1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/Expr.h"
33 #include "clang/AST/ExprCXX.h"
34 #include "clang/AST/ExternalASTSource.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/MangleNumberingContext.h"
37 #include "clang/AST/NestedNameSpecifier.h"
38 #include "clang/AST/RawCommentList.h"
39 #include "clang/AST/RecordLayout.h"
40 #include "clang/AST/RecursiveASTVisitor.h"
41 #include "clang/AST/Stmt.h"
42 #include "clang/AST/TemplateBase.h"
43 #include "clang/AST/TemplateName.h"
44 #include "clang/AST/Type.h"
45 #include "clang/AST/TypeLoc.h"
46 #include "clang/AST/UnresolvedSet.h"
47 #include "clang/AST/VTableBuilder.h"
48 #include "clang/Basic/AddressSpaces.h"
49 #include "clang/Basic/Builtins.h"
50 #include "clang/Basic/CommentOptions.h"
51 #include "clang/Basic/ExceptionSpecificationType.h"
52 #include "clang/Basic/FixedPoint.h"
53 #include "clang/Basic/IdentifierTable.h"
54 #include "clang/Basic/LLVM.h"
55 #include "clang/Basic/LangOptions.h"
56 #include "clang/Basic/Linkage.h"
57 #include "clang/Basic/ObjCRuntime.h"
58 #include "clang/Basic/SanitizerBlacklist.h"
59 #include "clang/Basic/SourceLocation.h"
60 #include "clang/Basic/SourceManager.h"
61 #include "clang/Basic/Specifiers.h"
62 #include "clang/Basic/TargetCXXABI.h"
63 #include "clang/Basic/TargetInfo.h"
64 #include "clang/Basic/XRayLists.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/DenseSet.h"
70 #include "llvm/ADT/FoldingSet.h"
71 #include "llvm/ADT/None.h"
72 #include "llvm/ADT/Optional.h"
73 #include "llvm/ADT/PointerUnion.h"
74 #include "llvm/ADT/STLExtras.h"
75 #include "llvm/ADT/SmallPtrSet.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringExtras.h"
78 #include "llvm/ADT/StringRef.h"
79 #include "llvm/ADT/Triple.h"
80 #include "llvm/Support/Capacity.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include <algorithm>
87 #include <cassert>
88 #include <cstddef>
89 #include <cstdint>
90 #include <cstdlib>
91 #include <map>
92 #include <memory>
93 #include <string>
94 #include <tuple>
95 #include <utility>
96
97 using namespace clang;
98
99 enum FloatingRank {
100 Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
101 };
traverseIgnored(const Expr * E) const102 const Expr *ASTContext::traverseIgnored(const Expr *E) const {
103 return traverseIgnored(const_cast<Expr *>(E));
104 }
105
traverseIgnored(Expr * E) const106 Expr *ASTContext::traverseIgnored(Expr *E) const {
107 if (!E)
108 return nullptr;
109
110 switch (Traversal) {
111 case ast_type_traits::TK_AsIs:
112 return E;
113 case ast_type_traits::TK_IgnoreImplicitCastsAndParentheses:
114 return E->IgnoreParenImpCasts();
115 case ast_type_traits::TK_IgnoreUnlessSpelledInSource:
116 return E->IgnoreUnlessSpelledInSource();
117 }
118 llvm_unreachable("Invalid Traversal type!");
119 }
120
121 ast_type_traits::DynTypedNode
traverseIgnored(const ast_type_traits::DynTypedNode & N) const122 ASTContext::traverseIgnored(const ast_type_traits::DynTypedNode &N) const {
123 if (const auto *E = N.get<Expr>()) {
124 return ast_type_traits::DynTypedNode::create(*traverseIgnored(E));
125 }
126 return N;
127 }
128
129 /// \returns location that is relevant when searching for Doc comments related
130 /// to \p D.
getDeclLocForCommentSearch(const Decl * D,SourceManager & SourceMgr)131 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
132 SourceManager &SourceMgr) {
133 assert(D);
134
135 // User can not attach documentation to implicit declarations.
136 if (D->isImplicit())
137 return {};
138
139 // User can not attach documentation to implicit instantiations.
140 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
141 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
142 return {};
143 }
144
145 if (const auto *VD = dyn_cast<VarDecl>(D)) {
146 if (VD->isStaticDataMember() &&
147 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
148 return {};
149 }
150
151 if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
152 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
153 return {};
154 }
155
156 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
157 TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
158 if (TSK == TSK_ImplicitInstantiation ||
159 TSK == TSK_Undeclared)
160 return {};
161 }
162
163 if (const auto *ED = dyn_cast<EnumDecl>(D)) {
164 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
165 return {};
166 }
167 if (const auto *TD = dyn_cast<TagDecl>(D)) {
168 // When tag declaration (but not definition!) is part of the
169 // decl-specifier-seq of some other declaration, it doesn't get comment
170 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
171 return {};
172 }
173 // TODO: handle comments for function parameters properly.
174 if (isa<ParmVarDecl>(D))
175 return {};
176
177 // TODO: we could look up template parameter documentation in the template
178 // documentation.
179 if (isa<TemplateTypeParmDecl>(D) ||
180 isa<NonTypeTemplateParmDecl>(D) ||
181 isa<TemplateTemplateParmDecl>(D))
182 return {};
183
184 // Find declaration location.
185 // For Objective-C declarations we generally don't expect to have multiple
186 // declarators, thus use declaration starting location as the "declaration
187 // location".
188 // For all other declarations multiple declarators are used quite frequently,
189 // so we use the location of the identifier as the "declaration location".
190 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
191 isa<ObjCPropertyDecl>(D) ||
192 isa<RedeclarableTemplateDecl>(D) ||
193 isa<ClassTemplateSpecializationDecl>(D) ||
194 // Allow association with Y across {} in `typedef struct X {} Y`.
195 isa<TypedefDecl>(D))
196 return D->getBeginLoc();
197 else {
198 const SourceLocation DeclLoc = D->getLocation();
199 if (DeclLoc.isMacroID()) {
200 if (isa<TypedefDecl>(D)) {
201 // If location of the typedef name is in a macro, it is because being
202 // declared via a macro. Try using declaration's starting location as
203 // the "declaration location".
204 return D->getBeginLoc();
205 } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
206 // If location of the tag decl is inside a macro, but the spelling of
207 // the tag name comes from a macro argument, it looks like a special
208 // macro like NS_ENUM is being used to define the tag decl. In that
209 // case, adjust the source location to the expansion loc so that we can
210 // attach the comment to the tag decl.
211 if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
212 TD->isCompleteDefinition())
213 return SourceMgr.getExpansionLoc(DeclLoc);
214 }
215 }
216 return DeclLoc;
217 }
218
219 return {};
220 }
221
getRawCommentForDeclNoCacheImpl(const Decl * D,const SourceLocation RepresentativeLocForDecl,const std::map<unsigned,RawComment * > & CommentsInTheFile) const222 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
223 const Decl *D, const SourceLocation RepresentativeLocForDecl,
224 const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
225 // If the declaration doesn't map directly to a location in a file, we
226 // can't find the comment.
227 if (RepresentativeLocForDecl.isInvalid() ||
228 !RepresentativeLocForDecl.isFileID())
229 return nullptr;
230
231 // If there are no comments anywhere, we won't find anything.
232 if (CommentsInTheFile.empty())
233 return nullptr;
234
235 // Decompose the location for the declaration and find the beginning of the
236 // file buffer.
237 const std::pair<FileID, unsigned> DeclLocDecomp =
238 SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
239
240 // Slow path.
241 auto OffsetCommentBehindDecl =
242 CommentsInTheFile.lower_bound(DeclLocDecomp.second);
243
244 // First check whether we have a trailing comment.
245 if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
246 RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
247 if ((CommentBehindDecl->isDocumentation() ||
248 LangOpts.CommentOpts.ParseAllComments) &&
249 CommentBehindDecl->isTrailingComment() &&
250 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
251 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
252
253 // Check that Doxygen trailing comment comes after the declaration, starts
254 // on the same line and in the same file as the declaration.
255 if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
256 Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
257 OffsetCommentBehindDecl->first)) {
258 return CommentBehindDecl;
259 }
260 }
261 }
262
263 // The comment just after the declaration was not a trailing comment.
264 // Let's look at the previous comment.
265 if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
266 return nullptr;
267
268 auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
269 RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
270
271 // Check that we actually have a non-member Doxygen comment.
272 if (!(CommentBeforeDecl->isDocumentation() ||
273 LangOpts.CommentOpts.ParseAllComments) ||
274 CommentBeforeDecl->isTrailingComment())
275 return nullptr;
276
277 // Decompose the end of the comment.
278 const unsigned CommentEndOffset =
279 Comments.getCommentEndOffset(CommentBeforeDecl);
280
281 // Get the corresponding buffer.
282 bool Invalid = false;
283 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
284 &Invalid).data();
285 if (Invalid)
286 return nullptr;
287
288 // Extract text between the comment and declaration.
289 StringRef Text(Buffer + CommentEndOffset,
290 DeclLocDecomp.second - CommentEndOffset);
291
292 // There should be no other declarations or preprocessor directives between
293 // comment and declaration.
294 if (Text.find_first_of(";{}#@") != StringRef::npos)
295 return nullptr;
296
297 return CommentBeforeDecl;
298 }
299
getRawCommentForDeclNoCache(const Decl * D) const300 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
301 const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
302
303 // If the declaration doesn't map directly to a location in a file, we
304 // can't find the comment.
305 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
306 return nullptr;
307
308 if (ExternalSource && !CommentsLoaded) {
309 ExternalSource->ReadComments();
310 CommentsLoaded = true;
311 }
312
313 if (Comments.empty())
314 return nullptr;
315
316 const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
317 const auto CommentsInThisFile = Comments.getCommentsInFile(File);
318 if (!CommentsInThisFile || CommentsInThisFile->empty())
319 return nullptr;
320
321 return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
322 }
323
324 /// If we have a 'templated' declaration for a template, adjust 'D' to
325 /// refer to the actual template.
326 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl & D)327 static const Decl &adjustDeclToTemplate(const Decl &D) {
328 if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
329 // Is this function declaration part of a function template?
330 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
331 return *FTD;
332
333 // Nothing to do if function is not an implicit instantiation.
334 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
335 return D;
336
337 // Function is an implicit instantiation of a function template?
338 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
339 return *FTD;
340
341 // Function is instantiated from a member definition of a class template?
342 if (const FunctionDecl *MemberDecl =
343 FD->getInstantiatedFromMemberFunction())
344 return *MemberDecl;
345
346 return D;
347 }
348 if (const auto *VD = dyn_cast<VarDecl>(&D)) {
349 // Static data member is instantiated from a member definition of a class
350 // template?
351 if (VD->isStaticDataMember())
352 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
353 return *MemberDecl;
354
355 return D;
356 }
357 if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
358 // Is this class declaration part of a class template?
359 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
360 return *CTD;
361
362 // Class is an implicit instantiation of a class template or partial
363 // specialization?
364 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
365 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
366 return D;
367 llvm::PointerUnion<ClassTemplateDecl *,
368 ClassTemplatePartialSpecializationDecl *>
369 PU = CTSD->getSpecializedTemplateOrPartial();
370 return PU.is<ClassTemplateDecl *>()
371 ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
372 : *static_cast<const Decl *>(
373 PU.get<ClassTemplatePartialSpecializationDecl *>());
374 }
375
376 // Class is instantiated from a member definition of a class template?
377 if (const MemberSpecializationInfo *Info =
378 CRD->getMemberSpecializationInfo())
379 return *Info->getInstantiatedFrom();
380
381 return D;
382 }
383 if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
384 // Enum is instantiated from a member definition of a class template?
385 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
386 return *MemberDecl;
387
388 return D;
389 }
390 // FIXME: Adjust alias templates?
391 return D;
392 }
393
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const394 const RawComment *ASTContext::getRawCommentForAnyRedecl(
395 const Decl *D,
396 const Decl **OriginalDecl) const {
397 if (!D) {
398 if (OriginalDecl)
399 OriginalDecl = nullptr;
400 return nullptr;
401 }
402
403 D = &adjustDeclToTemplate(*D);
404
405 // Any comment directly attached to D?
406 {
407 auto DeclComment = DeclRawComments.find(D);
408 if (DeclComment != DeclRawComments.end()) {
409 if (OriginalDecl)
410 *OriginalDecl = D;
411 return DeclComment->second;
412 }
413 }
414
415 // Any comment attached to any redeclaration of D?
416 const Decl *CanonicalD = D->getCanonicalDecl();
417 if (!CanonicalD)
418 return nullptr;
419
420 {
421 auto RedeclComment = RedeclChainComments.find(CanonicalD);
422 if (RedeclComment != RedeclChainComments.end()) {
423 if (OriginalDecl)
424 *OriginalDecl = RedeclComment->second;
425 auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
426 assert(CommentAtRedecl != DeclRawComments.end() &&
427 "This decl is supposed to have comment attached.");
428 return CommentAtRedecl->second;
429 }
430 }
431
432 // Any redeclarations of D that we haven't checked for comments yet?
433 // We can't use DenseMap::iterator directly since it'd get invalid.
434 auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
435 auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
436 if (LookupRes != CommentlessRedeclChains.end())
437 return LookupRes->second;
438 return nullptr;
439 }();
440
441 for (const auto Redecl : D->redecls()) {
442 assert(Redecl);
443 // Skip all redeclarations that have been checked previously.
444 if (LastCheckedRedecl) {
445 if (LastCheckedRedecl == Redecl) {
446 LastCheckedRedecl = nullptr;
447 }
448 continue;
449 }
450 const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
451 if (RedeclComment) {
452 cacheRawCommentForDecl(*Redecl, *RedeclComment);
453 if (OriginalDecl)
454 *OriginalDecl = Redecl;
455 return RedeclComment;
456 }
457 CommentlessRedeclChains[CanonicalD] = Redecl;
458 }
459
460 if (OriginalDecl)
461 *OriginalDecl = nullptr;
462 return nullptr;
463 }
464
cacheRawCommentForDecl(const Decl & OriginalD,const RawComment & Comment) const465 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
466 const RawComment &Comment) const {
467 assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
468 DeclRawComments.try_emplace(&OriginalD, &Comment);
469 const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
470 RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
471 CommentlessRedeclChains.erase(CanonicalDecl);
472 }
473
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)474 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
475 SmallVectorImpl<const NamedDecl *> &Redeclared) {
476 const DeclContext *DC = ObjCMethod->getDeclContext();
477 if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
478 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
479 if (!ID)
480 return;
481 // Add redeclared method here.
482 for (const auto *Ext : ID->known_extensions()) {
483 if (ObjCMethodDecl *RedeclaredMethod =
484 Ext->getMethod(ObjCMethod->getSelector(),
485 ObjCMethod->isInstanceMethod()))
486 Redeclared.push_back(RedeclaredMethod);
487 }
488 }
489 }
490
attachCommentsToJustParsedDecls(ArrayRef<Decl * > Decls,const Preprocessor * PP)491 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
492 const Preprocessor *PP) {
493 if (Comments.empty() || Decls.empty())
494 return;
495
496 // See if there are any new comments that are not attached to a decl.
497 // The location doesn't have to be precise - we care only about the file.
498 const FileID File =
499 SourceMgr.getDecomposedLoc((*Decls.begin())->getLocation()).first;
500 auto CommentsInThisFile = Comments.getCommentsInFile(File);
501 if (!CommentsInThisFile || CommentsInThisFile->empty() ||
502 CommentsInThisFile->rbegin()->second->isAttached())
503 return;
504
505 // There is at least one comment not attached to a decl.
506 // Maybe it should be attached to one of Decls?
507 //
508 // Note that this way we pick up not only comments that precede the
509 // declaration, but also comments that *follow* the declaration -- thanks to
510 // the lookahead in the lexer: we've consumed the semicolon and looked
511 // ahead through comments.
512
513 for (const Decl *D : Decls) {
514 assert(D);
515 if (D->isInvalidDecl())
516 continue;
517
518 D = &adjustDeclToTemplate(*D);
519
520 const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
521
522 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
523 continue;
524
525 if (DeclRawComments.count(D) > 0)
526 continue;
527
528 if (RawComment *const DocComment =
529 getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
530 cacheRawCommentForDecl(*D, *DocComment);
531 comments::FullComment *FC = DocComment->parse(*this, PP, D);
532 ParsedComments[D->getCanonicalDecl()] = FC;
533 }
534 }
535 }
536
cloneFullComment(comments::FullComment * FC,const Decl * D) const537 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
538 const Decl *D) const {
539 auto *ThisDeclInfo = new (*this) comments::DeclInfo;
540 ThisDeclInfo->CommentDecl = D;
541 ThisDeclInfo->IsFilled = false;
542 ThisDeclInfo->fill();
543 ThisDeclInfo->CommentDecl = FC->getDecl();
544 if (!ThisDeclInfo->TemplateParameters)
545 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
546 comments::FullComment *CFC =
547 new (*this) comments::FullComment(FC->getBlocks(),
548 ThisDeclInfo);
549 return CFC;
550 }
551
getLocalCommentForDeclUncached(const Decl * D) const552 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
553 const RawComment *RC = getRawCommentForDeclNoCache(D);
554 return RC ? RC->parse(*this, nullptr, D) : nullptr;
555 }
556
getCommentForDecl(const Decl * D,const Preprocessor * PP) const557 comments::FullComment *ASTContext::getCommentForDecl(
558 const Decl *D,
559 const Preprocessor *PP) const {
560 if (!D || D->isInvalidDecl())
561 return nullptr;
562 D = &adjustDeclToTemplate(*D);
563
564 const Decl *Canonical = D->getCanonicalDecl();
565 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
566 ParsedComments.find(Canonical);
567
568 if (Pos != ParsedComments.end()) {
569 if (Canonical != D) {
570 comments::FullComment *FC = Pos->second;
571 comments::FullComment *CFC = cloneFullComment(FC, D);
572 return CFC;
573 }
574 return Pos->second;
575 }
576
577 const Decl *OriginalDecl = nullptr;
578
579 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
580 if (!RC) {
581 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
582 SmallVector<const NamedDecl*, 8> Overridden;
583 const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
584 if (OMD && OMD->isPropertyAccessor())
585 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
586 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
587 return cloneFullComment(FC, D);
588 if (OMD)
589 addRedeclaredMethods(OMD, Overridden);
590 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
591 for (unsigned i = 0, e = Overridden.size(); i < e; i++)
592 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
593 return cloneFullComment(FC, D);
594 }
595 else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
596 // Attach any tag type's documentation to its typedef if latter
597 // does not have one of its own.
598 QualType QT = TD->getUnderlyingType();
599 if (const auto *TT = QT->getAs<TagType>())
600 if (const Decl *TD = TT->getDecl())
601 if (comments::FullComment *FC = getCommentForDecl(TD, PP))
602 return cloneFullComment(FC, D);
603 }
604 else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
605 while (IC->getSuperClass()) {
606 IC = IC->getSuperClass();
607 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
608 return cloneFullComment(FC, D);
609 }
610 }
611 else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
612 if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
613 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
614 return cloneFullComment(FC, D);
615 }
616 else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
617 if (!(RD = RD->getDefinition()))
618 return nullptr;
619 // Check non-virtual bases.
620 for (const auto &I : RD->bases()) {
621 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
622 continue;
623 QualType Ty = I.getType();
624 if (Ty.isNull())
625 continue;
626 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
627 if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
628 continue;
629
630 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
631 return cloneFullComment(FC, D);
632 }
633 }
634 // Check virtual bases.
635 for (const auto &I : RD->vbases()) {
636 if (I.getAccessSpecifier() != AS_public)
637 continue;
638 QualType Ty = I.getType();
639 if (Ty.isNull())
640 continue;
641 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
642 if (!(VirtualBase= VirtualBase->getDefinition()))
643 continue;
644 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
645 return cloneFullComment(FC, D);
646 }
647 }
648 }
649 return nullptr;
650 }
651
652 // If the RawComment was attached to other redeclaration of this Decl, we
653 // should parse the comment in context of that other Decl. This is important
654 // because comments can contain references to parameter names which can be
655 // different across redeclarations.
656 if (D != OriginalDecl && OriginalDecl)
657 return getCommentForDecl(OriginalDecl, PP);
658
659 comments::FullComment *FC = RC->parse(*this, PP, D);
660 ParsedComments[Canonical] = FC;
661 return FC;
662 }
663
664 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & C,TemplateTemplateParmDecl * Parm)665 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
666 const ASTContext &C,
667 TemplateTemplateParmDecl *Parm) {
668 ID.AddInteger(Parm->getDepth());
669 ID.AddInteger(Parm->getPosition());
670 ID.AddBoolean(Parm->isParameterPack());
671
672 TemplateParameterList *Params = Parm->getTemplateParameters();
673 ID.AddInteger(Params->size());
674 for (TemplateParameterList::const_iterator P = Params->begin(),
675 PEnd = Params->end();
676 P != PEnd; ++P) {
677 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
678 ID.AddInteger(0);
679 ID.AddBoolean(TTP->isParameterPack());
680 const TypeConstraint *TC = TTP->getTypeConstraint();
681 ID.AddBoolean(TC != nullptr);
682 if (TC)
683 TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
684 /*Canonical=*/true);
685 if (TTP->isExpandedParameterPack()) {
686 ID.AddBoolean(true);
687 ID.AddInteger(TTP->getNumExpansionParameters());
688 } else
689 ID.AddBoolean(false);
690 continue;
691 }
692
693 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
694 ID.AddInteger(1);
695 ID.AddBoolean(NTTP->isParameterPack());
696 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
697 if (NTTP->isExpandedParameterPack()) {
698 ID.AddBoolean(true);
699 ID.AddInteger(NTTP->getNumExpansionTypes());
700 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
701 QualType T = NTTP->getExpansionType(I);
702 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
703 }
704 } else
705 ID.AddBoolean(false);
706 continue;
707 }
708
709 auto *TTP = cast<TemplateTemplateParmDecl>(*P);
710 ID.AddInteger(2);
711 Profile(ID, C, TTP);
712 }
713 Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
714 ID.AddBoolean(RequiresClause != nullptr);
715 if (RequiresClause)
716 RequiresClause->Profile(ID, C, /*Canonical=*/true);
717 }
718
719 static Expr *
canonicalizeImmediatelyDeclaredConstraint(const ASTContext & C,Expr * IDC,QualType ConstrainedType)720 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
721 QualType ConstrainedType) {
722 // This is a bit ugly - we need to form a new immediately-declared
723 // constraint that references the new parameter; this would ideally
724 // require semantic analysis (e.g. template<C T> struct S {}; - the
725 // converted arguments of C<T> could be an argument pack if C is
726 // declared as template<typename... T> concept C = ...).
727 // We don't have semantic analysis here so we dig deep into the
728 // ready-made constraint expr and change the thing manually.
729 ConceptSpecializationExpr *CSE;
730 if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
731 CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
732 else
733 CSE = cast<ConceptSpecializationExpr>(IDC);
734 ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
735 SmallVector<TemplateArgument, 3> NewConverted;
736 NewConverted.reserve(OldConverted.size());
737 if (OldConverted.front().getKind() == TemplateArgument::Pack) {
738 // The case:
739 // template<typename... T> concept C = true;
740 // template<C<int> T> struct S; -> constraint is C<{T, int}>
741 NewConverted.push_back(ConstrainedType);
742 for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
743 NewConverted.push_back(Arg);
744 TemplateArgument NewPack(NewConverted);
745
746 NewConverted.clear();
747 NewConverted.push_back(NewPack);
748 assert(OldConverted.size() == 1 &&
749 "Template parameter pack should be the last parameter");
750 } else {
751 assert(OldConverted.front().getKind() == TemplateArgument::Type &&
752 "Unexpected first argument kind for immediately-declared "
753 "constraint");
754 NewConverted.push_back(ConstrainedType);
755 for (auto &Arg : OldConverted.drop_front(1))
756 NewConverted.push_back(Arg);
757 }
758 Expr *NewIDC = ConceptSpecializationExpr::Create(
759 C, CSE->getNamedConcept(), NewConverted, nullptr,
760 CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
761
762 if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
763 NewIDC = new (C) CXXFoldExpr(OrigFold->getType(), SourceLocation(), NewIDC,
764 BinaryOperatorKind::BO_LAnd,
765 SourceLocation(), /*RHS=*/nullptr,
766 SourceLocation(), /*NumExpansions=*/None);
767 return NewIDC;
768 }
769
770 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const771 ASTContext::getCanonicalTemplateTemplateParmDecl(
772 TemplateTemplateParmDecl *TTP) const {
773 // Check if we already have a canonical template template parameter.
774 llvm::FoldingSetNodeID ID;
775 CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
776 void *InsertPos = nullptr;
777 CanonicalTemplateTemplateParm *Canonical
778 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
779 if (Canonical)
780 return Canonical->getParam();
781
782 // Build a canonical template parameter list.
783 TemplateParameterList *Params = TTP->getTemplateParameters();
784 SmallVector<NamedDecl *, 4> CanonParams;
785 CanonParams.reserve(Params->size());
786 for (TemplateParameterList::const_iterator P = Params->begin(),
787 PEnd = Params->end();
788 P != PEnd; ++P) {
789 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
790 TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
791 getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
792 TTP->getDepth(), TTP->getIndex(), nullptr, false,
793 TTP->isParameterPack(), TTP->hasTypeConstraint(),
794 TTP->isExpandedParameterPack() ?
795 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
796 if (const auto *TC = TTP->getTypeConstraint()) {
797 QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
798 Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
799 *this, TC->getImmediatelyDeclaredConstraint(),
800 ParamAsArgument);
801 TemplateArgumentListInfo CanonArgsAsWritten;
802 if (auto *Args = TC->getTemplateArgsAsWritten())
803 for (const auto &ArgLoc : Args->arguments())
804 CanonArgsAsWritten.addArgument(
805 TemplateArgumentLoc(ArgLoc.getArgument(),
806 TemplateArgumentLocInfo()));
807 NewTTP->setTypeConstraint(
808 NestedNameSpecifierLoc(),
809 DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
810 SourceLocation()), /*FoundDecl=*/nullptr,
811 // Actually canonicalizing a TemplateArgumentLoc is difficult so we
812 // simply omit the ArgsAsWritten
813 TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
814 }
815 CanonParams.push_back(NewTTP);
816 } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
817 QualType T = getCanonicalType(NTTP->getType());
818 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
819 NonTypeTemplateParmDecl *Param;
820 if (NTTP->isExpandedParameterPack()) {
821 SmallVector<QualType, 2> ExpandedTypes;
822 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
823 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
824 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
825 ExpandedTInfos.push_back(
826 getTrivialTypeSourceInfo(ExpandedTypes.back()));
827 }
828
829 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
830 SourceLocation(),
831 SourceLocation(),
832 NTTP->getDepth(),
833 NTTP->getPosition(), nullptr,
834 T,
835 TInfo,
836 ExpandedTypes,
837 ExpandedTInfos);
838 } else {
839 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
840 SourceLocation(),
841 SourceLocation(),
842 NTTP->getDepth(),
843 NTTP->getPosition(), nullptr,
844 T,
845 NTTP->isParameterPack(),
846 TInfo);
847 }
848 if (AutoType *AT = T->getContainedAutoType()) {
849 if (AT->isConstrained()) {
850 Param->setPlaceholderTypeConstraint(
851 canonicalizeImmediatelyDeclaredConstraint(
852 *this, NTTP->getPlaceholderTypeConstraint(), T));
853 }
854 }
855 CanonParams.push_back(Param);
856
857 } else
858 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
859 cast<TemplateTemplateParmDecl>(*P)));
860 }
861
862 Expr *CanonRequiresClause = nullptr;
863 if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
864 CanonRequiresClause = RequiresClause;
865
866 TemplateTemplateParmDecl *CanonTTP
867 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
868 SourceLocation(), TTP->getDepth(),
869 TTP->getPosition(),
870 TTP->isParameterPack(),
871 nullptr,
872 TemplateParameterList::Create(*this, SourceLocation(),
873 SourceLocation(),
874 CanonParams,
875 SourceLocation(),
876 CanonRequiresClause));
877
878 // Get the new insert position for the node we care about.
879 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
880 assert(!Canonical && "Shouldn't be in the map!");
881 (void)Canonical;
882
883 // Create the canonical template template parameter entry.
884 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
885 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
886 return CanonTTP;
887 }
888
createCXXABI(const TargetInfo & T)889 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
890 if (!LangOpts.CPlusPlus) return nullptr;
891
892 switch (T.getCXXABI().getKind()) {
893 case TargetCXXABI::Fuchsia:
894 case TargetCXXABI::GenericARM: // Same as Itanium at this level
895 case TargetCXXABI::iOS:
896 case TargetCXXABI::iOS64:
897 case TargetCXXABI::WatchOS:
898 case TargetCXXABI::GenericAArch64:
899 case TargetCXXABI::GenericMIPS:
900 case TargetCXXABI::GenericItanium:
901 case TargetCXXABI::WebAssembly:
902 return CreateItaniumCXXABI(*this);
903 case TargetCXXABI::Microsoft:
904 return CreateMicrosoftCXXABI(*this);
905 }
906 llvm_unreachable("Invalid CXXABI type!");
907 }
908
getInterpContext()909 interp::Context &ASTContext::getInterpContext() {
910 if (!InterpContext) {
911 InterpContext.reset(new interp::Context(*this));
912 }
913 return *InterpContext.get();
914 }
915
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)916 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
917 const LangOptions &LOpts) {
918 if (LOpts.FakeAddressSpaceMap) {
919 // The fake address space map must have a distinct entry for each
920 // language-specific address space.
921 static const unsigned FakeAddrSpaceMap[] = {
922 0, // Default
923 1, // opencl_global
924 3, // opencl_local
925 2, // opencl_constant
926 0, // opencl_private
927 4, // opencl_generic
928 5, // cuda_device
929 6, // cuda_constant
930 7, // cuda_shared
931 8, // ptr32_sptr
932 9, // ptr32_uptr
933 10 // ptr64
934 };
935 return &FakeAddrSpaceMap;
936 } else {
937 return &T.getAddressSpaceMap();
938 }
939 }
940
isAddrSpaceMapManglingEnabled(const TargetInfo & TI,const LangOptions & LangOpts)941 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
942 const LangOptions &LangOpts) {
943 switch (LangOpts.getAddressSpaceMapMangling()) {
944 case LangOptions::ASMM_Target:
945 return TI.useAddressSpaceMapMangling();
946 case LangOptions::ASMM_On:
947 return true;
948 case LangOptions::ASMM_Off:
949 return false;
950 }
951 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
952 }
953
ASTContext(LangOptions & LOpts,SourceManager & SM,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins)954 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
955 IdentifierTable &idents, SelectorTable &sels,
956 Builtin::Context &builtins)
957 : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
958 TemplateSpecializationTypes(this_()),
959 DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
960 SubstTemplateTemplateParmPacks(this_()),
961 CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
962 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
963 XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
964 LangOpts.XRayNeverInstrumentFiles,
965 LangOpts.XRayAttrListFiles, SM)),
966 PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
967 BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
968 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
969 CompCategories(this_()), LastSDM(nullptr, 0) {
970 TUDecl = TranslationUnitDecl::Create(*this);
971 TraversalScope = {TUDecl};
972 }
973
~ASTContext()974 ASTContext::~ASTContext() {
975 // Release the DenseMaps associated with DeclContext objects.
976 // FIXME: Is this the ideal solution?
977 ReleaseDeclContextMaps();
978
979 // Call all of the deallocation functions on all of their targets.
980 for (auto &Pair : Deallocations)
981 (Pair.first)(Pair.second);
982
983 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
984 // because they can contain DenseMaps.
985 for (llvm::DenseMap<const ObjCContainerDecl*,
986 const ASTRecordLayout*>::iterator
987 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
988 // Increment in loop to prevent using deallocated memory.
989 if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
990 R->Destroy(*this);
991
992 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
993 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
994 // Increment in loop to prevent using deallocated memory.
995 if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
996 R->Destroy(*this);
997 }
998
999 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1000 AEnd = DeclAttrs.end();
1001 A != AEnd; ++A)
1002 A->second->~AttrVec();
1003
1004 for (const auto &Value : ModuleInitializers)
1005 Value.second->~PerModuleInitializers();
1006
1007 for (APValue *Value : APValueCleanups)
1008 Value->~APValue();
1009 }
1010
1011 class ASTContext::ParentMap {
1012 /// Contains parents of a node.
1013 using ParentVector = llvm::SmallVector<ast_type_traits::DynTypedNode, 2>;
1014
1015 /// Maps from a node to its parents. This is used for nodes that have
1016 /// pointer identity only, which are more common and we can save space by
1017 /// only storing a unique pointer to them.
1018 using ParentMapPointers = llvm::DenseMap<
1019 const void *,
1020 llvm::PointerUnion<const Decl *, const Stmt *,
1021 ast_type_traits::DynTypedNode *, ParentVector *>>;
1022
1023 /// Parent map for nodes without pointer identity. We store a full
1024 /// DynTypedNode for all keys.
1025 using ParentMapOtherNodes = llvm::DenseMap<
1026 ast_type_traits::DynTypedNode,
1027 llvm::PointerUnion<const Decl *, const Stmt *,
1028 ast_type_traits::DynTypedNode *, ParentVector *>>;
1029
1030 ParentMapPointers PointerParents;
1031 ParentMapOtherNodes OtherParents;
1032 class ASTVisitor;
1033
1034 static ast_type_traits::DynTypedNode
getSingleDynTypedNodeFromParentMap(ParentMapPointers::mapped_type U)1035 getSingleDynTypedNodeFromParentMap(ParentMapPointers::mapped_type U) {
1036 if (const auto *D = U.dyn_cast<const Decl *>())
1037 return ast_type_traits::DynTypedNode::create(*D);
1038 if (const auto *S = U.dyn_cast<const Stmt *>())
1039 return ast_type_traits::DynTypedNode::create(*S);
1040 return *U.get<ast_type_traits::DynTypedNode *>();
1041 }
1042
1043 template <typename NodeTy, typename MapTy>
getDynNodeFromMap(const NodeTy & Node,const MapTy & Map)1044 static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node,
1045 const MapTy &Map) {
1046 auto I = Map.find(Node);
1047 if (I == Map.end()) {
1048 return llvm::ArrayRef<ast_type_traits::DynTypedNode>();
1049 }
1050 if (const auto *V = I->second.template dyn_cast<ParentVector *>()) {
1051 return llvm::makeArrayRef(*V);
1052 }
1053 return getSingleDynTypedNodeFromParentMap(I->second);
1054 }
1055
1056 public:
1057 ParentMap(ASTContext &Ctx);
~ParentMap()1058 ~ParentMap() {
1059 for (const auto &Entry : PointerParents) {
1060 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
1061 delete Entry.second.get<ast_type_traits::DynTypedNode *>();
1062 } else if (Entry.second.is<ParentVector *>()) {
1063 delete Entry.second.get<ParentVector *>();
1064 }
1065 }
1066 for (const auto &Entry : OtherParents) {
1067 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
1068 delete Entry.second.get<ast_type_traits::DynTypedNode *>();
1069 } else if (Entry.second.is<ParentVector *>()) {
1070 delete Entry.second.get<ParentVector *>();
1071 }
1072 }
1073 }
1074
getParents(const ast_type_traits::DynTypedNode & Node)1075 DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node) {
1076 if (Node.getNodeKind().hasPointerIdentity())
1077 return getDynNodeFromMap(Node.getMemoizationData(), PointerParents);
1078 return getDynNodeFromMap(Node, OtherParents);
1079 }
1080 };
1081
setTraversalScope(const std::vector<Decl * > & TopLevelDecls)1082 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1083 TraversalScope = TopLevelDecls;
1084 Parents.clear();
1085 }
1086
AddDeallocation(void (* Callback)(void *),void * Data) const1087 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1088 Deallocations.push_back({Callback, Data});
1089 }
1090
1091 void
setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source)1092 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1093 ExternalSource = std::move(Source);
1094 }
1095
PrintStats() const1096 void ASTContext::PrintStats() const {
1097 llvm::errs() << "\n*** AST Context Stats:\n";
1098 llvm::errs() << " " << Types.size() << " types total.\n";
1099
1100 unsigned counts[] = {
1101 #define TYPE(Name, Parent) 0,
1102 #define ABSTRACT_TYPE(Name, Parent)
1103 #include "clang/AST/TypeNodes.inc"
1104 0 // Extra
1105 };
1106
1107 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1108 Type *T = Types[i];
1109 counts[(unsigned)T->getTypeClass()]++;
1110 }
1111
1112 unsigned Idx = 0;
1113 unsigned TotalBytes = 0;
1114 #define TYPE(Name, Parent) \
1115 if (counts[Idx]) \
1116 llvm::errs() << " " << counts[Idx] << " " << #Name \
1117 << " types, " << sizeof(Name##Type) << " each " \
1118 << "(" << counts[Idx] * sizeof(Name##Type) \
1119 << " bytes)\n"; \
1120 TotalBytes += counts[Idx] * sizeof(Name##Type); \
1121 ++Idx;
1122 #define ABSTRACT_TYPE(Name, Parent)
1123 #include "clang/AST/TypeNodes.inc"
1124
1125 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1126
1127 // Implicit special member functions.
1128 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1129 << NumImplicitDefaultConstructors
1130 << " implicit default constructors created\n";
1131 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1132 << NumImplicitCopyConstructors
1133 << " implicit copy constructors created\n";
1134 if (getLangOpts().CPlusPlus)
1135 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1136 << NumImplicitMoveConstructors
1137 << " implicit move constructors created\n";
1138 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1139 << NumImplicitCopyAssignmentOperators
1140 << " implicit copy assignment operators created\n";
1141 if (getLangOpts().CPlusPlus)
1142 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1143 << NumImplicitMoveAssignmentOperators
1144 << " implicit move assignment operators created\n";
1145 llvm::errs() << NumImplicitDestructorsDeclared << "/"
1146 << NumImplicitDestructors
1147 << " implicit destructors created\n";
1148
1149 if (ExternalSource) {
1150 llvm::errs() << "\n";
1151 ExternalSource->PrintStats();
1152 }
1153
1154 BumpAlloc.PrintStats();
1155 }
1156
mergeDefinitionIntoModule(NamedDecl * ND,Module * M,bool NotifyListeners)1157 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1158 bool NotifyListeners) {
1159 if (NotifyListeners)
1160 if (auto *Listener = getASTMutationListener())
1161 Listener->RedefinedHiddenDefinition(ND, M);
1162
1163 MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1164 }
1165
deduplicateMergedDefinitonsFor(NamedDecl * ND)1166 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1167 auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1168 if (It == MergedDefModules.end())
1169 return;
1170
1171 auto &Merged = It->second;
1172 llvm::DenseSet<Module*> Found;
1173 for (Module *&M : Merged)
1174 if (!Found.insert(M).second)
1175 M = nullptr;
1176 Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1177 }
1178
resolve(ASTContext & Ctx)1179 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1180 if (LazyInitializers.empty())
1181 return;
1182
1183 auto *Source = Ctx.getExternalSource();
1184 assert(Source && "lazy initializers but no external source");
1185
1186 auto LazyInits = std::move(LazyInitializers);
1187 LazyInitializers.clear();
1188
1189 for (auto ID : LazyInits)
1190 Initializers.push_back(Source->GetExternalDecl(ID));
1191
1192 assert(LazyInitializers.empty() &&
1193 "GetExternalDecl for lazy module initializer added more inits");
1194 }
1195
addModuleInitializer(Module * M,Decl * D)1196 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1197 // One special case: if we add a module initializer that imports another
1198 // module, and that module's only initializer is an ImportDecl, simplify.
1199 if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1200 auto It = ModuleInitializers.find(ID->getImportedModule());
1201
1202 // Maybe the ImportDecl does nothing at all. (Common case.)
1203 if (It == ModuleInitializers.end())
1204 return;
1205
1206 // Maybe the ImportDecl only imports another ImportDecl.
1207 auto &Imported = *It->second;
1208 if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1209 Imported.resolve(*this);
1210 auto *OnlyDecl = Imported.Initializers.front();
1211 if (isa<ImportDecl>(OnlyDecl))
1212 D = OnlyDecl;
1213 }
1214 }
1215
1216 auto *&Inits = ModuleInitializers[M];
1217 if (!Inits)
1218 Inits = new (*this) PerModuleInitializers;
1219 Inits->Initializers.push_back(D);
1220 }
1221
addLazyModuleInitializers(Module * M,ArrayRef<uint32_t> IDs)1222 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1223 auto *&Inits = ModuleInitializers[M];
1224 if (!Inits)
1225 Inits = new (*this) PerModuleInitializers;
1226 Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1227 IDs.begin(), IDs.end());
1228 }
1229
getModuleInitializers(Module * M)1230 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1231 auto It = ModuleInitializers.find(M);
1232 if (It == ModuleInitializers.end())
1233 return None;
1234
1235 auto *Inits = It->second;
1236 Inits->resolve(*this);
1237 return Inits->Initializers;
1238 }
1239
getExternCContextDecl() const1240 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1241 if (!ExternCContext)
1242 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1243
1244 return ExternCContext;
1245 }
1246
1247 BuiltinTemplateDecl *
buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,const IdentifierInfo * II) const1248 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1249 const IdentifierInfo *II) const {
1250 auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
1251 BuiltinTemplate->setImplicit();
1252 TUDecl->addDecl(BuiltinTemplate);
1253
1254 return BuiltinTemplate;
1255 }
1256
1257 BuiltinTemplateDecl *
getMakeIntegerSeqDecl() const1258 ASTContext::getMakeIntegerSeqDecl() const {
1259 if (!MakeIntegerSeqDecl)
1260 MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1261 getMakeIntegerSeqName());
1262 return MakeIntegerSeqDecl;
1263 }
1264
1265 BuiltinTemplateDecl *
getTypePackElementDecl() const1266 ASTContext::getTypePackElementDecl() const {
1267 if (!TypePackElementDecl)
1268 TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1269 getTypePackElementName());
1270 return TypePackElementDecl;
1271 }
1272
buildImplicitRecord(StringRef Name,RecordDecl::TagKind TK) const1273 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1274 RecordDecl::TagKind TK) const {
1275 SourceLocation Loc;
1276 RecordDecl *NewDecl;
1277 if (getLangOpts().CPlusPlus)
1278 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1279 Loc, &Idents.get(Name));
1280 else
1281 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1282 &Idents.get(Name));
1283 NewDecl->setImplicit();
1284 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1285 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1286 return NewDecl;
1287 }
1288
buildImplicitTypedef(QualType T,StringRef Name) const1289 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1290 StringRef Name) const {
1291 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1292 TypedefDecl *NewDecl = TypedefDecl::Create(
1293 const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1294 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1295 NewDecl->setImplicit();
1296 return NewDecl;
1297 }
1298
getInt128Decl() const1299 TypedefDecl *ASTContext::getInt128Decl() const {
1300 if (!Int128Decl)
1301 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1302 return Int128Decl;
1303 }
1304
getUInt128Decl() const1305 TypedefDecl *ASTContext::getUInt128Decl() const {
1306 if (!UInt128Decl)
1307 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1308 return UInt128Decl;
1309 }
1310
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)1311 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1312 auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1313 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1314 Types.push_back(Ty);
1315 }
1316
InitBuiltinTypes(const TargetInfo & Target,const TargetInfo * AuxTarget)1317 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1318 const TargetInfo *AuxTarget) {
1319 assert((!this->Target || this->Target == &Target) &&
1320 "Incorrect target reinitialization");
1321 assert(VoidTy.isNull() && "Context reinitialized?");
1322
1323 this->Target = &Target;
1324 this->AuxTarget = AuxTarget;
1325
1326 ABI.reset(createCXXABI(Target));
1327 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1328 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1329
1330 // C99 6.2.5p19.
1331 InitBuiltinType(VoidTy, BuiltinType::Void);
1332
1333 // C99 6.2.5p2.
1334 InitBuiltinType(BoolTy, BuiltinType::Bool);
1335 // C99 6.2.5p3.
1336 if (LangOpts.CharIsSigned)
1337 InitBuiltinType(CharTy, BuiltinType::Char_S);
1338 else
1339 InitBuiltinType(CharTy, BuiltinType::Char_U);
1340 // C99 6.2.5p4.
1341 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
1342 InitBuiltinType(ShortTy, BuiltinType::Short);
1343 InitBuiltinType(IntTy, BuiltinType::Int);
1344 InitBuiltinType(LongTy, BuiltinType::Long);
1345 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
1346
1347 // C99 6.2.5p6.
1348 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
1349 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
1350 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
1351 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
1352 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
1353
1354 // C99 6.2.5p10.
1355 InitBuiltinType(FloatTy, BuiltinType::Float);
1356 InitBuiltinType(DoubleTy, BuiltinType::Double);
1357 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
1358
1359 // GNU extension, __float128 for IEEE quadruple precision
1360 InitBuiltinType(Float128Ty, BuiltinType::Float128);
1361
1362 // C11 extension ISO/IEC TS 18661-3
1363 InitBuiltinType(Float16Ty, BuiltinType::Float16);
1364
1365 // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1366 InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum);
1367 InitBuiltinType(AccumTy, BuiltinType::Accum);
1368 InitBuiltinType(LongAccumTy, BuiltinType::LongAccum);
1369 InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum);
1370 InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum);
1371 InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum);
1372 InitBuiltinType(ShortFractTy, BuiltinType::ShortFract);
1373 InitBuiltinType(FractTy, BuiltinType::Fract);
1374 InitBuiltinType(LongFractTy, BuiltinType::LongFract);
1375 InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract);
1376 InitBuiltinType(UnsignedFractTy, BuiltinType::UFract);
1377 InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract);
1378 InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum);
1379 InitBuiltinType(SatAccumTy, BuiltinType::SatAccum);
1380 InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum);
1381 InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1382 InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum);
1383 InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum);
1384 InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract);
1385 InitBuiltinType(SatFractTy, BuiltinType::SatFract);
1386 InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract);
1387 InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1388 InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract);
1389 InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract);
1390
1391 // GNU extension, 128-bit integers.
1392 InitBuiltinType(Int128Ty, BuiltinType::Int128);
1393 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
1394
1395 // C++ 3.9.1p5
1396 if (TargetInfo::isTypeSigned(Target.getWCharType()))
1397 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
1398 else // -fshort-wchar makes wchar_t be unsigned.
1399 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
1400 if (LangOpts.CPlusPlus && LangOpts.WChar)
1401 WideCharTy = WCharTy;
1402 else {
1403 // C99 (or C++ using -fno-wchar).
