1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Redeclarable.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/IdentifierTable.h"
40 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/LangOptions.h"
42 #include "clang/Basic/Linkage.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/PartialDiagnostic.h"
45 #include "clang/Basic/SanitizerBlacklist.h"
46 #include "clang/Basic/Sanitizers.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetCXXABI.h"
51 #include "clang/Basic/TargetInfo.h"
52 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73
74 using namespace clang;
75
getPrimaryMergedDecl(Decl * D)76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77 return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79
print(raw_ostream & OS) const80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81 SourceLocation Loc = this->Loc;
82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83 if (Loc.isValid()) {
84 Loc.print(OS, Context.getSourceManager());
85 OS << ": ";
86 }
87 OS << Message;
88
89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90 OS << " '";
91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92 OS << "'";
93 }
94
95 OS << '\n';
96 }
97
98 // Defined here so that it can be inlined into its direct callers.
isOutOfLine() const99 bool Decl::isOutOfLine() const {
100 return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102
TranslationUnitDecl(ASTContext & ctx)103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104 : Decl(TranslationUnit, nullptr, SourceLocation()),
105 DeclContext(TranslationUnit), Ctx(ctx) {}
106
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored. Only the innermost
116 // visibility attribute applies. If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments. But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility. For example,
148 // the visibility of a specialization of either of these templates:
149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 // template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'. That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160 return computation.IgnoreExplicitVisibility;
161 }
162
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind Kind)166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167 Kind.IgnoreExplicitVisibility = true;
168 return Kind;
169 }
170
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172 LVComputationKind kind) {
173 assert(!kind.IgnoreExplicitVisibility &&
174 "asking for explicit visibility when we shouldn't be");
175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)180 static bool usesTypeVisibility(const NamedDecl *D) {
181 return isa<TypeDecl>(D) ||
182 isa<ClassTemplateDecl>(D) ||
183 isa<ObjCInterfaceDecl>(D);
184 }
185
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
isExplicitMemberSpecialization(const T * D)190 isExplicitMemberSpecialization(const T *D) {
191 if (const MemberSpecializationInfo *member =
192 D->getMemberSpecializationInfo()) {
193 return member->isExplicitSpecialization();
194 }
195 return false;
196 }
197
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202 return D->isMemberSpecialization();
203 }
204
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
getVisibilityFromAttr(const T * attr)208 static Visibility getVisibilityFromAttr(const T *attr) {
209 switch (attr->getVisibility()) {
210 case T::Default:
211 return DefaultVisibility;
212 case T::Hidden:
213 return HiddenVisibility;
214 case T::Protected:
215 return ProtectedVisibility;
216 }
217 llvm_unreachable("bad visibility kind");
218 }
219
220 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222 NamedDecl::ExplicitVisibilityKind kind) {
223 // If we're ultimately computing the visibility of a type, look for
224 // a 'type_visibility' attribute before looking for 'visibility'.
225 if (kind == NamedDecl::VisibilityForType) {
226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227 return getVisibilityFromAttr(A);
228 }
229 }
230
231 // If this declaration has an explicit visibility attribute, use it.
232 if (const auto *A = D->getAttr<VisibilityAttr>()) {
233 return getVisibilityFromAttr(A);
234 }
235
236 return None;
237 }
238
getLVForType(const Type & T,LVComputationKind computation)239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240 LVComputationKind computation) {
241 if (computation.IgnoreAllVisibility)
242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243 return getTypeLinkageAndVisibility(&T);
244 }
245
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list. For visibility purposes, template
248 /// parameters are part of the signature of a template.
getLVForTemplateParameterList(const TemplateParameterList * Params,LVComputationKind computation)249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250 const TemplateParameterList *Params, LVComputationKind computation) {
251 LinkageInfo LV;
252 for (const NamedDecl *P : *Params) {
253 // Template type parameters are the most common and never
254 // contribute to visibility, pack or not.
255 if (isa<TemplateTypeParmDecl>(P))
256 continue;
257
258 // Non-type template parameters can be restricted by the value type, e.g.
259 // template <enum X> class A { ... };
260 // We have to be careful here, though, because we can be dealing with
261 // dependent types.
262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263 // Handle the non-pack case first.
264 if (!NTTP->isExpandedParameterPack()) {
265 if (!NTTP->getType()->isDependentType()) {
266 LV.merge(getLVForType(*NTTP->getType(), computation));
267 }
268 continue;
269 }
270
271 // Look at all the types in an expanded pack.
272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273 QualType type = NTTP->getExpansionType(i);
274 if (!type->isDependentType())
275 LV.merge(getTypeLinkageAndVisibility(type));
276 }
277 continue;
278 }
279
280 // Template template parameters can be restricted by their
281 // template parameters, recursively.
282 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283
284 // Handle the non-pack case first.
285 if (!TTP->isExpandedParameterPack()) {
286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287 computation));
288 continue;
289 }
290
291 // Look at all expansions in an expanded pack.
292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293 i != n; ++i) {
294 LV.merge(getLVForTemplateParameterList(
295 TTP->getExpansionTemplateParameters(i), computation));
296 }
297 }
298
299 return LV;
300 }
301
getOutermostFuncOrBlockContext(const Decl * D)302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303 const Decl *Ret = nullptr;
304 const DeclContext *DC = D->getDeclContext();
305 while (DC->getDeclKind() != Decl::TranslationUnit) {
306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307 Ret = cast<Decl>(DC);
308 DC = DC->getParent();
309 }
310 return Ret;
311 }
312
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,LVComputationKind computation)319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320 LVComputationKind computation) {
321 LinkageInfo LV;
322
323 for (const TemplateArgument &Arg : Args) {
324 switch (Arg.getKind()) {
325 case TemplateArgument::Null:
326 case TemplateArgument::Integral:
327 case TemplateArgument::Expression:
328 continue;
329
330 case TemplateArgument::Type:
331 LV.merge(getLVForType(*Arg.getAsType(), computation));
332 continue;
333
334 case TemplateArgument::Declaration: {
335 const NamedDecl *ND = Arg.getAsDecl();
336 assert(!usesTypeVisibility(ND));
337 LV.merge(getLVForDecl(ND, computation));
338 continue;
339 }
340
341 case TemplateArgument::NullPtr:
342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343 continue;
344
345 case TemplateArgument::Template:
346 case TemplateArgument::TemplateExpansion:
347 if (TemplateDecl *Template =
348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349 LV.merge(getLVForDecl(Template, computation));
350 continue;
351
352 case TemplateArgument::Pack:
353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354 continue;
355 }
356 llvm_unreachable("bad template argument kind");
357 }
358
359 return LV;
360 }
361
362 LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364 LVComputationKind computation) {
365 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369 const FunctionTemplateSpecializationInfo *specInfo) {
370 // Include visibility from the template parameters and arguments
371 // only if this is not an explicit instantiation or specialization
372 // with direct explicit visibility. (Implicit instantiations won't
373 // have a direct attribute.)
374 if (!specInfo->isExplicitInstantiationOrSpecialization())
375 return true;
376
377 return !fn->hasAttr<VisibilityAttr>();
378 }
379
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)387 void LinkageComputer::mergeTemplateLV(
388 LinkageInfo &LV, const FunctionDecl *fn,
389 const FunctionTemplateSpecializationInfo *specInfo,
390 LVComputationKind computation) {
391 bool considerVisibility =
392 shouldConsiderTemplateVisibility(fn, specInfo);
393
394 // Merge information from the template parameters.
395 FunctionTemplateDecl *temp = specInfo->getTemplate();
396 LinkageInfo tempLV =
397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399
400 // Merge information from the template arguments.
401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409 LVComputationKind computation) {
410 if (computation.IgnoreAllVisibility)
411 return false;
412
413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414 D->hasAttr<VisibilityAttr>();
415 }
416
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)419 static bool shouldConsiderTemplateVisibility(
420 const ClassTemplateSpecializationDecl *spec,
421 LVComputationKind computation) {
422 // Include visibility from the template parameters and arguments
423 // only if this is not an explicit instantiation or specialization
424 // with direct explicit visibility (and note that implicit
425 // instantiations won't have a direct attribute).
426 //
427 // Furthermore, we want to ignore template parameters and arguments
428 // for an explicit specialization when computing the visibility of a
429 // member thereof with explicit visibility.
430 //
431 // This is a bit complex; let's unpack it.
432 //
433 // An explicit class specialization is an independent, top-level
434 // declaration. As such, if it or any of its members has an
435 // explicit visibility attribute, that must directly express the
436 // user's intent, and we should honor it. The same logic applies to
437 // an explicit instantiation of a member of such a thing.
438
439 // Fast path: if this is not an explicit instantiation or
440 // specialization, we always want to consider template-related
441 // visibility restrictions.
442 if (!spec->isExplicitInstantiationOrSpecialization())
443 return true;
444
445 // This is the 'member thereof' check.
446 if (spec->isExplicitSpecialization() &&
447 hasExplicitVisibilityAlready(computation))
448 return false;
449
450 return !hasDirectVisibilityAttribute(spec, computation);
451 }
452
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)455 void LinkageComputer::mergeTemplateLV(
456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457 LVComputationKind computation) {
458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459
460 // Merge information from the template parameters, but ignore
461 // visibility if we're only considering template arguments.
462
463 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464 LinkageInfo tempLV =
465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466 LV.mergeMaybeWithVisibility(tempLV,
467 considerVisibility && !hasExplicitVisibilityAlready(computation));
468
469 // Merge information from the template arguments. We ignore
470 // template-argument visibility if we've got an explicit
471 // instantiation with a visibility attribute.
472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474 if (considerVisibility)
475 LV.mergeVisibility(argsLV);
476 LV.mergeExternalVisibility(argsLV);
477 }
478
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
shouldConsiderTemplateVisibility(const VarTemplateSpecializationDecl * spec,LVComputationKind computation)483 static bool shouldConsiderTemplateVisibility(
484 const VarTemplateSpecializationDecl *spec,
485 LVComputationKind computation) {
486 // Include visibility from the template parameters and arguments
487 // only if this is not an explicit instantiation or specialization
488 // with direct explicit visibility (and note that implicit
489 // instantiations won't have a direct attribute).
490 if (!spec->isExplicitInstantiationOrSpecialization())
491 return true;
492
493 // An explicit variable specialization is an independent, top-level
494 // declaration. As such, if it has an explicit visibility attribute,
495 // that must directly express the user's intent, and we should honor
496 // it.
497 if (spec->isExplicitSpecialization() &&
498 hasExplicitVisibilityAlready(computation))
499 return false;
500
501 return !hasDirectVisibilityAttribute(spec, computation);
502 }
503
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
mergeTemplateLV(LinkageInfo & LV,const VarTemplateSpecializationDecl * spec,LVComputationKind computation)507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508 const VarTemplateSpecializationDecl *spec,
509 LVComputationKind computation) {
510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511
512 // Merge information from the template parameters, but ignore
513 // visibility if we're only considering template arguments.
514
515 VarTemplateDecl *temp = spec->getSpecializedTemplate();
516 LinkageInfo tempLV =
517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518 LV.mergeMaybeWithVisibility(tempLV,
519 considerVisibility && !hasExplicitVisibilityAlready(computation));
520
521 // Merge information from the template arguments. We ignore
522 // template-argument visibility if we've got an explicit
523 // instantiation with a visibility attribute.
524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526 if (considerVisibility)
527 LV.mergeVisibility(argsLV);
528 LV.mergeExternalVisibility(argsLV);
529 }
530
useInlineVisibilityHidden(const NamedDecl * D)531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533 const LangOptions &Opts = D->getASTContext().getLangOpts();
534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535 return false;
536
537 const auto *FD = dyn_cast<FunctionDecl>(D);
538 if (!FD)
539 return false;
540
541 TemplateSpecializationKind TSK = TSK_Undeclared;
542 if (FunctionTemplateSpecializationInfo *spec
543 = FD->getTemplateSpecializationInfo()) {
544 TSK = spec->getTemplateSpecializationKind();
545 } else if (MemberSpecializationInfo *MSI =
546 FD->getMemberSpecializationInfo()) {
547 TSK = MSI->getTemplateSpecializationKind();
548 }
549
550 const FunctionDecl *Def = nullptr;
551 // InlineVisibilityHidden only applies to definitions, and
552 // isInlined() only gives meaningful answers on definitions
553 // anyway.
554 return TSK != TSK_ExplicitInstantiationDeclaration &&
555 TSK != TSK_ExplicitInstantiationDefinition &&
556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558
isFirstInExternCContext(T * D)559 template <typename T> static bool isFirstInExternCContext(T *D) {
560 const T *First = D->getFirstDecl();
561 return First->isInExternCContext();
562 }
563
isSingleLineLanguageLinkage(const Decl & D)564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566 if (!SD->hasBraces())
567 return true;
568 return false;
569 }
570
571 /// Determine whether D is declared in the purview of a named module.
isInModulePurview(const NamedDecl * D)572 static bool isInModulePurview(const NamedDecl *D) {
573 if (auto *M = D->getOwningModule())
574 return M->isModulePurview();
575 return false;
576 }
577
isExportedFromModuleInterfaceUnit(const NamedDecl * D)578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579 // FIXME: Handle isModulePrivate.
580 switch (D->getModuleOwnershipKind()) {
581 case Decl::ModuleOwnershipKind::Unowned:
582 case Decl::ModuleOwnershipKind::ModulePrivate:
583 return false;
584 case Decl::ModuleOwnershipKind::Visible:
585 case Decl::ModuleOwnershipKind::VisibleWhenImported:
586 return isInModulePurview(D);
587 }
588 llvm_unreachable("unexpected module ownership kind");
589 }
590
getInternalLinkageFor(const NamedDecl * D)591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592 // Internal linkage declarations within a module interface unit are modeled
593 // as "module-internal linkage", which means that they have internal linkage
594 // formally but can be indirectly accessed from outside the module via inline
595 // functions and templates defined within the module.
596 if (isInModulePurview(D))
597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598
599 return LinkageInfo::internal();
600 }
601
getExternalLinkageFor(const NamedDecl * D)602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603 // C++ Modules TS [basic.link]/6.8:
604 // - A name declared at namespace scope that does not have internal linkage
605 // by the previous rules and that is introduced by a non-exported
606 // declaration has module linkage.
607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608 cast<NamedDecl>(D->getCanonicalDecl())))
609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610
611 return LinkageInfo::external();
612 }
613
getStorageClass(const Decl * D)614 static StorageClass getStorageClass(const Decl *D) {
615 if (auto *TD = dyn_cast<TemplateDecl>(D))
616 D = TD->getTemplatedDecl();
617 if (D) {
618 if (auto *VD = dyn_cast<VarDecl>(D))
619 return VD->getStorageClass();
620 if (auto *FD = dyn_cast<FunctionDecl>(D))
621 return FD->getStorageClass();
622 }
623 return SC_None;
624 }
625
626 LinkageInfo
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628 LVComputationKind computation,
629 bool IgnoreVarTypeLinkage) {
630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
631 "Not a name having namespace scope");
632 ASTContext &Context = D->getASTContext();
633
634 // C++ [basic.link]p3:
635 // A name having namespace scope (3.3.6) has internal linkage if it
636 // is the name of
637
638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639 // - a variable, variable template, function, or function template
640 // that is explicitly declared static; or
641 // (This bullet corresponds to C99 6.2.2p3.)
642 return getInternalLinkageFor(D);
643 }
644
645 if (const auto *Var = dyn_cast<VarDecl>(D)) {
646 // - a non-template variable of non-volatile const-qualified type, unless
647 // - it is explicitly declared extern, or
648 // - it is inline or exported, or
649 // - it was previously declared and the prior declaration did not have
650 // internal linkage
651 // (There is no equivalent in C99.)
652 if (Context.getLangOpts().CPlusPlus &&
653 Var->getType().isConstQualified() &&
654 !Var->getType().isVolatileQualified() &&
655 !Var->isInline() &&
656 !isExportedFromModuleInterfaceUnit(Var) &&
657 !isa<VarTemplateSpecializationDecl>(Var) &&
658 !Var->getDescribedVarTemplate()) {
659 const VarDecl *PrevVar = Var->getPreviousDecl();
660 if (PrevVar)
661 return getLVForDecl(PrevVar, computation);
662
663 if (Var->getStorageClass() != SC_Extern &&
664 Var->getStorageClass() != SC_PrivateExtern &&
665 !isSingleLineLanguageLinkage(*Var))
666 return getInternalLinkageFor(Var);
667 }
668
669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670 PrevVar = PrevVar->getPreviousDecl()) {
671 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672 Var->getStorageClass() == SC_None)
673 return getDeclLinkageAndVisibility(PrevVar);
674 // Explicitly declared static.
675 if (PrevVar->getStorageClass() == SC_Static)
676 return getInternalLinkageFor(Var);
677 }
678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679 // - a data member of an anonymous union.
680 const VarDecl *VD = IFD->getVarDecl();
681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683 }
684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
685
686 // FIXME: This gives internal linkage to names that should have no linkage
687 // (those not covered by [basic.link]p6).
688 if (D->isInAnonymousNamespace()) {
689 const auto *Var = dyn_cast<VarDecl>(D);
690 const auto *Func = dyn_cast<FunctionDecl>(D);
691 // FIXME: The check for extern "C" here is not justified by the standard
692 // wording, but we retain it from the pre-DR1113 model to avoid breaking
693 // code.
694 //
695 // C++11 [basic.link]p4:
696 // An unnamed namespace or a namespace declared directly or indirectly
697 // within an unnamed namespace has internal linkage.
698 if ((!Var || !isFirstInExternCContext(Var)) &&
699 (!Func || !isFirstInExternCContext(Func)))
700 return getInternalLinkageFor(D);
701 }
702
703 // Set up the defaults.
704
705 // C99 6.2.2p5:
706 // If the declaration of an identifier for an object has file
707 // scope and no storage-class specifier, its linkage is
708 // external.
709 LinkageInfo LV = getExternalLinkageFor(D);
710
711 if (!hasExplicitVisibilityAlready(computation)) {
712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713 LV.mergeVisibility(*Vis, true);
714 } else {
715 // If we're declared in a namespace with a visibility attribute,
716 // use that namespace's visibility, and it still counts as explicit.
717 for (const DeclContext *DC = D->getDeclContext();
718 !isa<TranslationUnitDecl>(DC);
719 DC = DC->getParent()) {
720 const auto *ND = dyn_cast<NamespaceDecl>(DC);
721 if (!ND) continue;
722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723 LV.mergeVisibility(*Vis, true);
724 break;
725 }
726 }
727 }
728
729 // Add in global settings if the above didn't give us direct visibility.
730 if (!LV.isVisibilityExplicit()) {
731 // Use global type/value visibility as appropriate.
732 Visibility globalVisibility =
733 computation.isValueVisibility()
734 ? Context.getLangOpts().getValueVisibilityMode()
735 : Context.getLangOpts().getTypeVisibilityMode();
736 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737
738 // If we're paying attention to global visibility, apply
739 // -finline-visibility-hidden if this is an inline method.
740 if (useInlineVisibilityHidden(D))
741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742 }
743 }
744
745 // C++ [basic.link]p4:
746
747 // A name having namespace scope that has not been given internal linkage
748 // above and that is the name of
749 // [...bullets...]
750 // has its linkage determined as follows:
751 // - if the enclosing namespace has internal linkage, the name has
752 // internal linkage; [handled above]
753 // - otherwise, if the declaration of the name is attached to a named
754 // module and is not exported, the name has module linkage;
755 // - otherwise, the name has external linkage.
756 // LV is currently set up to handle the last two bullets.
757 //
758 // The bullets are:
759
760 // - a variable; or
761 if (const auto *Var = dyn_cast<VarDecl>(D)) {
762 // GCC applies the following optimization to variables and static
763 // data members, but not to functions:
764 //
765 // Modify the variable's LV by the LV of its type unless this is
766 // C or extern "C". This follows from [basic.link]p9:
767 // A type without linkage shall not be used as the type of a
768 // variable or function with external linkage unless
769 // - the entity has C language linkage, or
770 // - the entity is declared within an unnamed namespace, or
771 // - the entity is not used or is defined in the same
772 // translation unit.
