1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements name lookup for C, C++, Objective-C, and
10 // Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "clang/Sema/TemplateDeduction.h"
37 #include "clang/Sema/TypoCorrection.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <list>
46 #include <set>
47 #include <utility>
48 #include <vector>
49
50 #include "OpenCLBuiltins.inc"
51
52 using namespace clang;
53 using namespace sema;
54
55 namespace {
56 class UnqualUsingEntry {
57 const DeclContext *Nominated;
58 const DeclContext *CommonAncestor;
59
60 public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)61 UnqualUsingEntry(const DeclContext *Nominated,
62 const DeclContext *CommonAncestor)
63 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64 }
65
getCommonAncestor() const66 const DeclContext *getCommonAncestor() const {
67 return CommonAncestor;
68 }
69
getNominatedNamespace() const70 const DeclContext *getNominatedNamespace() const {
71 return Nominated;
72 }
73
74 // Sort by the pointer value of the common ancestor.
75 struct Comparator {
operator ()__anon9ae573980111::UnqualUsingEntry::Comparator76 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77 return L.getCommonAncestor() < R.getCommonAncestor();
78 }
79
operator ()__anon9ae573980111::UnqualUsingEntry::Comparator80 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81 return E.getCommonAncestor() < DC;
82 }
83
operator ()__anon9ae573980111::UnqualUsingEntry::Comparator84 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85 return DC < E.getCommonAncestor();
86 }
87 };
88 };
89
90 /// A collection of using directives, as used by C++ unqualified
91 /// lookup.
92 class UnqualUsingDirectiveSet {
93 Sema &SemaRef;
94
95 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96
97 ListTy list;
98 llvm::SmallPtrSet<DeclContext*, 8> visited;
99
100 public:
UnqualUsingDirectiveSet(Sema & SemaRef)101 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102
visitScopeChain(Scope * S,Scope * InnermostFileScope)103 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104 // C++ [namespace.udir]p1:
105 // During unqualified name lookup, the names appear as if they
106 // were declared in the nearest enclosing namespace which contains
107 // both the using-directive and the nominated namespace.
108 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
109 assert(InnermostFileDC && InnermostFileDC->isFileContext());
110
111 for (; S; S = S->getParent()) {
112 // C++ [namespace.udir]p1:
113 // A using-directive shall not appear in class scope, but may
114 // appear in namespace scope or in block scope.
115 DeclContext *Ctx = S->getEntity();
116 if (Ctx && Ctx->isFileContext()) {
117 visit(Ctx, Ctx);
118 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119 for (auto *I : S->using_directives())
120 if (SemaRef.isVisible(I))
121 visit(I, InnermostFileDC);
122 }
123 }
124 }
125
126 // Visits a context and collect all of its using directives
127 // recursively. Treats all using directives as if they were
128 // declared in the context.
129 //
130 // A given context is only every visited once, so it is important
131 // that contexts be visited from the inside out in order to get
132 // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)133 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134 if (!visited.insert(DC).second)
135 return;
136
137 addUsingDirectives(DC, EffectiveDC);
138 }
139
140 // Visits a using directive and collects all of its using
141 // directives recursively. Treats all using directives as if they
142 // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)143 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
144 DeclContext *NS = UD->getNominatedNamespace();
145 if (!visited.insert(NS).second)
146 return;
147
148 addUsingDirective(UD, EffectiveDC);
149 addUsingDirectives(NS, EffectiveDC);
150 }
151
152 // Adds all the using directives in a context (and those nominated
153 // by its using directives, transitively) as if they appeared in
154 // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)155 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
156 SmallVector<DeclContext*, 4> queue;
157 while (true) {
158 for (auto UD : DC->using_directives()) {
159 DeclContext *NS = UD->getNominatedNamespace();
160 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161 addUsingDirective(UD, EffectiveDC);
162 queue.push_back(NS);
163 }
164 }
165
166 if (queue.empty())
167 return;
168
169 DC = queue.pop_back_val();
170 }
171 }
172
173 // Add a using directive as if it had been declared in the given
174 // context. This helps implement C++ [namespace.udir]p3:
175 // The using-directive is transitive: if a scope contains a
176 // using-directive that nominates a second namespace that itself
177 // contains using-directives, the effect is as if the
178 // using-directives from the second namespace also appeared in
179 // the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)180 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181 // Find the common ancestor between the effective context and
182 // the nominated namespace.
183 DeclContext *Common = UD->getNominatedNamespace();
184 while (!Common->Encloses(EffectiveDC))
185 Common = Common->getParent();
186 Common = Common->getPrimaryContext();
187
188 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189 }
190
done()191 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192
193 typedef ListTy::const_iterator const_iterator;
194
begin() const195 const_iterator begin() const { return list.begin(); }
end() const196 const_iterator end() const { return list.end(); }
197
198 llvm::iterator_range<const_iterator>
getNamespacesFor(DeclContext * DC) const199 getNamespacesFor(DeclContext *DC) const {
200 return llvm::make_range(std::equal_range(begin(), end(),
201 DC->getPrimaryContext(),
202 UnqualUsingEntry::Comparator()));
203 }
204 };
205 } // end anonymous namespace
206
207 // Retrieve the set of identifier namespaces that correspond to a
208 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)209 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210 bool CPlusPlus,
211 bool Redeclaration) {
212 unsigned IDNS = 0;
213 switch (NameKind) {
214 case Sema::LookupObjCImplicitSelfParam:
215 case Sema::LookupOrdinaryName:
216 case Sema::LookupRedeclarationWithLinkage:
217 case Sema::LookupLocalFriendName:
218 IDNS = Decl::IDNS_Ordinary;
219 if (CPlusPlus) {
220 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
221 if (Redeclaration)
222 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
223 }
224 if (Redeclaration)
225 IDNS |= Decl::IDNS_LocalExtern;
226 break;
227
228 case Sema::LookupOperatorName:
229 // Operator lookup is its own crazy thing; it is not the same
230 // as (e.g.) looking up an operator name for redeclaration.
231 assert(!Redeclaration && "cannot do redeclaration operator lookup");
232 IDNS = Decl::IDNS_NonMemberOperator;
233 break;
234
235 case Sema::LookupTagName:
236 if (CPlusPlus) {
237 IDNS = Decl::IDNS_Type;
238
239 // When looking for a redeclaration of a tag name, we add:
240 // 1) TagFriend to find undeclared friend decls
241 // 2) Namespace because they can't "overload" with tag decls.
242 // 3) Tag because it includes class templates, which can't
243 // "overload" with tag decls.
244 if (Redeclaration)
245 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246 } else {
247 IDNS = Decl::IDNS_Tag;
248 }
249 break;
250
251 case Sema::LookupLabel:
252 IDNS = Decl::IDNS_Label;
253 break;
254
255 case Sema::LookupMemberName:
256 IDNS = Decl::IDNS_Member;
257 if (CPlusPlus)
258 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
259 break;
260
261 case Sema::LookupNestedNameSpecifierName:
262 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
263 break;
264
265 case Sema::LookupNamespaceName:
266 IDNS = Decl::IDNS_Namespace;
267 break;
268
269 case Sema::LookupUsingDeclName:
270 assert(Redeclaration && "should only be used for redecl lookup");
271 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
272 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
273 Decl::IDNS_LocalExtern;
274 break;
275
276 case Sema::LookupObjCProtocolName:
277 IDNS = Decl::IDNS_ObjCProtocol;
278 break;
279
280 case Sema::LookupOMPReductionName:
281 IDNS = Decl::IDNS_OMPReduction;
282 break;
283
284 case Sema::LookupOMPMapperName:
285 IDNS = Decl::IDNS_OMPMapper;
286 break;
287
288 case Sema::LookupAnyName:
289 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
290 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
291 | Decl::IDNS_Type;
292 break;
293 }
294 return IDNS;
295 }
296
configure()297 void LookupResult::configure() {
298 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
299 isForRedeclaration());
300
301 // If we're looking for one of the allocation or deallocation
302 // operators, make sure that the implicitly-declared new and delete
303 // operators can be found.
304 switch (NameInfo.getName().getCXXOverloadedOperator()) {
305 case OO_New:
306 case OO_Delete:
307 case OO_Array_New:
308 case OO_Array_Delete:
309 getSema().DeclareGlobalNewDelete();
310 break;
311
312 default:
313 break;
314 }
315
316 // Compiler builtins are always visible, regardless of where they end
317 // up being declared.
318 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
319 if (unsigned BuiltinID = Id->getBuiltinID()) {
320 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
321 AllowHidden = true;
322 }
323 }
324 }
325
sanity() const326 bool LookupResult::sanity() const {
327 // This function is never called by NDEBUG builds.
328 assert(ResultKind != NotFound || Decls.size() == 0);
329 assert(ResultKind != Found || Decls.size() == 1);
330 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
331 (Decls.size() == 1 &&
332 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
333 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
334 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
335 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
336 Ambiguity == AmbiguousBaseSubobjectTypes)));
337 assert((Paths != nullptr) == (ResultKind == Ambiguous &&
338 (Ambiguity == AmbiguousBaseSubobjectTypes ||
339 Ambiguity == AmbiguousBaseSubobjects)));
340 return true;
341 }
342
343 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)344 void LookupResult::deletePaths(CXXBasePaths *Paths) {
345 delete Paths;
346 }
347
348 /// Get a representative context for a declaration such that two declarations
349 /// will have the same context if they were found within the same scope.
getContextForScopeMatching(Decl * D)350 static DeclContext *getContextForScopeMatching(Decl *D) {
351 // For function-local declarations, use that function as the context. This
352 // doesn't account for scopes within the function; the caller must deal with
353 // those.
354 DeclContext *DC = D->getLexicalDeclContext();
355 if (DC->isFunctionOrMethod())
356 return DC;
357
358 // Otherwise, look at the semantic context of the declaration. The
359 // declaration must have been found there.
360 return D->getDeclContext()->getRedeclContext();
361 }
362
363 /// Determine whether \p D is a better lookup result than \p Existing,
364 /// given that they declare the same entity.
isPreferredLookupResult(Sema & S,Sema::LookupNameKind Kind,NamedDecl * D,NamedDecl * Existing)365 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
366 NamedDecl *D, NamedDecl *Existing) {
367 // When looking up redeclarations of a using declaration, prefer a using
368 // shadow declaration over any other declaration of the same entity.
369 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
370 !isa<UsingShadowDecl>(Existing))
371 return true;
372
373 auto *DUnderlying = D->getUnderlyingDecl();
374 auto *EUnderlying = Existing->getUnderlyingDecl();
375
376 // If they have different underlying declarations, prefer a typedef over the
377 // original type (this happens when two type declarations denote the same
378 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
379 // might carry additional semantic information, such as an alignment override.
380 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
381 // declaration over a typedef.
382 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
383 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
384 bool HaveTag = isa<TagDecl>(EUnderlying);
385 bool WantTag = Kind == Sema::LookupTagName;
386 return HaveTag != WantTag;
387 }
388
389 // Pick the function with more default arguments.
390 // FIXME: In the presence of ambiguous default arguments, we should keep both,
391 // so we can diagnose the ambiguity if the default argument is needed.
392 // See C++ [over.match.best]p3.
393 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
394 auto *EFD = cast<FunctionDecl>(EUnderlying);
395 unsigned DMin = DFD->getMinRequiredArguments();
396 unsigned EMin = EFD->getMinRequiredArguments();
397 // If D has more default arguments, it is preferred.