1404 WideCharTy = getFromTargetType(Target.getWCharType());
1405 }
1406
1407 WIntTy = getFromTargetType(Target.getWIntType());
1408
1409 // C++20 (proposed)
1410 InitBuiltinType(Char8Ty, BuiltinType::Char8);
1411
1412 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1413 InitBuiltinType(Char16Ty, BuiltinType::Char16);
1414 else // C99
1415 Char16Ty = getFromTargetType(Target.getChar16Type());
1416
1417 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1418 InitBuiltinType(Char32Ty, BuiltinType::Char32);
1419 else // C99
1420 Char32Ty = getFromTargetType(Target.getChar32Type());
1421
1422 // Placeholder type for type-dependent expressions whose type is
1423 // completely unknown. No code should ever check a type against
1424 // DependentTy and users should never see it; however, it is here to
1425 // help diagnose failures to properly check for type-dependent
1426 // expressions.
1427 InitBuiltinType(DependentTy, BuiltinType::Dependent);
1428
1429 // Placeholder type for functions.
1430 InitBuiltinType(OverloadTy, BuiltinType::Overload);
1431
1432 // Placeholder type for bound members.
1433 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
1434
1435 // Placeholder type for pseudo-objects.
1436 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1437
1438 // "any" type; useful for debugger-like clients.
1439 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1440
1441 // Placeholder type for unbridged ARC casts.
1442 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1443
1444 // Placeholder type for builtin functions.
1445 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1446
1447 // Placeholder type for OMP array sections.
1448 if (LangOpts.OpenMP)
1449 InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1450
1451 // C99 6.2.5p11.
1452 FloatComplexTy = getComplexType(FloatTy);
1453 DoubleComplexTy = getComplexType(DoubleTy);
1454 LongDoubleComplexTy = getComplexType(LongDoubleTy);
1455 Float128ComplexTy = getComplexType(Float128Ty);
1456
1457 // Builtin types for 'id', 'Class', and 'SEL'.
1458 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1459 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1460 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1461
1462 if (LangOpts.OpenCL) {
1463 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1464 InitBuiltinType(SingletonId, BuiltinType::Id);
1465 #include "clang/Basic/OpenCLImageTypes.def"
1466
1467 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1468 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1469 InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1470 InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1471 InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1472
1473 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1474 InitBuiltinType(Id##Ty, BuiltinType::Id);
1475 #include "clang/Basic/OpenCLExtensionTypes.def"
1476 }
1477
1478 if (Target.hasAArch64SVETypes()) {
1479 #define SVE_TYPE(Name, Id, SingletonId) \
1480 InitBuiltinType(SingletonId, BuiltinType::Id);
1481 #include "clang/Basic/AArch64SVEACLETypes.def"
1482 }
1483
1484 // Builtin type for __objc_yes and __objc_no
1485 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1486 SignedCharTy : BoolTy);
1487
1488 ObjCConstantStringType = QualType();
1489
1490 ObjCSuperType = QualType();
1491
1492 // void * type
1493 if (LangOpts.OpenCLVersion >= 200) {
1494 auto Q = VoidTy.getQualifiers();
1495 Q.setAddressSpace(LangAS::opencl_generic);
1496 VoidPtrTy = getPointerType(getCanonicalType(
1497 getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1498 } else {
1499 VoidPtrTy = getPointerType(VoidTy);
1500 }
1501
1502 // nullptr type (C++0x 2.14.7)
1503 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1504
1505 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1506 InitBuiltinType(HalfTy, BuiltinType::Half);
1507
1508 // Builtin type used to help define __builtin_va_list.
1509 VaListTagDecl = nullptr;
1510 }
1511
getDiagnostics() const1512 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1513 return SourceMgr.getDiagnostics();
1514 }
1515
getDeclAttrs(const Decl * D)1516 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1517 AttrVec *&Result = DeclAttrs[D];
1518 if (!Result) {
1519 void *Mem = Allocate(sizeof(AttrVec));
1520 Result = new (Mem) AttrVec;
1521 }
1522
1523 return *Result;
1524 }
1525
1526 /// Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1527 void ASTContext::eraseDeclAttrs(const Decl *D) {
1528 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1529 if (Pos != DeclAttrs.end()) {
1530 Pos->second->~AttrVec();
1531 DeclAttrs.erase(Pos);
1532 }
1533 }
1534
1535 // FIXME: Remove ?
1536 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1537 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1538 assert(Var->isStaticDataMember() && "Not a static data member");
1539 return getTemplateOrSpecializationInfo(Var)
1540 .dyn_cast<MemberSpecializationInfo *>();
1541 }
1542
1543 ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1544 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1545 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1546 TemplateOrInstantiation.find(Var);
1547 if (Pos == TemplateOrInstantiation.end())
1548 return {};
1549
1550 return Pos->second;
1551 }
1552
1553 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1554 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1555 TemplateSpecializationKind TSK,
1556 SourceLocation PointOfInstantiation) {
1557 assert(Inst->isStaticDataMember() && "Not a static data member");
1558 assert(Tmpl->isStaticDataMember() && "Not a static data member");
1559 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1560 Tmpl, TSK, PointOfInstantiation));
1561 }
1562
1563 void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1564 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1565 TemplateOrSpecializationInfo TSI) {
1566 assert(!TemplateOrInstantiation[Inst] &&
1567 "Already noted what the variable was instantiated from");
1568 TemplateOrInstantiation[Inst] = TSI;
1569 }
1570
1571 NamedDecl *
getInstantiatedFromUsingDecl(NamedDecl * UUD)1572 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1573 auto Pos = InstantiatedFromUsingDecl.find(UUD);
1574 if (Pos == InstantiatedFromUsingDecl.end())
1575 return nullptr;
1576
1577 return Pos->second;
1578 }
1579
1580 void
setInstantiatedFromUsingDecl(NamedDecl * Inst,NamedDecl * Pattern)1581 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1582 assert((isa<UsingDecl>(Pattern) ||
1583 isa<UnresolvedUsingValueDecl>(Pattern) ||
1584 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1585 "pattern decl is not a using decl");
1586 assert((isa<UsingDecl>(Inst) ||
1587 isa<UnresolvedUsingValueDecl>(Inst) ||
1588 isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1589 "instantiation did not produce a using decl");
1590 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1591 InstantiatedFromUsingDecl[Inst] = Pattern;
1592 }
1593
1594 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1595 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1596 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1597 = InstantiatedFromUsingShadowDecl.find(Inst);
1598 if (Pos == InstantiatedFromUsingShadowDecl.end())
1599 return nullptr;
1600
1601 return Pos->second;
1602 }
1603
1604 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1605 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1606 UsingShadowDecl *Pattern) {
1607 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1608 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1609 }
1610
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1611 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1612 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1613 = InstantiatedFromUnnamedFieldDecl.find(Field);
1614 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1615 return nullptr;
1616
1617 return Pos->second;
1618 }
1619
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1620 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1621 FieldDecl *Tmpl) {
1622 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1623 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1624 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1625 "Already noted what unnamed field was instantiated from");
1626
1627 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1628 }
1629
1630 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1631 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1632 return overridden_methods(Method).begin();
1633 }
1634
1635 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1636 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1637 return overridden_methods(Method).end();
1638 }
1639
1640 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1641 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1642 auto Range = overridden_methods(Method);
1643 return Range.end() - Range.begin();
1644 }
1645
1646 ASTContext::overridden_method_range
overridden_methods(const CXXMethodDecl * Method) const1647 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1648 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1649 OverriddenMethods.find(Method->getCanonicalDecl());
1650 if (Pos == OverriddenMethods.end())
1651 return overridden_method_range(nullptr, nullptr);
1652 return overridden_method_range(Pos->second.begin(), Pos->second.end());
1653 }
1654
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1655 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1656 const CXXMethodDecl *Overridden) {
1657 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1658 OverriddenMethods[Method].push_back(Overridden);
1659 }
1660
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1661 void ASTContext::getOverriddenMethods(
1662 const NamedDecl *D,
1663 SmallVectorImpl<const NamedDecl *> &Overridden) const {
1664 assert(D);
1665
1666 if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1667 Overridden.append(overridden_methods_begin(CXXMethod),
1668 overridden_methods_end(CXXMethod));
1669 return;
1670 }
1671
1672 const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1673 if (!Method)
1674 return;
1675
1676 SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1677 Method->getOverriddenMethods(OverDecls);
1678 Overridden.append(OverDecls.begin(), OverDecls.end());
1679 }
1680
addedLocalImportDecl(ImportDecl * Import)1681 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1682 assert(!Import->NextLocalImport && "Import declaration already in the chain");
1683 assert(!Import->isFromASTFile() && "Non-local import declaration");
1684 if (!FirstLocalImport) {
1685 FirstLocalImport = Import;
1686 LastLocalImport = Import;
1687 return;
1688 }
1689
1690 LastLocalImport->NextLocalImport = Import;
1691 LastLocalImport = Import;
1692 }
1693
1694 //===----------------------------------------------------------------------===//
1695 // Type Sizing and Analysis
1696 //===----------------------------------------------------------------------===//
1697
1698 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1699 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1700 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1701 switch (T->castAs<BuiltinType>()->getKind()) {
1702 default:
1703 llvm_unreachable("Not a floating point type!");
1704 case BuiltinType::Float16:
1705 case BuiltinType::Half:
1706 return Target->getHalfFormat();
1707 case BuiltinType::Float: return Target->getFloatFormat();
1708 case BuiltinType::Double: return Target->getDoubleFormat();
1709 case BuiltinType::LongDouble:
1710 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1711 return AuxTarget->getLongDoubleFormat();
1712 return Target->getLongDoubleFormat();
1713 case BuiltinType::Float128:
1714 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1715 return AuxTarget->getFloat128Format();
1716 return Target->getFloat128Format();
1717 }
1718 }
1719
getDeclAlign(const Decl * D,bool ForAlignof) const1720 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1721 unsigned Align = Target->getCharWidth();
1722
1723 bool UseAlignAttrOnly = false;
1724 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1725 Align = AlignFromAttr;
1726
1727 // __attribute__((aligned)) can increase or decrease alignment
1728 // *except* on a struct or struct member, where it only increases
1729 // alignment unless 'packed' is also specified.
1730 //
1731 // It is an error for alignas to decrease alignment, so we can
1732 // ignore that possibility; Sema should diagnose it.
1733 if (isa<FieldDecl>(D)) {
1734 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1735 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1736 } else {
1737 UseAlignAttrOnly = true;
1738 }
1739 }
1740 else if (isa<FieldDecl>(D))
1741 UseAlignAttrOnly =
1742 D->hasAttr<PackedAttr>() ||
1743 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1744
1745 // If we're using the align attribute only, just ignore everything
1746 // else about the declaration and its type.
1747 if (UseAlignAttrOnly) {
1748 // do nothing
1749 } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1750 QualType T = VD->getType();
1751 if (const auto *RT = T->getAs<ReferenceType>()) {
1752 if (ForAlignof)
1753 T = RT->getPointeeType();
1754 else
1755 T = getPointerType(RT->getPointeeType());
1756 }
1757 QualType BaseT = getBaseElementType(T);
1758 if (T->isFunctionType())
1759 Align = getTypeInfoImpl(T.getTypePtr()).Align;
1760 else if (!BaseT->isIncompleteType()) {
1761 // Adjust alignments of declarations with array type by the
1762 // large-array alignment on the target.
1763 if (const ArrayType *arrayType = getAsArrayType(T)) {
1764 unsigned MinWidth = Target->getLargeArrayMinWidth();
1765 if (!ForAlignof && MinWidth) {
1766 if (isa<VariableArrayType>(arrayType))
1767 Align = std::max(Align, Target->getLargeArrayAlign());
1768 else if (isa<ConstantArrayType>(arrayType) &&
1769 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1770 Align = std::max(Align, Target->getLargeArrayAlign());
1771 }
1772 }
1773 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1774 if (BaseT.getQualifiers().hasUnaligned())
1775 Align = Target->getCharWidth();
1776 if (const auto *VD = dyn_cast<VarDecl>(D)) {
1777 if (VD->hasGlobalStorage() && !ForAlignof) {
1778 uint64_t TypeSize = getTypeSize(T.getTypePtr());
1779 Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1780 }
1781 }
1782 }
1783
1784 // Fields can be subject to extra alignment constraints, like if
1785 // the field is packed, the struct is packed, or the struct has a
1786 // a max-field-alignment constraint (#pragma pack). So calculate
1787 // the actual alignment of the field within the struct, and then
1788 // (as we're expected to) constrain that by the alignment of the type.
1789 if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1790 const RecordDecl *Parent = Field->getParent();
1791 // We can only produce a sensible answer if the record is valid.
1792 if (!Parent->isInvalidDecl()) {
1793 const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1794
1795 // Start with the record's overall alignment.
1796 unsigned FieldAlign = toBits(Layout.getAlignment());
1797
1798 // Use the GCD of that and the offset within the record.
1799 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1800 if (Offset > 0) {
1801 // Alignment is always a power of 2, so the GCD will be a power of 2,
1802 // which means we get to do this crazy thing instead of Euclid's.
1803 uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1804 if (LowBitOfOffset < FieldAlign)
1805 FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1806 }
1807
1808 Align = std::min(Align, FieldAlign);
1809 }
1810 }
1811 }
1812
1813 return toCharUnitsFromBits(Align);
1814 }
1815
1816 // getTypeInfoDataSizeInChars - Return the size of a type, in
1817 // chars. If the type is a record, its data size is returned. This is
1818 // the size of the memcpy that's performed when assigning this type
1819 // using a trivial copy/move assignment operator.
1820 std::pair<CharUnits, CharUnits>
getTypeInfoDataSizeInChars(QualType T) const1821 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1822 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1823
1824 // In C++, objects can sometimes be allocated into the tail padding
1825 // of a base-class subobject. We decide whether that's possible
1826 // during class layout, so here we can just trust the layout results.
1827 if (getLangOpts().CPlusPlus) {
1828 if (const auto *RT = T->getAs<RecordType>()) {
1829 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1830 sizeAndAlign.first = layout.getDataSize();
1831 }
1832 }
1833
1834 return sizeAndAlign;
1835 }
1836
1837 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1838 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1839 std::pair<CharUnits, CharUnits>
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1840 static getConstantArrayInfoInChars(const ASTContext &Context,
1841 const ConstantArrayType *CAT) {
1842 std::pair<CharUnits, CharUnits> EltInfo =
1843 Context.getTypeInfoInChars(CAT->getElementType());
1844 uint64_t Size = CAT->getSize().getZExtValue();
1845 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1846 (uint64_t)(-1)/Size) &&
1847 "Overflow in array type char size evaluation");
1848 uint64_t Width = EltInfo.first.getQuantity() * Size;
1849 unsigned Align = EltInfo.second.getQuantity();
1850 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1851 Context.getTargetInfo().getPointerWidth(0) == 64)
1852 Width = llvm::alignTo(Width, Align);
1853 return std::make_pair(CharUnits::fromQuantity(Width),
1854 CharUnits::fromQuantity(Align));
1855 }
1856
1857 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const1858 ASTContext::getTypeInfoInChars(const Type *T) const {
1859 if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1860 return getConstantArrayInfoInChars(*this, CAT);
1861 TypeInfo Info = getTypeInfo(T);
1862 return std::make_pair(toCharUnitsFromBits(Info.Width),
1863 toCharUnitsFromBits(Info.Align));
1864 }
1865
1866 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const1867 ASTContext::getTypeInfoInChars(QualType T) const {
1868 return getTypeInfoInChars(T.getTypePtr());
1869 }
1870
isAlignmentRequired(const Type * T) const1871 bool ASTContext::isAlignmentRequired(const Type *T) const {
1872 return getTypeInfo(T).AlignIsRequired;
1873 }
1874
isAlignmentRequired(QualType T) const1875 bool ASTContext::isAlignmentRequired(QualType T) const {
1876 return isAlignmentRequired(T.getTypePtr());
1877 }
1878
getTypeAlignIfKnown(QualType T) const1879 unsigned ASTContext::getTypeAlignIfKnown(QualType T) const {
1880 // An alignment on a typedef overrides anything else.
1881 if (const auto *TT = T->getAs<TypedefType>())
1882 if (unsigned Align = TT->getDecl()->getMaxAlignment())
1883 return Align;
1884
1885 // If we have an (array of) complete type, we're done.
1886 T = getBaseElementType(T);
1887 if (!T->isIncompleteType())
1888 return getTypeAlign(T);
1889
1890 // If we had an array type, its element type might be a typedef
1891 // type with an alignment attribute.
1892 if (const auto *TT = T->getAs<TypedefType>())
1893 if (unsigned Align = TT->getDecl()->getMaxAlignment())
1894 return Align;
1895
1896 // Otherwise, see if the declaration of the type had an attribute.
1897 if (const auto *TT = T->getAs<TagType>())
1898 return TT->getDecl()->getMaxAlignment();
1899
1900 return 0;
1901 }
1902
getTypeInfo(const Type * T) const1903 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1904 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1905 if (I != MemoizedTypeInfo.end())
1906 return I->second;
1907
1908 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1909 TypeInfo TI = getTypeInfoImpl(T);
1910 MemoizedTypeInfo[T] = TI;
1911 return TI;
1912 }
1913
1914 /// getTypeInfoImpl - Return the size of the specified type, in bits. This
1915 /// method does not work on incomplete types.
1916 ///
1917 /// FIXME: Pointers into different addr spaces could have different sizes and
1918 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1919 /// should take a QualType, &c.
getTypeInfoImpl(const Type * T) const1920 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1921 uint64_t Width = 0;
1922 unsigned Align = 8;
1923 bool AlignIsRequired = false;
1924 unsigned AS = 0;
1925 switch (T->getTypeClass()) {
1926 #define TYPE(Class, Base)
1927 #define ABSTRACT_TYPE(Class, Base)
1928 #define NON_CANONICAL_TYPE(Class, Base)
1929 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1930 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1931 case Type::Class: \
1932 assert(!T->isDependentType() && "should not see dependent types here"); \
1933 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1934 #include "clang/AST/TypeNodes.inc"
1935 llvm_unreachable("Should not see dependent types");
1936
1937 case Type::FunctionNoProto:
1938 case Type::FunctionProto:
1939 // GCC extension: alignof(function) = 32 bits
1940 Width = 0;
1941 Align = 32;
1942 break;
1943
1944 case Type::IncompleteArray:
1945 case Type::VariableArray:
1946 Width = 0;
1947 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1948 break;
1949
1950 case Type::ConstantArray: {
1951 const auto *CAT = cast<ConstantArrayType>(T);
1952
1953 TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1954 uint64_t Size = CAT->getSize().getZExtValue();
1955 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1956 "Overflow in array type bit size evaluation");
1957 Width = EltInfo.Width * Size;
1958 Align = EltInfo.Align;
1959 if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1960 getTargetInfo().getPointerWidth(0) == 64)
1961 Width = llvm::alignTo(Width, Align);
1962 break;
1963 }
1964 case Type::ExtVector:
1965 case Type::Vector: {
1966 const auto *VT = cast<VectorType>(T);
1967 TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1968 Width = EltInfo.Width * VT->getNumElements();
1969 Align = Width;
1970 // If the alignment is not a power of 2, round up to the next power of 2.
1971 // This happens for non-power-of-2 length vectors.
1972 if (Align & (Align-1)) {
1973 Align = llvm::NextPowerOf2(Align);
1974 Width = llvm::alignTo(Width, Align);
1975 }
1976 // Adjust the alignment based on the target max.
1977 uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1978 if (TargetVectorAlign && TargetVectorAlign < Align)
1979 Align = TargetVectorAlign;
1980 break;
1981 }
1982
1983 case Type::Builtin:
1984 switch (cast<BuiltinType>(T)->getKind()) {
1985 default: llvm_unreachable("Unknown builtin type!");
1986 case BuiltinType::Void:
1987 // GCC extension: alignof(void) = 8 bits.
1988 Width = 0;
1989 Align = 8;
1990 break;
1991 case BuiltinType::Bool:
1992 Width = Target->getBoolWidth();
1993 Align = Target->getBoolAlign();
1994 break;
1995 case BuiltinType::Char_S:
1996 case BuiltinType::Char_U:
1997 case BuiltinType::UChar:
1998 case BuiltinType::SChar:
1999 case BuiltinType::Char8:
2000 Width = Target->getCharWidth();
2001 Align = Target->getCharAlign();
2002 break;
2003 case BuiltinType::WChar_S:
2004 case BuiltinType::WChar_U:
2005 Width = Target->getWCharWidth();
2006 Align = Target->getWCharAlign();
2007 break;
2008 case BuiltinType::Char16:
2009 Width = Target->getChar16Width();
2010 Align = Target->getChar16Align();
2011 break;
2012 case BuiltinType::Char32:
2013 Width = Target->getChar32Width();
2014 Align = Target->getChar32Align();
2015 break;
2016 case BuiltinType::UShort:
2017 case BuiltinType::Short:
2018 Width = Target->getShortWidth();
2019 Align = Target->getShortAlign();
2020 break;
2021 case BuiltinType::UInt:
2022 case BuiltinType::Int:
2023 Width = Target->getIntWidth();
2024 Align = Target->getIntAlign();
2025 break;
2026 case BuiltinType::ULong:
2027 case BuiltinType::Long:
2028 Width = Target->getLongWidth();
2029 Align = Target->getLongAlign();
2030 break;
2031 case BuiltinType::ULongLong:
2032 case BuiltinType::LongLong:
2033 Width = Target->getLongLongWidth();
2034 Align = Target->getLongLongAlign();
2035 break;
2036 case BuiltinType::Int128:
2037 case BuiltinType::UInt128:
2038 Width = 128;
2039 Align = 128; // int128_t is 128-bit aligned on all targets.
2040 break;
2041 case BuiltinType::ShortAccum:
2042 case BuiltinType::UShortAccum:
2043 case BuiltinType::SatShortAccum:
2044 case BuiltinType::SatUShortAccum:
2045 Width = Target->getShortAccumWidth();
2046 Align = Target->getShortAccumAlign();
2047 break;
2048 case BuiltinType::Accum:
2049 case BuiltinType::UAccum:
2050 case BuiltinType::SatAccum:
2051 case BuiltinType::SatUAccum:
2052 Width = Target->getAccumWidth();
2053 Align = Target->getAccumAlign();
2054 break;
2055 case BuiltinType::LongAccum:
2056 case BuiltinType::ULongAccum:
2057 case BuiltinType::SatLongAccum:
2058 case BuiltinType::SatULongAccum:
2059 Width = Target->getLongAccumWidth();
2060 Align = Target->getLongAccumAlign();
2061 break;
2062 case BuiltinType::ShortFract:
2063 case BuiltinType::UShortFract:
2064 case BuiltinType::SatShortFract:
2065 case BuiltinType::SatUShortFract:
2066 Width = Target->getShortFractWidth();
2067 Align = Target->getShortFractAlign();
2068 break;
2069 case BuiltinType::Fract:
2070 case BuiltinType::UFract:
2071 case BuiltinType::SatFract:
2072 case BuiltinType::SatUFract:
2073 Width = Target->getFractWidth();
2074 Align = Target->getFractAlign();
2075 break;
2076 case BuiltinType::LongFract:
2077 case BuiltinType::ULongFract:
2078 case BuiltinType::SatLongFract:
2079 case BuiltinType::SatULongFract:
2080 Width = Target->getLongFractWidth();
2081 Align = Target->getLongFractAlign();
2082 break;
2083 case BuiltinType::Float16:
2084 case BuiltinType::Half:
2085 if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2086 !getLangOpts().OpenMPIsDevice) {
2087 Width = Target->getHalfWidth();
2088 Align = Target->getHalfAlign();
2089 } else {
2090 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2091 "Expected OpenMP device compilation.");
2092 Width = AuxTarget->getHalfWidth();
2093 Align = AuxTarget->getHalfAlign();
2094 }
2095 break;
2096 case BuiltinType::Float:
2097 Width = Target->getFloatWidth();
2098 Align = Target->getFloatAlign();
2099 break;
2100 case BuiltinType::Double:
2101 Width = Target->getDoubleWidth();
2102 Align = Target->getDoubleAlign();
2103 break;
2104 case BuiltinType::LongDouble:
2105 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2106 (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2107 Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2108 Width = AuxTarget->getLongDoubleWidth();
2109 Align = AuxTarget->getLongDoubleAlign();
2110 } else {
2111 Width = Target->getLongDoubleWidth();
2112 Align = Target->getLongDoubleAlign();
2113 }
2114 break;
2115 case BuiltinType::Float128:
2116 if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2117 !getLangOpts().OpenMPIsDevice) {
2118 Width = Target->getFloat128Width();
2119 Align = Target->getFloat128Align();
2120 } else {
2121 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2122 "Expected OpenMP device compilation.");
2123 Width = AuxTarget->getFloat128Width();
2124 Align = AuxTarget->getFloat128Align();
2125 }
2126 break;
2127 case BuiltinType::NullPtr:
2128 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2129 Align = Target->getPointerAlign(0); // == sizeof(void*)
2130 break;
2131 case BuiltinType::ObjCId:
2132 case BuiltinType::ObjCClass:
2133 case BuiltinType::ObjCSel:
2134 Width = Target->getPointerWidth(0);
2135 Align = Target->getPointerAlign(0);
2136 break;
2137 case BuiltinType::OCLSampler:
2138 case BuiltinType::OCLEvent:
2139 case BuiltinType::OCLClkEvent:
2140 case BuiltinType::OCLQueue:
2141 case BuiltinType::OCLReserveID:
2142 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2143 case BuiltinType::Id:
2144 #include "clang/Basic/OpenCLImageTypes.def"
2145 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2146 case BuiltinType::Id:
2147 #include "clang/Basic/OpenCLExtensionTypes.def"
2148 AS = getTargetAddressSpace(
2149 Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2150 Width = Target->getPointerWidth(AS);
2151 Align = Target->getPointerAlign(AS);
2152 break;
2153 // The SVE types are effectively target-specific. The length of an
2154 // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2155 // of 128 bits. There is one predicate bit for each vector byte, so the
2156 // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2157 //
2158 // Because the length is only known at runtime, we use a dummy value
2159 // of 0 for the static length. The alignment values are those defined
2160 // by the Procedure Call Standard for the Arm Architecture.
2161 #define SVE_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, IsSigned, IsFP)\
2162 case BuiltinType::Id: \
2163 Width = 0; \
2164 Align = 128; \
2165 break;
2166 #define SVE_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \
2167 case BuiltinType::Id: \
2168 Width = 0; \
2169 Align = 16; \
2170 break;
2171 #include "clang/Basic/AArch64SVEACLETypes.def"
2172 }
2173 break;
2174 case Type::ObjCObjectPointer:
2175 Width = Target->getPointerWidth(0);
2176 Align = Target->getPointerAlign(0);
2177 break;
2178 case Type::BlockPointer:
2179 AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2180 Width = Target->getPointerWidth(AS);
2181 Align = Target->getPointerAlign(AS);
2182 break;
2183 case Type::LValueReference:
2184 case Type::RValueReference:
2185 // alignof and sizeof should never enter this code path here, so we go
2186 // the pointer route.
2187 AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2188 Width = Target->getPointerWidth(AS);
2189 Align = Target->getPointerAlign(AS);
2190 break;
2191 case Type::Pointer:
2192 AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2193 Width = Target->getPointerWidth(AS);
2194 Align = Target->getPointerAlign(AS);
2195 break;
2196 case Type::MemberPointer: {
2197 const auto *MPT = cast<MemberPointerType>(T);
2198 CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2199 Width = MPI.Width;
2200 Align = MPI.Align;
2201 break;
2202 }
2203 case Type::Complex: {
2204 // Complex types have the same alignment as their elements, but twice the
2205 // size.
2206 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2207 Width = EltInfo.Width * 2;
2208 Align = EltInfo.Align;
2209 break;
2210 }
2211 case Type::ObjCObject:
2212 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2213 case Type::Adjusted:
2214 case Type::Decayed:
2215 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2216 case Type::ObjCInterface: {
2217 const auto *ObjCI = cast<ObjCInterfaceType>(T);
2218 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2219 Width = toBits(Layout.getSize());
2220 Align = toBits(Layout.getAlignment());
2221 break;
2222 }
2223 case Type::Record:
2224 case Type::Enum: {
2225 const auto *TT = cast<TagType>(T);
2226
2227 if (TT->getDecl()->isInvalidDecl()) {
2228 Width = 8;
2229 Align = 8;
2230 break;
2231 }
2232
2233 if (const auto *ET = dyn_cast<EnumType>(TT)) {
2234 const EnumDecl *ED = ET->getDecl();
2235 TypeInfo Info =
2236 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2237 if (unsigned AttrAlign = ED->getMaxAlignment()) {
2238 Info.Align = AttrAlign;
2239 Info.AlignIsRequired = true;
2240 }
2241 return Info;
2242 }
2243
2244 const auto *RT = cast<RecordType>(TT);
2245 const RecordDecl *RD = RT->getDecl();
2246 const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2247 Width = toBits(Layout.getSize());
2248 Align = toBits(Layout.getAlignment());
2249 AlignIsRequired = RD->hasAttr<AlignedAttr>();
2250 break;
2251 }
2252
2253 case Type::SubstTemplateTypeParm:
2254 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2255 getReplacementType().getTypePtr());
2256
2257 case Type::Auto:
2258 case Type::DeducedTemplateSpecialization: {
2259 const auto *A = cast<DeducedType>(T);
2260 assert(!A->getDeducedType().isNull() &&
2261 "cannot request the size of an undeduced or dependent auto type");
2262 return getTypeInfo(A->getDeducedType().getTypePtr());
2263 }
2264
2265 case Type::Paren:
2266 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2267
2268 case Type::MacroQualified:
2269 return getTypeInfo(
2270 cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2271
2272 case Type::ObjCTypeParam:
2273 return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2274
2275 case Type::Typedef: {
2276 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2277 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2278 // If the typedef has an aligned attribute on it, it overrides any computed
2279 // alignment we have. This violates the GCC documentation (which says that
2280 // attribute(aligned) can only round up) but matches its implementation.
2281 if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2282 Align = AttrAlign;
2283 AlignIsRequired = true;
2284 } else {
2285 Align = Info.Align;
2286 AlignIsRequired = Info.AlignIsRequired;
2287 }
2288 Width = Info.Width;
2289 break;
2290 }
2291
2292 case Type::Elaborated:
2293 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2294
2295 case Type::Attributed:
2296 return getTypeInfo(
2297 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2298
2299 case Type::Atomic: {
2300 // Start with the base type information.
2301 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2302 Width = Info.Width;
2303 Align = Info.Align;
2304
2305 if (!Width) {
2306 // An otherwise zero-sized type should still generate an
2307 // atomic operation.
2308 Width = Target->getCharWidth();
2309 assert(Align);
2310 } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2311 // If the size of the type doesn't exceed the platform's max
2312 // atomic promotion width, make the size and alignment more
2313 // favorable to atomic operations:
2314
2315 // Round the size up to a power of 2.
2316 if (!llvm::isPowerOf2_64(Width))
2317 Width = llvm::NextPowerOf2(Width);
2318
2319 // Set the alignment equal to the size.
2320 Align = static_cast<unsigned>(Width);
2321 }
2322 }
2323 break;
2324
2325 case Type::Pipe:
2326 Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2327 Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2328 break;
2329 }
2330
2331 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2332 return TypeInfo(Width, Align, AlignIsRequired);
2333 }
2334
getTypeUnadjustedAlign(const Type * T) const2335 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2336 UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2337 if (I != MemoizedUnadjustedAlign.end())
2338 return I->second;
2339
2340 unsigned UnadjustedAlign;
2341 if (const auto *RT = T->getAs<RecordType>()) {
2342 const RecordDecl *RD = RT->getDecl();
2343 const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2344 UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2345 } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2346 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2347 UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2348 } else {
2349 UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2350 }
2351
2352 MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2353 return UnadjustedAlign;
2354 }
2355
getOpenMPDefaultSimdAlign(QualType T) const2356 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2357 unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2358 // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
2359 if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
2360 getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
2361 getTargetInfo().getABI() == "elfv1-qpx" &&
2362 T->isSpecificBuiltinType(BuiltinType::Double))
2363 SimdAlign = 256;
2364 return SimdAlign;
2365 }
2366
2367 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const2368 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2369 return CharUnits::fromQuantity(BitSize / getCharWidth());
2370 }
2371
2372 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const2373 int64_t ASTContext::toBits(CharUnits CharSize) const {
2374 return CharSize.getQuantity() * getCharWidth();
2375 }
2376
2377 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2378 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const2379 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2380 return getTypeInfoInChars(T).first;
2381 }
getTypeSizeInChars(const Type * T) const2382 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2383 return getTypeInfoInChars(T).first;
2384 }
2385
2386 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2387 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const2388 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2389 return toCharUnitsFromBits(getTypeAlign(T));
2390 }
getTypeAlignInChars(const Type * T) const2391 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2392 return toCharUnitsFromBits(getTypeAlign(T));
2393 }
2394
2395 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2396 /// type, in characters, before alignment adustments. This method does
2397 /// not work on incomplete types.
getTypeUnadjustedAlignInChars(QualType T) const2398 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2399 return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2400 }
getTypeUnadjustedAlignInChars(const Type * T) const2401 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2402 return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2403 }
2404
2405 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2406 /// type for the current target in bits. This can be different than the ABI
2407 /// alignment in cases where it is beneficial for performance to overalign
2408 /// a data type.
getPreferredTypeAlign(const Type * T) const2409 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2410 TypeInfo TI = getTypeInfo(T);
2411 unsigned ABIAlign = TI.Align;
2412
2413 T = T->getBaseElementTypeUnsafe();
2414
2415 // The preferred alignment of member pointers is that of a pointer.
2416 if (T->isMemberPointerType())
2417 return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2418
2419 if (!Target->allowsLargerPreferedTypeAlignment())
2420 return ABIAlign;
2421
2422 // Double and long long should be naturally aligned if possible.
2423 if (const auto *CT = T->getAs<ComplexType>())
2424 T = CT->getElementType().getTypePtr();
2425 if (const auto *ET = T->getAs<EnumType>())
2426 T = ET->getDecl()->getIntegerType().getTypePtr();
2427 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2428 T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2429 T->isSpecificBuiltinType(BuiltinType::ULongLong))
2430 // Don't increase the alignment if an alignment attribute was specified on a
2431 // typedef declaration.
2432 if (!TI.AlignIsRequired)
2433 return std::max(ABIAlign, (unsigned)getTypeSize(T));
2434
2435 return ABIAlign;
2436 }
2437
2438 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2439 /// for __attribute__((aligned)) on this target, to be used if no alignment
2440 /// value is specified.
getTargetDefaultAlignForAttributeAligned() const2441 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2442 return getTargetInfo().getDefaultAlignForAttributeAligned();
2443 }
2444
2445 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2446 /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const2447 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2448 uint64_t TypeSize = getTypeSize(T.getTypePtr());
2449 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign(TypeSize));
2450 }
2451
2452 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2453 /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const2454 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2455 return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2456 }
2457
getOffsetOfBaseWithVBPtr(const CXXRecordDecl * RD) const2458 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2459 CharUnits Offset = CharUnits::Zero();
2460 const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2461 while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2462 Offset += Layout->getBaseClassOffset(Base);
2463 Layout = &getASTRecordLayout(Base);
2464 }
2465 return Offset;
2466 }
2467
2468 /// DeepCollectObjCIvars -
2469 /// This routine first collects all declared, but not synthesized, ivars in
2470 /// super class and then collects all ivars, including those synthesized for
2471 /// current class. This routine is used for implementation of current class
2472 /// when all ivars, declared and synthesized are known.
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const2473 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2474 bool leafClass,
2475 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2476 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2477 DeepCollectObjCIvars(SuperClass, false, Ivars);
2478 if (!leafClass) {
2479 for (const auto *I : OI->ivars())
2480 Ivars.push_back(I);
2481 } else {
2482 auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2483 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2484 Iv= Iv->getNextIvar())
2485 Ivars.push_back(Iv);
2486 }
2487 }
2488
2489 /// CollectInheritedProtocols - Collect all protocols in current class and
2490 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)2491 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2492 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2493 if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2494 // We can use protocol_iterator here instead of
2495 // all_referenced_protocol_iterator since we are walking all categories.
2496 for (auto *Proto : OI->all_referenced_protocols()) {
2497 CollectInheritedProtocols(Proto, Protocols);
2498 }
2499
2500 // Categories of this Interface.
2501 for (const auto *Cat : OI->visible_categories())
2502 CollectInheritedProtocols(Cat, Protocols);
2503
2504 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2505 while (SD) {
2506 CollectInheritedProtocols(SD, Protocols);
2507 SD = SD->getSuperClass();
2508 }
2509 } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2510 for (auto *Proto : OC->protocols()) {
2511 CollectInheritedProtocols(Proto, Protocols);
2512 }
2513 } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2514 // Insert the protocol.
2515 if (!Protocols.insert(
2516 const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2517 return;
2518
2519 for (auto *Proto : OP->protocols())
2520 CollectInheritedProtocols(Proto, Protocols);
2521 }
2522 }
2523
unionHasUniqueObjectRepresentations(const ASTContext & Context,const RecordDecl * RD)2524 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2525 const RecordDecl *RD) {
2526 assert(RD->isUnion() && "Must be union type");
2527 CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2528
2529 for (const auto *Field : RD->fields()) {
2530 if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2531 return false;
2532 CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2533 if (FieldSize != UnionSize)
2534 return false;
2535 }
2536 return !RD->field_empty();
2537 }
2538
isStructEmpty(QualType Ty)2539 static bool isStructEmpty(QualType Ty) {
2540 const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2541
2542 if (!RD->field_empty())
2543 return false;
2544
2545 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2546 return ClassDecl->isEmpty();
2547
2548 return true;
2549 }
2550
2551 static llvm::Optional<int64_t>
structHasUniqueObjectRepresentations(const ASTContext & Context,const RecordDecl * RD)2552 structHasUniqueObjectRepresentations(const ASTContext &Context,
2553 const RecordDecl *RD) {
2554 assert(!RD->isUnion() && "Must be struct/class type");
2555 const auto &Layout = Context.getASTRecordLayout(RD);
2556
2557 int64_t CurOffsetInBits = 0;
2558 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2559 if (ClassDecl->isDynamicClass())
2560 return llvm::None;
2561
2562 SmallVector<std::pair<QualType, int64_t>, 4> Bases;
2563 for (const auto &Base : ClassDecl->bases()) {
2564 // Empty types can be inherited from, and non-empty types can potentially
2565 // have tail padding, so just make sure there isn't an error.
2566 if (!isStructEmpty(Base.getType())) {
2567 llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
2568 Context, Base.getType()->castAs<RecordType>()->getDecl());
2569 if (!Size)
2570 return llvm::None;
2571 Bases.emplace_back(Base.getType(), Size.getValue());
2572 }
2573 }
2574
2575 llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2576 const std::pair<QualType, int64_t> &R) {
2577 return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2578 Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2579 });
2580
2581 for (const auto &Base : Bases) {
2582 int64_t BaseOffset = Context.toBits(
2583 Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2584 int64_t BaseSize = Base.second;
2585 if (BaseOffset != CurOffsetInBits)
2586 return llvm::None;
2587 CurOffsetInBits = BaseOffset + BaseSize;
2588 }
2589 }
2590
2591 for (const auto *Field : RD->fields()) {
2592 if (!Field->getType()->isReferenceType() &&
2593 !Context.hasUniqueObjectRepresentations(Field->getType()))
2594 return llvm::None;
2595
2596 int64_t FieldSizeInBits =
2597 Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2598 if (Field->isBitField()) {
2599 int64_t BitfieldSize = Field->getBitWidthValue(Context);
2600
2601 if (BitfieldSize > FieldSizeInBits)
2602 return llvm::None;
2603 FieldSizeInBits = BitfieldSize;
2604 }
2605
2606 int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2607
2608 if (FieldOffsetInBits != CurOffsetInBits)
2609 return llvm::None;
2610
2611 CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2612 }
2613
2614 return CurOffsetInBits;
2615 }
2616
hasUniqueObjectRepresentations(QualType Ty) const2617 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2618 // C++17 [meta.unary.prop]:
2619 // The predicate condition for a template specialization
2620 // has_unique_object_representations<T> shall be
2621 // satisfied if and only if:
2622 // (9.1) - T is trivially copyable, and
2623 // (9.2) - any two objects of type T with the same value have the same
2624 // object representation, where two objects
2625 // of array or non-union class type are considered to have the same value
2626 // if their respective sequences of
2627 // direct subobjects have the same values, and two objects of union type
2628 // are considered to have the same
2629 // value if they have the same active member and the corresponding members
2630 // have the same value.
2631 // The set of scalar types for which this condition holds is
2632 // implementation-defined. [ Note: If a type has padding
2633 // bits, the condition does not hold; otherwise, the condition holds true
2634 // for unsigned integral types. -- end note ]
2635 assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2636
2637 // Arrays are unique only if their element type is unique.
2638 if (Ty->isArrayType())
2639 return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2640
2641 // (9.1) - T is trivially copyable...
2642 if (!Ty.isTriviallyCopyableType(*this))
2643 return false;
2644
2645 // All integrals and enums are unique.
2646 if (Ty->isIntegralOrEnumerationType())
2647 return true;
2648
2649 // All other pointers are unique.
2650 if (Ty->isPointerType())
2651 return true;
2652
2653 if (Ty->isMemberPointerType()) {
2654 const auto *MPT = Ty->getAs<MemberPointerType>();
2655 return !ABI->getMemberPointerInfo(MPT).HasPadding;
2656 }
2657
2658 if (Ty->isRecordType()) {
2659 const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2660
2661 if (Record->isInvalidDecl())
2662 return false;
2663
2664 if (Record->isUnion())
2665 return unionHasUniqueObjectRepresentations(*this, Record);
2666
2667 Optional<int64_t> StructSize =
2668 structHasUniqueObjectRepresentations(*this, Record);
2669
2670 return StructSize &&
2671 StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2672 }
2673
2674 // FIXME: More cases to handle here (list by rsmith):
2675 // vectors (careful about, eg, vector of 3 foo)
2676 // _Complex int and friends
2677 // _Atomic T
2678 // Obj-C block pointers
2679 // Obj-C object pointers
2680 // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2681 // clk_event_t, queue_t, reserve_id_t)
2682 // There're also Obj-C class types and the Obj-C selector type, but I think it
2683 // makes sense for those to return false here.
2684
2685 return false;
2686 }
2687
CountNonClassIvars(const ObjCInterfaceDecl * OI) const2688 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2689 unsigned count = 0;
2690 // Count ivars declared in class extension.
2691 for (const auto *Ext : OI->known_extensions())
2692 count += Ext->ivar_size();
2693
2694 // Count ivar defined in this class's implementation. This
2695 // includes synthesized ivars.
2696 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2697 count += ImplDecl->ivar_size();
2698
2699 return count;
2700 }
2701
isSentinelNullExpr(const Expr * E)2702 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2703 if (!E)
2704 return false;
2705
2706 // nullptr_t is always treated as null.
2707 if (E->getType()->isNullPtrType()) return true;
2708
2709 if (E->getType()->isAnyPointerType() &&
2710 E->IgnoreParenCasts()->isNullPointerConstant(*this,
2711 Expr::NPC_ValueDependentIsNull))
2712 return true;
2713
2714 // Unfortunately, __null has type 'int'.
2715 if (isa<GNUNullExpr>(E)) return true;
2716
2717 return false;
2718 }
2719
2720 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2721 /// exists.
getObjCImplementation(ObjCInterfaceDecl * D)2722 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2723 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2724 I = ObjCImpls.find(D);
2725 if (I != ObjCImpls.end())
2726 return cast<ObjCImplementationDecl>(I->second);
2727 return nullptr;
2728 }
2729
2730 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2731 /// exists.
getObjCImplementation(ObjCCategoryDecl * D)2732 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2733 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2734 I = ObjCImpls.find(D);
2735 if (I != ObjCImpls.end())
2736 return cast<ObjCCategoryImplDecl>(I->second);
2737 return nullptr;
2738 }
2739
2740 /// Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)2741 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2742 ObjCImplementationDecl *ImplD) {
2743 assert(IFaceD && ImplD && "Passed null params");
2744 ObjCImpls[IFaceD] = ImplD;
2745 }
2746
2747 /// Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)2748 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2749 ObjCCategoryImplDecl *ImplD) {
2750 assert(CatD && ImplD && "Passed null params");
2751 ObjCImpls[CatD] = ImplD;
2752 }
2753
2754 const ObjCMethodDecl *
getObjCMethodRedeclaration(const ObjCMethodDecl * MD) const2755 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2756 return ObjCMethodRedecls.lookup(MD);
2757 }
2758
setObjCMethodRedeclaration(const ObjCMethodDecl * MD,const ObjCMethodDecl * Redecl)2759 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2760 const ObjCMethodDecl *Redecl) {
2761 assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2762 ObjCMethodRedecls[MD] = Redecl;
2763 }
2764
getObjContainingInterface(const NamedDecl * ND) const2765 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2766 const NamedDecl *ND) const {
2767 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2768 return ID;
2769 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2770 return CD->getClassInterface();
2771 if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2772 return IMD->getClassInterface();
2773
2774 return nullptr;
2775 }
2776
2777 /// Get the copy initialization expression of VarDecl, or nullptr if
2778 /// none exists.
getBlockVarCopyInit(const VarDecl * VD) const2779 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2780 assert(VD && "Passed null params");
2781 assert(VD->hasAttr<BlocksAttr>() &&
2782 "getBlockVarCopyInits - not __block var");
2783 auto I = BlockVarCopyInits.find(VD);
2784 if (I != BlockVarCopyInits.end())
2785 return I->second;
2786 return {nullptr, false};
2787 }
2788
2789 /// Set the copy initialization expression of a block var decl.
setBlockVarCopyInit(const VarDecl * VD,Expr * CopyExpr,bool CanThrow)2790 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2791 bool CanThrow) {
2792 assert(VD && CopyExpr && "Passed null params");
2793 assert(VD->hasAttr<BlocksAttr>() &&
2794 "setBlockVarCopyInits - not __block var");
2795 BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2796 }
2797
CreateTypeSourceInfo(QualType T,unsigned DataSize) const2798 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2799 unsigned DataSize) const {
2800 if (!DataSize)
2801 DataSize = TypeLoc::getFullDataSizeForType(T);
2802 else
2803 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2804 "incorrect data size provided to CreateTypeSourceInfo!");
2805
2806 auto *TInfo =
2807 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2808 new (TInfo) TypeSourceInfo(T);
2809 return TInfo;
2810 }
2811
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const2812 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2813 SourceLocation L) const {
2814 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2815 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2816 return DI;
2817 }
2818
2819 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const2820 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2821 return getObjCLayout(D, nullptr);
2822 }
2823
2824 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const2825 ASTContext::getASTObjCImplementationLayout(
2826 const ObjCImplementationDecl *D) const {
2827 return getObjCLayout(D->getClassInterface(), D);
2828 }
2829
2830 //===----------------------------------------------------------------------===//
2831 // Type creation/memoization methods
2832 //===----------------------------------------------------------------------===//
2833
2834 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const2835 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2836 unsigned fastQuals = quals.getFastQualifiers();
2837 quals.removeFastQualifiers();
2838
2839 // Check if we've already instantiated this type.