773 // and [basic.link]p10:
774 // ...the types specified by all declarations referring to a
775 // given variable or function shall be identical...
776 // C does not have an equivalent rule.
777 //
778 // Ignore this if we've got an explicit attribute; the user
779 // probably knows what they're doing.
780 //
781 // Note that we don't want to make the variable non-external
782 // because of this, but unique-external linkage suits us.
783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784 !IgnoreVarTypeLinkage) {
785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786 if (!isExternallyVisible(TypeLV.getLinkage()))
787 return LinkageInfo::uniqueExternal();
788 if (!LV.isVisibilityExplicit())
789 LV.mergeVisibility(TypeLV);
790 }
791
792 if (Var->getStorageClass() == SC_PrivateExtern)
793 LV.mergeVisibility(HiddenVisibility, true);
794
795 // Note that Sema::MergeVarDecl already takes care of implementing
796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797 // to do it here.
798
799 // As per function and class template specializations (below),
800 // consider LV for the template and template arguments. We're at file
801 // scope, so we do not need to worry about nested specializations.
802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803 mergeTemplateLV(LV, spec, computation);
804 }
805
806 // - a function; or
807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808 // In theory, we can modify the function's LV by the LV of its
809 // type unless it has C linkage (see comment above about variables
810 // for justification). In practice, GCC doesn't do this, so it's
811 // just too painful to make work.
812
813 if (Function->getStorageClass() == SC_PrivateExtern)
814 LV.mergeVisibility(HiddenVisibility, true);
815
816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817 // merging storage classes and visibility attributes, so we don't have to
818 // look at previous decls in here.
819
820 // In C++, then if the type of the function uses a type with
821 // unique-external linkage, it's not legally usable from outside
822 // this translation unit. However, we should use the C linkage
823 // rules instead for extern "C" declarations.
824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825 // Only look at the type-as-written. Otherwise, deducing the return type
826 // of a function could change its linkage.
827 QualType TypeAsWritten = Function->getType();
828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829 TypeAsWritten = TSI->getType();
830 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831 return LinkageInfo::uniqueExternal();
832 }
833
834 // Consider LV from the template and the template arguments.
835 // We're at file scope, so we do not need to worry about nested
836 // specializations.
837 if (FunctionTemplateSpecializationInfo *specInfo
838 = Function->getTemplateSpecializationInfo()) {
839 mergeTemplateLV(LV, Function, specInfo, computation);
840 }
841
842 // - a named class (Clause 9), or an unnamed class defined in a
843 // typedef declaration in which the class has the typedef name
844 // for linkage purposes (7.1.3); or
845 // - a named enumeration (7.2), or an unnamed enumeration
846 // defined in a typedef declaration in which the enumeration
847 // has the typedef name for linkage purposes (7.1.3); or
848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849 // Unnamed tags have no linkage.
850 if (!Tag->hasNameForLinkage())
851 return LinkageInfo::none();
852
853 // If this is a class template specialization, consider the
854 // linkage of the template and template arguments. We're at file
855 // scope, so we do not need to worry about nested specializations.
856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857 mergeTemplateLV(LV, spec, computation);
858 }
859
860 // FIXME: This is not part of the C++ standard any more.
861 // - an enumerator belonging to an enumeration with external linkage; or
862 } else if (isa<EnumConstantDecl>(D)) {
863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864 computation);
865 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866 return LinkageInfo::none();
867 LV.merge(EnumLV);
868
869 // - a template
870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872 LinkageInfo tempLV =
873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875
876 // An unnamed namespace or a namespace declared directly or indirectly
877 // within an unnamed namespace has internal linkage. All other namespaces
878 // have external linkage.
879 //
880 // We handled names in anonymous namespaces above.
881 } else if (isa<NamespaceDecl>(D)) {
882 return LV;
883
884 // By extension, we assign external linkage to Objective-C
885 // interfaces.
886 } else if (isa<ObjCInterfaceDecl>(D)) {
887 // fallout
888
889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890 // A typedef declaration has linkage if it gives a type a name for
891 // linkage purposes.
892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893 return LinkageInfo::none();
894
895 // Everything not covered here has no linkage.
896 } else {
897 return LinkageInfo::none();
898 }
899
900 // If we ended up with non-externally-visible linkage, visibility should
901 // always be default.
902 if (!isExternallyVisible(LV.getLinkage()))
903 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
904
905 // Mark the symbols as hidden when compiling for the device.
906 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
907 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
908
909 return LV;
910 }
911
912 LinkageInfo
getLVForClassMember(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)913 LinkageComputer::getLVForClassMember(const NamedDecl *D,
914 LVComputationKind computation,
915 bool IgnoreVarTypeLinkage) {
916 // Only certain class members have linkage. Note that fields don't
917 // really have linkage, but it's convenient to say they do for the
918 // purposes of calculating linkage of pointer-to-data-member
919 // template arguments.
920 //
921 // Templates also don't officially have linkage, but since we ignore
922 // the C++ standard and look at template arguments when determining
923 // linkage and visibility of a template specialization, we might hit
924 // a template template argument that way. If we do, we need to
925 // consider its linkage.
926 if (!(isa<CXXMethodDecl>(D) ||
927 isa<VarDecl>(D) ||
928 isa<FieldDecl>(D) ||
929 isa<IndirectFieldDecl>(D) ||
930 isa<TagDecl>(D) ||
931 isa<TemplateDecl>(D)))
932 return LinkageInfo::none();
933
934 LinkageInfo LV;
935
936 // If we have an explicit visibility attribute, merge that in.
937 if (!hasExplicitVisibilityAlready(computation)) {
938 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
939 LV.mergeVisibility(*Vis, true);
940 // If we're paying attention to global visibility, apply
941 // -finline-visibility-hidden if this is an inline method.
942 //
943 // Note that we do this before merging information about
944 // the class visibility.
945 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
946 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
947 }
948
949 // If this class member has an explicit visibility attribute, the only
950 // thing that can change its visibility is the template arguments, so
951 // only look for them when processing the class.
952 LVComputationKind classComputation = computation;
953 if (LV.isVisibilityExplicit())
954 classComputation = withExplicitVisibilityAlready(computation);
955
956 LinkageInfo classLV =
957 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
958 // The member has the same linkage as the class. If that's not externally
959 // visible, we don't need to compute anything about the linkage.
960 // FIXME: If we're only computing linkage, can we bail out here?
961 if (!isExternallyVisible(classLV.getLinkage()))
962 return classLV;
963
964
965 // Otherwise, don't merge in classLV yet, because in certain cases
966 // we need to completely ignore the visibility from it.
967
968 // Specifically, if this decl exists and has an explicit attribute.
969 const NamedDecl *explicitSpecSuppressor = nullptr;
970
971 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
972 // Only look at the type-as-written. Otherwise, deducing the return type
973 // of a function could change its linkage.
974 QualType TypeAsWritten = MD->getType();
975 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
976 TypeAsWritten = TSI->getType();
977 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
978 return LinkageInfo::uniqueExternal();
979
980 // If this is a method template specialization, use the linkage for
981 // the template parameters and arguments.
982 if (FunctionTemplateSpecializationInfo *spec
983 = MD->getTemplateSpecializationInfo()) {
984 mergeTemplateLV(LV, MD, spec, computation);
985 if (spec->isExplicitSpecialization()) {
986 explicitSpecSuppressor = MD;
987 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
988 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
989 }
990 } else if (isExplicitMemberSpecialization(MD)) {
991 explicitSpecSuppressor = MD;
992 }
993
994 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
995 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
996 mergeTemplateLV(LV, spec, computation);
997 if (spec->isExplicitSpecialization()) {
998 explicitSpecSuppressor = spec;
999 } else {
1000 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1001 if (isExplicitMemberSpecialization(temp)) {
1002 explicitSpecSuppressor = temp->getTemplatedDecl();
1003 }
1004 }
1005 } else if (isExplicitMemberSpecialization(RD)) {
1006 explicitSpecSuppressor = RD;
1007 }
1008
1009 // Static data members.
1010 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1011 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1012 mergeTemplateLV(LV, spec, computation);
1013
1014 // Modify the variable's linkage by its type, but ignore the
1015 // type's visibility unless it's a definition.
1016 if (!IgnoreVarTypeLinkage) {
1017 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1018 // FIXME: If the type's linkage is not externally visible, we can
1019 // give this static data member UniqueExternalLinkage.
1020 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1021 LV.mergeVisibility(typeLV);
1022 LV.mergeExternalVisibility(typeLV);
1023 }
1024
1025 if (isExplicitMemberSpecialization(VD)) {
1026 explicitSpecSuppressor = VD;
1027 }
1028
1029 // Template members.
1030 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1031 bool considerVisibility =
1032 (!LV.isVisibilityExplicit() &&
1033 !classLV.isVisibilityExplicit() &&
1034 !hasExplicitVisibilityAlready(computation));
1035 LinkageInfo tempLV =
1036 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1037 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1038
1039 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1040 if (isExplicitMemberSpecialization(redeclTemp)) {
1041 explicitSpecSuppressor = temp->getTemplatedDecl();
1042 }
1043 }
1044 }
1045
1046 // We should never be looking for an attribute directly on a template.
1047 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1048
1049 // If this member is an explicit member specialization, and it has
1050 // an explicit attribute, ignore visibility from the parent.
1051 bool considerClassVisibility = true;
1052 if (explicitSpecSuppressor &&
1053 // optimization: hasDVA() is true only with explicit visibility.
1054 LV.isVisibilityExplicit() &&
1055 classLV.getVisibility() != DefaultVisibility &&
1056 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1057 considerClassVisibility = false;
1058 }
1059
1060 // Finally, merge in information from the class.
1061 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1062 return LV;
1063 }
1064
anchor()1065 void NamedDecl::anchor() {}
1066
isLinkageValid() const1067 bool NamedDecl::isLinkageValid() const {
1068 if (!hasCachedLinkage())
1069 return true;
1070
1071 Linkage L = LinkageComputer{}
1072 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1073 .getLinkage();
1074 return L == getCachedLinkage();
1075 }
1076
getObjCFStringFormattingFamily() const1077 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1078 StringRef name = getName();
1079 if (name.empty()) return SFF_None;
1080
1081 if (name.front() == 'C')
1082 if (name == "CFStringCreateWithFormat" ||
1083 name == "CFStringCreateWithFormatAndArguments" ||
1084 name == "CFStringAppendFormat" ||
1085 name == "CFStringAppendFormatAndArguments")
1086 return SFF_CFString;
1087 return SFF_None;
1088 }
1089
getLinkageInternal() const1090 Linkage NamedDecl::getLinkageInternal() const {
1091 // We don't care about visibility here, so ask for the cheapest
1092 // possible visibility analysis.
1093 return LinkageComputer{}
1094 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1095 .getLinkage();
1096 }
1097
getLinkageAndVisibility() const1098 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1099 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1100 }
1101
1102 static Optional<Visibility>
getExplicitVisibilityAux(const NamedDecl * ND,NamedDecl::ExplicitVisibilityKind kind,bool IsMostRecent)1103 getExplicitVisibilityAux(const NamedDecl *ND,
1104 NamedDecl::ExplicitVisibilityKind kind,
1105 bool IsMostRecent) {
1106 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1107
1108 // Check the declaration itself first.
1109 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1110 return V;
1111
1112 // If this is a member class of a specialization of a class template
1113 // and the corresponding decl has explicit visibility, use that.
1114 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1115 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1116 if (InstantiatedFrom)
1117 return getVisibilityOf(InstantiatedFrom, kind);
1118 }
1119
1120 // If there wasn't explicit visibility there, and this is a
1121 // specialization of a class template, check for visibility
1122 // on the pattern.
1123 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1124 // Walk all the template decl till this point to see if there are
1125 // explicit visibility attributes.
1126 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1127 while (TD != nullptr) {
1128 auto Vis = getVisibilityOf(TD, kind);
1129 if (Vis != None)
1130 return Vis;
1131 TD = TD->getPreviousDecl();
1132 }
1133 return None;
1134 }
1135
1136 // Use the most recent declaration.
1137 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1138 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1139 if (MostRecent != ND)
1140 return getExplicitVisibilityAux(MostRecent, kind, true);
1141 }
1142
1143 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1144 if (Var->isStaticDataMember()) {
1145 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1146 if (InstantiatedFrom)
1147 return getVisibilityOf(InstantiatedFrom, kind);
1148 }
1149
1150 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1151 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1152 kind);
1153
1154 return None;
1155 }
1156 // Also handle function template specializations.
1157 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1158 // If the function is a specialization of a template with an
1159 // explicit visibility attribute, use that.
1160 if (FunctionTemplateSpecializationInfo *templateInfo
1161 = fn->getTemplateSpecializationInfo())
1162 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1163 kind);
1164
1165 // If the function is a member of a specialization of a class template
1166 // and the corresponding decl has explicit visibility, use that.
1167 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1168 if (InstantiatedFrom)
1169 return getVisibilityOf(InstantiatedFrom, kind);
1170
1171 return None;
1172 }
1173
1174 // The visibility of a template is stored in the templated decl.
1175 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1176 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1177
1178 return None;
1179 }
1180
1181 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const1182 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1183 return getExplicitVisibilityAux(this, kind, false);
1184 }
1185
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)1186 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1187 Decl *ContextDecl,
1188 LVComputationKind computation) {
1189 // This lambda has its linkage/visibility determined by its owner.
1190 const NamedDecl *Owner;
1191 if (!ContextDecl)
1192 Owner = dyn_cast<NamedDecl>(DC);
1193 else if (isa<ParmVarDecl>(ContextDecl))
1194 Owner =
1195 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1196 else
1197 Owner = cast<NamedDecl>(ContextDecl);
1198
1199 if (!Owner)
1200 return LinkageInfo::none();
1201
1202 // If the owner has a deduced type, we need to skip querying the linkage and
1203 // visibility of that type, because it might involve this closure type. The
1204 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1205 // than NoLinkage when we don't strictly need to, which is benign.
1206 auto *VD = dyn_cast<VarDecl>(Owner);
1207 LinkageInfo OwnerLV =
1208 VD && VD->getType()->getContainedDeducedType()
1209 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1210 : getLVForDecl(Owner, computation);
1211
1212 // A lambda never formally has linkage. But if the owner is externally
1213 // visible, then the lambda is too. We apply the same rules to blocks.
1214 if (!isExternallyVisible(OwnerLV.getLinkage()))
1215 return LinkageInfo::none();
1216 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1217 OwnerLV.isVisibilityExplicit());
1218 }
1219
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1220 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1221 LVComputationKind computation) {
1222 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1223 if (Function->isInAnonymousNamespace() &&
1224 !isFirstInExternCContext(Function))
1225 return getInternalLinkageFor(Function);
1226
1227 // This is a "void f();" which got merged with a file static.
1228 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1229 return getInternalLinkageFor(Function);
1230
1231 LinkageInfo LV;
1232 if (!hasExplicitVisibilityAlready(computation)) {
1233 if (Optional<Visibility> Vis =
1234 getExplicitVisibility(Function, computation))
1235 LV.mergeVisibility(*Vis, true);
1236 }
1237
1238 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1239 // merging storage classes and visibility attributes, so we don't have to
1240 // look at previous decls in here.
1241
1242 return LV;
1243 }
1244
1245 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1246 if (Var->hasExternalStorage()) {
1247 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1248 return getInternalLinkageFor(Var);
1249
1250 LinkageInfo LV;
1251 if (Var->getStorageClass() == SC_PrivateExtern)
1252 LV.mergeVisibility(HiddenVisibility, true);
1253 else if (!hasExplicitVisibilityAlready(computation)) {
1254 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1255 LV.mergeVisibility(*Vis, true);
1256 }
1257
1258 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1259 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1260 if (PrevLV.getLinkage())
1261 LV.setLinkage(PrevLV.getLinkage());
1262 LV.mergeVisibility(PrevLV);
1263 }
1264
1265 return LV;
1266 }
1267
1268 if (!Var->isStaticLocal())
1269 return LinkageInfo::none();
1270 }
1271
1272 ASTContext &Context = D->getASTContext();
1273 if (!Context.getLangOpts().CPlusPlus)
1274 return LinkageInfo::none();
1275
1276 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1277 if (!OuterD || OuterD->isInvalidDecl())
1278 return LinkageInfo::none();
1279
1280 LinkageInfo LV;
1281 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1282 if (!BD->getBlockManglingNumber())
1283 return LinkageInfo::none();
1284
1285 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1286 BD->getBlockManglingContextDecl(), computation);
1287 } else {
1288 const auto *FD = cast<FunctionDecl>(OuterD);
1289 if (!FD->isInlined() &&
1290 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1291 return LinkageInfo::none();
1292
1293 // If a function is hidden by -fvisibility-inlines-hidden option and
1294 // is not explicitly attributed as a hidden function,
1295 // we should not make static local variables in the function hidden.
1296 LV = getLVForDecl(FD, computation);
1297 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1298 !LV.isVisibilityExplicit()) {
1299 assert(cast<VarDecl>(D)->isStaticLocal());
1300 // If this was an implicitly hidden inline method, check again for
1301 // explicit visibility on the parent class, and use that for static locals
1302 // if present.
1303 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1304 LV = getLVForDecl(MD->getParent(), computation);
1305 if (!LV.isVisibilityExplicit()) {
1306 Visibility globalVisibility =
1307 computation.isValueVisibility()
1308 ? Context.getLangOpts().getValueVisibilityMode()
1309 : Context.getLangOpts().getTypeVisibilityMode();
1310 return LinkageInfo(VisibleNoLinkage, globalVisibility,
1311 /*visibilityExplicit=*/false);
1312 }
1313 }
1314 }
1315 if (!isExternallyVisible(LV.getLinkage()))
1316 return LinkageInfo::none();
1317 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1318 LV.isVisibilityExplicit());
1319 }
1320
1321 static inline const CXXRecordDecl*
getOutermostEnclosingLambda(const CXXRecordDecl * Record)1322 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1323 const CXXRecordDecl *Ret = Record;
1324 while (Record && Record->isLambda()) {
1325 Ret = Record;
1326 if (!Record->getParent()) break;
1327 // Get the Containing Class of this Lambda Class
1328 Record = dyn_cast_or_null<CXXRecordDecl>(
1329 Record->getParent()->getParent());
1330 }
1331 return Ret;
1332 }
1333
computeLVForDecl(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)1334 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1335 LVComputationKind computation,
1336 bool IgnoreVarTypeLinkage) {
1337 // Internal_linkage attribute overrides other considerations.
1338 if (D->hasAttr<InternalLinkageAttr>())
1339 return getInternalLinkageFor(D);
1340
1341 // Objective-C: treat all Objective-C declarations as having external
1342 // linkage.
1343 switch (D->getKind()) {
1344 default:
1345 break;
1346
1347 // Per C++ [basic.link]p2, only the names of objects, references,
1348 // functions, types, templates, namespaces, and values ever have linkage.
1349 //
1350 // Note that the name of a typedef, namespace alias, using declaration,
1351 // and so on are not the name of the corresponding type, namespace, or
1352 // declaration, so they do *not* have linkage.
1353 case Decl::ImplicitParam:
1354 case Decl::Label:
1355 case Decl::NamespaceAlias:
1356 case Decl::ParmVar:
1357 case Decl::Using:
1358 case Decl::UsingShadow:
1359 case Decl::UsingDirective:
1360 return LinkageInfo::none();
1361
1362 case Decl::EnumConstant:
1363 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1364 if (D->getASTContext().getLangOpts().CPlusPlus)
1365 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1366 return LinkageInfo::visible_none();
1367
1368 case Decl::Typedef:
1369 case Decl::TypeAlias:
1370 // A typedef declaration has linkage if it gives a type a name for
1371 // linkage purposes.