398 if (DMin != EMin)
399 return DMin < EMin;
400 // FIXME: When we track visibility for default function arguments, check
401 // that we pick the declaration with more visible default arguments.
402 }
403
404 // Pick the template with more default template arguments.
405 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
406 auto *ETD = cast<TemplateDecl>(EUnderlying);
407 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
408 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
409 // If D has more default arguments, it is preferred. Note that default
410 // arguments (and their visibility) is monotonically increasing across the
411 // redeclaration chain, so this is a quick proxy for "is more recent".
412 if (DMin != EMin)
413 return DMin < EMin;
414 // If D has more *visible* default arguments, it is preferred. Note, an
415 // earlier default argument being visible does not imply that a later
416 // default argument is visible, so we can't just check the first one.
417 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
418 I != N; ++I) {
419 if (!S.hasVisibleDefaultArgument(
420 ETD->getTemplateParameters()->getParam(I)) &&
421 S.hasVisibleDefaultArgument(
422 DTD->getTemplateParameters()->getParam(I)))
423 return true;
424 }
425 }
426
427 // VarDecl can have incomplete array types, prefer the one with more complete
428 // array type.
429 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
430 VarDecl *EVD = cast<VarDecl>(EUnderlying);
431 if (EVD->getType()->isIncompleteType() &&
432 !DVD->getType()->isIncompleteType()) {
433 // Prefer the decl with a more complete type if visible.
434 return S.isVisible(DVD);
435 }
436 return false; // Avoid picking up a newer decl, just because it was newer.
437 }
438
439 // For most kinds of declaration, it doesn't really matter which one we pick.
440 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
441 // If the existing declaration is hidden, prefer the new one. Otherwise,
442 // keep what we've got.
443 return !S.isVisible(Existing);
444 }
445
446 // Pick the newer declaration; it might have a more precise type.
447 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
448 Prev = Prev->getPreviousDecl())
449 if (Prev == EUnderlying)
450 return true;
451 return false;
452 }
453
454 /// Determine whether \p D can hide a tag declaration.
canHideTag(NamedDecl * D)455 static bool canHideTag(NamedDecl *D) {
456 // C++ [basic.scope.declarative]p4:
457 // Given a set of declarations in a single declarative region [...]
458 // exactly one declaration shall declare a class name or enumeration name
459 // that is not a typedef name and the other declarations shall all refer to
460 // the same variable, non-static data member, or enumerator, or all refer
461 // to functions and function templates; in this case the class name or
462 // enumeration name is hidden.
463 // C++ [basic.scope.hiding]p2:
464 // A class name or enumeration name can be hidden by the name of a
465 // variable, data member, function, or enumerator declared in the same
466 // scope.
467 // An UnresolvedUsingValueDecl always instantiates to one of these.
468 D = D->getUnderlyingDecl();
469 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
470 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
471 isa<UnresolvedUsingValueDecl>(D);
472 }
473
474 /// Resolves the result kind of this lookup.
resolveKind()475 void LookupResult::resolveKind() {
476 unsigned N = Decls.size();
477
478 // Fast case: no possible ambiguity.
479 if (N == 0) {
480 assert(ResultKind == NotFound ||
481 ResultKind == NotFoundInCurrentInstantiation);
482 return;
483 }
484
485 // If there's a single decl, we need to examine it to decide what
486 // kind of lookup this is.
487 if (N == 1) {
488 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
489 if (isa<FunctionTemplateDecl>(D))
490 ResultKind = FoundOverloaded;
491 else if (isa<UnresolvedUsingValueDecl>(D))
492 ResultKind = FoundUnresolvedValue;
493 return;
494 }
495
496 // Don't do any extra resolution if we've already resolved as ambiguous.
497 if (ResultKind == Ambiguous) return;
498
499 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
500 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
501
502 bool Ambiguous = false;
503 bool HasTag = false, HasFunction = false;
504 bool HasFunctionTemplate = false, HasUnresolved = false;
505 NamedDecl *HasNonFunction = nullptr;
506
507 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
508
509 unsigned UniqueTagIndex = 0;
510
511 unsigned I = 0;
512 while (I < N) {
513 NamedDecl *D = Decls[I]->getUnderlyingDecl();
514 D = cast<NamedDecl>(D->getCanonicalDecl());
515
516 // Ignore an invalid declaration unless it's the only one left.
517 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
518 Decls[I] = Decls[--N];
519 continue;
520 }
521
522 llvm::Optional<unsigned> ExistingI;
523
524 // Redeclarations of types via typedef can occur both within a scope
525 // and, through using declarations and directives, across scopes. There is
526 // no ambiguity if they all refer to the same type, so unique based on the
527 // canonical type.
528 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
529 QualType T = getSema().Context.getTypeDeclType(TD);
530 auto UniqueResult = UniqueTypes.insert(
531 std::make_pair(getSema().Context.getCanonicalType(T), I));
532 if (!UniqueResult.second) {
533 // The type is not unique.
534 ExistingI = UniqueResult.first->second;
535 }
536 }
537
538 // For non-type declarations, check for a prior lookup result naming this
539 // canonical declaration.
540 if (!ExistingI) {
541 auto UniqueResult = Unique.insert(std::make_pair(D, I));
542 if (!UniqueResult.second) {
543 // We've seen this entity before.
544 ExistingI = UniqueResult.first->second;
545 }
546 }
547
548 if (ExistingI) {
549 // This is not a unique lookup result. Pick one of the results and
550 // discard the other.
551 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
552 Decls[*ExistingI]))
553 Decls[*ExistingI] = Decls[I];
554 Decls[I] = Decls[--N];
555 continue;
556 }
557
558 // Otherwise, do some decl type analysis and then continue.
559
560 if (isa<UnresolvedUsingValueDecl>(D)) {
561 HasUnresolved = true;
562 } else if (isa<TagDecl>(D)) {
563 if (HasTag)
564 Ambiguous = true;
565 UniqueTagIndex = I;
566 HasTag = true;
567 } else if (isa<FunctionTemplateDecl>(D)) {
568 HasFunction = true;
569 HasFunctionTemplate = true;
570 } else if (isa<FunctionDecl>(D)) {
571 HasFunction = true;
572 } else {
573 if (HasNonFunction) {
574 // If we're about to create an ambiguity between two declarations that
575 // are equivalent, but one is an internal linkage declaration from one
576 // module and the other is an internal linkage declaration from another
577 // module, just skip it.
578 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
579 D)) {
580 EquivalentNonFunctions.push_back(D);
581 Decls[I] = Decls[--N];
582 continue;
583 }
584
585 Ambiguous = true;
586 }
587 HasNonFunction = D;
588 }
589 I++;
590 }
591
592 // C++ [basic.scope.hiding]p2:
593 // A class name or enumeration name can be hidden by the name of
594 // an object, function, or enumerator declared in the same
595 // scope. If a class or enumeration name and an object, function,
596 // or enumerator are declared in the same scope (in any order)
597 // with the same name, the class or enumeration name is hidden
598 // wherever the object, function, or enumerator name is visible.
599 // But it's still an error if there are distinct tag types found,
600 // even if they're not visible. (ref?)
601 if (N > 1 && HideTags && HasTag && !Ambiguous &&
602 (HasFunction || HasNonFunction || HasUnresolved)) {
603 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
604 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
605 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
606 getContextForScopeMatching(OtherDecl)) &&
607 canHideTag(OtherDecl))
608 Decls[UniqueTagIndex] = Decls[--N];
609 else
610 Ambiguous = true;
611 }
612
613 // FIXME: This diagnostic should really be delayed until we're done with
614 // the lookup result, in case the ambiguity is resolved by the caller.
615 if (!EquivalentNonFunctions.empty() && !Ambiguous)
616 getSema().diagnoseEquivalentInternalLinkageDeclarations(
617 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
618
619 Decls.set_size(N);
620
621 if (HasNonFunction && (HasFunction || HasUnresolved))
622 Ambiguous = true;
623
624 if (Ambiguous)
625 setAmbiguous(LookupResult::AmbiguousReference);
626 else if (HasUnresolved)
627 ResultKind = LookupResult::FoundUnresolvedValue;
628 else if (N > 1 || HasFunctionTemplate)
629 ResultKind = LookupResult::FoundOverloaded;
630 else
631 ResultKind = LookupResult::Found;
632 }
633
addDeclsFromBasePaths(const CXXBasePaths & P)634 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
635 CXXBasePaths::const_paths_iterator I, E;
636 for (I = P.begin(), E = P.end(); I != E; ++I)
637 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
638 DE = I->Decls.end(); DI != DE; ++DI)
639 addDecl(*DI);
640 }
641
setAmbiguousBaseSubobjects(CXXBasePaths & P)642 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
643 Paths = new CXXBasePaths;
644 Paths->swap(P);
645 addDeclsFromBasePaths(*Paths);
646 resolveKind();
647 setAmbiguous(AmbiguousBaseSubobjects);
648 }
649
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)650 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
651 Paths = new CXXBasePaths;
652 Paths->swap(P);
653 addDeclsFromBasePaths(*Paths);
654 resolveKind();
655 setAmbiguous(AmbiguousBaseSubobjectTypes);
656 }
657
print(raw_ostream & Out)658 void LookupResult::print(raw_ostream &Out) {
659 Out << Decls.size() << " result(s)";
660 if (isAmbiguous()) Out << ", ambiguous";
661 if (Paths) Out << ", base paths present";
662
663 for (iterator I = begin(), E = end(); I != E; ++I) {
664 Out << "\n";
665 (*I)->print(Out, 2);
666 }
667 }
668
dump()669 LLVM_DUMP_METHOD void LookupResult::dump() {
670 llvm::errs() << "lookup results for " << getLookupName().getAsString()
671 << ":\n";
672 for (NamedDecl *D : *this)
673 D->dump();
674 }
675
676 /// Get the QualType instances of the return type and arguments for an OpenCL
677 /// builtin function signature.
678 /// \param Context (in) The Context instance.
679 /// \param OpenCLBuiltin (in) The signature currently handled.
680 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
681 /// type used as return type or as argument.
682 /// Only meaningful for generic types, otherwise equals 1.
683 /// \param RetTypes (out) List of the possible return types.
684 /// \param ArgTypes (out) List of the possible argument types. For each
685 /// argument, ArgTypes contains QualTypes for the Cartesian product
686 /// of (vector sizes) x (types) .
GetQualTypesForOpenCLBuiltin(ASTContext & Context,const OpenCLBuiltinStruct & OpenCLBuiltin,unsigned & GenTypeMaxCnt,SmallVector<QualType,1> & RetTypes,SmallVector<SmallVector<QualType,1>,5> & ArgTypes)687 static void GetQualTypesForOpenCLBuiltin(
688 ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin,
689 unsigned &GenTypeMaxCnt, SmallVector<QualType, 1> &RetTypes,
690 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
691 // Get the QualType instances of the return types.
692 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
693 OCL2Qual(Context, TypeTable[Sig], RetTypes);
694 GenTypeMaxCnt = RetTypes.size();
695
696 // Get the QualType instances of the arguments.
697 // First type is the return type, skip it.
698 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
699 SmallVector<QualType, 1> Ty;
700 OCL2Qual(Context,
701 TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], Ty);
702 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
703 ArgTypes.push_back(std::move(Ty));
704 }
705 }
706
707 /// Create a list of the candidate function overloads for an OpenCL builtin
708 /// function.
709 /// \param Context (in) The ASTContext instance.