2840 llvm::FoldingSetNodeID ID;
2841 ExtQuals::Profile(ID, baseType, quals);
2842 void *insertPos = nullptr;
2843 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2844 assert(eq->getQualifiers() == quals);
2845 return QualType(eq, fastQuals);
2846 }
2847
2848 // If the base type is not canonical, make the appropriate canonical type.
2849 QualType canon;
2850 if (!baseType->isCanonicalUnqualified()) {
2851 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2852 canonSplit.Quals.addConsistentQualifiers(quals);
2853 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2854
2855 // Re-find the insert position.
2856 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2857 }
2858
2859 auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2860 ExtQualNodes.InsertNode(eq, insertPos);
2861 return QualType(eq, fastQuals);
2862 }
2863
getAddrSpaceQualType(QualType T,LangAS AddressSpace) const2864 QualType ASTContext::getAddrSpaceQualType(QualType T,
2865 LangAS AddressSpace) const {
2866 QualType CanT = getCanonicalType(T);
2867 if (CanT.getAddressSpace() == AddressSpace)
2868 return T;
2869
2870 // If we are composing extended qualifiers together, merge together
2871 // into one ExtQuals node.
2872 QualifierCollector Quals;
2873 const Type *TypeNode = Quals.strip(T);
2874
2875 // If this type already has an address space specified, it cannot get
2876 // another one.
2877 assert(!Quals.hasAddressSpace() &&
2878 "Type cannot be in multiple addr spaces!");
2879 Quals.addAddressSpace(AddressSpace);
2880
2881 return getExtQualType(TypeNode, Quals);
2882 }
2883
removeAddrSpaceQualType(QualType T) const2884 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
2885 // If we are composing extended qualifiers together, merge together
2886 // into one ExtQuals node.
2887 QualifierCollector Quals;
2888 const Type *TypeNode = Quals.strip(T);
2889
2890 // If the qualifier doesn't have an address space just return it.
2891 if (!Quals.hasAddressSpace())
2892 return T;
2893
2894 Quals.removeAddressSpace();
2895
2896 // Removal of the address space can mean there are no longer any
2897 // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2898 // or required.
2899 if (Quals.hasNonFastQualifiers())
2900 return getExtQualType(TypeNode, Quals);
2901 else
2902 return QualType(TypeNode, Quals.getFastQualifiers());
2903 }
2904
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const2905 QualType ASTContext::getObjCGCQualType(QualType T,
2906 Qualifiers::GC GCAttr) const {
2907 QualType CanT = getCanonicalType(T);
2908 if (CanT.getObjCGCAttr() == GCAttr)
2909 return T;
2910
2911 if (const auto *ptr = T->getAs<PointerType>()) {
2912 QualType Pointee = ptr->getPointeeType();
2913 if (Pointee->isAnyPointerType()) {
2914 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2915 return getPointerType(ResultType);
2916 }
2917 }
2918
2919 // If we are composing extended qualifiers together, merge together
2920 // into one ExtQuals node.
2921 QualifierCollector Quals;
2922 const Type *TypeNode = Quals.strip(T);
2923
2924 // If this type already has an ObjCGC specified, it cannot get
2925 // another one.
2926 assert(!Quals.hasObjCGCAttr() &&
2927 "Type cannot have multiple ObjCGCs!");
2928 Quals.addObjCGCAttr(GCAttr);
2929
2930 return getExtQualType(TypeNode, Quals);
2931 }
2932
removePtrSizeAddrSpace(QualType T) const2933 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
2934 if (const PointerType *Ptr = T->getAs<PointerType>()) {
2935 QualType Pointee = Ptr->getPointeeType();
2936 if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
2937 return getPointerType(removeAddrSpaceQualType(Pointee));
2938 }
2939 }
2940 return T;
2941 }
2942
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)2943 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2944 FunctionType::ExtInfo Info) {
2945 if (T->getExtInfo() == Info)
2946 return T;
2947
2948 QualType Result;
2949 if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2950 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2951 } else {
2952 const auto *FPT = cast<FunctionProtoType>(T);
2953 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2954 EPI.ExtInfo = Info;
2955 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2956 }
2957
2958 return cast<FunctionType>(Result.getTypePtr());
2959 }
2960
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)2961 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2962 QualType ResultType) {
2963 FD = FD->getMostRecentDecl();
2964 while (true) {
2965 const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
2966 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2967 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2968 if (FunctionDecl *Next = FD->getPreviousDecl())
2969 FD = Next;
2970 else
2971 break;
2972 }
2973 if (ASTMutationListener *L = getASTMutationListener())
2974 L->DeducedReturnType(FD, ResultType);
2975 }
2976
2977 /// Get a function type and produce the equivalent function type with the
2978 /// specified exception specification. Type sugar that can be present on a
2979 /// declaration of a function with an exception specification is permitted
2980 /// and preserved. Other type sugar (for instance, typedefs) is not.
getFunctionTypeWithExceptionSpec(QualType Orig,const FunctionProtoType::ExceptionSpecInfo & ESI)2981 QualType ASTContext::getFunctionTypeWithExceptionSpec(
2982 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
2983 // Might have some parens.
2984 if (const auto *PT = dyn_cast<ParenType>(Orig))
2985 return getParenType(
2986 getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
2987
2988 // Might be wrapped in a macro qualified type.
2989 if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
2990 return getMacroQualifiedType(
2991 getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
2992 MQT->getMacroIdentifier());
2993
2994 // Might have a calling-convention attribute.
2995 if (const auto *AT = dyn_cast<AttributedType>(Orig))
2996 return getAttributedType(
2997 AT->getAttrKind(),
2998 getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
2999 getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3000
3001 // Anything else must be a function type. Rebuild it with the new exception
3002 // specification.
3003 const auto *Proto = Orig->castAs<FunctionProtoType>();
3004 return getFunctionType(
3005 Proto->getReturnType(), Proto->getParamTypes(),
3006 Proto->getExtProtoInfo().withExceptionSpec(ESI));
3007 }
3008
hasSameFunctionTypeIgnoringExceptionSpec(QualType T,QualType U)3009 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3010 QualType U) {
3011 return hasSameType(T, U) ||
3012 (getLangOpts().CPlusPlus17 &&
3013 hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3014 getFunctionTypeWithExceptionSpec(U, EST_None)));
3015 }
3016
getFunctionTypeWithoutPtrSizes(QualType T)3017 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3018 if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3019 QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3020 SmallVector<QualType, 16> Args(Proto->param_types());
3021 for (unsigned i = 0, n = Args.size(); i != n; ++i)
3022 Args[i] = removePtrSizeAddrSpace(Args[i]);
3023 return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3024 }
3025
3026 if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3027 QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3028 return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3029 }
3030
3031 return T;
3032 }
3033
hasSameFunctionTypeIgnoringPtrSizes(QualType T,QualType U)3034 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3035 return hasSameType(T, U) ||
3036 hasSameType(getFunctionTypeWithoutPtrSizes(T),
3037 getFunctionTypeWithoutPtrSizes(U));
3038 }
3039
adjustExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI,bool AsWritten)3040 void ASTContext::adjustExceptionSpec(
3041 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3042 bool AsWritten) {
3043 // Update the type.
3044 QualType Updated =
3045 getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3046 FD->setType(Updated);
3047
3048 if (!AsWritten)
3049 return;
3050
3051 // Update the type in the type source information too.
3052 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3053 // If the type and the type-as-written differ, we may need to update
3054 // the type-as-written too.
3055 if (TSInfo->getType() != FD->getType())
3056 Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3057
3058 // FIXME: When we get proper type location information for exceptions,
3059 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3060 // up the TypeSourceInfo;
3061 assert(TypeLoc::getFullDataSizeForType(Updated) ==
3062 TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3063 "TypeLoc size mismatch from updating exception specification");
3064 TSInfo->overrideType(Updated);
3065 }
3066 }
3067
3068 /// getComplexType - Return the uniqued reference to the type for a complex
3069 /// number with the specified element type.
getComplexType(QualType T) const3070 QualType ASTContext::getComplexType(QualType T) const {
3071 // Unique pointers, to guarantee there is only one pointer of a particular
3072 // structure.
3073 llvm::FoldingSetNodeID ID;
3074 ComplexType::Profile(ID, T);
3075
3076 void *InsertPos = nullptr;
3077 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3078 return QualType(CT, 0);
3079
3080 // If the pointee type isn't canonical, this won't be a canonical type either,
3081 // so fill in the canonical type field.
3082 QualType Canonical;
3083 if (!T.isCanonical()) {
3084 Canonical = getComplexType(getCanonicalType(T));
3085
3086 // Get the new insert position for the node we care about.
3087 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3088 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3089 }
3090 auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3091 Types.push_back(New);
3092 ComplexTypes.InsertNode(New, InsertPos);
3093 return QualType(New, 0);
3094 }
3095
3096 /// getPointerType - Return the uniqued reference to the type for a pointer to
3097 /// the specified type.
getPointerType(QualType T) const3098 QualType ASTContext::getPointerType(QualType T) const {
3099 // Unique pointers, to guarantee there is only one pointer of a particular
3100 // structure.
3101 llvm::FoldingSetNodeID ID;
3102 PointerType::Profile(ID, T);
3103
3104 void *InsertPos = nullptr;
3105 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3106 return QualType(PT, 0);
3107
3108 // If the pointee type isn't canonical, this won't be a canonical type either,
3109 // so fill in the canonical type field.
3110 QualType Canonical;
3111 if (!T.isCanonical()) {
3112 Canonical = getPointerType(getCanonicalType(T));
3113
3114 // Get the new insert position for the node we care about.
3115 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3116 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3117 }
3118 auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3119 Types.push_back(New);
3120 PointerTypes.InsertNode(New, InsertPos);
3121 return QualType(New, 0);
3122 }
3123
getAdjustedType(QualType Orig,QualType New) const3124 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3125 llvm::FoldingSetNodeID ID;
3126 AdjustedType::Profile(ID, Orig, New);
3127 void *InsertPos = nullptr;
3128 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3129 if (AT)
3130 return QualType(AT, 0);
3131
3132 QualType Canonical = getCanonicalType(New);
3133
3134 // Get the new insert position for the node we care about.
3135 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3136 assert(!AT && "Shouldn't be in the map!");
3137
3138 AT = new (*this, TypeAlignment)
3139 AdjustedType(Type::Adjusted, Orig, New, Canonical);
3140 Types.push_back(AT);
3141 AdjustedTypes.InsertNode(AT, InsertPos);
3142 return QualType(AT, 0);
3143 }
3144
getDecayedType(QualType T) const3145 QualType ASTContext::getDecayedType(QualType T) const {
3146 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3147
3148 QualType Decayed;
3149
3150 // C99 6.7.5.3p7:
3151 // A declaration of a parameter as "array of type" shall be
3152 // adjusted to "qualified pointer to type", where the type
3153 // qualifiers (if any) are those specified within the [ and ] of
3154 // the array type derivation.
3155 if (T->isArrayType())
3156 Decayed = getArrayDecayedType(T);
3157
3158 // C99 6.7.5.3p8:
3159 // A declaration of a parameter as "function returning type"
3160 // shall be adjusted to "pointer to function returning type", as
3161 // in 6.3.2.1.
3162 if (T->isFunctionType())
3163 Decayed = getPointerType(T);
3164
3165 llvm::FoldingSetNodeID ID;
3166 AdjustedType::Profile(ID, T, Decayed);
3167 void *InsertPos = nullptr;
3168 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3169 if (AT)
3170 return QualType(AT, 0);
3171
3172 QualType Canonical = getCanonicalType(Decayed);
3173
3174 // Get the new insert position for the node we care about.
3175 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3176 assert(!AT && "Shouldn't be in the map!");
3177
3178 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3179 Types.push_back(AT);
3180 AdjustedTypes.InsertNode(AT, InsertPos);
3181 return QualType(AT, 0);
3182 }
3183
3184 /// getBlockPointerType - Return the uniqued reference to the type for
3185 /// a pointer to the specified block.
getBlockPointerType(QualType T) const3186 QualType ASTContext::getBlockPointerType(QualType T) const {
3187 assert(T->isFunctionType() && "block of function types only");
3188 // Unique pointers, to guarantee there is only one block of a particular
3189 // structure.
3190 llvm::FoldingSetNodeID ID;
3191 BlockPointerType::Profile(ID, T);
3192
3193 void *InsertPos = nullptr;
3194 if (BlockPointerType *PT =
3195 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3196 return QualType(PT, 0);
3197
3198 // If the block pointee type isn't canonical, this won't be a canonical
3199 // type either so fill in the canonical type field.
3200 QualType Canonical;
3201 if (!T.isCanonical()) {
3202 Canonical = getBlockPointerType(getCanonicalType(T));
3203
3204 // Get the new insert position for the node we care about.
3205 BlockPointerType *NewIP =
3206 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3207 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3208 }
3209 auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3210 Types.push_back(New);
3211 BlockPointerTypes.InsertNode(New, InsertPos);
3212 return QualType(New, 0);
3213 }
3214
3215 /// getLValueReferenceType - Return the uniqued reference to the type for an
3216 /// lvalue reference to the specified type.
3217 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const3218 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3219 assert(getCanonicalType(T) != OverloadTy &&
3220 "Unresolved overloaded function type");
3221
3222 // Unique pointers, to guarantee there is only one pointer of a particular
3223 // structure.
3224 llvm::FoldingSetNodeID ID;
3225 ReferenceType::Profile(ID, T, SpelledAsLValue);
3226
3227 void *InsertPos = nullptr;
3228 if (LValueReferenceType *RT =
3229 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3230 return QualType(RT, 0);
3231
3232 const auto *InnerRef = T->getAs<ReferenceType>();
3233
3234 // If the referencee type isn't canonical, this won't be a canonical type
3235 // either, so fill in the canonical type field.
3236 QualType Canonical;
3237 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3238 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3239 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3240
3241 // Get the new insert position for the node we care about.
3242 LValueReferenceType *NewIP =
3243 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3244 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3245 }
3246
3247 auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3248 SpelledAsLValue);
3249 Types.push_back(New);
3250 LValueReferenceTypes.InsertNode(New, InsertPos);
3251
3252 return QualType(New, 0);
3253 }
3254
3255 /// getRValueReferenceType - Return the uniqued reference to the type for an
3256 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const3257 QualType ASTContext::getRValueReferenceType(QualType T) const {
3258 // Unique pointers, to guarantee there is only one pointer of a particular
3259 // structure.
3260 llvm::FoldingSetNodeID ID;
3261 ReferenceType::Profile(ID, T, false);
3262
3263 void *InsertPos = nullptr;
3264 if (RValueReferenceType *RT =
3265 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3266 return QualType(RT, 0);
3267
3268 const auto *InnerRef = T->getAs<ReferenceType>();
3269
3270 // If the referencee type isn't canonical, this won't be a canonical type
3271 // either, so fill in the canonical type field.
3272 QualType Canonical;
3273 if (InnerRef || !T.isCanonical()) {
3274 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3275 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3276
3277 // Get the new insert position for the node we care about.
3278 RValueReferenceType *NewIP =
3279 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3280 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3281 }
3282
3283 auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3284 Types.push_back(New);
3285 RValueReferenceTypes.InsertNode(New, InsertPos);
3286 return QualType(New, 0);
3287 }
3288
3289 /// getMemberPointerType - Return the uniqued reference to the type for a
3290 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const3291 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3292 // Unique pointers, to guarantee there is only one pointer of a particular
3293 // structure.
3294 llvm::FoldingSetNodeID ID;
3295 MemberPointerType::Profile(ID, T, Cls);
3296
3297 void *InsertPos = nullptr;
3298 if (MemberPointerType *PT =
3299 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3300 return QualType(PT, 0);
3301
3302 // If the pointee or class type isn't canonical, this won't be a canonical
3303 // type either, so fill in the canonical type field.
3304 QualType Canonical;
3305 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3306 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3307
3308 // Get the new insert position for the node we care about.
3309 MemberPointerType *NewIP =
3310 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3311 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3312 }
3313 auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3314 Types.push_back(New);
3315 MemberPointerTypes.InsertNode(New, InsertPos);
3316 return QualType(New, 0);
3317 }
3318
3319 /// getConstantArrayType - Return the unique reference to the type for an
3320 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,const Expr * SizeExpr,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const3321 QualType ASTContext::getConstantArrayType(QualType EltTy,
3322 const llvm::APInt &ArySizeIn,
3323 const Expr *SizeExpr,
3324 ArrayType::ArraySizeModifier ASM,
3325 unsigned IndexTypeQuals) const {
3326 assert((EltTy->isDependentType() ||
3327 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3328 "Constant array of VLAs is illegal!");
3329
3330 // We only need the size as part of the type if it's instantiation-dependent.
3331 if (SizeExpr && !SizeExpr->isInstantiationDependent())
3332 SizeExpr = nullptr;
3333
3334 // Convert the array size into a canonical width matching the pointer size for
3335 // the target.
3336 llvm::APInt ArySize(ArySizeIn);
3337 ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3338
3339 llvm::FoldingSetNodeID ID;
3340 ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3341 IndexTypeQuals);
3342
3343 void *InsertPos = nullptr;
3344 if (ConstantArrayType *ATP =
3345 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3346 return QualType(ATP, 0);
3347
3348 // If the element type isn't canonical or has qualifiers, or the array bound
3349 // is instantiation-dependent, this won't be a canonical type either, so fill
3350 // in the canonical type field.
3351 QualType Canon;
3352 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3353 SplitQualType canonSplit = getCanonicalType(EltTy).split();
3354 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3355 ASM, IndexTypeQuals);
3356 Canon = getQualifiedType(Canon, canonSplit.Quals);
3357
3358 // Get the new insert position for the node we care about.
3359 ConstantArrayType *NewIP =
3360 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3361 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3362 }
3363
3364 void *Mem = Allocate(
3365 ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3366 TypeAlignment);
3367 auto *New = new (Mem)
3368 ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3369 ConstantArrayTypes.InsertNode(New, InsertPos);
3370 Types.push_back(New);
3371 return QualType(New, 0);
3372 }
3373
3374 /// getVariableArrayDecayedType - Turns the given type, which may be
3375 /// variably-modified, into the corresponding type with all the known
3376 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const3377 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3378 // Vastly most common case.
3379 if (!type->isVariablyModifiedType()) return type;
3380
3381 QualType result;
3382
3383 SplitQualType split = type.getSplitDesugaredType();
3384 const Type *ty = split.Ty;
3385 switch (ty->getTypeClass()) {
3386 #define TYPE(Class, Base)
3387 #define ABSTRACT_TYPE(Class, Base)
3388 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3389 #include "clang/AST/TypeNodes.inc"
3390 llvm_unreachable("didn't desugar past all non-canonical types?");
3391
3392 // These types should never be variably-modified.
3393 case Type::Builtin:
3394 case Type::Complex:
3395 case Type::Vector:
3396 case Type::DependentVector:
3397 case Type::ExtVector:
3398 case Type::DependentSizedExtVector:
3399 case Type::DependentAddressSpace:
3400 case Type::ObjCObject:
3401 case Type::ObjCInterface:
3402 case Type::ObjCObjectPointer:
3403 case Type::Record:
3404 case Type::Enum:
3405 case Type::UnresolvedUsing:
3406 case Type::TypeOfExpr:
3407 case Type::TypeOf:
3408 case Type::Decltype:
3409 case Type::UnaryTransform:
3410 case Type::DependentName:
3411 case Type::InjectedClassName:
3412 case Type::TemplateSpecialization:
3413 case Type::DependentTemplateSpecialization:
3414 case Type::TemplateTypeParm:
3415 case Type::SubstTemplateTypeParmPack:
3416 case Type::Auto:
3417 case Type::DeducedTemplateSpecialization:
3418 case Type::PackExpansion:
3419 llvm_unreachable("type should never be variably-modified");
3420
3421 // These types can be variably-modified but should never need to
3422 // further decay.
3423 case Type::FunctionNoProto:
3424 case Type::FunctionProto:
3425 case Type::BlockPointer:
3426 case Type::MemberPointer:
3427 case Type::Pipe:
3428 return type;
3429
3430 // These types can be variably-modified. All these modifications
3431 // preserve structure except as noted by comments.
3432 // TODO: if we ever care about optimizing VLAs, there are no-op
3433 // optimizations available here.
3434 case Type::Pointer:
3435 result = getPointerType(getVariableArrayDecayedType(
3436 cast<PointerType>(ty)->getPointeeType()));
3437 break;
3438
3439 case Type::LValueReference: {
3440 const auto *lv = cast<LValueReferenceType>(ty);
3441 result = getLValueReferenceType(
3442 getVariableArrayDecayedType(lv->getPointeeType()),
3443 lv->isSpelledAsLValue());
3444 break;
3445 }
3446
3447 case Type::RValueReference: {
3448 const auto *lv = cast<RValueReferenceType>(ty);
3449 result = getRValueReferenceType(
3450 getVariableArrayDecayedType(lv->getPointeeType()));
3451 break;
3452 }
3453
3454 case Type::Atomic: {
3455 const auto *at = cast<AtomicType>(ty);
3456 result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3457 break;
3458 }
3459
3460 case Type::ConstantArray: {
3461 const auto *cat = cast<ConstantArrayType>(ty);
3462 result = getConstantArrayType(
3463 getVariableArrayDecayedType(cat->getElementType()),
3464 cat->getSize(),
3465 cat->getSizeExpr(),
3466 cat->getSizeModifier(),
3467 cat->getIndexTypeCVRQualifiers());
3468 break;
3469 }
3470
3471 case Type::DependentSizedArray: {
3472 const auto *dat = cast<DependentSizedArrayType>(ty);
3473 result = getDependentSizedArrayType(
3474 getVariableArrayDecayedType(dat->getElementType()),
3475 dat->getSizeExpr(),
3476 dat->getSizeModifier(),
3477 dat->getIndexTypeCVRQualifiers(),
3478 dat->getBracketsRange());
3479 break;
3480 }
3481
3482 // Turn incomplete types into [*] types.
3483 case Type::IncompleteArray: {
3484 const auto *iat = cast<IncompleteArrayType>(ty);
3485 result = getVariableArrayType(
3486 getVariableArrayDecayedType(iat->getElementType()),
3487 /*size*/ nullptr,
3488 ArrayType::Normal,
3489 iat->getIndexTypeCVRQualifiers(),
3490 SourceRange());
3491 break;
3492 }
3493
3494 // Turn VLA types into [*] types.
3495 case Type::VariableArray: {
3496 const auto *vat = cast<VariableArrayType>(ty);
3497 result = getVariableArrayType(
3498 getVariableArrayDecayedType(vat->getElementType()),
3499 /*size*/ nullptr,
3500 ArrayType::Star,
3501 vat->getIndexTypeCVRQualifiers(),
3502 vat->getBracketsRange());
3503 break;
3504 }
3505 }
3506
3507 // Apply the top-level qualifiers from the original.
3508 return getQualifiedType(result, split.Quals);
3509 }
3510
3511 /// getVariableArrayType - Returns a non-unique reference to the type for a
3512 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const3513 QualType ASTContext::getVariableArrayType(QualType EltTy,
3514 Expr *NumElts,
3515 ArrayType::ArraySizeModifier ASM,
3516 unsigned IndexTypeQuals,
3517 SourceRange Brackets) const {
3518 // Since we don't unique expressions, it isn't possible to unique VLA's
3519 // that have an expression provided for their size.
3520 QualType Canon;
3521
3522 // Be sure to pull qualifiers off the element type.
3523 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3524 SplitQualType canonSplit = getCanonicalType(EltTy).split();
3525 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3526 IndexTypeQuals, Brackets);
3527 Canon = getQualifiedType(Canon, canonSplit.Quals);
3528 }
3529
3530 auto *New = new (*this, TypeAlignment)
3531 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3532
3533 VariableArrayTypes.push_back(New);
3534 Types.push_back(New);
3535 return QualType(New, 0);
3536 }
3537
3538 /// getDependentSizedArrayType - Returns a non-unique reference to
3539 /// the type for a dependently-sized array of the specified element
3540 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const3541 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3542 Expr *numElements,
3543 ArrayType::ArraySizeModifier ASM,
3544 unsigned elementTypeQuals,
3545 SourceRange brackets) const {
3546 assert((!numElements || numElements->isTypeDependent() ||
3547 numElements->isValueDependent()) &&
3548 "Size must be type- or value-dependent!");
3549
3550 // Dependently-sized array types that do not have a specified number
3551 // of elements will have their sizes deduced from a dependent
3552 // initializer. We do no canonicalization here at all, which is okay
3553 // because they can't be used in most locations.
3554 if (!numElements) {
3555 auto *newType
3556 = new (*this, TypeAlignment)
3557 DependentSizedArrayType(*this, elementType, QualType(),
3558 numElements, ASM, elementTypeQuals,
3559 brackets);
3560 Types.push_back(newType);
3561 return QualType(newType, 0);
3562 }
3563
3564 // Otherwise, we actually build a new type every time, but we
3565 // also build a canonical type.
3566
3567 SplitQualType canonElementType = getCanonicalType(elementType).split();
3568
3569 void *insertPos = nullptr;
3570 llvm::FoldingSetNodeID ID;
3571 DependentSizedArrayType::Profile(ID, *this,
3572 QualType(canonElementType.Ty, 0),
3573 ASM, elementTypeQuals, numElements);
3574
3575 // Look for an existing type with these properties.
3576 DependentSizedArrayType *canonTy =
3577 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3578
3579 // If we don't have one, build one.
3580 if (!canonTy) {
3581 canonTy = new (*this, TypeAlignment)
3582 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3583 QualType(), numElements, ASM, elementTypeQuals,
3584 brackets);
3585 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3586 Types.push_back(canonTy);
3587 }
3588
3589 // Apply qualifiers from the element type to the array.
3590 QualType canon = getQualifiedType(QualType(canonTy,0),
3591 canonElementType.Quals);
3592
3593 // If we didn't need extra canonicalization for the element type or the size
3594 // expression, then just use that as our result.
3595 if (QualType(canonElementType.Ty, 0) == elementType &&
3596 canonTy->getSizeExpr() == numElements)
3597 return canon;
3598
3599 // Otherwise, we need to build a type which follows the spelling
3600 // of the element type.
3601 auto *sugaredType
3602 = new (*this, TypeAlignment)
3603 DependentSizedArrayType(*this, elementType, canon, numElements,
3604 ASM, elementTypeQuals, brackets);
3605 Types.push_back(sugaredType);
3606 return QualType(sugaredType, 0);
3607 }
3608
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const3609 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3610 ArrayType::ArraySizeModifier ASM,
3611 unsigned elementTypeQuals) const {
3612 llvm::FoldingSetNodeID ID;
3613 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3614
3615 void *insertPos = nullptr;
3616 if (IncompleteArrayType *iat =
3617 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3618 return QualType(iat, 0);
3619
3620 // If the element type isn't canonical, this won't be a canonical type
3621 // either, so fill in the canonical type field. We also have to pull
3622 // qualifiers off the element type.
3623 QualType canon;
3624
3625 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3626 SplitQualType canonSplit = getCanonicalType(elementType).split();
3627 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3628 ASM, elementTypeQuals);
3629 canon = getQualifiedType(canon, canonSplit.Quals);
3630
3631 // Get the new insert position for the node we care about.
3632 IncompleteArrayType *existing =
3633 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3634 assert(!existing && "Shouldn't be in the map!"); (void) existing;
3635 }
3636
3637 auto *newType = new (*this, TypeAlignment)
3638 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3639
3640 IncompleteArrayTypes.InsertNode(newType, insertPos);
3641 Types.push_back(newType);
3642 return QualType(newType, 0);
3643 }
3644
3645 /// getVectorType - Return the unique reference to a vector type of
3646 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const3647 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3648 VectorType::VectorKind VecKind) const {
3649 assert(vecType->isBuiltinType());
3650
3651 // Check if we've already instantiated a vector of this type.
3652 llvm::FoldingSetNodeID ID;
3653 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3654
3655 void *InsertPos = nullptr;
3656 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3657 return QualType(VTP, 0);
3658
3659 // If the element type isn't canonical, this won't be a canonical type either,
3660 // so fill in the canonical type field.
3661 QualType Canonical;
3662 if (!vecType.isCanonical()) {
3663 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3664
3665 // Get the new insert position for the node we care about.
3666 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3667 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3668 }
3669 auto *New = new (*this, TypeAlignment)
3670 VectorType(vecType, NumElts, Canonical, VecKind);
3671 VectorTypes.InsertNode(New, InsertPos);
3672 Types.push_back(New);
3673 return QualType(New, 0);
3674 }
3675
3676 QualType
getDependentVectorType(QualType VecType,Expr * SizeExpr,SourceLocation AttrLoc,VectorType::VectorKind VecKind) const3677 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
3678 SourceLocation AttrLoc,
3679 VectorType::VectorKind VecKind) const {
3680 llvm::FoldingSetNodeID ID;
3681 DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3682 VecKind);
3683 void *InsertPos = nullptr;
3684 DependentVectorType *Canon =
3685 DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3686 DependentVectorType *New;
3687
3688 if (Canon) {
3689 New = new (*this, TypeAlignment) DependentVectorType(
3690 *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3691 } else {
3692 QualType CanonVecTy = getCanonicalType(VecType);
3693 if (CanonVecTy == VecType) {
3694 New = new (*this, TypeAlignment) DependentVectorType(
3695 *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3696
3697 DependentVectorType *CanonCheck =
3698 DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3699 assert(!CanonCheck &&
3700 "Dependent-sized vector_size canonical type broken");
3701 (void)CanonCheck;
3702 DependentVectorTypes.InsertNode(New, InsertPos);
3703 } else {
3704 QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3705 SourceLocation());
3706 New = new (*this, TypeAlignment) DependentVectorType(
3707 *this, VecType, CanonExtTy, SizeExpr, AttrLoc, VecKind);
3708 }
3709 }
3710
3711 Types.push_back(New);
3712 return QualType(New, 0);
3713 }
3714
3715 /// getExtVectorType - Return the unique reference to an extended vector type of
3716 /// the specified element type and size. VectorType must be a built-in type.
3717 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const3718 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3719 assert(vecType->isBuiltinType() || vecType->isDependentType());
3720
3721 // Check if we've already instantiated a vector of this type.
3722 llvm::FoldingSetNodeID ID;
3723 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3724 VectorType::GenericVector);
3725 void *InsertPos = nullptr;
3726 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3727 return QualType(VTP, 0);
3728
3729 // If the element type isn't canonical, this won't be a canonical type either,
3730 // so fill in the canonical type field.
3731 QualType Canonical;
3732 if (!vecType.isCanonical()) {
3733 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3734
3735 // Get the new insert position for the node we care about.
3736 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3737 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3738 }
3739 auto *New = new (*this, TypeAlignment)
3740 ExtVectorType(vecType, NumElts, Canonical);
3741 VectorTypes.InsertNode(New, InsertPos);
3742 Types.push_back(New);
3743 return QualType(New, 0);
3744 }
3745
3746 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const3747 ASTContext::getDependentSizedExtVectorType(QualType vecType,
3748 Expr *SizeExpr,
3749 SourceLocation AttrLoc) const {
3750 llvm::FoldingSetNodeID ID;
3751 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
3752 SizeExpr);
3753
3754 void *InsertPos = nullptr;
3755 DependentSizedExtVectorType *Canon
3756 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3757 DependentSizedExtVectorType *New;
3758 if (Canon) {
3759 // We already have a canonical version of this array type; use it as
3760 // the canonical type for a newly-built type.
3761 New = new (*this, TypeAlignment)
3762 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
3763 SizeExpr, AttrLoc);
3764 } else {
3765 QualType CanonVecTy = getCanonicalType(vecType);
3766 if (CanonVecTy == vecType) {
3767 New = new (*this, TypeAlignment)
3768 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
3769 AttrLoc);
3770
3771 DependentSizedExtVectorType *CanonCheck
3772 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3773 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
3774 (void)CanonCheck;
3775 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
3776 } else {
3777 QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3778 SourceLocation());
3779 New = new (*this, TypeAlignment) DependentSizedExtVectorType(
3780 *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
3781 }
3782 }
3783
3784 Types.push_back(New);
3785 return QualType(New, 0);
3786 }
3787
getDependentAddressSpaceType(QualType PointeeType,Expr * AddrSpaceExpr,SourceLocation AttrLoc) const3788 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
3789 Expr *AddrSpaceExpr,
3790 SourceLocation AttrLoc) const {
3791 assert(AddrSpaceExpr->isInstantiationDependent());
3792
3793 QualType canonPointeeType = getCanonicalType(PointeeType);
3794
3795 void *insertPos = nullptr;
3796 llvm::FoldingSetNodeID ID;
3797 DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
3798 AddrSpaceExpr);
3799
3800 DependentAddressSpaceType *canonTy =
3801 DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
3802
3803 if (!canonTy) {
3804 canonTy = new (*this, TypeAlignment)
3805 DependentAddressSpaceType(*this, canonPointeeType,
3806 QualType(), AddrSpaceExpr, AttrLoc);
3807 DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
3808 Types.push_back(canonTy);
3809 }
3810
3811 if (canonPointeeType == PointeeType &&
3812 canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
3813 return QualType(canonTy, 0);
3814
3815 auto *sugaredType
3816 = new (*this, TypeAlignment)
3817 DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
3818 AddrSpaceExpr, AttrLoc);
3819 Types.push_back(sugaredType);
3820 return QualType(sugaredType, 0);
3821 }
3822
3823 /// Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)3824 static bool isCanonicalResultType(QualType T) {
3825 return T.isCanonical() &&
3826 (T.getObjCLifetime() == Qualifiers::OCL_None ||
3827 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
3828 }
3829
3830 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
3831 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const3832 ASTContext::getFunctionNoProtoType(QualType ResultTy,
3833 const FunctionType::ExtInfo &Info) const {
3834 // Unique functions, to guarantee there is only one function of a particular
3835 // structure.
3836 llvm::FoldingSetNodeID ID;
3837 FunctionNoProtoType::Profile(ID, ResultTy, Info);
3838
3839 void *InsertPos = nullptr;
3840 if (FunctionNoProtoType *FT =
3841 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
3842 return QualType(FT, 0);
3843
3844 QualType Canonical;
3845 if (!isCanonicalResultType(ResultTy)) {
3846 Canonical =
3847 getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
3848
3849 // Get the new insert position for the node we care about.
3850 FunctionNoProtoType *NewIP =
3851 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3852 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3853 }
3854
3855 auto *New = new (*this, TypeAlignment)
3856 FunctionNoProtoType(ResultTy, Canonical, Info);
3857 Types.push_back(New);
3858 FunctionNoProtoTypes.InsertNode(New, InsertPos);
3859 return QualType(New, 0);
3860 }
3861
3862 CanQualType
getCanonicalFunctionResultType(QualType ResultType) const3863 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
3864 CanQualType CanResultType = getCanonicalType(ResultType);
3865
3866 // Canonical result types do not have ARC lifetime qualifiers.
3867 if (CanResultType.getQualifiers().hasObjCLifetime()) {
3868 Qualifiers Qs = CanResultType.getQualifiers();
3869 Qs.removeObjCLifetime();
3870 return CanQualType::CreateUnsafe(
3871 getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
3872 }
3873
3874 return CanResultType;
3875 }
3876
isCanonicalExceptionSpecification(const FunctionProtoType::ExceptionSpecInfo & ESI,bool NoexceptInType)3877 static bool isCanonicalExceptionSpecification(
3878 const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
3879 if (ESI.Type == EST_None)
3880 return true;
3881 if (!NoexceptInType)
3882 return false;
3883
3884 // C++17 onwards: exception specification is part of the type, as a simple
3885 // boolean "can this function type throw".
3886 if (ESI.Type == EST_BasicNoexcept)
3887 return true;
3888
3889 // A noexcept(expr) specification is (possibly) canonical if expr is
3890 // value-dependent.
3891 if (ESI.Type == EST_DependentNoexcept)
3892 return true;
3893
3894 // A dynamic exception specification is canonical if it only contains pack
3895 // expansions (so we can't tell whether it's non-throwing) and all its
3896 // contained types are canonical.
3897 if (ESI.Type == EST_Dynamic) {
3898 bool AnyPackExpansions = false;
3899 for (QualType ET : ESI.Exceptions) {
3900 if (!ET.isCanonical())
3901 return false;
3902 if (ET->getAs<PackExpansionType>())
3903 AnyPackExpansions = true;
3904 }
3905 return AnyPackExpansions;
3906 }
3907
3908 return false;
3909 }
3910
getFunctionTypeInternal(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI,bool OnlyWantCanonical) const3911 QualType ASTContext::getFunctionTypeInternal(
3912 QualType ResultTy, ArrayRef<QualType> ArgArray,
3913 const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
3914 size_t NumArgs = ArgArray.size();
3915
3916 // Unique functions, to guarantee there is only one function of a particular
3917 // structure.
3918 llvm::FoldingSetNodeID ID;
3919 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
3920 *this, true);
3921
3922 QualType Canonical;
3923 bool Unique = false;
3924
3925 void *InsertPos = nullptr;
3926 if (FunctionProtoType *FPT =
3927 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
3928 QualType Existing = QualType(FPT, 0);
3929
3930 // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
3931 // it so long as our exception specification doesn't contain a dependent
3932 // noexcept expression, or we're just looking for a canonical type.
3933 // Otherwise, we're going to need to create a type
3934 // sugar node to hold the concrete expression.
3935 if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
3936 EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
3937 return Existing;
3938
3939 // We need a new type sugar node for this one, to hold the new noexcept
3940 // expression. We do no canonicalization here, but that's OK since we don't
3941 // expect to see the same noexcept expression much more than once.
3942 Canonical = getCanonicalType(Existing);
3943 Unique = true;
3944 }
3945
3946 bool NoexceptInType = getLangOpts().CPlusPlus17;
3947 bool IsCanonicalExceptionSpec =
3948 isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
3949
3950 // Determine whether the type being created is already canonical or not.
3951 bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
3952 isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
3953 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
3954 if (!ArgArray[i].isCanonicalAsParam())
3955 isCanonical = false;
3956
3957 if (OnlyWantCanonical)
3958 assert(isCanonical &&
3959 "given non-canonical parameters constructing canonical type");
3960
3961 // If this type isn't canonical, get the canonical version of it if we don't
3962 // already have it. The exception spec is only partially part of the
3963 // canonical type, and only in C++17 onwards.
3964 if (!isCanonical && Canonical.isNull()) {
3965 SmallVector<QualType, 16> CanonicalArgs;
3966 CanonicalArgs.reserve(NumArgs);
3967 for (unsigned i = 0; i != NumArgs; ++i)
3968 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
3969
3970 llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
3971 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
3972 CanonicalEPI.HasTrailingReturn = false;
3973
3974 if (IsCanonicalExceptionSpec) {
3975 // Exception spec is already OK.
3976 } else if (NoexceptInType) {
3977 switch (EPI.ExceptionSpec.Type) {
3978 case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
3979 // We don't know yet. It shouldn't matter what we pick here; no-one
3980 // should ever look at this.
3981 LLVM_FALLTHROUGH;
3982 case EST_None: case EST_MSAny: case EST_NoexceptFalse:
3983 CanonicalEPI.ExceptionSpec.Type = EST_None;
3984 break;
3985
3986 // A dynamic exception specification is almost always "not noexcept",
3987 // with the exception that a pack expansion might expand to no types.
3988 case EST_Dynamic: {
3989 bool AnyPacks = false;
3990 for (QualType ET : EPI.ExceptionSpec.Exceptions) {
3991 if (ET->getAs<PackExpansionType>())
3992 AnyPacks = true;
3993 ExceptionTypeStorage.push_back(getCanonicalType(ET));
3994 }
3995 if (!AnyPacks)
3996 CanonicalEPI.ExceptionSpec.Type = EST_None;
3997 else {
3998 CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
3999 CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4000 }
4001 break;
4002 }
4003
4004 case EST_DynamicNone:
4005 case EST_BasicNoexcept:
4006 case EST_NoexceptTrue:
4007 case EST_NoThrow:
4008 CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4009 break;
4010
4011 case EST_DependentNoexcept:
4012 llvm_unreachable("dependent noexcept is already canonical");
4013 }
4014 } else {
4015 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4016 }
4017
4018 // Adjust the canonical function result type.
4019 CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4020 Canonical =
4021 getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4022
4023 // Get the new insert position for the node we care about.
4024 FunctionProtoType *NewIP =
4025 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4026 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4027 }
4028
4029 // Compute the needed size to hold this FunctionProtoType and the
4030 // various trailing objects.
4031 auto ESH = FunctionProtoType::getExceptionSpecSize(
4032 EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4033 size_t Size = FunctionProtoType::totalSizeToAlloc<
4034 QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4035 FunctionType::ExceptionType, Expr *, FunctionDecl *,
4036 FunctionProtoType::ExtParameterInfo, Qualifiers>(
4037 NumArgs, EPI.Variadic,
4038 FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
4039 ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4040 EPI.ExtParameterInfos ? NumArgs : 0,
4041 EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4042
4043 auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4044 FunctionProtoType::ExtProtoInfo newEPI = EPI;
4045 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4046 Types.push_back(FTP);
4047 if (!Unique)
4048 FunctionProtoTypes.InsertNode(FTP, InsertPos);
4049 return QualType(FTP, 0);
4050 }
4051
getPipeType(QualType T,bool ReadOnly) const4052 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4053 llvm::FoldingSetNodeID ID;
4054 PipeType::Profile(ID, T, ReadOnly);
4055
4056 void *InsertPos = nullptr;
4057 if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4058 return QualType(PT, 0);
4059
4060 // If the pipe element type isn't canonical, this won't be a canonical type
4061 // either, so fill in the canonical type field.
4062 QualType Canonical;
4063 if (!T.isCanonical()) {
4064 Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4065
4066 // Get the new insert position for the node we care about.
4067 PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4068 assert(!NewIP && "Shouldn't be in the map!");
4069 (void)NewIP;
4070 }
4071 auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4072 Types.push_back(New);
4073 PipeTypes.InsertNode(New, InsertPos);
4074 return QualType(New, 0);
4075 }
4076
adjustStringLiteralBaseType(QualType Ty) const4077 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4078 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4079 return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4080 : Ty;
4081 }
4082
getReadPipeType(QualType T) const4083 QualType ASTContext::getReadPipeType(QualType T) const {
4084 return getPipeType(T, true);
4085 }
4086
getWritePipeType(QualType T) const4087 QualType ASTContext::getWritePipeType(QualType T) const {
4088 return getPipeType(T, false);
4089 }
4090
4091 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)4092 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4093 if (!isa<CXXRecordDecl>(D)) return false;
4094 const auto *RD = cast<CXXRecordDecl>(D);
4095 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4096 return true;
4097 if (RD->getDescribedClassTemplate() &&
4098 !isa<ClassTemplateSpecializationDecl>(RD))
4099 return true;
4100 return false;
4101 }
4102 #endif
4103
4104 /// getInjectedClassNameType - Return the unique reference to the
4105 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const4106 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4107 QualType TST) const {
4108 assert(NeedsInjectedClassNameType(Decl));
4109 if (Decl->TypeForDecl) {
4110 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4111 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4112 assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4113 Decl->TypeForDecl = PrevDecl->TypeForDecl;
4114 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4115 } else {
4116 Type *newType =
4117 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4118 Decl->TypeForDecl = newType;
4119 Types.push_back(newType);
4120 }
4121 return QualType(Decl->TypeForDecl, 0);
4122 }
4123
4124 /// getTypeDeclType - Return the unique reference to the type for the
4125 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const4126 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4127 assert(Decl && "Passed null for Decl param");
4128 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4129
4130 if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4131 return getTypedefType(Typedef);
4132
4133 assert(!isa<TemplateTypeParmDecl>(Decl) &&
4134 "Template type parameter types are always available.");
4135
4136 if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4137 assert(Record->isFirstDecl() && "struct/union has previous declaration");
4138 assert(!NeedsInjectedClassNameType(Record));
4139 return getRecordType(Record);
4140 } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4141 assert(Enum->isFirstDecl() && "enum has previous declaration");
4142 return getEnumType(Enum);
4143 } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4144 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
4145 Decl->TypeForDecl = newType;
4146 Types.push_back(newType);
4147 } else
4148 llvm_unreachable("TypeDecl without a type?");
4149
4150 return QualType(Decl->TypeForDecl, 0);
4151 }
4152
4153 /// getTypedefType - Return the unique reference to the type for the
4154 /// specified typedef name decl.
4155 QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const4156 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4157 QualType Canonical) const {
4158 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4159
4160 if (Canonical.isNull())
4161 Canonical = getCanonicalType(Decl->getUnderlyingType());
4162 auto *newType = new (*this, TypeAlignment)
4163 TypedefType(Type::Typedef, Decl, Canonical);
4164 Decl->TypeForDecl = newType;
4165 Types.push_back(newType);
4166 return QualType(newType, 0);
4167 }
4168
getRecordType(const RecordDecl * Decl) const4169 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4170 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4171
4172 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4173 if (PrevDecl->TypeForDecl)
4174 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4175
4176 auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4177 Decl->TypeForDecl = newType;
4178 Types.push_back(newType);
4179 return QualType(newType, 0);
4180 }
4181
getEnumType(const EnumDecl * Decl) const4182 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4183 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4184
4185 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4186 if (PrevDecl->TypeForDecl)
4187 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4188
4189 auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4190 Decl->TypeForDecl = newType;
4191 Types.push_back(newType);
4192 return QualType(newType, 0);
4193 }
4194
getAttributedType(attr::Kind attrKind,QualType modifiedType,QualType equivalentType)4195 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4196 QualType modifiedType,
4197 QualType equivalentType) {
4198 llvm::FoldingSetNodeID id;
4199 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4200
4201 void *insertPos = nullptr;
4202 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4203 if (type) return QualType(type, 0);
4204
4205 QualType canon = getCanonicalType(equivalentType);
4206 type = new (*this, TypeAlignment)
4207 AttributedType(canon, attrKind, modifiedType, equivalentType);
4208
4209 Types.push_back(type);
4210 AttributedTypes.InsertNode(type, insertPos);
4211
4212 return QualType(type, 0);
4213 }
4214
4215 /// Retrieve a substitution-result type.
