimpleCopyConstructor()702   bool hasSimpleCopyConstructor() const {
703     return !hasUserDeclaredCopyConstructor() &&
704            !data().DefaultedCopyConstructorIsDeleted;
705   }
706 
707   /// \c true if we know for sure that this class has a single,
708   /// accessible, unambiguous move constructor that is not deleted.
hasSimpleMoveConstructor()709   bool hasSimpleMoveConstructor() const {
710     return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
711            !data().DefaultedMoveConstructorIsDeleted;
712   }
713 
714   /// \c true if we know for sure that this class has a single,
715   /// accessible, unambiguous move assignment operator that is not deleted.
hasSimpleMoveAssignment()716   bool hasSimpleMoveAssignment() const {
717     return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
718            !data().DefaultedMoveAssignmentIsDeleted;
719   }
720 
721   /// \c true if we know for sure that this class has an accessible
722   /// destructor that is not deleted.
hasSimpleDestructor()723   bool hasSimpleDestructor() const {
724     return !hasUserDeclaredDestructor() &&
725            !data().DefaultedDestructorIsDeleted;
726   }
727 
728   /// Determine whether this class has any default constructors.
hasDefaultConstructor()729   bool hasDefaultConstructor() const {
730     return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
731            needsImplicitDefaultConstructor();
732   }
733 
734   /// Determine if we need to declare a default constructor for
735   /// this class.
736   ///
737   /// This value is used for lazy creation of default constructors.
needsImplicitDefaultConstructor()738   bool needsImplicitDefaultConstructor() const {
739     return !data().UserDeclaredConstructor &&
740            !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
741            (!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
742   }
743 
744   /// Determine whether this class has any user-declared constructors.
745   ///
746   /// When true, a default constructor will not be implicitly declared.
hasUserDeclaredConstructor()747   bool hasUserDeclaredConstructor() const {
748     return data().UserDeclaredConstructor;
749   }
750 
751   /// Whether this class has a user-provided default constructor
752   /// per C++11.
hasUserProvidedDefaultConstructor()753   bool hasUserProvidedDefaultConstructor() const {
754     return data().UserProvidedDefaultConstructor;
755   }
756 
757   /// Determine whether this class has a user-declared copy constructor.
758   ///
759   /// When false, a copy constructor will be implicitly declared.
hasUserDeclaredCopyConstructor()760   bool hasUserDeclaredCopyConstructor() const {
761     return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
762   }
763 
764   /// Determine whether this class needs an implicit copy
765   /// constructor to be lazily declared.
needsImplicitCopyConstructor()766   bool needsImplicitCopyConstructor() const {
767     return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
768   }
769 
770   /// Determine whether we need to eagerly declare a defaulted copy
771   /// constructor for this class.
needsOverloadResolutionForCopyConstructor()772   bool needsOverloadResolutionForCopyConstructor() const {
773     // C++17 [class.copy.ctor]p6:
774     //   If the class definition declares a move constructor or move assignment
775     //   operator, the implicitly declared copy constructor is defined as
776     //   deleted.
777     // In MSVC mode, sometimes a declared move assignment does not delete an
778     // implicit copy constructor, so defer this choice to Sema.
779     if (data().UserDeclaredSpecialMembers &
780         (SMF_MoveConstructor | SMF_MoveAssignment))
781       return true;
782     return data().NeedOverloadResolutionForCopyConstructor;
783   }
784 
785   /// Determine whether an implicit copy constructor for this type
786   /// would have a parameter with a const-qualified reference type.
implicitCopyConstructorHasConstParam()787   bool implicitCopyConstructorHasConstParam() const {
788     return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
789            (isAbstract() ||
790             data().ImplicitCopyConstructorCanHaveConstParamForVBase);
791   }
792 
793   /// Determine whether this class has a copy constructor with
794   /// a parameter type which is a reference to a const-qualified type.
hasCopyConstructorWithConstParam()795   bool hasCopyConstructorWithConstParam() const {
796     return data().HasDeclaredCopyConstructorWithConstParam ||
797            (needsImplicitCopyConstructor() &&
798             implicitCopyConstructorHasConstParam());
799   }
800 
801   /// Whether this class has a user-declared move constructor or
802   /// assignment operator.
803   ///
804   /// When false, a move constructor and assignment operator may be
805   /// implicitly declared.
hasUserDeclaredMoveOperation()806   bool hasUserDeclaredMoveOperation() const {
807     return data().UserDeclaredSpecialMembers &
808              (SMF_MoveConstructor | SMF_MoveAssignment);
809   }
810 
811   /// Determine whether this class has had a move constructor
812   /// declared by the user.
hasUserDeclaredMoveConstructor()813   bool hasUserDeclaredMoveConstructor() const {
814     return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
815   }
816 
817   /// Determine whether this class has a move constructor.
hasMoveConstructor()818   bool hasMoveConstructor() const {
819     return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
820            needsImplicitMoveConstructor();
821   }
822 
823   /// Set that we attempted to declare an implicit copy
824   /// constructor, but overload resolution failed so we deleted it.
setImplicitCopyConstructorIsDeleted()825   void setImplicitCopyConstructorIsDeleted() {
826     assert((data().DefaultedCopyConstructorIsDeleted ||
827             needsOverloadResolutionForCopyConstructor()) &&
828            "Copy constructor should not be deleted");
829     data().DefaultedCopyConstructorIsDeleted = true;
830   }
831 
832   /// Set that we attempted to declare an implicit move
833   /// constructor, but overload resolution failed so we deleted it.
setImplicitMoveConstructorIsDeleted()834   void setImplicitMoveConstructorIsDeleted() {
835     assert((data().DefaultedMoveConstructorIsDeleted ||
836             needsOverloadResolutionForMoveConstructor()) &&
837            "move constructor should not be deleted");
838     data().DefaultedMoveConstructorIsDeleted = true;
839   }
840 
841   /// Set that we attempted to declare an implicit destructor,
842   /// but overload resolution failed so we deleted it.
setImplicitDestructorIsDeleted()843   void setImplicitDestructorIsDeleted() {
844     assert((data().DefaultedDestructorIsDeleted ||
845             needsOverloadResolutionForDestructor()) &&
846            "destructor should not be deleted");
847     data().DefaultedDestructorIsDeleted = true;
848   }
849 
850   /// Determine whether this class should get an implicit move
851   /// constructor or if any existing special member function inhibits this.
needsImplicitMoveConstructor()852   bool needsImplicitMoveConstructor() const {
853     return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
854            !hasUserDeclaredCopyConstructor() &&
855            !hasUserDeclaredCopyAssignment() &&
856            !hasUserDeclaredMoveAssignment() &&
857            !hasUserDeclaredDestructor();
858   }
859 
860   /// Determine whether we need to eagerly declare a defaulted move
861   /// constructor for this class.
needsOverloadResolutionForMoveConstructor()862   bool needsOverloadResolutionForMoveConstructor() const {
863     return data().NeedOverloadResolutionForMoveConstructor;
864   }
865 
866   /// Determine whether this class has a user-declared copy assignment
867   /// operator.
868   ///
869   /// When false, a copy assignment operator will be implicitly declared.
hasUserDeclaredCopyAssignment()870   bool hasUserDeclaredCopyAssignment() const {
871     return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
872   }
873 
874   /// Determine whether this class needs an implicit copy
875   /// assignment operator to be lazily declared.
needsImplicitCopyAssignment()876   bool needsImplicitCopyAssignment() const {
877     return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
878   }
879 
880   /// Determine whether we need to eagerly declare a defaulted copy
881   /// assignment operator for this class.
needsOverloadResolutionForCopyAssignment()882   bool needsOverloadResolutionForCopyAssignment() const {
883     return data().HasMutableFields;
884   }
885 
886   /// Determine whether an implicit copy assignment operator for this
887   /// type would have a parameter with a const-qualified reference type.
implicitCopyAssignmentHasConstParam()888   bool implicitCopyAssignmentHasConstParam() const {
889     return data().ImplicitCopyAssignmentHasConstParam;
890   }
891 
892   /// Determine whether this class has a copy assignment operator with
893   /// a parameter type which is a reference to a const-qualified type or is not
894   /// a reference.
hasCopyAssignmentWithConstParam()895   bool hasCopyAssignmentWithConstParam() const {
896     return data().HasDeclaredCopyAssignmentWithConstParam ||
897            (needsImplicitCopyAssignment() &&
898             implicitCopyAssignmentHasConstParam());
899   }
900 
901   /// Determine whether this class has had a move assignment
902   /// declared by the user.
hasUserDeclaredMoveAssignment()903   bool hasUserDeclaredMoveAssignment() const {
904     return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
905   }
906 
907   /// Determine whether this class has a move assignment operator.
hasMoveAssignment()908   bool hasMoveAssignment() const {
909     return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
910            needsImplicitMoveAssignment();
911   }
912 
913   /// Set that we attempted to declare an implicit move assignment
914   /// operator, but overload resolution failed so we deleted it.
setImplicitMoveAssignmentIsDeleted()915   void setImplicitMoveAssignmentIsDeleted() {
916     assert((data().DefaultedMoveAssignmentIsDeleted ||
917             needsOverloadResolutionForMoveAssignment()) &&
918            "move assignment should not be deleted");
919     data().DefaultedMoveAssignmentIsDeleted = true;
920   }
921 
922   /// Determine whether this class should get an implicit move
923   /// assignment operator or if any existing special member function inhibits
924   /// this.
needsImplicitMoveAssignment()925   bool needsImplicitMoveAssignment() const {
926     return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
927            !hasUserDeclaredCopyConstructor() &&
928            !hasUserDeclaredCopyAssignment() &&
929            !hasUserDeclaredMoveConstructor() &&
930            !hasUserDeclaredDestructor() &&
931            (!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
932   }
933 
934   /// Determine whether we need to eagerly declare a move assignment
935   /// operator for this class.
needsOverloadResolutionForMoveAssignment()936   bool needsOverloadResolutionForMoveAssignment() const {
937     return data().NeedOverloadResolutionForMoveAssignment;
938   }
939 
940   /// Determine whether this class has a user-declared destructor.
941   ///
942   /// When false, a destructor will be implicitly declared.
hasUserDeclaredDestructor()943   bool hasUserDeclaredDestructor() const {
944     return data().UserDeclaredSpecialMembers & SMF_Destructor;
945   }
946 
947   /// Determine whether this class needs an implicit destructor to
948   /// be lazily declared.
needsImplicitDestructor()949   bool needsImplicitDestructor() const {
950     return !(data().DeclaredSpecialMembers & SMF_Destructor);
951   }
952 
953   /// Determine whether we need to eagerly declare a destructor for this
954   /// class.
needsOverloadResolutionForDestructor()955   bool needsOverloadResolutionForDestructor() const {
956     return data().NeedOverloadResolutionForDestructor;
957   }
958 
959   /// Determine whether this class describes a lambda function object.
isLambda()960   bool isLambda() const {
961     // An update record can't turn a non-lambda into a lambda.
962     auto *DD = DefinitionData;
963     return DD && DD->IsLambda;
964   }
965 
966   /// Determine whether this class describes a generic
967   /// lambda function object (i.e. function call operator is
968   /// a template).
969   bool isGenericLambda() const;
970 
971   /// Determine whether this lambda should have an implicit default constructor
972   /// and copy and move assignment operators.
973   bool lambdaIsDefaultConstructibleAndAssignable() const;
974 
975   /// Retrieve the lambda call operator of the closure type
976   /// if this is a closure type.
977   CXXMethodDecl *getLambdaCallOperator() const;
978 
979   /// Retrieve the dependent lambda call operator of the closure type
980   /// if this is a templated closure type.
981   FunctionTemplateDecl *getDependentLambdaCallOperator() const;
982 
983   /// Retrieve the lambda static invoker, the address of which
984   /// is returned by the conversion operator, and the body of which
985   /// is forwarded to the lambda call operator.
986   CXXMethodDecl *getLambdaStaticInvoker() const;
987 
988   /// Retrieve the generic lambda's template parameter list.
989   /// Returns null if the class does not represent a lambda or a generic
990   /// lambda.
991   TemplateParameterList *getGenericLambdaTemplateParameterList() const;
992 
993   /// Retrieve the lambda template parameters that were specified explicitly.
994   ArrayRef<NamedDecl *> getLambdaExplicitTemplateParameters() const;
995 
getLambdaCaptureDefault()996   LambdaCaptureDefault getLambdaCaptureDefault() const {
997     assert(isLambda());
998     return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
999   }
1000 
1001   /// For a closure type, retrieve the mapping from captured
1002   /// variables and \c this to the non-static data members that store the
1003   /// values or references of the captures.
1004   ///
1005   /// \param Captures Will be populated with the mapping from captured
1006   /// variables to the corresponding fields.
1007   ///
1008   /// \param ThisCapture Will be set to the field declaration for the
1009   /// \c this capture.
1010   ///
1011   /// \note No entries will be added for init-captures, as they do not capture
1012   /// variables.
1013   void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1014                         FieldDecl *&ThisCapture) const;
1015 
1016   using capture_const_iterator = const LambdaCapture *;
1017   using capture_const_range = llvm::iterator_range<capture_const_iterator>;
1018 
captures()1019   capture_const_range captures() const {
1020     return capture_const_range(captures_begin(), captures_end());
1021   }
1022 
captures_begin()1023   capture_const_iterator captures_begin() const {
1024     return isLambda() ? getLambdaData().Captures : nullptr;
1025   }
1026 
captures_end()1027   capture_const_iterator captures_end() const {
1028     return isLambda() ? captures_begin() + getLambdaData().NumCaptures
1029                       : nullptr;
1030   }
1031 
1032   using conversion_iterator = UnresolvedSetIterator;
1033 
conversion_begin()1034   conversion_iterator conversion_begin() const {
1035     return data().Conversions.get(getASTContext()).begin();
1036   }
1037 
conversion_end()1038   conversion_iterator conversion_end() const {
1039     return data().Conversions.get(getASTContext()).end();
1040   }
1041 
1042   /// Removes a conversion function from this class.  The conversion
1043   /// function must currently be a member of this class.  Furthermore,
1044   /// this class must currently be in the process of being defined.
1045   void removeConversion(const NamedDecl *Old);
1046 
1047   /// Get all conversion functions visible in current class,
1048   /// including conversion function templates.
1049   llvm::iterator_range<conversion_iterator>
1050   getVisibleConversionFunctions() const;
1051 
1052   /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1053   /// which is a class with no user-declared constructors, no private
1054   /// or protected non-static data members, no base classes, and no virtual
1055   /// functions (C++ [dcl.init.aggr]p1).
isAggregate()1056   bool isAggregate() const { return data().Aggregate; }
1057 
1058   /// Whether this class has any in-class initializers
1059   /// for non-static data members (including those in anonymous unions or
1060   /// structs).
hasInClassInitializer()1061   bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1062 
1063   /// Whether this class or any of its subobjects has any members of
1064   /// reference type which would make value-initialization ill-formed.
1065   ///
1066   /// Per C++03 [dcl.init]p5:
1067   ///  - if T is a non-union class type without a user-declared constructor,
1068   ///    then every non-static data member and base-class component of T is
1069   ///    value-initialized [...] A program that calls for [...]
1070   ///    value-initialization of an entity of reference type is ill-formed.
hasUninitializedReferenceMember()1071   bool hasUninitializedReferenceMember() const {
1072     return !isUnion() && !hasUserDeclaredConstructor() &&
1073            data().HasUninitializedReferenceMember;
1074   }
1075 
1076   /// Whether this class is a POD-type (C++ [class]p4)
1077   ///
1078   /// For purposes of this function a class is POD if it is an aggregate
1079   /// that has no non-static non-POD data members, no reference data
1080   /// members, no user-defined copy assignment operator and no
1081   /// user-defined destructor.
1082   ///
1083   /// Note that this is the C++ TR1 definition of POD.
isPOD()1084   bool isPOD() const { return data().PlainOldData; }
1085 
1086   /// True if this class is C-like, without C++-specific features, e.g.
1087   /// it contains only public fields, no bases, tag kind is not 'class', etc.
1088   bool isCLike() const;
1089 
1090   /// Determine whether this is an empty class in the sense of
1091   /// (C++11 [meta.unary.prop]).