1372 if (!cast<TypedefNameDecl>(D)
1373 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1374 return LinkageInfo::none();
1375 break;
1376
1377 case Decl::TemplateTemplateParm: // count these as external
1378 case Decl::NonTypeTemplateParm:
1379 case Decl::ObjCAtDefsField:
1380 case Decl::ObjCCategory:
1381 case Decl::ObjCCategoryImpl:
1382 case Decl::ObjCCompatibleAlias:
1383 case Decl::ObjCImplementation:
1384 case Decl::ObjCMethod:
1385 case Decl::ObjCProperty:
1386 case Decl::ObjCPropertyImpl:
1387 case Decl::ObjCProtocol:
1388 return getExternalLinkageFor(D);
1389
1390 case Decl::CXXRecord: {
1391 const auto *Record = cast<CXXRecordDecl>(D);
1392 if (Record->isLambda()) {
1393 if (Record->hasKnownLambdaInternalLinkage() ||
1394 !Record->getLambdaManglingNumber()) {
1395 // This lambda has no mangling number, so it's internal.
1396 return getInternalLinkageFor(D);
1397 }
1398
1399 // This lambda has its linkage/visibility determined:
1400 // - either by the outermost lambda if that lambda has no mangling
1401 // number.
1402 // - or by the parent of the outer most lambda
1403 // This prevents infinite recursion in settings such as nested lambdas
1404 // used in NSDMI's, for e.g.
1405 // struct L {
1406 // int t{};
1407 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1408 // };
1409 const CXXRecordDecl *OuterMostLambda =
1410 getOutermostEnclosingLambda(Record);
1411 if (OuterMostLambda->hasKnownLambdaInternalLinkage() ||
1412 !OuterMostLambda->getLambdaManglingNumber())
1413 return getInternalLinkageFor(D);
1414
1415 return getLVForClosure(
1416 OuterMostLambda->getDeclContext()->getRedeclContext(),
1417 OuterMostLambda->getLambdaContextDecl(), computation);
1418 }
1419
1420 break;
1421 }
1422 }
1423
1424 // Handle linkage for namespace-scope names.
1425 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1426 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1427
1428 // C++ [basic.link]p5:
1429 // In addition, a member function, static data member, a named
1430 // class or enumeration of class scope, or an unnamed class or
1431 // enumeration defined in a class-scope typedef declaration such
1432 // that the class or enumeration has the typedef name for linkage
1433 // purposes (7.1.3), has external linkage if the name of the class
1434 // has external linkage.
1435 if (D->getDeclContext()->isRecord())
1436 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1437
1438 // C++ [basic.link]p6:
1439 // The name of a function declared in block scope and the name of
1440 // an object declared by a block scope extern declaration have
1441 // linkage. If there is a visible declaration of an entity with
1442 // linkage having the same name and type, ignoring entities
1443 // declared outside the innermost enclosing namespace scope, the
1444 // block scope declaration declares that same entity and receives
1445 // the linkage of the previous declaration. If there is more than
1446 // one such matching entity, the program is ill-formed. Otherwise,
1447 // if no matching entity is found, the block scope entity receives
1448 // external linkage.
1449 if (D->getDeclContext()->isFunctionOrMethod())
1450 return getLVForLocalDecl(D, computation);
1451
1452 // C++ [basic.link]p6:
1453 // Names not covered by these rules have no linkage.
1454 return LinkageInfo::none();
1455 }
1456
1457 /// getLVForDecl - Get the linkage and visibility for the given declaration.
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1458 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1459 LVComputationKind computation) {
1460 // Internal_linkage attribute overrides other considerations.
1461 if (D->hasAttr<InternalLinkageAttr>())
1462 return getInternalLinkageFor(D);
1463
1464 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1465 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1466
1467 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1468 return *LI;
1469
1470 LinkageInfo LV = computeLVForDecl(D, computation);
1471 if (D->hasCachedLinkage())
1472 assert(D->getCachedLinkage() == LV.getLinkage());
1473
1474 D->setCachedLinkage(LV.getLinkage());
1475 cache(D, computation, LV);
1476
1477 #ifndef NDEBUG
1478 // In C (because of gnu inline) and in c++ with microsoft extensions an
1479 // static can follow an extern, so we can have two decls with different
1480 // linkages.
1481 const LangOptions &Opts = D->getASTContext().getLangOpts();
1482 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1483 return LV;
1484
1485 // We have just computed the linkage for this decl. By induction we know
1486 // that all other computed linkages match, check that the one we just
1487 // computed also does.
1488 NamedDecl *Old = nullptr;
1489 for (auto I : D->redecls()) {
1490 auto *T = cast<NamedDecl>(I);
1491 if (T == D)
1492 continue;
1493 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1494 Old = T;
1495 break;
1496 }
1497 }
1498 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1499 #endif
1500
1501 return LV;
1502 }
1503
getDeclLinkageAndVisibility(const NamedDecl * D)1504 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1505 return getLVForDecl(D,
1506 LVComputationKind(usesTypeVisibility(D)
1507 ? NamedDecl::VisibilityForType
1508 : NamedDecl::VisibilityForValue));
1509 }
1510
getOwningModuleForLinkage(bool IgnoreLinkage) const1511 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1512 Module *M = getOwningModule();
1513 if (!M)
1514 return nullptr;
1515
1516 switch (M->Kind) {
1517 case Module::ModuleMapModule:
1518 // Module map modules have no special linkage semantics.
1519 return nullptr;
1520
1521 case Module::ModuleInterfaceUnit:
1522 return M;
1523
1524 case Module::GlobalModuleFragment: {
1525 // External linkage declarations in the global module have no owning module
1526 // for linkage purposes. But internal linkage declarations in the global
1527 // module fragment of a particular module are owned by that module for
1528 // linkage purposes.
1529 if (IgnoreLinkage)
1530 return nullptr;
1531 bool InternalLinkage;
1532 if (auto *ND = dyn_cast<NamedDecl>(this))
1533 InternalLinkage = !ND->hasExternalFormalLinkage();
1534 else {
1535 auto *NSD = dyn_cast<NamespaceDecl>(this);
1536 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1537 isInAnonymousNamespace();
1538 }
1539 return InternalLinkage ? M->Parent : nullptr;
1540 }
1541
1542 case Module::PrivateModuleFragment:
1543 // The private module fragment is part of its containing module for linkage
1544 // purposes.
1545 return M->Parent;
1546 }
1547
1548 llvm_unreachable("unknown module kind");
1549 }
1550
printName(raw_ostream & os) const1551 void NamedDecl::printName(raw_ostream &os) const {
1552 os << Name;
1553 }
1554
getQualifiedNameAsString() const1555 std::string NamedDecl::getQualifiedNameAsString() const {
1556 std::string QualName;
1557 llvm::raw_string_ostream OS(QualName);
1558 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1559 return OS.str();
1560 }
1561
printQualifiedName(raw_ostream & OS) const1562 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1563 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1564 }
1565
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1566 void NamedDecl::printQualifiedName(raw_ostream &OS,
1567 const PrintingPolicy &P) const {
1568 if (getDeclContext()->isFunctionOrMethod()) {
1569 // We do not print '(anonymous)' for function parameters without name.
1570 printName(OS);
1571 return;
1572 }
1573 printNestedNameSpecifier(OS, P);
1574 if (getDeclName() || isa<DecompositionDecl>(this))
1575 OS << *this;
1576 else
1577 OS << "(anonymous)";
1578 }
1579
printNestedNameSpecifier(raw_ostream & OS) const1580 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1581 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1582 }
1583
printNestedNameSpecifier(raw_ostream & OS,const PrintingPolicy & P) const1584 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1585 const PrintingPolicy &P) const {
1586 const DeclContext *Ctx = getDeclContext();
1587
1588 // For ObjC methods and properties, look through categories and use the
1589 // interface as context.
1590 if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1591 if (auto *ID = MD->getClassInterface())
1592 Ctx = ID;
1593 if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1594 if (auto *MD = PD->getGetterMethodDecl())
1595 if (auto *ID = MD->getClassInterface())
1596 Ctx = ID;
1597 }
1598
1599 if (Ctx->isFunctionOrMethod())
1600 return;
1601
1602 using ContextsTy = SmallVector<const DeclContext *, 8>;
1603 ContextsTy Contexts;
1604
1605 // Collect named contexts.
1606 while (Ctx) {
1607 if (isa<NamedDecl>(Ctx))
1608 Contexts.push_back(Ctx);
1609 Ctx = Ctx->getParent();
1610 }
1611
1612 for (const DeclContext *DC : llvm::reverse(Contexts)) {
1613 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1614 OS << Spec->getName();
1615 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1616 printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1617 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1618 if (P.SuppressUnwrittenScope &&
1619 (ND->isAnonymousNamespace() || ND->isInline()))
1620 continue;
1621 if (ND->isAnonymousNamespace()) {
1622 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1623 : "(anonymous namespace)");
1624 }
1625 else
1626 OS << *ND;
1627 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1628 if (!RD->getIdentifier())
1629 OS << "(anonymous " << RD->getKindName() << ')';
1630 else
1631 OS << *RD;
1632 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1633 const FunctionProtoType *FT = nullptr;
1634 if (FD->hasWrittenPrototype())
1635 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1636
1637 OS << *FD << '(';
1638 if (FT) {
1639 unsigned NumParams = FD->getNumParams();
1640 for (unsigned i = 0; i < NumParams; ++i) {
1641 if (i)
1642 OS << ", ";
1643 OS << FD->getParamDecl(i)->getType().stream(P);
1644 }
1645
1646 if (FT->isVariadic()) {
1647 if (NumParams > 0)
1648 OS << ", ";
1649 OS << "...";
1650 }
1651 }
1652 OS << ')';
1653 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1654 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1655 // enumerator is declared in the scope that immediately contains
1656 // the enum-specifier. Each scoped enumerator is declared in the
1657 // scope of the enumeration.
1658 // For the case of unscoped enumerator, do not include in the qualified
1659 // name any information about its enum enclosing scope, as its visibility
1660 // is global.
1661 if (ED->isScoped())
1662 OS << *ED;
1663 else
1664 continue;
1665 } else {
1666 OS << *cast<NamedDecl>(DC);
1667 }
1668 OS << "::";
1669 }
1670 }
1671
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1672 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1673 const PrintingPolicy &Policy,
1674 bool Qualified) const {
1675 if (Qualified)
1676 printQualifiedName(OS, Policy);
1677 else
1678 printName(OS);
1679 }
1680
isRedeclarableImpl(Redeclarable<T> *)1681 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1682 return true;
1683 }
isRedeclarableImpl(...)1684 static bool isRedeclarableImpl(...) { return false; }
isRedeclarable(Decl::Kind K)1685 static bool isRedeclarable(Decl::Kind K) {
1686 switch (K) {
1687 #define DECL(Type, Base) \
1688 case Decl::Type: \
1689 return isRedeclarableImpl((Type##Decl *)nullptr);
1690 #define ABSTRACT_DECL(DECL)
1691 #include "clang/AST/DeclNodes.inc"
1692 }
1693 llvm_unreachable("unknown decl kind");
1694 }
1695
declarationReplaces(NamedDecl * OldD,bool IsKnownNewer) const1696 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1697 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1698
1699 // Never replace one imported declaration with another; we need both results
1700 // when re-exporting.
1701 if (OldD->isFromASTFile() && isFromASTFile())
1702 return false;
1703
1704 // A kind mismatch implies that the declaration is not replaced.
1705 if (OldD->getKind() != getKind())
1706 return false;
1707
1708 // For method declarations, we never replace. (Why?)
1709 if (isa<ObjCMethodDecl>(this))
1710 return false;
1711
1712 // For parameters, pick the newer one. This is either an error or (in
1713 // Objective-C) permitted as an extension.
1714 if (isa<ParmVarDecl>(this))
1715 return true;
1716
1717 // Inline namespaces can give us two declarations with the same
1718 // name and kind in the same scope but different contexts; we should
1719 // keep both declarations in this case.
1720 if (!this->getDeclContext()->getRedeclContext()->Equals(
1721 OldD->getDeclContext()->getRedeclContext()))
1722 return false;
1723
1724 // Using declarations can be replaced if they import the same name from the
1725 // same context.
1726 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1727 ASTContext &Context = getASTContext();
1728 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1729 Context.getCanonicalNestedNameSpecifier(
1730 cast<UsingDecl>(OldD)->getQualifier());
1731 }
1732 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1733 ASTContext &Context = getASTContext();
1734 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1735 Context.getCanonicalNestedNameSpecifier(
1736 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1737 }
1738
1739 if (isRedeclarable(getKind())) {
1740 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1741 return false;
1742
1743 if (IsKnownNewer)
1744 return true;
1745
1746 // Check whether this is actually newer than OldD. We want to keep the
1747 // newer declaration. This loop will usually only iterate once, because
1748 // OldD is usually the previous declaration.
1749 for (auto D : redecls()) {
1750 if (D == OldD)
1751 break;
1752
1753 // If we reach the canonical declaration, then OldD is not actually older
1754 // than this one.
1755 //
1756 // FIXME: In this case, we should not add this decl to the lookup table.
1757 if (D->isCanonicalDecl())
1758 return false;
1759 }
1760
1761 // It's a newer declaration of the same kind of declaration in the same
1762 // scope: we want this decl instead of the existing one.
1763 return true;
1764 }
1765
1766 // In all other cases, we need to keep both declarations in case they have
1767 // different visibility. Any attempt to use the name will result in an
1768 // ambiguity if more than one is visible.
1769 return false;
1770 }
1771
hasLinkage() const1772 bool NamedDecl::hasLinkage() const {
1773 return getFormalLinkage() != NoLinkage;
1774 }
1775
getUnderlyingDeclImpl()1776 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1777 NamedDecl *ND = this;
1778 while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1779 ND = UD->getTargetDecl();
1780
1781 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1782 return AD->getClassInterface();
1783
1784 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1785 return AD->getNamespace();
1786
1787 return ND;
1788 }
1789
isCXXInstanceMember() const1790 bool NamedDecl::isCXXInstanceMember() const {
1791 if (!isCXXClassMember())
1792 return false;
1793
1794 const NamedDecl *D = this;
1795 if (isa<UsingShadowDecl>(D))
1796 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1797
1798 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1799 return true;
1800 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1801 return MD->isInstance();
1802 return false;
1803 }
1804
1805 //===----------------------------------------------------------------------===//
1806 // DeclaratorDecl Implementation
1807 //===----------------------------------------------------------------------===//
1808
1809 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1810 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1811 if (decl->getNumTemplateParameterLists() > 0)
1812 return decl->getTemplateParameterList(0)->getTemplateLoc();
1813 else
1814 return decl->getInnerLocStart();
1815 }
1816
getTypeSpecStartLoc() const1817 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1818 TypeSourceInfo *TSI = getTypeSourceInfo();
1819 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1820 return SourceLocation();
1821 }
1822
getTypeSpecEndLoc() const1823 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1824 TypeSourceInfo *TSI = getTypeSourceInfo();
1825 if (TSI) return TSI->getTypeLoc().getEndLoc();
1826 return SourceLocation();
1827 }
1828
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1829 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1830 if (QualifierLoc) {
1831 // Make sure the extended decl info is allocated.
1832 if (!hasExtInfo()) {
1833 // Save (non-extended) type source info pointer.
1834 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1835 // Allocate external info struct.
1836 DeclInfo = new (getASTContext()) ExtInfo;
1837 // Restore savedTInfo into (extended) decl info.
1838 getExtInfo()->TInfo = savedTInfo;
1839 }
1840 // Set qualifier info.
1841 getExtInfo()->QualifierLoc = QualifierLoc;
1842 } else if (hasExtInfo()) {
1843 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1844 getExtInfo()->QualifierLoc = QualifierLoc;
1845 }
1846 }
1847
setTrailingRequiresClause(Expr * TrailingRequiresClause)1848 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1849 assert(TrailingRequiresClause);
1850 // Make sure the extended decl info is allocated.
1851 if (!hasExtInfo()) {
1852 // Save (non-extended) type source info pointer.
1853 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1854 // Allocate external info struct.
1855 DeclInfo = new (getASTContext()) ExtInfo;
1856 // Restore savedTInfo into (extended) decl info.
1857 getExtInfo()->TInfo = savedTInfo;
1858 }
1859 // Set requires clause info.
1860 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1861 }
1862
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1863 void DeclaratorDecl::setTemplateParameterListsInfo(
1864 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1865 assert(!TPLists.empty());
1866 // Make sure the extended decl info is allocated.
1867 if (!hasExtInfo()) {
1868 // Save (non-extended) type source info pointer.
1869 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1870 // Allocate external info struct.
1871 DeclInfo = new (getASTContext()) ExtInfo;
1872 // Restore savedTInfo into (extended) decl info.
1873 getExtInfo()->TInfo = savedTInfo;
1874 }
1875 // Set the template parameter lists info.
1876 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1877 }
1878
getOuterLocStart() const1879 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1880 return getTemplateOrInnerLocStart(this);
1881 }
1882
1883 // Helper function: returns true if QT is or contains a type
1884 // having a postfix component.
typeIsPostfix(QualType QT)1885 static bool typeIsPostfix(QualType QT) {
1886 while (true) {
1887 const Type* T = QT.getTypePtr();
1888 switch (T->getTypeClass()) {
1889 default:
1890 return false;
1891 case Type::Pointer:
1892 QT = cast<PointerType>(T)->getPointeeType();
1893 break;
1894 case Type::BlockPointer:
1895 QT = cast<BlockPointerType>(T)->getPointeeType();
1896 break;
1897 case Type::MemberPointer:
1898 QT = cast<MemberPointerType>(T)->getPointeeType();
1899 break;
1900 case Type::LValueReference:
1901 case Type::RValueReference:
1902 QT = cast<ReferenceType>(T)->getPointeeType();
1903 break;
1904 case Type::PackExpansion:
1905 QT = cast<PackExpansionType>(T)->getPattern();
1906 break;
1907 case Type::Paren:
1908 case Type::ConstantArray:
1909 case Type::DependentSizedArray:
1910 case Type::IncompleteArray:
1911 case Type::VariableArray:
1912 case Type::FunctionProto:
1913 case Type::FunctionNoProto:
1914 return true;
1915 }
1916 }
1917 }
1918
getSourceRange() const1919 SourceRange DeclaratorDecl::getSourceRange() const {
1920 SourceLocation RangeEnd = getLocation();
1921 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1922 // If the declaration has no name or the type extends past the name take the
1923 // end location of the type.
1924 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1925 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1926 }
1927 return SourceRange(getOuterLocStart(), RangeEnd);
1928 }
1929
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1930 void QualifierInfo::setTemplateParameterListsInfo(
1931 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1932 // Free previous template parameters (if any).
1933 if (NumTemplParamLists > 0) {
1934 Context.Deallocate(TemplParamLists);
1935 TemplParamLists = nullptr;
1936 NumTemplParamLists = 0;
1937 }
1938 // Set info on matched template parameter lists (if any).
1939 if (!TPLists.empty()) {
1940 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1941 NumTemplParamLists = TPLists.size();
1942 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1943 }
1944 }
1945
1946 //===----------------------------------------------------------------------===//
1947 // VarDecl Implementation
1948 //===----------------------------------------------------------------------===//
1949
getStorageClassSpecifierString(StorageClass SC)1950 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1951 switch (SC) {
1952 case SC_None: break;
1953 case SC_Auto: return "auto";
1954 case SC_Extern: return "extern";
1955 case SC_PrivateExtern: return "__private_extern__";
1956 case SC_Register: return "register";
1957 case SC_Static: return "static";
1958 }
1959
1960 llvm_unreachable("Invalid storage class");
1961 }
1962
VarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)1963 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1964 SourceLocation StartLoc, SourceLocation IdLoc,
1965 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1966 StorageClass SC)
1967 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1968 redeclarable_base(C) {
1969 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1970 "VarDeclBitfields too large!");
1971 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1972 "ParmVarDeclBitfields too large!");
1973 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1974 "NonParmVarDeclBitfields too large!");
1975 AllBits = 0;
1976 VarDeclBits.SClass = SC;
1977 // Everything else is implicitly initialized to false.