4216 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const4217 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4218 QualType Replacement) const {
4219 assert(Replacement.isCanonical()
4220 && "replacement types must always be canonical");
4221
4222 llvm::FoldingSetNodeID ID;
4223 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4224 void *InsertPos = nullptr;
4225 SubstTemplateTypeParmType *SubstParm
4226 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4227
4228 if (!SubstParm) {
4229 SubstParm = new (*this, TypeAlignment)
4230 SubstTemplateTypeParmType(Parm, Replacement);
4231 Types.push_back(SubstParm);
4232 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4233 }
4234
4235 return QualType(SubstParm, 0);
4236 }
4237
4238 /// Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)4239 QualType ASTContext::getSubstTemplateTypeParmPackType(
4240 const TemplateTypeParmType *Parm,
4241 const TemplateArgument &ArgPack) {
4242 #ifndef NDEBUG
4243 for (const auto &P : ArgPack.pack_elements()) {
4244 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4245 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4246 }
4247 #endif
4248
4249 llvm::FoldingSetNodeID ID;
4250 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4251 void *InsertPos = nullptr;
4252 if (SubstTemplateTypeParmPackType *SubstParm
4253 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4254 return QualType(SubstParm, 0);
4255
4256 QualType Canon;
4257 if (!Parm->isCanonicalUnqualified()) {
4258 Canon = getCanonicalType(QualType(Parm, 0));
4259 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4260 ArgPack);
4261 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4262 }
4263
4264 auto *SubstParm
4265 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4266 ArgPack);
4267 Types.push_back(SubstParm);
4268 SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4269 return QualType(SubstParm, 0);
4270 }
4271
4272 /// Retrieve the template type parameter type for a template
4273 /// parameter or parameter pack with the given depth, index, and (optionally)
4274 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const4275 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4276 bool ParameterPack,
4277 TemplateTypeParmDecl *TTPDecl) const {
4278 llvm::FoldingSetNodeID ID;
4279 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4280 void *InsertPos = nullptr;
4281 TemplateTypeParmType *TypeParm
4282 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4283
4284 if (TypeParm)
4285 return QualType(TypeParm, 0);
4286
4287 if (TTPDecl) {
4288 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4289 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4290
4291 TemplateTypeParmType *TypeCheck
4292 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4293 assert(!TypeCheck && "Template type parameter canonical type broken");
4294 (void)TypeCheck;
4295 } else
4296 TypeParm = new (*this, TypeAlignment)
4297 TemplateTypeParmType(Depth, Index, ParameterPack);
4298
4299 Types.push_back(TypeParm);
4300 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4301
4302 return QualType(TypeParm, 0);
4303 }
4304
4305 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const4306 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4307 SourceLocation NameLoc,
4308 const TemplateArgumentListInfo &Args,
4309 QualType Underlying) const {
4310 assert(!Name.getAsDependentTemplateName() &&
4311 "No dependent template names here!");
4312 QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4313
4314 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4315 TemplateSpecializationTypeLoc TL =
4316 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4317 TL.setTemplateKeywordLoc(SourceLocation());
4318 TL.setTemplateNameLoc(NameLoc);
4319 TL.setLAngleLoc(Args.getLAngleLoc());
4320 TL.setRAngleLoc(Args.getRAngleLoc());
4321 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4322 TL.setArgLocInfo(i, Args[i].getLocInfo());
4323 return DI;
4324 }
4325
4326 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const4327 ASTContext::getTemplateSpecializationType(TemplateName Template,
4328 const TemplateArgumentListInfo &Args,
4329 QualType Underlying) const {
4330 assert(!Template.getAsDependentTemplateName() &&
4331 "No dependent template names here!");
4332
4333 SmallVector<TemplateArgument, 4> ArgVec;
4334 ArgVec.reserve(Args.size());
4335 for (const TemplateArgumentLoc &Arg : Args.arguments())
4336 ArgVec.push_back(Arg.getArgument());
4337
4338 return getTemplateSpecializationType(Template, ArgVec, Underlying);
4339 }
4340
4341 #ifndef NDEBUG
hasAnyPackExpansions(ArrayRef<TemplateArgument> Args)4342 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4343 for (const TemplateArgument &Arg : Args)
4344 if (Arg.isPackExpansion())
4345 return true;
4346
4347 return true;
4348 }
4349 #endif
4350
4351 QualType
getTemplateSpecializationType(TemplateName Template,ArrayRef<TemplateArgument> Args,QualType Underlying) const4352 ASTContext::getTemplateSpecializationType(TemplateName Template,
4353 ArrayRef<TemplateArgument> Args,
4354 QualType Underlying) const {
4355 assert(!Template.getAsDependentTemplateName() &&
4356 "No dependent template names here!");
4357 // Look through qualified template names.
4358 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4359 Template = TemplateName(QTN->getTemplateDecl());
4360
4361 bool IsTypeAlias =
4362 Template.getAsTemplateDecl() &&
4363 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4364 QualType CanonType;
4365 if (!Underlying.isNull())
4366 CanonType = getCanonicalType(Underlying);
4367 else {
4368 // We can get here with an alias template when the specialization contains
4369 // a pack expansion that does not match up with a parameter pack.
4370 assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4371 "Caller must compute aliased type");
4372 IsTypeAlias = false;
4373 CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4374 }
4375
4376 // Allocate the (non-canonical) template specialization type, but don't
4377 // try to unique it: these types typically have location information that
4378 // we don't unique and don't want to lose.
4379 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4380 sizeof(TemplateArgument) * Args.size() +
4381 (IsTypeAlias? sizeof(QualType) : 0),
4382 TypeAlignment);
4383 auto *Spec
4384 = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4385 IsTypeAlias ? Underlying : QualType());
4386
4387 Types.push_back(Spec);
4388 return QualType(Spec, 0);
4389 }
4390
getCanonicalTemplateSpecializationType(TemplateName Template,ArrayRef<TemplateArgument> Args) const4391 QualType ASTContext::getCanonicalTemplateSpecializationType(
4392 TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4393 assert(!Template.getAsDependentTemplateName() &&
4394 "No dependent template names here!");
4395
4396 // Look through qualified template names.
4397 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4398 Template = TemplateName(QTN->getTemplateDecl());
4399
4400 // Build the canonical template specialization type.
4401 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4402 SmallVector<TemplateArgument, 4> CanonArgs;
4403 unsigned NumArgs = Args.size();
4404 CanonArgs.reserve(NumArgs);
4405 for (const TemplateArgument &Arg : Args)
4406 CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4407
4408 // Determine whether this canonical template specialization type already
4409 // exists.
4410 llvm::FoldingSetNodeID ID;
4411 TemplateSpecializationType::Profile(ID, CanonTemplate,
4412 CanonArgs, *this);
4413
4414 void *InsertPos = nullptr;
4415 TemplateSpecializationType *Spec
4416 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4417
4418 if (!Spec) {
4419 // Allocate a new canonical template specialization type.
4420 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4421 sizeof(TemplateArgument) * NumArgs),
4422 TypeAlignment);
4423 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4424 CanonArgs,
4425 QualType(), QualType());
4426 Types.push_back(Spec);
4427 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4428 }
4429
4430 assert(Spec->isDependentType() &&
4431 "Non-dependent template-id type must have a canonical type");
4432 return QualType(Spec, 0);
4433 }
4434
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType,TagDecl * OwnedTagDecl) const4435 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4436 NestedNameSpecifier *NNS,
4437 QualType NamedType,
4438 TagDecl *OwnedTagDecl) const {
4439 llvm::FoldingSetNodeID ID;
4440 ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4441
4442 void *InsertPos = nullptr;
4443 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4444 if (T)
4445 return QualType(T, 0);
4446
4447 QualType Canon = NamedType;
4448 if (!Canon.isCanonical()) {
4449 Canon = getCanonicalType(NamedType);
4450 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4451 assert(!CheckT && "Elaborated canonical type broken");
4452 (void)CheckT;
4453 }
4454
4455 void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4456 TypeAlignment);
4457 T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4458
4459 Types.push_back(T);
4460 ElaboratedTypes.InsertNode(T, InsertPos);
4461 return QualType(T, 0);
4462 }
4463
4464 QualType
getParenType(QualType InnerType) const4465 ASTContext::getParenType(QualType InnerType) const {
4466 llvm::FoldingSetNodeID ID;
4467 ParenType::Profile(ID, InnerType);
4468
4469 void *InsertPos = nullptr;
4470 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4471 if (T)
4472 return QualType(T, 0);
4473
4474 QualType Canon = InnerType;
4475 if (!Canon.isCanonical()) {
4476 Canon = getCanonicalType(InnerType);
4477 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4478 assert(!CheckT && "Paren canonical type broken");
4479 (void)CheckT;
4480 }
4481
4482 T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4483 Types.push_back(T);
4484 ParenTypes.InsertNode(T, InsertPos);
4485 return QualType(T, 0);
4486 }
4487
4488 QualType
getMacroQualifiedType(QualType UnderlyingTy,const IdentifierInfo * MacroII) const4489 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
4490 const IdentifierInfo *MacroII) const {
4491 QualType Canon = UnderlyingTy;
4492 if (!Canon.isCanonical())
4493 Canon = getCanonicalType(UnderlyingTy);
4494
4495 auto *newType = new (*this, TypeAlignment)
4496 MacroQualifiedType(UnderlyingTy, Canon, MacroII);
4497 Types.push_back(newType);
4498 return QualType(newType, 0);
4499 }
4500
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const4501 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4502 NestedNameSpecifier *NNS,
4503 const IdentifierInfo *Name,
4504 QualType Canon) const {
4505 if (Canon.isNull()) {
4506 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4507 if (CanonNNS != NNS)
4508 Canon = getDependentNameType(Keyword, CanonNNS, Name);
4509 }
4510
4511 llvm::FoldingSetNodeID ID;
4512 DependentNameType::Profile(ID, Keyword, NNS, Name);
4513
4514 void *InsertPos = nullptr;
4515 DependentNameType *T
4516 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4517 if (T)
4518 return QualType(T, 0);
4519
4520 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4521 Types.push_back(T);
4522 DependentNameTypes.InsertNode(T, InsertPos);
4523 return QualType(T, 0);
4524 }
4525
4526 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const4527 ASTContext::getDependentTemplateSpecializationType(
4528 ElaboratedTypeKeyword Keyword,
4529 NestedNameSpecifier *NNS,
4530 const IdentifierInfo *Name,
4531 const TemplateArgumentListInfo &Args) const {
4532 // TODO: avoid this copy
4533 SmallVector<TemplateArgument, 16> ArgCopy;
4534 for (unsigned I = 0, E = Args.size(); I != E; ++I)
4535 ArgCopy.push_back(Args[I].getArgument());
4536 return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4537 }
4538
4539 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,ArrayRef<TemplateArgument> Args) const4540 ASTContext::getDependentTemplateSpecializationType(
4541 ElaboratedTypeKeyword Keyword,
4542 NestedNameSpecifier *NNS,
4543 const IdentifierInfo *Name,
4544 ArrayRef<TemplateArgument> Args) const {
4545 assert((!NNS || NNS->isDependent()) &&
4546 "nested-name-specifier must be dependent");
4547
4548 llvm::FoldingSetNodeID ID;
4549 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4550 Name, Args);
4551
4552 void *InsertPos = nullptr;
4553 DependentTemplateSpecializationType *T
4554 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4555 if (T)
4556 return QualType(T, 0);
4557
4558 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4559
4560 ElaboratedTypeKeyword CanonKeyword = Keyword;
4561 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4562
4563 bool AnyNonCanonArgs = false;
4564 unsigned NumArgs = Args.size();
4565 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4566 for (unsigned I = 0; I != NumArgs; ++I) {
4567 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4568 if (!CanonArgs[I].structurallyEquals(Args[I]))
4569 AnyNonCanonArgs = true;
4570 }
4571
4572 QualType Canon;
4573 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4574 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4575 Name,
4576 CanonArgs);
4577
4578 // Find the insert position again.
4579 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4580 }
4581
4582 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4583 sizeof(TemplateArgument) * NumArgs),
4584 TypeAlignment);
4585 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4586 Name, Args, Canon);
4587 Types.push_back(T);
4588 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4589 return QualType(T, 0);
4590 }
4591
getInjectedTemplateArg(NamedDecl * Param)4592 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
4593 TemplateArgument Arg;
4594 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4595 QualType ArgType = getTypeDeclType(TTP);
4596 if (TTP->isParameterPack())
4597 ArgType = getPackExpansionType(ArgType, None);
4598
4599 Arg = TemplateArgument(ArgType);
4600 } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4601 Expr *E = new (*this) DeclRefExpr(
4602 *this, NTTP, /*enclosing*/ false,
4603 NTTP->getType().getNonLValueExprType(*this),
4604 Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4605
4606 if (NTTP->isParameterPack())
4607 E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4608 None);
4609 Arg = TemplateArgument(E);
4610 } else {
4611 auto *TTP = cast<TemplateTemplateParmDecl>(Param);
4612 if (TTP->isParameterPack())
4613 Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
4614 else
4615 Arg = TemplateArgument(TemplateName(TTP));
4616 }
4617
4618 if (Param->isTemplateParameterPack())
4619 Arg = TemplateArgument::CreatePackCopy(*this, Arg);
4620
4621 return Arg;
4622 }
4623
4624 void
getInjectedTemplateArgs(const TemplateParameterList * Params,SmallVectorImpl<TemplateArgument> & Args)4625 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
4626 SmallVectorImpl<TemplateArgument> &Args) {
4627 Args.reserve(Args.size() + Params->size());
4628
4629 for (NamedDecl *Param : *Params)
4630 Args.push_back(getInjectedTemplateArg(Param));
4631 }
4632
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions)4633 QualType ASTContext::getPackExpansionType(QualType Pattern,
4634 Optional<unsigned> NumExpansions) {
4635 llvm::FoldingSetNodeID ID;
4636 PackExpansionType::Profile(ID, Pattern, NumExpansions);
4637
4638 // A deduced type can deduce to a pack, eg
4639 // auto ...x = some_pack;
4640 // That declaration isn't (yet) valid, but is created as part of building an
4641 // init-capture pack:
4642 // [...x = some_pack] {}
4643 assert((Pattern->containsUnexpandedParameterPack() ||
4644 Pattern->getContainedDeducedType()) &&
4645 "Pack expansions must expand one or more parameter packs");
4646 void *InsertPos = nullptr;
4647 PackExpansionType *T
4648 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4649 if (T)
4650 return QualType(T, 0);
4651
4652 QualType Canon;
4653 if (!Pattern.isCanonical()) {
4654 Canon = getCanonicalType(Pattern);
4655 // The canonical type might not contain an unexpanded parameter pack, if it
4656 // contains an alias template specialization which ignores one of its
4657 // parameters.
4658 if (Canon->containsUnexpandedParameterPack()) {
4659 Canon = getPackExpansionType(Canon, NumExpansions);
4660
4661 // Find the insert position again, in case we inserted an element into
4662 // PackExpansionTypes and invalidated our insert position.
4663 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4664 }
4665 }
4666
4667 T = new (*this, TypeAlignment)
4668 PackExpansionType(Pattern, Canon, NumExpansions);
4669 Types.push_back(T);
4670 PackExpansionTypes.InsertNode(T, InsertPos);
4671 return QualType(T, 0);
4672 }
4673
4674 /// CmpProtocolNames - Comparison predicate for sorting protocols
4675 /// alphabetically.
CmpProtocolNames(ObjCProtocolDecl * const * LHS,ObjCProtocolDecl * const * RHS)4676 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
4677 ObjCProtocolDecl *const *RHS) {
4678 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
4679 }
4680
areSortedAndUniqued(ArrayRef<ObjCProtocolDecl * > Protocols)4681 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
4682 if (Protocols.empty()) return true;
4683
4684 if (Protocols[0]->getCanonicalDecl() != Protocols[0])
4685 return false;
4686
4687 for (unsigned i = 1; i != Protocols.size(); ++i)
4688 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
4689 Protocols[i]->getCanonicalDecl() != Protocols[i])
4690 return false;
4691 return true;
4692 }
4693
4694 static void
SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl * > & Protocols)4695 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
4696 // Sort protocols, keyed by name.
4697 llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
4698
4699 // Canonicalize.
4700 for (ObjCProtocolDecl *&P : Protocols)
4701 P = P->getCanonicalDecl();
4702
4703 // Remove duplicates.
4704 auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
4705 Protocols.erase(ProtocolsEnd, Protocols.end());
4706 }
4707
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const4708 QualType ASTContext::getObjCObjectType(QualType BaseType,
4709 ObjCProtocolDecl * const *Protocols,
4710 unsigned NumProtocols) const {
4711 return getObjCObjectType(BaseType, {},
4712 llvm::makeArrayRef(Protocols, NumProtocols),
4713 /*isKindOf=*/false);
4714 }
4715
getObjCObjectType(QualType baseType,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf) const4716 QualType ASTContext::getObjCObjectType(
4717 QualType baseType,
4718 ArrayRef<QualType> typeArgs,
4719 ArrayRef<ObjCProtocolDecl *> protocols,
4720 bool isKindOf) const {
4721 // If the base type is an interface and there aren't any protocols or
4722 // type arguments to add, then the interface type will do just fine.
4723 if (typeArgs.empty() && protocols.empty() && !isKindOf &&
4724 isa<ObjCInterfaceType>(baseType))
4725 return baseType;
4726
4727 // Look in the folding set for an existing type.
4728 llvm::FoldingSetNodeID ID;
4729 ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
4730 void *InsertPos = nullptr;
4731 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
4732 return QualType(QT, 0);
4733
4734 // Determine the type arguments to be used for canonicalization,
4735 // which may be explicitly specified here or written on the base
4736 // type.
4737 ArrayRef<QualType> effectiveTypeArgs = typeArgs;
4738 if (effectiveTypeArgs.empty()) {
4739 if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
4740 effectiveTypeArgs = baseObject->getTypeArgs();
4741 }
4742
4743 // Build the canonical type, which has the canonical base type and a
4744 // sorted-and-uniqued list of protocols and the type arguments
4745 // canonicalized.
4746 QualType canonical;
4747 bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
4748 effectiveTypeArgs.end(),
4749 [&](QualType type) {
4750 return type.isCanonical();
4751 });
4752 bool protocolsSorted = areSortedAndUniqued(protocols);
4753 if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
4754 // Determine the canonical type arguments.
4755 ArrayRef<QualType> canonTypeArgs;
4756 SmallVector<QualType, 4> canonTypeArgsVec;
4757 if (!typeArgsAreCanonical) {
4758 canonTypeArgsVec.reserve(effectiveTypeArgs.size());
4759 for (auto typeArg : effectiveTypeArgs)
4760 canonTypeArgsVec.push_back(getCanonicalType(typeArg));
4761 canonTypeArgs = canonTypeArgsVec;
4762 } else {
4763 canonTypeArgs = effectiveTypeArgs;
4764 }
4765
4766 ArrayRef<ObjCProtocolDecl *> canonProtocols;
4767 SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
4768 if (!protocolsSorted) {
4769 canonProtocolsVec.append(protocols.begin(), protocols.end());
4770 SortAndUniqueProtocols(canonProtocolsVec);
4771 canonProtocols = canonProtocolsVec;
4772 } else {
4773 canonProtocols = protocols;
4774 }
4775
4776 canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
4777 canonProtocols, isKindOf);
4778
4779 // Regenerate InsertPos.
4780 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
4781 }
4782
4783 unsigned size = sizeof(ObjCObjectTypeImpl);
4784 size += typeArgs.size() * sizeof(QualType);
4785 size += protocols.size() * sizeof(ObjCProtocolDecl *);
4786 void *mem = Allocate(size, TypeAlignment);
4787 auto *T =
4788 new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
4789 isKindOf);
4790
4791 Types.push_back(T);
4792 ObjCObjectTypes.InsertNode(T, InsertPos);
4793 return QualType(T, 0);
4794 }
4795
4796 /// Apply Objective-C protocol qualifiers to the given type.
4797 /// If this is for the canonical type of a type parameter, we can apply
4798 /// protocol qualifiers on the ObjCObjectPointerType.
4799 QualType
applyObjCProtocolQualifiers(QualType type,ArrayRef<ObjCProtocolDecl * > protocols,bool & hasError,bool allowOnPointerType) const4800 ASTContext::applyObjCProtocolQualifiers(QualType type,
4801 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
4802 bool allowOnPointerType) const {
4803 hasError = false;
4804
4805 if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
4806 return getObjCTypeParamType(objT->getDecl(), protocols);
4807 }
4808
4809 // Apply protocol qualifiers to ObjCObjectPointerType.
4810 if (allowOnPointerType) {
4811 if (const auto *objPtr =
4812 dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
4813 const ObjCObjectType *objT = objPtr->getObjectType();
4814 // Merge protocol lists and construct ObjCObjectType.
4815 SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
4816 protocolsVec.append(objT->qual_begin(),
4817 objT->qual_end());
4818 protocolsVec.append(protocols.begin(), protocols.end());
4819 ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
4820 type = getObjCObjectType(
4821 objT->getBaseType(),
4822 objT->getTypeArgsAsWritten(),
4823 protocols,
4824 objT->isKindOfTypeAsWritten());
4825 return getObjCObjectPointerType(type);
4826 }
4827 }
4828
4829 // Apply protocol qualifiers to ObjCObjectType.
4830 if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
4831 // FIXME: Check for protocols to which the class type is already
4832 // known to conform.
4833
4834 return getObjCObjectType(objT->getBaseType(),
4835 objT->getTypeArgsAsWritten(),
4836 protocols,
4837 objT->isKindOfTypeAsWritten());
4838 }
4839
4840 // If the canonical type is ObjCObjectType, ...
4841 if (type->isObjCObjectType()) {
4842 // Silently overwrite any existing protocol qualifiers.
4843 // TODO: determine whether that's the right thing to do.
4844
4845 // FIXME: Check for protocols to which the class type is already
4846 // known to conform.
4847 return getObjCObjectType(type, {}, protocols, false);
4848 }
4849
4850 // id<protocol-list>
4851 if (type->isObjCIdType()) {
4852 const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4853 type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
4854 objPtr->isKindOfType());
4855 return getObjCObjectPointerType(type);
4856 }
4857
4858 // Class<protocol-list>
4859 if (type->isObjCClassType()) {
4860 const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4861 type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
4862 objPtr->isKindOfType());
4863 return getObjCObjectPointerType(type);
4864 }
4865
4866 hasError = true;
4867 return type;
4868 }
4869
4870 QualType
getObjCTypeParamType(const ObjCTypeParamDecl * Decl,ArrayRef<ObjCProtocolDecl * > protocols) const4871 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
4872 ArrayRef<ObjCProtocolDecl *> protocols) const {
4873 // Look in the folding set for an existing type.
4874 llvm::FoldingSetNodeID ID;
4875 ObjCTypeParamType::Profile(ID, Decl, protocols);
4876 void *InsertPos = nullptr;
4877 if (ObjCTypeParamType *TypeParam =
4878 ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
4879 return QualType(TypeParam, 0);
4880
4881 // We canonicalize to the underlying type.
4882 QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
4883 if (!protocols.empty()) {
4884 // Apply the protocol qualifers.
4885 bool hasError;
4886 Canonical = getCanonicalType(applyObjCProtocolQualifiers(
4887 Canonical, protocols, hasError, true /*allowOnPointerType*/));
4888 assert(!hasError && "Error when apply protocol qualifier to bound type");
4889 }
4890
4891 unsigned size = sizeof(ObjCTypeParamType);
4892 size += protocols.size() * sizeof(ObjCProtocolDecl *);
4893 void *mem = Allocate(size, TypeAlignment);
4894 auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
4895
4896 Types.push_back(newType);
4897 ObjCTypeParamTypes.InsertNode(newType, InsertPos);
4898 return QualType(newType, 0);
4899 }
4900
4901 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
4902 /// protocol list adopt all protocols in QT's qualified-id protocol
4903 /// list.
ObjCObjectAdoptsQTypeProtocols(QualType QT,ObjCInterfaceDecl * IC)4904 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
4905 ObjCInterfaceDecl *IC) {
4906 if (!QT->isObjCQualifiedIdType())
4907 return false;
4908
4909 if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
4910 // If both the right and left sides have qualifiers.
4911 for (auto *Proto : OPT->quals()) {
4912 if (!IC->ClassImplementsProtocol(Proto, false))
4913 return false;
4914 }
4915 return true;
4916 }
4917 return false;
4918 }
4919
4920 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
4921 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
4922 /// of protocols.
QIdProtocolsAdoptObjCObjectProtocols(QualType QT,ObjCInterfaceDecl * IDecl)4923 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
4924 ObjCInterfaceDecl *IDecl) {
4925 if (!QT->isObjCQualifiedIdType())
4926 return false;
4927 const auto *OPT = QT->getAs<ObjCObjectPointerType>();
4928 if (!OPT)
4929 return false;
4930 if (!IDecl->hasDefinition())
4931 return false;
4932 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
4933 CollectInheritedProtocols(IDecl, InheritedProtocols);
4934 if (InheritedProtocols.empty())
4935 return false;
4936 // Check that if every protocol in list of id<plist> conforms to a protocol
4937 // of IDecl's, then bridge casting is ok.
4938 bool Conforms = false;
4939 for (auto *Proto : OPT->quals()) {
4940 Conforms = false;
4941 for (auto *PI : InheritedProtocols) {
4942 if (ProtocolCompatibleWithProtocol(Proto, PI)) {
4943 Conforms = true;
4944 break;
4945 }
4946 }
4947 if (!Conforms)
4948 break;
4949 }
4950 if (Conforms)
4951 return true;
4952
4953 for (auto *PI : InheritedProtocols) {
4954 // If both the right and left sides have qualifiers.
4955 bool Adopts = false;
4956 for (auto *Proto : OPT->quals()) {
4957 // return 'true' if 'PI' is in the inheritance hierarchy of Proto
4958 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
4959 break;
4960 }
4961 if (!Adopts)
4962 return false;
4963 }
4964 return true;
4965 }
4966
4967 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
4968 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const4969 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
4970 llvm::FoldingSetNodeID ID;
4971 ObjCObjectPointerType::Profile(ID, ObjectT);
4972
4973 void *InsertPos = nullptr;
4974 if (ObjCObjectPointerType *QT =
4975 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
4976 return QualType(QT, 0);
4977
4978 // Find the canonical object type.
4979 QualType Canonical;
4980 if (!ObjectT.isCanonical()) {
4981 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
4982
4983 // Regenerate InsertPos.
4984 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
4985 }
4986
4987 // No match.
4988 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
4989 auto *QType =
4990 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
4991
4992 Types.push_back(QType);
4993 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
4994 return QualType(QType, 0);
4995 }
4996
4997 /// getObjCInterfaceType - Return the unique reference to the type for the
4998 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const4999 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5000 ObjCInterfaceDecl *PrevDecl) const {
5001 if (Decl->TypeForDecl)
5002 return QualType(Decl->TypeForDecl, 0);
5003
5004 if (PrevDecl) {
5005 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5006 Decl->TypeForDecl = PrevDecl->TypeForDecl;
5007 return QualType(PrevDecl->TypeForDecl, 0);
5008 }
5009
5010 // Prefer the definition, if there is one.
5011 if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5012 Decl = Def;
5013
5014 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5015 auto *T = new (Mem) ObjCInterfaceType(Decl);
5016 Decl->TypeForDecl = T;
5017 Types.push_back(T);
5018 return QualType(T, 0);
5019 }
5020
5021 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5022 /// TypeOfExprType AST's (since expression's are never shared). For example,
5023 /// multiple declarations that refer to "typeof(x)" all contain different
5024 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5025 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const5026 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5027 TypeOfExprType *toe;
5028 if (tofExpr->isTypeDependent()) {
5029 llvm::FoldingSetNodeID ID;
5030 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5031
5032 void *InsertPos = nullptr;
5033 DependentTypeOfExprType *Canon
5034 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5035 if (Canon) {
5036 // We already have a "canonical" version of an identical, dependent
5037 // typeof(expr) type. Use that as our canonical type.
5038 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5039 QualType((TypeOfExprType*)Canon, 0));
5040 } else {
5041 // Build a new, canonical typeof(expr) type.
5042 Canon
5043 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5044 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5045 toe = Canon;
5046 }
5047 } else {
5048 QualType Canonical = getCanonicalType(tofExpr->getType());
5049 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5050 }
5051 Types.push_back(toe);
5052 return QualType(toe, 0);
5053 }
5054
5055 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
5056 /// TypeOfType nodes. The only motivation to unique these nodes would be
5057 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5058 /// an issue. This doesn't affect the type checker, since it operates
5059 /// on canonical types (which are always unique).
getTypeOfType(QualType tofType) const5060 QualType ASTContext::getTypeOfType(QualType tofType) const {
5061 QualType Canonical = getCanonicalType(tofType);
5062 auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5063 Types.push_back(tot);
5064 return QualType(tot, 0);
5065 }
5066
5067 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5068 /// nodes. This would never be helpful, since each such type has its own
5069 /// expression, and would not give a significant memory saving, since there
5070 /// is an Expr tree under each such type.
getDecltypeType(Expr * e,QualType UnderlyingType) const5071 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5072 DecltypeType *dt;
5073
5074 // C++11 [temp.type]p2:
5075 // If an expression e involves a template parameter, decltype(e) denotes a
5076 // unique dependent type. Two such decltype-specifiers refer to the same
5077 // type only if their expressions are equivalent (14.5.6.1).
5078 if (e->isInstantiationDependent()) {
5079 llvm::FoldingSetNodeID ID;
5080 DependentDecltypeType::Profile(ID, *this, e);
5081
5082 void *InsertPos = nullptr;
5083 DependentDecltypeType *Canon
5084 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5085 if (!Canon) {
5086 // Build a new, canonical decltype(expr) type.
5087 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5088 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5089 }
5090 dt = new (*this, TypeAlignment)
5091 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5092 } else {
5093 dt = new (*this, TypeAlignment)
5094 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5095 }
5096 Types.push_back(dt);
5097 return QualType(dt, 0);
5098 }
5099
5100 /// getUnaryTransformationType - We don't unique these, since the memory
5101 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const5102 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5103 QualType UnderlyingType,
5104 UnaryTransformType::UTTKind Kind)
5105 const {
5106 UnaryTransformType *ut = nullptr;
5107
5108 if (BaseType->isDependentType()) {
5109 // Look in the folding set for an existing type.
5110 llvm::FoldingSetNodeID ID;
5111 DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5112
5113 void *InsertPos = nullptr;
5114 DependentUnaryTransformType *Canon
5115 = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5116
5117 if (!Canon) {
5118 // Build a new, canonical __underlying_type(type) type.
5119 Canon = new (*this, TypeAlignment)
5120 DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5121 Kind);
5122 DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5123 }
5124 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5125 QualType(), Kind,
5126 QualType(Canon, 0));
5127 } else {
5128 QualType CanonType = getCanonicalType(UnderlyingType);
5129 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5130 UnderlyingType, Kind,
5131 CanonType);
5132 }
5133 Types.push_back(ut);
5134 return QualType(ut, 0);
5135 }
5136
5137 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5138 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5139 /// canonical deduced-but-dependent 'auto' type.
5140 QualType
getAutoType(QualType DeducedType,AutoTypeKeyword Keyword,bool IsDependent,bool IsPack,ConceptDecl * TypeConstraintConcept,ArrayRef<TemplateArgument> TypeConstraintArgs) const5141 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5142 bool IsDependent, bool IsPack,
5143 ConceptDecl *TypeConstraintConcept,
5144 ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5145 assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5146 if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5147 !TypeConstraintConcept && !IsDependent)
5148 return getAutoDeductType();
5149
5150 // Look in the folding set for an existing type.
5151 void *InsertPos = nullptr;
5152 llvm::FoldingSetNodeID ID;
5153 AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5154 TypeConstraintConcept, TypeConstraintArgs);
5155 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5156 return QualType(AT, 0);
5157
5158 void *Mem = Allocate(sizeof(AutoType) +
5159 sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5160 TypeAlignment);
5161 auto *AT = new (Mem) AutoType(DeducedType, Keyword, IsDependent, IsPack,
5162 TypeConstraintConcept, TypeConstraintArgs);
5163 Types.push_back(AT);
5164 if (InsertPos)
5165 AutoTypes.InsertNode(AT, InsertPos);
5166 return QualType(AT, 0);
5167 }
5168
5169 /// Return the uniqued reference to the deduced template specialization type
5170 /// which has been deduced to the given type, or to the canonical undeduced
5171 /// such type, or the canonical deduced-but-dependent such type.
getDeducedTemplateSpecializationType(TemplateName Template,QualType DeducedType,bool IsDependent) const5172 QualType ASTContext::getDeducedTemplateSpecializationType(
5173 TemplateName Template, QualType DeducedType, bool IsDependent) const {
5174 // Look in the folding set for an existing type.
5175 void *InsertPos = nullptr;
5176 llvm::FoldingSetNodeID ID;
5177 DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5178 IsDependent);
5179 if (DeducedTemplateSpecializationType *DTST =
5180 DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5181 return QualType(DTST, 0);
5182
5183 auto *DTST = new (*this, TypeAlignment)
5184 DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5185 Types.push_back(DTST);
5186 if (InsertPos)
5187 DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5188 return QualType(DTST, 0);
5189 }
5190
5191 /// getAtomicType - Return the uniqued reference to the atomic type for
5192 /// the given value type.
getAtomicType(QualType T) const5193 QualType ASTContext::getAtomicType(QualType T) const {
5194 // Unique pointers, to guarantee there is only one pointer of a particular
5195 // structure.
5196 llvm::FoldingSetNodeID ID;
5197 AtomicType::Profile(ID, T);
5198
5199 void *InsertPos = nullptr;
5200 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5201 return QualType(AT, 0);
5202
5203 // If the atomic value type isn't canonical, this won't be a canonical type
5204 // either, so fill in the canonical type field.
5205 QualType Canonical;
5206 if (!T.isCanonical()) {
5207 Canonical = getAtomicType(getCanonicalType(T));
5208
5209 // Get the new insert position for the node we care about.
5210 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5211 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5212 }
5213 auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5214 Types.push_back(New);
5215 AtomicTypes.InsertNode(New, InsertPos);
5216 return QualType(New, 0);
5217 }
5218
5219 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const5220 QualType ASTContext::getAutoDeductType() const {
5221 if (AutoDeductTy.isNull())
5222 AutoDeductTy = QualType(
5223 new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
5224 /*dependent*/false, /*pack*/false,
5225 /*concept*/nullptr, /*args*/{}),
5226 0);
5227 return AutoDeductTy;
5228 }
5229
5230 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const5231 QualType ASTContext::getAutoRRefDeductType() const {
5232 if (AutoRRefDeductTy.isNull())
5233 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5234 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5235 return AutoRRefDeductTy;
5236 }
5237
5238 /// getTagDeclType - Return the unique reference to the type for the
5239 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const5240 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5241 assert(Decl);
5242 // FIXME: What is the design on getTagDeclType when it requires casting
5243 // away const? mutable?
5244 return getTypeDeclType(const_cast<TagDecl*>(Decl));
5245 }
5246
5247 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5248 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5249 /// needs to agree with the definition in <stddef.h>.
getSizeType() const5250 CanQualType ASTContext::getSizeType() const {
5251 return getFromTargetType(Target->getSizeType());
5252 }
5253
5254 /// Return the unique signed counterpart of the integer type
5255 /// corresponding to size_t.
getSignedSizeType() const5256 CanQualType ASTContext::getSignedSizeType() const {
5257 return getFromTargetType(Target->getSignedSizeType());
5258 }
5259
5260 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const5261 CanQualType ASTContext::getIntMaxType() const {
5262 return getFromTargetType(Target->getIntMaxType());
5263 }
5264
5265 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const5266 CanQualType ASTContext::getUIntMaxType() const {
5267 return getFromTargetType(Target->getUIntMaxType());
5268 }
5269
5270 /// getSignedWCharType - Return the type of "signed wchar_t".
5271 /// Used when in C++, as a GCC extension.
getSignedWCharType() const5272 QualType ASTContext::getSignedWCharType() const {
5273 // FIXME: derive from "Target" ?
5274 return WCharTy;
5275 }
5276
5277 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5278 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const5279 QualType ASTContext::getUnsignedWCharType() const {
5280 // FIXME: derive from "Target" ?
5281 return UnsignedIntTy;
5282 }
5283
getIntPtrType() const5284 QualType ASTContext::getIntPtrType() const {
5285 return getFromTargetType(Target->getIntPtrType());
5286 }
5287
getUIntPtrType() const5288 QualType ASTContext::getUIntPtrType() const {
5289 return getCorrespondingUnsignedType(getIntPtrType());
5290 }
5291
5292 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5293 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const5294 QualType ASTContext::getPointerDiffType() const {
5295 return getFromTargetType(Target->getPtrDiffType(0));
5296 }
5297
5298 /// Return the unique unsigned counterpart of "ptrdiff_t"
5299 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5300 /// in the definition of %tu format specifier.
getUnsignedPointerDiffType() const5301 QualType ASTContext::getUnsignedPointerDiffType() const {
5302 return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5303 }
5304
5305 /// Return the unique type for "pid_t" defined in
5306 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const5307 QualType ASTContext::getProcessIDType() const {
5308 return getFromTargetType(Target->getProcessIDType());
5309 }
5310
5311 //===----------------------------------------------------------------------===//
5312 // Type Operators
5313 //===----------------------------------------------------------------------===//
5314
getCanonicalParamType(QualType T) const5315 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5316 // Push qualifiers into arrays, and then discard any remaining
5317 // qualifiers.
5318 T = getCanonicalType(T);
5319 T = getVariableArrayDecayedType(T);
5320 const Type *Ty = T.getTypePtr();
5321 QualType Result;
5322 if (isa<ArrayType>(Ty)) {
5323 Result = getArrayDecayedType(QualType(Ty,0));
5324 } else if (isa<FunctionType>(Ty)) {
5325 Result = getPointerType(QualType(Ty, 0));
5326 } else {
5327 Result = QualType(Ty, 0);
5328 }
5329
5330 return CanQualType::CreateUnsafe(Result);
5331 }
5332
getUnqualifiedArrayType(QualType type,Qualifiers & quals)5333 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5334 Qualifiers &quals) {
5335 SplitQualType splitType = type.getSplitUnqualifiedType();
5336
5337 // FIXME: getSplitUnqualifiedType() actually walks all the way to
5338 // the unqualified desugared type and then drops it on the floor.
5339 // We then have to strip that sugar back off with
5340 // getUnqualifiedDesugaredType(), which is silly.
5341 const auto *AT =
5342 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5343
5344 // If we don't have an array, just use the results in splitType.
5345 if (!AT) {
5346 quals = splitType.Quals;
5347 return QualType(splitType.Ty, 0);
5348 }
5349
5350 // Otherwise, recurse on the array's element type.
5351 QualType elementType = AT->getElementType();
5352 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5353
5354 // If that didn't change the element type, AT has no qualifiers, so we
5355 // can just use the results in splitType.
5356 if (elementType == unqualElementType) {
5357 assert(quals.empty()); // from the recursive call
5358 quals = splitType.Quals;
5359 return QualType(splitType.Ty, 0);
5360 }
5361
5362 // Otherwise, add in the qualifiers from the outermost type, then
5363 // build the type back up.
5364 quals.addConsistentQualifiers(splitType.Quals);
5365
5366 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5367 return getConstantArrayType(unqualElementType, CAT->getSize(),
5368 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5369 }
5370
5371 if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5372 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5373 }
5374
5375 if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5376 return getVariableArrayType(unqualElementType,
5377 VAT->getSizeExpr(),
5378 VAT->getSizeModifier(),
5379 VAT->getIndexTypeCVRQualifiers(),
5380 VAT->getBracketsRange());
5381 }
5382
5383 const auto *DSAT = cast<DependentSizedArrayType>(AT);
5384 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5385 DSAT->getSizeModifier(), 0,
5386 SourceRange());
5387 }
5388
5389 /// Attempt to unwrap two types that may both be array types with the same bound
5390 /// (or both be array types of unknown bound) for the purpose of comparing the
5391 /// cv-decomposition of two types per C++ [conv.qual].
UnwrapSimilarArrayTypes(QualType & T1,QualType & T2)5392 bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
5393 bool UnwrappedAny = false;
5394 while (true) {
5395 auto *AT1 = getAsArrayType(T1);
5396 if (!AT1) return UnwrappedAny;
5397
5398 auto *AT2 = getAsArrayType(T2);
5399 if (!AT2) return UnwrappedAny;
5400
5401 // If we don't have two array types with the same constant bound nor two
5402 // incomplete array types, we've unwrapped everything we can.
5403 if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5404 auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5405 if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5406 return UnwrappedAny;
5407 } else if (!isa<IncompleteArrayType>(AT1) ||
5408 !isa<IncompleteArrayType>(AT2)) {
5409 return UnwrappedAny;
5410 }
5411
5412 T1 = AT1->getElementType();
5413 T2 = AT2->getElementType();
5414 UnwrappedAny = true;
5415 }
5416 }
5417
5418 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5419 ///
5420 /// If T1 and T2 are both pointer types of the same kind, or both array types
5421 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5422 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5423 ///
5424 /// This function will typically be called in a loop that successively
5425 /// "unwraps" pointer and pointer-to-member types to compare them at each
5426 /// level.
5427 ///
5428 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5429 /// pair of types that can't be unwrapped further.
UnwrapSimilarTypes(QualType & T1,QualType & T2)5430 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
5431 UnwrapSimilarArrayTypes(T1, T2);
5432
5433 const auto *T1PtrType = T1->getAs<PointerType>();
5434 const auto *T2PtrType = T2->getAs<PointerType>();
5435 if (T1PtrType && T2PtrType) {
5436 T1 = T1PtrType->getPointeeType();
5437 T2 = T2PtrType->getPointeeType();
5438 return true;
5439 }
5440
5441 const auto *T1MPType = T1->getAs<MemberPointerType>();
5442 const auto *T2MPType = T2->getAs<MemberPointerType>();
5443 if (T1MPType && T2MPType &&
5444 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5445 QualType(T2MPType->getClass(), 0))) {
5446 T1 = T1MPType->getPointeeType();
5447 T2 = T2MPType->getPointeeType();
5448 return true;
5449 }
5450
5451 if (getLangOpts().ObjC) {
5452 const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5453 const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5454 if (T1OPType && T2OPType) {
5455 T1 = T1OPType->getPointeeType();
5456 T2 = T2OPType->getPointeeType();
5457 return true;
5458 }
5459 }
5460
5461 // FIXME: Block pointers, too?
5462
5463 return false;
5464 }
5465
hasSimilarType(QualType T1,QualType T2)5466 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
5467 while (true) {
5468 Qualifiers Quals;
5469 T1 = getUnqualifiedArrayType(T1, Quals);
5470 T2 = getUnqualifiedArrayType(T2, Quals);
5471 if (hasSameType(T1, T2))
5472 return true;
5473 if (!UnwrapSimilarTypes(T1, T2))
5474 return false;
5475 }
5476 }
5477
hasCvrSimilarType(QualType T1,QualType T2)5478 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
5479 while (true) {
5480 Qualifiers Quals1, Quals2;
5481 T1 = getUnqualifiedArrayType(T1, Quals1);
5482 T2 = getUnqualifiedArrayType(T2, Quals2);
5483
5484 Quals1.removeCVRQualifiers();
5485 Quals2.removeCVRQualifiers();
5486 if (Quals1 != Quals2)
5487 return false;
5488
5489 if (hasSameType(T1, T2))
5490 return true;
5491
5492 if (!UnwrapSimilarTypes(T1, T2))
5493 return false;
5494 }
5495 }
5496
5497 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const5498 ASTContext::getNameForTemplate(TemplateName Name,
5499 SourceLocation NameLoc) const {
5500 switch (Name.getKind()) {
5501 case TemplateName::QualifiedTemplate:
5502 case TemplateName::Template:
5503 // DNInfo work in progress: CHECKME: what about DNLoc?
5504 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
5505 NameLoc);
5506
5507 case TemplateName::OverloadedTemplate: {
5508 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
5509 // DNInfo work in progress: CHECKME: what about DNLoc?
5510 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5511 }
5512
5513 case TemplateName::AssumedTemplate: {
5514 AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
5515 return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
5516 }
5517
5518 case TemplateName::DependentTemplate: {
5519 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5520 DeclarationName DName;
5521 if (DTN->isIdentifier()) {
5522 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
5523 return DeclarationNameInfo(DName, NameLoc);
5524 } else {
5525 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
5526 // DNInfo work in progress: FIXME: source locations?
5527 DeclarationNameLoc DNLoc;
5528 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
5529 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
5530 return DeclarationNameInfo(DName, NameLoc, DNLoc);
5531 }
5532 }
5533
5534 case TemplateName::SubstTemplateTemplateParm: {
5535 SubstTemplateTemplateParmStorage *subst
5536 = Name.getAsSubstTemplateTemplateParm();
5537 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5538 NameLoc);
5539 }
5540
5541 case TemplateName::SubstTemplateTemplateParmPack: {
5542 SubstTemplateTemplateParmPackStorage *subst
5543 = Name.getAsSubstTemplateTemplateParmPack();
5544 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
5545 NameLoc);
5546 }
5547 }
5548
5549 llvm_unreachable("bad template name kind!");
5550 }
5551
getCanonicalTemplateName(TemplateName Name) const5552 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
5553 switch (Name.getKind()) {
5554 case TemplateName::QualifiedTemplate:
5555 case TemplateName::Template: {
5556 TemplateDecl *Template = Name.getAsTemplateDecl();
5557 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template))
5558 Template = getCanonicalTemplateTemplateParmDecl(TTP);
5559
5560 // The canonical template name is the canonical template declaration.