710 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
711 /// type used as return type or as argument.
712 /// Only meaningful for generic types, otherwise equals 1.
713 /// \param FunctionList (out) List of FunctionTypes.
714 /// \param RetTypes (in) List of the possible return types.
715 /// \param ArgTypes (in) List of the possible types for the arguments.
GetOpenCLBuiltinFctOverloads(ASTContext & Context,unsigned GenTypeMaxCnt,std::vector<QualType> & FunctionList,SmallVector<QualType,1> & RetTypes,SmallVector<SmallVector<QualType,1>,5> & ArgTypes)716 static void GetOpenCLBuiltinFctOverloads(
717 ASTContext &Context, unsigned GenTypeMaxCnt,
718 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
719 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
720 FunctionProtoType::ExtProtoInfo PI;
721 PI.Variadic = false;
722
723 // Create FunctionTypes for each (gen)type.
724 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
725 SmallVector<QualType, 5> ArgList;
726
727 for (unsigned A = 0; A < ArgTypes.size(); A++) {
728 // Builtins such as "max" have an "sgentype" argument that represents
729 // the corresponding scalar type of a gentype. The number of gentypes
730 // must be a multiple of the number of sgentypes.
731 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
732 "argument type count not compatible with gentype type count");
733 unsigned Idx = IGenType % ArgTypes[A].size();
734 ArgList.push_back(ArgTypes[A][Idx]);
735 }
736
737 FunctionList.push_back(Context.getFunctionType(
738 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
739 }
740 }
741
742 /// Add extensions to the function declaration.
743 /// \param S (in/out) The Sema instance.
744 /// \param BIDecl (in) Description of the builtin.
745 /// \param FDecl (in/out) FunctionDecl instance.
AddOpenCLExtensions(Sema & S,const OpenCLBuiltinStruct & BIDecl,FunctionDecl * FDecl)746 static void AddOpenCLExtensions(Sema &S, const OpenCLBuiltinStruct &BIDecl,
747 FunctionDecl *FDecl) {
748 // Fetch extension associated with a function prototype.
749 StringRef E = FunctionExtensionTable[BIDecl.Extension];
750 if (E != "")
751 S.setOpenCLExtensionForDecl(FDecl, E);
752 }
753
754 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
755 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
756 /// builtin function. Add all candidate signatures to the LookUpResult.
757 ///
758 /// \param S (in) The Sema instance.
759 /// \param LR (inout) The LookupResult instance.
760 /// \param II (in) The identifier being resolved.
761 /// \param FctIndex (in) Starting index in the BuiltinTable.
762 /// \param Len (in) The signature list has Len elements.
InsertOCLBuiltinDeclarationsFromTable(Sema & S,LookupResult & LR,IdentifierInfo * II,const unsigned FctIndex,const unsigned Len)763 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
764 IdentifierInfo *II,
765 const unsigned FctIndex,
766 const unsigned Len) {
767 // The builtin function declaration uses generic types (gentype).
768 bool HasGenType = false;
769
770 // Maximum number of types contained in a generic type used as return type or
771 // as argument. Only meaningful for generic types, otherwise equals 1.
772 unsigned GenTypeMaxCnt;
773
774 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
775 const OpenCLBuiltinStruct &OpenCLBuiltin =
776 BuiltinTable[FctIndex + SignatureIndex];
777 ASTContext &Context = S.Context;
778
779 // Ignore this BIF if its version does not match the language options.
780 unsigned OpenCLVersion = Context.getLangOpts().OpenCLVersion;
781 if (Context.getLangOpts().OpenCLCPlusPlus)
782 OpenCLVersion = 200;
783 if (OpenCLVersion < OpenCLBuiltin.MinVersion)
784 continue;
785 if ((OpenCLBuiltin.MaxVersion != 0) &&
786 (OpenCLVersion >= OpenCLBuiltin.MaxVersion))
787 continue;
788
789 SmallVector<QualType, 1> RetTypes;
790 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
791
792 // Obtain QualType lists for the function signature.
793 GetQualTypesForOpenCLBuiltin(Context, OpenCLBuiltin, GenTypeMaxCnt,
794 RetTypes, ArgTypes);
795 if (GenTypeMaxCnt > 1) {
796 HasGenType = true;
797 }
798
799 // Create function overload for each type combination.
800 std::vector<QualType> FunctionList;
801 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
802 ArgTypes);
803
804 SourceLocation Loc = LR.getNameLoc();
805 DeclContext *Parent = Context.getTranslationUnitDecl();
806 FunctionDecl *NewOpenCLBuiltin;
807
808 for (unsigned Index = 0; Index < GenTypeMaxCnt; Index++) {
809 NewOpenCLBuiltin = FunctionDecl::Create(
810 Context, Parent, Loc, Loc, II, FunctionList[Index],
811 /*TInfo=*/nullptr, SC_Extern, false,
812 FunctionList[Index]->isFunctionProtoType());
813 NewOpenCLBuiltin->setImplicit();
814
815 // Create Decl objects for each parameter, adding them to the
816 // FunctionDecl.
817 if (const FunctionProtoType *FP =
818 dyn_cast<FunctionProtoType>(FunctionList[Index])) {
819 SmallVector<ParmVarDecl *, 16> ParmList;
820 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
821 ParmVarDecl *Parm = ParmVarDecl::Create(
822 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
823 nullptr, FP->getParamType(IParm),
824 /*TInfo=*/nullptr, SC_None, nullptr);
825 Parm->setScopeInfo(0, IParm);
826 ParmList.push_back(Parm);
827 }
828 NewOpenCLBuiltin->setParams(ParmList);
829 }
830
831 // Add function attributes.
832 if (OpenCLBuiltin.IsPure)
833 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
834 if (OpenCLBuiltin.IsConst)
835 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
836 if (OpenCLBuiltin.IsConv)
837 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
838
839 if (!S.getLangOpts().OpenCLCPlusPlus)
840 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
841
842 AddOpenCLExtensions(S, OpenCLBuiltin, NewOpenCLBuiltin);
843
844 LR.addDecl(NewOpenCLBuiltin);
845 }
846 }
847
848 // If we added overloads, need to resolve the lookup result.
849 if (Len > 1 || HasGenType)
850 LR.resolveKind();
851 }
852
853 /// Lookup a builtin function, when name lookup would otherwise
854 /// fail.
LookupBuiltin(LookupResult & R)855 bool Sema::LookupBuiltin(LookupResult &R) {
856 Sema::LookupNameKind NameKind = R.getLookupKind();
857
858 // If we didn't find a use of this identifier, and if the identifier
859 // corresponds to a compiler builtin, create the decl object for the builtin
860 // now, injecting it into translation unit scope, and return it.
861 if (NameKind == Sema::LookupOrdinaryName ||
862 NameKind == Sema::LookupRedeclarationWithLinkage) {
863 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
864 if (II) {
865 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
866 if (II == getASTContext().getMakeIntegerSeqName()) {
867 R.addDecl(getASTContext().getMakeIntegerSeqDecl());
868 return true;
869 } else if (II == getASTContext().getTypePackElementName()) {
870 R.addDecl(getASTContext().getTypePackElementDecl());
871 return true;
872 }
873 }
874
875 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
876 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
877 auto Index = isOpenCLBuiltin(II->getName());
878 if (Index.first) {
879 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
880 Index.second);
881 return true;
882 }
883 }
884
885 // If this is a builtin on this (or all) targets, create the decl.
886 if (unsigned BuiltinID = II->getBuiltinID()) {
887 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
888 // library functions like 'malloc'. Instead, we'll just error.
889 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
890 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
891 return false;
892
893 if (NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II,
894 BuiltinID, TUScope,
895 R.isForRedeclaration(),
896 R.getNameLoc())) {
897 R.addDecl(D);
898 return true;
899 }
900 }
901 }
902 }
903
904 return false;
905 }
906
907 /// Determine whether we can declare a special member function within
908 /// the class at this point.
CanDeclareSpecialMemberFunction(const CXXRecordDecl * Class)909 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
910 // We need to have a definition for the class.
911 if (!Class->getDefinition() || Class->isDependentContext())
912 return false;
913
914 // We can't be in the middle of defining the class.
915 return !Class->isBeingDefined();
916 }
917
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)918 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
919 if (!CanDeclareSpecialMemberFunction(Class))
920 return;
921
922 // If the default constructor has not yet been declared, do so now.
923 if (Class->needsImplicitDefaultConstructor())
924 DeclareImplicitDefaultConstructor(Class);
925
926 // If the copy constructor has not yet been declared, do so now.
927 if (Class->needsImplicitCopyConstructor())
928 DeclareImplicitCopyConstructor(Class);
929
930 // If the copy assignment operator has not yet been declared, do so now.
931 if (Class->needsImplicitCopyAssignment())
932 DeclareImplicitCopyAssignment(Class);
933
934 if (getLangOpts().CPlusPlus11) {
935 // If the move constructor has not yet been declared, do so now.
936 if (Class->needsImplicitMoveConstructor())
937 DeclareImplicitMoveConstructor(Class);
938
939 // If the move assignment operator has not yet been declared, do so now.
940 if (Class->needsImplicitMoveAssignment())
941 DeclareImplicitMoveAssignment(Class);
942 }
943
944 // If the destructor has not yet been declared, do so now.
945 if (Class->needsImplicitDestructor())
946 DeclareImplicitDestructor(Class);
947 }
948
949 /// Determine whether this is the name of an implicitly-declared
950 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)951 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
952 switch (Name.getNameKind()) {
953 case DeclarationName::CXXConstructorName:
954 case DeclarationName::CXXDestructorName:
955 return true;
956
957 case DeclarationName::CXXOperatorName:
958 return Name.getCXXOverloadedOperator() == OO_Equal;
959
960 default:
961 break;
962 }
963
964 return false;
965 }
966
967 /// If there are any implicit member functions with the given name
968 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,SourceLocation Loc,const DeclContext * DC)969 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
970 DeclarationName Name,
971 SourceLocation Loc,
972 const DeclContext *DC) {
973 if (!DC)
974 return;
975
976 switch (Name.getNameKind()) {
977 case DeclarationName::CXXConstructorName:
978 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
979 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
980 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
981 if (Record->needsImplicitDefaultConstructor())
982 S.DeclareImplicitDefaultConstructor(Class);
983 if (Record->needsImplicitCopyConstructor())
984 S.DeclareImplicitCopyConstructor(Class);
985 if (S.getLangOpts().CPlusPlus11 &&
986 Record->needsImplicitMoveConstructor())
987 S.DeclareImplicitMoveConstructor(Class);
988 }
989 break;
990
991 case DeclarationName::CXXDestructorName:
992 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
993 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
994 CanDeclareSpecialMemberFunction(Record))
995 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
996 break;
997
998 case DeclarationName::CXXOperatorName:
999 if (Name.getCXXOverloadedOperator() != OO_Equal)
1000 break;
1001
1002 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1003 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1004 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1005 if (Record->needsImplicitCopyAssignment())
1006 S.DeclareImplicitCopyAssignment(Class);
1007 if (S.getLangOpts().CPlusPlus11 &&
1008 Record->needsImplicitMoveAssignment())
1009 S.DeclareImplicitMoveAssignment(Class);
1010 }
1011 }
1012 break;
1013
1014 case DeclarationName::CXXDeductionGuideName:
1015 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1016 break;
1017
1018 default:
1019 break;
1020 }
1021 }
1022
1023 // Adds all qualifying matches for a name within a decl context to the
1024 // given lookup result. Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)1025 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1026 bool Found = false;
1027
1028 // Lazily declare C++ special member functions.