1092   ///
1093   /// The CXXRecordDecl is a class type, but not a union type,
1094   /// with no non-static data members other than bit-fields of length 0,
1095   /// no virtual member functions, no virtual base classes,
1096   /// and no base class B for which is_empty<B>::value is false.
1097   ///
1098   /// \note This does NOT include a check for union-ness.
isEmpty()1099   bool isEmpty() const { return data().Empty; }
1100 
hasPrivateFields()1101   bool hasPrivateFields() const {
1102     return data().HasPrivateFields;
1103   }
1104 
hasProtectedFields()1105   bool hasProtectedFields() const {
1106     return data().HasProtectedFields;
1107   }
1108 
1109   /// Determine whether this class has direct non-static data members.
hasDirectFields()1110   bool hasDirectFields() const {
1111     auto &D = data();
1112     return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
1113   }
1114 
1115   /// Whether this class is polymorphic (C++ [class.virtual]),
1116   /// which means that the class contains or inherits a virtual function.
isPolymorphic()1117   bool isPolymorphic() const { return data().Polymorphic; }
1118 
1119   /// Determine whether this class has a pure virtual function.
1120   ///
1121   /// The class is is abstract per (C++ [class.abstract]p2) if it declares
1122   /// a pure virtual function or inherits a pure virtual function that is
1123   /// not overridden.
isAbstract()1124   bool isAbstract() const { return data().Abstract; }
1125 
1126   /// Determine whether this class is standard-layout per
1127   /// C++ [class]p7.
isStandardLayout()1128   bool isStandardLayout() const { return data().IsStandardLayout; }
1129 
1130   /// Determine whether this class was standard-layout per
1131   /// C++11 [class]p7, specifically using the C++11 rules without any DRs.
isCXX11StandardLayout()1132   bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
1133 
1134   /// Determine whether this class, or any of its class subobjects,
1135   /// contains a mutable field.
hasMutableFields()1136   bool hasMutableFields() const { return data().HasMutableFields; }
1137 
1138   /// Determine whether this class has any variant members.
hasVariantMembers()1139   bool hasVariantMembers() const { return data().HasVariantMembers; }
1140 
1141   /// Determine whether this class has a trivial default constructor
1142   /// (C++11 [class.ctor]p5).
hasTrivialDefaultConstructor()1143   bool hasTrivialDefaultConstructor() const {
1144     return hasDefaultConstructor() &&
1145            (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1146   }
1147 
1148   /// Determine whether this class has a non-trivial default constructor
1149   /// (C++11 [class.ctor]p5).
hasNonTrivialDefaultConstructor()1150   bool hasNonTrivialDefaultConstructor() const {
1151     return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1152            (needsImplicitDefaultConstructor() &&
1153             !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1154   }
1155 
1156   /// Determine whether this class has at least one constexpr constructor
1157   /// other than the copy or move constructors.
hasConstexprNonCopyMoveConstructor()1158   bool hasConstexprNonCopyMoveConstructor() const {
1159     return data().HasConstexprNonCopyMoveConstructor ||
1160            (needsImplicitDefaultConstructor() &&
1161             defaultedDefaultConstructorIsConstexpr());
1162   }
1163 
1164   /// Determine whether a defaulted default constructor for this class
1165   /// would be constexpr.
defaultedDefaultConstructorIsConstexpr()1166   bool defaultedDefaultConstructorIsConstexpr() const {
1167     return data().DefaultedDefaultConstructorIsConstexpr &&
1168            (!isUnion() || hasInClassInitializer() || !hasVariantMembers() ||
1169             getASTContext().getLangOpts().CPlusPlus2a);
1170   }
1171 
1172   /// Determine whether this class has a constexpr default constructor.
hasConstexprDefaultConstructor()1173   bool hasConstexprDefaultConstructor() const {
1174     return data().HasConstexprDefaultConstructor ||
1175            (needsImplicitDefaultConstructor() &&
1176             defaultedDefaultConstructorIsConstexpr());
1177   }
1178 
1179   /// Determine whether this class has a trivial copy constructor
1180   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
hasTrivialCopyConstructor()1181   bool hasTrivialCopyConstructor() const {
1182     return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1183   }
1184 
hasTrivialCopyConstructorForCall()1185   bool hasTrivialCopyConstructorForCall() const {
1186     return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
1187   }
1188 
1189   /// Determine whether this class has a non-trivial copy constructor
1190   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
hasNonTrivialCopyConstructor()1191   bool hasNonTrivialCopyConstructor() const {
1192     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1193            !hasTrivialCopyConstructor();
1194   }
1195 
hasNonTrivialCopyConstructorForCall()1196   bool hasNonTrivialCopyConstructorForCall() const {
1197     return (data().DeclaredNonTrivialSpecialMembersForCall &
1198             SMF_CopyConstructor) ||
1199            !hasTrivialCopyConstructorForCall();
1200   }
1201 
1202   /// Determine whether this class has a trivial move constructor
1203   /// (C++11 [class.copy]p12)
hasTrivialMoveConstructor()1204   bool hasTrivialMoveConstructor() const {
1205     return hasMoveConstructor() &&
1206            (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1207   }
1208 
hasTrivialMoveConstructorForCall()1209   bool hasTrivialMoveConstructorForCall() const {
1210     return hasMoveConstructor() &&
1211            (data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
1212   }
1213 
1214   /// Determine whether this class has a non-trivial move constructor
1215   /// (C++11 [class.copy]p12)
hasNonTrivialMoveConstructor()1216   bool hasNonTrivialMoveConstructor() const {
1217     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1218            (needsImplicitMoveConstructor() &&
1219             !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1220   }
1221 
hasNonTrivialMoveConstructorForCall()1222   bool hasNonTrivialMoveConstructorForCall() const {
1223     return (data().DeclaredNonTrivialSpecialMembersForCall &
1224             SMF_MoveConstructor) ||
1225            (needsImplicitMoveConstructor() &&
1226             !(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
1227   }
1228 
1229   /// Determine whether this class has a trivial copy assignment operator
1230   /// (C++ [class.copy]p11, C++11 [class.copy]p25)
hasTrivialCopyAssignment()1231   bool hasTrivialCopyAssignment() const {
1232     return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1233   }
1234 
1235   /// Determine whether this class has a non-trivial copy assignment
1236   /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
hasNonTrivialCopyAssignment()1237   bool hasNonTrivialCopyAssignment() const {
1238     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1239            !hasTrivialCopyAssignment();
1240   }
1241 
1242   /// Determine whether this class has a trivial move assignment operator
1243   /// (C++11 [class.copy]p25)
hasTrivialMoveAssignment()1244   bool hasTrivialMoveAssignment() const {
1245     return hasMoveAssignment() &&
1246            (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1247   }
1248 
1249   /// Determine whether this class has a non-trivial move assignment
1250   /// operator (C++11 [class.copy]p25)
hasNonTrivialMoveAssignment()1251   bool hasNonTrivialMoveAssignment() const {
1252     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1253            (needsImplicitMoveAssignment() &&
1254             !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1255   }
1256 
1257   /// Determine whether a defaulted default constructor for this class
1258   /// would be constexpr.
defaultedDestructorIsConstexpr()1259   bool defaultedDestructorIsConstexpr() const {
1260     return data().DefaultedDestructorIsConstexpr &&
1261            getASTContext().getLangOpts().CPlusPlus2a;
1262   }
1263 
1264   /// Determine whether this class has a constexpr destructor.
1265   bool hasConstexprDestructor() const;
1266 
1267   /// Determine whether this class has a trivial destructor
1268   /// (C++ [class.dtor]p3)
hasTrivialDestructor()1269   bool hasTrivialDestructor() const {
1270     return data().HasTrivialSpecialMembers & SMF_Destructor;
1271   }
1272 
hasTrivialDestructorForCall()1273   bool hasTrivialDestructorForCall() const {
1274     return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
1275   }
1276 
1277   /// Determine whether this class has a non-trivial destructor
1278   /// (C++ [class.dtor]p3)
hasNonTrivialDestructor()1279   bool hasNonTrivialDestructor() const {
1280     return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1281   }
1282 
hasNonTrivialDestructorForCall()1283   bool hasNonTrivialDestructorForCall() const {
1284     return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
1285   }
1286 
setHasTrivialSpecialMemberForCall()1287   void setHasTrivialSpecialMemberForCall() {
1288     data().HasTrivialSpecialMembersForCall =
1289         (SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
1290   }
1291 
1292   /// Determine whether declaring a const variable with this type is ok
1293   /// per core issue 253.
allowConstDefaultInit()1294   bool allowConstDefaultInit() const {
1295     return !data().HasUninitializedFields ||
1296            !(data().HasDefaultedDefaultConstructor ||
1297              needsImplicitDefaultConstructor());
1298   }
1299 
1300   /// Determine whether this class has a destructor which has no
1301   /// semantic effect.
1302   ///
1303   /// Any such destructor will be trivial, public, defaulted and not deleted,
1304   /// and will call only irrelevant destructors.
hasIrrelevantDestructor()1305   bool hasIrrelevantDestructor() const {
1306     return data().HasIrrelevantDestructor;
1307   }
1308 
1309   /// Determine whether this class has a non-literal or/ volatile type
1310   /// non-static data member or base class.
hasNonLiteralTypeFieldsOrBases()1311   bool hasNonLiteralTypeFieldsOrBases() const {
1312     return data().HasNonLiteralTypeFieldsOrBases;
1313   }
1314 
1315   /// Determine whether this class has a using-declaration that names
1316   /// a user-declared base class constructor.
hasInheritedConstructor()1317   bool hasInheritedConstructor() const {
1318     return data().HasInheritedConstructor;
1319   }
1320 
1321   /// Determine whether this class has a using-declaration that names
1322   /// a base class assignment operator.
hasInheritedAssignment()1323   bool hasInheritedAssignment() const {
1324     return data().HasInheritedAssignment;
1325   }
1326 
1327   /// Determine whether this class is considered trivially copyable per
1328   /// (C++11 [class]p6).
1329   bool isTriviallyCopyable() const;
1330 
1331   /// Determine whether this class is considered trivial.
1332   ///
1333   /// C++11 [class]p6:
1334   ///    "A trivial class is a class that has a trivial default constructor and
1335   ///    is trivially copyable."
isTrivial()1336   bool isTrivial() const {
1337     return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1338   }
1339 
1340   /// Determine whether this class is a literal type.
1341   ///
1342   /// C++11 [basic.types]p10:
1343   ///   A class type that has all the following properties:
1344   ///     - it has a trivial destructor
1345   ///     - every constructor call and full-expression in the
1346   ///       brace-or-equal-intializers for non-static data members (if any) is
1347   ///       a constant expression.
1348   ///     - it is an aggregate type or has at least one constexpr constructor
1349   ///       or constructor template that is not a copy or move constructor, and
1350   ///     - all of its non-static data members and base classes are of literal
1351   ///       types
1352   ///
1353   /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
1354   /// treating types with trivial default constructors as literal types.
1355   ///
1356   /// Only in C++17 and beyond, are lambdas literal types.
isLiteral()1357   bool isLiteral() const {
1358     ASTContext &Ctx = getASTContext();
1359     return (Ctx.getLangOpts().CPlusPlus2a ? hasConstexprDestructor()
1360                                           : hasTrivialDestructor()) &&
1361            (!isLambda() || Ctx.getLangOpts().CPlusPlus17) &&
1362            !hasNonLiteralTypeFieldsOrBases() &&
1363            (isAggregate() || isLambda() ||
1364             hasConstexprNonCopyMoveConstructor() ||
1365             hasTrivialDefaultConstructor());
1366   }
1367 
1368   /// If this record is an instantiation of a member class,
1369   /// retrieves the member class from which it was instantiated.
1370   ///
1371   /// This routine will return non-null for (non-templated) member
1372   /// classes of class templates. For example, given:
1373   ///
1374   /// \code
1375   /// template<typename T>
1376   /// struct X {
1377   ///   struct A { };
1378   /// };
1379   /// \endcode
1380   ///
1381   /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1382   /// whose parent is the class template specialization X<int>. For
1383   /// this declaration, getInstantiatedFromMemberClass() will return
1384   /// the CXXRecordDecl X<T>::A. When a complete definition of
1385   /// X<int>::A is required, it will be instantiated from the
1386   /// declaration returned by getInstantiatedFromMemberClass().
1387   CXXRecordDecl *getInstantiatedFromMemberClass() const;
1388 
1389   /// If this class is an instantiation of a member class of a
1390   /// class template specialization, retrieves the member specialization
1391   /// information.
1392   MemberSpecializationInfo *getMemberSpecializationInfo() const;
1393 
1394   /// Specify that this record is an instantiation of the
1395   /// member class \p RD.
1396   void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1397                                      TemplateSpecializationKind TSK);
1398 
1399   /// Retrieves the class template that is described by this
1400   /// class declaration.
1401   ///
1402   /// Every class template is represented as a ClassTemplateDecl and a
1403   /// CXXRecordDecl. The former contains template properties (such as
1404   /// the template parameter lists) while the latter contains the
1405   /// actual description of the template's
1406   /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1407   /// CXXRecordDecl that from a ClassTemplateDecl, while
1408   /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1409   /// a CXXRecordDecl.
1410   ClassTemplateDecl *getDescribedClassTemplate() const;
1411 
1412   void setDescribedClassTemplate(ClassTemplateDecl *Template);
1413 
1414   /// Determine whether this particular class is a specialization or
1415   /// instantiation of a class template or member class of a class template,
1416   /// and how it was instantiated or specialized.
1417   TemplateSpecializationKind getTemplateSpecializationKind() const;
1418 
1419   /// Set the kind of specialization or template instantiation this is.
1420   void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1421 
1422   /// Retrieve the record declaration from which this record could be
1423   /// instantiated. Returns null if this class is not a template instantiation.
1424   const CXXRecordDecl *getTemplateInstantiationPattern() const;
1425 
getTemplateInstantiationPattern()1426   CXXRecordDecl *getTemplateInstantiationPattern() {
1427     return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
1428                                            ->getTemplateInstantiationPattern());
1429   }
1430 
1431   /// Returns the destructor decl for this class.
1432   CXXDestructorDecl *getDestructor() const;
1433 
1434   /// Returns true if the class destructor, or any implicitly invoked
1435   /// destructors are marked noreturn.
1436   bool isAnyDestructorNoReturn() const;
1437 
1438   /// If the class is a local class [class.local], returns
1439   /// the enclosing function declaration.
isLocalClass()1440   const FunctionDecl *isLocalClass() const {
1441     if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1442       return RD->isLocalClass();
1443 
1444     return dyn_cast<FunctionDecl>(getDeclContext());
1445   }
1446 
isLocalClass()1447   FunctionDecl *isLocalClass() {
1448     return const_cast<FunctionDecl*>(
1449         const_cast<const CXXRecordDecl*>(this)->isLocalClass());
1450   }
1451 
1452   /// Determine whether this dependent class is a current instantiation,
1453   /// when viewed from within the given context.
1454   bool isCurrentInstantiation(const DeclContext *CurContext) const;
1455 
1456   /// Determine whether this class is derived from the class \p Base.
1457   ///
1458   /// This routine only determines whether this class is derived from \p Base,
1459   /// but does not account for factors that may make a Derived -> Base class
1460   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1461   /// base class subobjects.
1462   ///
1463   /// \param Base the base class we are searching for.
1464   ///
1465   /// \returns true if this class is derived from Base, false otherwise.
1466   bool isDerivedFrom(const CXXRecordDecl *Base) const;
1467 
1468   /// Determine whether this class is derived from the type \p Base.
1469   ///
1470   /// This routine only determines whether this class is derived from \p Base,
1471   /// but does not account for factors that may make a Derived -> Base class
1472   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1473   /// base class subobjects.
1474   ///
1475   /// \param Base the base class we are searching for.
1476   ///
1477   /// \param Paths will contain the paths taken from the current class to the
1478   /// given \p Base class.
1479   ///
1480   /// \returns true if this class is derived from \p Base, false otherwise.
1481   ///
1482   /// \todo add a separate parameter to configure IsDerivedFrom, rather than
1483   /// tangling input and output in \p Paths
1484   bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1485 
1486   /// Determine whether this class is virtually derived from
1487   /// the class \p Base.