5561 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5562 }
5563
5564 case TemplateName::OverloadedTemplate:
5565 case TemplateName::AssumedTemplate:
5566 llvm_unreachable("cannot canonicalize unresolved template");
5567
5568 case TemplateName::DependentTemplate: {
5569 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5570 assert(DTN && "Non-dependent template names must refer to template decls.");
5571 return DTN->CanonicalTemplateName;
5572 }
5573
5574 case TemplateName::SubstTemplateTemplateParm: {
5575 SubstTemplateTemplateParmStorage *subst
5576 = Name.getAsSubstTemplateTemplateParm();
5577 return getCanonicalTemplateName(subst->getReplacement());
5578 }
5579
5580 case TemplateName::SubstTemplateTemplateParmPack: {
5581 SubstTemplateTemplateParmPackStorage *subst
5582 = Name.getAsSubstTemplateTemplateParmPack();
5583 TemplateTemplateParmDecl *canonParameter
5584 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5585 TemplateArgument canonArgPack
5586 = getCanonicalTemplateArgument(subst->getArgumentPack());
5587 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5588 }
5589 }
5590
5591 llvm_unreachable("bad template name!");
5592 }
5593
hasSameTemplateName(TemplateName X,TemplateName Y)5594 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
5595 X = getCanonicalTemplateName(X);
5596 Y = getCanonicalTemplateName(Y);
5597 return X.getAsVoidPointer() == Y.getAsVoidPointer();
5598 }
5599
5600 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const5601 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
5602 switch (Arg.getKind()) {
5603 case TemplateArgument::Null:
5604 return Arg;
5605
5606 case TemplateArgument::Expression:
5607 return Arg;
5608
5609 case TemplateArgument::Declaration: {
5610 auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
5611 return TemplateArgument(D, Arg.getParamTypeForDecl());
5612 }
5613
5614 case TemplateArgument::NullPtr:
5615 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
5616 /*isNullPtr*/true);
5617
5618 case TemplateArgument::Template:
5619 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
5620
5621 case TemplateArgument::TemplateExpansion:
5622 return TemplateArgument(getCanonicalTemplateName(
5623 Arg.getAsTemplateOrTemplatePattern()),
5624 Arg.getNumTemplateExpansions());
5625
5626 case TemplateArgument::Integral:
5627 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
5628
5629 case TemplateArgument::Type:
5630 return TemplateArgument(getCanonicalType(Arg.getAsType()));
5631
5632 case TemplateArgument::Pack: {
5633 if (Arg.pack_size() == 0)
5634 return Arg;
5635
5636 auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
5637 unsigned Idx = 0;
5638 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
5639 AEnd = Arg.pack_end();
5640 A != AEnd; (void)++A, ++Idx)
5641 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
5642
5643 return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
5644 }
5645 }
5646
5647 // Silence GCC warning
5648 llvm_unreachable("Unhandled template argument kind");
5649 }
5650
5651 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const5652 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
5653 if (!NNS)
5654 return nullptr;
5655
5656 switch (NNS->getKind()) {
5657 case NestedNameSpecifier::Identifier:
5658 // Canonicalize the prefix but keep the identifier the same.
5659 return NestedNameSpecifier::Create(*this,
5660 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
5661 NNS->getAsIdentifier());
5662
5663 case NestedNameSpecifier::Namespace:
5664 // A namespace is canonical; build a nested-name-specifier with
5665 // this namespace and no prefix.
5666 return NestedNameSpecifier::Create(*this, nullptr,
5667 NNS->getAsNamespace()->getOriginalNamespace());
5668
5669 case NestedNameSpecifier::NamespaceAlias:
5670 // A namespace is canonical; build a nested-name-specifier with
5671 // this namespace and no prefix.
5672 return NestedNameSpecifier::Create(*this, nullptr,
5673 NNS->getAsNamespaceAlias()->getNamespace()
5674 ->getOriginalNamespace());
5675
5676 case NestedNameSpecifier::TypeSpec:
5677 case NestedNameSpecifier::TypeSpecWithTemplate: {
5678 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
5679
5680 // If we have some kind of dependent-named type (e.g., "typename T::type"),
5681 // break it apart into its prefix and identifier, then reconsititute those
5682 // as the canonical nested-name-specifier. This is required to canonicalize
5683 // a dependent nested-name-specifier involving typedefs of dependent-name
5684 // types, e.g.,
5685 // typedef typename T::type T1;
5686 // typedef typename T1::type T2;
5687 if (const auto *DNT = T->getAs<DependentNameType>())
5688 return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
5689 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
5690
5691 // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
5692 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
5693 // first place?
5694 return NestedNameSpecifier::Create(*this, nullptr, false,
5695 const_cast<Type *>(T.getTypePtr()));
5696 }
5697
5698 case NestedNameSpecifier::Global:
5699 case NestedNameSpecifier::Super:
5700 // The global specifier and __super specifer are canonical and unique.
5701 return NNS;
5702 }
5703
5704 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
5705 }
5706
getAsArrayType(QualType T) const5707 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
5708 // Handle the non-qualified case efficiently.
5709 if (!T.hasLocalQualifiers()) {
5710 // Handle the common positive case fast.
5711 if (const auto *AT = dyn_cast<ArrayType>(T))
5712 return AT;
5713 }
5714
5715 // Handle the common negative case fast.
5716 if (!isa<ArrayType>(T.getCanonicalType()))
5717 return nullptr;
5718
5719 // Apply any qualifiers from the array type to the element type. This
5720 // implements C99 6.7.3p8: "If the specification of an array type includes
5721 // any type qualifiers, the element type is so qualified, not the array type."
5722
5723 // If we get here, we either have type qualifiers on the type, or we have
5724 // sugar such as a typedef in the way. If we have type qualifiers on the type
5725 // we must propagate them down into the element type.
5726
5727 SplitQualType split = T.getSplitDesugaredType();
5728 Qualifiers qs = split.Quals;
5729
5730 // If we have a simple case, just return now.
5731 const auto *ATy = dyn_cast<ArrayType>(split.Ty);
5732 if (!ATy || qs.empty())
5733 return ATy;
5734
5735 // Otherwise, we have an array and we have qualifiers on it. Push the
5736 // qualifiers into the array element type and return a new array type.
5737 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
5738
5739 if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
5740 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
5741 CAT->getSizeExpr(),
5742 CAT->getSizeModifier(),
5743 CAT->getIndexTypeCVRQualifiers()));
5744 if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
5745 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
5746 IAT->getSizeModifier(),
5747 IAT->getIndexTypeCVRQualifiers()));
5748
5749 if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
5750 return cast<ArrayType>(
5751 getDependentSizedArrayType(NewEltTy,
5752 DSAT->getSizeExpr(),
5753 DSAT->getSizeModifier(),
5754 DSAT->getIndexTypeCVRQualifiers(),
5755 DSAT->getBracketsRange()));
5756
5757 const auto *VAT = cast<VariableArrayType>(ATy);
5758 return cast<ArrayType>(getVariableArrayType(NewEltTy,
5759 VAT->getSizeExpr(),
5760 VAT->getSizeModifier(),
5761 VAT->getIndexTypeCVRQualifiers(),
5762 VAT->getBracketsRange()));
5763 }
5764
getAdjustedParameterType(QualType T) const5765 QualType ASTContext::getAdjustedParameterType(QualType T) const {
5766 if (T->isArrayType() || T->isFunctionType())
5767 return getDecayedType(T);
5768 return T;
5769 }
5770
getSignatureParameterType(QualType T) const5771 QualType ASTContext::getSignatureParameterType(QualType T) const {
5772 T = getVariableArrayDecayedType(T);
5773 T = getAdjustedParameterType(T);
5774 return T.getUnqualifiedType();
5775 }
5776
getExceptionObjectType(QualType T) const5777 QualType ASTContext::getExceptionObjectType(QualType T) const {
5778 // C++ [except.throw]p3:
5779 // A throw-expression initializes a temporary object, called the exception
5780 // object, the type of which is determined by removing any top-level
5781 // cv-qualifiers from the static type of the operand of throw and adjusting
5782 // the type from "array of T" or "function returning T" to "pointer to T"
5783 // or "pointer to function returning T", [...]
5784 T = getVariableArrayDecayedType(T);
5785 if (T->isArrayType() || T->isFunctionType())
5786 T = getDecayedType(T);
5787 return T.getUnqualifiedType();
5788 }
5789
5790 /// getArrayDecayedType - Return the properly qualified result of decaying the
5791 /// specified array type to a pointer. This operation is non-trivial when
5792 /// handling typedefs etc. The canonical type of "T" must be an array type,
5793 /// this returns a pointer to a properly qualified element of the array.
5794 ///
5795 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const5796 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
5797 // Get the element type with 'getAsArrayType' so that we don't lose any
5798 // typedefs in the element type of the array. This also handles propagation
5799 // of type qualifiers from the array type into the element type if present
5800 // (C99 6.7.3p8).
5801 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
5802 assert(PrettyArrayType && "Not an array type!");
5803
5804 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
5805
5806 // int x[restrict 4] -> int *restrict
5807 QualType Result = getQualifiedType(PtrTy,
5808 PrettyArrayType->getIndexTypeQualifiers());
5809
5810 // int x[_Nullable] -> int * _Nullable
5811 if (auto Nullability = Ty->getNullability(*this)) {
5812 Result = const_cast<ASTContext *>(this)->getAttributedType(
5813 AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
5814 }
5815 return Result;
5816 }
5817
getBaseElementType(const ArrayType * array) const5818 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
5819 return getBaseElementType(array->getElementType());
5820 }
5821
getBaseElementType(QualType type) const5822 QualType ASTContext::getBaseElementType(QualType type) const {
5823 Qualifiers qs;
5824 while (true) {
5825 SplitQualType split = type.getSplitDesugaredType();
5826 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
5827 if (!array) break;
5828
5829 type = array->getElementType();
5830 qs.addConsistentQualifiers(split.Quals);
5831 }
5832
5833 return getQualifiedType(type, qs);
5834 }
5835
5836 /// getConstantArrayElementCount - Returns number of constant array elements.
5837 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const5838 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
5839 uint64_t ElementCount = 1;
5840 do {
5841 ElementCount *= CA->getSize().getZExtValue();
5842 CA = dyn_cast_or_null<ConstantArrayType>(
5843 CA->getElementType()->getAsArrayTypeUnsafe());
5844 } while (CA);
5845 return ElementCount;
5846 }
5847
5848 /// getFloatingRank - Return a relative rank for floating point types.
5849 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)5850 static FloatingRank getFloatingRank(QualType T) {
5851 if (const auto *CT = T->getAs<ComplexType>())
5852 return getFloatingRank(CT->getElementType());
5853
5854 switch (T->castAs<BuiltinType>()->getKind()) {
5855 default: llvm_unreachable("getFloatingRank(): not a floating type");
5856 case BuiltinType::Float16: return Float16Rank;
5857 case BuiltinType::Half: return HalfRank;
5858 case BuiltinType::Float: return FloatRank;
5859 case BuiltinType::Double: return DoubleRank;
5860 case BuiltinType::LongDouble: return LongDoubleRank;
5861 case BuiltinType::Float128: return Float128Rank;
5862 }
5863 }
5864
5865 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
5866 /// point or a complex type (based on typeDomain/typeSize).
5867 /// 'typeDomain' is a real floating point or complex type.
5868 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const5869 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
5870 QualType Domain) const {
5871 FloatingRank EltRank = getFloatingRank(Size);
5872 if (Domain->isComplexType()) {
5873 switch (EltRank) {
5874 case Float16Rank:
5875 case HalfRank: llvm_unreachable("Complex half is not supported");
5876 case FloatRank: return FloatComplexTy;
5877 case DoubleRank: return DoubleComplexTy;
5878 case LongDoubleRank: return LongDoubleComplexTy;
5879 case Float128Rank: return Float128ComplexTy;
5880 }
5881 }
5882
5883 assert(Domain->isRealFloatingType() && "Unknown domain!");
5884 switch (EltRank) {
5885 case Float16Rank: return HalfTy;
5886 case HalfRank: return HalfTy;
5887 case FloatRank: return FloatTy;
5888 case DoubleRank: return DoubleTy;
5889 case LongDoubleRank: return LongDoubleTy;
5890 case Float128Rank: return Float128Ty;
5891 }
5892 llvm_unreachable("getFloatingRank(): illegal value for rank");
5893 }
5894
5895 /// getFloatingTypeOrder - Compare the rank of the two specified floating
5896 /// point types, ignoring the domain of the type (i.e. 'double' ==
5897 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
5898 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const5899 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
5900 FloatingRank LHSR = getFloatingRank(LHS);
5901 FloatingRank RHSR = getFloatingRank(RHS);
5902
5903 if (LHSR == RHSR)
5904 return 0;
5905 if (LHSR > RHSR)
5906 return 1;
5907 return -1;
5908 }
5909
getFloatingTypeSemanticOrder(QualType LHS,QualType RHS) const5910 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
5911 if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
5912 return 0;
5913 return getFloatingTypeOrder(LHS, RHS);
5914 }
5915
5916 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
5917 /// routine will assert if passed a built-in type that isn't an integer or enum,
5918 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const5919 unsigned ASTContext::getIntegerRank(const Type *T) const {
5920 assert(T->isCanonicalUnqualified() && "T should be canonicalized");
5921
5922 switch (cast<BuiltinType>(T)->getKind()) {
5923 default: llvm_unreachable("getIntegerRank(): not a built-in integer");
5924 case BuiltinType::Bool:
5925 return 1 + (getIntWidth(BoolTy) << 3);
5926 case BuiltinType::Char_S:
5927 case BuiltinType::Char_U:
5928 case BuiltinType::SChar:
5929 case BuiltinType::UChar:
5930 return 2 + (getIntWidth(CharTy) << 3);
5931 case BuiltinType::Short:
5932 case BuiltinType::UShort:
5933 return 3 + (getIntWidth(ShortTy) << 3);
5934 case BuiltinType::Int:
5935 case BuiltinType::UInt:
5936 return 4 + (getIntWidth(IntTy) << 3);
5937 case BuiltinType::Long:
5938 case BuiltinType::ULong:
5939 return 5 + (getIntWidth(LongTy) << 3);
5940 case BuiltinType::LongLong:
5941 case BuiltinType::ULongLong:
5942 return 6 + (getIntWidth(LongLongTy) << 3);
5943 case BuiltinType::Int128:
5944 case BuiltinType::UInt128:
5945 return 7 + (getIntWidth(Int128Ty) << 3);
5946 }
5947 }
5948
5949 /// Whether this is a promotable bitfield reference according
5950 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
5951 ///
5952 /// \returns the type this bit-field will promote to, or NULL if no
5953 /// promotion occurs.
isPromotableBitField(Expr * E) const5954 QualType ASTContext::isPromotableBitField(Expr *E) const {
5955 if (E->isTypeDependent() || E->isValueDependent())
5956 return {};
5957
5958 // C++ [conv.prom]p5:
5959 // If the bit-field has an enumerated type, it is treated as any other
5960 // value of that type for promotion purposes.
5961 if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
5962 return {};
5963
5964 // FIXME: We should not do this unless E->refersToBitField() is true. This
5965 // matters in C where getSourceBitField() will find bit-fields for various
5966 // cases where the source expression is not a bit-field designator.
5967
5968 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
5969 if (!Field)
5970 return {};
5971
5972 QualType FT = Field->getType();
5973
5974 uint64_t BitWidth = Field->getBitWidthValue(*this);
5975 uint64_t IntSize = getTypeSize(IntTy);
5976 // C++ [conv.prom]p5:
5977 // A prvalue for an integral bit-field can be converted to a prvalue of type
5978 // int if int can represent all the values of the bit-field; otherwise, it
5979 // can be converted to unsigned int if unsigned int can represent all the
5980 // values of the bit-field. If the bit-field is larger yet, no integral
5981 // promotion applies to it.
5982 // C11 6.3.1.1/2:
5983 // [For a bit-field of type _Bool, int, signed int, or unsigned int:]
5984 // If an int can represent all values of the original type (as restricted by
5985 // the width, for a bit-field), the value is converted to an int; otherwise,
5986 // it is converted to an unsigned int.
5987 //
5988 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
5989 // We perform that promotion here to match GCC and C++.
5990 // FIXME: C does not permit promotion of an enum bit-field whose rank is
5991 // greater than that of 'int'. We perform that promotion to match GCC.
5992 if (BitWidth < IntSize)
5993 return IntTy;
5994
5995 if (BitWidth == IntSize)
5996 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
5997
5998 // Bit-fields wider than int are not subject to promotions, and therefore act
5999 // like the base type. GCC has some weird bugs in this area that we
6000 // deliberately do not follow (GCC follows a pre-standard resolution to
6001 // C's DR315 which treats bit-width as being part of the type, and this leaks
6002 // into their semantics in some cases).
6003 return {};
6004 }
6005
6006 /// getPromotedIntegerType - Returns the type that Promotable will
6007 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6008 /// integer type.
getPromotedIntegerType(QualType Promotable) const6009 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6010 assert(!Promotable.isNull());
6011 assert(Promotable->isPromotableIntegerType());
6012 if (const auto *ET = Promotable->getAs<EnumType>())
6013 return ET->getDecl()->getPromotionType();
6014
6015 if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6016 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6017 // (3.9.1) can be converted to a prvalue of the first of the following
6018 // types that can represent all the values of its underlying type:
6019 // int, unsigned int, long int, unsigned long int, long long int, or
6020 // unsigned long long int [...]
6021 // FIXME: Is there some better way to compute this?
6022 if (BT->getKind() == BuiltinType::WChar_S ||
6023 BT->getKind() == BuiltinType::WChar_U ||
6024 BT->getKind() == BuiltinType::Char8 ||
6025 BT->getKind() == BuiltinType::Char16 ||
6026 BT->getKind() == BuiltinType::Char32) {
6027 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6028 uint64_t FromSize = getTypeSize(BT);
6029 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6030 LongLongTy, UnsignedLongLongTy };
6031 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6032 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6033 if (FromSize < ToSize ||
6034 (FromSize == ToSize &&
6035 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
6036 return PromoteTypes[Idx];
6037 }
6038 llvm_unreachable("char type should fit into long long");
6039 }
6040 }
6041
6042 // At this point, we should have a signed or unsigned integer type.
6043 if (Promotable->isSignedIntegerType())
6044 return IntTy;
6045 uint64_t PromotableSize = getIntWidth(Promotable);
6046 uint64_t IntSize = getIntWidth(IntTy);
6047 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
6048 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
6049 }
6050
6051 /// Recurses in pointer/array types until it finds an objc retainable
6052 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const6053 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
6054 while (!T.isNull()) {
6055 if (T.getObjCLifetime() != Qualifiers::OCL_None)
6056 return T.getObjCLifetime();
6057 if (T->isArrayType())
6058 T = getBaseElementType(T);
6059 else if (const auto *PT = T->getAs<PointerType>())
6060 T = PT->getPointeeType();
6061 else if (const auto *RT = T->getAs<ReferenceType>())
6062 T = RT->getPointeeType();
6063 else
6064 break;
6065 }
6066
6067 return Qualifiers::OCL_None;
6068 }
6069
getIntegerTypeForEnum(const EnumType * ET)6070 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
6071 // Incomplete enum types are not treated as integer types.
6072 // FIXME: In C++, enum types are never integer types.
6073 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
6074 return ET->getDecl()->getIntegerType().getTypePtr();
6075 return nullptr;
6076 }
6077
6078 /// getIntegerTypeOrder - Returns the highest ranked integer type:
6079 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
6080 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const6081 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
6082 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
6083 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
6084
6085 // Unwrap enums to their underlying type.
6086 if (const auto *ET = dyn_cast<EnumType>(LHSC))
6087 LHSC = getIntegerTypeForEnum(ET);
6088 if (const auto *ET = dyn_cast<EnumType>(RHSC))
6089 RHSC = getIntegerTypeForEnum(ET);
6090
6091 if (LHSC == RHSC) return 0;
6092
6093 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
6094 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
6095
6096 unsigned LHSRank = getIntegerRank(LHSC);
6097 unsigned RHSRank = getIntegerRank(RHSC);
6098
6099 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
6100 if (LHSRank == RHSRank) return 0;
6101 return LHSRank > RHSRank ? 1 : -1;
6102 }
6103
6104 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
6105 if (LHSUnsigned) {
6106 // If the unsigned [LHS] type is larger, return it.
6107 if (LHSRank >= RHSRank)
6108 return 1;
6109
6110 // If the signed type can represent all values of the unsigned type, it
6111 // wins. Because we are dealing with 2's complement and types that are
6112 // powers of two larger than each other, this is always safe.
6113 return -1;
6114 }
6115
6116 // If the unsigned [RHS] type is larger, return it.
6117 if (RHSRank >= LHSRank)
6118 return -1;
6119
6120 // If the signed type can represent all values of the unsigned type, it
6121 // wins. Because we are dealing with 2's complement and types that are
6122 // powers of two larger than each other, this is always safe.
6123 return 1;
6124 }
6125
getCFConstantStringDecl() const6126 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
6127 if (CFConstantStringTypeDecl)
6128 return CFConstantStringTypeDecl;
6129
6130 assert(!CFConstantStringTagDecl &&
6131 "tag and typedef should be initialized together");
6132 CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
6133 CFConstantStringTagDecl->startDefinition();
6134
6135 struct {
6136 QualType Type;
6137 const char *Name;
6138 } Fields[5];
6139 unsigned Count = 0;
6140
6141 /// Objective-C ABI
6142 ///
6143 /// typedef struct __NSConstantString_tag {
6144 /// const int *isa;
6145 /// int flags;
6146 /// const char *str;
6147 /// long length;
6148 /// } __NSConstantString;
6149 ///
6150 /// Swift ABI (4.1, 4.2)
6151 ///
6152 /// typedef struct __NSConstantString_tag {
6153 /// uintptr_t _cfisa;
6154 /// uintptr_t _swift_rc;
6155 /// _Atomic(uint64_t) _cfinfoa;
6156 /// const char *_ptr;
6157 /// uint32_t _length;
6158 /// } __NSConstantString;
6159 ///
6160 /// Swift ABI (5.0)
6161 ///
6162 /// typedef struct __NSConstantString_tag {
6163 /// uintptr_t _cfisa;
6164 /// uintptr_t _swift_rc;
6165 /// _Atomic(uint64_t) _cfinfoa;
6166 /// const char *_ptr;
6167 /// uintptr_t _length;
6168 /// } __NSConstantString;
6169
6170 const auto CFRuntime = getLangOpts().CFRuntime;
6171 if (static_cast<unsigned>(CFRuntime) <
6172 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
6173 Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
6174 Fields[Count++] = { IntTy, "flags" };
6175 Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
6176 Fields[Count++] = { LongTy, "length" };
6177 } else {
6178 Fields[Count++] = { getUIntPtrType(), "_cfisa" };
6179 Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
6180 Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
6181 Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
6182 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6183 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6184 Fields[Count++] = { IntTy, "_ptr" };
6185 else
6186 Fields[Count++] = { getUIntPtrType(), "_ptr" };
6187 }
6188
6189 // Create fields
6190 for (unsigned i = 0; i < Count; ++i) {
6191 FieldDecl *Field =
6192 FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
6193 SourceLocation(), &Idents.get(Fields[i].Name),
6194 Fields[i].Type, /*TInfo=*/nullptr,
6195 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6196 Field->setAccess(AS_public);
6197 CFConstantStringTagDecl->addDecl(Field);
6198 }
6199
6200 CFConstantStringTagDecl->completeDefinition();
6201 // This type is designed to be compatible with NSConstantString, but cannot
6202 // use the same name, since NSConstantString is an interface.
6203 auto tagType = getTagDeclType(CFConstantStringTagDecl);
6204 CFConstantStringTypeDecl =
6205 buildImplicitTypedef(tagType, "__NSConstantString");
6206
6207 return CFConstantStringTypeDecl;
6208 }
6209
getCFConstantStringTagDecl() const6210 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
6211 if (!CFConstantStringTagDecl)
6212 getCFConstantStringDecl(); // Build the tag and the typedef.
6213 return CFConstantStringTagDecl;
6214 }
6215
6216 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const6217 QualType ASTContext::getCFConstantStringType() const {
6218 return getTypedefType(getCFConstantStringDecl());
6219 }
6220
getObjCSuperType() const6221 QualType ASTContext::getObjCSuperType() const {
6222 if (ObjCSuperType.isNull()) {
6223 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
6224 TUDecl->addDecl(ObjCSuperTypeDecl);
6225 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
6226 }
6227 return ObjCSuperType;
6228 }
6229
setCFConstantStringType(QualType T)6230 void ASTContext::setCFConstantStringType(QualType T) {
6231 const auto *TD = T->castAs<TypedefType>();
6232 CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
6233 const auto *TagType =
6234 CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
6235 CFConstantStringTagDecl = TagType->getDecl();
6236 }
6237
getBlockDescriptorType() const6238 QualType ASTContext::getBlockDescriptorType() const {
6239 if (BlockDescriptorType)
6240 return getTagDeclType(BlockDescriptorType);
6241
6242 RecordDecl *RD;
6243 // FIXME: Needs the FlagAppleBlock bit.
6244 RD = buildImplicitRecord("__block_descriptor");
6245 RD->startDefinition();
6246
6247 QualType FieldTypes[] = {
6248 UnsignedLongTy,
6249 UnsignedLongTy,
6250 };
6251
6252 static const char *const FieldNames[] = {
6253 "reserved",
6254 "Size"
6255 };
6256
6257 for (size_t i = 0; i < 2; ++i) {
6258 FieldDecl *Field = FieldDecl::Create(
6259 *this, RD, SourceLocation(), SourceLocation(),
6260 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6261 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6262 Field->setAccess(AS_public);
6263 RD->addDecl(Field);
6264 }
6265
6266 RD->completeDefinition();
6267
6268 BlockDescriptorType = RD;
6269
6270 return getTagDeclType(BlockDescriptorType);
6271 }
6272
getBlockDescriptorExtendedType() const6273 QualType ASTContext::getBlockDescriptorExtendedType() const {
6274 if (BlockDescriptorExtendedType)
6275 return getTagDeclType(BlockDescriptorExtendedType);
6276
6277 RecordDecl *RD;
6278 // FIXME: Needs the FlagAppleBlock bit.
6279 RD = buildImplicitRecord("__block_descriptor_withcopydispose");
6280 RD->startDefinition();
6281
6282 QualType FieldTypes[] = {
6283 UnsignedLongTy,
6284 UnsignedLongTy,
6285 getPointerType(VoidPtrTy),
6286 getPointerType(VoidPtrTy)
6287 };
6288
6289 static const char *const FieldNames[] = {
6290 "reserved",
6291 "Size",
6292 "CopyFuncPtr",
6293 "DestroyFuncPtr"
6294 };
6295
6296 for (size_t i = 0; i < 4; ++i) {
6297 FieldDecl *Field = FieldDecl::Create(
6298 *this, RD, SourceLocation(), SourceLocation(),
6299 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6300 /*BitWidth=*/nullptr,
6301 /*Mutable=*/false, ICIS_NoInit);
6302 Field->setAccess(AS_public);
6303 RD->addDecl(Field);
6304 }
6305
6306 RD->completeDefinition();
6307
6308 BlockDescriptorExtendedType = RD;
6309 return getTagDeclType(BlockDescriptorExtendedType);
6310 }
6311
getOpenCLTypeKind(const Type * T) const6312 TargetInfo::OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
6313 const auto *BT = dyn_cast<BuiltinType>(T);
6314
6315 if (!BT) {
6316 if (isa<PipeType>(T))
6317 return TargetInfo::OCLTK_Pipe;
6318
6319 return TargetInfo::OCLTK_Default;
6320 }
6321
6322 switch (BT->getKind()) {
6323 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6324 case BuiltinType::Id: \
6325 return TargetInfo::OCLTK_Image;
6326 #include "clang/Basic/OpenCLImageTypes.def"
6327
6328 case BuiltinType::OCLClkEvent:
6329 return TargetInfo::OCLTK_ClkEvent;
6330
6331 case BuiltinType::OCLEvent:
6332 return TargetInfo::OCLTK_Event;
6333
6334 case BuiltinType::OCLQueue:
6335 return TargetInfo::OCLTK_Queue;
6336
6337 case BuiltinType::OCLReserveID:
6338 return TargetInfo::OCLTK_ReserveID;
6339
6340 case BuiltinType::OCLSampler:
6341 return TargetInfo::OCLTK_Sampler;
6342
6343 default:
6344 return TargetInfo::OCLTK_Default;
6345 }
6346 }
6347
getOpenCLTypeAddrSpace(const Type * T) const6348 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
6349 return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
6350 }
6351
6352 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
6353 /// requires copy/dispose. Note that this must match the logic
6354 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)6355 bool ASTContext::BlockRequiresCopying(QualType Ty,
6356 const VarDecl *D) {
6357 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
6358 const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
6359 if (!copyExpr && record->hasTrivialDestructor()) return false;
6360
6361 return true;
6362 }
6363
6364 // The block needs copy/destroy helpers if Ty is non-trivial to destructively
6365 // move or destroy.
6366 if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
6367 return true;
6368
6369 if (!Ty->isObjCRetainableType()) return false;
6370
6371 Qualifiers qs = Ty.getQualifiers();
6372
6373 // If we have lifetime, that dominates.
6374 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
6375 switch (lifetime) {
6376 case Qualifiers::OCL_None: llvm_unreachable("impossible");
6377
6378 // These are just bits as far as the runtime is concerned.
6379 case Qualifiers::OCL_ExplicitNone:
6380 case Qualifiers::OCL_Autoreleasing:
6381 return false;
6382
6383 // These cases should have been taken care of when checking the type's
6384 // non-triviality.
6385 case Qualifiers::OCL_Weak:
6386 case Qualifiers::OCL_Strong:
6387 llvm_unreachable("impossible");
6388 }
6389 llvm_unreachable("fell out of lifetime switch!");
6390 }
6391 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
6392 Ty->isObjCObjectPointerType());
6393 }
6394
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const6395 bool ASTContext::getByrefLifetime(QualType Ty,
6396 Qualifiers::ObjCLifetime &LifeTime,
6397 bool &HasByrefExtendedLayout) const {
6398 if (!getLangOpts().ObjC ||
6399 getLangOpts().getGC() != LangOptions::NonGC)
6400 return false;
6401
6402 HasByrefExtendedLayout = false;
6403 if (Ty->isRecordType()) {
6404 HasByrefExtendedLayout = true;
6405 LifeTime = Qualifiers::OCL_None;
6406 } else if ((LifeTime = Ty.getObjCLifetime())) {
6407 // Honor the ARC qualifiers.
6408 } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
6409 // The MRR rule.
6410 LifeTime = Qualifiers::OCL_ExplicitNone;
6411 } else {
6412 LifeTime = Qualifiers::OCL_None;
6413 }
6414 return true;
6415 }
6416
getObjCInstanceTypeDecl()6417 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
6418 if (!ObjCInstanceTypeDecl)
6419 ObjCInstanceTypeDecl =
6420 buildImplicitTypedef(getObjCIdType(), "instancetype");
6421 return ObjCInstanceTypeDecl;
6422 }
6423
6424 // This returns true if a type has been typedefed to BOOL:
6425 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)6426 static bool isTypeTypedefedAsBOOL(QualType T) {
6427 if (const auto *TT = dyn_cast<TypedefType>(T))
6428 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
6429 return II->isStr("BOOL");
6430
6431 return false;
6432 }
6433
6434 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
6435 /// purpose.
getObjCEncodingTypeSize(QualType type) const6436 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
6437 if (!type->isIncompleteArrayType() && type->isIncompleteType())
6438 return CharUnits::Zero();
6439
6440 CharUnits sz = getTypeSizeInChars(type);
6441
6442 // Make all integer and enum types at least as large as an int
6443 if (sz.isPositive() && type->isIntegralOrEnumerationType())
6444 sz = std::max(sz, getTypeSizeInChars(IntTy));
6445 // Treat arrays as pointers, since that's how they're passed in.
6446 else if (type->isArrayType())
6447 sz = getTypeSizeInChars(VoidPtrTy);
6448 return sz;
6449 }
6450
isMSStaticDataMemberInlineDefinition(const VarDecl * VD) const6451 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
6452 return getTargetInfo().getCXXABI().isMicrosoft() &&
6453 VD->isStaticDataMember() &&
6454 VD->getType()->isIntegralOrEnumerationType() &&
6455 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
6456 }
6457
6458 ASTContext::InlineVariableDefinitionKind
getInlineVariableDefinitionKind(const VarDecl * VD) const6459 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
6460 if (!VD->isInline())
6461 return InlineVariableDefinitionKind::None;
6462
6463 // In almost all cases, it's a weak definition.
6464 auto *First = VD->getFirstDecl();
6465 if (First->isInlineSpecified() || !First->isStaticDataMember())
6466 return InlineVariableDefinitionKind::Weak;
6467
6468 // If there's a file-context declaration in this translation unit, it's a
6469 // non-discardable definition.
6470 for (auto *D : VD->redecls())
6471 if (D->getLexicalDeclContext()->isFileContext() &&
6472 !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
6473 return InlineVariableDefinitionKind::Strong;
6474
6475 // If we've not seen one yet, we don't know.
6476 return InlineVariableDefinitionKind::WeakUnknown;
6477 }
6478
charUnitsToString(const CharUnits & CU)6479 static std::string charUnitsToString(const CharUnits &CU) {
6480 return llvm::itostr(CU.getQuantity());
6481 }
6482
6483 /// getObjCEncodingForBlock - Return the encoded type for this block
6484 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const6485 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
6486 std::string S;
6487
6488 const BlockDecl *Decl = Expr->getBlockDecl();
6489 QualType BlockTy =
6490 Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
6491 QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
6492 // Encode result type.
6493 if (getLangOpts().EncodeExtendedBlockSig)
6494 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
6495 true /*Extended*/);
6496 else
6497 getObjCEncodingForType(BlockReturnTy, S);
6498 // Compute size of all parameters.
6499 // Start with computing size of a pointer in number of bytes.
6500 // FIXME: There might(should) be a better way of doing this computation!
6501 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6502 CharUnits ParmOffset = PtrSize;
6503 for (auto PI : Decl->parameters()) {
6504 QualType PType = PI->getType();
6505 CharUnits sz = getObjCEncodingTypeSize(PType);
6506 if (sz.isZero())
6507 continue;
6508 assert(sz.isPositive() && "BlockExpr - Incomplete param type");
6509 ParmOffset += sz;
6510 }
6511 // Size of the argument frame
6512 S += charUnitsToString(ParmOffset);
6513 // Block pointer and offset.
6514 S += "@?0";
6515
6516 // Argument types.
6517 ParmOffset = PtrSize;
6518 for (auto PVDecl : Decl->parameters()) {
6519 QualType PType = PVDecl->getOriginalType();
6520 if (const auto *AT =
6521 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6522 // Use array's original type only if it has known number of
6523 // elements.
6524 if (!isa<ConstantArrayType>(AT))
6525 PType = PVDecl->getType();
6526 } else if (PType->isFunctionType())
6527 PType = PVDecl->getType();
6528 if (getLangOpts().EncodeExtendedBlockSig)
6529 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
6530 S, true /*Extended*/);
6531 else
6532 getObjCEncodingForType(PType, S);
6533 S += charUnitsToString(ParmOffset);
6534 ParmOffset += getObjCEncodingTypeSize(PType);
6535 }
6536
6537 return S;
6538 }
6539
6540 std::string
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl) const6541 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
6542 std::string S;
6543 // Encode result type.
6544 getObjCEncodingForType(Decl->getReturnType(), S);
6545 CharUnits ParmOffset;
6546 // Compute size of all parameters.
6547 for (auto PI : Decl->parameters()) {
6548 QualType PType = PI->getType();
6549 CharUnits sz = getObjCEncodingTypeSize(PType);
6550 if (sz.isZero())
6551 continue;
6552
6553 assert(sz.isPositive() &&
6554 "getObjCEncodingForFunctionDecl - Incomplete param type");
6555 ParmOffset += sz;
6556 }
6557 S += charUnitsToString(ParmOffset);
6558 ParmOffset = CharUnits::Zero();
6559
6560 // Argument types.
6561 for (auto PVDecl : Decl->parameters()) {
6562 QualType PType = PVDecl->getOriginalType();
6563 if (const auto *AT =
6564 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6565 // Use array's original type only if it has known number of
6566 // elements.
6567 if (!isa<ConstantArrayType>(AT))
6568 PType = PVDecl->getType();
6569 } else if (PType->isFunctionType())
6570 PType = PVDecl->getType();
6571 getObjCEncodingForType(PType, S);
6572 S += charUnitsToString(ParmOffset);
6573 ParmOffset += getObjCEncodingTypeSize(PType);
6574 }
6575
6576 return S;
6577 }
6578
6579 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
6580 /// method parameter or return type. If Extended, include class names and
6581 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const6582 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
6583 QualType T, std::string& S,
6584 bool Extended) const {
6585 // Encode type qualifer, 'in', 'inout', etc. for the parameter.
6586 getObjCEncodingForTypeQualifier(QT, S);
6587 // Encode parameter type.
6588 ObjCEncOptions Options = ObjCEncOptions()
6589 .setExpandPointedToStructures()
6590 .setExpandStructures()
6591 .setIsOutermostType();
6592 if (Extended)
6593 Options.setEncodeBlockParameters().setEncodeClassNames();
6594 getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
6595 }
6596
6597 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
6598 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,bool Extended) const6599 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
6600 bool Extended) const {
6601 // FIXME: This is not very efficient.
6602 // Encode return type.
6603 std::string S;
6604 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
6605 Decl->getReturnType(), S, Extended);
6606 // Compute size of all parameters.
6607 // Start with computing size of a pointer in number of bytes.
6608 // FIXME: There might(should) be a better way of doing this computation!
6609 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6610 // The first two arguments (self and _cmd) are pointers; account for
6611 // their size.
6612 CharUnits ParmOffset = 2 * PtrSize;
6613 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6614 E = Decl->sel_param_end(); PI != E; ++PI) {
6615 QualType PType = (*PI)->getType();
6616 CharUnits sz = getObjCEncodingTypeSize(PType);
6617 if (sz.isZero())
6618 continue;
6619
6620 assert(sz.isPositive() &&
6621 "getObjCEncodingForMethodDecl - Incomplete param type");
6622 ParmOffset += sz;
6623 }
6624 S += charUnitsToString(ParmOffset);
6625 S += "@0:";
6626 S += charUnitsToString(PtrSize);
6627
6628 // Argument types.
6629 ParmOffset = 2 * PtrSize;
6630 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6631 E = Decl->sel_param_end(); PI != E; ++PI) {
6632 const ParmVarDecl *PVDecl = *PI;
6633 QualType PType = PVDecl->getOriginalType();
6634 if (const auto *AT =
6635 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6636 // Use array's original type only if it has known number of
6637 // elements.
6638 if (!isa<ConstantArrayType>(AT))
6639 PType = PVDecl->getType();
6640 } else if (PType->isFunctionType())
6641 PType = PVDecl->getType();
6642 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
6643 PType, S, Extended);
6644 S += charUnitsToString(ParmOffset);
6645 ParmOffset += getObjCEncodingTypeSize(PType);
6646 }
6647
6648 return S;
6649 }
6650
6651 ObjCPropertyImplDecl *
getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const6652 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
6653 const ObjCPropertyDecl *PD,
6654 const Decl *Container) const {
6655 if (!Container)
6656 return nullptr;
6657 if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
6658 for (auto *PID : CID->property_impls())
6659 if (PID->getPropertyDecl() == PD)
6660 return PID;
6661 } else {
6662 const auto *OID = cast<ObjCImplementationDecl>(Container);
6663 for (auto *PID : OID->property_impls())
6664 if (PID->getPropertyDecl() == PD)
6665 return PID;
6666 }
6667 return nullptr;
6668 }
6669
6670 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
6671 /// property declaration. If non-NULL, Container must be either an
6672 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
6673 /// NULL when getting encodings for protocol properties.
6674 /// Property attributes are stored as a comma-delimited C string. The simple
6675 /// attributes readonly and bycopy are encoded as single characters. The
6676 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
6677 /// encoded as single characters, followed by an identifier. Property types
6678 /// are also encoded as a parametrized attribute. The characters used to encode
6679 /// these attributes are defined by the following enumeration:
6680 /// @code
6681 /// enum PropertyAttributes {
6682 /// kPropertyReadOnly = 'R', // property is read-only.
6683 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned
6684 /// kPropertyByref = '&', // property is a reference to the value last assigned
6685 /// kPropertyDynamic = 'D', // property is dynamic
6686 /// kPropertyGetter = 'G', // followed by getter selector name
6687 /// kPropertySetter = 'S', // followed by setter selector name
6688 /// kPropertyInstanceVariable = 'V' // followed by instance variable name
6689 /// kPropertyType = 'T' // followed by old-style type encoding.
6690 /// kPropertyWeak = 'W' // 'weak' property
6691 /// kPropertyStrong = 'P' // property GC'able
6692 /// kPropertyNonAtomic = 'N' // property non-atomic
6693 /// };
6694 /// @endcode
6695 std::string
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const6696 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
6697 const Decl *Container) const {
6698 // Collect information from the property implementation decl(s).
6699 bool Dynamic = false;
6700 ObjCPropertyImplDecl *SynthesizePID = nullptr;
6701
6702 if (ObjCPropertyImplDecl *PropertyImpDecl =
6703 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
6704 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
6705 Dynamic = true;
6706 else
6707 SynthesizePID = PropertyImpDecl;
6708 }
6709
6710 // FIXME: This is not very efficient.
6711 std::string S = "T";
6712
6713 // Encode result type.
6714 // GCC has some special rules regarding encoding of properties which
6715 // closely resembles encoding of ivars.
6716 getObjCEncodingForPropertyType(PD->getType(), S);
6717
6718 if (PD->isReadOnly()) {
6719 S += ",R";
6720 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
6721 S += ",C";
6722 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
6723 S += ",&";
6724 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
6725 S += ",W";
6726 } else {
6727 switch (PD->getSetterKind()) {
6728 case ObjCPropertyDecl::Assign: break;
6729 case ObjCPropertyDecl::Copy: S += ",C"; break;
6730 case ObjCPropertyDecl::Retain: S += ",&"; break;
6731 case ObjCPropertyDecl::Weak: S += ",W"; break;
6732 }
6733 }
6734
6735 // It really isn't clear at all what this means, since properties
6736 // are "dynamic by default".
6737 if (Dynamic)
6738 S += ",D";
6739
6740 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
6741 S += ",N";
6742
6743 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
6744 S += ",G";
6745 S += PD->getGetterName().getAsString();
6746 }
6747
6748 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
6749 S += ",S";
6750 S += PD->getSetterName().getAsString();
6751 }
6752
6753 if (SynthesizePID) {
6754 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
6755 S += ",V";
6756 S += OID->getNameAsString();
6757 }
6758
6759 // FIXME: OBJCGC: weak & strong
6760 return S;
6761 }
6762
6763 /// getLegacyIntegralTypeEncoding -
6764 /// Another legacy compatibility encoding: 32-bit longs are encoded as
6765 /// 'l' or 'L' , but not always. For typedefs, we need to use
6766 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const6767 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
6768 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
6769 if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
6770 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
6771 PointeeTy = UnsignedIntTy;
6772 else
6773 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
6774 PointeeTy = IntTy;
6775 }
6776 }
6777 }
6778
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field,QualType * NotEncodedT) const6779 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
6780 const FieldDecl *Field,
6781 QualType *NotEncodedT) const {
6782 // We follow the behavior of gcc, expanding structures which are
6783 // directly pointed to, and expanding embedded structures. Note that
6784 // these rules are sufficient to prevent recursive encoding of the
6785 // same type.
6786 getObjCEncodingForTypeImpl(T, S,
6787 ObjCEncOptions()
6788 .setExpandPointedToStructures()
6789 .setExpandStructures()
6790 .setIsOutermostType(),
6791 Field, NotEncodedT);
6792 }
6793
getObjCEncodingForPropertyType(QualType T,std::string & S) const6794 void ASTContext::getObjCEncodingForPropertyType(QualType T,
6795 std::string& S) const {
6796 // Encode result type.
6797 // GCC has some special rules regarding encoding of properties which
6798 // closely resembles encoding of ivars.
6799 getObjCEncodingForTypeImpl(T, S,
6800 ObjCEncOptions()
6801 .setExpandPointedToStructures()
6802 .setExpandStructures()
6803 .setIsOutermostType()
6804 .setEncodingProperty(),
6805 /*Field=*/nullptr);
6806 }
6807
getObjCEncodingForPrimitiveType(const ASTContext * C,const BuiltinType * BT)6808 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
6809 const BuiltinType *BT) {
6810 BuiltinType::Kind kind = BT->getKind();
6811 switch (kind) {
6812 case BuiltinType::Void: return 'v';
6813 case BuiltinType::Bool: return 'B';
6814 case BuiltinType::Char8:
6815 case BuiltinType::Char_U:
6816 case BuiltinType::UChar: return 'C';
6817 case BuiltinType::Char16:
6818 case BuiltinType::UShort: return 'S';
6819 case BuiltinType::Char32:
6820 case BuiltinType::UInt: return 'I';
6821 case BuiltinType::ULong:
6822 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
6823 case BuiltinType::UInt128: return 'T';
6824 case BuiltinType::ULongLong: return 'Q';
6825 case BuiltinType::Char_S:
6826 case BuiltinType::SChar: return 'c';
6827 case BuiltinType::Short: return 's';
6828 case BuiltinType::WChar_S:
6829 case BuiltinType::WChar_U:
6830 case BuiltinType::Int: return 'i';
6831 case BuiltinType::Long:
6832 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
6833 case BuiltinType::LongLong: return 'q';
6834 case BuiltinType::Int128: return 't';
6835 case BuiltinType::Float: return 'f';
6836 case BuiltinType::Double: return 'd';
6837 case BuiltinType::LongDouble: return 'D';
6838 case BuiltinType::NullPtr: return '*'; // like char*
6839
6840 case BuiltinType::Float16:
6841 case BuiltinType::Float128:
6842 case BuiltinType::Half:
6843 case BuiltinType::ShortAccum:
6844 case BuiltinType::Accum:
6845 case BuiltinType::LongAccum:
6846 case BuiltinType::UShortAccum:
6847 case BuiltinType::UAccum:
6848 case BuiltinType::ULongAccum:
6849 case BuiltinType::ShortFract:
6850 case BuiltinType::Fract:
6851 case BuiltinType::LongFract:
6852 case BuiltinType::UShortFract:
6853 case BuiltinType::UFract:
6854 case BuiltinType::ULongFract:
6855 case BuiltinType::SatShortAccum:
6856 case BuiltinType::SatAccum:
6857 case BuiltinType::SatLongAccum:
6858 case BuiltinType::SatUShortAccum:
6859 case BuiltinType::SatUAccum:
6860 case BuiltinType::SatULongAccum:
6861 case BuiltinType::SatShortFract:
6862 case BuiltinType::SatFract:
6863 case BuiltinType::SatLongFract:
6864 case BuiltinType::SatUShortFract:
6865 case BuiltinType::SatUFract:
6866 case BuiltinType::SatULongFract:
6867 // FIXME: potentially need @encodes for these!