1978 }
1979
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)1980 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1981 SourceLocation StartL, SourceLocation IdL,
1982 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1983 StorageClass S) {
1984 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1985 }
1986
CreateDeserialized(ASTContext & C,unsigned ID)1987 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1988 return new (C, ID)
1989 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1990 QualType(), nullptr, SC_None);
1991 }
1992
setStorageClass(StorageClass SC)1993 void VarDecl::setStorageClass(StorageClass SC) {
1994 assert(isLegalForVariable(SC));
1995 VarDeclBits.SClass = SC;
1996 }
1997
getTLSKind() const1998 VarDecl::TLSKind VarDecl::getTLSKind() const {
1999 switch (VarDeclBits.TSCSpec) {
2000 case TSCS_unspecified:
2001 if (!hasAttr<ThreadAttr>() &&
2002 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2003 getASTContext().getTargetInfo().isTLSSupported() &&
2004 hasAttr<OMPThreadPrivateDeclAttr>()))
2005 return TLS_None;
2006 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2007 LangOptions::MSVC2015)) ||
2008 hasAttr<OMPThreadPrivateDeclAttr>())
2009 ? TLS_Dynamic
2010 : TLS_Static;
2011 case TSCS___thread: // Fall through.
2012 case TSCS__Thread_local:
2013 return TLS_Static;
2014 case TSCS_thread_local:
2015 return TLS_Dynamic;
2016 }
2017 llvm_unreachable("Unknown thread storage class specifier!");
2018 }
2019
getSourceRange() const2020 SourceRange VarDecl::getSourceRange() const {
2021 if (const Expr *Init = getInit()) {
2022 SourceLocation InitEnd = Init->getEndLoc();
2023 // If Init is implicit, ignore its source range and fallback on
2024 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2025 if (InitEnd.isValid() && InitEnd != getLocation())
2026 return SourceRange(getOuterLocStart(), InitEnd);
2027 }
2028 return DeclaratorDecl::getSourceRange();
2029 }
2030
2031 template<typename T>
getDeclLanguageLinkage(const T & D)2032 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2033 // C++ [dcl.link]p1: All function types, function names with external linkage,
2034 // and variable names with external linkage have a language linkage.
2035 if (!D.hasExternalFormalLinkage())
2036 return NoLanguageLinkage;
2037
2038 // Language linkage is a C++ concept, but saying that everything else in C has
2039 // C language linkage fits the implementation nicely.
2040 ASTContext &Context = D.getASTContext();
2041 if (!Context.getLangOpts().CPlusPlus)
2042 return CLanguageLinkage;
2043
2044 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2045 // language linkage of the names of class members and the function type of
2046 // class member functions.
2047 const DeclContext *DC = D.getDeclContext();
2048 if (DC->isRecord())
2049 return CXXLanguageLinkage;
2050
2051 // If the first decl is in an extern "C" context, any other redeclaration
2052 // will have C language linkage. If the first one is not in an extern "C"
2053 // context, we would have reported an error for any other decl being in one.
2054 if (isFirstInExternCContext(&D))
2055 return CLanguageLinkage;
2056 return CXXLanguageLinkage;
2057 }
2058
2059 template<typename T>
isDeclExternC(const T & D)2060 static bool isDeclExternC(const T &D) {
2061 // Since the context is ignored for class members, they can only have C++
2062 // language linkage or no language linkage.
2063 const DeclContext *DC = D.getDeclContext();
2064 if (DC->isRecord()) {
2065 assert(D.getASTContext().getLangOpts().CPlusPlus);
2066 return false;
2067 }
2068
2069 return D.getLanguageLinkage() == CLanguageLinkage;
2070 }
2071
getLanguageLinkage() const2072 LanguageLinkage VarDecl::getLanguageLinkage() const {
2073 return getDeclLanguageLinkage(*this);
2074 }
2075
isExternC() const2076 bool VarDecl::isExternC() const {
2077 return isDeclExternC(*this);
2078 }
2079
isInExternCContext() const2080 bool VarDecl::isInExternCContext() const {
2081 return getLexicalDeclContext()->isExternCContext();
2082 }
2083
isInExternCXXContext() const2084 bool VarDecl::isInExternCXXContext() const {
2085 return getLexicalDeclContext()->isExternCXXContext();
2086 }
2087
getCanonicalDecl()2088 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2089
2090 VarDecl::DefinitionKind
isThisDeclarationADefinition(ASTContext & C) const2091 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2092 if (isThisDeclarationADemotedDefinition())
2093 return DeclarationOnly;
2094
2095 // C++ [basic.def]p2:
2096 // A declaration is a definition unless [...] it contains the 'extern'
2097 // specifier or a linkage-specification and neither an initializer [...],
2098 // it declares a non-inline static data member in a class declaration [...],
2099 // it declares a static data member outside a class definition and the variable
2100 // was defined within the class with the constexpr specifier [...],
2101 // C++1y [temp.expl.spec]p15:
2102 // An explicit specialization of a static data member or an explicit
2103 // specialization of a static data member template is a definition if the
2104 // declaration includes an initializer; otherwise, it is a declaration.
2105 //
2106 // FIXME: How do you declare (but not define) a partial specialization of
2107 // a static data member template outside the containing class?
2108 if (isStaticDataMember()) {
2109 if (isOutOfLine() &&
2110 !(getCanonicalDecl()->isInline() &&
2111 getCanonicalDecl()->isConstexpr()) &&
2112 (hasInit() ||
2113 // If the first declaration is out-of-line, this may be an
2114 // instantiation of an out-of-line partial specialization of a variable
2115 // template for which we have not yet instantiated the initializer.
2116 (getFirstDecl()->isOutOfLine()
2117 ? getTemplateSpecializationKind() == TSK_Undeclared
2118 : getTemplateSpecializationKind() !=
2119 TSK_ExplicitSpecialization) ||
2120 isa<VarTemplatePartialSpecializationDecl>(this)))
2121 return Definition;
2122 else if (!isOutOfLine() && isInline())
2123 return Definition;
2124 else
2125 return DeclarationOnly;
2126 }
2127 // C99 6.7p5:
2128 // A definition of an identifier is a declaration for that identifier that
2129 // [...] causes storage to be reserved for that object.
2130 // Note: that applies for all non-file-scope objects.
2131 // C99 6.9.2p1:
2132 // If the declaration of an identifier for an object has file scope and an
2133 // initializer, the declaration is an external definition for the identifier
2134 if (hasInit())
2135 return Definition;
2136
2137 if (hasDefiningAttr())
2138 return Definition;
2139
2140 if (const auto *SAA = getAttr<SelectAnyAttr>())
2141 if (!SAA->isInherited())
2142 return Definition;
2143
2144 // A variable template specialization (other than a static data member
2145 // template or an explicit specialization) is a declaration until we
2146 // instantiate its initializer.
2147 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2148 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2149 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2150 !VTSD->IsCompleteDefinition)
2151 return DeclarationOnly;
2152 }
2153
2154 if (hasExternalStorage())
2155 return DeclarationOnly;
2156
2157 // [dcl.link] p7:
2158 // A declaration directly contained in a linkage-specification is treated
2159 // as if it contains the extern specifier for the purpose of determining
2160 // the linkage of the declared name and whether it is a definition.
2161 if (isSingleLineLanguageLinkage(*this))
2162 return DeclarationOnly;
2163
2164 // C99 6.9.2p2:
2165 // A declaration of an object that has file scope without an initializer,
2166 // and without a storage class specifier or the scs 'static', constitutes
2167 // a tentative definition.
2168 // No such thing in C++.
2169 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2170 return TentativeDefinition;
2171
2172 // What's left is (in C, block-scope) declarations without initializers or
2173 // external storage. These are definitions.
2174 return Definition;
2175 }
2176
getActingDefinition()2177 VarDecl *VarDecl::getActingDefinition() {
2178 DefinitionKind Kind = isThisDeclarationADefinition();
2179 if (Kind != TentativeDefinition)
2180 return nullptr;
2181
2182 VarDecl *LastTentative = nullptr;
2183 VarDecl *First = getFirstDecl();
2184 for (auto I : First->redecls()) {
2185 Kind = I->isThisDeclarationADefinition();
2186 if (Kind == Definition)
2187 return nullptr;
2188 else if (Kind == TentativeDefinition)
2189 LastTentative = I;
2190 }
2191 return LastTentative;
2192 }
2193
getDefinition(ASTContext & C)2194 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2195 VarDecl *First = getFirstDecl();
2196 for (auto I : First->redecls()) {
2197 if (I->isThisDeclarationADefinition(C) == Definition)
2198 return I;
2199 }
2200 return nullptr;
2201 }
2202
hasDefinition(ASTContext & C) const2203 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2204 DefinitionKind Kind = DeclarationOnly;
2205
2206 const VarDecl *First = getFirstDecl();
2207 for (auto I : First->redecls()) {
2208 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2209 if (Kind == Definition)
2210 break;
2211 }
2212
2213 return Kind;
2214 }
2215
getAnyInitializer(const VarDecl * & D) const2216 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2217 for (auto I : redecls()) {
2218 if (auto Expr = I->getInit()) {
2219 D = I;
2220 return Expr;
2221 }
2222 }
2223 return nullptr;
2224 }
2225
hasInit() const2226 bool VarDecl::hasInit() const {
2227 if (auto *P = dyn_cast<ParmVarDecl>(this))
2228 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2229 return false;
2230
2231 return !Init.isNull();
2232 }
2233
getInit()2234 Expr *VarDecl::getInit() {
2235 if (!hasInit())
2236 return nullptr;
2237
2238 if (auto *S = Init.dyn_cast<Stmt *>())
2239 return cast<Expr>(S);
2240
2241 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2242 }
2243
getInitAddress()2244 Stmt **VarDecl::getInitAddress() {
2245 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2246 return &ES->Value;
2247
2248 return Init.getAddrOfPtr1();
2249 }
2250
getInitializingDeclaration()2251 VarDecl *VarDecl::getInitializingDeclaration() {
2252 VarDecl *Def = nullptr;
2253 for (auto I : redecls()) {
2254 if (I->hasInit())
2255 return I;
2256
2257 if (I->isThisDeclarationADefinition()) {
2258 if (isStaticDataMember())
2259 return I;
2260 else
2261 Def = I;
2262 }
2263 }
2264 return Def;
2265 }
2266
isOutOfLine() const2267 bool VarDecl::isOutOfLine() const {
2268 if (Decl::isOutOfLine())
2269 return true;
2270
2271 if (!isStaticDataMember())
2272 return false;
2273
2274 // If this static data member was instantiated from a static data member of
2275 // a class template, check whether that static data member was defined
2276 // out-of-line.
2277 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2278 return VD->isOutOfLine();
2279
2280 return false;
2281 }
2282
setInit(Expr * I)2283 void VarDecl::setInit(Expr *I) {
2284 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2285 Eval->~EvaluatedStmt();
2286 getASTContext().Deallocate(Eval);
2287 }
2288
2289 Init = I;
2290 }
2291
mightBeUsableInConstantExpressions(ASTContext & C) const2292 bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const {
2293 const LangOptions &Lang = C.getLangOpts();
2294
2295 if (!Lang.CPlusPlus)
2296 return false;
2297
2298 // Function parameters are never usable in constant expressions.
2299 if (isa<ParmVarDecl>(this))
2300 return false;
2301
2302 // In C++11, any variable of reference type can be used in a constant
2303 // expression if it is initialized by a constant expression.
2304 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2305 return true;
2306
2307 // Only const objects can be used in constant expressions in C++. C++98 does
2308 // not require the variable to be non-volatile, but we consider this to be a
2309 // defect.
2310 if (!getType().isConstQualified() || getType().isVolatileQualified())
2311 return false;
2312
2313 // In C++, const, non-volatile variables of integral or enumeration types
2314 // can be used in constant expressions.
2315 if (getType()->isIntegralOrEnumerationType())
2316 return true;
2317
2318 // Additionally, in C++11, non-volatile constexpr variables can be used in
2319 // constant expressions.
2320 return Lang.CPlusPlus11 && isConstexpr();
2321 }
2322
isUsableInConstantExpressions(ASTContext & Context) const2323 bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const {
2324 // C++2a [expr.const]p3:
2325 // A variable is usable in constant expressions after its initializing
2326 // declaration is encountered...
2327 const VarDecl *DefVD = nullptr;
2328 const Expr *Init = getAnyInitializer(DefVD);
2329 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2330 return false;
2331 // ... if it is a constexpr variable, or it is of reference type or of
2332 // const-qualified integral or enumeration type, ...
2333 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2334 return false;
2335 // ... and its initializer is a constant initializer.
2336 return DefVD->checkInitIsICE();
2337 }
2338
2339 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2340 /// form, which contains extra information on the evaluated value of the
2341 /// initializer.
ensureEvaluatedStmt() const2342 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2343 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2344 if (!Eval) {
2345 // Note: EvaluatedStmt contains an APValue, which usually holds
2346 // resources not allocated from the ASTContext. We need to do some
2347 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2348 // where we can detect whether there's anything to clean up or not.
2349 Eval = new (getASTContext()) EvaluatedStmt;
2350 Eval->Value = Init.get<Stmt *>();
2351 Init = Eval;
2352 }
2353 return Eval;
2354 }
2355
evaluateValue() const2356 APValue *VarDecl::evaluateValue() const {
2357 SmallVector<PartialDiagnosticAt, 8> Notes;
2358 return evaluateValue(Notes);
2359 }
2360
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const2361 APValue *VarDecl::evaluateValue(
2362 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2363 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2364
2365 // We only produce notes indicating why an initializer is non-constant the
2366 // first time it is evaluated. FIXME: The notes won't always be emitted the
2367 // first time we try evaluation, so might not be produced at all.
2368 if (Eval->WasEvaluated)
2369 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2370
2371 const auto *Init = cast<Expr>(Eval->Value);
2372 assert(!Init->isValueDependent());
2373
2374 if (Eval->IsEvaluating) {
2375 // FIXME: Produce a diagnostic for self-initialization.
2376 Eval->CheckedICE = true;
2377 Eval->IsICE = false;
2378 return nullptr;
2379 }
2380
2381 Eval->IsEvaluating = true;
2382
2383 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2384 this, Notes);
2385
2386 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2387 // or that it's empty (so that there's nothing to clean up) if evaluation
2388 // failed.
2389 if (!Result)
2390 Eval->Evaluated = APValue();
2391 else if (Eval->Evaluated.needsCleanup())
2392 getASTContext().addDestruction(&Eval->Evaluated);
2393
2394 Eval->IsEvaluating = false;
2395 Eval->WasEvaluated = true;
2396
2397 // In C++11, we have determined whether the initializer was a constant
2398 // expression as a side-effect.
2399 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2400 Eval->CheckedICE = true;
2401 Eval->IsICE = Result && Notes.empty();
2402 }
2403
2404 return Result ? &Eval->Evaluated : nullptr;
2405 }
2406
getEvaluatedValue() const2407 APValue *VarDecl::getEvaluatedValue() const {
2408 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2409 if (Eval->WasEvaluated)
2410 return &Eval->Evaluated;
2411
2412 return nullptr;
2413 }
2414
isInitKnownICE() const2415 bool VarDecl::isInitKnownICE() const {
2416 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2417 return Eval->CheckedICE;
2418
2419 return false;
2420 }
2421
isInitICE() const2422 bool VarDecl::isInitICE() const {
2423 assert(isInitKnownICE() &&
2424 "Check whether we already know that the initializer is an ICE");
2425 return Init.get<EvaluatedStmt *>()->IsICE;
2426 }
2427
checkInitIsICE() const2428 bool VarDecl::checkInitIsICE() const {
2429 // Initializers of weak variables are never ICEs.
2430 if (isWeak())
2431 return false;
2432
2433 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2434 if (Eval->CheckedICE)
2435 // We have already checked whether this subexpression is an
2436 // integral constant expression.
2437 return Eval->IsICE;
2438
2439 const auto *Init = cast<Expr>(Eval->Value);
2440 assert(!Init->isValueDependent());
2441
2442 // In C++11, evaluate the initializer to check whether it's a constant
2443 // expression.
2444 if (getASTContext().getLangOpts().CPlusPlus11) {
2445 SmallVector<PartialDiagnosticAt, 8> Notes;
2446 evaluateValue(Notes);
2447 return Eval->IsICE;
2448 }
2449
2450 // It's an ICE whether or not the definition we found is
2451 // out-of-line. See DR 721 and the discussion in Clang PR
2452 // 6206 for details.
2453
2454 if (Eval->CheckingICE)
2455 return false;
2456 Eval->CheckingICE = true;
2457
2458 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2459 Eval->CheckingICE = false;
2460 Eval->CheckedICE = true;
2461 return Eval->IsICE;
2462 }
2463
isParameterPack() const2464 bool VarDecl::isParameterPack() const {
2465 return isa<PackExpansionType>(getType());
2466 }
2467
2468 template<typename DeclT>
getDefinitionOrSelf(DeclT * D)2469 static DeclT *getDefinitionOrSelf(DeclT *D) {
2470 assert(D);
2471 if (auto *Def = D->getDefinition())
2472 return Def;
2473 return D;
2474 }
2475
isEscapingByref() const2476 bool VarDecl::isEscapingByref() const {
2477 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2478 }
2479
isNonEscapingByref() const2480 bool VarDecl::isNonEscapingByref() const {
2481 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2482 }
2483
getTemplateInstantiationPattern() const2484 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2485 const VarDecl *VD = this;
2486
2487 // If this is an instantiated member, walk back to the template from which
2488 // it was instantiated.
2489 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2490 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2491 VD = VD->getInstantiatedFromStaticDataMember();
2492 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2493 VD = NewVD;
2494 }
2495 }
2496
2497 // If it's an instantiated variable template specialization, find the
2498 // template or partial specialization from which it was instantiated.
2499 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2500 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2501 auto From = VDTemplSpec->getInstantiatedFrom();
2502 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2503 while (!VTD->isMemberSpecialization()) {
2504 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2505 if (!NewVTD)
2506 break;
2507 VTD = NewVTD;
2508 }
2509 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2510 }
2511 if (auto *VTPSD =
2512 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2513 while (!VTPSD->isMemberSpecialization()) {
2514 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2515 if (!NewVTPSD)
2516 break;
2517 VTPSD = NewVTPSD;
2518 }
2519 return getDefinitionOrSelf<VarDecl>(VTPSD);
2520 }
2521 }
2522 }
2523
2524 // If this is the pattern of a variable template, find where it was
2525 // instantiated from. FIXME: Is this necessary?