1488   ///
1489   /// This routine only determines whether this class is virtually
1490   /// derived from \p Base, but does not account for factors that may
1491   /// make a Derived -> Base class ill-formed, such as
1492   /// private/protected inheritance or multiple, ambiguous base class
1493   /// subobjects.
1494   ///
1495   /// \param Base the base class we are searching for.
1496   ///
1497   /// \returns true if this class is virtually derived from Base,
1498   /// false otherwise.
1499   bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1500 
1501   /// Determine whether this class is provably not derived from
1502   /// the type \p Base.
1503   bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1504 
1505   /// Function type used by forallBases() as a callback.
1506   ///
1507   /// \param BaseDefinition the definition of the base class
1508   ///
1509   /// \returns true if this base matched the search criteria
1510   using ForallBasesCallback =
1511       llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
1512 
1513   /// Determines if the given callback holds for all the direct
1514   /// or indirect base classes of this type.
1515   ///
1516   /// The class itself does not count as a base class.  This routine
1517   /// returns false if the class has non-computable base classes.
1518   ///
1519   /// \param BaseMatches Callback invoked for each (direct or indirect) base
1520   /// class of this type, or if \p AllowShortCircuit is true then until a call
1521   /// returns false.
1522   ///
1523   /// \param AllowShortCircuit if false, forces the callback to be called
1524   /// for every base class, even if a dependent or non-matching base was
1525   /// found.
1526   bool forallBases(ForallBasesCallback BaseMatches,
1527                    bool AllowShortCircuit = true) const;
1528 
1529   /// Function type used by lookupInBases() to determine whether a
1530   /// specific base class subobject matches the lookup criteria.
1531   ///
1532   /// \param Specifier the base-class specifier that describes the inheritance
1533   /// from the base class we are trying to match.
1534   ///
1535   /// \param Path the current path, from the most-derived class down to the
1536   /// base named by the \p Specifier.
1537   ///
1538   /// \returns true if this base matched the search criteria, false otherwise.
1539   using BaseMatchesCallback =
1540       llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
1541                               CXXBasePath &Path)>;
1542 
1543   /// Look for entities within the base classes of this C++ class,
1544   /// transitively searching all base class subobjects.
1545   ///
1546   /// This routine uses the callback function \p BaseMatches to find base
1547   /// classes meeting some search criteria, walking all base class subobjects
1548   /// and populating the given \p Paths structure with the paths through the
1549   /// inheritance hierarchy that resulted in a match. On a successful search,
1550   /// the \p Paths structure can be queried to retrieve the matching paths and
1551   /// to determine if there were any ambiguities.
1552   ///
1553   /// \param BaseMatches callback function used to determine whether a given
1554   /// base matches the user-defined search criteria.
1555   ///
1556   /// \param Paths used to record the paths from this class to its base class
1557   /// subobjects that match the search criteria.
1558   ///
1559   /// \param LookupInDependent can be set to true to extend the search to
1560   /// dependent base classes.
1561   ///
1562   /// \returns true if there exists any path from this class to a base class
1563   /// subobject that matches the search criteria.
1564   bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
1565                      bool LookupInDependent = false) const;
1566 
1567   /// Base-class lookup callback that determines whether the given
1568   /// base class specifier refers to a specific class declaration.
1569   ///
1570   /// This callback can be used with \c lookupInBases() to determine whether
1571   /// a given derived class has is a base class subobject of a particular type.
1572   /// The base record pointer should refer to the canonical CXXRecordDecl of the
1573   /// base class that we are searching for.
1574   static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1575                             CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
1576 
1577   /// Base-class lookup callback that determines whether the
1578   /// given base class specifier refers to a specific class
1579   /// declaration and describes virtual derivation.
1580   ///
1581   /// This callback can be used with \c lookupInBases() to determine
1582   /// whether a given derived class has is a virtual base class
1583   /// subobject of a particular type.  The base record pointer should
1584   /// refer to the canonical CXXRecordDecl of the base class that we
1585   /// are searching for.
1586   static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1587                                    CXXBasePath &Path,
1588                                    const CXXRecordDecl *BaseRecord);
1589 
1590   /// Base-class lookup callback that determines whether there exists
1591   /// a tag with the given name.
1592   ///
1593   /// This callback can be used with \c lookupInBases() to find tag members
1594   /// of the given name within a C++ class hierarchy.
1595   static bool FindTagMember(const CXXBaseSpecifier *Specifier,
1596                             CXXBasePath &Path, DeclarationName Name);
1597 
1598   /// Base-class lookup callback that determines whether there exists
1599   /// a member with the given name.
1600   ///
1601   /// This callback can be used with \c lookupInBases() to find members
1602   /// of the given name within a C++ class hierarchy.
1603   static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
1604                                  CXXBasePath &Path, DeclarationName Name);
1605 
1606   /// Base-class lookup callback that determines whether there exists
1607   /// a member with the given name.
1608   ///
1609   /// This callback can be used with \c lookupInBases() to find members
1610   /// of the given name within a C++ class hierarchy, including dependent
1611   /// classes.
1612   static bool
1613   FindOrdinaryMemberInDependentClasses(const CXXBaseSpecifier *Specifier,
1614                                        CXXBasePath &Path, DeclarationName Name);
1615 
1616   /// Base-class lookup callback that determines whether there exists
1617   /// an OpenMP declare reduction member with the given name.
1618   ///
1619   /// This callback can be used with \c lookupInBases() to find members
1620   /// of the given name within a C++ class hierarchy.
1621   static bool FindOMPReductionMember(const CXXBaseSpecifier *Specifier,
1622                                      CXXBasePath &Path, DeclarationName Name);
1623 
1624   /// Base-class lookup callback that determines whether there exists
1625   /// an OpenMP declare mapper member with the given name.
1626   ///
1627   /// This callback can be used with \c lookupInBases() to find members
1628   /// of the given name within a C++ class hierarchy.
1629   static bool FindOMPMapperMember(const CXXBaseSpecifier *Specifier,
1630                                   CXXBasePath &Path, DeclarationName Name);
1631 
1632   /// Base-class lookup callback that determines whether there exists
1633   /// a member with the given name that can be used in a nested-name-specifier.
1634   ///
1635   /// This callback can be used with \c lookupInBases() to find members of
1636   /// the given name within a C++ class hierarchy that can occur within
1637   /// nested-name-specifiers.
1638   static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
1639                                             CXXBasePath &Path,
1640                                             DeclarationName Name);
1641 
1642   /// Retrieve the final overriders for each virtual member
1643   /// function in the class hierarchy where this class is the
1644   /// most-derived class in the class hierarchy.
1645   void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1646 
1647   /// Get the indirect primary bases for this class.
1648   void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1649 
1650   /// Performs an imprecise lookup of a dependent name in this class.
1651   ///
1652   /// This function does not follow strict semantic rules and should be used
1653   /// only when lookup rules can be relaxed, e.g. indexing.
1654   std::vector<const NamedDecl *>
1655   lookupDependentName(const DeclarationName &Name,
1656                       llvm::function_ref<bool(const NamedDecl *ND)> Filter);
1657 
1658   /// Renders and displays an inheritance diagram
1659   /// for this C++ class and all of its base classes (transitively) using
1660   /// GraphViz.
1661   void viewInheritance(ASTContext& Context) const;
1662 
1663   /// Calculates the access of a decl that is reached
1664   /// along a path.
MergeAccess(AccessSpecifier PathAccess,AccessSpecifier DeclAccess)1665   static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1666                                      AccessSpecifier DeclAccess) {
1667     assert(DeclAccess != AS_none);
1668     if (DeclAccess == AS_private) return AS_none;
1669     return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1670   }
1671 
1672   /// Indicates that the declaration of a defaulted or deleted special
1673   /// member function is now complete.
1674   void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1675 
1676   void setTrivialForCallFlags(CXXMethodDecl *MD);
1677 
1678   /// Indicates that the definition of this class is now complete.
1679   void completeDefinition() override;
1680 
1681   /// Indicates that the definition of this class is now complete,
1682   /// and provides a final overrider map to help determine
1683   ///
1684   /// \param FinalOverriders The final overrider map for this class, which can
1685   /// be provided as an optimization for abstract-class checking. If NULL,
1686   /// final overriders will be computed if they are needed to complete the
1687   /// definition.
1688   void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1689 
1690   /// Determine whether this class may end up being abstract, even though
1691   /// it is not yet known to be abstract.
1692   ///
1693   /// \returns true if this class is not known to be abstract but has any
1694   /// base classes that are abstract. In this case, \c completeDefinition()
1695   /// will need to compute final overriders to determine whether the class is
1696   /// actually abstract.
1697   bool mayBeAbstract() const;
1698 
1699   /// If this is the closure type of a lambda expression, retrieve the
1700   /// number to be used for name mangling in the Itanium C++ ABI.
1701   ///
1702   /// Zero indicates that this closure type has internal linkage, so the
1703   /// mangling number does not matter, while a non-zero value indicates which
1704   /// lambda expression this is in this particular context.
getLambdaManglingNumber()1705   unsigned getLambdaManglingNumber() const {
1706     assert(isLambda() && "Not a lambda closure type!");
1707     return getLambdaData().ManglingNumber;
1708   }
1709 
1710   /// The lambda is known to has internal linkage no matter whether it has name
1711   /// mangling number.
hasKnownLambdaInternalLinkage()1712   bool hasKnownLambdaInternalLinkage() const {
1713     assert(isLambda() && "Not a lambda closure type!");
1714     return getLambdaData().HasKnownInternalLinkage;
1715   }
1716 
1717   /// Retrieve the declaration that provides additional context for a
1718   /// lambda, when the normal declaration context is not specific enough.
1719   ///
1720   /// Certain contexts (default arguments of in-class function parameters and
1721   /// the initializers of data members) have separate name mangling rules for
1722   /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1723   /// the declaration in which the lambda occurs, e.g., the function parameter
1724   /// or the non-static data member. Otherwise, it returns NULL to imply that
1725   /// the declaration context suffices.
1726   Decl *getLambdaContextDecl() const;
1727 
1728   /// Set the mangling number and context declaration for a lambda
1729   /// class.
1730   void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl,
1731                          bool HasKnownInternalLinkage = false) {
1732     assert(isLambda() && "Not a lambda closure type!");
1733     getLambdaData().ManglingNumber = ManglingNumber;
1734     getLambdaData().ContextDecl = ContextDecl;
1735     getLambdaData().HasKnownInternalLinkage = HasKnownInternalLinkage;
1736   }
1737 
1738   /// Returns the inheritance model used for this record.
1739   MSInheritanceModel getMSInheritanceModel() const;
1740 
1741   /// Calculate what the inheritance model would be for this class.
1742   MSInheritanceModel calculateInheritanceModel() const;
1743 
1744   /// In the Microsoft C++ ABI, use zero for the field offset of a null data
1745   /// member pointer if we can guarantee that zero is not a valid field offset,
1746   /// or if the member pointer has multiple fields.  Polymorphic classes have a
1747   /// vfptr at offset zero, so we can use zero for null.  If there are multiple
1748   /// fields, we can use zero even if it is a valid field offset because
1749   /// null-ness testing will check the other fields.
1750   bool nullFieldOffsetIsZero() const;
1751 
1752   /// Controls when vtordisps will be emitted if this record is used as a
1753   /// virtual base.
1754   MSVtorDispMode getMSVtorDispMode() const;
1755 
1756   /// Determine whether this lambda expression was known to be dependent
1757   /// at the time it was created, even if its context does not appear to be
1758   /// dependent.
1759   ///
1760   /// This flag is a workaround for an issue with parsing, where default
1761   /// arguments are parsed before their enclosing function declarations have
1762   /// been created. This means that any lambda expressions within those
1763   /// default arguments will have as their DeclContext the context enclosing
1764   /// the function declaration, which may be non-dependent even when the
1765   /// function declaration itself is dependent. This flag indicates when we
1766   /// know that the lambda is dependent despite that.
isDependentLambda()1767   bool isDependentLambda() const {
1768     return isLambda() && getLambdaData().Dependent;
1769   }
1770 
getLambdaTypeInfo()1771   TypeSourceInfo *getLambdaTypeInfo() const {
1772     return getLambdaData().MethodTyInfo;
1773   }
1774 
1775   // Determine whether this type is an Interface Like type for
1776   // __interface inheritance purposes.
1777   bool isInterfaceLike() const;
1778 
classof(const Decl * D)1779   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1780   static bool classofKind(Kind K) {
1781     return K >= firstCXXRecord && K <= lastCXXRecord;
1782   }
1783 };
1784 
1785 /// Store information needed for an explicit specifier.
1786 /// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl.
1787 class ExplicitSpecifier {
1788   llvm::PointerIntPair<Expr *, 2, ExplicitSpecKind> ExplicitSpec{
1789       nullptr, ExplicitSpecKind::ResolvedFalse};
1790 
1791 public:
1792   ExplicitSpecifier() = default;
ExplicitSpecifier(Expr * Expression,ExplicitSpecKind Kind)1793   ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind)
1794       : ExplicitSpec(Expression, Kind) {}
getKind()1795   ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); }
getExpr()1796   const Expr *getExpr() const { return ExplicitSpec.getPointer(); }
getExpr()1797   Expr *getExpr() { return ExplicitSpec.getPointer(); }
1798 
1799   /// Determine if the declaration had an explicit specifier of any kind.
isSpecified()1800   bool isSpecified() const {
1801     return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse ||
1802            ExplicitSpec.getPointer();
1803   }
1804 
1805   /// Check for equivalence of explicit specifiers.
1806   /// \return true if the explicit specifier are equivalent, false otherwise.
1807   bool isEquivalent(const ExplicitSpecifier Other) const;
1808   /// Determine whether this specifier is known to correspond to an explicit
1809   /// declaration. Returns false if the specifier is absent or has an
1810   /// expression that is value-dependent or evaluates to false.
isExplicit()1811   bool isExplicit() const {
1812     return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue;
1813   }
1814   /// Determine if the explicit specifier is invalid.
1815   /// This state occurs after a substitution failures.
isInvalid()1816   bool isInvalid() const {
1817     return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved &&
1818            !ExplicitSpec.getPointer();
1819   }
setKind(ExplicitSpecKind Kind)1820   void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); }
setExpr(Expr * E)1821   void setExpr(Expr *E) { ExplicitSpec.setPointer(E); }
1822   // Retrieve the explicit specifier in the given declaration, if any.
1823   static ExplicitSpecifier getFromDecl(FunctionDecl *Function);
getFromDecl(const FunctionDecl * Function)1824   static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) {
1825     return getFromDecl(const_cast<FunctionDecl *>(Function));
1826   }
Invalid()1827   static ExplicitSpecifier Invalid() {
1828     return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved);
1829   }
1830 };
1831 
1832 /// Represents a C++ deduction guide declaration.
1833 ///
1834 /// \code
1835 /// template<typename T> struct A { A(); A(T); };
1836 /// A() -> A<int>;
1837 /// \endcode
1838 ///
1839 /// In this example, there will be an explicit deduction guide from the
1840 /// second line, and implicit deduction guide templates synthesized from
1841 /// the constructors of \c A.
1842 class CXXDeductionGuideDecl : public FunctionDecl {
1843   void anchor() override;
1844 
1845 private:
CXXDeductionGuideDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,ExplicitSpecifier ES,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,SourceLocation EndLocation)1846   CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1847                         ExplicitSpecifier ES,
1848                         const DeclarationNameInfo &NameInfo, QualType T,
1849                         TypeSourceInfo *TInfo, SourceLocation EndLocation)
1850       : FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
1851                      SC_None, false, CSK_unspecified),
1852         ExplicitSpec(ES) {
1853     if (EndLocation.isValid())
1854       setRangeEnd(EndLocation);
1855     setIsCopyDeductionCandidate(false);
1856   }
1857 
1858   ExplicitSpecifier ExplicitSpec;
setExplicitSpecifier(ExplicitSpecifier ES)1859   void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
1860 
1861 public:
1862   friend class ASTDeclReader;
1863   friend class ASTDeclWriter;
1864 
1865   static CXXDeductionGuideDecl *
1866   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1867          ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
1868          TypeSourceInfo *TInfo, SourceLocation EndLocation);
1869 
1870   static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1871 
getExplicitSpecifier()1872   ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; }
getExplicitSpecifier()1873   const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; }
1874 
1875   /// Return true if the declartion is already resolved to be explicit.
isExplicit()1876   bool isExplicit() const { return ExplicitSpec.isExplicit(); }
1877 
1878   /// Get the template for which this guide performs deduction.
getDeducedTemplate()1879   TemplateDecl *getDeducedTemplate() const {
1880     return getDeclName().getCXXDeductionGuideTemplate();
1881   }
1882 
1883   void setIsCopyDeductionCandidate(bool isCDC = true) {
1884     FunctionDeclBits.IsCopyDeductionCandidate = isCDC;
1885   }
1886 
isCopyDeductionCandidate()1887   bool isCopyDeductionCandidate() const {
1888     return FunctionDeclBits.IsCopyDeductionCandidate;
1889   }
1890 
1891   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1892   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1893   static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
1894 };
1895 
1896 /// \brief Represents the body of a requires-expression.