6868 return ' ';
6869
6870 #define SVE_TYPE(Name, Id, SingletonId) \
6871 case BuiltinType::Id:
6872 #include "clang/Basic/AArch64SVEACLETypes.def"
6873 {
6874 DiagnosticsEngine &Diags = C->getDiagnostics();
6875 unsigned DiagID = Diags.getCustomDiagID(
6876 DiagnosticsEngine::Error, "cannot yet @encode type %0");
6877 Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
6878 return ' ';
6879 }
6880
6881 case BuiltinType::ObjCId:
6882 case BuiltinType::ObjCClass:
6883 case BuiltinType::ObjCSel:
6884 llvm_unreachable("@encoding ObjC primitive type");
6885
6886 // OpenCL and placeholder types don't need @encodings.
6887 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6888 case BuiltinType::Id:
6889 #include "clang/Basic/OpenCLImageTypes.def"
6890 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6891 case BuiltinType::Id:
6892 #include "clang/Basic/OpenCLExtensionTypes.def"
6893 case BuiltinType::OCLEvent:
6894 case BuiltinType::OCLClkEvent:
6895 case BuiltinType::OCLQueue:
6896 case BuiltinType::OCLReserveID:
6897 case BuiltinType::OCLSampler:
6898 case BuiltinType::Dependent:
6899 #define BUILTIN_TYPE(KIND, ID)
6900 #define PLACEHOLDER_TYPE(KIND, ID) \
6901 case BuiltinType::KIND:
6902 #include "clang/AST/BuiltinTypes.def"
6903 llvm_unreachable("invalid builtin type for @encode");
6904 }
6905 llvm_unreachable("invalid BuiltinType::Kind value");
6906 }
6907
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)6908 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
6909 EnumDecl *Enum = ET->getDecl();
6910
6911 // The encoding of an non-fixed enum type is always 'i', regardless of size.
6912 if (!Enum->isFixed())
6913 return 'i';
6914
6915 // The encoding of a fixed enum type matches its fixed underlying type.
6916 const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
6917 return getObjCEncodingForPrimitiveType(C, BT);
6918 }
6919
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)6920 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
6921 QualType T, const FieldDecl *FD) {
6922 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
6923 S += 'b';
6924 // The NeXT runtime encodes bit fields as b followed by the number of bits.
6925 // The GNU runtime requires more information; bitfields are encoded as b,
6926 // then the offset (in bits) of the first element, then the type of the
6927 // bitfield, then the size in bits. For example, in this structure:
6928 //
6929 // struct
6930 // {
6931 // int integer;
6932 // int flags:2;
6933 // };
6934 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
6935 // runtime, but b32i2 for the GNU runtime. The reason for this extra
6936 // information is not especially sensible, but we're stuck with it for
6937 // compatibility with GCC, although providing it breaks anything that
6938 // actually uses runtime introspection and wants to work on both runtimes...
6939 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
6940 uint64_t Offset;
6941
6942 if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
6943 Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
6944 IVD);
6945 } else {
6946 const RecordDecl *RD = FD->getParent();
6947 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
6948 Offset = RL.getFieldOffset(FD->getFieldIndex());
6949 }
6950
6951 S += llvm::utostr(Offset);
6952
6953 if (const auto *ET = T->getAs<EnumType>())
6954 S += ObjCEncodingForEnumType(Ctx, ET);
6955 else {
6956 const auto *BT = T->castAs<BuiltinType>();
6957 S += getObjCEncodingForPrimitiveType(Ctx, BT);
6958 }
6959 }
6960 S += llvm::utostr(FD->getBitWidthValue(*Ctx));
6961 }
6962
6963 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,const ObjCEncOptions Options,const FieldDecl * FD,QualType * NotEncodedT) const6964 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
6965 const ObjCEncOptions Options,
6966 const FieldDecl *FD,
6967 QualType *NotEncodedT) const {
6968 CanQualType CT = getCanonicalType(T);
6969 switch (CT->getTypeClass()) {
6970 case Type::Builtin:
6971 case Type::Enum:
6972 if (FD && FD->isBitField())
6973 return EncodeBitField(this, S, T, FD);
6974 if (const auto *BT = dyn_cast<BuiltinType>(CT))
6975 S += getObjCEncodingForPrimitiveType(this, BT);
6976 else
6977 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
6978 return;
6979
6980 case Type::Complex:
6981 S += 'j';
6982 getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
6983 ObjCEncOptions(),
6984 /*Field=*/nullptr);
6985 return;
6986
6987 case Type::Atomic:
6988 S += 'A';
6989 getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
6990 ObjCEncOptions(),
6991 /*Field=*/nullptr);
6992 return;
6993
6994 // encoding for pointer or reference types.
6995 case Type::Pointer:
6996 case Type::LValueReference:
6997 case Type::RValueReference: {
6998 QualType PointeeTy;
6999 if (isa<PointerType>(CT)) {
7000 const auto *PT = T->castAs<PointerType>();
7001 if (PT->isObjCSelType()) {
7002 S += ':';
7003 return;
7004 }
7005 PointeeTy = PT->getPointeeType();
7006 } else {
7007 PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
7008 }
7009
7010 bool isReadOnly = false;
7011 // For historical/compatibility reasons, the read-only qualifier of the
7012 // pointee gets emitted _before_ the '^'. The read-only qualifier of
7013 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
7014 // Also, do not emit the 'r' for anything but the outermost type!
7015 if (isa<TypedefType>(T.getTypePtr())) {
7016 if (Options.IsOutermostType() && T.isConstQualified()) {
7017 isReadOnly = true;
7018 S += 'r';
7019 }
7020 } else if (Options.IsOutermostType()) {
7021 QualType P = PointeeTy;
7022 while (auto PT = P->getAs<PointerType>())
7023 P = PT->getPointeeType();
7024 if (P.isConstQualified()) {
7025 isReadOnly = true;
7026 S += 'r';
7027 }
7028 }
7029 if (isReadOnly) {
7030 // Another legacy compatibility encoding. Some ObjC qualifier and type
7031 // combinations need to be rearranged.
7032 // Rewrite "in const" from "nr" to "rn"
7033 if (StringRef(S).endswith("nr"))
7034 S.replace(S.end()-2, S.end(), "rn");
7035 }
7036
7037 if (PointeeTy->isCharType()) {
7038 // char pointer types should be encoded as '*' unless it is a
7039 // type that has been typedef'd to 'BOOL'.
7040 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
7041 S += '*';
7042 return;
7043 }
7044 } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
7045 // GCC binary compat: Need to convert "struct objc_class *" to "#".
7046 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
7047 S += '#';
7048 return;
7049 }
7050 // GCC binary compat: Need to convert "struct objc_object *" to "@".
7051 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
7052 S += '@';
7053 return;
7054 }
7055 // fall through...
7056 }
7057 S += '^';
7058 getLegacyIntegralTypeEncoding(PointeeTy);
7059
7060 ObjCEncOptions NewOptions;
7061 if (Options.ExpandPointedToStructures())
7062 NewOptions.setExpandStructures();
7063 getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
7064 /*Field=*/nullptr, NotEncodedT);
7065 return;
7066 }
7067
7068 case Type::ConstantArray:
7069 case Type::IncompleteArray:
7070 case Type::VariableArray: {
7071 const auto *AT = cast<ArrayType>(CT);
7072
7073 if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
7074 // Incomplete arrays are encoded as a pointer to the array element.
7075 S += '^';
7076
7077 getObjCEncodingForTypeImpl(
7078 AT->getElementType(), S,
7079 Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
7080 } else {
7081 S += '[';
7082
7083 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
7084 S += llvm::utostr(CAT->getSize().getZExtValue());
7085 else {
7086 //Variable length arrays are encoded as a regular array with 0 elements.
7087 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
7088 "Unknown array type!");
7089 S += '0';
7090 }
7091
7092 getObjCEncodingForTypeImpl(
7093 AT->getElementType(), S,
7094 Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
7095 NotEncodedT);
7096 S += ']';
7097 }
7098 return;
7099 }
7100
7101 case Type::FunctionNoProto:
7102 case Type::FunctionProto:
7103 S += '?';
7104 return;
7105
7106 case Type::Record: {
7107 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
7108 S += RDecl->isUnion() ? '(' : '{';
7109 // Anonymous structures print as '?'
7110 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
7111 S += II->getName();
7112 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
7113 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
7114 llvm::raw_string_ostream OS(S);
7115 printTemplateArgumentList(OS, TemplateArgs.asArray(),
7116 getPrintingPolicy());
7117 }
7118 } else {
7119 S += '?';
7120 }
7121 if (Options.ExpandStructures()) {
7122 S += '=';
7123 if (!RDecl->isUnion()) {
7124 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
7125 } else {
7126 for (const auto *Field : RDecl->fields()) {
7127 if (FD) {
7128 S += '"';
7129 S += Field->getNameAsString();
7130 S += '"';
7131 }
7132
7133 // Special case bit-fields.
7134 if (Field->isBitField()) {
7135 getObjCEncodingForTypeImpl(Field->getType(), S,
7136 ObjCEncOptions().setExpandStructures(),
7137 Field);
7138 } else {
7139 QualType qt = Field->getType();
7140 getLegacyIntegralTypeEncoding(qt);
7141 getObjCEncodingForTypeImpl(
7142 qt, S,
7143 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
7144 NotEncodedT);
7145 }
7146 }
7147 }
7148 }
7149 S += RDecl->isUnion() ? ')' : '}';
7150 return;
7151 }
7152
7153 case Type::BlockPointer: {
7154 const auto *BT = T->castAs<BlockPointerType>();
7155 S += "@?"; // Unlike a pointer-to-function, which is "^?".
7156 if (Options.EncodeBlockParameters()) {
7157 const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
7158
7159 S += '<';
7160 // Block return type
7161 getObjCEncodingForTypeImpl(FT->getReturnType(), S,
7162 Options.forComponentType(), FD, NotEncodedT);
7163 // Block self
7164 S += "@?";
7165 // Block parameters
7166 if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
7167 for (const auto &I : FPT->param_types())
7168 getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
7169 NotEncodedT);
7170 }
7171 S += '>';
7172 }
7173 return;
7174 }
7175
7176 case Type::ObjCObject: {
7177 // hack to match legacy encoding of *id and *Class
7178 QualType Ty = getObjCObjectPointerType(CT);
7179 if (Ty->isObjCIdType()) {
7180 S += "{objc_object=}";
7181 return;
7182 }
7183 else if (Ty->isObjCClassType()) {
7184 S += "{objc_class=}";
7185 return;
7186 }
7187 // TODO: Double check to make sure this intentionally falls through.
7188 LLVM_FALLTHROUGH;
7189 }
7190
7191 case Type::ObjCInterface: {
7192 // Ignore protocol qualifiers when mangling at this level.
7193 // @encode(class_name)
7194 ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
7195 S += '{';
7196 S += OI->getObjCRuntimeNameAsString();
7197 if (Options.ExpandStructures()) {
7198 S += '=';
7199 SmallVector<const ObjCIvarDecl*, 32> Ivars;
7200 DeepCollectObjCIvars(OI, true, Ivars);
7201 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
7202 const FieldDecl *Field = Ivars[i];
7203 if (Field->isBitField())
7204 getObjCEncodingForTypeImpl(Field->getType(), S,
7205 ObjCEncOptions().setExpandStructures(),
7206 Field);
7207 else
7208 getObjCEncodingForTypeImpl(Field->getType(), S,
7209 ObjCEncOptions().setExpandStructures(), FD,
7210 NotEncodedT);
7211 }
7212 }
7213 S += '}';
7214 return;
7215 }
7216
7217 case Type::ObjCObjectPointer: {
7218 const auto *OPT = T->castAs<ObjCObjectPointerType>();
7219 if (OPT->isObjCIdType()) {
7220 S += '@';
7221 return;
7222 }
7223
7224 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
7225 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
7226 // Since this is a binary compatibility issue, need to consult with
7227 // runtime folks. Fortunately, this is a *very* obscure construct.
7228 S += '#';
7229 return;
7230 }
7231
7232 if (OPT->isObjCQualifiedIdType()) {
7233 getObjCEncodingForTypeImpl(
7234 getObjCIdType(), S,
7235 Options.keepingOnly(ObjCEncOptions()
7236 .setExpandPointedToStructures()
7237 .setExpandStructures()),
7238 FD);
7239 if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
7240 // Note that we do extended encoding of protocol qualifer list
7241 // Only when doing ivar or property encoding.
7242 S += '"';
7243 for (const auto *I : OPT->quals()) {
7244 S += '<';
7245 S += I->getObjCRuntimeNameAsString();
7246 S += '>';
7247 }
7248 S += '"';
7249 }
7250 return;
7251 }
7252
7253 S += '@';
7254 if (OPT->getInterfaceDecl() &&
7255 (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
7256 S += '"';
7257 S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
7258 for (const auto *I : OPT->quals()) {
7259 S += '<';
7260 S += I->getObjCRuntimeNameAsString();
7261 S += '>';
7262 }
7263 S += '"';
7264 }
7265 return;
7266 }
7267
7268 // gcc just blithely ignores member pointers.
7269 // FIXME: we should do better than that. 'M' is available.
7270 case Type::MemberPointer:
7271 // This matches gcc's encoding, even though technically it is insufficient.
7272 //FIXME. We should do a better job than gcc.
7273 case Type::Vector:
7274 case Type::ExtVector:
7275 // Until we have a coherent encoding of these three types, issue warning.
7276 if (NotEncodedT)
7277 *NotEncodedT = T;
7278 return;
7279
7280 // We could see an undeduced auto type here during error recovery.
7281 // Just ignore it.
7282 case Type::Auto:
7283 case Type::DeducedTemplateSpecialization:
7284 return;
7285
7286 case Type::Pipe:
7287 #define ABSTRACT_TYPE(KIND, BASE)
7288 #define TYPE(KIND, BASE)
7289 #define DEPENDENT_TYPE(KIND, BASE) \
7290 case Type::KIND:
7291 #define NON_CANONICAL_TYPE(KIND, BASE) \
7292 case Type::KIND:
7293 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
7294 case Type::KIND:
7295 #include "clang/AST/TypeNodes.inc"
7296 llvm_unreachable("@encode for dependent type!");
7297 }
7298 llvm_unreachable("bad type kind!");
7299 }
7300
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases,QualType * NotEncodedT) const7301 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
7302 std::string &S,
7303 const FieldDecl *FD,
7304 bool includeVBases,
7305 QualType *NotEncodedT) const {
7306 assert(RDecl && "Expected non-null RecordDecl");
7307 assert(!RDecl->isUnion() && "Should not be called for unions");
7308 if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
7309 return;
7310
7311 const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
7312 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
7313 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
7314
7315 if (CXXRec) {
7316 for (const auto &BI : CXXRec->bases()) {
7317 if (!BI.isVirtual()) {
7318 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7319 if (base->isEmpty())
7320 continue;
7321 uint64_t offs = toBits(layout.getBaseClassOffset(base));
7322 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7323 std::make_pair(offs, base));
7324 }
7325 }
7326 }
7327
7328 unsigned i = 0;
7329 for (auto *Field : RDecl->fields()) {
7330 uint64_t offs = layout.getFieldOffset(i);
7331 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7332 std::make_pair(offs, Field));
7333 ++i;
7334 }
7335
7336 if (CXXRec && includeVBases) {
7337 for (const auto &BI : CXXRec->vbases()) {
7338 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7339 if (base->isEmpty())
7340 continue;
7341 uint64_t offs = toBits(layout.getVBaseClassOffset(base));
7342 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
7343 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
7344 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
7345 std::make_pair(offs, base));
7346 }
7347 }
7348
7349 CharUnits size;
7350 if (CXXRec) {
7351 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
7352 } else {
7353 size = layout.getSize();
7354 }
7355
7356 #ifndef NDEBUG
7357 uint64_t CurOffs = 0;
7358 #endif
7359 std::multimap<uint64_t, NamedDecl *>::iterator
7360 CurLayObj = FieldOrBaseOffsets.begin();
7361
7362 if (CXXRec && CXXRec->isDynamicClass() &&
7363 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
7364 if (FD) {
7365 S += "\"_vptr$";
7366 std::string recname = CXXRec->getNameAsString();
7367 if (recname.empty()) recname = "?";
7368 S += recname;
7369 S += '"';
7370 }
7371 S += "^^?";
7372 #ifndef NDEBUG
7373 CurOffs += getTypeSize(VoidPtrTy);
7374 #endif
7375 }
7376
7377 if (!RDecl->hasFlexibleArrayMember()) {
7378 // Mark the end of the structure.
7379 uint64_t offs = toBits(size);
7380 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7381 std::make_pair(offs, nullptr));
7382 }
7383
7384 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
7385 #ifndef NDEBUG
7386 assert(CurOffs <= CurLayObj->first);
7387 if (CurOffs < CurLayObj->first) {
7388 uint64_t padding = CurLayObj->first - CurOffs;
7389 // FIXME: There doesn't seem to be a way to indicate in the encoding that
7390 // packing/alignment of members is different that normal, in which case
7391 // the encoding will be out-of-sync with the real layout.
7392 // If the runtime switches to just consider the size of types without
7393 // taking into account alignment, we could make padding explicit in the
7394 // encoding (e.g. using arrays of chars). The encoding strings would be
7395 // longer then though.
7396 CurOffs += padding;
7397 }
7398 #endif
7399
7400 NamedDecl *dcl = CurLayObj->second;
7401 if (!dcl)
7402 break; // reached end of structure.
7403
7404 if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
7405 // We expand the bases without their virtual bases since those are going
7406 // in the initial structure. Note that this differs from gcc which
7407 // expands virtual bases each time one is encountered in the hierarchy,
7408 // making the encoding type bigger than it really is.
7409 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
7410 NotEncodedT);
7411 assert(!base->isEmpty());
7412 #ifndef NDEBUG
7413 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
7414 #endif
7415 } else {
7416 const auto *field = cast<FieldDecl>(dcl);
7417 if (FD) {
7418 S += '"';
7419 S += field->getNameAsString();
7420 S += '"';
7421 }
7422
7423 if (field->isBitField()) {
7424 EncodeBitField(this, S, field->getType(), field);
7425 #ifndef NDEBUG
7426 CurOffs += field->getBitWidthValue(*this);
7427 #endif
7428 } else {
7429 QualType qt = field->getType();
7430 getLegacyIntegralTypeEncoding(qt);
7431 getObjCEncodingForTypeImpl(
7432 qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
7433 FD, NotEncodedT);
7434 #ifndef NDEBUG
7435 CurOffs += getTypeSize(field->getType());
7436 #endif
7437 }
7438 }
7439 }
7440 }
7441
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const7442 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
7443 std::string& S) const {
7444 if (QT & Decl::OBJC_TQ_In)
7445 S += 'n';
7446 if (QT & Decl::OBJC_TQ_Inout)
7447 S += 'N';
7448 if (QT & Decl::OBJC_TQ_Out)
7449 S += 'o';
7450 if (QT & Decl::OBJC_TQ_Bycopy)
7451 S += 'O';
7452 if (QT & Decl::OBJC_TQ_Byref)
7453 S += 'R';
7454 if (QT & Decl::OBJC_TQ_Oneway)
7455 S += 'V';
7456 }
7457
getObjCIdDecl() const7458 TypedefDecl *ASTContext::getObjCIdDecl() const {
7459 if (!ObjCIdDecl) {
7460 QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
7461 T = getObjCObjectPointerType(T);
7462 ObjCIdDecl = buildImplicitTypedef(T, "id");
7463 }
7464 return ObjCIdDecl;
7465 }
7466
getObjCSelDecl() const7467 TypedefDecl *ASTContext::getObjCSelDecl() const {
7468 if (!ObjCSelDecl) {
7469 QualType T = getPointerType(ObjCBuiltinSelTy);
7470 ObjCSelDecl = buildImplicitTypedef(T, "SEL");
7471 }
7472 return ObjCSelDecl;
7473 }
7474
getObjCClassDecl() const7475 TypedefDecl *ASTContext::getObjCClassDecl() const {
7476 if (!ObjCClassDecl) {
7477 QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
7478 T = getObjCObjectPointerType(T);
7479 ObjCClassDecl = buildImplicitTypedef(T, "Class");
7480 }
7481 return ObjCClassDecl;
7482 }
7483
getObjCProtocolDecl() const7484 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
7485 if (!ObjCProtocolClassDecl) {
7486 ObjCProtocolClassDecl
7487 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
7488 SourceLocation(),
7489 &Idents.get("Protocol"),
7490 /*typeParamList=*/nullptr,
7491 /*PrevDecl=*/nullptr,
7492 SourceLocation(), true);
7493 }
7494
7495 return ObjCProtocolClassDecl;
7496 }
7497
7498 //===----------------------------------------------------------------------===//
7499 // __builtin_va_list Construction Functions
7500 //===----------------------------------------------------------------------===//
7501
CreateCharPtrNamedVaListDecl(const ASTContext * Context,StringRef Name)7502 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
7503 StringRef Name) {
7504 // typedef char* __builtin[_ms]_va_list;
7505 QualType T = Context->getPointerType(Context->CharTy);
7506 return Context->buildImplicitTypedef(T, Name);
7507 }
7508
CreateMSVaListDecl(const ASTContext * Context)7509 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
7510 return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
7511 }
7512
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)7513 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
7514 return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
7515 }
7516
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)7517 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
7518 // typedef void* __builtin_va_list;
7519 QualType T = Context->getPointerType(Context->VoidTy);
7520 return Context->buildImplicitTypedef(T, "__builtin_va_list");
7521 }
7522
7523 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)7524 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
7525 // struct __va_list
7526 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
7527 if (Context->getLangOpts().CPlusPlus) {
7528 // namespace std { struct __va_list {
7529 NamespaceDecl *NS;
7530 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7531 Context->getTranslationUnitDecl(),
7532 /*Inline*/ false, SourceLocation(),
7533 SourceLocation(), &Context->Idents.get("std"),
7534 /*PrevDecl*/ nullptr);
7535 NS->setImplicit();
7536 VaListTagDecl->setDeclContext(NS);
7537 }
7538
7539 VaListTagDecl->startDefinition();
7540
7541 const size_t NumFields = 5;
7542 QualType FieldTypes[NumFields];
7543 const char *FieldNames[NumFields];
7544
7545 // void *__stack;
7546 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
7547 FieldNames[0] = "__stack";
7548
7549 // void *__gr_top;
7550 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
7551 FieldNames[1] = "__gr_top";
7552
7553 // void *__vr_top;
7554 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7555 FieldNames[2] = "__vr_top";
7556
7557 // int __gr_offs;
7558 FieldTypes[3] = Context->IntTy;
7559 FieldNames[3] = "__gr_offs";
7560
7561 // int __vr_offs;
7562 FieldTypes[4] = Context->IntTy;
7563 FieldNames[4] = "__vr_offs";
7564
7565 // Create fields
7566 for (unsigned i = 0; i < NumFields; ++i) {
7567 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7568 VaListTagDecl,
7569 SourceLocation(),
7570 SourceLocation(),
7571 &Context->Idents.get(FieldNames[i]),
7572 FieldTypes[i], /*TInfo=*/nullptr,
7573 /*BitWidth=*/nullptr,
7574 /*Mutable=*/false,
7575 ICIS_NoInit);
7576 Field->setAccess(AS_public);
7577 VaListTagDecl->addDecl(Field);
7578 }
7579 VaListTagDecl->completeDefinition();
7580 Context->VaListTagDecl = VaListTagDecl;
7581 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7582
7583 // } __builtin_va_list;
7584 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
7585 }
7586
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)7587 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
7588 // typedef struct __va_list_tag {
7589 RecordDecl *VaListTagDecl;
7590
7591 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7592 VaListTagDecl->startDefinition();
7593
7594 const size_t NumFields = 5;
7595 QualType FieldTypes[NumFields];
7596 const char *FieldNames[NumFields];
7597
7598 // unsigned char gpr;
7599 FieldTypes[0] = Context->UnsignedCharTy;
7600 FieldNames[0] = "gpr";
7601
7602 // unsigned char fpr;
7603 FieldTypes[1] = Context->UnsignedCharTy;
7604 FieldNames[1] = "fpr";
7605
7606 // unsigned short reserved;
7607 FieldTypes[2] = Context->UnsignedShortTy;
7608 FieldNames[2] = "reserved";
7609
7610 // void* overflow_arg_area;
7611 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7612 FieldNames[3] = "overflow_arg_area";
7613
7614 // void* reg_save_area;
7615 FieldTypes[4] = Context->getPointerType(Context->VoidTy);
7616 FieldNames[4] = "reg_save_area";
7617
7618 // Create fields
7619 for (unsigned i = 0; i < NumFields; ++i) {
7620 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
7621 SourceLocation(),
7622 SourceLocation(),
7623 &Context->Idents.get(FieldNames[i]),
7624 FieldTypes[i], /*TInfo=*/nullptr,
7625 /*BitWidth=*/nullptr,
7626 /*Mutable=*/false,
7627 ICIS_NoInit);
7628 Field->setAccess(AS_public);
7629 VaListTagDecl->addDecl(Field);
7630 }
7631 VaListTagDecl->completeDefinition();
7632 Context->VaListTagDecl = VaListTagDecl;
7633 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7634
7635 // } __va_list_tag;
7636 TypedefDecl *VaListTagTypedefDecl =
7637 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
7638
7639 QualType VaListTagTypedefType =
7640 Context->getTypedefType(VaListTagTypedefDecl);
7641
7642 // typedef __va_list_tag __builtin_va_list[1];
7643 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7644 QualType VaListTagArrayType
7645 = Context->getConstantArrayType(VaListTagTypedefType,
7646 Size, nullptr, ArrayType::Normal, 0);
7647 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7648 }
7649
7650 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)7651 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
7652 // struct __va_list_tag {
7653 RecordDecl *VaListTagDecl;
7654 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7655 VaListTagDecl->startDefinition();
7656
7657 const size_t NumFields = 4;
7658 QualType FieldTypes[NumFields];
7659 const char *FieldNames[NumFields];
7660
7661 // unsigned gp_offset;
7662 FieldTypes[0] = Context->UnsignedIntTy;
7663 FieldNames[0] = "gp_offset";
7664
7665 // unsigned fp_offset;
7666 FieldTypes[1] = Context->UnsignedIntTy;
7667 FieldNames[1] = "fp_offset";
7668
7669 // void* overflow_arg_area;
7670 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7671 FieldNames[2] = "overflow_arg_area";
7672
7673 // void* reg_save_area;
7674 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7675 FieldNames[3] = "reg_save_area";
7676
7677 // Create fields
7678 for (unsigned i = 0; i < NumFields; ++i) {
7679 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7680 VaListTagDecl,
7681 SourceLocation(),
7682 SourceLocation(),
7683 &Context->Idents.get(FieldNames[i]),
7684 FieldTypes[i], /*TInfo=*/nullptr,
7685 /*BitWidth=*/nullptr,
7686 /*Mutable=*/false,
7687 ICIS_NoInit);
7688 Field->setAccess(AS_public);
7689 VaListTagDecl->addDecl(Field);
7690 }
7691 VaListTagDecl->completeDefinition();
7692 Context->VaListTagDecl = VaListTagDecl;
7693 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7694
7695 // };
7696
7697 // typedef struct __va_list_tag __builtin_va_list[1];
7698 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7699 QualType VaListTagArrayType = Context->getConstantArrayType(
7700 VaListTagType, Size, nullptr, ArrayType::Normal, 0);
7701 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7702 }
7703
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)7704 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
7705 // typedef int __builtin_va_list[4];
7706 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
7707 QualType IntArrayType = Context->getConstantArrayType(
7708 Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
7709 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
7710 }
7711
7712 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)7713 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
7714 // struct __va_list
7715 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
7716 if (Context->getLangOpts().CPlusPlus) {
7717 // namespace std { struct __va_list {
7718 NamespaceDecl *NS;
7719 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7720 Context->getTranslationUnitDecl(),
7721 /*Inline*/false, SourceLocation(),
7722 SourceLocation(), &Context->Idents.get("std"),
7723 /*PrevDecl*/ nullptr);
7724 NS->setImplicit();
7725 VaListDecl->setDeclContext(NS);
7726 }
7727
7728 VaListDecl->startDefinition();
7729
7730 // void * __ap;
7731 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7732 VaListDecl,
7733 SourceLocation(),
7734 SourceLocation(),
7735 &Context->Idents.get("__ap"),
7736 Context->getPointerType(Context->VoidTy),
7737 /*TInfo=*/nullptr,
7738 /*BitWidth=*/nullptr,
7739 /*Mutable=*/false,
7740 ICIS_NoInit);
7741 Field->setAccess(AS_public);
7742 VaListDecl->addDecl(Field);
7743
7744 // };
7745 VaListDecl->completeDefinition();
7746 Context->VaListTagDecl = VaListDecl;
7747
7748 // typedef struct __va_list __builtin_va_list;
7749 QualType T = Context->getRecordType(VaListDecl);
7750 return Context->buildImplicitTypedef(T, "__builtin_va_list");
7751 }
7752
7753 static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)7754 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
7755 // struct __va_list_tag {
7756 RecordDecl *VaListTagDecl;
7757 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7758 VaListTagDecl->startDefinition();
7759
7760 const size_t NumFields = 4;
7761 QualType FieldTypes[NumFields];
7762 const char *FieldNames[NumFields];
7763
7764 // long __gpr;
7765 FieldTypes[0] = Context->LongTy;
7766 FieldNames[0] = "__gpr";
7767
7768 // long __fpr;
7769 FieldTypes[1] = Context->LongTy;
7770 FieldNames[1] = "__fpr";
7771
7772 // void *__overflow_arg_area;
7773 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7774 FieldNames[2] = "__overflow_arg_area";
7775
7776 // void *__reg_save_area;
7777 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7778 FieldNames[3] = "__reg_save_area";
7779
7780 // Create fields
7781 for (unsigned i = 0; i < NumFields; ++i) {
7782 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7783 VaListTagDecl,
7784 SourceLocation(),
7785 SourceLocation(),
7786 &Context->Idents.get(FieldNames[i]),
7787 FieldTypes[i], /*TInfo=*/nullptr,
7788 /*BitWidth=*/nullptr,
7789 /*Mutable=*/false,
7790 ICIS_NoInit);
7791 Field->setAccess(AS_public);
7792 VaListTagDecl->addDecl(Field);
7793 }
7794 VaListTagDecl->completeDefinition();
7795 Context->VaListTagDecl = VaListTagDecl;
7796 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7797
7798 // };
7799
7800 // typedef __va_list_tag __builtin_va_list[1];
7801 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7802 QualType VaListTagArrayType = Context->getConstantArrayType(
7803 VaListTagType, Size, nullptr, ArrayType::Normal, 0);
7804
7805 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7806 }
7807
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)7808 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
7809 TargetInfo::BuiltinVaListKind Kind) {
7810 switch (Kind) {
7811 case TargetInfo::CharPtrBuiltinVaList:
7812 return CreateCharPtrBuiltinVaListDecl(Context);
7813 case TargetInfo::VoidPtrBuiltinVaList:
7814 return CreateVoidPtrBuiltinVaListDecl(Context);
7815 case TargetInfo::AArch64ABIBuiltinVaList:
7816 return CreateAArch64ABIBuiltinVaListDecl(Context);
7817 case TargetInfo::PowerABIBuiltinVaList:
7818 return CreatePowerABIBuiltinVaListDecl(Context);
7819 case TargetInfo::X86_64ABIBuiltinVaList:
7820 return CreateX86_64ABIBuiltinVaListDecl(Context);
7821 case TargetInfo::PNaClABIBuiltinVaList:
7822 return CreatePNaClABIBuiltinVaListDecl(Context);
7823 case TargetInfo::AAPCSABIBuiltinVaList:
7824 return CreateAAPCSABIBuiltinVaListDecl(Context);
7825 case TargetInfo::SystemZBuiltinVaList:
7826 return CreateSystemZBuiltinVaListDecl(Context);
7827 }
7828
7829 llvm_unreachable("Unhandled __builtin_va_list type kind");
7830 }
7831
getBuiltinVaListDecl() const7832 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
7833 if (!BuiltinVaListDecl) {
7834 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
7835 assert(BuiltinVaListDecl->isImplicit());
7836 }
7837
7838 return BuiltinVaListDecl;
7839 }
7840
getVaListTagDecl() const7841 Decl *ASTContext::getVaListTagDecl() const {
7842 // Force the creation of VaListTagDecl by building the __builtin_va_list
7843 // declaration.
7844 if (!VaListTagDecl)
7845 (void)getBuiltinVaListDecl();
7846
7847 return VaListTagDecl;
7848 }
7849
getBuiltinMSVaListDecl() const7850 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
7851 if (!BuiltinMSVaListDecl)
7852 BuiltinMSVaListDecl = CreateMSVaListDecl(this);
7853
7854 return BuiltinMSVaListDecl;
7855 }
7856
canBuiltinBeRedeclared(const FunctionDecl * FD) const7857 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
7858 return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
7859 }
7860
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)7861 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
7862 assert(ObjCConstantStringType.isNull() &&
7863 "'NSConstantString' type already set!");
7864
7865 ObjCConstantStringType = getObjCInterfaceType(Decl);
7866 }
7867
7868 /// Retrieve the template name that corresponds to a non-empty
7869 /// lookup.
7870 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const7871 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
7872 UnresolvedSetIterator End) const {
7873 unsigned size = End - Begin;
7874 assert(size > 1 && "set is not overloaded!");
7875
7876 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
7877 size * sizeof(FunctionTemplateDecl*));
7878 auto *OT = new (memory) OverloadedTemplateStorage(size);
7879
7880 NamedDecl **Storage = OT->getStorage();
7881 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
7882 NamedDecl *D = *I;
7883 assert(isa<FunctionTemplateDecl>(D) ||
7884 isa<UnresolvedUsingValueDecl>(D) ||
7885 (isa<UsingShadowDecl>(D) &&
7886 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
7887 *Storage++ = D;
7888 }
7889
7890 return TemplateName(OT);
7891 }
7892
7893 /// Retrieve a template name representing an unqualified-id that has been
7894 /// assumed to name a template for ADL purposes.
getAssumedTemplateName(DeclarationName Name) const7895 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
7896 auto *OT = new (*this) AssumedTemplateStorage(Name);
7897 return TemplateName(OT);
7898 }
7899
7900 /// Retrieve the template name that represents a qualified
7901 /// template name such as \c std::vector.
7902 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const7903 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
7904 bool TemplateKeyword,
7905 TemplateDecl *Template) const {
7906 assert(NNS && "Missing nested-name-specifier in qualified template name");
7907
7908 // FIXME: Canonicalization?
7909 llvm::FoldingSetNodeID ID;
7910 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
7911
7912 void *InsertPos = nullptr;
7913 QualifiedTemplateName *QTN =
7914 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7915 if (!QTN) {
7916 QTN = new (*this, alignof(QualifiedTemplateName))
7917 QualifiedTemplateName(NNS, TemplateKeyword, Template);
7918 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
7919 }
7920
7921 return TemplateName(QTN);
7922 }
7923
7924 /// Retrieve the template name that represents a dependent
7925 /// template name such as \c MetaFun::template apply.
7926 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const7927 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
7928 const IdentifierInfo *Name) const {
7929 assert((!NNS || NNS->isDependent()) &&
7930 "Nested name specifier must be dependent");
7931
7932 llvm::FoldingSetNodeID ID;
7933 DependentTemplateName::Profile(ID, NNS, Name);
7934
7935 void *InsertPos = nullptr;
7936 DependentTemplateName *QTN =
7937 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7938
7939 if (QTN)
7940 return TemplateName(QTN);
7941
7942 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
7943 if (CanonNNS == NNS) {
7944 QTN = new (*this, alignof(DependentTemplateName))
7945 DependentTemplateName(NNS, Name);
7946 } else {
7947 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
7948 QTN = new (*this, alignof(DependentTemplateName))
7949 DependentTemplateName(NNS, Name, Canon);
7950 DependentTemplateName *CheckQTN =
7951 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7952 assert(!CheckQTN && "Dependent type name canonicalization broken");
7953 (void)CheckQTN;
7954 }
7955
7956 DependentTemplateNames.InsertNode(QTN, InsertPos);
7957 return TemplateName(QTN);
7958 }
7959
7960 /// Retrieve the template name that represents a dependent
7961 /// template name such as \c MetaFun::template operator+.
7962 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const7963 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
7964 OverloadedOperatorKind Operator) const {
7965 assert((!NNS || NNS->isDependent()) &&
7966 "Nested name specifier must be dependent");
7967
7968 llvm::FoldingSetNodeID ID;
7969 DependentTemplateName::Profile(ID, NNS, Operator);
7970
7971 void *InsertPos = nullptr;
7972 DependentTemplateName *QTN
7973 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7974
7975 if (QTN)
7976 return TemplateName(QTN);
7977
7978 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
7979 if (CanonNNS == NNS) {
7980 QTN = new (*this, alignof(DependentTemplateName))
7981 DependentTemplateName(NNS, Operator);
7982 } else {
7983 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
7984 QTN = new (*this, alignof(DependentTemplateName))
7985 DependentTemplateName(NNS, Operator, Canon);
7986
7987 DependentTemplateName *CheckQTN
7988 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7989 assert(!CheckQTN && "Dependent template name canonicalization broken");
7990 (void)CheckQTN;
7991 }
7992
7993 DependentTemplateNames.InsertNode(QTN, InsertPos);
7994 return TemplateName(QTN);
7995 }
7996
7997 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const7998 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
7999 TemplateName replacement) const {
8000 llvm::FoldingSetNodeID ID;
8001 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
8002
8003 void *insertPos = nullptr;
8004 SubstTemplateTemplateParmStorage *subst
8005 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
8006
8007 if (!subst) {
8008 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
8009 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
8010 }
8011
8012 return TemplateName(subst);
8013 }
8014
8015 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const8016 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
8017 const TemplateArgument &ArgPack) const {
8018 auto &Self = const_cast<ASTContext &>(*this);
8019 llvm::FoldingSetNodeID ID;
8020 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
8021
8022 void *InsertPos = nullptr;
8023 SubstTemplateTemplateParmPackStorage *Subst
8024 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
8025
8026 if (!Subst) {
8027 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
8028 ArgPack.pack_size(),
8029 ArgPack.pack_begin());
8030 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
8031 }
8032
8033 return TemplateName(Subst);
8034 }
8035
8036 /// getFromTargetType - Given one of the integer types provided by
8037 /// TargetInfo, produce the corresponding type. The unsigned @p Type
8038 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const8039 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
8040 switch (Type) {
8041 case TargetInfo::NoInt: return {};
8042 case TargetInfo::SignedChar: return SignedCharTy;
8043 case TargetInfo::UnsignedChar: return UnsignedCharTy;
8044 case TargetInfo::SignedShort: return ShortTy;
8045 case TargetInfo::UnsignedShort: return UnsignedShortTy;
8046 case TargetInfo::SignedInt: return IntTy;
8047 case TargetInfo::UnsignedInt: return UnsignedIntTy;
8048 case TargetInfo::SignedLong: return LongTy;
8049 case TargetInfo::UnsignedLong: return UnsignedLongTy;
8050 case TargetInfo::SignedLongLong: return LongLongTy;
8051 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
8052 }
8053
8054 llvm_unreachable("Unhandled TargetInfo::IntType value");
8055 }
8056
8057 //===----------------------------------------------------------------------===//
8058 // Type Predicates.
8059 //===----------------------------------------------------------------------===//
8060
8061 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
8062 /// garbage collection attribute.
8063 ///
getObjCGCAttrKind(QualType Ty) const8064 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
8065 if (getLangOpts().getGC() == LangOptions::NonGC)
8066 return Qualifiers::GCNone;
8067
8068 assert(getLangOpts().ObjC);
8069 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
8070
8071 // Default behaviour under objective-C's gc is for ObjC pointers
8072 // (or pointers to them) be treated as though they were declared
8073 // as __strong.
8074 if (GCAttrs == Qualifiers::GCNone) {
8075 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
8076 return Qualifiers::Strong;
8077 else if (Ty->isPointerType())
8078 return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
8079 } else {
8080 // It's not valid to set GC attributes on anything that isn't a
8081 // pointer.
8082 #ifndef NDEBUG
8083 QualType CT = Ty->getCanonicalTypeInternal();
8084 while (const auto *AT = dyn_cast<ArrayType>(CT))
8085 CT = AT->getElementType();
8086 assert(CT->isAnyPointerType() || CT->isBlockPointerType());
8087 #endif
8088 }
8089 return GCAttrs;
8090 }
8091
8092 //===----------------------------------------------------------------------===//
8093 // Type Compatibility Testing
8094 //===----------------------------------------------------------------------===//
8095
8096 /// areCompatVectorTypes - Return true if the two specified vector types are
8097 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)8098 static bool areCompatVectorTypes(const VectorType *LHS,
8099 const VectorType *RHS) {
8100 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8101 return LHS->getElementType() == RHS->getElementType() &&
8102 LHS->getNumElements() == RHS->getNumElements();
8103 }
8104
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)8105 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
8106 QualType SecondVec) {
8107 assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
8108 assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
8109
8110 if (hasSameUnqualifiedType(FirstVec, SecondVec))
8111 return true;
8112
8113 // Treat Neon vector types and most AltiVec vector types as if they are the
8114 // equivalent GCC vector types.
8115 const auto *First = FirstVec->castAs<VectorType>();
8116 const auto *Second = SecondVec->castAs<VectorType>();
8117 if (First->getNumElements() == Second->getNumElements() &&
8118 hasSameType(First->getElementType(), Second->getElementType()) &&
8119 First->getVectorKind() != VectorType::AltiVecPixel &&
8120 First->getVectorKind() != VectorType::AltiVecBool &&
8121 Second->getVectorKind() != VectorType::AltiVecPixel &&
8122 Second->getVectorKind() != VectorType::AltiVecBool)
8123 return true;
8124
8125 return false;
8126 }
8127
hasDirectOwnershipQualifier(QualType Ty) const8128 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
8129 while (true) {
8130 // __strong id
8131 if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
8132 if (Attr->getAttrKind() == attr::ObjCOwnership)
8133 return true;
8134
8135 Ty = Attr->getModifiedType();
8136
8137 // X *__strong (...)
8138 } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
8139 Ty = Paren->getInnerType();
8140
8141 // We do not want to look through typedefs, typeof(expr),
8142 // typeof(type), or any other way that the type is somehow
8143 // abstracted.
8144 } else {
8145 return false;
8146 }
8147 }
8148 }
8149
8150 //===----------------------------------------------------------------------===//
8151 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
8152 //===----------------------------------------------------------------------===//
8153
8154 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
8155 /// inheritance hierarchy of 'rProto'.
8156 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const8157 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
8158 ObjCProtocolDecl *rProto) const {
8159 if (declaresSameEntity(lProto, rProto))
8160 return true;
8161 for (auto *PI : rProto->protocols())
8162 if (ProtocolCompatibleWithProtocol(lProto, PI))
8163 return true;
8164 return false;
8165 }
8166
8167 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
8168 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType * lhs,const ObjCObjectPointerType * rhs)8169 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
8170 const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
8171 for (auto *lhsProto : lhs->quals()) {
8172 bool match = false;
8173 for (auto *rhsProto : rhs->quals()) {
8174 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
8175 match = true;
8176 break;
8177 }
8178 }
8179 if (!match)
8180 return false;
8181 }
8182 return true;
8183 }
8184
8185 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
8186 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType * lhs,const ObjCObjectPointerType * rhs,bool compare)8187 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
8188 const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
8189 bool compare) {
8190 // Allow id<P..> and an 'id' in all cases.
8191 if (lhs->isObjCIdType() || rhs->isObjCIdType())
8192 return true;
8193
8194 // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
8195 if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
8196 rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
8197 return false;
8198
8199 if (lhs->isObjCQualifiedIdType()) {
8200 if (rhs->qual_empty()) {
8201 // If the RHS is a unqualified interface pointer "NSString*",
8202 // make sure we check the class hierarchy.
8203 if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8204 for (auto *I : lhs->quals()) {
8205 // when comparing an id<P> on lhs with a static type on rhs,
8206 // see if static class implements all of id's protocols, directly or
8207 // through its super class and categories.
8208 if (!rhsID->ClassImplementsProtocol(I, true))
8209 return false;
8210 }
8211 }
8212 // If there are no qualifiers and no interface, we have an 'id'.
8213 return true;
8214 }
8215 // Both the right and left sides have qualifiers.
8216 for (auto *lhsProto : lhs->quals()) {
8217 bool match = false;
8218
8219 // when comparing an id<P> on lhs with a static type on rhs,
8220 // see if static class implements all of id's protocols, directly or
8221 // through its super class and categories.
8222 for (auto *rhsProto : rhs->quals()) {
8223 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8224 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8225 match = true;
8226 break;
8227 }
8228 }
8229 // If the RHS is a qualified interface pointer "NSString<P>*",
8230 // make sure we check the class hierarchy.
8231 if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8232 for (auto *I : lhs->quals()) {
8233 // when comparing an id<P> on lhs with a static type on rhs,
8234 // see if static class implements all of id's protocols, directly or
8235 // through its super class and categories.
8236 if (rhsID->ClassImplementsProtocol(I, true)) {
8237 match = true;
8238 break;
8239 }
8240 }
8241 }
8242 if (!match)
8243 return false;
8244 }
8245
8246 return true;
8247 }
8248
8249 assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
8250
8251 if (lhs->getInterfaceType()) {
8252 // If both the right and left sides have qualifiers.
8253 for (auto *lhsProto : lhs->quals()) {
8254 bool match = false;
8255
8256 // when comparing an id<P> on rhs with a static type on lhs,
8257 // see if static class implements all of id's protocols, directly or
8258 // through its super class and categories.
8259 // First, lhs protocols in the qualifier list must be found, direct
8260 // or indirect in rhs's qualifier list or it is a mismatch.
8261 for (auto *rhsProto : rhs->quals()) {
8262 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8263 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8264 match = true;
8265 break;
8266 }
8267 }
8268 if (!match)
8269 return false;
8270 }
8271
8272 // Static class's protocols, or its super class or category protocols
8273 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
8274 if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
8275 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
8276 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
8277 // This is rather dubious but matches gcc's behavior. If lhs has
8278 // no type qualifier and its class has no static protocol(s)
8279 // assume that it is mismatch.
8280 if (LHSInheritedProtocols.empty() && lhs->qual_empty())
8281 return false;
8282 for (auto *lhsProto : LHSInheritedProtocols) {
8283 bool match = false;
8284 for (auto *rhsProto : rhs->quals()) {
8285 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8286 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8287 match = true;
8288 break;
8289 }
8290 }
8291 if (!match)
8292 return false;
8293 }
8294 }
8295 return true;
8296 }
8297 return false;
8298 }
8299
8300 /// canAssignObjCInterfaces - Return true if the two interface types are
8301 /// compatible for assignment from RHS to LHS. This handles validation of any
8302 /// protocol qualifiers on the LHS or RHS.