1029 if (S.getLangOpts().CPlusPlus)
1030 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1031 DC);
1032
1033 // Perform lookup into this declaration context.
1034 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1035 for (NamedDecl *D : DR) {
1036 if ((D = R.getAcceptableDecl(D))) {
1037 R.addDecl(D);
1038 Found = true;
1039 }
1040 }
1041
1042 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1043 return true;
1044
1045 if (R.getLookupName().getNameKind()
1046 != DeclarationName::CXXConversionFunctionName ||
1047 R.getLookupName().getCXXNameType()->isDependentType() ||
1048 !isa<CXXRecordDecl>(DC))
1049 return Found;
1050
1051 // C++ [temp.mem]p6:
1052 // A specialization of a conversion function template is not found by
1053 // name lookup. Instead, any conversion function templates visible in the
1054 // context of the use are considered. [...]
1055 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1056 if (!Record->isCompleteDefinition())
1057 return Found;
1058
1059 // For conversion operators, 'operator auto' should only match
1060 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1061 // as a candidate for template substitution.
1062 auto *ContainedDeducedType =
1063 R.getLookupName().getCXXNameType()->getContainedDeducedType();
1064 if (R.getLookupName().getNameKind() ==
1065 DeclarationName::CXXConversionFunctionName &&
1066 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1067 return Found;
1068
1069 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1070 UEnd = Record->conversion_end(); U != UEnd; ++U) {
1071 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1072 if (!ConvTemplate)
1073 continue;
1074
1075 // When we're performing lookup for the purposes of redeclaration, just
1076 // add the conversion function template. When we deduce template
1077 // arguments for specializations, we'll end up unifying the return
1078 // type of the new declaration with the type of the function template.
1079 if (R.isForRedeclaration()) {
1080 R.addDecl(ConvTemplate);
1081 Found = true;
1082 continue;
1083 }
1084
1085 // C++ [temp.mem]p6:
1086 // [...] For each such operator, if argument deduction succeeds
1087 // (14.9.2.3), the resulting specialization is used as if found by
1088 // name lookup.
1089 //
1090 // When referencing a conversion function for any purpose other than
1091 // a redeclaration (such that we'll be building an expression with the
1092 // result), perform template argument deduction and place the
1093 // specialization into the result set. We do this to avoid forcing all
1094 // callers to perform special deduction for conversion functions.
1095 TemplateDeductionInfo Info(R.getNameLoc());
1096 FunctionDecl *Specialization = nullptr;
1097
1098 const FunctionProtoType *ConvProto
1099 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1100 assert(ConvProto && "Nonsensical conversion function template type");
1101
1102 // Compute the type of the function that we would expect the conversion
1103 // function to have, if it were to match the name given.
1104 // FIXME: Calling convention!
1105 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1106 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1107 EPI.ExceptionSpec = EST_None;
1108 QualType ExpectedType
1109 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1110 None, EPI);
1111
1112 // Perform template argument deduction against the type that we would
1113 // expect the function to have.
1114 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1115 Specialization, Info)
1116 == Sema::TDK_Success) {
1117 R.addDecl(Specialization);
1118 Found = true;
1119 }
1120 }
1121
1122 return Found;
1123 }
1124
1125 // Performs C++ unqualified lookup into the given file context.
1126 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)1127 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1128 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1129
1130 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1131
1132 // Perform direct name lookup into the LookupCtx.
1133 bool Found = LookupDirect(S, R, NS);
1134
1135 // Perform direct name lookup into the namespaces nominated by the
1136 // using directives whose common ancestor is this namespace.
1137 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1138 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1139 Found = true;
1140
1141 R.resolveKind();
1142
1143 return Found;
1144 }
1145
isNamespaceOrTranslationUnitScope(Scope * S)1146 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1147 if (DeclContext *Ctx = S->getEntity())
1148 return Ctx->isFileContext();
1149 return false;
1150 }
1151
1152 // Find the next outer declaration context from this scope. This
1153 // routine actually returns the semantic outer context, which may
1154 // differ from the lexical context (encoded directly in the Scope
1155 // stack) when we are parsing a member of a class template. In this
1156 // case, the second element of the pair will be true, to indicate that
1157 // name lookup should continue searching in this semantic context when
1158 // it leaves the current template parameter scope.
findOuterContext(Scope * S)1159 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
1160 DeclContext *DC = S->getEntity();
1161 DeclContext *Lexical = nullptr;
1162 for (Scope *OuterS = S->getParent(); OuterS;
1163 OuterS = OuterS->getParent()) {
1164 if (OuterS->getEntity()) {
1165 Lexical = OuterS->getEntity();
1166 break;
1167 }
1168 }
1169
1170 // C++ [temp.local]p8:
1171 // In the definition of a member of a class template that appears
1172 // outside of the namespace containing the class template
1173 // definition, the name of a template-parameter hides the name of
1174 // a member of this namespace.
1175 //
1176 // Example:
1177 //
1178 // namespace N {
1179 // class C { };
1180 //
1181 // template<class T> class B {
1182 // void f(T);
1183 // };
1184 // }
1185 //
1186 // template<class C> void N::B<C>::f(C) {
1187 // C b; // C is the template parameter, not N::C
1188 // }
1189 //
1190 // In this example, the lexical context we return is the
1191 // TranslationUnit, while the semantic context is the namespace N.
1192 if (!Lexical || !DC || !S->getParent() ||
1193 !S->getParent()->isTemplateParamScope())
1194 return std::make_pair(Lexical, false);
1195
1196 // Find the outermost template parameter scope.
1197 // For the example, this is the scope for the template parameters of
1198 // template<class C>.
1199 Scope *OutermostTemplateScope = S->getParent();
1200 while (OutermostTemplateScope->getParent() &&
1201 OutermostTemplateScope->getParent()->isTemplateParamScope())
1202 OutermostTemplateScope = OutermostTemplateScope->getParent();
1203
1204 // Find the namespace context in which the original scope occurs. In
1205 // the example, this is namespace N.
1206 DeclContext *Semantic = DC;
1207 while (!Semantic->isFileContext())
1208 Semantic = Semantic->getParent();
1209
1210 // Find the declaration context just outside of the template
1211 // parameter scope. This is the context in which the template is
1212 // being lexically declaration (a namespace context). In the
1213 // example, this is the global scope.
1214 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1215 Lexical->Encloses(Semantic))
1216 return std::make_pair(Semantic, true);
1217
1218 return std::make_pair(Lexical, false);
1219 }
1220
1221 namespace {
1222 /// An RAII object to specify that we want to find block scope extern
1223 /// declarations.
1224 struct FindLocalExternScope {
FindLocalExternScope__anon9ae573980211::FindLocalExternScope1225 FindLocalExternScope(LookupResult &R)
1226 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1227 Decl::IDNS_LocalExtern) {
1228 R.setFindLocalExtern(R.getIdentifierNamespace() &
1229 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1230 }
restore__anon9ae573980211::FindLocalExternScope1231 void restore() {
1232 R.setFindLocalExtern(OldFindLocalExtern);
1233 }
~FindLocalExternScope__anon9ae573980211::FindLocalExternScope1234 ~FindLocalExternScope() {
1235 restore();
1236 }
1237 LookupResult &R;
1238 bool OldFindLocalExtern;
1239 };
1240 } // end anonymous namespace
1241
CppLookupName(LookupResult & R,Scope * S)1242 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1243 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1244
1245 DeclarationName Name = R.getLookupName();
1246 Sema::LookupNameKind NameKind = R.getLookupKind();
1247
1248 // If this is the name of an implicitly-declared special member function,
1249 // go through the scope stack to implicitly declare
1250 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1251 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1252 if (DeclContext *DC = PreS->getEntity())
1253 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1254 }
1255
1256 // Implicitly declare member functions with the name we're looking for, if in
1257 // fact we are in a scope where it matters.
1258
1259 Scope *Initial = S;
1260 IdentifierResolver::iterator
1261 I = IdResolver.begin(Name),
1262 IEnd = IdResolver.end();
1263
1264 // First we lookup local scope.
1265 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1266 // ...During unqualified name lookup (3.4.1), the names appear as if
1267 // they were declared in the nearest enclosing namespace which contains
1268 // both the using-directive and the nominated namespace.
1269 // [Note: in this context, "contains" means "contains directly or
1270 // indirectly".
1271 //
1272 // For example:
1273 // namespace A { int i; }
1274 // void foo() {
1275 // int i;
1276 // {
1277 // using namespace A;
1278 // ++i; // finds local 'i', A::i appears at global scope
1279 // }
1280 // }
1281 //
1282 UnqualUsingDirectiveSet UDirs(*this);
1283 bool VisitedUsingDirectives = false;
1284 bool LeftStartingScope = false;
1285 DeclContext *OutsideOfTemplateParamDC = nullptr;
1286
1287 // When performing a scope lookup, we want to find local extern decls.
1288 FindLocalExternScope FindLocals(R);
1289
1290 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1291 DeclContext *Ctx = S->getEntity();
1292 bool SearchNamespaceScope = true;
1293 // Check whether the IdResolver has anything in this scope.
1294 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1295 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1296 if (NameKind == LookupRedeclarationWithLinkage &&
1297 !(*I)->isTemplateParameter()) {
1298 // If it's a template parameter, we still find it, so we can diagnose
1299 // the invalid redeclaration.
1300
1301 // Determine whether this (or a previous) declaration is
1302 // out-of-scope.
1303 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1304 LeftStartingScope = true;
1305
1306 // If we found something outside of our starting scope that
1307 // does not have linkage, skip it.
1308 if (LeftStartingScope && !((*I)->hasLinkage())) {
1309 R.setShadowed();
1310 continue;
1311 }
1312 } else {
1313 // We found something in this scope, we should not look at the
1314 // namespace scope
1315 SearchNamespaceScope = false;
1316 }
1317 R.addDecl(ND);
1318 }
1319 }
1320 if (!SearchNamespaceScope) {
1321 R.resolveKind();
1322 if (S->isClassScope())
1323 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1324 R.setNamingClass(Record);
1325 return true;
1326 }
1327
1328 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1329 // C++11 [class.friend]p11:
1330 // If a friend declaration appears in a local class and the name
1331 // specified is an unqualified name, a prior declaration is
1332 // looked up without considering scopes that are outside the
1333 // innermost enclosing non-class scope.
1334 return false;
1335 }
1336
1337 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1338 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1339 // We've just searched the last template parameter scope and
1340 // found nothing, so look into the contexts between the
1341 // lexical and semantic declaration contexts returned by
1342 // findOuterContext(). This implements the name lookup behavior
1343 // of C++ [temp.local]p8.
1344 Ctx = OutsideOfTemplateParamDC;
1345 OutsideOfTemplateParamDC = nullptr;
1346 }
1347
1348 if (Ctx) {
1349 DeclContext *OuterCtx;
1350 bool SearchAfterTemplateScope;
1351 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1352 if (SearchAfterTemplateScope)
1353 OutsideOfTemplateParamDC = OuterCtx;
1354
1355 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1356 // We do not directly look into transparent contexts, since
1357 // those entities will be found in the nearest enclosing
1358 // non-transparent context.
1359 if (Ctx->isTransparentContext())
1360 continue;
1361
1362 // We do not look directly into function or method contexts,
1363 // since all of the local variables and parameters of the
1364 // function/method are present within the Scope.