2526 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2527 while (!VarTemplate->isMemberSpecialization()) {
2528 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2529 if (!NewVT)
2530 break;
2531 VarTemplate = NewVT;
2532 }
2533
2534 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2535 }
2536
2537 if (VD == this)
2538 return nullptr;
2539 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2540 }
2541
getInstantiatedFromStaticDataMember() const2542 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2543 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2544 return cast<VarDecl>(MSI->getInstantiatedFrom());
2545
2546 return nullptr;
2547 }
2548
getTemplateSpecializationKind() const2549 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2550 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2551 return Spec->getSpecializationKind();
2552
2553 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2554 return MSI->getTemplateSpecializationKind();
2555
2556 return TSK_Undeclared;
2557 }
2558
2559 TemplateSpecializationKind
getTemplateSpecializationKindForInstantiation() const2560 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2561 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2562 return MSI->getTemplateSpecializationKind();
2563
2564 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2565 return Spec->getSpecializationKind();
2566
2567 return TSK_Undeclared;
2568 }
2569
getPointOfInstantiation() const2570 SourceLocation VarDecl::getPointOfInstantiation() const {
2571 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2572 return Spec->getPointOfInstantiation();
2573
2574 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2575 return MSI->getPointOfInstantiation();
2576
2577 return SourceLocation();
2578 }
2579
getDescribedVarTemplate() const2580 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2581 return getASTContext().getTemplateOrSpecializationInfo(this)
2582 .dyn_cast<VarTemplateDecl *>();
2583 }
2584
setDescribedVarTemplate(VarTemplateDecl * Template)2585 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2586 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2587 }
2588
isKnownToBeDefined() const2589 bool VarDecl::isKnownToBeDefined() const {
2590 const auto &LangOpts = getASTContext().getLangOpts();
2591 // In CUDA mode without relocatable device code, variables of form 'extern
2592 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2593 // memory pool. These are never undefined variables, even if they appear
2594 // inside of an anon namespace or static function.
2595 //
2596 // With CUDA relocatable device code enabled, these variables don't get
2597 // special handling; they're treated like regular extern variables.
2598 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2599 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2600 isa<IncompleteArrayType>(getType()))
2601 return true;
2602
2603 return hasDefinition();
2604 }
2605
isNoDestroy(const ASTContext & Ctx) const2606 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2607 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2608 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2609 !hasAttr<AlwaysDestroyAttr>()));
2610 }
2611
2612 QualType::DestructionKind
needsDestruction(const ASTContext & Ctx) const2613 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2614 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2615 if (Eval->HasConstantDestruction)
2616 return QualType::DK_none;
2617
2618 if (isNoDestroy(Ctx))
2619 return QualType::DK_none;
2620
2621 return getType().isDestructedType();
2622 }
2623
getMemberSpecializationInfo() const2624 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2625 if (isStaticDataMember())
2626 // FIXME: Remove ?
2627 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2628 return getASTContext().getTemplateOrSpecializationInfo(this)
2629 .dyn_cast<MemberSpecializationInfo *>();
2630 return nullptr;
2631 }
2632
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2633 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2634 SourceLocation PointOfInstantiation) {
2635 assert((isa<VarTemplateSpecializationDecl>(this) ||
2636 getMemberSpecializationInfo()) &&
2637 "not a variable or static data member template specialization");
2638
2639 if (VarTemplateSpecializationDecl *Spec =
2640 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2641 Spec->setSpecializationKind(TSK);
2642 if (TSK != TSK_ExplicitSpecialization &&
2643 PointOfInstantiation.isValid() &&
2644 Spec->getPointOfInstantiation().isInvalid()) {
2645 Spec->setPointOfInstantiation(PointOfInstantiation);
2646 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2647 L->InstantiationRequested(this);
2648 }
2649 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2650 MSI->setTemplateSpecializationKind(TSK);
2651 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2652 MSI->getPointOfInstantiation().isInvalid()) {
2653 MSI->setPointOfInstantiation(PointOfInstantiation);
2654 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2655 L->InstantiationRequested(this);
2656 }
2657 }
2658 }
2659
2660 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2661 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2662 TemplateSpecializationKind TSK) {
2663 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2664 "Previous template or instantiation?");
2665 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2666 }
2667
2668 //===----------------------------------------------------------------------===//
2669 // ParmVarDecl Implementation
2670 //===----------------------------------------------------------------------===//
2671
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2672 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2673 SourceLocation StartLoc,
2674 SourceLocation IdLoc, IdentifierInfo *Id,
2675 QualType T, TypeSourceInfo *TInfo,
2676 StorageClass S, Expr *DefArg) {
2677 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2678 S, DefArg);
2679 }
2680
getOriginalType() const2681 QualType ParmVarDecl::getOriginalType() const {
2682 TypeSourceInfo *TSI = getTypeSourceInfo();
2683 QualType T = TSI ? TSI->getType() : getType();
2684 if (const auto *DT = dyn_cast<DecayedType>(T))
2685 return DT->getOriginalType();
2686 return T;
2687 }
2688
CreateDeserialized(ASTContext & C,unsigned ID)2689 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2690 return new (C, ID)
2691 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2692 nullptr, QualType(), nullptr, SC_None, nullptr);
2693 }
2694
getSourceRange() const2695 SourceRange ParmVarDecl::getSourceRange() const {
2696 if (!hasInheritedDefaultArg()) {
2697 SourceRange ArgRange = getDefaultArgRange();
2698 if (ArgRange.isValid())
2699 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2700 }
2701
2702 // DeclaratorDecl considers the range of postfix types as overlapping with the
2703 // declaration name, but this is not the case with parameters in ObjC methods.
2704 if (isa<ObjCMethodDecl>(getDeclContext()))
2705 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2706
2707 return DeclaratorDecl::getSourceRange();
2708 }
2709
getDefaultArg()2710 Expr *ParmVarDecl::getDefaultArg() {
2711 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2712 assert(!hasUninstantiatedDefaultArg() &&
2713 "Default argument is not yet instantiated!");
2714
2715 Expr *Arg = getInit();
2716 if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2717 return E->getSubExpr();
2718
2719 return Arg;
2720 }
2721
setDefaultArg(Expr * defarg)2722 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2723 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2724 Init = defarg;
2725 }
2726
getDefaultArgRange() const2727 SourceRange ParmVarDecl::getDefaultArgRange() const {
2728 switch (ParmVarDeclBits.DefaultArgKind) {
2729 case DAK_None:
2730 case DAK_Unparsed:
2731 // Nothing we can do here.
2732 return SourceRange();
2733
2734 case DAK_Uninstantiated:
2735 return getUninstantiatedDefaultArg()->getSourceRange();
2736
2737 case DAK_Normal:
2738 if (const Expr *E = getInit())
2739 return E->getSourceRange();
2740
2741 // Missing an actual expression, may be invalid.
2742 return SourceRange();
2743 }
2744 llvm_unreachable("Invalid default argument kind.");
2745 }
2746
setUninstantiatedDefaultArg(Expr * arg)2747 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2748 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2749 Init = arg;
2750 }
2751
getUninstantiatedDefaultArg()2752 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2753 assert(hasUninstantiatedDefaultArg() &&
2754 "Wrong kind of initialization expression!");
2755 return cast_or_null<Expr>(Init.get<Stmt *>());
2756 }
2757
hasDefaultArg() const2758 bool ParmVarDecl::hasDefaultArg() const {
2759 // FIXME: We should just return false for DAK_None here once callers are
2760 // prepared for the case that we encountered an invalid default argument and
2761 // were unable to even build an invalid expression.
2762 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2763 !Init.isNull();
2764 }
2765
setParameterIndexLarge(unsigned parameterIndex)2766 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2767 getASTContext().setParameterIndex(this, parameterIndex);
2768 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2769 }
2770
getParameterIndexLarge() const2771 unsigned ParmVarDecl::getParameterIndexLarge() const {
2772 return getASTContext().getParameterIndex(this);
2773 }
2774
2775 //===----------------------------------------------------------------------===//
2776 // FunctionDecl Implementation
2777 //===----------------------------------------------------------------------===//
2778
FunctionDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass S,bool isInlineSpecified,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)2779 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2780 SourceLocation StartLoc,
2781 const DeclarationNameInfo &NameInfo, QualType T,
2782 TypeSourceInfo *TInfo, StorageClass S,
2783 bool isInlineSpecified,
2784 ConstexprSpecKind ConstexprKind,
2785 Expr *TrailingRequiresClause)
2786 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2787 StartLoc),
2788 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2789 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2790 assert(T.isNull() || T->isFunctionType());
2791 FunctionDeclBits.SClass = S;
2792 FunctionDeclBits.IsInline = isInlineSpecified;
2793 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2794 FunctionDeclBits.IsVirtualAsWritten = false;
2795 FunctionDeclBits.IsPure = false;
2796 FunctionDeclBits.HasInheritedPrototype = false;
2797 FunctionDeclBits.HasWrittenPrototype = true;
2798 FunctionDeclBits.IsDeleted = false;
2799 FunctionDeclBits.IsTrivial = false;
2800 FunctionDeclBits.IsTrivialForCall = false;
2801 FunctionDeclBits.IsDefaulted = false;
2802 FunctionDeclBits.IsExplicitlyDefaulted = false;
2803 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2804 FunctionDeclBits.HasImplicitReturnZero = false;
2805 FunctionDeclBits.IsLateTemplateParsed = false;
2806 FunctionDeclBits.ConstexprKind = ConstexprKind;
2807 FunctionDeclBits.InstantiationIsPending = false;
2808 FunctionDeclBits.UsesSEHTry = false;
2809 FunctionDeclBits.UsesFPIntrin = false;
2810 FunctionDeclBits.HasSkippedBody = false;
2811 FunctionDeclBits.WillHaveBody = false;
2812 FunctionDeclBits.IsMultiVersion = false;
2813 FunctionDeclBits.IsCopyDeductionCandidate = false;
2814 FunctionDeclBits.HasODRHash = false;
2815 if (TrailingRequiresClause)
2816 setTrailingRequiresClause(TrailingRequiresClause);
2817 }
2818
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const2819 void FunctionDecl::getNameForDiagnostic(
2820 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2821 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2822 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2823 if (TemplateArgs)
2824 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2825 }
2826
isVariadic() const2827 bool FunctionDecl::isVariadic() const {
2828 if (const auto *FT = getType()->getAs<FunctionProtoType>())
2829 return FT->isVariadic();
2830 return false;
2831 }
2832
2833 FunctionDecl::DefaultedFunctionInfo *
Create(ASTContext & Context,ArrayRef<DeclAccessPair> Lookups)2834 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2835 ArrayRef<DeclAccessPair> Lookups) {
2836 DefaultedFunctionInfo *Info = new (Context.Allocate(
2837 totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2838 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2839 DefaultedFunctionInfo;
2840 Info->NumLookups = Lookups.size();
2841 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2842 Info->getTrailingObjects<DeclAccessPair>());
2843 return Info;
2844 }
2845
setDefaultedFunctionInfo(DefaultedFunctionInfo * Info)2846 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2847 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2848 assert(!Body && "can't replace function body with defaulted function info");
2849
2850 FunctionDeclBits.HasDefaultedFunctionInfo = true;
2851 DefaultedInfo = Info;
2852 }
2853
2854 FunctionDecl::DefaultedFunctionInfo *
getDefaultedFunctionInfo() const2855 FunctionDecl::getDefaultedFunctionInfo() const {
2856 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2857 }
2858
hasBody(const FunctionDecl * & Definition) const2859 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2860 for (auto I : redecls()) {
2861 if (I->doesThisDeclarationHaveABody()) {
2862 Definition = I;
2863 return true;
2864 }
2865 }
2866
2867 return false;
2868 }
2869
hasTrivialBody() const2870 bool FunctionDecl::hasTrivialBody() const {
2871 Stmt *S = getBody();
2872 if (!S) {
2873 // Since we don't have a body for this function, we don't know if it's
2874 // trivial or not.
2875 return false;
2876 }
2877
2878 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2879 return true;
2880 return false;
2881 }
2882
isDefined(const FunctionDecl * & Definition) const2883 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2884 for (auto I : redecls()) {
2885 if (I->isThisDeclarationADefinition()) {
2886 Definition = I;
2887 return true;
2888 }
2889 }
2890
2891 return false;
2892 }
2893
getBody(const FunctionDecl * & Definition) const2894 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2895 if (!hasBody(Definition))
2896 return nullptr;
2897
2898 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
2899 "definition should not have a body");
2900 if (Definition->Body)
2901 return Definition->Body.get(getASTContext().getExternalSource());
2902
2903 return nullptr;
2904 }
2905
setBody(Stmt * B)2906 void FunctionDecl::setBody(Stmt *B) {
2907 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2908 Body = LazyDeclStmtPtr(B);
2909 if (B)
2910 EndRangeLoc = B->getEndLoc();
2911 }
2912
setPure(bool P)2913 void FunctionDecl::setPure(bool P) {
2914 FunctionDeclBits.IsPure = P;
2915 if (P)
2916 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2917 Parent->markedVirtualFunctionPure();
2918 }
2919
2920 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])2921 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2922 IdentifierInfo *II = ND->getIdentifier();
2923 return II && II->isStr(Str);
2924 }
2925
isMain() const2926 bool FunctionDecl::isMain() const {
2927 const TranslationUnitDecl *tunit =
2928 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2929 return tunit &&
2930 !tunit->getASTContext().getLangOpts().Freestanding &&
2931 isNamed(this, "main");
2932 }
2933
isMSVCRTEntryPoint() const2934 bool FunctionDecl::isMSVCRTEntryPoint() const {
2935 const TranslationUnitDecl *TUnit =
2936 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2937 if (!TUnit)
2938 return false;
2939
2940 // Even though we aren't really targeting MSVCRT if we are freestanding,
2941 // semantic analysis for these functions remains the same.
2942
2943 // MSVCRT entry points only exist on MSVCRT targets.
2944 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2945 return false;
2946
2947 // Nameless functions like constructors cannot be entry points.
2948 if (!getIdentifier())
2949 return false;
2950
2951 return llvm::StringSwitch<bool>(getName())
2952 .Cases("main", // an ANSI console app
2953 "wmain", // a Unicode console App
2954 "WinMain", // an ANSI GUI app
2955 "wWinMain", // a Unicode GUI app
2956 "DllMain", // a DLL
2957 true)
2958 .Default(false);
2959 }
2960
isReservedGlobalPlacementOperator() const2961 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2962 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2963 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2964 getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2965 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2966 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2967
2968 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2969 return false;
2970
2971 const auto *proto = getType()->castAs<FunctionProtoType>();
2972 if (proto->getNumParams() != 2 || proto->isVariadic())
2973 return false;
2974
2975 ASTContext &Context =
2976 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2977 ->getASTContext();
2978
2979 // The result type and first argument type are constant across all
2980 // these operators. The second argument must be exactly void*.
2981 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2982 }
2983
isReplaceableGlobalAllocationFunction(bool * IsAligned) const2984 bool FunctionDecl::isReplaceableGlobalAllocationFunction(bool *IsAligned) const {
2985 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2986 return false;
2987 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2988 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2989 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2990 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2991 return false;
2992
2993 if (isa<CXXRecordDecl>(getDeclContext()))
2994 return false;
2995
2996 // This can only fail for an invalid 'operator new' declaration.
2997 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2998 return false;
2999
3000 const auto *FPT = getType()->castAs<FunctionProtoType>();
3001 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3002 return false;
3003
3004 // If this is a single-parameter function, it must be a replaceable global
3005 // allocation or deallocation function.
3006 if (FPT->getNumParams() == 1)
3007 return true;
3008
3009 unsigned Params = 1;
3010 QualType Ty = FPT->getParamType(Params);
3011 ASTContext &Ctx = getASTContext();
3012
3013 auto Consume = [&] {
3014 ++Params;
3015 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3016 };
3017
3018 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3019 bool IsSizedDelete = false;
3020 if (Ctx.getLangOpts().SizedDeallocation &&
3021 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3022 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3023 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3024 IsSizedDelete = true;
3025 Consume();
3026 }
3027
3028 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3029 // new/delete.
3030 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3031 if (IsAligned)
3032 *IsAligned = true;
3033 Consume();
3034 }
3035
3036 // Finally, if this is not a sized delete, the final parameter can
3037 // be a 'const std::nothrow_t&'.
3038 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3039 Ty = Ty->getPointeeType();
3040 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3041 return false;
3042 if (Ty->isNothrowT())
3043 Consume();
3044 }
3045
3046 return Params == FPT->getNumParams();
3047 }
3048
isInlineBuiltinDeclaration() const3049 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3050 if (!getBuiltinID())
3051 return false;
3052
3053 const FunctionDecl *Definition;
3054 return hasBody(Definition) && Definition->isInlineSpecified();
3055 }
3056
isDestroyingOperatorDelete() const3057 bool FunctionDecl::isDestroyingOperatorDelete() const {
3058 // C++ P0722:
3059 // Within a class C, a single object deallocation function with signature
3060 // (T, std::destroying_delete_t, <more params>)
3061 // is a destroying operator delete.
3062 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3063 getNumParams() < 2)
3064 return false;
3065
3066 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3067 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3068 RD->getIdentifier()->isStr("destroying_delete_t");
3069 }
3070
getLanguageLinkage() const3071 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3072 return getDeclLanguageLinkage(*this);
3073 }
3074
isExternC() const3075 bool FunctionDecl::isExternC() const {
3076 return isDeclExternC(*this);
3077 }
3078
isInExternCContext() const3079 bool FunctionDecl::isInExternCContext() const {
3080 if (hasAttr<OpenCLKernelAttr>())
3081 return true;
3082 return getLexicalDeclContext()->isExternCContext();
3083 }
3084
isInExternCXXContext() const3085 bool FunctionDecl::isInExternCXXContext() const {
3086 return getLexicalDeclContext()->isExternCXXContext();
3087 }
3088
isGlobal() const3089 bool FunctionDecl::isGlobal() const {
3090 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3091 return Method->isStatic();
3092
3093 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3094 return false;
3095
3096 for (const DeclContext *DC = getDeclContext();
3097 DC->isNamespace();
3098 DC = DC->getParent()) {
3099 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3100 if (!Namespace->getDeclName())
3101 return false;
3102 break;
3103 }
3104 }
3105
3106 return true;
3107 }
3108
isNoReturn() const3109 bool FunctionDecl::isNoReturn() const {
3110 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3111 hasAttr<C11NoReturnAttr>())
3112 return true;
3113
3114 if (auto *FnTy = getType()->getAs<FunctionType>())
3115 return FnTy->getNoReturnAttr();
3116
3117 return false;
3118 }
3119
3120
getMultiVersionKind() const3121 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3122 if (hasAttr<TargetAttr>())
3123 return MultiVersionKind::Target;
3124 if (hasAttr<CPUDispatchAttr>())
3125 return MultiVersionKind::CPUDispatch;
3126 if (hasAttr<CPUSpecificAttr>())
3127 return MultiVersionKind::CPUSpecific;
3128 return MultiVersionKind::None;
3129 }
3130
isCPUDispatchMultiVersion() const3131 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3132 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3133 }
3134
isCPUSpecificMultiVersion() const3135 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3136 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3137 }
3138
isTargetMultiVersion() const3139 bool FunctionDecl::isTargetMultiVersion() const {
3140 return isMultiVersion() && hasAttr<TargetAttr>();
3141 }
3142
3143 void
setPreviousDeclaration(FunctionDecl * PrevDecl)3144 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3145 redeclarable_base::setPreviousDecl(PrevDecl);
3146
3147 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3148 FunctionTemplateDecl *PrevFunTmpl
3149 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3150 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3151 FunTmpl->setPreviousDecl(PrevFunTmpl);
3152 }
3153
3154 if (PrevDecl && PrevDecl->isInlined())
3155 setImplicitlyInline(true);
3156 }
3157
getCanonicalDecl()3158 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3159
3160 /// Returns a value indicating whether this function corresponds to a builtin
3161 /// function.
3162 ///
3163 /// The function corresponds to a built-in function if it is declared at
3164 /// translation scope or within an extern "C" block and its name matches with
3165 /// the name of a builtin. The returned value will be 0 for functions that do
3166 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3167 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3168 /// value.
3169 ///
3170 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3171 /// functions as their wrapped builtins. This shouldn't be done in general, but
3172 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
getBuiltinID(bool ConsiderWrapperFunctions) const3173 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3174 unsigned BuiltinID;
3175
3176 if (const auto *AMAA = getAttr<ArmMveAliasAttr>()) {
3177 BuiltinID = AMAA->getBuiltinName()->getBuiltinID();
3178 } else {
3179 if (!getIdentifier())
3180 return 0;
3181
3182 BuiltinID = getIdentifier()->getBuiltinID();
3183 }
3184
3185 if (!BuiltinID)
3186 return 0;
3187
3188 ASTContext &Context = getASTContext();
3189 if (Context.getLangOpts().CPlusPlus) {
3190 const auto *LinkageDecl =
3191 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
3192 // In C++, the first declaration of a builtin is always inside an implicit
3193 // extern "C".