1897 ///
1898 /// This decl exists merely to serve as the DeclContext for the local
1899 /// parameters of the requires expression as well as other declarations inside
1900 /// it.
1901 ///
1902 /// \code
1903 /// template<typename T> requires requires (T t) { {t++} -> regular; }
1904 /// \endcode
1905 ///
1906 /// In this example, a RequiresExpr object will be generated for the expression,
1907 /// and a RequiresExprBodyDecl will be created to hold the parameter t and the
1908 /// template argument list imposed by the compound requirement.
1909 class RequiresExprBodyDecl : public Decl, public DeclContext {
RequiresExprBodyDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc)1910   RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc)
1911       : Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {}
1912 
1913 public:
1914   friend class ASTDeclReader;
1915   friend class ASTDeclWriter;
1916 
1917   static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC,
1918                                       SourceLocation StartLoc);
1919 
1920   static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1921 
1922   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1923   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1924   static bool classofKind(Kind K) { return K == RequiresExprBody; }
1925 };
1926 
1927 /// Represents a static or instance method of a struct/union/class.
1928 ///
1929 /// In the terminology of the C++ Standard, these are the (static and
1930 /// non-static) member functions, whether virtual or not.
1931 class CXXMethodDecl : public FunctionDecl {
1932   void anchor() override;
1933 
1934 protected:
1935   CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
1936                 SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
1937                 QualType T, TypeSourceInfo *TInfo, StorageClass SC,
1938                 bool isInline, ConstexprSpecKind ConstexprKind,
1939                 SourceLocation EndLocation,
1940                 Expr *TrailingRequiresClause = nullptr)
FunctionDecl(DK,C,RD,StartLoc,NameInfo,T,TInfo,SC,isInline,ConstexprKind,TrailingRequiresClause)1941       : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, isInline,
1942                      ConstexprKind, TrailingRequiresClause) {
1943     if (EndLocation.isValid())
1944       setRangeEnd(EndLocation);
1945   }
1946 
1947 public:
1948   static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
1949                                SourceLocation StartLoc,
1950                                const DeclarationNameInfo &NameInfo, QualType T,
1951                                TypeSourceInfo *TInfo, StorageClass SC,
1952                                bool isInline, ConstexprSpecKind ConstexprKind,
1953                                SourceLocation EndLocation,
1954                                Expr *TrailingRequiresClause = nullptr);
1955 
1956   static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1957 
1958   bool isStatic() const;
isInstance()1959   bool isInstance() const { return !isStatic(); }
1960 
1961   /// Returns true if the given operator is implicitly static in a record
1962   /// context.
isStaticOverloadedOperator(OverloadedOperatorKind OOK)1963   static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
1964     // [class.free]p1:
1965     // Any allocation function for a class T is a static member
1966     // (even if not explicitly declared static).
1967     // [class.free]p6 Any deallocation function for a class X is a static member
1968     // (even if not explicitly declared static).
1969     return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
1970            OOK == OO_Array_Delete;
1971   }
1972 
isConst()1973   bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
isVolatile()1974   bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
1975 
isVirtual()1976   bool isVirtual() const {
1977     CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
1978 
1979     // Member function is virtual if it is marked explicitly so, or if it is
1980     // declared in __interface -- then it is automatically pure virtual.
1981     if (CD->isVirtualAsWritten() || CD->isPure())
1982       return true;
1983 
1984     return CD->size_overridden_methods() != 0;
1985   }
1986 
1987   /// If it's possible to devirtualize a call to this method, return the called
1988   /// function. Otherwise, return null.
1989 
1990   /// \param Base The object on which this virtual function is called.
1991   /// \param IsAppleKext True if we are compiling for Apple kext.
1992   CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
1993 
getDevirtualizedMethod(const Expr * Base,bool IsAppleKext)1994   const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
1995                                               bool IsAppleKext) const {
1996     return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
1997         Base, IsAppleKext);
1998   }
1999 
2000   /// Determine whether this is a usual deallocation function (C++
2001   /// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
2002   /// delete[] operator with a particular signature. Populates \p PreventedBy
2003   /// with the declarations of the functions of the same kind if they were the
2004   /// reason for this function returning false. This is used by
2005   /// Sema::isUsualDeallocationFunction to reconsider the answer based on the
2006   /// context.
2007   bool isUsualDeallocationFunction(
2008       SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
2009 
2010   /// Determine whether this is a copy-assignment operator, regardless
2011   /// of whether it was declared implicitly or explicitly.
2012   bool isCopyAssignmentOperator() const;
2013 
2014   /// Determine whether this is a move assignment operator.
2015   bool isMoveAssignmentOperator() const;
2016 
getCanonicalDecl()2017   CXXMethodDecl *getCanonicalDecl() override {
2018     return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
2019   }
getCanonicalDecl()2020   const CXXMethodDecl *getCanonicalDecl() const {
2021     return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2022   }
2023 
getMostRecentDecl()2024   CXXMethodDecl *getMostRecentDecl() {
2025     return cast<CXXMethodDecl>(
2026             static_cast<FunctionDecl *>(this)->getMostRecentDecl());
2027   }
getMostRecentDecl()2028   const CXXMethodDecl *getMostRecentDecl() const {
2029     return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
2030   }
2031 
2032   void addOverriddenMethod(const CXXMethodDecl *MD);
2033 
2034   using method_iterator = const CXXMethodDecl *const *;
2035 
2036   method_iterator begin_overridden_methods() const;
2037   method_iterator end_overridden_methods() const;
2038   unsigned size_overridden_methods() const;
2039 
2040   using overridden_method_range= ASTContext::overridden_method_range;
2041 
2042   overridden_method_range overridden_methods() const;
2043 
2044   /// Return the parent of this method declaration, which
2045   /// is the class in which this method is defined.
getParent()2046   const CXXRecordDecl *getParent() const {
2047     return cast<CXXRecordDecl>(FunctionDecl::getParent());
2048   }
2049 
2050   /// Return the parent of this method declaration, which
2051   /// is the class in which this method is defined.
getParent()2052   CXXRecordDecl *getParent() {
2053     return const_cast<CXXRecordDecl *>(
2054              cast<CXXRecordDecl>(FunctionDecl::getParent()));
2055   }
2056 
2057   /// Return the type of the \c this pointer.
2058   ///
2059   /// Should only be called for instance (i.e., non-static) methods. Note
2060   /// that for the call operator of a lambda closure type, this returns the
2061   /// desugared 'this' type (a pointer to the closure type), not the captured
2062   /// 'this' type.
2063   QualType getThisType() const;
2064 
2065   /// Return the type of the object pointed by \c this.
2066   ///
2067   /// See getThisType() for usage restriction.
2068   QualType getThisObjectType() const;
2069 
2070   static QualType getThisType(const FunctionProtoType *FPT,
2071                               const CXXRecordDecl *Decl);
2072 
2073   static QualType getThisObjectType(const FunctionProtoType *FPT,
2074                                     const CXXRecordDecl *Decl);
2075 
getMethodQualifiers()2076   Qualifiers getMethodQualifiers() const {
2077     return getType()->castAs<FunctionProtoType>()->getMethodQuals();
2078   }
2079 
2080   /// Retrieve the ref-qualifier associated with this method.
2081   ///
2082   /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
2083   /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
2084   /// @code
2085   /// struct X {
2086   ///   void f() &;
2087   ///   void g() &&;
2088   ///   void h();
2089   /// };
2090   /// @endcode
getRefQualifier()2091   RefQualifierKind getRefQualifier() const {
2092     return getType()->castAs<FunctionProtoType>()->getRefQualifier();
2093   }
2094 
2095   bool hasInlineBody() const;
2096 
2097   /// Determine whether this is a lambda closure type's static member
2098   /// function that is used for the result of the lambda's conversion to
2099   /// function pointer (for a lambda with no captures).
2100   ///
2101   /// The function itself, if used, will have a placeholder body that will be
2102   /// supplied by IR generation to either forward to the function call operator
2103   /// or clone the function call operator.
2104   bool isLambdaStaticInvoker() const;
2105 
2106   /// Find the method in \p RD that corresponds to this one.
2107   ///
2108   /// Find if \p RD or one of the classes it inherits from override this method.
2109   /// If so, return it. \p RD is assumed to be a subclass of the class defining
2110   /// this method (or be the class itself), unless \p MayBeBase is set to true.
2111   CXXMethodDecl *
2112   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2113                                 bool MayBeBase = false);
2114 
2115   const CXXMethodDecl *
2116   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2117                                 bool MayBeBase = false) const {
2118     return const_cast<CXXMethodDecl *>(this)
2119               ->getCorrespondingMethodInClass(RD, MayBeBase);
2120   }
2121 
2122   /// Find if \p RD declares a function that overrides this function, and if so,
2123   /// return it. Does not search base classes.
2124   CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2125                                                        bool MayBeBase = false);
2126   const CXXMethodDecl *
2127   getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2128                                         bool MayBeBase = false) const {
2129     return const_cast<CXXMethodDecl *>(this)
2130         ->getCorrespondingMethodDeclaredInClass(RD, MayBeBase);
2131   }
2132 
2133   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2134   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2135   static bool classofKind(Kind K) {
2136     return K >= firstCXXMethod && K <= lastCXXMethod;
2137   }
2138 };
2139 
2140 /// Represents a C++ base or member initializer.
2141 ///
2142 /// This is part of a constructor initializer that
2143 /// initializes one non-static member variable or one base class. For
2144 /// example, in the following, both 'A(a)' and 'f(3.14159)' are member
2145 /// initializers:
2146 ///
2147 /// \code
2148 /// class A { };
2149 /// class B : public A {
2150 ///   float f;
2151 /// public:
2152 ///   B(A& a) : A(a), f(3.14159) { }
2153 /// };
2154 /// \endcode
2155 class CXXCtorInitializer final {
2156   /// Either the base class name/delegating constructor type (stored as
2157   /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
2158   /// (IndirectFieldDecl*) being initialized.
2159   llvm::PointerUnion<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
2160       Initializee;
2161 
2162   /// The source location for the field name or, for a base initializer
2163   /// pack expansion, the location of the ellipsis.
2164   ///
2165   /// In the case of a delegating
2166   /// constructor, it will still include the type's source location as the
2167   /// Initializee points to the CXXConstructorDecl (to allow loop detection).
2168   SourceLocation MemberOrEllipsisLocation;
2169 
2170   /// The argument used to initialize the base or member, which may
2171   /// end up constructing an object (when multiple arguments are involved).
2172   Stmt *Init;
2173 
2174   /// Location of the left paren of the ctor-initializer.
2175   SourceLocation LParenLoc;
2176 
2177   /// Location of the right paren of the ctor-initializer.
2178   SourceLocation RParenLoc;
2179 
2180   /// If the initializee is a type, whether that type makes this
2181   /// a delegating initialization.
2182   unsigned IsDelegating : 1;
2183 
2184   /// If the initializer is a base initializer, this keeps track
2185   /// of whether the base is virtual or not.
2186   unsigned IsVirtual : 1;
2187 
2188   /// Whether or not the initializer is explicitly written
2189   /// in the sources.
2190   unsigned IsWritten : 1;
2191 
2192   /// If IsWritten is true, then this number keeps track of the textual order
2193   /// of this initializer in the original sources, counting from 0.
2194   unsigned SourceOrder : 13;
2195 
2196 public:
2197   /// Creates a new base-class initializer.
2198   explicit
2199   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
2200                      SourceLocation L, Expr *Init, SourceLocation R,
2201                      SourceLocation EllipsisLoc);
2202 
2203   /// Creates a new member initializer.
2204   explicit
2205   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2206                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2207                      SourceLocation R);
2208 
2209   /// Creates a new anonymous field initializer.
2210   explicit
2211   CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
2212                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2213                      SourceLocation R);
2214 
2215   /// Creates a new delegating initializer.
2216   explicit
2217   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
2218                      SourceLocation L, Expr *Init, SourceLocation R);
2219 
2220   /// \return Unique reproducible object identifier.
2221   int64_t getID(const ASTContext &Context) const;
2222 
2223   /// Determine whether this initializer is initializing a base class.
isBaseInitializer()2224   bool isBaseInitializer() const {
2225     return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
2226   }
2227 
2228   /// Determine whether this initializer is initializing a non-static
2229   /// data member.
isMemberInitializer()2230   bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
2231 
isAnyMemberInitializer()2232   bool isAnyMemberInitializer() const {
2233     return isMemberInitializer() || isIndirectMemberInitializer();
2234   }
2235 
isIndirectMemberInitializer()2236   bool isIndirectMemberInitializer() const {
2237     return Initializee.is<IndirectFieldDecl*>();
2238   }
2239 
2240   /// Determine whether this initializer is an implicit initializer
2241   /// generated for a field with an initializer defined on the member
2242   /// declaration.
2243   ///
2244   /// In-class member initializers (also known as "non-static data member
2245   /// initializations", NSDMIs) were introduced in C++11.
isInClassMemberInitializer()2246   bool isInClassMemberInitializer() const {
2247     return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
2248   }
2249 
2250   /// Determine whether this initializer is creating a delegating
2251   /// constructor.
isDelegatingInitializer()2252   bool isDelegatingInitializer() const {
2253     return Initializee.is<TypeSourceInfo*>() && IsDelegating;
2254   }
2255 
2256   /// Determine whether this initializer is a pack expansion.
isPackExpansion()2257   bool isPackExpansion() const {
2258     return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
2259   }
2260 
2261   // For a pack expansion, returns the location of the ellipsis.
getEllipsisLoc()2262   SourceLocation getEllipsisLoc() const {
2263     assert(isPackExpansion() && "Initializer is not a pack expansion");
2264     return MemberOrEllipsisLocation;
2265   }
2266 
2267   /// If this is a base class initializer, returns the type of the
2268   /// base class with location information. Otherwise, returns an NULL
2269   /// type location.
2270   TypeLoc getBaseClassLoc() const;
2271 
2272   /// If this is a base class initializer, returns the type of the base class.
2273   /// Otherwise, returns null.
2274   const Type *getBaseClass() const;
2275 
2276   /// Returns whether the base is virtual or not.
isBaseVirtual()2277   bool isBaseVirtual() const {
2278     assert(isBaseInitializer() && "Must call this on base initializer!");
2279 
2280     return IsVirtual;
2281   }
2282 
2283   /// Returns the declarator information for a base class or delegating
2284   /// initializer.
getTypeSourceInfo()2285   TypeSourceInfo *getTypeSourceInfo() const {
2286     return Initializee.dyn_cast<TypeSourceInfo *>();
2287   }
2288 
2289   /// If this is a member initializer, returns the declaration of the
2290   /// non-static data member being initialized. Otherwise, returns null.
getMember()2291   FieldDecl *getMember() const {
2292     if (isMemberInitializer())
2293       return Initializee.get<FieldDecl*>();
2294     return nullptr;
2295   }
2296 
getAnyMember()2297   FieldDecl *getAnyMember() const {
2298     if (isMemberInitializer())
2299       return Initializee.get<FieldDecl*>();
2300     if (isIndirectMemberInitializer())
2301       return Initializee.get<IndirectFieldDecl*>()->getAnonField();
2302     return nullptr;
2303   }
2304 
getIndirectMember()2305   IndirectFieldDecl *getIndirectMember() const {
2306     if (isIndirectMemberInitializer())
2307       return Initializee.get<IndirectFieldDecl*>();
2308     return nullptr;
2309   }
2310 
getMemberLocation()2311   SourceLocation getMemberLocation() const {
2312     return MemberOrEllipsisLocation;
2313   }
2314 
2315   /// Determine the source location of the initializer.