1365 if (Ctx->isFunctionOrMethod()) {
1366 // If we have an Objective-C instance method, look for ivars
1367 // in the corresponding interface.
1368 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1369 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1370 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1371 ObjCInterfaceDecl *ClassDeclared;
1372 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1373 Name.getAsIdentifierInfo(),
1374 ClassDeclared)) {
1375 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1376 R.addDecl(ND);
1377 R.resolveKind();
1378 return true;
1379 }
1380 }
1381 }
1382 }
1383
1384 continue;
1385 }
1386
1387 // If this is a file context, we need to perform unqualified name
1388 // lookup considering using directives.
1389 if (Ctx->isFileContext()) {
1390 // If we haven't handled using directives yet, do so now.
1391 if (!VisitedUsingDirectives) {
1392 // Add using directives from this context up to the top level.
1393 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1394 if (UCtx->isTransparentContext())
1395 continue;
1396
1397 UDirs.visit(UCtx, UCtx);
1398 }
1399
1400 // Find the innermost file scope, so we can add using directives
1401 // from local scopes.
1402 Scope *InnermostFileScope = S;
1403 while (InnermostFileScope &&
1404 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1405 InnermostFileScope = InnermostFileScope->getParent();
1406 UDirs.visitScopeChain(Initial, InnermostFileScope);
1407
1408 UDirs.done();
1409
1410 VisitedUsingDirectives = true;
1411 }
1412
1413 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1414 R.resolveKind();
1415 return true;
1416 }
1417
1418 continue;
1419 }
1420
1421 // Perform qualified name lookup into this context.
1422 // FIXME: In some cases, we know that every name that could be found by
1423 // this qualified name lookup will also be on the identifier chain. For
1424 // example, inside a class without any base classes, we never need to
1425 // perform qualified lookup because all of the members are on top of the
1426 // identifier chain.
1427 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1428 return true;
1429 }
1430 }
1431 }
1432
1433 // Stop if we ran out of scopes.
1434 // FIXME: This really, really shouldn't be happening.
1435 if (!S) return false;
1436
1437 // If we are looking for members, no need to look into global/namespace scope.
1438 if (NameKind == LookupMemberName)
1439 return false;
1440
1441 // Collect UsingDirectiveDecls in all scopes, and recursively all
1442 // nominated namespaces by those using-directives.
1443 //
1444 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1445 // don't build it for each lookup!
1446 if (!VisitedUsingDirectives) {
1447 UDirs.visitScopeChain(Initial, S);
1448 UDirs.done();
1449 }
1450
1451 // If we're not performing redeclaration lookup, do not look for local
1452 // extern declarations outside of a function scope.
1453 if (!R.isForRedeclaration())
1454 FindLocals.restore();
1455
1456 // Lookup namespace scope, and global scope.
1457 // Unqualified name lookup in C++ requires looking into scopes
1458 // that aren't strictly lexical, and therefore we walk through the
1459 // context as well as walking through the scopes.
1460 for (; S; S = S->getParent()) {
1461 // Check whether the IdResolver has anything in this scope.
1462 bool Found = false;
1463 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1464 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1465 // We found something. Look for anything else in our scope
1466 // with this same name and in an acceptable identifier
1467 // namespace, so that we can construct an overload set if we
1468 // need to.
1469 Found = true;
1470 R.addDecl(ND);
1471 }
1472 }
1473
1474 if (Found && S->isTemplateParamScope()) {
1475 R.resolveKind();
1476 return true;
1477 }
1478
1479 DeclContext *Ctx = S->getEntity();
1480 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1481 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1482 // We've just searched the last template parameter scope and
1483 // found nothing, so look into the contexts between the
1484 // lexical and semantic declaration contexts returned by
1485 // findOuterContext(). This implements the name lookup behavior
1486 // of C++ [temp.local]p8.
1487 Ctx = OutsideOfTemplateParamDC;
1488 OutsideOfTemplateParamDC = nullptr;
1489 }
1490
1491 if (Ctx) {
1492 DeclContext *OuterCtx;
1493 bool SearchAfterTemplateScope;
1494 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1495 if (SearchAfterTemplateScope)
1496 OutsideOfTemplateParamDC = OuterCtx;
1497
1498 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1499 // We do not directly look into transparent contexts, since
1500 // those entities will be found in the nearest enclosing
1501 // non-transparent context.
1502 if (Ctx->isTransparentContext())
1503 continue;
1504
1505 // If we have a context, and it's not a context stashed in the
1506 // template parameter scope for an out-of-line definition, also
1507 // look into that context.
1508 if (!(Found && S->isTemplateParamScope())) {
1509 assert(Ctx->isFileContext() &&
1510 "We should have been looking only at file context here already.");
1511
1512 // Look into context considering using-directives.
1513 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1514 Found = true;
1515 }
1516
1517 if (Found) {
1518 R.resolveKind();
1519 return true;
1520 }
1521
1522 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1523 return false;
1524 }
1525 }
1526
1527 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1528 return false;
1529 }
1530
1531 return !R.empty();
1532 }
1533
makeMergedDefinitionVisible(NamedDecl * ND)1534 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1535 if (auto *M = getCurrentModule())
1536 Context.mergeDefinitionIntoModule(ND, M);
1537 else
1538 // We're not building a module; just make the definition visible.
1539 ND->setVisibleDespiteOwningModule();
1540
1541 // If ND is a template declaration, make the template parameters
1542 // visible too. They're not (necessarily) within a mergeable DeclContext.
1543 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1544 for (auto *Param : *TD->getTemplateParameters())
1545 makeMergedDefinitionVisible(Param);
1546 }
1547
1548 /// Find the module in which the given declaration was defined.
getDefiningModule(Sema & S,Decl * Entity)1549 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1550 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1551 // If this function was instantiated from a template, the defining module is
1552 // the module containing the pattern.
1553 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1554 Entity = Pattern;
1555 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1556 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1557 Entity = Pattern;
1558 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1559 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1560 Entity = Pattern;
1561 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1562 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1563 Entity = Pattern;
1564 }
1565
1566 // Walk up to the containing context. That might also have been instantiated
1567 // from a template.
1568 DeclContext *Context = Entity->getLexicalDeclContext();
1569 if (Context->isFileContext())
1570 return S.getOwningModule(Entity);
1571 return getDefiningModule(S, cast<Decl>(Context));
1572 }
1573
getLookupModules()1574 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1575 unsigned N = CodeSynthesisContexts.size();
1576 for (unsigned I = CodeSynthesisContextLookupModules.size();
1577 I != N; ++I) {
1578 Module *M = CodeSynthesisContexts[I].Entity ?
1579 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1580 nullptr;
1581 if (M && !LookupModulesCache.insert(M).second)
1582 M = nullptr;
1583 CodeSynthesisContextLookupModules.push_back(M);
1584 }
1585 return LookupModulesCache;
1586 }
1587
1588 /// Determine whether the module M is part of the current module from the
1589 /// perspective of a module-private visibility check.
isInCurrentModule(const Module * M,const LangOptions & LangOpts)1590 static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1591 // If M is the global module fragment of a module that we've not yet finished
1592 // parsing, then it must be part of the current module.
1593 return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1594 (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1595 }
1596
hasVisibleMergedDefinition(NamedDecl * Def)1597 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1598 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1599 if (isModuleVisible(Merged))
1600 return true;
1601 return false;
1602 }
1603
hasMergedDefinitionInCurrentModule(NamedDecl * Def)1604 bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1605 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1606 if (isInCurrentModule(Merged, getLangOpts()))
1607 return true;
1608 return false;
1609 }
1610
1611 template<typename ParmDecl>
1612 static bool
hasVisibleDefaultArgument(Sema & S,const ParmDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1613 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1614 llvm::SmallVectorImpl<Module *> *Modules) {
1615 if (!D->hasDefaultArgument())
1616 return false;
1617
1618 while (D) {
1619 auto &DefaultArg = D->getDefaultArgStorage();
1620 if (!DefaultArg.isInherited() && S.isVisible(D))
1621 return true;
1622
1623 if (!DefaultArg.isInherited() && Modules) {
1624 auto *NonConstD = const_cast<ParmDecl*>(D);
1625 Modules->push_back(S.getOwningModule(NonConstD));
1626 }
1627
1628 // If there was a previous default argument, maybe its parameter is visible.
1629 D = DefaultArg.getInheritedFrom();
1630 }
1631 return false;
1632 }
1633
hasVisibleDefaultArgument(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1634 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1635 llvm::SmallVectorImpl<Module *> *Modules) {
1636 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1637 return ::hasVisibleDefaultArgument(*this, P, Modules);
1638 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1639 return ::hasVisibleDefaultArgument(*this, P, Modules);
1640 return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1641 Modules);
1642 }
1643
1644 template<typename Filter>
hasVisibleDeclarationImpl(Sema & S,const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Filter F)1645 static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1646 llvm::SmallVectorImpl<Module *> *Modules,
1647 Filter F) {
1648 bool HasFilteredRedecls = false;
1649
1650 for (auto *Redecl : D->redecls()) {
1651 auto *R = cast<NamedDecl>(Redecl);
1652 if (!F(R))
1653 continue;
1654
1655 if (S.isVisible(R))
1656 return true;
1657
1658 HasFilteredRedecls = true;
1659
1660 if (Modules)
1661 Modules->push_back(R->getOwningModule());
1662 }
1663
1664 // Only return false if there is at least one redecl that is not filtered out.
1665 if (HasFilteredRedecls)
1666 return false;
1667
1668 return true;
1669 }
1670
hasVisibleExplicitSpecialization(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1671 bool Sema::hasVisibleExplicitSpecialization(
1672 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1673 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1674 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1675 return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1676 if (auto *FD = dyn_cast<FunctionDecl>(D))
1677 return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1678 if (auto *VD = dyn_cast<VarDecl>(D))
1679 return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1680 llvm_unreachable("unknown explicit specialization kind");
1681 });
1682 }
1683
hasVisibleMemberSpecialization(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1684 bool Sema::hasVisibleMemberSpecialization(
1685 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1686 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1687 "not a member specialization");
1688 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1689 // If the specialization is declared at namespace scope, then it's a member
1690 // specialization declaration. If it's lexically inside the class
1691 // definition then it was instantiated.
1692 //
1693 // FIXME: This is a hack. There should be a better way to determine this.
1694 // FIXME: What about MS-style explicit specializations declared within a
1695 // class definition?
1696 return D->getLexicalDeclContext()->isFileContext();
1697 });
1698 }
1699
1700 /// Determine whether a declaration is visible to name lookup.
1701 ///
1702 /// This routine determines whether the declaration D is visible in the current
1703 /// lookup context, taking into account the current template instantiation
1704 /// stack. During template instantiation, a declaration is visible if it is
1705 /// visible from a module containing any entity on the template instantiation
1706 /// path (by instantiating a template, you allow it to see the declarations that
1707 /// your module can see, including those later on in your module).
isVisibleSlow(Sema & SemaRef,NamedDecl * D)1708 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1709 assert(D->isHidden() && "should not call this: not in slow case");
1710
1711 Module *DeclModule = SemaRef.getOwningModule(D);
1712 assert(DeclModule && "hidden decl has no owning module");
1713
1714 // If the owning module is visible, the decl is visible.
1715 if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1716 return true;
1717
1718 // Determine whether a decl context is a file context for the purpose of
1719 // visibility. This looks through some (export and linkage spec) transparent
1720 // contexts, but not others (enums).