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)8303 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
8304 const ObjCObjectPointerType *RHSOPT) {
8305 const ObjCObjectType* LHS = LHSOPT->getObjectType();
8306 const ObjCObjectType* RHS = RHSOPT->getObjectType();
8307
8308 // If either type represents the built-in 'id' type, return true.
8309 if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
8310 return true;
8311
8312 // Function object that propagates a successful result or handles
8313 // __kindof types.
8314 auto finish = [&](bool succeeded) -> bool {
8315 if (succeeded)
8316 return true;
8317
8318 if (!RHS->isKindOfType())
8319 return false;
8320
8321 // Strip off __kindof and protocol qualifiers, then check whether
8322 // we can assign the other way.
8323 return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8324 LHSOPT->stripObjCKindOfTypeAndQuals(*this));
8325 };
8326
8327 // Casts from or to id<P> are allowed when the other side has compatible
8328 // protocols.
8329 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
8330 return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
8331 }
8332
8333 // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
8334 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
8335 return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
8336 }
8337
8338 // Casts from Class to Class<Foo>, or vice-versa, are allowed.
8339 if (LHS->isObjCClass() && RHS->isObjCClass()) {
8340 return true;
8341 }
8342
8343 // If we have 2 user-defined types, fall into that path.
8344 if (LHS->getInterface() && RHS->getInterface()) {
8345 return finish(canAssignObjCInterfaces(LHS, RHS));
8346 }
8347
8348 return false;
8349 }
8350
8351 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
8352 /// for providing type-safety for objective-c pointers used to pass/return
8353 /// arguments in block literals. When passed as arguments, passing 'A*' where
8354 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
8355 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)8356 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
8357 const ObjCObjectPointerType *LHSOPT,
8358 const ObjCObjectPointerType *RHSOPT,
8359 bool BlockReturnType) {
8360
8361 // Function object that propagates a successful result or handles
8362 // __kindof types.
8363 auto finish = [&](bool succeeded) -> bool {
8364 if (succeeded)
8365 return true;
8366
8367 const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
8368 if (!Expected->isKindOfType())
8369 return false;
8370
8371 // Strip off __kindof and protocol qualifiers, then check whether
8372 // we can assign the other way.
8373 return canAssignObjCInterfacesInBlockPointer(
8374 RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8375 LHSOPT->stripObjCKindOfTypeAndQuals(*this),
8376 BlockReturnType);
8377 };
8378
8379 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
8380 return true;
8381
8382 if (LHSOPT->isObjCBuiltinType()) {
8383 return finish(RHSOPT->isObjCBuiltinType() ||
8384 RHSOPT->isObjCQualifiedIdType());
8385 }
8386
8387 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
8388 return finish(ObjCQualifiedIdTypesAreCompatible(
8389 (BlockReturnType ? LHSOPT : RHSOPT),
8390 (BlockReturnType ? RHSOPT : LHSOPT), false));
8391
8392 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
8393 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
8394 if (LHS && RHS) { // We have 2 user-defined types.
8395 if (LHS != RHS) {
8396 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
8397 return finish(BlockReturnType);
8398 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
8399 return finish(!BlockReturnType);
8400 }
8401 else
8402 return true;
8403 }
8404 return false;
8405 }
8406
8407 /// Comparison routine for Objective-C protocols to be used with
8408 /// llvm::array_pod_sort.
compareObjCProtocolsByName(ObjCProtocolDecl * const * lhs,ObjCProtocolDecl * const * rhs)8409 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
8410 ObjCProtocolDecl * const *rhs) {
8411 return (*lhs)->getName().compare((*rhs)->getName());
8412 }
8413
8414 /// getIntersectionOfProtocols - This routine finds the intersection of set
8415 /// of protocols inherited from two distinct objective-c pointer objects with
8416 /// the given common base.
8417 /// It is used to build composite qualifier list of the composite type of
8418 /// the conditional expression involving two objective-c pointer objects.
8419 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCInterfaceDecl * CommonBase,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionSet)8420 void getIntersectionOfProtocols(ASTContext &Context,
8421 const ObjCInterfaceDecl *CommonBase,
8422 const ObjCObjectPointerType *LHSOPT,
8423 const ObjCObjectPointerType *RHSOPT,
8424 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
8425
8426 const ObjCObjectType* LHS = LHSOPT->getObjectType();
8427 const ObjCObjectType* RHS = RHSOPT->getObjectType();
8428 assert(LHS->getInterface() && "LHS must have an interface base");
8429 assert(RHS->getInterface() && "RHS must have an interface base");
8430
8431 // Add all of the protocols for the LHS.
8432 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
8433
8434 // Start with the protocol qualifiers.
8435 for (auto proto : LHS->quals()) {
8436 Context.CollectInheritedProtocols(proto, LHSProtocolSet);
8437 }
8438
8439 // Also add the protocols associated with the LHS interface.
8440 Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
8441
8442 // Add all of the protocols for the RHS.
8443 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
8444
8445 // Start with the protocol qualifiers.
8446 for (auto proto : RHS->quals()) {
8447 Context.CollectInheritedProtocols(proto, RHSProtocolSet);
8448 }
8449
8450 // Also add the protocols associated with the RHS interface.
8451 Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
8452
8453 // Compute the intersection of the collected protocol sets.
8454 for (auto proto : LHSProtocolSet) {
8455 if (RHSProtocolSet.count(proto))
8456 IntersectionSet.push_back(proto);
8457 }
8458
8459 // Compute the set of protocols that is implied by either the common type or
8460 // the protocols within the intersection.
8461 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
8462 Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
8463
8464 // Remove any implied protocols from the list of inherited protocols.
8465 if (!ImpliedProtocols.empty()) {
8466 IntersectionSet.erase(
8467 std::remove_if(IntersectionSet.begin(),
8468 IntersectionSet.end(),
8469 [&](ObjCProtocolDecl *proto) -> bool {
8470 return ImpliedProtocols.count(proto) > 0;
8471 }),
8472 IntersectionSet.end());
8473 }
8474
8475 // Sort the remaining protocols by name.
8476 llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
8477 compareObjCProtocolsByName);
8478 }
8479
8480 /// Determine whether the first type is a subtype of the second.
canAssignObjCObjectTypes(ASTContext & ctx,QualType lhs,QualType rhs)8481 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
8482 QualType rhs) {
8483 // Common case: two object pointers.
8484 const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
8485 const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
8486 if (lhsOPT && rhsOPT)
8487 return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
8488
8489 // Two block pointers.
8490 const auto *lhsBlock = lhs->getAs<BlockPointerType>();
8491 const auto *rhsBlock = rhs->getAs<BlockPointerType>();
8492 if (lhsBlock && rhsBlock)
8493 return ctx.typesAreBlockPointerCompatible(lhs, rhs);
8494
8495 // If either is an unqualified 'id' and the other is a block, it's
8496 // acceptable.
8497 if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
8498 (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
8499 return true;
8500
8501 return false;
8502 }
8503
8504 // Check that the given Objective-C type argument lists are equivalent.
sameObjCTypeArgs(ASTContext & ctx,const ObjCInterfaceDecl * iface,ArrayRef<QualType> lhsArgs,ArrayRef<QualType> rhsArgs,bool stripKindOf)8505 static bool sameObjCTypeArgs(ASTContext &ctx,
8506 const ObjCInterfaceDecl *iface,
8507 ArrayRef<QualType> lhsArgs,
8508 ArrayRef<QualType> rhsArgs,
8509 bool stripKindOf) {
8510 if (lhsArgs.size() != rhsArgs.size())
8511 return false;
8512
8513 ObjCTypeParamList *typeParams = iface->getTypeParamList();
8514 for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
8515 if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
8516 continue;
8517
8518 switch (typeParams->begin()[i]->getVariance()) {
8519 case ObjCTypeParamVariance::Invariant:
8520 if (!stripKindOf ||
8521 !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
8522 rhsArgs[i].stripObjCKindOfType(ctx))) {
8523 return false;
8524 }
8525 break;
8526
8527 case ObjCTypeParamVariance::Covariant:
8528 if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
8529 return false;
8530 break;
8531
8532 case ObjCTypeParamVariance::Contravariant:
8533 if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
8534 return false;
8535 break;
8536 }
8537 }
8538
8539 return true;
8540 }
8541
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)8542 QualType ASTContext::areCommonBaseCompatible(
8543 const ObjCObjectPointerType *Lptr,
8544 const ObjCObjectPointerType *Rptr) {
8545 const ObjCObjectType *LHS = Lptr->getObjectType();
8546 const ObjCObjectType *RHS = Rptr->getObjectType();
8547 const ObjCInterfaceDecl* LDecl = LHS->getInterface();
8548 const ObjCInterfaceDecl* RDecl = RHS->getInterface();
8549
8550 if (!LDecl || !RDecl)
8551 return {};
8552
8553 // When either LHS or RHS is a kindof type, we should return a kindof type.
8554 // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
8555 // kindof(A).
8556 bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
8557
8558 // Follow the left-hand side up the class hierarchy until we either hit a
8559 // root or find the RHS. Record the ancestors in case we don't find it.
8560 llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
8561 LHSAncestors;
8562 while (true) {
8563 // Record this ancestor. We'll need this if the common type isn't in the
8564 // path from the LHS to the root.
8565 LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
8566
8567 if (declaresSameEntity(LHS->getInterface(), RDecl)) {
8568 // Get the type arguments.
8569 ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
8570 bool anyChanges = false;
8571 if (LHS->isSpecialized() && RHS->isSpecialized()) {
8572 // Both have type arguments, compare them.
8573 if (!sameObjCTypeArgs(*this, LHS->getInterface(),
8574 LHS->getTypeArgs(), RHS->getTypeArgs(),
8575 /*stripKindOf=*/true))
8576 return {};
8577 } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
8578 // If only one has type arguments, the result will not have type
8579 // arguments.
8580 LHSTypeArgs = {};
8581 anyChanges = true;
8582 }
8583
8584 // Compute the intersection of protocols.
8585 SmallVector<ObjCProtocolDecl *, 8> Protocols;
8586 getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
8587 Protocols);
8588 if (!Protocols.empty())
8589 anyChanges = true;
8590
8591 // If anything in the LHS will have changed, build a new result type.
8592 // If we need to return a kindof type but LHS is not a kindof type, we
8593 // build a new result type.
8594 if (anyChanges || LHS->isKindOfType() != anyKindOf) {
8595 QualType Result = getObjCInterfaceType(LHS->getInterface());
8596 Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
8597 anyKindOf || LHS->isKindOfType());
8598 return getObjCObjectPointerType(Result);
8599 }
8600
8601 return getObjCObjectPointerType(QualType(LHS, 0));
8602 }
8603
8604 // Find the superclass.
8605 QualType LHSSuperType = LHS->getSuperClassType();
8606 if (LHSSuperType.isNull())
8607 break;
8608
8609 LHS = LHSSuperType->castAs<ObjCObjectType>();
8610 }
8611
8612 // We didn't find anything by following the LHS to its root; now check
8613 // the RHS against the cached set of ancestors.
8614 while (true) {
8615 auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
8616 if (KnownLHS != LHSAncestors.end()) {
8617 LHS = KnownLHS->second;
8618
8619 // Get the type arguments.
8620 ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
8621 bool anyChanges = false;
8622 if (LHS->isSpecialized() && RHS->isSpecialized()) {
8623 // Both have type arguments, compare them.
8624 if (!sameObjCTypeArgs(*this, LHS->getInterface(),
8625 LHS->getTypeArgs(), RHS->getTypeArgs(),
8626 /*stripKindOf=*/true))
8627 return {};
8628 } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
8629 // If only one has type arguments, the result will not have type
8630 // arguments.
8631 RHSTypeArgs = {};
8632 anyChanges = true;
8633 }
8634
8635 // Compute the intersection of protocols.
8636 SmallVector<ObjCProtocolDecl *, 8> Protocols;
8637 getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
8638 Protocols);
8639 if (!Protocols.empty())
8640 anyChanges = true;
8641
8642 // If we need to return a kindof type but RHS is not a kindof type, we
8643 // build a new result type.
8644 if (anyChanges || RHS->isKindOfType() != anyKindOf) {
8645 QualType Result = getObjCInterfaceType(RHS->getInterface());
8646 Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
8647 anyKindOf || RHS->isKindOfType());
8648 return getObjCObjectPointerType(Result);
8649 }
8650
8651 return getObjCObjectPointerType(QualType(RHS, 0));
8652 }
8653
8654 // Find the superclass of the RHS.
8655 QualType RHSSuperType = RHS->getSuperClassType();
8656 if (RHSSuperType.isNull())
8657 break;
8658
8659 RHS = RHSSuperType->castAs<ObjCObjectType>();
8660 }
8661
8662 return {};
8663 }
8664
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)8665 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
8666 const ObjCObjectType *RHS) {
8667 assert(LHS->getInterface() && "LHS is not an interface type");
8668 assert(RHS->getInterface() && "RHS is not an interface type");
8669
8670 // Verify that the base decls are compatible: the RHS must be a subclass of
8671 // the LHS.
8672 ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
8673 bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
8674 if (!IsSuperClass)
8675 return false;
8676
8677 // If the LHS has protocol qualifiers, determine whether all of them are
8678 // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
8679 // LHS).
8680 if (LHS->getNumProtocols() > 0) {
8681 // OK if conversion of LHS to SuperClass results in narrowing of types
8682 // ; i.e., SuperClass may implement at least one of the protocols
8683 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
8684 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
8685 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
8686 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
8687 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
8688 // qualifiers.
8689 for (auto *RHSPI : RHS->quals())
8690 CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
8691 // If there is no protocols associated with RHS, it is not a match.
8692 if (SuperClassInheritedProtocols.empty())
8693 return false;
8694
8695 for (const auto *LHSProto : LHS->quals()) {
8696 bool SuperImplementsProtocol = false;
8697 for (auto *SuperClassProto : SuperClassInheritedProtocols)
8698 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
8699 SuperImplementsProtocol = true;
8700 break;
8701 }
8702 if (!SuperImplementsProtocol)
8703 return false;
8704 }
8705 }
8706
8707 // If the LHS is specialized, we may need to check type arguments.
8708 if (LHS->isSpecialized()) {
8709 // Follow the superclass chain until we've matched the LHS class in the
8710 // hierarchy. This substitutes type arguments through.
8711 const ObjCObjectType *RHSSuper = RHS;
8712 while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
8713 RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
8714
8715 // If the RHS is specializd, compare type arguments.
8716 if (RHSSuper->isSpecialized() &&
8717 !sameObjCTypeArgs(*this, LHS->getInterface(),
8718 LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
8719 /*stripKindOf=*/true)) {
8720 return false;
8721 }
8722 }
8723
8724 return true;
8725 }
8726
areComparableObjCPointerTypes(QualType LHS,QualType RHS)8727 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
8728 // get the "pointed to" types
8729 const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
8730 const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
8731
8732 if (!LHSOPT || !RHSOPT)
8733 return false;
8734
8735 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
8736 canAssignObjCInterfaces(RHSOPT, LHSOPT);
8737 }
8738
canBindObjCObjectType(QualType To,QualType From)8739 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
8740 return canAssignObjCInterfaces(
8741 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
8742 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
8743 }
8744
8745 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
8746 /// both shall have the identically qualified version of a compatible type.
8747 /// C99 6.2.7p1: Two types have compatible types if their types are the
8748 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)8749 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
8750 bool CompareUnqualified) {
8751 if (getLangOpts().CPlusPlus)
8752 return hasSameType(LHS, RHS);
8753
8754 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
8755 }
8756
propertyTypesAreCompatible(QualType LHS,QualType RHS)8757 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
8758 return typesAreCompatible(LHS, RHS);
8759 }
8760
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)8761 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
8762 return !mergeTypes(LHS, RHS, true).isNull();
8763 }
8764
8765 /// mergeTransparentUnionType - if T is a transparent union type and a member
8766 /// of T is compatible with SubType, return the merged type, else return
8767 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)8768 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
8769 bool OfBlockPointer,
8770 bool Unqualified) {
8771 if (const RecordType *UT = T->getAsUnionType()) {
8772 RecordDecl *UD = UT->getDecl();
8773 if (UD->hasAttr<TransparentUnionAttr>()) {
8774 for (const auto *I : UD->fields()) {
8775 QualType ET = I->getType().getUnqualifiedType();
8776 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
8777 if (!MT.isNull())
8778 return MT;
8779 }
8780 }
8781 }
8782
8783 return {};
8784 }
8785
8786 /// mergeFunctionParameterTypes - merge two types which appear as function
8787 /// parameter types
mergeFunctionParameterTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)8788 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
8789 bool OfBlockPointer,
8790 bool Unqualified) {
8791 // GNU extension: two types are compatible if they appear as a function
8792 // argument, one of the types is a transparent union type and the other
8793 // type is compatible with a union member
8794 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
8795 Unqualified);
8796 if (!lmerge.isNull())
8797 return lmerge;
8798
8799 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
8800 Unqualified);
8801 if (!rmerge.isNull())
8802 return rmerge;
8803
8804 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
8805 }
8806
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)8807 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
8808 bool OfBlockPointer,
8809 bool Unqualified) {
8810 const auto *lbase = lhs->castAs<FunctionType>();
8811 const auto *rbase = rhs->castAs<FunctionType>();
8812 const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
8813 const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
8814 bool allLTypes = true;
8815 bool allRTypes = true;
8816
8817 // Check return type
8818 QualType retType;
8819 if (OfBlockPointer) {
8820 QualType RHS = rbase->getReturnType();
8821 QualType LHS = lbase->getReturnType();
8822 bool UnqualifiedResult = Unqualified;
8823 if (!UnqualifiedResult)
8824 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
8825 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
8826 }
8827 else
8828 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
8829 Unqualified);
8830 if (retType.isNull())
8831 return {};
8832
8833 if (Unqualified)
8834 retType = retType.getUnqualifiedType();
8835
8836 CanQualType LRetType = getCanonicalType(lbase->getReturnType());
8837 CanQualType RRetType = getCanonicalType(rbase->getReturnType());
8838 if (Unqualified) {
8839 LRetType = LRetType.getUnqualifiedType();
8840 RRetType = RRetType.getUnqualifiedType();
8841 }
8842
8843 if (getCanonicalType(retType) != LRetType)
8844 allLTypes = false;
8845 if (getCanonicalType(retType) != RRetType)
8846 allRTypes = false;
8847
8848 // FIXME: double check this
8849 // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
8850 // rbase->getRegParmAttr() != 0 &&
8851 // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
8852 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
8853 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
8854
8855 // Compatible functions must have compatible calling conventions
8856 if (lbaseInfo.getCC() != rbaseInfo.getCC())
8857 return {};
8858
8859 // Regparm is part of the calling convention.
8860 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
8861 return {};
8862 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
8863 return {};
8864
8865 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
8866 return {};
8867 if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
8868 return {};
8869 if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
8870 return {};
8871
8872 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
8873 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
8874
8875 if (lbaseInfo.getNoReturn() != NoReturn)
8876 allLTypes = false;
8877 if (rbaseInfo.getNoReturn() != NoReturn)
8878 allRTypes = false;
8879
8880 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
8881
8882 if (lproto && rproto) { // two C99 style function prototypes
8883 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
8884 "C++ shouldn't be here");
8885 // Compatible functions must have the same number of parameters
8886 if (lproto->getNumParams() != rproto->getNumParams())
8887 return {};
8888
8889 // Variadic and non-variadic functions aren't compatible
8890 if (lproto->isVariadic() != rproto->isVariadic())
8891 return {};
8892
8893 if (lproto->getMethodQuals() != rproto->getMethodQuals())
8894 return {};
8895
8896 SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
8897 bool canUseLeft, canUseRight;
8898 if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
8899 newParamInfos))
8900 return {};
8901
8902 if (!canUseLeft)
8903 allLTypes = false;
8904 if (!canUseRight)
8905 allRTypes = false;
8906
8907 // Check parameter type compatibility
8908 SmallVector<QualType, 10> types;
8909 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
8910 QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
8911 QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
8912 QualType paramType = mergeFunctionParameterTypes(
8913 lParamType, rParamType, OfBlockPointer, Unqualified);
8914 if (paramType.isNull())
8915 return {};
8916
8917 if (Unqualified)
8918 paramType = paramType.getUnqualifiedType();
8919
8920 types.push_back(paramType);
8921 if (Unqualified) {
8922 lParamType = lParamType.getUnqualifiedType();
8923 rParamType = rParamType.getUnqualifiedType();
8924 }
8925
8926 if (getCanonicalType(paramType) != getCanonicalType(lParamType))
8927 allLTypes = false;
8928 if (getCanonicalType(paramType) != getCanonicalType(rParamType))
8929 allRTypes = false;
8930 }
8931
8932 if (allLTypes) return lhs;
8933 if (allRTypes) return rhs;
8934
8935 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
8936 EPI.ExtInfo = einfo;
8937 EPI.ExtParameterInfos =
8938 newParamInfos.empty() ? nullptr : newParamInfos.data();
8939 return getFunctionType(retType, types, EPI);
8940 }
8941
8942 if (lproto) allRTypes = false;
8943 if (rproto) allLTypes = false;
8944
8945 const FunctionProtoType *proto = lproto ? lproto : rproto;
8946 if (proto) {
8947 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
8948 if (proto->isVariadic())
8949 return {};
8950 // Check that the types are compatible with the types that
8951 // would result from default argument promotions (C99 6.7.5.3p15).
8952 // The only types actually affected are promotable integer
8953 // types and floats, which would be passed as a different
8954 // type depending on whether the prototype is visible.
8955 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
8956 QualType paramTy = proto->getParamType(i);
8957
8958 // Look at the converted type of enum types, since that is the type used
8959 // to pass enum values.
8960 if (const auto *Enum = paramTy->getAs<EnumType>()) {
8961 paramTy = Enum->getDecl()->getIntegerType();
8962 if (paramTy.isNull())
8963 return {};
8964 }
8965
8966 if (paramTy->isPromotableIntegerType() ||
8967 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
8968 return {};
8969 }
8970
8971 if (allLTypes) return lhs;
8972 if (allRTypes) return rhs;
8973
8974 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
8975 EPI.ExtInfo = einfo;
8976 return getFunctionType(retType, proto->getParamTypes(), EPI);
8977 }
8978
8979 if (allLTypes) return lhs;
8980 if (allRTypes) return rhs;
8981 return getFunctionNoProtoType(retType, einfo);
8982 }
8983
8984 /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)8985 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
8986 QualType other, bool isBlockReturnType) {
8987 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
8988 // a signed integer type, or an unsigned integer type.
8989 // Compatibility is based on the underlying type, not the promotion
8990 // type.
8991 QualType underlyingType = ET->getDecl()->getIntegerType();
8992 if (underlyingType.isNull())
8993 return {};
8994 if (Context.hasSameType(underlyingType, other))
8995 return other;
8996
8997 // In block return types, we're more permissive and accept any
8998 // integral type of the same size.
8999 if (isBlockReturnType && other->isIntegerType() &&
9000 Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
9001 return other;
9002
9003 return {};
9004 }
9005
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)9006 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
9007 bool OfBlockPointer,
9008 bool Unqualified, bool BlockReturnType) {
9009 // C++ [expr]: If an expression initially has the type "reference to T", the
9010 // type is adjusted to "T" prior to any further analysis, the expression
9011 // designates the object or function denoted by the reference, and the
9012 // expression is an lvalue unless the reference is an rvalue reference and
9013 // the expression is a function call (possibly inside parentheses).
9014 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
9015 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
9016
9017 if (Unqualified) {
9018 LHS = LHS.getUnqualifiedType();
9019 RHS = RHS.getUnqualifiedType();
9020 }
9021
9022 QualType LHSCan = getCanonicalType(LHS),
9023 RHSCan = getCanonicalType(RHS);
9024
9025 // If two types are identical, they are compatible.
9026 if (LHSCan == RHSCan)
9027 return LHS;
9028
9029 // If the qualifiers are different, the types aren't compatible... mostly.
9030 Qualifiers LQuals = LHSCan.getLocalQualifiers();
9031 Qualifiers RQuals = RHSCan.getLocalQualifiers();
9032 if (LQuals != RQuals) {
9033 // If any of these qualifiers are different, we have a type
9034 // mismatch.
9035 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9036 LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
9037 LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
9038 LQuals.hasUnaligned() != RQuals.hasUnaligned())
9039 return {};
9040
9041 // Exactly one GC qualifier difference is allowed: __strong is
9042 // okay if the other type has no GC qualifier but is an Objective
9043 // C object pointer (i.e. implicitly strong by default). We fix
9044 // this by pretending that the unqualified type was actually
9045 // qualified __strong.
9046 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9047 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9048 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9049
9050 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9051 return {};
9052
9053 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
9054 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
9055 }
9056 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
9057 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
9058 }
9059 return {};
9060 }
9061
9062 // Okay, qualifiers are equal.
9063
9064 Type::TypeClass LHSClass = LHSCan->getTypeClass();
9065 Type::TypeClass RHSClass = RHSCan->getTypeClass();
9066
9067 // We want to consider the two function types to be the same for these
9068 // comparisons, just force one to the other.
9069 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
9070 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
9071
9072 // Same as above for arrays
9073 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
9074 LHSClass = Type::ConstantArray;
9075 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
9076 RHSClass = Type::ConstantArray;
9077
9078 // ObjCInterfaces are just specialized ObjCObjects.
9079 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
9080 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
9081
9082 // Canonicalize ExtVector -> Vector.
9083 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
9084 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
9085
9086 // If the canonical type classes don't match.
9087 if (LHSClass != RHSClass) {
9088 // Note that we only have special rules for turning block enum
9089 // returns into block int returns, not vice-versa.
9090 if (const auto *ETy = LHS->getAs<EnumType>()) {
9091 return mergeEnumWithInteger(*this, ETy, RHS, false);
9092 }
9093 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
9094 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
9095 }
9096 // allow block pointer type to match an 'id' type.
9097 if (OfBlockPointer && !BlockReturnType) {
9098 if (LHS->isObjCIdType() && RHS->isBlockPointerType())
9099 return LHS;
9100 if (RHS->isObjCIdType() && LHS->isBlockPointerType())
9101 return RHS;
9102 }
9103
9104 return {};
9105 }
9106
9107 // The canonical type classes match.
9108 switch (LHSClass) {
9109 #define TYPE(Class, Base)
9110 #define ABSTRACT_TYPE(Class, Base)
9111 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
9112 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
9113 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
9114 #include "clang/AST/TypeNodes.inc"
9115 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
9116
9117 case Type::Auto:
9118 case Type::DeducedTemplateSpecialization:
9119 case Type::LValueReference:
9120 case Type::RValueReference:
9121 case Type::MemberPointer:
9122 llvm_unreachable("C++ should never be in mergeTypes");
9123
9124 case Type::ObjCInterface:
9125 case Type::IncompleteArray:
9126 case Type::VariableArray:
9127 case Type::FunctionProto:
9128 case Type::ExtVector:
9129 llvm_unreachable("Types are eliminated above");
9130
9131 case Type::Pointer:
9132 {
9133 // Merge two pointer types, while trying to preserve typedef info
9134 QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
9135 QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
9136 if (Unqualified) {
9137 LHSPointee = LHSPointee.getUnqualifiedType();
9138 RHSPointee = RHSPointee.getUnqualifiedType();
9139 }
9140 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
9141 Unqualified);
9142 if (ResultType.isNull())
9143 return {};
9144 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9145 return LHS;
9146 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9147 return RHS;
9148 return getPointerType(ResultType);
9149 }
9150 case Type::BlockPointer:
9151 {
9152 // Merge two block pointer types, while trying to preserve typedef info
9153 QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
9154 QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
9155 if (Unqualified) {
9156 LHSPointee = LHSPointee.getUnqualifiedType();
9157 RHSPointee = RHSPointee.getUnqualifiedType();
9158 }
9159 if (getLangOpts().OpenCL) {
9160 Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
9161 Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
9162 // Blocks can't be an expression in a ternary operator (OpenCL v2.0
9163 // 6.12.5) thus the following check is asymmetric.
9164 if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
9165 return {};
9166 LHSPteeQual.removeAddressSpace();
9167 RHSPteeQual.removeAddressSpace();
9168 LHSPointee =
9169 QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
9170 RHSPointee =
9171 QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
9172 }
9173 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
9174 Unqualified);
9175 if (ResultType.isNull())
9176 return {};
9177 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9178 return LHS;
9179 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9180 return RHS;
9181 return getBlockPointerType(ResultType);
9182 }
9183 case Type::Atomic:
9184 {
9185 // Merge two pointer types, while trying to preserve typedef info
9186 QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
9187 QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
9188 if (Unqualified) {
9189 LHSValue = LHSValue.getUnqualifiedType();
9190 RHSValue = RHSValue.getUnqualifiedType();
9191 }
9192 QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
9193 Unqualified);
9194 if (ResultType.isNull())
9195 return {};
9196 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
9197 return LHS;
9198 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
9199 return RHS;
9200 return getAtomicType(ResultType);
9201 }
9202 case Type::ConstantArray:
9203 {
9204 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
9205 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
9206 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
9207 return {};
9208
9209 QualType LHSElem = getAsArrayType(LHS)->getElementType();
9210 QualType RHSElem = getAsArrayType(RHS)->getElementType();
9211 if (Unqualified) {
9212 LHSElem = LHSElem.getUnqualifiedType();
9213 RHSElem = RHSElem.getUnqualifiedType();
9214 }
9215
9216 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
9217 if (ResultType.isNull())
9218 return {};
9219
9220 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
9221 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
9222
9223 // If either side is a variable array, and both are complete, check whether
9224 // the current dimension is definite.
9225 if (LVAT || RVAT) {
9226 auto SizeFetch = [this](const VariableArrayType* VAT,
9227 const ConstantArrayType* CAT)
9228 -> std::pair<bool,llvm::APInt> {
9229 if (VAT) {
9230 llvm::APSInt TheInt;
9231 Expr *E = VAT->getSizeExpr();
9232 if (E && E->isIntegerConstantExpr(TheInt, *this))
9233 return std::make_pair(true, TheInt);
9234 else
9235 return std::make_pair(false, TheInt);
9236 } else if (CAT) {
9237 return std::make_pair(true, CAT->getSize());
9238 } else {
9239 return std::make_pair(false, llvm::APInt());
9240 }
9241 };
9242
9243 bool HaveLSize, HaveRSize;
9244 llvm::APInt LSize, RSize;
9245 std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
9246 std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
9247 if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
9248 return {}; // Definite, but unequal, array dimension
9249 }
9250
9251 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9252 return LHS;
9253 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9254 return RHS;
9255 if (LCAT)
9256 return getConstantArrayType(ResultType, LCAT->getSize(),
9257 LCAT->getSizeExpr(),
9258 ArrayType::ArraySizeModifier(), 0);
9259 if (RCAT)
9260 return getConstantArrayType(ResultType, RCAT->getSize(),
9261 RCAT->getSizeExpr(),
9262 ArrayType::ArraySizeModifier(), 0);
9263 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9264 return LHS;
9265 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9266 return RHS;
9267 if (LVAT) {
9268 // FIXME: This isn't correct! But tricky to implement because
9269 // the array's size has to be the size of LHS, but the type
9270 // has to be different.
9271 return LHS;
9272 }
9273 if (RVAT) {
9274 // FIXME: This isn't correct! But tricky to implement because
9275 // the array's size has to be the size of RHS, but the type
9276 // has to be different.
9277 return RHS;
9278 }
9279 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
9280 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
9281 return getIncompleteArrayType(ResultType,
9282 ArrayType::ArraySizeModifier(), 0);
9283 }
9284 case Type::FunctionNoProto:
9285 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
9286 case Type::Record:
9287 case Type::Enum:
9288 return {};
9289 case Type::Builtin:
9290 // Only exactly equal builtin types are compatible, which is tested above.
9291 return {};
9292 case Type::Complex:
9293 // Distinct complex types are incompatible.
9294 return {};
9295 case Type::Vector:
9296 // FIXME: The merged type should be an ExtVector!
9297 if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
9298 RHSCan->castAs<VectorType>()))
9299 return LHS;
9300 return {};
9301 case Type::ObjCObject: {
9302 // Check if the types are assignment compatible.
9303 // FIXME: This should be type compatibility, e.g. whether
9304 // "LHS x; RHS x;" at global scope is legal.
9305 if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
9306 RHS->castAs<ObjCObjectType>()))
9307 return LHS;
9308 return {};
9309 }
9310 case Type::ObjCObjectPointer:
9311 if (OfBlockPointer) {
9312 if (canAssignObjCInterfacesInBlockPointer(
9313 LHS->castAs<ObjCObjectPointerType>(),
9314 RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
9315 return LHS;
9316 return {};
9317 }
9318 if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
9319 RHS->castAs<ObjCObjectPointerType>()))
9320 return LHS;
9321 return {};
9322 case Type::Pipe:
9323 assert(LHS != RHS &&
9324 "Equivalent pipe types should have already been handled!");
9325 return {};
9326 }
9327
9328 llvm_unreachable("Invalid Type::Class!");
9329 }
9330
mergeExtParameterInfo(const FunctionProtoType * FirstFnType,const FunctionProtoType * SecondFnType,bool & CanUseFirst,bool & CanUseSecond,SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & NewParamInfos)9331 bool ASTContext::mergeExtParameterInfo(
9332 const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
9333 bool &CanUseFirst, bool &CanUseSecond,
9334 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
9335 assert(NewParamInfos.empty() && "param info list not empty");
9336 CanUseFirst = CanUseSecond = true;
9337 bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
9338 bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
9339
9340 // Fast path: if the first type doesn't have ext parameter infos,
9341 // we match if and only if the second type also doesn't have them.
9342 if (!FirstHasInfo && !SecondHasInfo)
9343 return true;
9344
9345 bool NeedParamInfo = false;
9346 size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
9347 : SecondFnType->getExtParameterInfos().size();
9348
9349 for (size_t I = 0; I < E; ++I) {
9350 FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
9351 if (FirstHasInfo)
9352 FirstParam = FirstFnType->getExtParameterInfo(I);
9353 if (SecondHasInfo)
9354 SecondParam = SecondFnType->getExtParameterInfo(I);
9355
9356 // Cannot merge unless everything except the noescape flag matches.
9357 if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
9358 return false;
9359
9360 bool FirstNoEscape = FirstParam.isNoEscape();
9361 bool SecondNoEscape = SecondParam.isNoEscape();
9362 bool IsNoEscape = FirstNoEscape && SecondNoEscape;
9363 NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
9364 if (NewParamInfos.back().getOpaqueValue())
9365 NeedParamInfo = true;
9366 if (FirstNoEscape != IsNoEscape)
9367 CanUseFirst = false;
9368 if (SecondNoEscape != IsNoEscape)
9369 CanUseSecond = false;
9370 }
9371
9372 if (!NeedParamInfo)
9373 NewParamInfos.clear();
9374
9375 return true;
9376 }
9377
ResetObjCLayout(const ObjCContainerDecl * CD)9378 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
9379 ObjCLayouts[CD] = nullptr;
9380 }
9381
9382 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
9383 /// 'RHS' attributes and returns the merged version; including for function
9384 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)9385 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
9386 QualType LHSCan = getCanonicalType(LHS),
9387 RHSCan = getCanonicalType(RHS);
9388 // If two types are identical, they are compatible.
9389 if (LHSCan == RHSCan)
9390 return LHS;
9391 if (RHSCan->isFunctionType()) {
9392 if (!LHSCan->isFunctionType())
9393 return {};
9394 QualType OldReturnType =
9395 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
9396 QualType NewReturnType =
9397 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
9398 QualType ResReturnType =
9399 mergeObjCGCQualifiers(NewReturnType, OldReturnType);
9400 if (ResReturnType.isNull())
9401 return {};
9402 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
9403 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
9404 // In either case, use OldReturnType to build the new function type.
9405 const auto *F = LHS->castAs<FunctionType>();
9406 if (const auto *FPT = cast<FunctionProtoType>(F)) {
9407 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9408 EPI.ExtInfo = getFunctionExtInfo(LHS);
9409 QualType ResultType =
9410 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
9411 return ResultType;
9412 }
9413 }
9414 return {};
9415 }
9416
9417 // If the qualifiers are different, the types can still be merged.
9418 Qualifiers LQuals = LHSCan.getLocalQualifiers();
9419 Qualifiers RQuals = RHSCan.getLocalQualifiers();
9420 if (LQuals != RQuals) {
9421 // If any of these qualifiers are different, we have a type mismatch.
9422 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9423 LQuals.getAddressSpace() != RQuals.getAddressSpace())
9424 return {};
9425
9426 // Exactly one GC qualifier difference is allowed: __strong is
9427 // okay if the other type has no GC qualifier but is an Objective
9428 // C object pointer (i.e. implicitly strong by default). We fix
9429 // this by pretending that the unqualified type was actually
9430 // qualified __strong.
9431 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9432 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9433 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9434
9435 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9436 return {};
9437
9438 if (GC_L == Qualifiers::Strong)
9439 return LHS;
9440 if (GC_R == Qualifiers::Strong)
9441 return RHS;
9442 return {};
9443 }
9444
9445 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
9446 QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
9447 QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
9448 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
9449 if (ResQT == LHSBaseQT)
9450 return LHS;
9451 if (ResQT == RHSBaseQT)
9452 return RHS;
9453 }
9454 return {};
9455 }
9456
9457 //===----------------------------------------------------------------------===//
9458 // Integer Predicates
9459 //===----------------------------------------------------------------------===//
9460
getIntWidth(QualType T) const9461 unsigned ASTContext::getIntWidth(QualType T) const {
9462 if (const auto *ET = T->getAs<EnumType>())
9463 T = ET->getDecl()->getIntegerType();
9464 if (T->isBooleanType())
9465 return 1;
9466 // For builtin types, just use the standard type sizing method
9467 return (unsigned)getTypeSize(T);
9468 }
9469
getCorrespondingUnsignedType(QualType T) const9470 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
9471 assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
9472 "Unexpected type");
9473
9474 // Turn <4 x signed int> -> <4 x unsigned int>
9475 if (const auto *VTy = T->getAs<VectorType>())
9476 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
9477 VTy->getNumElements(), VTy->getVectorKind());
9478
9479 // For enums, we return the unsigned version of the base type.
9480 if (const auto *ETy = T->getAs<EnumType>())
9481 T = ETy->getDecl()->getIntegerType();
9482
9483 switch (T->castAs<BuiltinType>()->getKind()) {
9484 case BuiltinType::Char_S:
9485 case BuiltinType::SChar:
9486 return UnsignedCharTy;
9487 case BuiltinType::Short:
9488 return UnsignedShortTy;
9489 case BuiltinType::Int:
9490 return UnsignedIntTy;
9491 case BuiltinType::Long:
9492 return UnsignedLongTy;
9493 case BuiltinType::LongLong:
9494 return UnsignedLongLongTy;
9495 case BuiltinType::Int128:
9496 return UnsignedInt128Ty;
9497
9498 case BuiltinType::ShortAccum:
9499 return UnsignedShortAccumTy;
9500 case BuiltinType::Accum:
9501 return UnsignedAccumTy;
9502 case BuiltinType::LongAccum:
9503 return UnsignedLongAccumTy;
9504 case BuiltinType::SatShortAccum:
9505 return SatUnsignedShortAccumTy;
9506 case BuiltinType::SatAccum:
9507 return SatUnsignedAccumTy;
9508 case BuiltinType::SatLongAccum:
9509 return SatUnsignedLongAccumTy;
9510 case BuiltinType::ShortFract:
9511 return UnsignedShortFractTy;
9512 case BuiltinType::Fract:
9513 return UnsignedFractTy;
9514 case BuiltinType::LongFract:
9515 return UnsignedLongFractTy;
9516 case BuiltinType::SatShortFract:
9517 return SatUnsignedShortFractTy;
9518 case BuiltinType::SatFract:
9519 return SatUnsignedFractTy;
9520 case BuiltinType::SatLongFract:
9521 return SatUnsignedLongFractTy;
9522 default:
9523 llvm_unreachable("Unexpected signed integer or fixed point type");
9524 }
9525 }
9526
9527 ASTMutationListener::~ASTMutationListener() = default;
9528
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)9529 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
9530 QualType ReturnType) {}
9531
9532 //===----------------------------------------------------------------------===//
9533 // Builtin Type Computation
9534 //===----------------------------------------------------------------------===//
9535
9536 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
9537 /// pointer over the consumed characters. This returns the resultant type. If
9538 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
9539 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
9540 /// a vector of "i*".
9541 ///
9542 /// RequiresICE is filled in on return to indicate whether the value is required
9543 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)9544 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
9545 ASTContext::GetBuiltinTypeError &Error,
9546 bool &RequiresICE,
9547 bool AllowTypeModifiers) {
9548 // Modifiers.
9549 int HowLong = 0;
9550 bool Signed = false, Unsigned = false;
9551 RequiresICE = false;
9552
9553 // Read the prefixed modifiers first.
9554 bool Done = false;
9555 #ifndef NDEBUG
9556 bool IsSpecial = false;
9557 #endif
9558 while (!Done) {
9559 switch (*Str++) {
9560 default: Done = true; --Str; break;
9561 case 'I':
9562 RequiresICE = true;
9563 break;
9564 case 'S':
9565 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
9566 assert(!Signed && "Can't use 'S' modifier multiple times!");
9567 Signed = true;
9568 break;
9569 case 'U':
9570 assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
9571 assert(!Unsigned && "Can't use 'U' modifier multiple times!");
9572 Unsigned = true;
9573 break;
9574 case 'L':
9575 assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
9576 assert(HowLong <= 2 && "Can't have LLLL modifier");
9577 ++HowLong;
9578 break;
9579 case 'N':
9580 // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
9581 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9582 assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
9583 #ifndef NDEBUG
9584 IsSpecial = true;
9585 #endif
9586 if (Context.getTargetInfo().getLongWidth() == 32)
9587 ++HowLong;
9588 break;
9589 case 'W':
9590 // This modifier represents int64 type.
9591 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9592 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
9593 #ifndef NDEBUG
9594 IsSpecial = true;
9595 #endif
9596 switch (Context.getTargetInfo().getInt64Type()) {
9597 default:
9598 llvm_unreachable("Unexpected integer type");
9599 case TargetInfo::SignedLong:
9600 HowLong = 1;
9601 break;
9602 case TargetInfo::SignedLongLong:
9603 HowLong = 2;
9604 break;
9605 }
9606 break;
9607 case 'Z':
9608 // This modifier represents int32 type.
9609 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9610 assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
9611 #ifndef NDEBUG
9612 IsSpecial = true;
9613 #endif
9614 switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
9615 default:
9616 llvm_unreachable("Unexpected integer type");
9617 case TargetInfo::SignedInt:
9618 HowLong = 0;
9619 break;
9620 case TargetInfo::SignedLong:
9621 HowLong = 1;
9622 break;
9623 case TargetInfo::SignedLongLong:
9624 HowLong = 2;
9625 break;
9626 }
9627 break;
9628 case 'O':
9629 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9630 assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
9631 #ifndef NDEBUG
9632 IsSpecial = true;
9633 #endif
9634 if (Context.getLangOpts().OpenCL)
9635 HowLong = 1;
9636 else
9637 HowLong = 2;
9638 break;
9639 }
9640 }
9641
9642 QualType Type;
9643
9644 // Read the base type.
9645 switch (*Str++) {
9646 default: llvm_unreachable("Unknown builtin type letter!");
9647 case 'v':
9648 assert(HowLong == 0 && !Signed && !Unsigned &&
9649 "Bad modifiers used with 'v'!");
9650 Type = Context.VoidTy;
9651 break;
9652 case 'h':
9653 assert(HowLong == 0 && !Signed && !Unsigned &&
9654 "Bad modifiers used with 'h'!");
9655 Type = Context.HalfTy;
9656 break;
9657 case 'f':
9658 assert(HowLong == 0 && !Signed && !Unsigned &&
9659 "Bad modifiers used with 'f'!");
9660 Type = Context.FloatTy;
9661 break;
9662 case 'd':
9663 assert(HowLong < 3 && !Signed && !Unsigned &&
9664 "Bad modifiers used with 'd'!");
9665 if (HowLong == 1)
9666 Type = Context.LongDoubleTy;
9667 else if (HowLong == 2)
9668 Type = Context.Float128Ty;
9669 else
9670 Type = Context.DoubleTy;
9671 break;
9672 case 's':
9673 assert(HowLong == 0 && "Bad modifiers used with 's'!");
9674 if (Unsigned)
9675 Type = Context.UnsignedShortTy;
9676 else
9677 Type = Context.ShortTy;
9678 break;
9679 case 'i':
9680 if (HowLong == 3)
9681 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
9682 else if (HowLong == 2)
9683 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
9684 else if (HowLong == 1)
9685 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
9686 else
9687 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
9688 break;
9689 case 'c':
9690 assert(HowLong == 0 && "Bad modifiers used with 'c'!");
9691 if (Signed)
9692 Type = Context.SignedCharTy;
9693 else if (Unsigned)
9694 Type = Context.UnsignedCharTy;
9695 else
9696 Type = Context.CharTy;
9697 break;
9698 case 'b': // boolean
9699 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
9700 Type = Context.BoolTy;
9701 break;
9702 case 'z': // size_t.
9703 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
9704 Type = Context.getSizeType();
9705 break;
9706 case 'w': // wchar_t.
9707 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
9708 Type = Context.getWideCharType();
9709 break;
9710 case 'F':
9711 Type = Context.getCFConstantStringType();
9712 break;
9713 case 'G':
9714 Type = Context.getObjCIdType();
9715 break;
9716 case 'H':
9717 Type = Context.getObjCSelType();
9718 break;
9719 case 'M':
9720 Type = Context.getObjCSuperType();
9721 break;
9722 case 'a':
9723 Type = Context.getBuiltinVaListType();
9724 assert(!Type.isNull() && "builtin va list type not initialized!");
9725 break;
9726 case 'A':
9727 // This is a "reference" to a va_list; however, what exactly
9728 // this means depends on how va_list is defined. There are two
9729 // different kinds of va_list: ones passed by value, and ones
9730 // passed by reference. An example of a by-value va_list is
9731 // x86, where va_list is a char*. An example of by-ref va_list
9732 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
9733 // we want this argument to be a char*&; for x86-64, we want
9734 // it to be a __va_list_tag*.