2316   SourceLocation getSourceLocation() const;
2317 
2318   /// Determine the source range covering the entire initializer.
2319   SourceRange getSourceRange() const LLVM_READONLY;
2320 
2321   /// Determine whether this initializer is explicitly written
2322   /// in the source code.
isWritten()2323   bool isWritten() const { return IsWritten; }
2324 
2325   /// Return the source position of the initializer, counting from 0.
2326   /// If the initializer was implicit, -1 is returned.
getSourceOrder()2327   int getSourceOrder() const {
2328     return IsWritten ? static_cast<int>(SourceOrder) : -1;
2329   }
2330 
2331   /// Set the source order of this initializer.
2332   ///
2333   /// This can only be called once for each initializer; it cannot be called
2334   /// on an initializer having a positive number of (implicit) array indices.
2335   ///
2336   /// This assumes that the initializer was written in the source code, and
2337   /// ensures that isWritten() returns true.
setSourceOrder(int Pos)2338   void setSourceOrder(int Pos) {
2339     assert(!IsWritten &&
2340            "setSourceOrder() used on implicit initializer");
2341     assert(SourceOrder == 0 &&
2342            "calling twice setSourceOrder() on the same initializer");
2343     assert(Pos >= 0 &&
2344            "setSourceOrder() used to make an initializer implicit");
2345     IsWritten = true;
2346     SourceOrder = static_cast<unsigned>(Pos);
2347   }
2348 
getLParenLoc()2349   SourceLocation getLParenLoc() const { return LParenLoc; }
getRParenLoc()2350   SourceLocation getRParenLoc() const { return RParenLoc; }
2351 
2352   /// Get the initializer.
getInit()2353   Expr *getInit() const { return static_cast<Expr *>(Init); }
2354 };
2355 
2356 /// Description of a constructor that was inherited from a base class.
2357 class InheritedConstructor {
2358   ConstructorUsingShadowDecl *Shadow = nullptr;
2359   CXXConstructorDecl *BaseCtor = nullptr;
2360 
2361 public:
2362   InheritedConstructor() = default;
InheritedConstructor(ConstructorUsingShadowDecl * Shadow,CXXConstructorDecl * BaseCtor)2363   InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
2364                        CXXConstructorDecl *BaseCtor)
2365       : Shadow(Shadow), BaseCtor(BaseCtor) {}
2366 
2367   explicit operator bool() const { return Shadow; }
2368 
getShadowDecl()2369   ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
getConstructor()2370   CXXConstructorDecl *getConstructor() const { return BaseCtor; }
2371 };
2372 
2373 /// Represents a C++ constructor within a class.
2374 ///
2375 /// For example:
2376 ///
2377 /// \code
2378 /// class X {
2379 /// public:
2380 ///   explicit X(int); // represented by a CXXConstructorDecl.
2381 /// };
2382 /// \endcode
2383 class CXXConstructorDecl final
2384     : public CXXMethodDecl,
2385       private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor,
2386                                     ExplicitSpecifier> {
2387   // This class stores some data in DeclContext::CXXConstructorDeclBits
2388   // to save some space. Use the provided accessors to access it.
2389 
2390   /// \name Support for base and member initializers.
2391   /// \{
2392   /// The arguments used to initialize the base or member.
2393   LazyCXXCtorInitializersPtr CtorInitializers;
2394 
2395   CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2396                      const DeclarationNameInfo &NameInfo, QualType T,
2397                      TypeSourceInfo *TInfo, ExplicitSpecifier ES, bool isInline,
2398                      bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2399                      InheritedConstructor Inherited,
2400                      Expr *TrailingRequiresClause);
2401 
2402   void anchor() override;
2403 
numTrailingObjects(OverloadToken<InheritedConstructor>)2404   size_t numTrailingObjects(OverloadToken<InheritedConstructor>) const {
2405     return CXXConstructorDeclBits.IsInheritingConstructor;
2406   }
numTrailingObjects(OverloadToken<ExplicitSpecifier>)2407   size_t numTrailingObjects(OverloadToken<ExplicitSpecifier>) const {
2408     return CXXConstructorDeclBits.HasTrailingExplicitSpecifier;
2409   }
2410 
getExplicitSpecifierInternal()2411   ExplicitSpecifier getExplicitSpecifierInternal() const {
2412     if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier)
2413       return *getTrailingObjects<ExplicitSpecifier>();
2414     return ExplicitSpecifier(
2415         nullptr, CXXConstructorDeclBits.IsSimpleExplicit
2416                      ? ExplicitSpecKind::ResolvedTrue
2417                      : ExplicitSpecKind::ResolvedFalse);
2418   }
2419 
setExplicitSpecifier(ExplicitSpecifier ES)2420   void setExplicitSpecifier(ExplicitSpecifier ES) {
2421     assert((!ES.getExpr() ||
2422             CXXConstructorDeclBits.HasTrailingExplicitSpecifier) &&
2423            "cannot set this explicit specifier. no trail-allocated space for "
2424            "explicit");
2425     if (ES.getExpr())
2426       *getCanonicalDecl()->getTrailingObjects<ExplicitSpecifier>() = ES;
2427     else
2428       CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit();
2429   }
2430 
2431   enum TraillingAllocKind {
2432     TAKInheritsConstructor = 1,
2433     TAKHasTailExplicit = 1 << 1,
2434   };
2435 
getTraillingAllocKind()2436   uint64_t getTraillingAllocKind() const {
2437     return numTrailingObjects(OverloadToken<InheritedConstructor>()) |
2438            (numTrailingObjects(OverloadToken<ExplicitSpecifier>()) << 1);
2439   }
2440 
2441 public:
2442   friend class ASTDeclReader;
2443   friend class ASTDeclWriter;
2444   friend TrailingObjects;
2445 
2446   static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
2447                                                 uint64_t AllocKind);
2448   static CXXConstructorDecl *
2449   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2450          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2451          ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
2452          ConstexprSpecKind ConstexprKind,
2453          InheritedConstructor Inherited = InheritedConstructor(),
2454          Expr *TrailingRequiresClause = nullptr);
2455 
getExplicitSpecifier()2456   ExplicitSpecifier getExplicitSpecifier() {
2457     return getCanonicalDecl()->getExplicitSpecifierInternal();
2458   }
getExplicitSpecifier()2459   const ExplicitSpecifier getExplicitSpecifier() const {
2460     return getCanonicalDecl()->getExplicitSpecifierInternal();
2461   }
2462 
2463   /// Return true if the declartion is already resolved to be explicit.
isExplicit()2464   bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2465 
2466   /// Iterates through the member/base initializer list.
2467   using init_iterator = CXXCtorInitializer **;
2468 
2469   /// Iterates through the member/base initializer list.
2470   using init_const_iterator = CXXCtorInitializer *const *;
2471 
2472   using init_range = llvm::iterator_range<init_iterator>;
2473   using init_const_range = llvm::iterator_range<init_const_iterator>;
2474 
inits()2475   init_range inits() { return init_range(init_begin(), init_end()); }
inits()2476   init_const_range inits() const {
2477     return init_const_range(init_begin(), init_end());
2478   }
2479 
2480   /// Retrieve an iterator to the first initializer.
init_begin()2481   init_iterator init_begin() {
2482     const auto *ConstThis = this;
2483     return const_cast<init_iterator>(ConstThis->init_begin());
2484   }
2485 
2486   /// Retrieve an iterator to the first initializer.
2487   init_const_iterator init_begin() const;
2488 
2489   /// Retrieve an iterator past the last initializer.
init_end()2490   init_iterator       init_end()       {
2491     return init_begin() + getNumCtorInitializers();
2492   }
2493 
2494   /// Retrieve an iterator past the last initializer.
init_end()2495   init_const_iterator init_end() const {
2496     return init_begin() + getNumCtorInitializers();
2497   }
2498 
2499   using init_reverse_iterator = std::reverse_iterator<init_iterator>;
2500   using init_const_reverse_iterator =
2501       std::reverse_iterator<init_const_iterator>;
2502 
init_rbegin()2503   init_reverse_iterator init_rbegin() {
2504     return init_reverse_iterator(init_end());
2505   }
init_rbegin()2506   init_const_reverse_iterator init_rbegin() const {
2507     return init_const_reverse_iterator(init_end());
2508   }
2509 
init_rend()2510   init_reverse_iterator init_rend() {
2511     return init_reverse_iterator(init_begin());
2512   }
init_rend()2513   init_const_reverse_iterator init_rend() const {
2514     return init_const_reverse_iterator(init_begin());
2515   }
2516 
2517   /// Determine the number of arguments used to initialize the member
2518   /// or base.
getNumCtorInitializers()2519   unsigned getNumCtorInitializers() const {
2520       return CXXConstructorDeclBits.NumCtorInitializers;
2521   }
2522 
setNumCtorInitializers(unsigned numCtorInitializers)2523   void setNumCtorInitializers(unsigned numCtorInitializers) {
2524     CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
2525     // This assert added because NumCtorInitializers is stored
2526     // in CXXConstructorDeclBits as a bitfield and its width has
2527     // been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
2528     assert(CXXConstructorDeclBits.NumCtorInitializers ==
2529            numCtorInitializers && "NumCtorInitializers overflow!");
2530   }
2531 
setCtorInitializers(CXXCtorInitializer ** Initializers)2532   void setCtorInitializers(CXXCtorInitializer **Initializers) {
2533     CtorInitializers = Initializers;
2534   }
2535 
2536   /// Determine whether this constructor is a delegating constructor.
isDelegatingConstructor()2537   bool isDelegatingConstructor() const {
2538     return (getNumCtorInitializers() == 1) &&
2539            init_begin()[0]->isDelegatingInitializer();
2540   }
2541 
2542   /// When this constructor delegates to another, retrieve the target.
2543   CXXConstructorDecl *getTargetConstructor() const;
2544 
2545   /// Whether this constructor is a default
2546   /// constructor (C++ [class.ctor]p5), which can be used to
2547   /// default-initialize a class of this type.
2548   bool isDefaultConstructor() const;
2549 
2550   /// Whether this constructor is a copy constructor (C++ [class.copy]p2,
2551   /// which can be used to copy the class.
2552   ///
2553   /// \p TypeQuals will be set to the qualifiers on the
2554   /// argument type. For example, \p TypeQuals would be set to \c
2555   /// Qualifiers::Const for the following copy constructor:
2556   ///
2557   /// \code
2558   /// class X {
2559   /// public:
2560   ///   X(const X&);
2561   /// };
2562   /// \endcode
2563   bool isCopyConstructor(unsigned &TypeQuals) const;
2564 
2565   /// Whether this constructor is a copy
2566   /// constructor (C++ [class.copy]p2, which can be used to copy the
2567   /// class.
isCopyConstructor()2568   bool isCopyConstructor() const {
2569     unsigned TypeQuals = 0;
2570     return isCopyConstructor(TypeQuals);
2571   }
2572 
2573   /// Determine whether this constructor is a move constructor
2574   /// (C++11 [class.copy]p3), which can be used to move values of the class.
2575   ///
2576   /// \param TypeQuals If this constructor is a move constructor, will be set
2577   /// to the type qualifiers on the referent of the first parameter's type.
2578   bool isMoveConstructor(unsigned &TypeQuals) const;
2579 
2580   /// Determine whether this constructor is a move constructor
2581   /// (C++11 [class.copy]p3), which can be used to move values of the class.
isMoveConstructor()2582   bool isMoveConstructor() const {
2583     unsigned TypeQuals = 0;
2584     return isMoveConstructor(TypeQuals);
2585   }
2586 
2587   /// Determine whether this is a copy or move constructor.
2588   ///
2589   /// \param TypeQuals Will be set to the type qualifiers on the reference
2590   /// parameter, if in fact this is a copy or move constructor.
2591   bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2592 
2593   /// Determine whether this a copy or move constructor.
isCopyOrMoveConstructor()2594   bool isCopyOrMoveConstructor() const {
2595     unsigned Quals;
2596     return isCopyOrMoveConstructor(Quals);
2597   }
2598 
2599   /// Whether this constructor is a
2600   /// converting constructor (C++ [class.conv.ctor]), which can be
2601   /// used for user-defined conversions.
2602   bool isConvertingConstructor(bool AllowExplicit) const;
2603 
2604   /// Determine whether this is a member template specialization that
2605   /// would copy the object to itself. Such constructors are never used to copy
2606   /// an object.
2607   bool isSpecializationCopyingObject() const;
2608 
2609   /// Determine whether this is an implicit constructor synthesized to
2610   /// model a call to a constructor inherited from a base class.
isInheritingConstructor()2611   bool isInheritingConstructor() const {
2612     return CXXConstructorDeclBits.IsInheritingConstructor;
2613   }
2614 
2615   /// State that this is an implicit constructor synthesized to
2616   /// model a call to a constructor inherited from a base class.
2617   void setInheritingConstructor(bool isIC = true) {
2618     CXXConstructorDeclBits.IsInheritingConstructor = isIC;
2619   }
2620 
2621   /// Get the constructor that this inheriting constructor is based on.
getInheritedConstructor()2622   InheritedConstructor getInheritedConstructor() const {
2623     return isInheritingConstructor() ?
2624       *getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
2625   }
2626 
getCanonicalDecl()2627   CXXConstructorDecl *getCanonicalDecl() override {
2628     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2629   }
getCanonicalDecl()2630   const CXXConstructorDecl *getCanonicalDecl() const {
2631     return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
2632   }
2633 
2634   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2635   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2636   static bool classofKind(Kind K) { return K == CXXConstructor; }
2637 };
2638 
2639 /// Represents a C++ destructor within a class.
2640 ///
2641 /// For example:
2642 ///
2643 /// \code
2644 /// class X {
2645 /// public:
2646 ///   ~X(); // represented by a CXXDestructorDecl.
2647 /// };
2648 /// \endcode
2649 class CXXDestructorDecl : public CXXMethodDecl {
2650   friend class ASTDeclReader;
2651   friend class ASTDeclWriter;
2652 
2653   // FIXME: Don't allocate storage for these except in the first declaration
2654   // of a virtual destructor.
2655   FunctionDecl *OperatorDelete = nullptr;
2656   Expr *OperatorDeleteThisArg = nullptr;
2657 
2658   CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2659                     const DeclarationNameInfo &NameInfo, QualType T,
2660                     TypeSourceInfo *TInfo, bool isInline,
2661                     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2662                     Expr *TrailingRequiresClause = nullptr)
CXXMethodDecl(CXXDestructor,C,RD,StartLoc,NameInfo,T,TInfo,SC_None,isInline,ConstexprKind,SourceLocation (),TrailingRequiresClause)2663       : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
2664                       SC_None, isInline, ConstexprKind, SourceLocation(),
2665                       TrailingRequiresClause) {
2666     setImplicit(isImplicitlyDeclared);
2667   }
2668 
2669   void anchor() override;
2670 
2671 public:
2672   static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2673                                    SourceLocation StartLoc,
2674                                    const DeclarationNameInfo &NameInfo,
2675                                    QualType T, TypeSourceInfo *TInfo,
2676                                    bool isInline, bool isImplicitlyDeclared,
2677                                    ConstexprSpecKind ConstexprKind,
2678                                    Expr *TrailingRequiresClause = nullptr);
2679   static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2680 
2681   void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
2682 
getOperatorDelete()2683   const FunctionDecl *getOperatorDelete() const {
2684     return getCanonicalDecl()->OperatorDelete;
2685   }
2686 
getOperatorDeleteThisArg()2687   Expr *getOperatorDeleteThisArg() const {
2688     return getCanonicalDecl()->OperatorDeleteThisArg;
2689   }
2690 
getCanonicalDecl()2691   CXXDestructorDecl *getCanonicalDecl() override {
2692     return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
2693   }
getCanonicalDecl()2694   const CXXDestructorDecl *getCanonicalDecl() const {
2695     return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
2696   }
2697 
2698   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2699   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2700   static bool classofKind(Kind K) { return K == CXXDestructor; }
2701 };
2702 
2703 /// Represents a C++ conversion function within a class.