1721 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1722 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1723 isa<ExportDecl>(DC);
1724 };
1725
1726 // If this declaration is not at namespace scope
1727 // then it is visible if its lexical parent has a visible definition.
1728 DeclContext *DC = D->getLexicalDeclContext();
1729 if (DC && !IsEffectivelyFileContext(DC)) {
1730 // For a parameter, check whether our current template declaration's
1731 // lexical context is visible, not whether there's some other visible
1732 // definition of it, because parameters aren't "within" the definition.
1733 //
1734 // In C++ we need to check for a visible definition due to ODR merging,
1735 // and in C we must not because each declaration of a function gets its own
1736 // set of declarations for tags in prototype scope.
1737 bool VisibleWithinParent;
1738 if (D->isTemplateParameter()) {
1739 bool SearchDefinitions = true;
1740 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1741 if (const auto *TD = DCD->getDescribedTemplate()) {
1742 TemplateParameterList *TPL = TD->getTemplateParameters();
1743 auto Index = getDepthAndIndex(D).second;
1744 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1745 }
1746 }
1747 if (SearchDefinitions)
1748 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1749 else
1750 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1751 } else if (isa<ParmVarDecl>(D) ||
1752 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1753 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1754 else if (D->isModulePrivate()) {
1755 // A module-private declaration is only visible if an enclosing lexical
1756 // parent was merged with another definition in the current module.
1757 VisibleWithinParent = false;
1758 do {
1759 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1760 VisibleWithinParent = true;
1761 break;
1762 }
1763 DC = DC->getLexicalParent();
1764 } while (!IsEffectivelyFileContext(DC));
1765 } else {
1766 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1767 }
1768
1769 if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1770 // FIXME: Do something better in this case.
1771 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1772 // Cache the fact that this declaration is implicitly visible because
1773 // its parent has a visible definition.
1774 D->setVisibleDespiteOwningModule();
1775 }
1776 return VisibleWithinParent;
1777 }
1778
1779 return false;
1780 }
1781
isModuleVisible(const Module * M,bool ModulePrivate)1782 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1783 // The module might be ordinarily visible. For a module-private query, that
1784 // means it is part of the current module. For any other query, that means it
1785 // is in our visible module set.
1786 if (ModulePrivate) {
1787 if (isInCurrentModule(M, getLangOpts()))
1788 return true;
1789 } else {
1790 if (VisibleModules.isVisible(M))
1791 return true;
1792 }
1793
1794 // Otherwise, it might be visible by virtue of the query being within a
1795 // template instantiation or similar that is permitted to look inside M.
1796
1797 // Find the extra places where we need to look.
1798 const auto &LookupModules = getLookupModules();
1799 if (LookupModules.empty())
1800 return false;
1801
1802 // If our lookup set contains the module, it's visible.
1803 if (LookupModules.count(M))
1804 return true;
1805
1806 // For a module-private query, that's everywhere we get to look.
1807 if (ModulePrivate)
1808 return false;
1809
1810 // Check whether M is transitively exported to an import of the lookup set.
1811 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1812 return LookupM->isModuleVisible(M);
1813 });
1814 }
1815
isVisibleSlow(const NamedDecl * D)1816 bool Sema::isVisibleSlow(const NamedDecl *D) {
1817 return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1818 }
1819
shouldLinkPossiblyHiddenDecl(LookupResult & R,const NamedDecl * New)1820 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1821 // FIXME: If there are both visible and hidden declarations, we need to take
1822 // into account whether redeclaration is possible. Example:
1823 //
1824 // Non-imported module:
1825 // int f(T); // #1
1826 // Some TU:
1827 // static int f(U); // #2, not a redeclaration of #1
1828 // int f(T); // #3, finds both, should link with #1 if T != U, but
1829 // // with #2 if T == U; neither should be ambiguous.
1830 for (auto *D : R) {
1831 if (isVisible(D))
1832 return true;
1833 assert(D->isExternallyDeclarable() &&
1834 "should not have hidden, non-externally-declarable result here");
1835 }
1836
1837 // This function is called once "New" is essentially complete, but before a
1838 // previous declaration is attached. We can't query the linkage of "New" in
1839 // general, because attaching the previous declaration can change the
1840 // linkage of New to match the previous declaration.
1841 //
1842 // However, because we've just determined that there is no *visible* prior
1843 // declaration, we can compute the linkage here. There are two possibilities:
1844 //
1845 // * This is not a redeclaration; it's safe to compute the linkage now.
1846 //
1847 // * This is a redeclaration of a prior declaration that is externally
1848 // redeclarable. In that case, the linkage of the declaration is not
1849 // changed by attaching the prior declaration, because both are externally
1850 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1851 //
1852 // FIXME: This is subtle and fragile.
1853 return New->isExternallyDeclarable();
1854 }
1855
1856 /// Retrieve the visible declaration corresponding to D, if any.
1857 ///
1858 /// This routine determines whether the declaration D is visible in the current
1859 /// module, with the current imports. If not, it checks whether any
1860 /// redeclaration of D is visible, and if so, returns that declaration.
1861 ///
1862 /// \returns D, or a visible previous declaration of D, whichever is more recent
1863 /// and visible. If no declaration of D is visible, returns null.
findAcceptableDecl(Sema & SemaRef,NamedDecl * D,unsigned IDNS)1864 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1865 unsigned IDNS) {
1866 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1867
1868 for (auto RD : D->redecls()) {
1869 // Don't bother with extra checks if we already know this one isn't visible.
1870 if (RD == D)
1871 continue;
1872
1873 auto ND = cast<NamedDecl>(RD);
1874 // FIXME: This is wrong in the case where the previous declaration is not
1875 // visible in the same scope as D. This needs to be done much more
1876 // carefully.
1877 if (ND->isInIdentifierNamespace(IDNS) &&
1878 LookupResult::isVisible(SemaRef, ND))
1879 return ND;
1880 }
1881
1882 return nullptr;
1883 }
1884
hasVisibleDeclarationSlow(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1885 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1886 llvm::SmallVectorImpl<Module *> *Modules) {
1887 assert(!isVisible(D) && "not in slow case");
1888 return hasVisibleDeclarationImpl(*this, D, Modules,
1889 [](const NamedDecl *) { return true; });
1890 }
1891
getAcceptableDeclSlow(NamedDecl * D) const1892 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1893 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1894 // Namespaces are a bit of a special case: we expect there to be a lot of
1895 // redeclarations of some namespaces, all declarations of a namespace are
1896 // essentially interchangeable, all declarations are found by name lookup
1897 // if any is, and namespaces are never looked up during template
1898 // instantiation. So we benefit from caching the check in this case, and
1899 // it is correct to do so.
1900 auto *Key = ND->getCanonicalDecl();
1901 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1902 return Acceptable;
1903 auto *Acceptable = isVisible(getSema(), Key)
1904 ? Key
1905 : findAcceptableDecl(getSema(), Key, IDNS);
1906 if (Acceptable)
1907 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1908 return Acceptable;
1909 }
1910
1911 return findAcceptableDecl(getSema(), D, IDNS);
1912 }
1913
1914 /// Perform unqualified name lookup starting from a given
1915 /// scope.
1916 ///
1917 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1918 /// used to find names within the current scope. For example, 'x' in
1919 /// @code
1920 /// int x;
1921 /// int f() {
1922 /// return x; // unqualified name look finds 'x' in the global scope
1923 /// }
1924 /// @endcode
1925 ///
1926 /// Different lookup criteria can find different names. For example, a
1927 /// particular scope can have both a struct and a function of the same
1928 /// name, and each can be found by certain lookup criteria. For more
1929 /// information about lookup criteria, see the documentation for the
1930 /// class LookupCriteria.
1931 ///
1932 /// @param S The scope from which unqualified name lookup will
1933 /// begin. If the lookup criteria permits, name lookup may also search
1934 /// in the parent scopes.
1935 ///
1936 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1937 /// look up and the lookup kind), and is updated with the results of lookup
1938 /// including zero or more declarations and possibly additional information
1939 /// used to diagnose ambiguities.
1940 ///
1941 /// @returns \c true if lookup succeeded and false otherwise.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1942 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1943 DeclarationName Name = R.getLookupName();
1944 if (!Name) return false;
1945
1946 LookupNameKind NameKind = R.getLookupKind();
1947
1948 if (!getLangOpts().CPlusPlus) {
1949 // Unqualified name lookup in C/Objective-C is purely lexical, so
1950 // search in the declarations attached to the name.
1951 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1952 // Find the nearest non-transparent declaration scope.
1953 while (!(S->getFlags() & Scope::DeclScope) ||
1954 (S->getEntity() && S->getEntity()->isTransparentContext()))
1955 S = S->getParent();
1956 }
1957
1958 // When performing a scope lookup, we want to find local extern decls.
1959 FindLocalExternScope FindLocals(R);
1960
1961 // Scan up the scope chain looking for a decl that matches this
1962 // identifier that is in the appropriate namespace. This search
1963 // should not take long, as shadowing of names is uncommon, and
1964 // deep shadowing is extremely uncommon.
1965 bool LeftStartingScope = false;
1966
1967 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1968 IEnd = IdResolver.end();
1969 I != IEnd; ++I)
1970 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1971 if (NameKind == LookupRedeclarationWithLinkage) {
1972 // Determine whether this (or a previous) declaration is
1973 // out-of-scope.
1974 if (!LeftStartingScope && !S->isDeclScope(*I))
1975 LeftStartingScope = true;
1976
1977 // If we found something outside of our starting scope that
1978 // does not have linkage, skip it.
1979 if (LeftStartingScope && !((*I)->hasLinkage())) {
1980 R.setShadowed();
1981 continue;
1982 }
1983 }
1984 else if (NameKind == LookupObjCImplicitSelfParam &&
1985 !isa<ImplicitParamDecl>(*I))
1986 continue;
1987
1988 R.addDecl(D);
1989
1990 // Check whether there are any other declarations with the same name
1991 // and in the same scope.
1992 if (I != IEnd) {
1993 // Find the scope in which this declaration was declared (if it
1994 // actually exists in a Scope).
1995 while (S && !S->isDeclScope(D))
1996 S = S->getParent();
1997
1998 // If the scope containing the declaration is the translation unit,
1999 // then we'll need to perform our checks based on the matching
2000 // DeclContexts rather than matching scopes.
2001 if (S && isNamespaceOrTranslationUnitScope(S))
2002 S = nullptr;
2003
2004 // Compute the DeclContext, if we need it.
2005 DeclContext *DC = nullptr;
2006 if (!S)
2007 DC = (*I)->getDeclContext()->getRedeclContext();
2008
2009 IdentifierResolver::iterator LastI = I;
2010 for (++LastI; LastI != IEnd; ++LastI) {
2011 if (S) {
2012 // Match based on scope.
2013 if (!S->isDeclScope(*LastI))
2014 break;
2015 } else {
2016 // Match based on DeclContext.
2017 DeclContext *LastDC
2018 = (*LastI)->getDeclContext()->getRedeclContext();
2019 if (!LastDC->Equals(DC))
2020 break;
2021 }
2022
2023 // If the declaration is in the right namespace and visible, add it.
2024 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2025 R.addDecl(LastD);
2026 }
2027
2028 R.resolveKind();
2029 }
2030
2031 return true;
2032 }
2033 } else {
2034 // Perform C++ unqualified name lookup.