9735 Type = Context.getBuiltinVaListType();
9736 assert(!Type.isNull() && "builtin va list type not initialized!");
9737 if (Type->isArrayType())
9738 Type = Context.getArrayDecayedType(Type);
9739 else
9740 Type = Context.getLValueReferenceType(Type);
9741 break;
9742 case 'V': {
9743 char *End;
9744 unsigned NumElements = strtoul(Str, &End, 10);
9745 assert(End != Str && "Missing vector size");
9746 Str = End;
9747
9748 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
9749 RequiresICE, false);
9750 assert(!RequiresICE && "Can't require vector ICE");
9751
9752 // TODO: No way to make AltiVec vectors in builtins yet.
9753 Type = Context.getVectorType(ElementType, NumElements,
9754 VectorType::GenericVector);
9755 break;
9756 }
9757 case 'E': {
9758 char *End;
9759
9760 unsigned NumElements = strtoul(Str, &End, 10);
9761 assert(End != Str && "Missing vector size");
9762
9763 Str = End;
9764
9765 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
9766 false);
9767 Type = Context.getExtVectorType(ElementType, NumElements);
9768 break;
9769 }
9770 case 'X': {
9771 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
9772 false);
9773 assert(!RequiresICE && "Can't require complex ICE");
9774 Type = Context.getComplexType(ElementType);
9775 break;
9776 }
9777 case 'Y':
9778 Type = Context.getPointerDiffType();
9779 break;
9780 case 'P':
9781 Type = Context.getFILEType();
9782 if (Type.isNull()) {
9783 Error = ASTContext::GE_Missing_stdio;
9784 return {};
9785 }
9786 break;
9787 case 'J':
9788 if (Signed)
9789 Type = Context.getsigjmp_bufType();
9790 else
9791 Type = Context.getjmp_bufType();
9792
9793 if (Type.isNull()) {
9794 Error = ASTContext::GE_Missing_setjmp;
9795 return {};
9796 }
9797 break;
9798 case 'K':
9799 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
9800 Type = Context.getucontext_tType();
9801
9802 if (Type.isNull()) {
9803 Error = ASTContext::GE_Missing_ucontext;
9804 return {};
9805 }
9806 break;
9807 case 'p':
9808 Type = Context.getProcessIDType();
9809 break;
9810 }
9811
9812 // If there are modifiers and if we're allowed to parse them, go for it.
9813 Done = !AllowTypeModifiers;
9814 while (!Done) {
9815 switch (char c = *Str++) {
9816 default: Done = true; --Str; break;
9817 case '*':
9818 case '&': {
9819 // Both pointers and references can have their pointee types
9820 // qualified with an address space.
9821 char *End;
9822 unsigned AddrSpace = strtoul(Str, &End, 10);
9823 if (End != Str) {
9824 // Note AddrSpace == 0 is not the same as an unspecified address space.
9825 Type = Context.getAddrSpaceQualType(
9826 Type,
9827 Context.getLangASForBuiltinAddressSpace(AddrSpace));
9828 Str = End;
9829 }
9830 if (c == '*')
9831 Type = Context.getPointerType(Type);
9832 else
9833 Type = Context.getLValueReferenceType(Type);
9834 break;
9835 }
9836 // FIXME: There's no way to have a built-in with an rvalue ref arg.
9837 case 'C':
9838 Type = Type.withConst();
9839 break;
9840 case 'D':
9841 Type = Context.getVolatileType(Type);
9842 break;
9843 case 'R':
9844 Type = Type.withRestrict();
9845 break;
9846 }
9847 }
9848
9849 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
9850 "Integer constant 'I' type must be an integer");
9851
9852 return Type;
9853 }
9854
9855 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const9856 QualType ASTContext::GetBuiltinType(unsigned Id,
9857 GetBuiltinTypeError &Error,
9858 unsigned *IntegerConstantArgs) const {
9859 const char *TypeStr = BuiltinInfo.getTypeString(Id);
9860 if (TypeStr[0] == '\0') {
9861 Error = GE_Missing_type;
9862 return {};
9863 }
9864
9865 SmallVector<QualType, 8> ArgTypes;
9866
9867 bool RequiresICE = false;
9868 Error = GE_None;
9869 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
9870 RequiresICE, true);
9871 if (Error != GE_None)
9872 return {};
9873
9874 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
9875
9876 while (TypeStr[0] && TypeStr[0] != '.') {
9877 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
9878 if (Error != GE_None)
9879 return {};
9880
9881 // If this argument is required to be an IntegerConstantExpression and the
9882 // caller cares, fill in the bitmask we return.
9883 if (RequiresICE && IntegerConstantArgs)
9884 *IntegerConstantArgs |= 1 << ArgTypes.size();
9885
9886 // Do array -> pointer decay. The builtin should use the decayed type.
9887 if (Ty->isArrayType())
9888 Ty = getArrayDecayedType(Ty);
9889
9890 ArgTypes.push_back(Ty);
9891 }
9892
9893 if (Id == Builtin::BI__GetExceptionInfo)
9894 return {};
9895
9896 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
9897 "'.' should only occur at end of builtin type list!");
9898
9899 bool Variadic = (TypeStr[0] == '.');
9900
9901 FunctionType::ExtInfo EI(getDefaultCallingConvention(
9902 Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
9903 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
9904
9905
9906 // We really shouldn't be making a no-proto type here.
9907 if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
9908 return getFunctionNoProtoType(ResType, EI);
9909
9910 FunctionProtoType::ExtProtoInfo EPI;
9911 EPI.ExtInfo = EI;
9912 EPI.Variadic = Variadic;
9913 if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
9914 EPI.ExceptionSpec.Type =
9915 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
9916
9917 return getFunctionType(ResType, ArgTypes, EPI);
9918 }
9919
basicGVALinkageForFunction(const ASTContext & Context,const FunctionDecl * FD)9920 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
9921 const FunctionDecl *FD) {
9922 if (!FD->isExternallyVisible())
9923 return GVA_Internal;
9924
9925 // Non-user-provided functions get emitted as weak definitions with every
9926 // use, no matter whether they've been explicitly instantiated etc.
9927 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
9928 if (!MD->isUserProvided())
9929 return GVA_DiscardableODR;
9930
9931 GVALinkage External;
9932 switch (FD->getTemplateSpecializationKind()) {
9933 case TSK_Undeclared:
9934 case TSK_ExplicitSpecialization:
9935 External = GVA_StrongExternal;
9936 break;
9937
9938 case TSK_ExplicitInstantiationDefinition:
9939 return GVA_StrongODR;
9940
9941 // C++11 [temp.explicit]p10:
9942 // [ Note: The intent is that an inline function that is the subject of
9943 // an explicit instantiation declaration will still be implicitly
9944 // instantiated when used so that the body can be considered for
9945 // inlining, but that no out-of-line copy of the inline function would be
9946 // generated in the translation unit. -- end note ]
9947 case TSK_ExplicitInstantiationDeclaration:
9948 return GVA_AvailableExternally;
9949
9950 case TSK_ImplicitInstantiation:
9951 External = GVA_DiscardableODR;
9952 break;
9953 }
9954
9955 if (!FD->isInlined())
9956 return External;
9957
9958 if ((!Context.getLangOpts().CPlusPlus &&
9959 !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
9960 !FD->hasAttr<DLLExportAttr>()) ||
9961 FD->hasAttr<GNUInlineAttr>()) {
9962 // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
9963
9964 // GNU or C99 inline semantics. Determine whether this symbol should be
9965 // externally visible.
9966 if (FD->isInlineDefinitionExternallyVisible())
9967 return External;
9968
9969 // C99 inline semantics, where the symbol is not externally visible.
9970 return GVA_AvailableExternally;
9971 }
9972
9973 // Functions specified with extern and inline in -fms-compatibility mode
9974 // forcibly get emitted. While the body of the function cannot be later
9975 // replaced, the function definition cannot be discarded.
9976 if (FD->isMSExternInline())
9977 return GVA_StrongODR;
9978
9979 return GVA_DiscardableODR;
9980 }
9981
adjustGVALinkageForAttributes(const ASTContext & Context,const Decl * D,GVALinkage L)9982 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
9983 const Decl *D, GVALinkage L) {
9984 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
9985 // dllexport/dllimport on inline functions.
9986 if (D->hasAttr<DLLImportAttr>()) {
9987 if (L == GVA_DiscardableODR || L == GVA_StrongODR)
9988 return GVA_AvailableExternally;
9989 } else if (D->hasAttr<DLLExportAttr>()) {
9990 if (L == GVA_DiscardableODR)
9991 return GVA_StrongODR;
9992 } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice &&
9993 D->hasAttr<CUDAGlobalAttr>()) {
9994 // Device-side functions with __global__ attribute must always be
9995 // visible externally so they can be launched from host.
9996 if (L == GVA_DiscardableODR || L == GVA_Internal)
9997 return GVA_StrongODR;
9998 }
9999 return L;
10000 }
10001
10002 /// Adjust the GVALinkage for a declaration based on what an external AST source
10003 /// knows about whether there can be other definitions of this declaration.
10004 static GVALinkage
adjustGVALinkageForExternalDefinitionKind(const ASTContext & Ctx,const Decl * D,GVALinkage L)10005 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
10006 GVALinkage L) {
10007 ExternalASTSource *Source = Ctx.getExternalSource();
10008 if (!Source)
10009 return L;
10010
10011 switch (Source->hasExternalDefinitions(D)) {
10012 case ExternalASTSource::EK_Never:
10013 // Other translation units rely on us to provide the definition.
10014 if (L == GVA_DiscardableODR)
10015 return GVA_StrongODR;
10016 break;
10017
10018 case ExternalASTSource::EK_Always:
10019 return GVA_AvailableExternally;
10020
10021 case ExternalASTSource::EK_ReplyHazy:
10022 break;
10023 }
10024 return L;
10025 }
10026
GetGVALinkageForFunction(const FunctionDecl * FD) const10027 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
10028 return adjustGVALinkageForExternalDefinitionKind(*this, FD,
10029 adjustGVALinkageForAttributes(*this, FD,
10030 basicGVALinkageForFunction(*this, FD)));
10031 }
10032
basicGVALinkageForVariable(const ASTContext & Context,const VarDecl * VD)10033 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
10034 const VarDecl *VD) {
10035 if (!VD->isExternallyVisible())
10036 return GVA_Internal;
10037
10038 if (VD->isStaticLocal()) {
10039 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
10040 while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
10041 LexicalContext = LexicalContext->getLexicalParent();
10042
10043 // ObjC Blocks can create local variables that don't have a FunctionDecl
10044 // LexicalContext.
10045 if (!LexicalContext)
10046 return GVA_DiscardableODR;
10047
10048 // Otherwise, let the static local variable inherit its linkage from the
10049 // nearest enclosing function.
10050 auto StaticLocalLinkage =
10051 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
10052
10053 // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
10054 // be emitted in any object with references to the symbol for the object it
10055 // contains, whether inline or out-of-line."
10056 // Similar behavior is observed with MSVC. An alternative ABI could use
10057 // StrongODR/AvailableExternally to match the function, but none are
10058 // known/supported currently.
10059 if (StaticLocalLinkage == GVA_StrongODR ||
10060 StaticLocalLinkage == GVA_AvailableExternally)
10061 return GVA_DiscardableODR;
10062 return StaticLocalLinkage;
10063 }
10064
10065 // MSVC treats in-class initialized static data members as definitions.
10066 // By giving them non-strong linkage, out-of-line definitions won't
10067 // cause link errors.
10068 if (Context.isMSStaticDataMemberInlineDefinition(VD))
10069 return GVA_DiscardableODR;
10070
10071 // Most non-template variables have strong linkage; inline variables are
10072 // linkonce_odr or (occasionally, for compatibility) weak_odr.
10073 GVALinkage StrongLinkage;
10074 switch (Context.getInlineVariableDefinitionKind(VD)) {
10075 case ASTContext::InlineVariableDefinitionKind::None:
10076 StrongLinkage = GVA_StrongExternal;
10077 break;
10078 case ASTContext::InlineVariableDefinitionKind::Weak:
10079 case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
10080 StrongLinkage = GVA_DiscardableODR;
10081 break;
10082 case ASTContext::InlineVariableDefinitionKind::Strong:
10083 StrongLinkage = GVA_StrongODR;
10084 break;
10085 }
10086
10087 switch (VD->getTemplateSpecializationKind()) {
10088 case TSK_Undeclared:
10089 return StrongLinkage;
10090
10091 case TSK_ExplicitSpecialization:
10092 return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10093 VD->isStaticDataMember()
10094 ? GVA_StrongODR
10095 : StrongLinkage;
10096
10097 case TSK_ExplicitInstantiationDefinition:
10098 return GVA_StrongODR;
10099
10100 case TSK_ExplicitInstantiationDeclaration:
10101 return GVA_AvailableExternally;
10102
10103 case TSK_ImplicitInstantiation:
10104 return GVA_DiscardableODR;
10105 }
10106
10107 llvm_unreachable("Invalid Linkage!");
10108 }
10109
GetGVALinkageForVariable(const VarDecl * VD)10110 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
10111 return adjustGVALinkageForExternalDefinitionKind(*this, VD,
10112 adjustGVALinkageForAttributes(*this, VD,
10113 basicGVALinkageForVariable(*this, VD)));
10114 }
10115
DeclMustBeEmitted(const Decl * D)10116 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
10117 if (const auto *VD = dyn_cast<VarDecl>(D)) {
10118 if (!VD->isFileVarDecl())
10119 return false;
10120 // Global named register variables (GNU extension) are never emitted.
10121 if (VD->getStorageClass() == SC_Register)
10122 return false;
10123 if (VD->getDescribedVarTemplate() ||
10124 isa<VarTemplatePartialSpecializationDecl>(VD))
10125 return false;
10126 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10127 // We never need to emit an uninstantiated function template.
10128 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10129 return false;
10130 } else if (isa<PragmaCommentDecl>(D))
10131 return true;
10132 else if (isa<PragmaDetectMismatchDecl>(D))
10133 return true;
10134 else if (isa<OMPThreadPrivateDecl>(D))
10135 return !D->getDeclContext()->isDependentContext();
10136 else if (isa<OMPAllocateDecl>(D))
10137 return !D->getDeclContext()->isDependentContext();
10138 else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
10139 return !D->getDeclContext()->isDependentContext();
10140 else if (isa<ImportDecl>(D))
10141 return true;
10142 else
10143 return false;
10144
10145 if (D->isFromASTFile() && !LangOpts.BuildingPCHWithObjectFile) {
10146 assert(getExternalSource() && "It's from an AST file; must have a source.");
10147 // On Windows, PCH files are built together with an object file. If this
10148 // declaration comes from such a PCH and DeclMustBeEmitted would return
10149 // true, it would have returned true and the decl would have been emitted
10150 // into that object file, so it doesn't need to be emitted here.
10151 // Note that decls are still emitted if they're referenced, as usual;
10152 // DeclMustBeEmitted is used to decide whether a decl must be emitted even
10153 // if it's not referenced.
10154 //
10155 // Explicit template instantiation definitions are tricky. If there was an
10156 // explicit template instantiation decl in the PCH before, it will look like
10157 // the definition comes from there, even if that was just the declaration.
10158 // (Explicit instantiation defs of variable templates always get emitted.)
10159 bool IsExpInstDef =
10160 isa<FunctionDecl>(D) &&
10161 cast<FunctionDecl>(D)->getTemplateSpecializationKind() ==
10162 TSK_ExplicitInstantiationDefinition;
10163
10164 // Implicit member function definitions, such as operator= might not be
10165 // marked as template specializations, since they're not coming from a
10166 // template but synthesized directly on the class.
10167 IsExpInstDef |=
10168 isa<CXXMethodDecl>(D) &&
10169 cast<CXXMethodDecl>(D)->getParent()->getTemplateSpecializationKind() ==
10170 TSK_ExplicitInstantiationDefinition;
10171
10172 if (getExternalSource()->DeclIsFromPCHWithObjectFile(D) && !IsExpInstDef)
10173 return false;
10174 }
10175
10176 // If this is a member of a class template, we do not need to emit it.
10177 if (D->getDeclContext()->isDependentContext())
10178 return false;
10179
10180 // Weak references don't produce any output by themselves.
10181 if (D->hasAttr<WeakRefAttr>())
10182 return false;
10183
10184 // Aliases and used decls are required.
10185 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
10186 return true;
10187
10188 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10189 // Forward declarations aren't required.
10190 if (!FD->doesThisDeclarationHaveABody())
10191 return FD->doesDeclarationForceExternallyVisibleDefinition();
10192
10193 // Constructors and destructors are required.
10194 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
10195 return true;
10196
10197 // The key function for a class is required. This rule only comes
10198 // into play when inline functions can be key functions, though.
10199 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
10200 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10201 const CXXRecordDecl *RD = MD->getParent();
10202 if (MD->isOutOfLine() && RD->isDynamicClass()) {
10203 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
10204 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
10205 return true;
10206 }
10207 }
10208 }
10209
10210 GVALinkage Linkage = GetGVALinkageForFunction(FD);
10211
10212 // static, static inline, always_inline, and extern inline functions can
10213 // always be deferred. Normal inline functions can be deferred in C99/C++.
10214 // Implicit template instantiations can also be deferred in C++.
10215 return !isDiscardableGVALinkage(Linkage);
10216 }
10217
10218 const auto *VD = cast<VarDecl>(D);
10219 assert(VD->isFileVarDecl() && "Expected file scoped var");
10220
10221 // If the decl is marked as `declare target to`, it should be emitted for the
10222 // host and for the device.
10223 if (LangOpts.OpenMP &&
10224 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
10225 return true;
10226
10227 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
10228 !isMSStaticDataMemberInlineDefinition(VD))
10229 return false;
10230
10231 // Variables that can be needed in other TUs are required.
10232 auto Linkage = GetGVALinkageForVariable(VD);
10233 if (!isDiscardableGVALinkage(Linkage))
10234 return true;
10235
10236 // We never need to emit a variable that is available in another TU.
10237 if (Linkage == GVA_AvailableExternally)
10238 return false;
10239
10240 // Variables that have destruction with side-effects are required.
10241 if (VD->needsDestruction(*this))
10242 return true;
10243
10244 // Variables that have initialization with side-effects are required.
10245 if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
10246 // We can get a value-dependent initializer during error recovery.
10247 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
10248 return true;
10249
10250 // Likewise, variables with tuple-like bindings are required if their
10251 // bindings have side-effects.
10252 if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
10253 for (const auto *BD : DD->bindings())
10254 if (const auto *BindingVD = BD->getHoldingVar())
10255 if (DeclMustBeEmitted(BindingVD))
10256 return true;
10257
10258 return false;
10259 }
10260
forEachMultiversionedFunctionVersion(const FunctionDecl * FD,llvm::function_ref<void (FunctionDecl *)> Pred) const10261 void ASTContext::forEachMultiversionedFunctionVersion(
10262 const FunctionDecl *FD,
10263 llvm::function_ref<void(FunctionDecl *)> Pred) const {
10264 assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
10265 llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
10266 FD = FD->getMostRecentDecl();
10267 for (auto *CurDecl :
10268 FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
10269 FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
10270 if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
10271 std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
10272 SeenDecls.insert(CurFD);
10273 Pred(CurFD);
10274 }
10275 }
10276 }
10277
getDefaultCallingConvention(bool IsVariadic,bool IsCXXMethod,bool IsBuiltin) const10278 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
10279 bool IsCXXMethod,
10280 bool IsBuiltin) const {
10281 // Pass through to the C++ ABI object
10282 if (IsCXXMethod)
10283 return ABI->getDefaultMethodCallConv(IsVariadic);
10284
10285 // Builtins ignore user-specified default calling convention and remain the
10286 // Target's default calling convention.
10287 if (!IsBuiltin) {
10288 switch (LangOpts.getDefaultCallingConv()) {
10289 case LangOptions::DCC_None:
10290 break;
10291 case LangOptions::DCC_CDecl:
10292 return CC_C;
10293 case LangOptions::DCC_FastCall:
10294 if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
10295 return CC_X86FastCall;
10296 break;
10297 case LangOptions::DCC_StdCall:
10298 if (!IsVariadic)
10299 return CC_X86StdCall;
10300 break;
10301 case LangOptions::DCC_VectorCall:
10302 // __vectorcall cannot be applied to variadic functions.
10303 if (!IsVariadic)
10304 return CC_X86VectorCall;
10305 break;
10306 case LangOptions::DCC_RegCall:
10307 // __regcall cannot be applied to variadic functions.
10308 if (!IsVariadic)
10309 return CC_X86RegCall;
10310 break;
10311 }
10312 }
10313 return Target->getDefaultCallingConv();
10314 }
10315
isNearlyEmpty(const CXXRecordDecl * RD) const10316 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
10317 // Pass through to the C++ ABI object
10318 return ABI->isNearlyEmpty(RD);
10319 }
10320
getVTableContext()10321 VTableContextBase *ASTContext::getVTableContext() {
10322 if (!VTContext.get()) {
10323 if (Target->getCXXABI().isMicrosoft())
10324 VTContext.reset(new MicrosoftVTableContext(*this));
10325 else
10326 VTContext.reset(new ItaniumVTableContext(*this));
10327 }
10328 return VTContext.get();
10329 }
10330
createMangleContext(const TargetInfo * T)10331 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
10332 if (!T)
10333 T = Target;
10334 switch (T->getCXXABI().getKind()) {
10335 case TargetCXXABI::Fuchsia:
10336 case TargetCXXABI::GenericAArch64:
10337 case TargetCXXABI::GenericItanium:
10338 case TargetCXXABI::GenericARM:
10339 case TargetCXXABI::GenericMIPS:
10340 case TargetCXXABI::iOS:
10341 case TargetCXXABI::iOS64:
10342 case TargetCXXABI::WebAssembly:
10343 case TargetCXXABI::WatchOS:
10344 return ItaniumMangleContext::create(*this, getDiagnostics());
10345 case TargetCXXABI::Microsoft:
10346 return MicrosoftMangleContext::create(*this, getDiagnostics());
10347 }
10348 llvm_unreachable("Unsupported ABI");
10349 }
10350
10351 CXXABI::~CXXABI() = default;
10352
getSideTableAllocatedMemory() const10353 size_t ASTContext::getSideTableAllocatedMemory() const {
10354 return ASTRecordLayouts.getMemorySize() +
10355 llvm::capacity_in_bytes(ObjCLayouts) +
10356 llvm::capacity_in_bytes(KeyFunctions) +
10357 llvm::capacity_in_bytes(ObjCImpls) +
10358 llvm::capacity_in_bytes(BlockVarCopyInits) +
10359 llvm::capacity_in_bytes(DeclAttrs) +
10360 llvm::capacity_in_bytes(TemplateOrInstantiation) +
10361 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
10362 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
10363 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
10364 llvm::capacity_in_bytes(OverriddenMethods) +
10365 llvm::capacity_in_bytes(Types) +
10366 llvm::capacity_in_bytes(VariableArrayTypes);
10367 }
10368
10369 /// getIntTypeForBitwidth -
10370 /// sets integer QualTy according to specified details:
10371 /// bitwidth, signed/unsigned.
10372 /// Returns empty type if there is no appropriate target types.
getIntTypeForBitwidth(unsigned DestWidth,unsigned Signed) const10373 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
10374 unsigned Signed) const {
10375 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
10376 CanQualType QualTy = getFromTargetType(Ty);
10377 if (!QualTy && DestWidth == 128)
10378 return Signed ? Int128Ty : UnsignedInt128Ty;
10379 return QualTy;
10380 }
10381
10382 /// getRealTypeForBitwidth -
10383 /// sets floating point QualTy according to specified bitwidth.
10384 /// Returns empty type if there is no appropriate target types.
getRealTypeForBitwidth(unsigned DestWidth) const10385 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
10386 TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
10387 switch (Ty) {
10388 case TargetInfo::Float:
10389 return FloatTy;
10390 case TargetInfo::Double:
10391 return DoubleTy;
10392 case TargetInfo::LongDouble:
10393 return LongDoubleTy;
10394 case TargetInfo::Float128:
10395 return Float128Ty;
10396 case TargetInfo::NoFloat:
10397 return {};
10398 }
10399
10400 llvm_unreachable("Unhandled TargetInfo::RealType value");
10401 }
10402
setManglingNumber(const NamedDecl * ND,unsigned Number)10403 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
10404 if (Number > 1)
10405 MangleNumbers[ND] = Number;
10406 }
10407
getManglingNumber(const NamedDecl * ND) const10408 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
10409 auto I = MangleNumbers.find(ND);
10410 return I != MangleNumbers.end() ? I->second : 1;
10411 }
10412
setStaticLocalNumber(const VarDecl * VD,unsigned Number)10413 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
10414 if (Number > 1)
10415 StaticLocalNumbers[VD] = Number;
10416 }
10417
getStaticLocalNumber(const VarDecl * VD) const10418 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
10419 auto I = StaticLocalNumbers.find(VD);
10420 return I != StaticLocalNumbers.end() ? I->second : 1;
10421 }
10422
10423 MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)10424 ASTContext::getManglingNumberContext(const DeclContext *DC) {
10425 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
10426 std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
10427 if (!MCtx)
10428 MCtx = createMangleNumberingContext();
10429 return *MCtx;
10430 }
10431
10432 MangleNumberingContext &
getManglingNumberContext(NeedExtraManglingDecl_t,const Decl * D)10433 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
10434 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
10435 std::unique_ptr<MangleNumberingContext> &MCtx =
10436 ExtraMangleNumberingContexts[D];
10437 if (!MCtx)
10438 MCtx = createMangleNumberingContext();
10439 return *MCtx;
10440 }
10441
10442 std::unique_ptr<MangleNumberingContext>
createMangleNumberingContext() const10443 ASTContext::createMangleNumberingContext() const {
10444 return ABI->createMangleNumberingContext();
10445 }
10446
10447 const CXXConstructorDecl *
getCopyConstructorForExceptionObject(CXXRecordDecl * RD)10448 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
10449 return ABI->getCopyConstructorForExceptionObject(
10450 cast<CXXRecordDecl>(RD->getFirstDecl()));
10451 }
10452
addCopyConstructorForExceptionObject(CXXRecordDecl * RD,CXXConstructorDecl * CD)10453 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
10454 CXXConstructorDecl *CD) {
10455 return ABI->addCopyConstructorForExceptionObject(
10456 cast<CXXRecordDecl>(RD->getFirstDecl()),
10457 cast<CXXConstructorDecl>(CD->getFirstDecl()));
10458 }
10459
addTypedefNameForUnnamedTagDecl(TagDecl * TD,TypedefNameDecl * DD)10460 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
10461 TypedefNameDecl *DD) {
10462 return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
10463 }
10464
10465 TypedefNameDecl *
getTypedefNameForUnnamedTagDecl(const TagDecl * TD)10466 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
10467 return ABI->getTypedefNameForUnnamedTagDecl(TD);
10468 }
10469
addDeclaratorForUnnamedTagDecl(TagDecl * TD,DeclaratorDecl * DD)10470 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
10471 DeclaratorDecl *DD) {
10472 return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
10473 }
10474
getDeclaratorForUnnamedTagDecl(const TagDecl * TD)10475 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
10476 return ABI->getDeclaratorForUnnamedTagDecl(TD);
10477 }
10478
setParameterIndex(const ParmVarDecl * D,unsigned int index)10479 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
10480 ParamIndices[D] = index;
10481 }
10482
getParameterIndex(const ParmVarDecl * D) const10483 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
10484 ParameterIndexTable::const_iterator I = ParamIndices.find(D);
10485 assert(I != ParamIndices.end() &&
10486 "ParmIndices lacks entry set by ParmVarDecl");
10487 return I->second;
10488 }
10489
getStringLiteralArrayType(QualType EltTy,unsigned Length) const10490 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
10491 unsigned Length) const {
10492 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
10493 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
10494 EltTy = EltTy.withConst();
10495
10496 EltTy = adjustStringLiteralBaseType(EltTy);
10497
10498 // Get an array type for the string, according to C99 6.4.5. This includes
10499 // the null terminator character.
10500 return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
10501 ArrayType::Normal, /*IndexTypeQuals*/ 0);
10502 }
10503
10504 StringLiteral *
getPredefinedStringLiteralFromCache(StringRef Key) const10505 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
10506 StringLiteral *&Result = StringLiteralCache[Key];
10507 if (!Result)
10508 Result = StringLiteral::Create(
10509 *this, Key, StringLiteral::Ascii,
10510 /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
10511 SourceLocation());
10512 return Result;
10513 }
10514
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const10515 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
10516 const llvm::Triple &T = getTargetInfo().getTriple();
10517 if (!T.isOSDarwin())
10518 return false;
10519
10520 if (!(T.isiOS() && T.isOSVersionLT(7)) &&
10521 !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
10522 return false;
10523
10524 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
10525 CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
10526 uint64_t Size = sizeChars.getQuantity();
10527 CharUnits alignChars = getTypeAlignInChars(AtomicTy);
10528 unsigned Align = alignChars.getQuantity();
10529 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
10530 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
10531 }
10532
10533 /// Template specializations to abstract away from pointers and TypeLocs.
10534 /// @{
10535 template <typename T>
createDynTypedNode(const T & Node)10536 static ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) {
10537 return ast_type_traits::DynTypedNode::create(*Node);
10538 }
10539 template <>
createDynTypedNode(const TypeLoc & Node)10540 ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) {
10541 return ast_type_traits::DynTypedNode::create(Node);
10542 }
10543 template <>
10544 ast_type_traits::DynTypedNode
createDynTypedNode(const NestedNameSpecifierLoc & Node)10545 createDynTypedNode(const NestedNameSpecifierLoc &Node) {
10546 return ast_type_traits::DynTypedNode::create(Node);
10547 }
10548 /// @}
10549
10550 /// A \c RecursiveASTVisitor that builds a map from nodes to their
10551 /// parents as defined by the \c RecursiveASTVisitor.
10552 ///
10553 /// Note that the relationship described here is purely in terms of AST
10554 /// traversal - there are other relationships (for example declaration context)
10555 /// in the AST that are better modeled by special matchers.
10556 ///
10557 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
10558 class ASTContext::ParentMap::ASTVisitor
10559 : public RecursiveASTVisitor<ASTVisitor> {
10560 public:
ASTVisitor(ParentMap & Map,ASTContext & Context)10561 ASTVisitor(ParentMap &Map, ASTContext &Context)
10562 : Map(Map), Context(Context) {}
10563
10564 private:
10565 friend class RecursiveASTVisitor<ASTVisitor>;
10566
10567 using VisitorBase = RecursiveASTVisitor<ASTVisitor>;
10568
shouldVisitTemplateInstantiations() const10569 bool shouldVisitTemplateInstantiations() const { return true; }
10570
shouldVisitImplicitCode() const10571 bool shouldVisitImplicitCode() const { return true; }
10572
10573 template <typename T, typename MapNodeTy, typename BaseTraverseFn,
10574 typename MapTy>
TraverseNode(T Node,MapNodeTy MapNode,BaseTraverseFn BaseTraverse,MapTy * Parents)10575 bool TraverseNode(T Node, MapNodeTy MapNode, BaseTraverseFn BaseTraverse,
10576 MapTy *Parents) {
10577 if (!Node)
10578 return true;
10579 if (ParentStack.size() > 0) {
10580 // FIXME: Currently we add the same parent multiple times, but only
10581 // when no memoization data is available for the type.
10582 // For example when we visit all subexpressions of template
10583 // instantiations; this is suboptimal, but benign: the only way to
10584 // visit those is with hasAncestor / hasParent, and those do not create
10585 // new matches.
10586 // The plan is to enable DynTypedNode to be storable in a map or hash
10587 // map. The main problem there is to implement hash functions /
10588 // comparison operators for all types that DynTypedNode supports that
10589 // do not have pointer identity.
10590 auto &NodeOrVector = (*Parents)[MapNode];
10591 if (NodeOrVector.isNull()) {
10592 if (const auto *D = ParentStack.back().get<Decl>())
10593 NodeOrVector = D;
10594 else if (const auto *S = ParentStack.back().get<Stmt>())
10595 NodeOrVector = S;
10596 else
10597 NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
10598 } else {
10599 if (!NodeOrVector.template is<ParentVector *>()) {
10600 auto *Vector = new ParentVector(
10601 1, getSingleDynTypedNodeFromParentMap(NodeOrVector));
10602 delete NodeOrVector
10603 .template dyn_cast<ast_type_traits::DynTypedNode *>();
10604 NodeOrVector = Vector;
10605 }
10606
10607 auto *Vector = NodeOrVector.template get<ParentVector *>();
10608 // Skip duplicates for types that have memoization data.
10609 // We must check that the type has memoization data before calling
10610 // std::find() because DynTypedNode::operator== can't compare all
10611 // types.
10612 bool Found = ParentStack.back().getMemoizationData() &&
10613 std::find(Vector->begin(), Vector->end(),
10614 ParentStack.back()) != Vector->end();
10615 if (!Found)
10616 Vector->push_back(ParentStack.back());
10617 }
10618 }
10619 ParentStack.push_back(createDynTypedNode(Node));
10620 bool Result = BaseTraverse();
10621 ParentStack.pop_back();
10622 return Result;
10623 }
10624
TraverseDecl(Decl * DeclNode)10625 bool TraverseDecl(Decl *DeclNode) {
10626 return TraverseNode(
10627 DeclNode, DeclNode, [&] { return VisitorBase::TraverseDecl(DeclNode); },
10628 &Map.PointerParents);
10629 }
10630
TraverseStmt(Stmt * StmtNode)10631 bool TraverseStmt(Stmt *StmtNode) {
10632 Stmt *FilteredNode = StmtNode;
10633 if (auto *ExprNode = dyn_cast_or_null<Expr>(FilteredNode))
10634 FilteredNode = Context.traverseIgnored(ExprNode);
10635 return TraverseNode(FilteredNode, FilteredNode,
10636 [&] { return VisitorBase::TraverseStmt(FilteredNode); },
10637 &Map.PointerParents);
10638 }
10639
TraverseTypeLoc(TypeLoc TypeLocNode)10640 bool TraverseTypeLoc(TypeLoc TypeLocNode) {
10641 return TraverseNode(
10642 TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode),
10643 [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); },
10644 &Map.OtherParents);
10645 }
10646
TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode)10647 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) {
10648 return TraverseNode(
10649 NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode),
10650 [&] { return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode); },
10651 &Map.OtherParents);
10652 }
10653
10654 ParentMap ⤅
10655 ASTContext &Context;
10656 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
10657 };
10658
ParentMap(ASTContext & Ctx)10659 ASTContext::ParentMap::ParentMap(ASTContext &Ctx) {
10660 ASTVisitor(*this, Ctx).TraverseAST(Ctx);
10661 }
10662
10663 ASTContext::DynTypedNodeList
getParents(const ast_type_traits::DynTypedNode & Node)10664 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
10665 std::unique_ptr<ParentMap> &P = Parents[Traversal];
10666 if (!P)
10667 // We build the parent map for the traversal scope (usually whole TU), as
10668 // hasAncestor can escape any subtree.
10669 P = std::make_unique<ParentMap>(*this);
10670 return P->getParents(Node);
10671 }
10672
10673 bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)10674 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
10675 const ObjCMethodDecl *MethodImpl) {
10676 // No point trying to match an unavailable/deprecated mothod.
10677 if (MethodDecl->hasAttr<UnavailableAttr>()
10678 || MethodDecl->hasAttr<DeprecatedAttr>())
10679 return false;
10680 if (MethodDecl->getObjCDeclQualifier() !=
10681 MethodImpl->getObjCDeclQualifier())
10682 return false;
10683 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
10684 return false;
10685
10686 if (MethodDecl->param_size() != MethodImpl->param_size())
10687 return false;
10688
10689 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
10690 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
10691 EF = MethodDecl->param_end();
10692 IM != EM && IF != EF; ++IM, ++IF) {
10693 const ParmVarDecl *DeclVar = (*IF);
10694 const ParmVarDecl *ImplVar = (*IM);
10695 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
10696 return false;
10697 if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
10698 return false;
10699 }
10700
10701 return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
10702 }
10703
getTargetNullPointerValue(QualType QT) const10704 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
10705 LangAS AS;
10706 if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
10707 AS = LangAS::Default;
10708 else
10709 AS = QT->getPointeeType().getAddressSpace();
10710
10711 return getTargetInfo().getNullPointerValue(AS);
10712 }
10713
getTargetAddressSpace(LangAS AS) const10714 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
10715 if (isTargetAddressSpace(AS))
10716 return toTargetAddressSpace(AS);
10717 else
10718 return (*AddrSpaceMap)[(unsigned)AS];
10719 }
10720
getCorrespondingSaturatedType(QualType Ty) const10721 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
10722 assert(Ty->isFixedPointType());
10723
10724 if (Ty->isSaturatedFixedPointType()) return Ty;
10725
10726 switch (Ty->castAs<BuiltinType>()->getKind()) {
10727 default:
10728 llvm_unreachable("Not a fixed point type!");
10729 case BuiltinType::ShortAccum:
10730 return SatShortAccumTy;
10731 case BuiltinType::Accum:
10732 return SatAccumTy;
10733 case BuiltinType::LongAccum:
10734 return SatLongAccumTy;
10735 case BuiltinType::UShortAccum:
10736 return SatUnsignedShortAccumTy;
10737 case BuiltinType::UAccum:
10738 return SatUnsignedAccumTy;
10739 case BuiltinType::ULongAccum:
10740 return SatUnsignedLongAccumTy;
10741 case BuiltinType::ShortFract:
10742 return SatShortFractTy;
10743 case BuiltinType::Fract:
10744 return SatFractTy;
10745 case BuiltinType::LongFract:
10746 return SatLongFractTy;
10747 case BuiltinType::UShortFract:
10748 return SatUnsignedShortFractTy;
10749 case BuiltinType::UFract:
10750 return SatUnsignedFractTy;
10751 case BuiltinType::ULongFract:
10752 return SatUnsignedLongFractTy;
10753 }
10754 }
10755
getLangASForBuiltinAddressSpace(unsigned AS) const10756 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
10757 if (LangOpts.OpenCL)
10758 return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
10759
10760 if (LangOpts.CUDA)
10761 return getTargetInfo().getCUDABuiltinAddressSpace(AS);
10762
10763 return getLangASFromTargetAS(AS);
10764 }
10765
10766 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
10767 // doesn't include ASTContext.h
10768 template
10769 clang::LazyGenerationalUpdatePtr<
10770 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
10771 clang::LazyGenerationalUpdatePtr<
10772 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
10773 const clang::ASTContext &Ctx, Decl *Value);
10774
getFixedPointScale(QualType Ty) const10775 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
10776 assert(Ty->isFixedPointType());
10777
10778 const TargetInfo &Target = getTargetInfo();
10779 switch (Ty->castAs<BuiltinType>()->getKind()) {
10780 default:
10781 llvm_unreachable("Not a fixed point type!");
10782 case BuiltinType::ShortAccum:
10783 case BuiltinType::SatShortAccum:
10784 return Target.getShortAccumScale();
10785 case BuiltinType::Accum:
10786 case BuiltinType::SatAccum:
10787 return Target.getAccumScale();
10788 case BuiltinType::LongAccum:
10789 case BuiltinType::SatLongAccum:
10790 return Target.getLongAccumScale();
10791 case BuiltinType::UShortAccum:
10792 case BuiltinType::SatUShortAccum:
10793 return Target.getUnsignedShortAccumScale();
10794 case BuiltinType::UAccum:
10795 case BuiltinType::SatUAccum:
10796 return Target.getUnsignedAccumScale();
10797 case BuiltinType::ULongAccum:
10798 case BuiltinType::SatULongAccum:
10799 return Target.getUnsignedLongAccumScale();
10800 case BuiltinType::ShortFract:
10801 case BuiltinType::SatShortFract:
10802 return Target.getShortFractScale();
10803 case BuiltinType::Fract:
10804 case BuiltinType::SatFract:
10805 return Target.getFractScale();
10806 case BuiltinType::LongFract:
10807 case BuiltinType::SatLongFract:
10808 return Target.getLongFractScale();
10809 case BuiltinType::UShortFract:
10810 case BuiltinType::SatUShortFract:
10811 return Target.getUnsignedShortFractScale();
10812 case BuiltinType::UFract:
10813 case BuiltinType::SatUFract:
10814 return Target.getUnsignedFractScale();
10815 case BuiltinType::ULongFract:
10816 case BuiltinType::SatULongFract:
10817 return Target.getUnsignedLongFractScale();
10818 }
10819 }
10820
getFixedPointIBits(QualType Ty) const10821 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
10822 assert(Ty->isFixedPointType());
10823
10824 const TargetInfo &Target = getTargetInfo();
10825 switch (Ty->castAs<BuiltinType>()->getKind()) {
10826 default:
10827 llvm_unreachable("Not a fixed point type!");
10828 case BuiltinType::ShortAccum:
10829 case BuiltinType::SatShortAccum:
10830 return Target.getShortAccumIBits();
10831 case BuiltinType::Accum:
10832 case BuiltinType::SatAccum:
10833 return Target.getAccumIBits();
10834 case BuiltinType::LongAccum:
10835 case BuiltinType::SatLongAccum:
10836 return Target.getLongAccumIBits();
10837 case BuiltinType::UShortAccum:
10838 case BuiltinType::SatUShortAccum:
10839 return Target.getUnsignedShortAccumIBits();
10840 case BuiltinType::UAccum:
10841 case BuiltinType::SatUAccum:
10842 return Target.getUnsignedAccumIBits();
10843 case BuiltinType::ULongAccum:
10844 case BuiltinType::SatULongAccum:
10845 return Target.getUnsignedLongAccumIBits();
10846 case BuiltinType::ShortFract:
10847 case BuiltinType::SatShortFract:
10848 case BuiltinType::Fract:
10849 case BuiltinType::SatFract:
10850 case BuiltinType::LongFract:
10851 case BuiltinType::SatLongFract:
10852 case BuiltinType::UShortFract:
10853 case BuiltinType::SatUShortFract:
10854 case BuiltinType::UFract:
10855 case BuiltinType::SatUFract:
10856 case BuiltinType::ULongFract:
10857 case BuiltinType::SatULongFract:
10858 return 0;
10859 }
10860 }
10861
getFixedPointSemantics(QualType Ty) const10862 FixedPointSemantics ASTContext::getFixedPointSemantics(QualType Ty) const {
10863 assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
10864 "Can only get the fixed point semantics for a "
10865 "fixed point or integer type.");
10866 if (Ty->isIntegerType())
10867 return FixedPointSemantics::GetIntegerSemantics(getIntWidth(Ty),
10868 Ty->isSignedIntegerType());
10869
10870 bool isSigned = Ty->isSignedFixedPointType();
10871 return FixedPointSemantics(
10872 static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
10873 Ty->isSaturatedFixedPointType(),
10874 !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
10875 }
10876
getFixedPointMax(QualType Ty) const10877 APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
10878 assert(Ty->isFixedPointType());
10879 return APFixedPoint::getMax(getFixedPointSemantics(Ty));
10880 }
10881
getFixedPointMin(QualType Ty) const10882 APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
10883 assert(Ty->isFixedPointType());
10884 return APFixedPoint::getMin(getFixedPointSemantics(Ty));
10885 }
10886
getCorrespondingSignedFixedPointType(QualType Ty) const10887 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
10888 assert(Ty->isUnsignedFixedPointType() &&
10889 "Expected unsigned fixed point type");
10890
10891 switch (Ty->castAs<BuiltinType>()->getKind()) {
10892 case BuiltinType::UShortAccum:
10893 return ShortAccumTy;
10894 case BuiltinType::UAccum:
10895 return AccumTy;
10896 case BuiltinType::ULongAccum:
10897 return LongAccumTy;
10898 case BuiltinType::SatUShortAccum:
10899 return SatShortAccumTy;
10900 case BuiltinType::SatUAccum:
10901 return SatAccumTy;
10902 case BuiltinType::SatULongAccum:
10903 return SatLongAccumTy;
10904 case BuiltinType::UShortFract:
10905 return ShortFractTy;
10906 case BuiltinType::UFract:
10907 return FractTy;
10908 case BuiltinType::ULongFract:
10909 return LongFractTy;
10910 case BuiltinType::SatUShortFract:
10911 return SatShortFractTy;
10912 case BuiltinType::SatUFract:
10913 return SatFractTy;
10914 case BuiltinType::SatULongFract:
10915 return SatLongFractTy;
10916 default:
10917 llvm_unreachable("Unexpected unsigned fixed point type");
10918 }
10919 }
10920
10921 ParsedTargetAttr
filterFunctionTargetAttrs(const TargetAttr * TD) const10922 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
10923 assert(TD != nullptr);
10924 ParsedTargetAttr ParsedAttr = TD->parse();
10925
10926 ParsedAttr.Features.erase(
10927 llvm::remove_if(ParsedAttr.Features,
10928 [&](const std::string &Feat) {
10929 return !Target->isValidFeatureName(
10930 StringRef{Feat}.substr(1));
10931 }),
10932 ParsedAttr.Features.end());
10933 return ParsedAttr;
10934 }
10935
getFunctionFeatureMap(llvm::StringMap<bool> & FeatureMap,const FunctionDecl * FD) const10936 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
10937 const FunctionDecl *FD) const {
10938 if (FD)
10939 getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
10940 else
10941 Target->initFeatureMap(FeatureMap, getDiagnostics(),
10942 Target->getTargetOpts().CPU,
10943 Target->getTargetOpts().Features);
10944 }
10945
10946 // Fills in the supplied string map with the set of target features for the
10947 // passed in function.
getFunctionFeatureMap(llvm::StringMap<bool> & FeatureMap,GlobalDecl GD) const10948 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
10949 GlobalDecl GD) const {
10950 StringRef TargetCPU = Target->getTargetOpts().CPU;
10951 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
10952 if (const auto *TD = FD->getAttr<TargetAttr>()) {
10953 ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
10954
10955 // Make a copy of the features as passed on the command line into the
10956 // beginning of the additional features from the function to override.
10957 ParsedAttr.Features.insert(
10958 ParsedAttr.Features.begin(),
10959 Target->getTargetOpts().FeaturesAsWritten.begin(),
10960 Target->getTargetOpts().FeaturesAsWritten.end());
10961
10962 if (ParsedAttr.Architecture != "" &&
10963 Target->isValidCPUName(ParsedAttr.Architecture))
10964 TargetCPU = ParsedAttr.Architecture;
10965
10966 // Now populate the feature map, first with the TargetCPU which is either
10967 // the default or a new one from the target attribute string. Then we'll use
10968 // the passed in features (FeaturesAsWritten) along with the new ones from
10969 // the attribute.
10970 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
10971 ParsedAttr.Features);
10972 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
10973 llvm::SmallVector<StringRef, 32> FeaturesTmp;
10974 Target->getCPUSpecificCPUDispatchFeatures(
10975 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
10976 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
10977 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
10978 } else {
10979 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
10980 Target->getTargetOpts().Features);
10981 }
10982 }
10983