3194 // FIXME: A recognised library function may not be directly in an extern "C"
3195 // declaration, for instance "extern "C" { namespace std { decl } }".
3196 if (!LinkageDecl) {
3197 if (BuiltinID == Builtin::BI__GetExceptionInfo &&
3198 Context.getTargetInfo().getCXXABI().isMicrosoft())
3199 return Builtin::BI__GetExceptionInfo;
3200 return 0;
3201 }
3202 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3203 return 0;
3204 }
3205
3206 // If the function is marked "overloadable", it has a different mangled name
3207 // and is not the C library function.
3208 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3209 !hasAttr<ArmMveAliasAttr>())
3210 return 0;
3211
3212 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3213 return BuiltinID;
3214
3215 // This function has the name of a known C library
3216 // function. Determine whether it actually refers to the C library
3217 // function or whether it just has the same name.
3218
3219 // If this is a static function, it's not a builtin.
3220 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3221 return 0;
3222
3223 // OpenCL v1.2 s6.9.f - The library functions defined in
3224 // the C99 standard headers are not available.
3225 if (Context.getLangOpts().OpenCL &&
3226 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3227 return 0;
3228
3229 // CUDA does not have device-side standard library. printf and malloc are the
3230 // only special cases that are supported by device-side runtime.
3231 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3232 !hasAttr<CUDAHostAttr>() &&
3233 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3234 return 0;
3235
3236 return BuiltinID;
3237 }
3238
3239 /// getNumParams - Return the number of parameters this function must have
3240 /// based on its FunctionType. This is the length of the ParamInfo array
3241 /// after it has been created.
getNumParams() const3242 unsigned FunctionDecl::getNumParams() const {
3243 const auto *FPT = getType()->getAs<FunctionProtoType>();
3244 return FPT ? FPT->getNumParams() : 0;
3245 }
3246
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)3247 void FunctionDecl::setParams(ASTContext &C,
3248 ArrayRef<ParmVarDecl *> NewParamInfo) {
3249 assert(!ParamInfo && "Already has param info!");
3250 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3251
3252 // Zero params -> null pointer.
3253 if (!NewParamInfo.empty()) {
3254 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3255 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3256 }
3257 }
3258
3259 /// getMinRequiredArguments - Returns the minimum number of arguments
3260 /// needed to call this function. This may be fewer than the number of
3261 /// function parameters, if some of the parameters have default
3262 /// arguments (in C++) or are parameter packs (C++11).
getMinRequiredArguments() const3263 unsigned FunctionDecl::getMinRequiredArguments() const {
3264 if (!getASTContext().getLangOpts().CPlusPlus)
3265 return getNumParams();
3266
3267 unsigned NumRequiredArgs = 0;
3268 for (auto *Param : parameters())
3269 if (!Param->isParameterPack() && !Param->hasDefaultArg())
3270 ++NumRequiredArgs;
3271 return NumRequiredArgs;
3272 }
3273
3274 /// The combination of the extern and inline keywords under MSVC forces
3275 /// the function to be required.
3276 ///
3277 /// Note: This function assumes that we will only get called when isInlined()
3278 /// would return true for this FunctionDecl.
isMSExternInline() const3279 bool FunctionDecl::isMSExternInline() const {
3280 assert(isInlined() && "expected to get called on an inlined function!");
3281
3282 const ASTContext &Context = getASTContext();
3283 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3284 !hasAttr<DLLExportAttr>())
3285 return false;
3286
3287 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3288 FD = FD->getPreviousDecl())
3289 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3290 return true;
3291
3292 return false;
3293 }
3294
redeclForcesDefMSVC(const FunctionDecl * Redecl)3295 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3296 if (Redecl->getStorageClass() != SC_Extern)
3297 return false;
3298
3299 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3300 FD = FD->getPreviousDecl())
3301 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3302 return false;
3303
3304 return true;
3305 }
3306
RedeclForcesDefC99(const FunctionDecl * Redecl)3307 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3308 // Only consider file-scope declarations in this test.
3309 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3310 return false;
3311
3312 // Only consider explicit declarations; the presence of a builtin for a
3313 // libcall shouldn't affect whether a definition is externally visible.
3314 if (Redecl->isImplicit())
3315 return false;
3316
3317 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3318 return true; // Not an inline definition
3319
3320 return false;
3321 }
3322
3323 /// For a function declaration in C or C++, determine whether this
3324 /// declaration causes the definition to be externally visible.
3325 ///
3326 /// For instance, this determines if adding the current declaration to the set
3327 /// of redeclarations of the given functions causes
3328 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const3329 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3330 assert(!doesThisDeclarationHaveABody() &&
3331 "Must have a declaration without a body.");
3332
3333 ASTContext &Context = getASTContext();
3334
3335 if (Context.getLangOpts().MSVCCompat) {
3336 const FunctionDecl *Definition;
3337 if (hasBody(Definition) && Definition->isInlined() &&
3338 redeclForcesDefMSVC(this))
3339 return true;
3340 }
3341
3342 if (Context.getLangOpts().CPlusPlus)
3343 return false;
3344
3345 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3346 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3347 // an externally visible definition.
3348 //
3349 // FIXME: What happens if gnu_inline gets added on after the first
3350 // declaration?
3351 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3352 return false;
3353
3354 const FunctionDecl *Prev = this;
3355 bool FoundBody = false;
3356 while ((Prev = Prev->getPreviousDecl())) {
3357 FoundBody |= Prev->doesThisDeclarationHaveABody();
3358
3359 if (Prev->doesThisDeclarationHaveABody()) {
3360 // If it's not the case that both 'inline' and 'extern' are
3361 // specified on the definition, then it is always externally visible.
3362 if (!Prev->isInlineSpecified() ||
3363 Prev->getStorageClass() != SC_Extern)
3364 return false;
3365 } else if (Prev->isInlineSpecified() &&
3366 Prev->getStorageClass() != SC_Extern) {
3367 return false;
3368 }
3369 }
3370 return FoundBody;
3371 }
3372
3373 // C99 6.7.4p6:
3374 // [...] If all of the file scope declarations for a function in a
3375 // translation unit include the inline function specifier without extern,
3376 // then the definition in that translation unit is an inline definition.
3377 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3378 return false;
3379 const FunctionDecl *Prev = this;
3380 bool FoundBody = false;
3381 while ((Prev = Prev->getPreviousDecl())) {
3382 FoundBody |= Prev->doesThisDeclarationHaveABody();
3383 if (RedeclForcesDefC99(Prev))
3384 return false;
3385 }
3386 return FoundBody;
3387 }
3388
getFunctionTypeLoc() const3389 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3390 const TypeSourceInfo *TSI = getTypeSourceInfo();
3391 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3392 : FunctionTypeLoc();
3393 }
3394
getReturnTypeSourceRange() const3395 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3396 FunctionTypeLoc FTL = getFunctionTypeLoc();
3397 if (!FTL)
3398 return SourceRange();
3399
3400 // Skip self-referential return types.
3401 const SourceManager &SM = getASTContext().getSourceManager();
3402 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3403 SourceLocation Boundary = getNameInfo().getBeginLoc();
3404 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3405 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3406 return SourceRange();
3407
3408 return RTRange;
3409 }
3410
getParametersSourceRange() const3411 SourceRange FunctionDecl::getParametersSourceRange() const {
3412 unsigned NP = getNumParams();
3413 SourceLocation EllipsisLoc = getEllipsisLoc();
3414
3415 if (NP == 0 && EllipsisLoc.isInvalid())
3416 return SourceRange();
3417
3418 SourceLocation Begin =
3419 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3420 SourceLocation End = EllipsisLoc.isValid()
3421 ? EllipsisLoc
3422 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3423
3424 return SourceRange(Begin, End);
3425 }
3426
getExceptionSpecSourceRange() const3427 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3428 FunctionTypeLoc FTL = getFunctionTypeLoc();
3429 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3430 }
3431
3432 /// For an inline function definition in C, or for a gnu_inline function
3433 /// in C++, determine whether the definition will be externally visible.
3434 ///
3435 /// Inline function definitions are always available for inlining optimizations.
3436 /// However, depending on the language dialect, declaration specifiers, and
3437 /// attributes, the definition of an inline function may or may not be
3438 /// "externally" visible to other translation units in the program.
3439 ///
3440 /// In C99, inline definitions are not externally visible by default. However,
3441 /// if even one of the global-scope declarations is marked "extern inline", the
3442 /// inline definition becomes externally visible (C99 6.7.4p6).
3443 ///
3444 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3445 /// definition, we use the GNU semantics for inline, which are nearly the
3446 /// opposite of C99 semantics. In particular, "inline" by itself will create
3447 /// an externally visible symbol, but "extern inline" will not create an
3448 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const3449 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3450 assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3451 hasAttr<AliasAttr>()) &&
3452 "Must be a function definition");
3453 assert(isInlined() && "Function must be inline");
3454 ASTContext &Context = getASTContext();
3455
3456 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3457 // Note: If you change the logic here, please change
3458 // doesDeclarationForceExternallyVisibleDefinition as well.
3459 //
3460 // If it's not the case that both 'inline' and 'extern' are
3461 // specified on the definition, then this inline definition is
3462 // externally visible.
3463 if (Context.getLangOpts().CPlusPlus)
3464 return false;
3465 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3466 return true;
3467
3468 // If any declaration is 'inline' but not 'extern', then this definition
3469 // is externally visible.
3470 for (auto Redecl : redecls()) {
3471 if (Redecl->isInlineSpecified() &&
3472 Redecl->getStorageClass() != SC_Extern)
3473 return true;
3474 }
3475
3476 return false;
3477 }
3478
3479 // The rest of this function is C-only.
3480 assert(!Context.getLangOpts().CPlusPlus &&
3481 "should not use C inline rules in C++");
3482
3483 // C99 6.7.4p6:
3484 // [...] If all of the file scope declarations for a function in a
3485 // translation unit include the inline function specifier without extern,
3486 // then the definition in that translation unit is an inline definition.
3487 for (auto Redecl : redecls()) {
3488 if (RedeclForcesDefC99(Redecl))
3489 return true;
3490 }
3491
3492 // C99 6.7.4p6:
3493 // An inline definition does not provide an external definition for the
3494 // function, and does not forbid an external definition in another
3495 // translation unit.
3496 return false;
3497 }
3498
3499 /// getOverloadedOperator - Which C++ overloaded operator this
3500 /// function represents, if any.
getOverloadedOperator() const3501 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3502 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3503 return getDeclName().getCXXOverloadedOperator();
3504 else
3505 return OO_None;
3506 }
3507
3508 /// getLiteralIdentifier - The literal suffix identifier this function
3509 /// represents, if any.
getLiteralIdentifier() const3510 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3511 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3512 return getDeclName().getCXXLiteralIdentifier();
3513 else
3514 return nullptr;
3515 }
3516
getTemplatedKind() const3517 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3518 if (TemplateOrSpecialization.isNull())
3519 return TK_NonTemplate;
3520 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3521 return TK_FunctionTemplate;
3522 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3523 return TK_MemberSpecialization;
3524 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3525 return TK_FunctionTemplateSpecialization;
3526 if (TemplateOrSpecialization.is
3527 <DependentFunctionTemplateSpecializationInfo*>())
3528 return TK_DependentFunctionTemplateSpecialization;
3529
3530 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3531 }
3532
getInstantiatedFromMemberFunction() const3533 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3534 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3535 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3536
3537 return nullptr;
3538 }
3539
getMemberSpecializationInfo() const3540 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3541 if (auto *MSI =
3542 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3543 return MSI;
3544 if (auto *FTSI = TemplateOrSpecialization
3545 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3546 return FTSI->getMemberSpecializationInfo();
3547 return nullptr;
3548 }
3549
3550 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)3551 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3552 FunctionDecl *FD,
3553 TemplateSpecializationKind TSK) {
3554 assert(TemplateOrSpecialization.isNull() &&
3555 "Member function is already a specialization");
3556 MemberSpecializationInfo *Info
3557 = new (C) MemberSpecializationInfo(FD, TSK);
3558 TemplateOrSpecialization = Info;
3559 }
3560
getDescribedFunctionTemplate() const3561 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3562 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3563 }
3564
setDescribedFunctionTemplate(FunctionTemplateDecl * Template)3565 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3566 assert(TemplateOrSpecialization.isNull() &&
3567 "Member function is already a specialization");
3568 TemplateOrSpecialization = Template;
3569 }
3570
isImplicitlyInstantiable() const3571 bool FunctionDecl::isImplicitlyInstantiable() const {
3572 // If the function is invalid, it can't be implicitly instantiated.
3573 if (isInvalidDecl())
3574 return false;
3575
3576 switch (getTemplateSpecializationKindForInstantiation()) {
3577 case TSK_Undeclared:
3578 case TSK_ExplicitInstantiationDefinition:
3579 case TSK_ExplicitSpecialization:
3580 return false;
3581
3582 case TSK_ImplicitInstantiation:
3583 return true;
3584
3585 case TSK_ExplicitInstantiationDeclaration:
3586 // Handled below.
3587 break;
3588 }
3589
3590 // Find the actual template from which we will instantiate.
3591 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3592 bool HasPattern = false;
3593 if (PatternDecl)
3594 HasPattern = PatternDecl->hasBody(PatternDecl);
3595
3596 // C++0x [temp.explicit]p9:
3597 // Except for inline functions, other explicit instantiation declarations
3598 // have the effect of suppressing the implicit instantiation of the entity
3599 // to which they refer.
3600 if (!HasPattern || !PatternDecl)
3601 return true;
3602
3603 return PatternDecl->isInlined();
3604 }
3605
isTemplateInstantiation() const3606 bool FunctionDecl::isTemplateInstantiation() const {
3607 // FIXME: Remove this, it's not clear what it means. (Which template
3608 // specialization kind?)
3609 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3610 }
3611
getTemplateInstantiationPattern() const3612 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3613 // If this is a generic lambda call operator specialization, its
3614 // instantiation pattern is always its primary template's pattern
3615 // even if its primary template was instantiated from another
3616 // member template (which happens with nested generic lambdas).
3617 // Since a lambda's call operator's body is transformed eagerly,
3618 // we don't have to go hunting for a prototype definition template
3619 // (i.e. instantiated-from-member-template) to use as an instantiation
3620 // pattern.
3621
3622 if (isGenericLambdaCallOperatorSpecialization(
3623 dyn_cast<CXXMethodDecl>(this))) {
3624 assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3625 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3626 }
3627
3628 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) {
3629 if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3630 return nullptr;
3631 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3632 }
3633
3634 if (!clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3635 return nullptr;
3636
3637 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3638 // If we hit a point where the user provided a specialization of this
3639 // template, we're done looking.
3640 while (!Primary->isMemberSpecialization()) {
3641 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3642 if (!NewPrimary)
3643 break;
3644 Primary = NewPrimary;
3645 }
3646
3647 return getDefinitionOrSelf(Primary->getTemplatedDecl());
3648 }
3649
3650 return nullptr;
3651 }
3652
getPrimaryTemplate() const3653 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3654 if (FunctionTemplateSpecializationInfo *Info
3655 = TemplateOrSpecialization
3656 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3657 return Info->getTemplate();
3658 }
3659 return nullptr;
3660 }
3661
3662 FunctionTemplateSpecializationInfo *
getTemplateSpecializationInfo() const3663 FunctionDecl::getTemplateSpecializationInfo() const {
3664 return TemplateOrSpecialization
3665 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3666 }
3667
3668 const TemplateArgumentList *
getTemplateSpecializationArgs() const3669 FunctionDecl::getTemplateSpecializationArgs() const {
3670 if (FunctionTemplateSpecializationInfo *Info
3671 = TemplateOrSpecialization
3672 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3673 return Info->TemplateArguments;
3674 }
3675 return nullptr;
3676 }
3677
3678 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const3679 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3680 if (FunctionTemplateSpecializationInfo *Info
3681 = TemplateOrSpecialization
3682 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3683 return Info->TemplateArgumentsAsWritten;
3684 }
3685 return nullptr;
3686 }
3687
3688 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)3689 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3690 FunctionTemplateDecl *Template,
3691 const TemplateArgumentList *TemplateArgs,
3692 void *InsertPos,
3693 TemplateSpecializationKind TSK,
3694 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3695 SourceLocation PointOfInstantiation) {
3696 assert((TemplateOrSpecialization.isNull() ||
3697 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3698 "Member function is already a specialization");
3699 assert(TSK != TSK_Undeclared &&
3700 "Must specify the type of function template specialization");
3701 assert((TemplateOrSpecialization.isNull() ||
3702 TSK == TSK_ExplicitSpecialization) &&
3703 "Member specialization must be an explicit specialization");
3704 FunctionTemplateSpecializationInfo *Info =
3705 FunctionTemplateSpecializationInfo::Create(
3706 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3707 PointOfInstantiation,
3708 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3709 TemplateOrSpecialization = Info;
3710 Template->addSpecialization(Info, InsertPos);
3711 }
3712
3713 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)3714 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3715 const UnresolvedSetImpl &Templates,
3716 const TemplateArgumentListInfo &TemplateArgs) {
3717 assert(TemplateOrSpecialization.isNull());
3718 DependentFunctionTemplateSpecializationInfo *Info =
3719 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3720 TemplateArgs);
3721 TemplateOrSpecialization = Info;
3722 }
3723
3724 DependentFunctionTemplateSpecializationInfo *
getDependentSpecializationInfo() const3725 FunctionDecl::getDependentSpecializationInfo() const {
3726 return TemplateOrSpecialization
3727 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3728 }
3729
3730 DependentFunctionTemplateSpecializationInfo *
Create(ASTContext & Context,const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3731 DependentFunctionTemplateSpecializationInfo::Create(
3732 ASTContext &Context, const UnresolvedSetImpl &Ts,
3733 const TemplateArgumentListInfo &TArgs) {
3734 void *Buffer = Context.Allocate(
3735 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3736 TArgs.size(), Ts.size()));
3737 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3738 }
3739
3740 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3741 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3742 const TemplateArgumentListInfo &TArgs)
3743 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3744 NumTemplates = Ts.size();
3745 NumArgs = TArgs.size();
3746
3747 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3748 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3749 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3750
3751 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3752 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3753 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3754 }
3755
getTemplateSpecializationKind() const3756 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3757 // For a function template specialization, query the specialization
3758 // information object.
3759 if (FunctionTemplateSpecializationInfo *FTSInfo =
3760 TemplateOrSpecialization
3761 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3762 return FTSInfo->getTemplateSpecializationKind();
3763
3764 if (MemberSpecializationInfo *MSInfo =
3765 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3766 return MSInfo->getTemplateSpecializationKind();
3767
3768 return TSK_Undeclared;
3769 }
3770
3771 TemplateSpecializationKind
getTemplateSpecializationKindForInstantiation() const3772 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3773 // This is the same as getTemplateSpecializationKind(), except that for a
3774 // function that is both a function template specialization and a member
3775 // specialization, we prefer the member specialization information. Eg:
3776 //
3777 // template<typename T> struct A {
3778 // template<typename U> void f() {}
3779 // template<> void f<int>() {}
3780 // };
3781 //
3782 // For A<int>::f<int>():
3783 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3784 // * getTemplateSpecializationKindForInstantiation() will return
3785 // TSK_ImplicitInstantiation
3786 //
3787 // This reflects the facts that A<int>::f<int> is an explicit specialization
3788 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3789 // from A::f<int> if a definition is needed.