2035 if (CppLookupName(R, S))
2036 return true;
2037 }
2038
2039 // If we didn't find a use of this identifier, and if the identifier
2040 // corresponds to a compiler builtin, create the decl object for the builtin
2041 // now, injecting it into translation unit scope, and return it.
2042 if (AllowBuiltinCreation && LookupBuiltin(R))
2043 return true;
2044
2045 // If we didn't find a use of this identifier, the ExternalSource
2046 // may be able to handle the situation.
2047 // Note: some lookup failures are expected!
2048 // See e.g. R.isForRedeclaration().
2049 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2050 }
2051
2052 /// Perform qualified name lookup in the namespaces nominated by
2053 /// using directives by the given context.
2054 ///
2055 /// C++98 [namespace.qual]p2:
2056 /// Given X::m (where X is a user-declared namespace), or given \::m
2057 /// (where X is the global namespace), let S be the set of all
2058 /// declarations of m in X and in the transitive closure of all
2059 /// namespaces nominated by using-directives in X and its used
2060 /// namespaces, except that using-directives are ignored in any
2061 /// namespace, including X, directly containing one or more
2062 /// declarations of m. No namespace is searched more than once in
2063 /// the lookup of a name. If S is the empty set, the program is
2064 /// ill-formed. Otherwise, if S has exactly one member, or if the
2065 /// context of the reference is a using-declaration
2066 /// (namespace.udecl), S is the required set of declarations of
2067 /// m. Otherwise if the use of m is not one that allows a unique
2068 /// declaration to be chosen from S, the program is ill-formed.
2069 ///
2070 /// C++98 [namespace.qual]p5:
2071 /// During the lookup of a qualified namespace member name, if the
2072 /// lookup finds more than one declaration of the member, and if one
2073 /// declaration introduces a class name or enumeration name and the
2074 /// other declarations either introduce the same object, the same
2075 /// enumerator or a set of functions, the non-type name hides the
2076 /// class or enumeration name if and only if the declarations are
2077 /// from the same namespace; otherwise (the declarations are from
2078 /// different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)2079 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2080 DeclContext *StartDC) {
2081 assert(StartDC->isFileContext() && "start context is not a file context");
2082
2083 // We have not yet looked into these namespaces, much less added
2084 // their "using-children" to the queue.
2085 SmallVector<NamespaceDecl*, 8> Queue;
2086
2087 // We have at least added all these contexts to the queue.
2088 llvm::SmallPtrSet<DeclContext*, 8> Visited;
2089 Visited.insert(StartDC);
2090
2091 // We have already looked into the initial namespace; seed the queue
2092 // with its using-children.
2093 for (auto *I : StartDC->using_directives()) {
2094 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2095 if (S.isVisible(I) && Visited.insert(ND).second)
2096 Queue.push_back(ND);
2097 }
2098
2099 // The easiest way to implement the restriction in [namespace.qual]p5
2100 // is to check whether any of the individual results found a tag
2101 // and, if so, to declare an ambiguity if the final result is not
2102 // a tag.
2103 bool FoundTag = false;
2104 bool FoundNonTag = false;
2105
2106 LookupResult LocalR(LookupResult::Temporary, R);
2107
2108 bool Found = false;
2109 while (!Queue.empty()) {
2110 NamespaceDecl *ND = Queue.pop_back_val();
2111
2112 // We go through some convolutions here to avoid copying results
2113 // between LookupResults.
2114 bool UseLocal = !R.empty();
2115 LookupResult &DirectR = UseLocal ? LocalR : R;
2116 bool FoundDirect = LookupDirect(S, DirectR, ND);
2117
2118 if (FoundDirect) {
2119 // First do any local hiding.
2120 DirectR.resolveKind();
2121
2122 // If the local result is a tag, remember that.
2123 if (DirectR.isSingleTagDecl())
2124 FoundTag = true;
2125 else
2126 FoundNonTag = true;
2127
2128 // Append the local results to the total results if necessary.
2129 if (UseLocal) {
2130 R.addAllDecls(LocalR);
2131 LocalR.clear();
2132 }
2133 }
2134
2135 // If we find names in this namespace, ignore its using directives.
2136 if (FoundDirect) {
2137 Found = true;
2138 continue;
2139 }
2140
2141 for (auto I : ND->using_directives()) {
2142 NamespaceDecl *Nom = I->getNominatedNamespace();
2143 if (S.isVisible(I) && Visited.insert(Nom).second)
2144 Queue.push_back(Nom);
2145 }
2146 }
2147
2148 if (Found) {
2149 if (FoundTag && FoundNonTag)
2150 R.setAmbiguousQualifiedTagHiding();
2151 else
2152 R.resolveKind();
2153 }
2154
2155 return Found;
2156 }
2157
2158 /// Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,DeclarationName Name)2159 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
2160 CXXBasePath &Path, DeclarationName Name) {
2161 RecordDecl *BaseRecord = Specifier->getType()->castAs<RecordType>()->getDecl();
2162
2163 Path.Decls = BaseRecord->lookup(Name);
2164 return !Path.Decls.empty();
2165 }
2166
2167 /// Determine whether the given set of member declarations contains only
2168 /// static members, nested types, and enumerators.
2169 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)2170 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
2171 Decl *D = (*First)->getUnderlyingDecl();
2172 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
2173 return true;
2174
2175 if (isa<CXXMethodDecl>(D)) {
2176 // Determine whether all of the methods are static.
2177 bool AllMethodsAreStatic = true;
2178 for(; First != Last; ++First) {
2179 D = (*First)->getUnderlyingDecl();
2180
2181 if (!isa<CXXMethodDecl>(D)) {
2182 assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
2183 break;
2184 }
2185
2186 if (!cast<CXXMethodDecl>(D)->isStatic()) {
2187 AllMethodsAreStatic = false;
2188 break;
2189 }
2190 }
2191
2192 if (AllMethodsAreStatic)
2193 return true;
2194 }
2195
2196 return false;
2197 }
2198
2199 /// Perform qualified name lookup into a given context.
2200 ///
2201 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2202 /// names when the context of those names is explicit specified, e.g.,
2203 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2204 ///
2205 /// Different lookup criteria can find different names. For example, a
2206 /// particular scope can have both a struct and a function of the same
2207 /// name, and each can be found by certain lookup criteria. For more
2208 /// information about lookup criteria, see the documentation for the
2209 /// class LookupCriteria.
2210 ///
2211 /// \param R captures both the lookup criteria and any lookup results found.
2212 ///
2213 /// \param LookupCtx The context in which qualified name lookup will
2214 /// search. If the lookup criteria permits, name lookup may also search
2215 /// in the parent contexts or (for C++ classes) base classes.
2216 ///
2217 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2218 /// occurs as part of unqualified name lookup.
2219 ///
2220 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)2221 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2222 bool InUnqualifiedLookup) {
2223 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2224
2225 if (!R.getLookupName())
2226 return false;
2227
2228 // Make sure that the declaration context is complete.
2229 assert((!isa<TagDecl>(LookupCtx) ||
2230 LookupCtx->isDependentContext() ||
2231 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2232 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2233 "Declaration context must already be complete!");
2234
2235 struct QualifiedLookupInScope {
2236 bool oldVal;
2237 DeclContext *Context;
2238 // Set flag in DeclContext informing debugger that we're looking for qualified name
2239 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2240 oldVal = ctx->setUseQualifiedLookup();
2241 }
2242 ~QualifiedLookupInScope() {
2243 Context->setUseQualifiedLookup(oldVal);
2244 }
2245 } QL(LookupCtx);
2246
2247 if (LookupDirect(*this, R, LookupCtx)) {
2248 R.resolveKind();
2249 if (isa<CXXRecordDecl>(LookupCtx))
2250 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2251 return true;
2252 }
2253
2254 // Don't descend into implied contexts for redeclarations.
2255 // C++98 [namespace.qual]p6:
2256 // In a declaration for a namespace member in which the
2257 // declarator-id is a qualified-id, given that the qualified-id
2258 // for the namespace member has the form
2259 // nested-name-specifier unqualified-id
2260 // the unqualified-id shall name a member of the namespace
2261 // designated by the nested-name-specifier.
2262 // See also [class.mfct]p5 and [class.static.data]p2.
2263 if (R.isForRedeclaration())
2264 return false;
2265
2266 // If this is a namespace, look it up in the implied namespaces.
2267 if (LookupCtx->isFileContext())
2268 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2269
2270 // If this isn't a C++ class, we aren't allowed to look into base
2271 // classes, we're done.
2272 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2273 if (!LookupRec || !LookupRec->getDefinition())
2274 return false;
2275
2276 // If we're performing qualified name lookup into a dependent class,
2277 // then we are actually looking into a current instantiation. If we have any
2278 // dependent base classes, then we either have to delay lookup until
2279 // template instantiation time (at which point all bases will be available)
2280 // or we have to fail.
2281 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2282 LookupRec->hasAnyDependentBases()) {
2283 R.setNotFoundInCurrentInstantiation();
2284 return false;
2285 }
2286
2287 // Perform lookup into our base classes.
2288 CXXBasePaths Paths;
2289 Paths.setOrigin(LookupRec);
2290
2291 // Look for this member in our base classes
2292 bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2293 DeclarationName Name) = nullptr;
2294 switch (R.getLookupKind()) {
2295 case LookupObjCImplicitSelfParam:
2296 case LookupOrdinaryName:
2297 case LookupMemberName:
2298 case LookupRedeclarationWithLinkage:
2299 case LookupLocalFriendName:
2300 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2301 break;
2302
2303 case LookupTagName:
2304 BaseCallback = &CXXRecordDecl::FindTagMember;
2305 break;
2306
2307 case LookupAnyName:
2308 BaseCallback = &LookupAnyMember;
2309 break;
2310
2311 case LookupOMPReductionName:
2312 BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2313 break;
2314
2315 case LookupOMPMapperName:
2316 BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2317 break;
2318
2319 case LookupUsingDeclName:
2320 // This lookup is for redeclarations only.
2321
2322 case LookupOperatorName:
2323 case LookupNamespaceName:
2324 case LookupObjCProtocolName:
2325 case LookupLabel:
2326 // These lookups will never find a member in a C++ class (or base class).
2327 return false;
2328
2329 case LookupNestedNameSpecifierName:
2330 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2331 break;
2332 }
2333
2334 DeclarationName Name = R.getLookupName();
2335 if (!LookupRec->lookupInBases(
2336 [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2337 return BaseCallback(Specifier, Path, Name);
2338 },
2339 Paths))
2340 return false;
2341
2342 R.setNamingClass(LookupRec);
2343
2344 // C++ [class.member.lookup]p2:
2345 // [...] If the resulting set of declarations are not all from
2346 // sub-objects of the same type, or the set has a nonstatic member
2347 // and includes members from distinct sub-objects, there is an
2348 // ambiguity and the program is ill-formed. Otherwise that set is
2349 // the result of the lookup.
2350 QualType SubobjectType;
2351 int SubobjectNumber = 0;
2352 AccessSpecifier SubobjectAccess = AS_none;
2353
2354 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2355 Path != PathEnd; ++Path) {
2356 const CXXBasePathElement &PathElement = Path->back();
2357
2358 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2359 // across all paths.
2360 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2361
2362 // Determine whether we're looking at a distinct sub-object or not.
2363 if (SubobjectType.isNull()) {
2364 // This is the first subobject we've looked at. Record its type.