2704 ///
2705 /// For example:
2706 ///
2707 /// \code
2708 /// class X {
2709 /// public:
2710 ///   operator bool();
2711 /// };
2712 /// \endcode
2713 class CXXConversionDecl : public CXXMethodDecl {
2714   CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2715                     const DeclarationNameInfo &NameInfo, QualType T,
2716                     TypeSourceInfo *TInfo, bool isInline, ExplicitSpecifier ES,
2717                     ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2718                     Expr *TrailingRequiresClause = nullptr)
CXXMethodDecl(CXXConversion,C,RD,StartLoc,NameInfo,T,TInfo,SC_None,isInline,ConstexprKind,EndLocation,TrailingRequiresClause)2719       : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
2720                       SC_None, isInline, ConstexprKind, EndLocation,
2721                       TrailingRequiresClause),
2722         ExplicitSpec(ES) {}
2723   void anchor() override;
2724 
2725   ExplicitSpecifier ExplicitSpec;
2726 
setExplicitSpecifier(ExplicitSpecifier ES)2727   void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
2728 
2729 public:
2730   friend class ASTDeclReader;
2731   friend class ASTDeclWriter;
2732 
2733   static CXXConversionDecl *
2734   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2735          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2736          bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2737          SourceLocation EndLocation, Expr *TrailingRequiresClause = nullptr);
2738   static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2739 
getExplicitSpecifier()2740   ExplicitSpecifier getExplicitSpecifier() {
2741     return getCanonicalDecl()->ExplicitSpec;
2742   }
2743 
getExplicitSpecifier()2744   const ExplicitSpecifier getExplicitSpecifier() const {
2745     return getCanonicalDecl()->ExplicitSpec;
2746   }
2747 
2748   /// Return true if the declartion is already resolved to be explicit.
isExplicit()2749   bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2750 
2751   /// Returns the type that this conversion function is converting to.
getConversionType()2752   QualType getConversionType() const {
2753     return getType()->castAs<FunctionType>()->getReturnType();
2754   }
2755 
2756   /// Determine whether this conversion function is a conversion from
2757   /// a lambda closure type to a block pointer.
2758   bool isLambdaToBlockPointerConversion() const;
2759 
getCanonicalDecl()2760   CXXConversionDecl *getCanonicalDecl() override {
2761     return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
2762   }
getCanonicalDecl()2763   const CXXConversionDecl *getCanonicalDecl() const {
2764     return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
2765   }
2766 
2767   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2768   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2769   static bool classofKind(Kind K) { return K == CXXConversion; }
2770 };
2771 
2772 /// Represents a linkage specification.
2773 ///
2774 /// For example:
2775 /// \code
2776 ///   extern "C" void foo();
2777 /// \endcode
2778 class LinkageSpecDecl : public Decl, public DeclContext {
2779   virtual void anchor();
2780   // This class stores some data in DeclContext::LinkageSpecDeclBits to save
2781   // some space. Use the provided accessors to access it.
2782 public:
2783   /// Represents the language in a linkage specification.
2784   ///
2785   /// The values are part of the serialization ABI for
2786   /// ASTs and cannot be changed without altering that ABI.
2787   enum LanguageIDs { lang_c = 1, lang_cxx = 2 };
2788 
2789 private:
2790   /// The source location for the extern keyword.
2791   SourceLocation ExternLoc;
2792 
2793   /// The source location for the right brace (if valid).
2794   SourceLocation RBraceLoc;
2795 
2796   LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2797                   SourceLocation LangLoc, LanguageIDs lang, bool HasBraces);
2798 
2799 public:
2800   static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2801                                  SourceLocation ExternLoc,
2802                                  SourceLocation LangLoc, LanguageIDs Lang,
2803                                  bool HasBraces);
2804   static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2805 
2806   /// Return the language specified by this linkage specification.
getLanguage()2807   LanguageIDs getLanguage() const {
2808     return static_cast<LanguageIDs>(LinkageSpecDeclBits.Language);
2809   }
2810 
2811   /// Set the language specified by this linkage specification.
setLanguage(LanguageIDs L)2812   void setLanguage(LanguageIDs L) { LinkageSpecDeclBits.Language = L; }
2813 
2814   /// Determines whether this linkage specification had braces in
2815   /// its syntactic form.
hasBraces()2816   bool hasBraces() const {
2817     assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces);
2818     return LinkageSpecDeclBits.HasBraces;
2819   }
2820 
getExternLoc()2821   SourceLocation getExternLoc() const { return ExternLoc; }
getRBraceLoc()2822   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setExternLoc(SourceLocation L)2823   void setExternLoc(SourceLocation L) { ExternLoc = L; }
setRBraceLoc(SourceLocation L)2824   void setRBraceLoc(SourceLocation L) {
2825     RBraceLoc = L;
2826     LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
2827   }
2828 
getEndLoc()2829   SourceLocation getEndLoc() const LLVM_READONLY {
2830     if (hasBraces())
2831       return getRBraceLoc();
2832     // No braces: get the end location of the (only) declaration in context
2833     // (if present).
2834     return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
2835   }
2836 
getSourceRange()2837   SourceRange getSourceRange() const override LLVM_READONLY {
2838     return SourceRange(ExternLoc, getEndLoc());
2839   }
2840 
classof(const Decl * D)2841   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2842   static bool classofKind(Kind K) { return K == LinkageSpec; }
2843 
castToDeclContext(const LinkageSpecDecl * D)2844   static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2845     return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2846   }
2847 
castFromDeclContext(const DeclContext * DC)2848   static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2849     return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2850   }
2851 };
2852 
2853 /// Represents C++ using-directive.
2854 ///
2855 /// For example:
2856 /// \code
2857 ///    using namespace std;
2858 /// \endcode
2859 ///
2860 /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
2861 /// artificial names for all using-directives in order to store
2862 /// them in DeclContext effectively.
2863 class UsingDirectiveDecl : public NamedDecl {
2864   /// The location of the \c using keyword.
2865   SourceLocation UsingLoc;
2866 
2867   /// The location of the \c namespace keyword.
2868   SourceLocation NamespaceLoc;
2869 
2870   /// The nested-name-specifier that precedes the namespace.
2871   NestedNameSpecifierLoc QualifierLoc;
2872 
2873   /// The namespace nominated by this using-directive.
2874   NamedDecl *NominatedNamespace;
2875 
2876   /// Enclosing context containing both using-directive and nominated
2877   /// namespace.
2878   DeclContext *CommonAncestor;
2879 
UsingDirectiveDecl(DeclContext * DC,SourceLocation UsingLoc,SourceLocation NamespcLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Nominated,DeclContext * CommonAncestor)2880   UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
2881                      SourceLocation NamespcLoc,
2882                      NestedNameSpecifierLoc QualifierLoc,
2883                      SourceLocation IdentLoc,
2884                      NamedDecl *Nominated,
2885                      DeclContext *CommonAncestor)
2886       : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
2887         NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
2888         NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
2889 
2890   /// Returns special DeclarationName used by using-directives.
2891   ///
2892   /// This is only used by DeclContext for storing UsingDirectiveDecls in
2893   /// its lookup structure.
getName()2894   static DeclarationName getName() {
2895     return DeclarationName::getUsingDirectiveName();
2896   }
2897 
2898   void anchor() override;
2899 
2900 public:
2901   friend class ASTDeclReader;
2902 
2903   // Friend for getUsingDirectiveName.
2904   friend class DeclContext;
2905 
2906   /// Retrieve the nested-name-specifier that qualifies the
2907   /// name of the namespace, with source-location information.
getQualifierLoc()2908   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2909 
2910   /// Retrieve the nested-name-specifier that qualifies the
2911   /// name of the namespace.
getQualifier()2912   NestedNameSpecifier *getQualifier() const {
2913     return QualifierLoc.getNestedNameSpecifier();
2914   }
2915 
getNominatedNamespaceAsWritten()2916   NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
getNominatedNamespaceAsWritten()2917   const NamedDecl *getNominatedNamespaceAsWritten() const {
2918     return NominatedNamespace;
2919   }
2920 
2921   /// Returns the namespace nominated by this using-directive.
2922   NamespaceDecl *getNominatedNamespace();
2923 
getNominatedNamespace()2924   const NamespaceDecl *getNominatedNamespace() const {
2925     return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
2926   }
2927 
2928   /// Returns the common ancestor context of this using-directive and
2929   /// its nominated namespace.
getCommonAncestor()2930   DeclContext *getCommonAncestor() { return CommonAncestor; }
getCommonAncestor()2931   const DeclContext *getCommonAncestor() const { return CommonAncestor; }
2932 
2933   /// Return the location of the \c using keyword.
getUsingLoc()2934   SourceLocation getUsingLoc() const { return UsingLoc; }
2935 
2936   // FIXME: Could omit 'Key' in name.
2937   /// Returns the location of the \c namespace keyword.
getNamespaceKeyLocation()2938   SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
2939 
2940   /// Returns the location of this using declaration's identifier.
getIdentLocation()2941   SourceLocation getIdentLocation() const { return getLocation(); }
2942 
2943   static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
2944                                     SourceLocation UsingLoc,
2945                                     SourceLocation NamespaceLoc,
2946                                     NestedNameSpecifierLoc QualifierLoc,
2947                                     SourceLocation IdentLoc,
2948                                     NamedDecl *Nominated,
2949                                     DeclContext *CommonAncestor);
2950   static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2951 
getSourceRange()2952   SourceRange getSourceRange() const override LLVM_READONLY {
2953     return SourceRange(UsingLoc, getLocation());
2954   }
2955 
classof(const Decl * D)2956   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2957   static bool classofKind(Kind K) { return K == UsingDirective; }
2958 };
2959 
2960 /// Represents a C++ namespace alias.
2961 ///
2962 /// For example:
2963 ///
2964 /// \code
2965 /// namespace Foo = Bar;
2966 /// \endcode
2967 class NamespaceAliasDecl : public NamedDecl,
2968                            public Redeclarable<NamespaceAliasDecl> {
2969   friend class ASTDeclReader;
2970 
2971   /// The location of the \c namespace keyword.
2972   SourceLocation NamespaceLoc;
2973 
2974   /// The location of the namespace's identifier.
2975   ///
2976   /// This is accessed by TargetNameLoc.
2977   SourceLocation IdentLoc;
2978 
2979   /// The nested-name-specifier that precedes the namespace.
2980   NestedNameSpecifierLoc QualifierLoc;
2981 
2982   /// The Decl that this alias points to, either a NamespaceDecl or
2983   /// a NamespaceAliasDecl.
2984   NamedDecl *Namespace;
2985 
NamespaceAliasDecl(ASTContext & C,DeclContext * DC,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)2986   NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
2987                      SourceLocation NamespaceLoc, SourceLocation AliasLoc,
2988                      IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
2989                      SourceLocation IdentLoc, NamedDecl *Namespace)
2990       : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
2991         NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
2992         QualifierLoc(QualifierLoc), Namespace(Namespace) {}
2993 
2994   void anchor() override;
2995 
2996   using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
2997 
2998   NamespaceAliasDecl *getNextRedeclarationImpl() override;
2999   NamespaceAliasDecl *getPreviousDeclImpl() override;
3000   NamespaceAliasDecl *getMostRecentDeclImpl() override;
3001 
3002 public:
3003   static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
3004                                     SourceLocation NamespaceLoc,
3005                                     SourceLocation AliasLoc,
3006                                     IdentifierInfo *Alias,
3007                                     NestedNameSpecifierLoc QualifierLoc,
3008                                     SourceLocation IdentLoc,
3009                                     NamedDecl *Namespace);
3010 
3011   static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3012 
3013   using redecl_range = redeclarable_base::redecl_range;
3014   using redecl_iterator = redeclarable_base::redecl_iterator;
3015 
3016   using redeclarable_base::redecls_begin;
3017   using redeclarable_base::redecls_end;
3018   using redeclarable_base::redecls;
3019   using redeclarable_base::getPreviousDecl;
3020   using redeclarable_base::getMostRecentDecl;
3021 
getCanonicalDecl()3022   NamespaceAliasDecl *getCanonicalDecl() override {
3023     return getFirstDecl();
3024   }
getCanonicalDecl()3025   const NamespaceAliasDecl *getCanonicalDecl() const {
3026     return getFirstDecl();
3027   }
3028 
3029   /// Retrieve the nested-name-specifier that qualifies the
3030   /// name of the namespace, with source-location information.
getQualifierLoc()3031   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3032 
3033   /// Retrieve the nested-name-specifier that qualifies the
3034   /// name of the namespace.
getQualifier()3035   NestedNameSpecifier *getQualifier() const {
3036     return QualifierLoc.getNestedNameSpecifier();
3037   }
3038 
3039   /// Retrieve the namespace declaration aliased by this directive.
getNamespace()3040   NamespaceDecl *getNamespace() {
3041     if (auto *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
3042       return AD->getNamespace();
3043 
3044     return cast<NamespaceDecl>(Namespace);
3045   }
3046 
getNamespace()3047   const NamespaceDecl *getNamespace() const {
3048     return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
3049   }
3050 
3051   /// Returns the location of the alias name, i.e. 'foo' in
3052   /// "namespace foo = ns::bar;".
getAliasLoc()3053   SourceLocation getAliasLoc() const { return getLocation(); }
3054 
3055   /// Returns the location of the \c namespace keyword.
getNamespaceLoc()3056   SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
3057 
3058   /// Returns the location of the identifier in the named namespace.
getTargetNameLoc()3059   SourceLocation getTargetNameLoc() const { return IdentLoc; }
3060 
3061   /// Retrieve the namespace that this alias refers to, which
3062   /// may either be a NamespaceDecl or a NamespaceAliasDecl.
getAliasedNamespace()3063   NamedDecl *getAliasedNamespace() const { return Namespace; }
3064 
getSourceRange()3065   SourceRange getSourceRange() const override LLVM_READONLY {
3066     return SourceRange(NamespaceLoc, IdentLoc);
3067   }
3068 
classof(const Decl * D)3069   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3070   static bool classofKind(Kind K) { return K == NamespaceAlias; }
3071 };
3072 
3073 /// Implicit declaration of a temporary that was materialized by
3074 /// a MaterializeTemporaryExpr and lifetime-extended by a declaration
3075 class LifetimeExtendedTemporaryDecl final
3076     : public Decl,
3077       public Mergeable<LifetimeExtendedTemporaryDecl> {
3078   friend class MaterializeTemporaryExpr;
3079   friend class ASTDeclReader;
3080 
3081   Stmt *ExprWithTemporary = nullptr;
3082 
3083   /// The declaration which lifetime-extended this reference, if any.
3084   /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3085   ValueDecl *ExtendingDecl = nullptr;
3086   unsigned ManglingNumber;
3087 
3088   mutable APValue *Value = nullptr;
3089 
3090   virtual void anchor();
3091 
LifetimeExtendedTemporaryDecl(Expr * Temp,ValueDecl * EDecl,unsigned Mangling)3092   LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling)
3093       : Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(),
3094              EDecl->getLocation()),
3095         ExprWithTemporary(Temp), ExtendingDecl(EDecl),
3096         ManglingNumber(Mangling) {}
3097 
LifetimeExtendedTemporaryDecl(EmptyShell)3098   LifetimeExtendedTemporaryDecl(EmptyShell)
3099       : Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {}
3100 
3101 public:
Create(Expr * Temp,ValueDecl * EDec,unsigned Mangling)3102   static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec,
3103                                                unsigned Mangling) {
3104     return new (EDec->getASTContext(), EDec->getDeclContext())
3105         LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling);
3106   }
CreateDeserialized(ASTContext & C,unsigned ID)3107   static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C,
3108                                                            unsigned ID) {
3109     return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{});
3110   }
3111 
getExtendingDecl()3112   ValueDecl *getExtendingDecl() { return ExtendingDecl; }
getExtendingDecl()3113   const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3114 
3115   /// Retrieve the storage duration for the materialized temporary.
3116   StorageDuration getStorageDuration() const;
3117 
3118   /// Retrieve the expression to which the temporary materialization conversion
3119   /// was applied. This isn't necessarily the initializer of the temporary due
3120   /// to the C++98 delayed materialization rules, but
3121   /// skipRValueSubobjectAdjustments can be used to find said initializer within
3122   /// the subexpression.
getTemporaryExpr()3123   Expr *getTemporaryExpr() { return cast<Expr>(ExprWithTemporary); }
getTemporaryExpr()3124   const Expr *getTemporaryExpr() const { return cast<Expr>(ExprWithTemporary); }
3125 
getManglingNumber()3126   unsigned getManglingNumber() const { return ManglingNumber; }
3127 
3128   /// Get the storage for the constant value of a materialized temporary
3129   /// of static storage duration.