3790 if (FunctionTemplateSpecializationInfo *FTSInfo =
3791 TemplateOrSpecialization
3792 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3793 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3794 return MSInfo->getTemplateSpecializationKind();
3795 return FTSInfo->getTemplateSpecializationKind();
3796 }
3797
3798 if (MemberSpecializationInfo *MSInfo =
3799 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3800 return MSInfo->getTemplateSpecializationKind();
3801
3802 return TSK_Undeclared;
3803 }
3804
3805 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3806 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3807 SourceLocation PointOfInstantiation) {
3808 if (FunctionTemplateSpecializationInfo *FTSInfo
3809 = TemplateOrSpecialization.dyn_cast<
3810 FunctionTemplateSpecializationInfo*>()) {
3811 FTSInfo->setTemplateSpecializationKind(TSK);
3812 if (TSK != TSK_ExplicitSpecialization &&
3813 PointOfInstantiation.isValid() &&
3814 FTSInfo->getPointOfInstantiation().isInvalid()) {
3815 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3816 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3817 L->InstantiationRequested(this);
3818 }
3819 } else if (MemberSpecializationInfo *MSInfo
3820 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3821 MSInfo->setTemplateSpecializationKind(TSK);
3822 if (TSK != TSK_ExplicitSpecialization &&
3823 PointOfInstantiation.isValid() &&
3824 MSInfo->getPointOfInstantiation().isInvalid()) {
3825 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3826 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3827 L->InstantiationRequested(this);
3828 }
3829 } else
3830 llvm_unreachable("Function cannot have a template specialization kind");
3831 }
3832
getPointOfInstantiation() const3833 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3834 if (FunctionTemplateSpecializationInfo *FTSInfo
3835 = TemplateOrSpecialization.dyn_cast<
3836 FunctionTemplateSpecializationInfo*>())
3837 return FTSInfo->getPointOfInstantiation();
3838 else if (MemberSpecializationInfo *MSInfo
3839 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3840 return MSInfo->getPointOfInstantiation();
3841
3842 return SourceLocation();
3843 }
3844
isOutOfLine() const3845 bool FunctionDecl::isOutOfLine() const {
3846 if (Decl::isOutOfLine())
3847 return true;
3848
3849 // If this function was instantiated from a member function of a
3850 // class template, check whether that member function was defined out-of-line.
3851 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3852 const FunctionDecl *Definition;
3853 if (FD->hasBody(Definition))
3854 return Definition->isOutOfLine();
3855 }
3856
3857 // If this function was instantiated from a function template,
3858 // check whether that function template was defined out-of-line.
3859 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3860 const FunctionDecl *Definition;
3861 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3862 return Definition->isOutOfLine();
3863 }
3864
3865 return false;
3866 }
3867
getSourceRange() const3868 SourceRange FunctionDecl::getSourceRange() const {
3869 return SourceRange(getOuterLocStart(), EndRangeLoc);
3870 }
3871
getMemoryFunctionKind() const3872 unsigned FunctionDecl::getMemoryFunctionKind() const {
3873 IdentifierInfo *FnInfo = getIdentifier();
3874
3875 if (!FnInfo)
3876 return 0;
3877
3878 // Builtin handling.
3879 switch (getBuiltinID()) {
3880 case Builtin::BI__builtin_memset:
3881 case Builtin::BI__builtin___memset_chk:
3882 case Builtin::BImemset:
3883 return Builtin::BImemset;
3884
3885 case Builtin::BI__builtin_memcpy:
3886 case Builtin::BI__builtin___memcpy_chk:
3887 case Builtin::BImemcpy:
3888 return Builtin::BImemcpy;
3889
3890 case Builtin::BI__builtin_mempcpy:
3891 case Builtin::BI__builtin___mempcpy_chk:
3892 case Builtin::BImempcpy:
3893 return Builtin::BImempcpy;
3894
3895 case Builtin::BI__builtin_memmove:
3896 case Builtin::BI__builtin___memmove_chk:
3897 case Builtin::BImemmove:
3898 return Builtin::BImemmove;
3899
3900 case Builtin::BIstrlcpy:
3901 case Builtin::BI__builtin___strlcpy_chk:
3902 return Builtin::BIstrlcpy;
3903
3904 case Builtin::BIstrlcat:
3905 case Builtin::BI__builtin___strlcat_chk:
3906 return Builtin::BIstrlcat;
3907
3908 case Builtin::BI__builtin_memcmp:
3909 case Builtin::BImemcmp:
3910 return Builtin::BImemcmp;
3911
3912 case Builtin::BI__builtin_bcmp:
3913 case Builtin::BIbcmp:
3914 return Builtin::BIbcmp;
3915
3916 case Builtin::BI__builtin_strncpy:
3917 case Builtin::BI__builtin___strncpy_chk:
3918 case Builtin::BIstrncpy:
3919 return Builtin::BIstrncpy;
3920
3921 case Builtin::BI__builtin_strncmp:
3922 case Builtin::BIstrncmp:
3923 return Builtin::BIstrncmp;
3924
3925 case Builtin::BI__builtin_strncasecmp:
3926 case Builtin::BIstrncasecmp:
3927 return Builtin::BIstrncasecmp;
3928
3929 case Builtin::BI__builtin_strncat:
3930 case Builtin::BI__builtin___strncat_chk:
3931 case Builtin::BIstrncat:
3932 return Builtin::BIstrncat;
3933
3934 case Builtin::BI__builtin_strndup:
3935 case Builtin::BIstrndup:
3936 return Builtin::BIstrndup;
3937
3938 case Builtin::BI__builtin_strlen:
3939 case Builtin::BIstrlen:
3940 return Builtin::BIstrlen;
3941
3942 case Builtin::BI__builtin_bzero:
3943 case Builtin::BIbzero:
3944 return Builtin::BIbzero;
3945
3946 default:
3947 if (isExternC()) {
3948 if (FnInfo->isStr("memset"))
3949 return Builtin::BImemset;
3950 else if (FnInfo->isStr("memcpy"))
3951 return Builtin::BImemcpy;
3952 else if (FnInfo->isStr("mempcpy"))
3953 return Builtin::BImempcpy;
3954 else if (FnInfo->isStr("memmove"))
3955 return Builtin::BImemmove;
3956 else if (FnInfo->isStr("memcmp"))
3957 return Builtin::BImemcmp;
3958 else if (FnInfo->isStr("bcmp"))
3959 return Builtin::BIbcmp;
3960 else if (FnInfo->isStr("strncpy"))
3961 return Builtin::BIstrncpy;
3962 else if (FnInfo->isStr("strncmp"))
3963 return Builtin::BIstrncmp;
3964 else if (FnInfo->isStr("strncasecmp"))
3965 return Builtin::BIstrncasecmp;
3966 else if (FnInfo->isStr("strncat"))
3967 return Builtin::BIstrncat;
3968 else if (FnInfo->isStr("strndup"))
3969 return Builtin::BIstrndup;
3970 else if (FnInfo->isStr("strlen"))
3971 return Builtin::BIstrlen;
3972 else if (FnInfo->isStr("bzero"))
3973 return Builtin::BIbzero;
3974 }
3975 break;
3976 }
3977 return 0;
3978 }
3979
getODRHash() const3980 unsigned FunctionDecl::getODRHash() const {
3981 assert(hasODRHash());
3982 return ODRHash;
3983 }
3984
getODRHash()3985 unsigned FunctionDecl::getODRHash() {
3986 if (hasODRHash())
3987 return ODRHash;
3988
3989 if (auto *FT = getInstantiatedFromMemberFunction()) {
3990 setHasODRHash(true);
3991 ODRHash = FT->getODRHash();
3992 return ODRHash;
3993 }
3994
3995 class ODRHash Hash;
3996 Hash.AddFunctionDecl(this);
3997 setHasODRHash(true);
3998 ODRHash = Hash.CalculateHash();
3999 return ODRHash;
4000 }
4001
4002 //===----------------------------------------------------------------------===//
4003 // FieldDecl Implementation
4004 //===----------------------------------------------------------------------===//
4005
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)4006 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4007 SourceLocation StartLoc, SourceLocation IdLoc,
4008 IdentifierInfo *Id, QualType T,
4009 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4010 InClassInitStyle InitStyle) {
4011 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4012 BW, Mutable, InitStyle);
4013 }
4014
CreateDeserialized(ASTContext & C,unsigned ID)4015 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4016 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4017 SourceLocation(), nullptr, QualType(), nullptr,
4018 nullptr, false, ICIS_NoInit);
4019 }
4020
isAnonymousStructOrUnion() const4021 bool FieldDecl::isAnonymousStructOrUnion() const {
4022 if (!isImplicit() || getDeclName())
4023 return false;
4024
4025 if (const auto *Record = getType()->getAs<RecordType>())
4026 return Record->getDecl()->isAnonymousStructOrUnion();
4027
4028 return false;
4029 }
4030
getBitWidthValue(const ASTContext & Ctx) const4031 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4032 assert(isBitField() && "not a bitfield");
4033 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4034 }
4035
isZeroLengthBitField(const ASTContext & Ctx) const4036 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4037 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4038 getBitWidthValue(Ctx) == 0;
4039 }
4040
isZeroSize(const ASTContext & Ctx) const4041 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4042 if (isZeroLengthBitField(Ctx))
4043 return true;
4044
4045 // C++2a [intro.object]p7:
4046 // An object has nonzero size if it
4047 // -- is not a potentially-overlapping subobject, or
4048 if (!hasAttr<NoUniqueAddressAttr>())
4049 return false;
4050
4051 // -- is not of class type, or
4052 const auto *RT = getType()->getAs<RecordType>();
4053 if (!RT)
4054 return false;
4055 const RecordDecl *RD = RT->getDecl()->getDefinition();
4056 if (!RD) {
4057 assert(isInvalidDecl() && "valid field has incomplete type");
4058 return false;
4059 }
4060
4061 // -- [has] virtual member functions or virtual base classes, or
4062 // -- has subobjects of nonzero size or bit-fields of nonzero length
4063 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4064 if (!CXXRD->isEmpty())
4065 return false;
4066
4067 // Otherwise, [...] the circumstances under which the object has zero size
4068 // are implementation-defined.
4069 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4070 // ABI will do.
4071 return true;
4072 }
4073
getFieldIndex() const4074 unsigned FieldDecl::getFieldIndex() const {
4075 const FieldDecl *Canonical = getCanonicalDecl();
4076 if (Canonical != this)
4077 return Canonical->getFieldIndex();
4078
4079 if (CachedFieldIndex) return CachedFieldIndex - 1;
4080
4081 unsigned Index = 0;
4082 const RecordDecl *RD = getParent()->getDefinition();
4083 assert(RD && "requested index for field of struct with no definition");
4084
4085 for (auto *Field : RD->fields()) {
4086 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4087 ++Index;
4088 }
4089
4090 assert(CachedFieldIndex && "failed to find field in parent");
4091 return CachedFieldIndex - 1;
4092 }
4093
getSourceRange() const4094 SourceRange FieldDecl::getSourceRange() const {
4095 const Expr *FinalExpr = getInClassInitializer();
4096 if (!FinalExpr)
4097 FinalExpr = getBitWidth();
4098 if (FinalExpr)
4099 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4100 return DeclaratorDecl::getSourceRange();
4101 }
4102
setCapturedVLAType(const VariableArrayType * VLAType)4103 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4104 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4105 "capturing type in non-lambda or captured record.");
4106 assert(InitStorage.getInt() == ISK_NoInit &&
4107 InitStorage.getPointer() == nullptr &&
4108 "bit width, initializer or captured type already set");
4109 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4110 ISK_CapturedVLAType);
4111 }
4112
4113 //===----------------------------------------------------------------------===//
4114 // TagDecl Implementation
4115 //===----------------------------------------------------------------------===//
4116
TagDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,TagDecl * PrevDecl,SourceLocation StartL)4117 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4118 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4119 SourceLocation StartL)
4120 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4121 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4122 assert((DK != Enum || TK == TTK_Enum) &&
4123 "EnumDecl not matched with TTK_Enum");
4124 setPreviousDecl(PrevDecl);
4125 setTagKind(TK);
4126 setCompleteDefinition(false);
4127 setBeingDefined(false);
4128 setEmbeddedInDeclarator(false);
4129 setFreeStanding(false);
4130 setCompleteDefinitionRequired(false);
4131 }
4132
getOuterLocStart() const4133 SourceLocation TagDecl::getOuterLocStart() const {
4134 return getTemplateOrInnerLocStart(this);
4135 }
4136
getSourceRange() const4137 SourceRange TagDecl::getSourceRange() const {
4138 SourceLocation RBraceLoc = BraceRange.getEnd();
4139 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4140 return SourceRange(getOuterLocStart(), E);
4141 }
4142
getCanonicalDecl()4143 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4144
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)4145 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4146 TypedefNameDeclOrQualifier = TDD;
4147 if (const Type *T = getTypeForDecl()) {
4148 (void)T;
4149 assert(T->isLinkageValid());
4150 }
4151 assert(isLinkageValid());
4152 }
4153
startDefinition()4154 void TagDecl::startDefinition() {
4155 setBeingDefined(true);
4156
4157 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4158 struct CXXRecordDecl::DefinitionData *Data =
4159 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4160 for (auto I : redecls())
4161 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4162 }
4163 }
4164
completeDefinition()4165 void TagDecl::completeDefinition() {
4166 assert((!isa<CXXRecordDecl>(this) ||
4167 cast<CXXRecordDecl>(this)->hasDefinition()) &&
4168 "definition completed but not started");
4169
4170 setCompleteDefinition(true);
4171 setBeingDefined(false);
4172
4173 if (ASTMutationListener *L = getASTMutationListener())
4174 L->CompletedTagDefinition(this);
4175 }
4176
getDefinition() const4177 TagDecl *TagDecl::getDefinition() const {
4178 if (isCompleteDefinition())
4179 return const_cast<TagDecl *>(this);
4180
4181 // If it's possible for us to have an out-of-date definition, check now.
4182 if (mayHaveOutOfDateDef()) {
4183 if (IdentifierInfo *II = getIdentifier()) {
4184 if (II->isOutOfDate()) {
4185 updateOutOfDate(*II);
4186 }
4187 }
4188 }
4189
4190 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4191 return CXXRD->getDefinition();
4192
4193 for (auto R : redecls())
4194 if (R->isCompleteDefinition())
4195 return R;
4196
4197 return nullptr;
4198 }
4199
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)4200 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4201 if (QualifierLoc) {
4202 // Make sure the extended qualifier info is allocated.
4203 if (!hasExtInfo())
4204 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4205 // Set qualifier info.
4206 getExtInfo()->QualifierLoc = QualifierLoc;
4207 } else {
4208 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4209 if (hasExtInfo()) {
4210 if (getExtInfo()->NumTemplParamLists == 0) {
4211 getASTContext().Deallocate(getExtInfo());
4212 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4213 }
4214 else
4215 getExtInfo()->QualifierLoc = QualifierLoc;
4216 }
4217 }
4218 }
4219
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)4220 void TagDecl::setTemplateParameterListsInfo(
4221 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4222 assert(!TPLists.empty());
4223 // Make sure the extended decl info is allocated.
4224 if (!hasExtInfo())
4225 // Allocate external info struct.
4226 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4227 // Set the template parameter lists info.
4228 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4229 }
4230
4231 //===----------------------------------------------------------------------===//
4232 // EnumDecl Implementation
4233 //===----------------------------------------------------------------------===//
4234
EnumDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool Scoped,bool ScopedUsingClassTag,bool Fixed)4235 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4236 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4237 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4238 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4239 assert(Scoped || !ScopedUsingClassTag);
4240 IntegerType = nullptr;
4241 setNumPositiveBits(0);
4242 setNumNegativeBits(0);
4243 setScoped(Scoped);
4244 setScopedUsingClassTag(ScopedUsingClassTag);
4245 setFixed(Fixed);
4246 setHasODRHash(false);
4247 ODRHash = 0;
4248 }
4249
anchor()4250 void EnumDecl::anchor() {}
4251
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)4252 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4253 SourceLocation StartLoc, SourceLocation IdLoc,
4254 IdentifierInfo *Id,
4255 EnumDecl *PrevDecl, bool IsScoped,
4256 bool IsScopedUsingClassTag, bool IsFixed) {
4257 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4258 IsScoped, IsScopedUsingClassTag, IsFixed);
4259 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4260 C.getTypeDeclType(Enum, PrevDecl);
4261 return Enum;
4262 }
4263
CreateDeserialized(ASTContext & C,unsigned ID)4264 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4265 EnumDecl *Enum =
4266 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4267 nullptr, nullptr, false, false, false);
4268 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4269 return Enum;
4270 }
4271
getIntegerTypeRange() const4272 SourceRange EnumDecl::getIntegerTypeRange() const {
4273 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4274 return TI->getTypeLoc().getSourceRange();
4275 return SourceRange();
4276 }
4277
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)4278 void EnumDecl::completeDefinition(QualType NewType,
4279 QualType NewPromotionType,
4280 unsigned NumPositiveBits,
4281 unsigned NumNegativeBits) {
4282 assert(!isCompleteDefinition() && "Cannot redefine enums!");
4283 if (!IntegerType)
4284 IntegerType = NewType.getTypePtr();
4285 PromotionType = NewPromotionType;
4286 setNumPositiveBits(NumPositiveBits);
4287 setNumNegativeBits(NumNegativeBits);
4288 TagDecl::completeDefinition();
4289 }
4290
isClosed() const4291 bool EnumDecl::isClosed() const {
4292 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4293 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4294 return true;
4295 }
4296
isClosedFlag() const4297 bool EnumDecl::isClosedFlag() const {
4298 return isClosed() && hasAttr<FlagEnumAttr>();
4299 }
4300
isClosedNonFlag() const4301 bool EnumDecl::isClosedNonFlag() const {
4302 return isClosed() && !hasAttr<FlagEnumAttr>();
4303 }
4304
getTemplateSpecializationKind() const4305 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4306 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4307 return MSI->getTemplateSpecializationKind();
4308
4309 return TSK_Undeclared;
4310 }
4311
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)4312 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4313 SourceLocation PointOfInstantiation) {
4314 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4315 assert(MSI && "Not an instantiated member enumeration?");
4316 MSI->setTemplateSpecializationKind(TSK);
4317 if (TSK != TSK_ExplicitSpecialization &&
4318 PointOfInstantiation.isValid() &&
4319 MSI->getPointOfInstantiation().isInvalid())
4320 MSI->setPointOfInstantiation(PointOfInstantiation);
4321 }
4322
getTemplateInstantiationPattern() const4323 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4324 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4325 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4326 EnumDecl *ED = getInstantiatedFromMemberEnum();
4327 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4328 ED = NewED;
4329 return getDefinitionOrSelf(ED);
4330 }
4331 }
4332
4333 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4334 "couldn't find pattern for enum instantiation");
4335 return nullptr;
4336 }
4337
getInstantiatedFromMemberEnum() const4338 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4339 if (SpecializationInfo)
4340 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4341
4342 return nullptr;
4343 }
4344
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)4345 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4346 TemplateSpecializationKind TSK) {
4347 assert(!SpecializationInfo && "Member enum is already a specialization");
4348 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4349 }
4350
getODRHash()4351 unsigned EnumDecl::getODRHash() {
4352 if (hasODRHash())
4353 return ODRHash;
4354
4355 class ODRHash Hash;
4356 Hash.AddEnumDecl(this);
4357 setHasODRHash(true);
4358 ODRHash = Hash.CalculateHash();
4359 return ODRHash;
4360 }
4361
4362 //===----------------------------------------------------------------------===//
4363 // RecordDecl Implementation
4364 //===----------------------------------------------------------------------===//
4365
RecordDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)4366 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4367 DeclContext *DC, SourceLocation StartLoc,
4368 SourceLocation IdLoc, IdentifierInfo *Id,
4369 RecordDecl *PrevDecl)
4370 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4371 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4372 setHasFlexibleArrayMember(false);
4373 setAnonymousStructOrUnion(false);
4374 setHasObjectMember(false);
4375 setHasVolatileMember(false);
4376 setHasLoadedFieldsFromExternalStorage(false);
4377 setNonTrivialToPrimitiveDefaultInitialize(false);
4378 setNonTrivialToPrimitiveCopy(false);
4379 setNonTrivialToPrimitiveDestroy(false);
4380 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4381 setHasNonTrivialToPrimitiveDestructCUnion(false);
4382 setHasNonTrivialToPrimitiveCopyCUnion(false);
4383 setParamDestroyedInCallee(false);
4384 setArgPassingRestrictions(APK_CanPassInRegs);
4385 }
4386
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)4387 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4388 SourceLocation StartLoc, SourceLocation IdLoc,
4389 IdentifierInfo *Id, RecordDecl* PrevDecl) {
4390 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4391 StartLoc, IdLoc, Id, PrevDecl);
4392 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4393
4394 C.getTypeDeclType(R, PrevDecl);
4395 return R;
4396 }
4397
CreateDeserialized(const ASTContext & C,unsigned ID)4398 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4399 RecordDecl *R =
4400 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4401 SourceLocation(), nullptr, nullptr);
4402 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4403 return R;
4404 }
4405
isInjectedClassName() const4406 bool RecordDecl::isInjectedClassName() const {
4407 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4408 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4409 }
4410
isLambda() const4411 bool RecordDecl::isLambda() const {
4412 if (auto RD = dyn_cast<CXXRecordDecl>(this))
4413 return RD->isLambda();
4414 return false;
4415 }
4416
isCapturedRecord() const4417 bool RecordDecl::isCapturedRecord() const {
4418 return hasAttr<CapturedRecordAttr>();
4419 }
4420
setCapturedRecord()4421 void RecordDecl::setCapturedRecord() {
4422 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4423 }
4424
field_begin() const4425 RecordDecl::field_iterator RecordDecl::field_begin() const {
4426 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4427 LoadFieldsFromExternalStorage();
4428
4429 return field_iterator(decl_iterator(FirstDecl));
4430 }
4431
4432 /// completeDefinition - Notes that the definition of this type is now
4433 /// complete.
completeDefinition()4434 void RecordDecl::completeDefinition() {
4435 assert(!isCompleteDefinition() && "Cannot redefine record!");
4436 TagDecl::completeDefinition();
4437 }
4438
4439 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4440 /// This which can be turned on with an attribute, pragma, or the
4441 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const4442 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4443 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4444 }
4445
LoadFieldsFromExternalStorage() const4446 void RecordDecl::LoadFieldsFromExternalStorage() const {
4447 ExternalASTSource *Source = getASTContext().getExternalSource();
4448 assert(hasExternalLexicalStorage() && Source && "No external storage?");
4449
4450 // Notify that we have a RecordDecl doing some initialization.