3130   APValue *getOrCreateValue(bool MayCreate) const;
3131 
getValue()3132   APValue *getValue() const { return Value; }
3133 
3134   // Iterators
childrenExpr()3135   Stmt::child_range childrenExpr() {
3136     return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3137   }
3138 
childrenExpr()3139   Stmt::const_child_range childrenExpr() const {
3140     return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3141   }
3142 
classof(const Decl * D)3143   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3144   static bool classofKind(Kind K) {
3145     return K == Decl::LifetimeExtendedTemporary;
3146   }
3147 };
3148 
3149 /// Represents a shadow declaration introduced into a scope by a
3150 /// (resolved) using declaration.
3151 ///
3152 /// For example,
3153 /// \code
3154 /// namespace A {
3155 ///   void foo();
3156 /// }
3157 /// namespace B {
3158 ///   using A::foo; // <- a UsingDecl
3159 ///                 // Also creates a UsingShadowDecl for A::foo() in B
3160 /// }
3161 /// \endcode
3162 class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
3163   friend class UsingDecl;
3164 
3165   /// The referenced declaration.
3166   NamedDecl *Underlying = nullptr;
3167 
3168   /// The using declaration which introduced this decl or the next using
3169   /// shadow declaration contained in the aforementioned using declaration.
3170   NamedDecl *UsingOrNextShadow = nullptr;
3171 
3172   void anchor() override;
3173 
3174   using redeclarable_base = Redeclarable<UsingShadowDecl>;
3175 
getNextRedeclarationImpl()3176   UsingShadowDecl *getNextRedeclarationImpl() override {
3177     return getNextRedeclaration();
3178   }
3179 
getPreviousDeclImpl()3180   UsingShadowDecl *getPreviousDeclImpl() override {
3181     return getPreviousDecl();
3182   }
3183 
getMostRecentDeclImpl()3184   UsingShadowDecl *getMostRecentDeclImpl() override {
3185     return getMostRecentDecl();
3186   }
3187 
3188 protected:
3189   UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
3190                   UsingDecl *Using, NamedDecl *Target);
3191   UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
3192 
3193 public:
3194   friend class ASTDeclReader;
3195   friend class ASTDeclWriter;
3196 
Create(ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target)3197   static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3198                                  SourceLocation Loc, UsingDecl *Using,
3199                                  NamedDecl *Target) {
3200     return new (C, DC) UsingShadowDecl(UsingShadow, C, DC, Loc, Using, Target);
3201   }
3202 
3203   static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3204 
3205   using redecl_range = redeclarable_base::redecl_range;
3206   using redecl_iterator = redeclarable_base::redecl_iterator;
3207 
3208   using redeclarable_base::redecls_begin;
3209   using redeclarable_base::redecls_end;
3210   using redeclarable_base::redecls;
3211   using redeclarable_base::getPreviousDecl;
3212   using redeclarable_base::getMostRecentDecl;
3213   using redeclarable_base::isFirstDecl;
3214 
getCanonicalDecl()3215   UsingShadowDecl *getCanonicalDecl() override {
3216     return getFirstDecl();
3217   }
getCanonicalDecl()3218   const UsingShadowDecl *getCanonicalDecl() const {
3219     return getFirstDecl();
3220   }
3221 
3222   /// Gets the underlying declaration which has been brought into the
3223   /// local scope.
getTargetDecl()3224   NamedDecl *getTargetDecl() const { return Underlying; }
3225 
3226   /// Sets the underlying declaration which has been brought into the
3227   /// local scope.
setTargetDecl(NamedDecl * ND)3228   void setTargetDecl(NamedDecl *ND) {
3229     assert(ND && "Target decl is null!");
3230     Underlying = ND;
3231     // A UsingShadowDecl is never a friend or local extern declaration, even
3232     // if it is a shadow declaration for one.
3233     IdentifierNamespace =
3234         ND->getIdentifierNamespace() &
3235         ~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
3236   }
3237 
3238   /// Gets the using declaration to which this declaration is tied.
3239   UsingDecl *getUsingDecl() const;
3240 
3241   /// The next using shadow declaration contained in the shadow decl
3242   /// chain of the using declaration which introduced this decl.
getNextUsingShadowDecl()3243   UsingShadowDecl *getNextUsingShadowDecl() const {
3244     return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
3245   }
3246 
classof(const Decl * D)3247   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3248   static bool classofKind(Kind K) {
3249     return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
3250   }
3251 };
3252 
3253 /// Represents a shadow constructor declaration introduced into a
3254 /// class by a C++11 using-declaration that names a constructor.
3255 ///
3256 /// For example:
3257 /// \code
3258 /// struct Base { Base(int); };
3259 /// struct Derived {
3260 ///    using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
3261 /// };
3262 /// \endcode
3263 class ConstructorUsingShadowDecl final : public UsingShadowDecl {
3264   /// If this constructor using declaration inherted the constructor
3265   /// from an indirect base class, this is the ConstructorUsingShadowDecl
3266   /// in the named direct base class from which the declaration was inherited.
3267   ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
3268 
3269   /// If this constructor using declaration inherted the constructor
3270   /// from an indirect base class, this is the ConstructorUsingShadowDecl
3271   /// that will be used to construct the unique direct or virtual base class
3272   /// that receives the constructor arguments.
3273   ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
3274 
3275   /// \c true if the constructor ultimately named by this using shadow
3276   /// declaration is within a virtual base class subobject of the class that
3277   /// contains this declaration.
3278   unsigned IsVirtual : 1;
3279 
ConstructorUsingShadowDecl(ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target,bool TargetInVirtualBase)3280   ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
3281                              UsingDecl *Using, NamedDecl *Target,
3282                              bool TargetInVirtualBase)
3283       : UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc, Using,
3284                         Target->getUnderlyingDecl()),
3285         NominatedBaseClassShadowDecl(
3286             dyn_cast<ConstructorUsingShadowDecl>(Target)),
3287         ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
3288         IsVirtual(TargetInVirtualBase) {
3289     // If we found a constructor that chains to a constructor for a virtual
3290     // base, we should directly call that virtual base constructor instead.
3291     // FIXME: This logic belongs in Sema.
3292     if (NominatedBaseClassShadowDecl &&
3293         NominatedBaseClassShadowDecl->constructsVirtualBase()) {
3294       ConstructedBaseClassShadowDecl =
3295           NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
3296       IsVirtual = true;
3297     }
3298   }
3299 
ConstructorUsingShadowDecl(ASTContext & C,EmptyShell Empty)3300   ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
3301       : UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
3302 
3303   void anchor() override;
3304 
3305 public:
3306   friend class ASTDeclReader;
3307   friend class ASTDeclWriter;
3308 
3309   static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3310                                             SourceLocation Loc,
3311                                             UsingDecl *Using, NamedDecl *Target,
3312                                             bool IsVirtual);
3313   static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
3314                                                         unsigned ID);
3315 
3316   /// Returns the parent of this using shadow declaration, which
3317   /// is the class in which this is declared.
3318   //@{
getParent()3319   const CXXRecordDecl *getParent() const {
3320     return cast<CXXRecordDecl>(getDeclContext());
3321   }
getParent()3322   CXXRecordDecl *getParent() {
3323     return cast<CXXRecordDecl>(getDeclContext());
3324   }
3325   //@}
3326 
3327   /// Get the inheriting constructor declaration for the direct base
3328   /// class from which this using shadow declaration was inherited, if there is
3329   /// one. This can be different for each redeclaration of the same shadow decl.
getNominatedBaseClassShadowDecl()3330   ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
3331     return NominatedBaseClassShadowDecl;
3332   }
3333 
3334   /// Get the inheriting constructor declaration for the base class
3335   /// for which we don't have an explicit initializer, if there is one.
getConstructedBaseClassShadowDecl()3336   ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
3337     return ConstructedBaseClassShadowDecl;
3338   }
3339 
3340   /// Get the base class that was named in the using declaration. This
3341   /// can be different for each redeclaration of this same shadow decl.
3342   CXXRecordDecl *getNominatedBaseClass() const;
3343 
3344   /// Get the base class whose constructor or constructor shadow
3345   /// declaration is passed the constructor arguments.
getConstructedBaseClass()3346   CXXRecordDecl *getConstructedBaseClass() const {
3347     return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
3348                                     ? ConstructedBaseClassShadowDecl
3349                                     : getTargetDecl())
3350                                    ->getDeclContext());
3351   }
3352 
3353   /// Returns \c true if the constructed base class is a virtual base
3354   /// class subobject of this declaration's class.
constructsVirtualBase()3355   bool constructsVirtualBase() const {
3356     return IsVirtual;
3357   }
3358 
classof(const Decl * D)3359   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3360   static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
3361 };
3362 
3363 /// Represents a C++ using-declaration.
3364 ///
3365 /// For example:
3366 /// \code
3367 ///    using someNameSpace::someIdentifier;
3368 /// \endcode
3369 class UsingDecl : public NamedDecl, public Mergeable<UsingDecl> {
3370   /// The source location of the 'using' keyword itself.
3371   SourceLocation UsingLocation;
3372 
3373   /// The nested-name-specifier that precedes the name.
3374   NestedNameSpecifierLoc QualifierLoc;
3375 
3376   /// Provides source/type location info for the declaration name
3377   /// embedded in the ValueDecl base class.
3378   DeclarationNameLoc DNLoc;
3379 
3380   /// The first shadow declaration of the shadow decl chain associated
3381   /// with this using declaration.
3382   ///
3383   /// The bool member of the pair store whether this decl has the \c typename
3384   /// keyword.
3385   llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
3386 
UsingDecl(DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypenameKeyword)3387   UsingDecl(DeclContext *DC, SourceLocation UL,
3388             NestedNameSpecifierLoc QualifierLoc,
3389             const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
3390     : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
3391       UsingLocation(UL), QualifierLoc(QualifierLoc),
3392       DNLoc(NameInfo.getInfo()), FirstUsingShadow(nullptr, HasTypenameKeyword) {
3393   }
3394 
3395   void anchor() override;
3396 
3397 public:
3398   friend class ASTDeclReader;
3399   friend class ASTDeclWriter;
3400 
3401   /// Return the source location of the 'using' keyword.
getUsingLoc()3402   SourceLocation getUsingLoc() const { return UsingLocation; }
3403 
3404   /// Set the source location of the 'using' keyword.
setUsingLoc(SourceLocation L)3405   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3406 
3407   /// Retrieve the nested-name-specifier that qualifies the name,
3408   /// with source-location information.
getQualifierLoc()3409   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3410 
3411   /// Retrieve the nested-name-specifier that qualifies the name.
getQualifier()3412   NestedNameSpecifier *getQualifier() const {
3413     return QualifierLoc.getNestedNameSpecifier();
3414   }
3415 
getNameInfo()3416   DeclarationNameInfo getNameInfo() const {
3417     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3418   }
3419 
3420   /// Return true if it is a C++03 access declaration (no 'using').
isAccessDeclaration()3421   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3422 
3423   /// Return true if the using declaration has 'typename'.
hasTypename()3424   bool hasTypename() const { return FirstUsingShadow.getInt(); }
3425 
3426   /// Sets whether the using declaration has 'typename'.
setTypename(bool TN)3427   void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
3428 
3429   /// Iterates through the using shadow declarations associated with
3430   /// this using declaration.
3431   class shadow_iterator {
3432     /// The current using shadow declaration.
3433     UsingShadowDecl *Current = nullptr;
3434 
3435   public:
3436     using value_type = UsingShadowDecl *;
3437     using reference = UsingShadowDecl *;
3438     using pointer = UsingShadowDecl *;
3439     using iterator_category = std::forward_iterator_tag;
3440     using difference_type = std::ptrdiff_t;
3441 
3442     shadow_iterator() = default;
shadow_iterator(UsingShadowDecl * C)3443     explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
3444 
3445     reference operator*() const { return Current; }
3446     pointer operator->() const { return Current; }
3447 
3448     shadow_iterator& operator++() {
3449       Current = Current->getNextUsingShadowDecl();
3450       return *this;
3451     }
3452 
3453     shadow_iterator operator++(int) {
3454       shadow_iterator tmp(*this);
3455       ++(*this);
3456       return tmp;
3457     }
3458 
3459     friend bool operator==(shadow_iterator x, shadow_iterator y) {
3460       return x.Current == y.Current;
3461     }
3462     friend bool operator!=(shadow_iterator x, shadow_iterator y) {
3463       return x.Current != y.Current;
3464     }
3465   };
3466 
3467   using shadow_range = llvm::iterator_range<shadow_iterator>;
3468 
shadows()3469   shadow_range shadows() const {
3470     return shadow_range(shadow_begin(), shadow_end());
3471   }
3472 
shadow_begin()3473   shadow_iterator shadow_begin() const {
3474     return shadow_iterator(FirstUsingShadow.getPointer());
3475   }
3476 
shadow_end()3477   shadow_iterator shadow_end() const { return shadow_iterator(); }
3478 
3479   /// Return the number of shadowed declarations associated with this
3480   /// using declaration.
shadow_size()3481   unsigned shadow_size() const {
3482     return std::distance(shadow_begin(), shadow_end());
3483   }
3484 
3485   void addShadowDecl(UsingShadowDecl *S);
3486   void removeShadowDecl(UsingShadowDecl *S);
3487 
3488   static UsingDecl *Create(ASTContext &C, DeclContext *DC,
3489                            SourceLocation UsingL,
3490                            NestedNameSpecifierLoc QualifierLoc,
3491                            const DeclarationNameInfo &NameInfo,
3492                            bool HasTypenameKeyword);
3493 
3494   static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3495 
3496   SourceRange getSourceRange() const override LLVM_READONLY;
3497 
3498   /// Retrieves the canonical declaration of this declaration.
getCanonicalDecl()3499   UsingDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3500   const UsingDecl *getCanonicalDecl() const { return getFirstDecl(); }
3501 
classof(const Decl * D)3502   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3503   static bool classofKind(Kind K) { return K == Using; }
3504 };
3505 
3506 /// Represents a pack of using declarations that a single
3507 /// using-declarator pack-expanded into.
3508 ///
3509 /// \code
3510 /// template<typename ...T> struct X : T... {
3511 ///   using T::operator()...;
3512 ///   using T::operator T...;
3513 /// };
3514 /// \endcode
3515 ///
3516 /// In the second case above, the UsingPackDecl will have the name
3517 /// 'operator T' (which contains an unexpanded pack), but the individual
3518 /// UsingDecls and UsingShadowDecls will have more reasonable names.
3519 class UsingPackDecl final
3520     : public NamedDecl, public Mergeable<UsingPackDecl>,
3521       private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
3522   /// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
3523   /// which this waas instantiated.
3524   NamedDecl *InstantiatedFrom;
3525 
3526   /// The number of using-declarations created by this pack expansion.
3527   unsigned NumExpansions;
3528 
UsingPackDecl(DeclContext * DC,NamedDecl * InstantiatedFrom,ArrayRef<NamedDecl * > UsingDecls)3529   UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
3530                 ArrayRef<NamedDecl *> UsingDecls)
3531       : NamedDecl(UsingPack, DC,
3532                   InstantiatedFrom ? InstantiatedFrom->getLocation()
3533                                    : SourceLocation(),
3534                   InstantiatedFrom ? InstantiatedFrom->getDeclName()
3535                                    : DeclarationName()),
3536         InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
3537     std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
3538                             getTrailingObjects<NamedDecl *>());
3539   }
3540 
3541   void anchor() override;
3542 
3543 public:
3544   friend class ASTDeclReader;
3545   friend class ASTDeclWriter;
3546   friend TrailingObjects;
3547 
3548   /// Get the using declaration from which this was instantiated. This will
3549   /// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
3550   /// that is a pack expansion.
getInstantiatedFromUsingDecl()3551   NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
3552 
3553   /// Get the set of using declarations that this pack expanded into. Note that
3554   /// some of these may still be unresolved.
expansions()3555   ArrayRef<NamedDecl *> expansions() const {
3556     return llvm::makeArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
3557   }
3558 
3559   static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
3560                                NamedDecl *InstantiatedFrom,
3561                                ArrayRef<NamedDecl *> UsingDecls);
3562 
3563   static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
3564                                            unsigned NumExpansions);
3565 
getSourceRange()3566   SourceRange getSourceRange() const override LLVM_READONLY {
3567     return InstantiatedFrom->getSourceRange();
3568   }
3569 
getCanonicalDecl()3570   UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3571   const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
3572 
classof(const Decl * D)3573   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3574   static bool classofKind(Kind K) { return K == UsingPack; }
3575 };
3576 
3577 /// Represents a dependent using declaration which was not marked with
3578 /// \c typename.
3579 ///
3580 /// Unlike non-dependent using declarations, these *only* bring through
3581 /// non-types; otherwise they would break two-phase lookup.
3582 ///
3583 /// \code
3584 /// template \<class T> class A : public Base<T> {
3585 ///   using Base<T>::foo;
3586 /// };
3587 /// \endcode
3588 class UnresolvedUsingValueDecl : public ValueDecl,
3589                                  public Mergeable<UnresolvedUsingValueDecl> {
3590   /// The source location of the 'using' keyword
3591   SourceLocation UsingLocation;
3592 
3593   /// If this is a pack expansion, the location of the '...'.
3594   SourceLocation EllipsisLoc;
3595 
3596   /// The nested-name-specifier that precedes the name.
3597   NestedNameSpecifierLoc QualifierLoc;
3598 
3599   /// Provides source/type location info for the declaration name
3600   /// embedded in the ValueDecl base class.
3601   DeclarationNameLoc DNLoc;
3602 
UnresolvedUsingValueDecl(DeclContext * DC,QualType Ty,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,SourceLocation EllipsisLoc)3603   UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
3604                            SourceLocation UsingLoc,
3605                            NestedNameSpecifierLoc QualifierLoc,
3606                            const DeclarationNameInfo &NameInfo,
3607                            SourceLocation EllipsisLoc)
3608       : ValueDecl(UnresolvedUsingValue, DC,
3609                   NameInfo.getLoc(), NameInfo.getName(), Ty),
3610         UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
3611         QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
3612 
3613   void anchor() override;
3614 
3615 public:
3616   friend class ASTDeclReader;
3617   friend class ASTDeclWriter;
3618 
3619   /// Returns the source location of the 'using' keyword.
getUsingLoc()3620   SourceLocation getUsingLoc() const { return UsingLocation; }
3621 
3622   /// Set the source location of the 'using' keyword.
setUsingLoc(SourceLocation L)3623   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3624 
3625   /// Return true if it is a C++03 access declaration (no 'using').
isAccessDeclaration()3626   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3627 
3628   /// Retrieve the nested-name-specifier that qualifies the name,
3629   /// with source-location information.
getQualifierLoc()3630   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3631 
3632   /// Retrieve the nested-name-specifier that qualifies the name.
getQualifier()3633   NestedNameSpecifier *getQualifier() const {
3634     return QualifierLoc.getNestedNameSpecifier();
3635   }
3636 
getNameInfo()3637   DeclarationNameInfo getNameInfo() const {
3638     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3639   }
3640 
3641   /// Determine whether this is a pack expansion.
isPackExpansion()3642   bool isPackExpansion() const {
3643     return EllipsisLoc.isValid();
3644   }
3645 
3646   /// Get the location of the ellipsis if this is a pack expansion.
getEllipsisLoc()3647   SourceLocation getEllipsisLoc() const {
3648     return EllipsisLoc;
3649   }
3650 
3651   static UnresolvedUsingValueDecl *
3652     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3653            NestedNameSpecifierLoc QualifierLoc,
3654            const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
3655 
3656   static UnresolvedUsingValueDecl *
3657   CreateDeserialized(ASTContext &C, unsigned ID);
3658 
3659   SourceRange getSourceRange() const override LLVM_READONLY;
3660 
3661   /// Retrieves the canonical declaration of this declaration.
getCanonicalDecl()3662   UnresolvedUsingValueDecl *getCanonicalDecl() override {
3663     return getFirstDecl();
3664   }
getCanonicalDecl()3665   const UnresolvedUsingValueDecl *getCanonicalDecl() const {
3666     return getFirstDecl();
3667   }
3668 
classof(const Decl * D)3669   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3670   static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
3671 };
3672 
3673 /// Represents a dependent using declaration which was marked with
3674 /// \c typename.
3675 ///
3676 /// \code
3677 /// template \<class T> class A : public Base<T> {
3678 ///   using typename Base<T>::foo;
3679 /// };
3680 /// \endcode
3681 ///
3682 /// The type associated with an unresolved using typename decl is
3683 /// currently always a typename type.
3684 class UnresolvedUsingTypenameDecl
3685     : public TypeDecl,
3686       public Mergeable<UnresolvedUsingTypenameDecl> {
3687   friend class ASTDeclReader;
3688 
3689   /// The source location of the 'typename' keyword
3690   SourceLocation TypenameLocation;
3691 
3692   /// If this is a pack expansion, the location of the '...'.
3693   SourceLocation EllipsisLoc;
3694 
3695   /// The nested-name-specifier that precedes the name.
3696   NestedNameSpecifierLoc QualifierLoc;
3697 
UnresolvedUsingTypenameDecl(DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,IdentifierInfo * TargetName,SourceLocation EllipsisLoc)3698   UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
3699                               SourceLocation TypenameLoc,
3700                               NestedNameSpecifierLoc QualifierLoc,
3701                               SourceLocation TargetNameLoc,
3702                               IdentifierInfo *TargetName,
3703                               SourceLocation EllipsisLoc)
3704     : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
3705                UsingLoc),
3706       TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
3707       QualifierLoc(QualifierLoc) {}
3708 
3709   void anchor() override;
3710 
3711 public:
3712   /// Returns the source location of the 'using' keyword.
getUsingLoc()3713   SourceLocation getUsingLoc() const { return getBeginLoc(); }
3714 
3715   /// Returns the source location of the 'typename' keyword.
getTypenameLoc()3716   SourceLocation getTypenameLoc() const { return TypenameLocation; }
3717 
3718   /// Retrieve the nested-name-specifier that qualifies the name,
3719   /// with source-location information.
getQualifierLoc()3720   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3721 
3722   /// Retrieve the nested-name-specifier that qualifies the name.
getQualifier()3723   NestedNameSpecifier *getQualifier() const {
3724     return QualifierLoc.getNestedNameSpecifier();
3725   }
3726 
getNameInfo()3727   DeclarationNameInfo getNameInfo() const {
3728     return DeclarationNameInfo(getDeclName(), getLocation());
3729   }
3730 
3731   /// Determine whether this is a pack expansion.
isPackExpansion()3732   bool isPackExpansion() const {
3733     return EllipsisLoc.isValid();
3734   }
3735 
3736   /// Get the location of the ellipsis if this is a pack expansion.
getEllipsisLoc()3737   SourceLocation getEllipsisLoc() const {
3738     return EllipsisLoc;
3739   }
3740 
3741   static UnresolvedUsingTypenameDecl *
3742     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3743            SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
3744            SourceLocation TargetNameLoc, DeclarationName TargetName,
3745            SourceLocation EllipsisLoc);
3746 
3747   static UnresolvedUsingTypenameDecl *
3748   CreateDeserialized(ASTContext &C, unsigned ID);
3749 
3750   /// Retrieves the canonical declaration of this declaration.
getCanonicalDecl()3751   UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
3752     return getFirstDecl();
3753   }
getCanonicalDecl()3754   const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
3755     return getFirstDecl();
3756   }
3757 
classof(const Decl * D)3758   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3759   static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
3760 };
3761 
3762 /// Represents a C++11 static_assert declaration.
3763 class StaticAssertDecl : public Decl {
3764   llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
3765   StringLiteral *Message;
3766   SourceLocation RParenLoc;
3767 
StaticAssertDecl(DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc,bool Failed)3768   StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
3769                    Expr *AssertExpr, StringLiteral *Message,
3770                    SourceLocation RParenLoc, bool Failed)
3771       : Decl(StaticAssert, DC, StaticAssertLoc),
3772         AssertExprAndFailed(AssertExpr, Failed), Message(Message),
3773         RParenLoc(RParenLoc) {}
3774 
3775   virtual void anchor();
3776 
3777 public:
3778   friend class ASTDeclReader;
3779 
3780   static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
3781                                   SourceLocation StaticAssertLoc,
3782                                   Expr *AssertExpr, StringLiteral *Message,
3783                                   SourceLocation RParenLoc, bool Failed);
3784   static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3785 
getAssertExpr()3786   Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
getAssertExpr()3787   const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
3788 
getMessage()3789   StringLiteral *getMessage() { return Message; }
getMessage()3790   const StringLiteral *getMessage() const { return Message; }
3791 
isFailed()3792   bool isFailed() const { return AssertExprAndFailed.getInt(); }
3793 
getRParenLoc()3794   SourceLocation getRParenLoc() const { return RParenLoc; }
3795 
getSourceRange()3796   SourceRange getSourceRange() const override LLVM_READONLY {
3797     return SourceRange(getLocation(), getRParenLoc());
3798   }
3799 
classof(const Decl * D)3800   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3801   static bool classofKind(Kind K) { return K == StaticAssert; }
3802 };
3803 
3804 /// A binding in a decomposition declaration. For instance, given:
3805 ///
3806 ///   int n[3];
3807 ///   auto &[a, b, c] = n;
3808 ///
3809 /// a, b, and c are BindingDecls, whose bindings are the expressions
3810 /// x[0], x[1], and x[2] respectively, where x is the implicit
3811 /// DecompositionDecl of type 'int (&)[3]'.
3812 class BindingDecl : public ValueDecl {
3813   /// The declaration that this binding binds to part of.
3814   LazyDeclPtr Decomp;
3815   /// The binding represented by this declaration. References to this
3816   /// declaration are effectively equivalent to this expression (except
3817   /// that it is only evaluated once at the point of declaration of the
3818   /// binding).
3819   Expr *Binding = nullptr;
3820 
BindingDecl(DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id)3821   BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
3822       : ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {}
3823 
3824   void anchor() override;
3825 
3826 public:
3827   friend class ASTDeclReader;
3828 
3829   static BindingDecl *Create(ASTContext &C, DeclContext *DC,
3830                              SourceLocation IdLoc, IdentifierInfo *Id);
3831   static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3832 
3833   /// Get the expression to which this declaration is bound. This may be null
3834   /// in two different cases: while parsing the initializer for the
3835   /// decomposition declaration, and when the initializer is type-dependent.
getBinding()3836   Expr *getBinding() const { return Binding; }
3837 
3838   /// Get the decomposition declaration that this binding represents a
3839   /// decomposition of.
3840   ValueDecl *getDecomposedDecl() const;
3841 
3842   /// Get the variable (if any) that holds the value of evaluating the binding.
3843   /// Only present for user-defined bindings for tuple-like types.
3844   VarDecl *getHoldingVar() const;
3845 
3846   /// Set the binding for this BindingDecl, along with its declared type (which
3847   /// should be a possibly-cv-qualified form of the type of the binding, or a
3848   /// reference to such a type).
setBinding(QualType DeclaredType,Expr * Binding)3849   void setBinding(QualType DeclaredType, Expr *Binding) {
3850     setType(DeclaredType);
3851     this->Binding = Binding;
3852   }
3853 
3854   /// Set the decomposed variable for this BindingDecl.
setDecomposedDecl(ValueDecl * Decomposed)3855   void setDecomposedDecl(ValueDecl *Decomposed) { Decomp = Decomposed; }
3856 
classof(const Decl * D)3857   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3858   static bool classofKind(Kind K) { return K == Decl::Binding; }
3859 };
3860 
3861 /// A decomposition declaration. For instance, given:
3862 ///
3863 ///   int n[3];
3864 ///   auto &[a, b, c] = n;
3865 ///
3866 /// the second line declares a DecompositionDecl of type 'int (&)[3]', and
3867 /// three BindingDecls (named a, b, and c). An instance of this class is always
3868 /// unnamed, but behaves in almost all other respects like a VarDecl.
3869 class DecompositionDecl final
3870     : public VarDecl,
3871       private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
3872   /// The number of BindingDecl*s following this object.
3873   unsigned NumBindings;
3874 
DecompositionDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation LSquareLoc,QualType T,TypeSourceInfo * TInfo,StorageClass SC,ArrayRef<BindingDecl * > Bindings)3875   DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3876                     SourceLocation LSquareLoc, QualType T,
3877                     TypeSourceInfo *TInfo, StorageClass SC,
3878                     ArrayRef<BindingDecl *> Bindings)
3879       : VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
3880                 SC),
3881         NumBindings(Bindings.size()) {
3882     std::uninitialized_copy(Bindings.begin(), Bindings.end(),
3883                             getTrailingObjects<BindingDecl *>());
3884     for (auto *B : Bindings)
3885       B->setDecomposedDecl(this);
3886   }
3887 
3888   void anchor() override;
3889 
3890 public:
3891   friend class ASTDeclReader;
3892   friend TrailingObjects;
3893 
3894   static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
3895                                    SourceLocation StartLoc,
3896                                    SourceLocation LSquareLoc,
3897                                    QualType T, TypeSourceInfo *TInfo,
3898                                    StorageClass S,
3899                                    ArrayRef<BindingDecl *> Bindings);
3900   static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
3901                                                unsigned NumBindings);
3902 
bindings()3903   ArrayRef<BindingDecl *> bindings() const {
3904     return llvm::makeArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
3905   }
3906 
3907   void printName(raw_ostream &os) const override;
3908 
classof(const Decl * D)3909   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3910   static bool classofKind(Kind K) { return K == Decomposition; }
3911 };
3912 
3913 /// An instance of this class represents the declaration of a property
3914 /// member.  This is a Microsoft extension to C++, first introduced in
3915 /// Visual Studio .NET 2003 as a parallel to similar features in C#
3916 /// and Managed C++.
3917 ///
3918 /// A property must always be a non-static class member.
3919 ///
3920 /// A property member superficially resembles a non-static data
3921 /// member, except preceded by a property attribute:
3922 ///   __declspec(property(get=GetX, put=PutX)) int x;
3923 /// Either (but not both) of the 'get' and 'put' names may be omitted.
3924 ///
3925 /// A reference to a property is always an lvalue.  If the lvalue
3926 /// undergoes lvalue-to-rvalue conversion, then a getter name is
3927 /// required, and that member is called with no arguments.
3928 /// If the lvalue is assigned into, then a setter name is required,
3929 /// and that member is called with one argument, the value assigned.
3930 /// Both operations are potentially overloaded.  Compound assignments
3931 /// are permitted, as are the increment and decrement operators.
3932 ///
3933 /// The getter and putter methods are permitted to be overloaded,
3934 /// although their return and parameter types are subject to certain
3935 /// restrictions according to the type of the property.
3936 ///
3937 /// A property declared using an incomplete array type may
3938 /// additionally be subscripted, adding extra parameters to the getter
3939 /// and putter methods.
3940 class MSPropertyDecl : public DeclaratorDecl {
3941   IdentifierInfo *GetterId, *SetterId;
3942 
MSPropertyDecl(DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)3943   MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
3944                  QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
3945                  IdentifierInfo *Getter, IdentifierInfo *Setter)
3946       : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
3947         GetterId(Getter), SetterId(Setter) {}
3948 
3949   void anchor() override;
3950 public:
3951   friend class ASTDeclReader;
3952 
3953   static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
3954                                 SourceLocation L, DeclarationName N, QualType T,
3955                                 TypeSourceInfo *TInfo, SourceLocation StartL,
3956                                 IdentifierInfo *Getter, IdentifierInfo *Setter);
3957   static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3958 
classof(const Decl * D)3959   static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
3960 
hasGetter()3961   bool hasGetter() const { return GetterId != nullptr; }
getGetterId()3962   IdentifierInfo* getGetterId() const { return GetterId; }
hasSetter()3963   bool hasSetter() const { return SetterId != nullptr; }
getSetterId()3964   IdentifierInfo* getSetterId() const { return SetterId; }
3965 };
3966 
3967 /// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
3968 /// into a diagnostic with <<.
3969 const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3970                                     AccessSpecifier AS);
3971 
3972 const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
3973                                     AccessSpecifier AS);
3974 
3975 } // namespace clang
3976 
3977 #endif // LLVM_CLANG_AST_DECLCXX_H
3978