4451 ExternalASTSource::Deserializing TheFields(Source);
4452
4453 SmallVector<Decl*, 64> Decls;
4454 setHasLoadedFieldsFromExternalStorage(true);
4455 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4456 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4457 }, Decls);
4458
4459 #ifndef NDEBUG
4460 // Check that all decls we got were FieldDecls.
4461 for (unsigned i=0, e=Decls.size(); i != e; ++i)
4462 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4463 #endif
4464
4465 if (Decls.empty())
4466 return;
4467
4468 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4469 /*FieldsAlreadyLoaded=*/false);
4470 }
4471
mayInsertExtraPadding(bool EmitRemark) const4472 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4473 ASTContext &Context = getASTContext();
4474 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4475 (SanitizerKind::Address | SanitizerKind::KernelAddress);
4476 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4477 return false;
4478 const auto &Blacklist = Context.getSanitizerBlacklist();
4479 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4480 // We may be able to relax some of these requirements.
4481 int ReasonToReject = -1;
4482 if (!CXXRD || CXXRD->isExternCContext())
4483 ReasonToReject = 0; // is not C++.
4484 else if (CXXRD->hasAttr<PackedAttr>())
4485 ReasonToReject = 1; // is packed.
4486 else if (CXXRD->isUnion())
4487 ReasonToReject = 2; // is a union.
4488 else if (CXXRD->isTriviallyCopyable())
4489 ReasonToReject = 3; // is trivially copyable.
4490 else if (CXXRD->hasTrivialDestructor())
4491 ReasonToReject = 4; // has trivial destructor.
4492 else if (CXXRD->isStandardLayout())
4493 ReasonToReject = 5; // is standard layout.
4494 else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4495 "field-padding"))
4496 ReasonToReject = 6; // is in a blacklisted file.
4497 else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4498 getQualifiedNameAsString(),
4499 "field-padding"))
4500 ReasonToReject = 7; // is blacklisted.
4501
4502 if (EmitRemark) {
4503 if (ReasonToReject >= 0)
4504 Context.getDiagnostics().Report(
4505 getLocation(),
4506 diag::remark_sanitize_address_insert_extra_padding_rejected)
4507 << getQualifiedNameAsString() << ReasonToReject;
4508 else
4509 Context.getDiagnostics().Report(
4510 getLocation(),
4511 diag::remark_sanitize_address_insert_extra_padding_accepted)
4512 << getQualifiedNameAsString();
4513 }
4514 return ReasonToReject < 0;
4515 }
4516
findFirstNamedDataMember() const4517 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4518 for (const auto *I : fields()) {
4519 if (I->getIdentifier())
4520 return I;
4521
4522 if (const auto *RT = I->getType()->getAs<RecordType>())
4523 if (const FieldDecl *NamedDataMember =
4524 RT->getDecl()->findFirstNamedDataMember())
4525 return NamedDataMember;
4526 }
4527
4528 // We didn't find a named data member.
4529 return nullptr;
4530 }
4531
4532 //===----------------------------------------------------------------------===//
4533 // BlockDecl Implementation
4534 //===----------------------------------------------------------------------===//
4535
BlockDecl(DeclContext * DC,SourceLocation CaretLoc)4536 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4537 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4538 setIsVariadic(false);
4539 setCapturesCXXThis(false);
4540 setBlockMissingReturnType(true);
4541 setIsConversionFromLambda(false);
4542 setDoesNotEscape(false);
4543 setCanAvoidCopyToHeap(false);
4544 }
4545
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)4546 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4547 assert(!ParamInfo && "Already has param info!");
4548
4549 // Zero params -> null pointer.
4550 if (!NewParamInfo.empty()) {
4551 NumParams = NewParamInfo.size();
4552 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4553 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4554 }
4555 }
4556
setCaptures(ASTContext & Context,ArrayRef<Capture> Captures,bool CapturesCXXThis)4557 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4558 bool CapturesCXXThis) {
4559 this->setCapturesCXXThis(CapturesCXXThis);
4560 this->NumCaptures = Captures.size();
4561
4562 if (Captures.empty()) {
4563 this->Captures = nullptr;
4564 return;
4565 }
4566
4567 this->Captures = Captures.copy(Context).data();
4568 }
4569
capturesVariable(const VarDecl * variable) const4570 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4571 for (const auto &I : captures())
4572 // Only auto vars can be captured, so no redeclaration worries.
4573 if (I.getVariable() == variable)
4574 return true;
4575
4576 return false;
4577 }
4578
getSourceRange() const4579 SourceRange BlockDecl::getSourceRange() const {
4580 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4581 }
4582
4583 //===----------------------------------------------------------------------===//
4584 // Other Decl Allocation/Deallocation Method Implementations
4585 //===----------------------------------------------------------------------===//
4586
anchor()4587 void TranslationUnitDecl::anchor() {}
4588
Create(ASTContext & C)4589 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4590 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4591 }
4592
anchor()4593 void PragmaCommentDecl::anchor() {}
4594
Create(const ASTContext & C,TranslationUnitDecl * DC,SourceLocation CommentLoc,PragmaMSCommentKind CommentKind,StringRef Arg)4595 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4596 TranslationUnitDecl *DC,
4597 SourceLocation CommentLoc,
4598 PragmaMSCommentKind CommentKind,
4599 StringRef Arg) {
4600 PragmaCommentDecl *PCD =
4601 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4602 PragmaCommentDecl(DC, CommentLoc, CommentKind);
4603 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4604 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4605 return PCD;
4606 }
4607
CreateDeserialized(ASTContext & C,unsigned ID,unsigned ArgSize)4608 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4609 unsigned ID,
4610 unsigned ArgSize) {
4611 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4612 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4613 }
4614
anchor()4615 void PragmaDetectMismatchDecl::anchor() {}
4616
4617 PragmaDetectMismatchDecl *
Create(const ASTContext & C,TranslationUnitDecl * DC,SourceLocation Loc,StringRef Name,StringRef Value)4618 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4619 SourceLocation Loc, StringRef Name,
4620 StringRef Value) {
4621 size_t ValueStart = Name.size() + 1;
4622 PragmaDetectMismatchDecl *PDMD =
4623 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4624 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4625 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4626 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4627 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4628 Value.size());
4629 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4630 return PDMD;
4631 }
4632
4633 PragmaDetectMismatchDecl *
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NameValueSize)4634 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4635 unsigned NameValueSize) {
4636 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4637 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4638 }
4639
anchor()4640 void ExternCContextDecl::anchor() {}
4641
Create(const ASTContext & C,TranslationUnitDecl * DC)4642 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4643 TranslationUnitDecl *DC) {
4644 return new (C, DC) ExternCContextDecl(DC);
4645 }
4646
anchor()4647 void LabelDecl::anchor() {}
4648
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)4649 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4650 SourceLocation IdentL, IdentifierInfo *II) {
4651 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4652 }
4653
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)4654 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4655 SourceLocation IdentL, IdentifierInfo *II,
4656 SourceLocation GnuLabelL) {
4657 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4658 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4659 }
4660
CreateDeserialized(ASTContext & C,unsigned ID)4661 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4662 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4663 SourceLocation());
4664 }
4665
setMSAsmLabel(StringRef Name)4666 void LabelDecl::setMSAsmLabel(StringRef Name) {
4667 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4668 memcpy(Buffer, Name.data(), Name.size());
4669 Buffer[Name.size()] = '\0';
4670 MSAsmName = Buffer;
4671 }
4672
anchor()4673 void ValueDecl::anchor() {}
4674
isWeak() const4675 bool ValueDecl::isWeak() const {
4676 for (const auto *I : attrs())
4677 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4678 return true;
4679
4680 return isWeakImported();
4681 }
4682
anchor()4683 void ImplicitParamDecl::anchor() {}
4684
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type,ImplicitParamKind ParamKind)4685 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4686 SourceLocation IdLoc,
4687 IdentifierInfo *Id, QualType Type,
4688 ImplicitParamKind ParamKind) {
4689 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4690 }
4691
Create(ASTContext & C,QualType Type,ImplicitParamKind ParamKind)4692 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4693 ImplicitParamKind ParamKind) {
4694 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4695 }
4696
CreateDeserialized(ASTContext & C,unsigned ID)4697 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4698 unsigned ID) {
4699 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4700 }
4701
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInlineSpecified,bool hasWrittenPrototype,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)4702 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4703 SourceLocation StartLoc,
4704 const DeclarationNameInfo &NameInfo,
4705 QualType T, TypeSourceInfo *TInfo,
4706 StorageClass SC, bool isInlineSpecified,
4707 bool hasWrittenPrototype,
4708 ConstexprSpecKind ConstexprKind,
4709 Expr *TrailingRequiresClause) {
4710 FunctionDecl *New =
4711 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4712 SC, isInlineSpecified, ConstexprKind,
4713 TrailingRequiresClause);
4714 New->setHasWrittenPrototype(hasWrittenPrototype);
4715 return New;
4716 }
4717
CreateDeserialized(ASTContext & C,unsigned ID)4718 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4719 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4720 DeclarationNameInfo(), QualType(), nullptr,
4721 SC_None, false, CSK_unspecified, nullptr);
4722 }
4723
Create(ASTContext & C,DeclContext * DC,SourceLocation L)4724 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4725 return new (C, DC) BlockDecl(DC, L);
4726 }
4727
CreateDeserialized(ASTContext & C,unsigned ID)4728 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4729 return new (C, ID) BlockDecl(nullptr, SourceLocation());
4730 }
4731
CapturedDecl(DeclContext * DC,unsigned NumParams)4732 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4733 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4734 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4735
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)4736 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4737 unsigned NumParams) {
4738 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4739 CapturedDecl(DC, NumParams);
4740 }
4741
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)4742 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4743 unsigned NumParams) {
4744 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4745 CapturedDecl(nullptr, NumParams);
4746 }
4747
getBody() const4748 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
setBody(Stmt * B)4749 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4750
isNothrow() const4751 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
setNothrow(bool Nothrow)4752 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4753
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)4754 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4755 SourceLocation L,
4756 IdentifierInfo *Id, QualType T,
4757 Expr *E, const llvm::APSInt &V) {
4758 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4759 }
4760
4761 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)4762 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4763 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4764 QualType(), nullptr, llvm::APSInt());
4765 }
4766
anchor()4767 void IndirectFieldDecl::anchor() {}
4768
IndirectFieldDecl(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,MutableArrayRef<NamedDecl * > CH)4769 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4770 SourceLocation L, DeclarationName N,
4771 QualType T,
4772 MutableArrayRef<NamedDecl *> CH)
4773 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4774 ChainingSize(CH.size()) {
4775 // In C++, indirect field declarations conflict with tag declarations in the
4776 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4777 if (C.getLangOpts().CPlusPlus)
4778 IdentifierNamespace |= IDNS_Tag;
4779 }
4780
4781 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,llvm::MutableArrayRef<NamedDecl * > CH)4782 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4783 IdentifierInfo *Id, QualType T,
4784 llvm::MutableArrayRef<NamedDecl *> CH) {
4785 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4786 }
4787
CreateDeserialized(ASTContext & C,unsigned ID)4788 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4789 unsigned ID) {
4790 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4791 DeclarationName(), QualType(), None);
4792 }
4793
getSourceRange() const4794 SourceRange EnumConstantDecl::getSourceRange() const {
4795 SourceLocation End = getLocation();
4796 if (Init)
4797 End = Init->getEndLoc();
4798 return SourceRange(getLocation(), End);
4799 }
4800
anchor()4801 void TypeDecl::anchor() {}
4802
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)4803 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4804 SourceLocation StartLoc, SourceLocation IdLoc,
4805 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4806 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4807 }
4808
anchor()4809 void TypedefNameDecl::anchor() {}
4810
getAnonDeclWithTypedefName(bool AnyRedecl) const4811 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4812 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4813 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4814 auto *ThisTypedef = this;
4815 if (AnyRedecl && OwningTypedef) {
4816 OwningTypedef = OwningTypedef->getCanonicalDecl();
4817 ThisTypedef = ThisTypedef->getCanonicalDecl();
4818 }
4819 if (OwningTypedef == ThisTypedef)
4820 return TT->getDecl();
4821 }
4822
4823 return nullptr;
4824 }
4825
isTransparentTagSlow() const4826 bool TypedefNameDecl::isTransparentTagSlow() const {
4827 auto determineIsTransparent = [&]() {
4828 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4829 if (auto *TD = TT->getDecl()) {
4830 if (TD->getName() != getName())
4831 return false;
4832 SourceLocation TTLoc = getLocation();
4833 SourceLocation TDLoc = TD->getLocation();
4834 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4835 return false;
4836 SourceManager &SM = getASTContext().getSourceManager();
4837 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4838 }
4839 }
4840 return false;
4841 };
4842
4843 bool isTransparent = determineIsTransparent();
4844 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4845 return isTransparent;
4846 }
4847
CreateDeserialized(ASTContext & C,unsigned ID)4848 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4849 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4850 nullptr, nullptr);
4851 }
4852
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)4853 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4854 SourceLocation StartLoc,
4855 SourceLocation IdLoc, IdentifierInfo *Id,
4856 TypeSourceInfo *TInfo) {
4857 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4858 }
4859
CreateDeserialized(ASTContext & C,unsigned ID)4860 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4861 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4862 SourceLocation(), nullptr, nullptr);
4863 }
4864
getSourceRange() const4865 SourceRange TypedefDecl::getSourceRange() const {
4866 SourceLocation RangeEnd = getLocation();
4867 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4868 if (typeIsPostfix(TInfo->getType()))
4869 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4870 }
4871 return SourceRange(getBeginLoc(), RangeEnd);
4872 }
4873
getSourceRange() const4874 SourceRange TypeAliasDecl::getSourceRange() const {
4875 SourceLocation RangeEnd = getBeginLoc();
4876 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4877 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4878 return SourceRange(getBeginLoc(), RangeEnd);
4879 }
4880
anchor()4881 void FileScopeAsmDecl::anchor() {}
4882
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)4883 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4884 StringLiteral *Str,
4885 SourceLocation AsmLoc,
4886 SourceLocation RParenLoc) {
4887 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4888 }
4889
CreateDeserialized(ASTContext & C,unsigned ID)4890 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4891 unsigned ID) {
4892 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4893 SourceLocation());
4894 }
4895
anchor()4896 void EmptyDecl::anchor() {}
4897
Create(ASTContext & C,DeclContext * DC,SourceLocation L)4898 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4899 return new (C, DC) EmptyDecl(DC, L);
4900 }
4901
CreateDeserialized(ASTContext & C,unsigned ID)4902 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4903 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4904 }
4905
4906 //===----------------------------------------------------------------------===//
4907 // ImportDecl Implementation
4908 //===----------------------------------------------------------------------===//
4909
4910 /// Retrieve the number of module identifiers needed to name the given
4911 /// module.
getNumModuleIdentifiers(Module * Mod)4912 static unsigned getNumModuleIdentifiers(Module *Mod) {
4913 unsigned Result = 1;
4914 while (Mod->Parent) {
4915 Mod = Mod->Parent;
4916 ++Result;
4917 }
4918 return Result;
4919 }
4920
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4921 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4922 Module *Imported,
4923 ArrayRef<SourceLocation> IdentifierLocs)
4924 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4925 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4926 auto *StoredLocs = getTrailingObjects<SourceLocation>();
4927 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4928 StoredLocs);
4929 }
4930
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4931 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4932 Module *Imported, SourceLocation EndLoc)
4933 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4934 *getTrailingObjects<SourceLocation>() = EndLoc;
4935 }
4936
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4937 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4938 SourceLocation StartLoc, Module *Imported,
4939 ArrayRef<SourceLocation> IdentifierLocs) {
4940 return new (C, DC,
4941 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4942 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4943 }
4944
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4945 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4946 SourceLocation StartLoc,
4947 Module *Imported,
4948 SourceLocation EndLoc) {
4949 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4950 ImportDecl(DC, StartLoc, Imported, EndLoc);
4951 Import->setImplicit();
4952 return Import;
4953 }
4954
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)4955 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4956 unsigned NumLocations) {
4957 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4958 ImportDecl(EmptyShell());
4959 }
4960
getIdentifierLocs() const4961 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4962 if (!ImportedAndComplete.getInt())
4963 return None;
4964
4965 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4966 return llvm::makeArrayRef(StoredLocs,
4967 getNumModuleIdentifiers(getImportedModule()));
4968 }
4969
getSourceRange() const4970 SourceRange ImportDecl::getSourceRange() const {
4971 if (!ImportedAndComplete.getInt())
4972 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4973
4974 return SourceRange(getLocation(), getIdentifierLocs().back());
4975 }
4976
4977 //===----------------------------------------------------------------------===//
4978 // ExportDecl Implementation
4979 //===----------------------------------------------------------------------===//
4980
anchor()4981 void ExportDecl::anchor() {}
4982
Create(ASTContext & C,DeclContext * DC,SourceLocation ExportLoc)4983 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
4984 SourceLocation ExportLoc) {
4985 return new (C, DC) ExportDecl(DC, ExportLoc);
4986 }
4987
CreateDeserialized(ASTContext & C,unsigned ID)4988 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4989 return new (C, ID) ExportDecl(nullptr, SourceLocation());
4990 }
4991