2365 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2366 SubobjectNumber = PathElement.SubobjectNumber;
2367 continue;
2368 }
2369
2370 if (SubobjectType
2371 != Context.getCanonicalType(PathElement.Base->getType())) {
2372 // We found members of the given name in two subobjects of
2373 // different types. If the declaration sets aren't the same, this
2374 // lookup is ambiguous.
2375 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2376 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2377 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2378 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2379
2380 // Get the decl that we should use for deduplicating this lookup.
2381 auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2382 // C++ [temp.local]p3:
2383 // A lookup that finds an injected-class-name (10.2) can result in
2384 // an ambiguity in certain cases (for example, if it is found in
2385 // more than one base class). If all of the injected-class-names
2386 // that are found refer to specializations of the same class
2387 // template, and if the name is used as a template-name, the
2388 // reference refers to the class template itself and not a
2389 // specialization thereof, and is not ambiguous.
2390 if (R.isTemplateNameLookup())
2391 if (auto *TD = getAsTemplateNameDecl(D))
2392 D = TD;
2393 return D->getUnderlyingDecl()->getCanonicalDecl();
2394 };
2395
2396 while (FirstD != FirstPath->Decls.end() &&
2397 CurrentD != Path->Decls.end()) {
2398 if (GetRepresentativeDecl(*FirstD) !=
2399 GetRepresentativeDecl(*CurrentD))
2400 break;
2401
2402 ++FirstD;
2403 ++CurrentD;
2404 }
2405
2406 if (FirstD == FirstPath->Decls.end() &&
2407 CurrentD == Path->Decls.end())
2408 continue;
2409 }
2410
2411 R.setAmbiguousBaseSubobjectTypes(Paths);
2412 return true;
2413 }
2414
2415 if (SubobjectNumber != PathElement.SubobjectNumber) {
2416 // We have a different subobject of the same type.
2417
2418 // C++ [class.member.lookup]p5:
2419 // A static member, a nested type or an enumerator defined in
2420 // a base class T can unambiguously be found even if an object
2421 // has more than one base class subobject of type T.
2422 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2423 continue;
2424
2425 // We have found a nonstatic member name in multiple, distinct
2426 // subobjects. Name lookup is ambiguous.
2427 R.setAmbiguousBaseSubobjects(Paths);
2428 return true;
2429 }
2430 }
2431
2432 // Lookup in a base class succeeded; return these results.
2433
2434 for (auto *D : Paths.front().Decls) {
2435 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2436 D->getAccess());
2437 R.addDecl(D, AS);
2438 }
2439 R.resolveKind();
2440 return true;
2441 }
2442
2443 /// Performs qualified name lookup or special type of lookup for
2444 /// "__super::" scope specifier.
2445 ///
2446 /// This routine is a convenience overload meant to be called from contexts
2447 /// that need to perform a qualified name lookup with an optional C++ scope
2448 /// specifier that might require special kind of lookup.
2449 ///
2450 /// \param R captures both the lookup criteria and any lookup results found.
2451 ///
2452 /// \param LookupCtx The context in which qualified name lookup will
2453 /// search.
2454 ///
2455 /// \param SS An optional C++ scope-specifier.
2456 ///
2457 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,CXXScopeSpec & SS)2458 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2459 CXXScopeSpec &SS) {
2460 auto *NNS = SS.getScopeRep();
2461 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2462 return LookupInSuper(R, NNS->getAsRecordDecl());
2463 else
2464
2465 return LookupQualifiedName(R, LookupCtx);
2466 }
2467
2468 /// Performs name lookup for a name that was parsed in the
2469 /// source code, and may contain a C++ scope specifier.
2470 ///
2471 /// This routine is a convenience routine meant to be called from
2472 /// contexts that receive a name and an optional C++ scope specifier
2473 /// (e.g., "N::M::x"). It will then perform either qualified or
2474 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2475 /// respectively) on the given name and return those results. It will
2476 /// perform a special type of lookup for "__super::" scope specifier.
2477 ///
2478 /// @param S The scope from which unqualified name lookup will
2479 /// begin.
2480 ///
2481 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2482 ///
2483 /// @param EnteringContext Indicates whether we are going to enter the
2484 /// context of the scope-specifier SS (if present).
2485 ///
2486 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)2487 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2488 bool AllowBuiltinCreation, bool EnteringContext) {
2489 if (SS && SS->isInvalid()) {
2490 // When the scope specifier is invalid, don't even look for
2491 // anything.
2492 return false;
2493 }
2494
2495 if (SS && SS->isSet()) {
2496 NestedNameSpecifier *NNS = SS->getScopeRep();
2497 if (NNS->getKind() == NestedNameSpecifier::Super)
2498 return LookupInSuper(R, NNS->getAsRecordDecl());
2499
2500 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2501 // We have resolved the scope specifier to a particular declaration
2502 // contex, and will perform name lookup in that context.
2503 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2504 return false;
2505
2506 R.setContextRange(SS->getRange());
2507 return LookupQualifiedName(R, DC);
2508 }
2509
2510 // We could not resolve the scope specified to a specific declaration
2511 // context, which means that SS refers to an unknown specialization.
2512 // Name lookup can't find anything in this case.
2513 R.setNotFoundInCurrentInstantiation();
2514 R.setContextRange(SS->getRange());
2515 return false;
2516 }
2517
2518 // Perform unqualified name lookup starting in the given scope.
2519 return LookupName(R, S, AllowBuiltinCreation);
2520 }
2521
2522 /// Perform qualified name lookup into all base classes of the given
2523 /// class.
2524 ///
2525 /// \param R captures both the lookup criteria and any lookup results found.
2526 ///
2527 /// \param Class The context in which qualified name lookup will
2528 /// search. Name lookup will search in all base classes merging the results.
2529 ///
2530 /// @returns True if any decls were found (but possibly ambiguous)
LookupInSuper(LookupResult & R,CXXRecordDecl * Class)2531 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2532 // The access-control rules we use here are essentially the rules for
2533 // doing a lookup in Class that just magically skipped the direct
2534 // members of Class itself. That is, the naming class is Class, and the
2535 // access includes the access of the base.
2536 for (const auto &BaseSpec : Class->bases()) {
2537 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2538 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2539 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2540 Result.setBaseObjectType(Context.getRecordType(Class));
2541 LookupQualifiedName(Result, RD);
2542
2543 // Copy the lookup results into the target, merging the base's access into
2544 // the path access.
2545 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2546 R.addDecl(I.getDecl(),
2547 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2548 I.getAccess()));
2549 }
2550
2551 Result.suppressDiagnostics();
2552 }
2553
2554 R.resolveKind();
2555 R.setNamingClass(Class);
2556
2557 return !R.empty();
2558 }
2559
2560 /// Produce a diagnostic describing the ambiguity that resulted
2561 /// from name lookup.
2562 ///
2563 /// \param Result The result of the ambiguous lookup to be diagnosed.
DiagnoseAmbiguousLookup(LookupResult & Result)2564 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2565 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2566
2567 DeclarationName Name = Result.getLookupName();
2568 SourceLocation NameLoc = Result.getNameLoc();
2569 SourceRange LookupRange = Result.getContextRange();
2570
2571 switch (Result.getAmbiguityKind()) {
2572 case LookupResult::AmbiguousBaseSubobjects: {
2573 CXXBasePaths *Paths = Result.getBasePaths();
2574 QualType SubobjectType = Paths->front().back().Base->getType();
2575 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2576 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2577 << LookupRange;
2578
2579 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2580 while (isa<CXXMethodDecl>(*Found) &&
2581 cast<CXXMethodDecl>(*Found)->isStatic())
2582 ++Found;
2583
2584 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2585 break;
2586 }
2587
2588 case LookupResult::AmbiguousBaseSubobjectTypes: {
2589 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2590 << Name << LookupRange;
2591
2592 CXXBasePaths *Paths = Result.getBasePaths();
2593 std::set<Decl *> DeclsPrinted;
2594 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2595 PathEnd = Paths->end();
2596 Path != PathEnd; ++Path) {
2597 Decl *D = Path->Decls.front();
2598 if (DeclsPrinted.insert(D).second)
2599 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2600 }
2601 break;
2602 }
2603
2604 case LookupResult::AmbiguousTagHiding: {
2605 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2606
2607 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2608
2609 for (auto *D : Result)
2610 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2611 TagDecls.insert(TD);
2612 Diag(TD->getLocation(), diag::note_hidden_tag);
2613 }
2614
2615 for (auto *D : Result)
2616 if (!isa<TagDecl>(D))
2617 Diag(D->getLocation(), diag::note_hiding_object);
2618
2619 // For recovery purposes, go ahead and implement the hiding.
2620 LookupResult::Filter F = Result.makeFilter();
2621 while (F.hasNext()) {
2622 if (TagDecls.count(F.next()))
2623 F.erase();
2624 }
2625 F.done();
2626 break;
2627 }
2628
2629 case LookupResult::AmbiguousReference: {
2630 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2631
2632 for (auto *D : Result)
2633 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2634 break;
2635 }
2636 }
2637 }
2638
2639 namespace {
2640 struct AssociatedLookup {
AssociatedLookup__anon9ae573980a11::AssociatedLookup2641 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2642 Sema::AssociatedNamespaceSet &Namespaces,
2643 Sema::AssociatedClassSet &Classes)
2644 : S(S), Namespaces(Namespaces), Classes(Classes),
2645 InstantiationLoc(InstantiationLoc) {
2646 }
2647
addClassTransitive__anon9ae573980a11::AssociatedLookup2648 bool addClassTransitive(CXXRecordDecl *RD) {
2649 Classes.insert(RD);
2650 return ClassesTransitive.insert(RD);
2651 }
2652
2653 Sema &S;
2654 Sema::AssociatedNamespaceSet &Namespaces;
2655 Sema::AssociatedClassSet &Classes;
2656 SourceLocation InstantiationLoc;
2657
2658 private:
2659 Sema::AssociatedClassSet ClassesTransitive;
2660 };
2661 } // end anonymous namespace
2662
2663 static void
2664 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2665
2666 // Given the declaration context \param Ctx of a class, class template or
2667 // enumeration, add the associated namespaces to \param Namespaces as described
2668 // in [basic.lookup.argdep]p2.
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)2669 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2670 DeclContext *Ctx) {
2671 // The exact wording has been changed in C++14 as a result of
2672 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2673 // to all language versions since it is possible to return a local type
2674 // from a lambda in C++11.
2675 //
2676 // C++14 [basic.lookup.argdep]p2:
2677 // If T is a class type [...]. Its associated namespaces are the innermost
2678 // enclosing namespaces of its associated classes. [...]
2679 //
2680 // If T is an enumeration type, its associated namespace is the innermost
2681 // enclosing namespace of its declaration. [...]
2682
2683 // We additionally skip inline namespaces. The innermost non-inline namespace
2684 // contains all names of all its nested inline namespaces anyway, so we can
2685 // replace the entire inline namespace tree with its root.
2686 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2687 Ctx = Ctx->getParent();
2688
2689 Namespaces.insert(Ctx->getPrimaryContext());
2690 }
2691
2692 // Add the associated classes and namespaces for argument-dependent
2693 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2694 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)2695 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2696 const TemplateArgument &Arg) {
2697 // C++ [basic.lookup.argdep]p2, last bullet:
2698 // -- [...] ;
2699 switch (Arg.getKind()) {
2700 case TemplateArgument::Null:
2701 break;
2702
2703 case TemplateArgument::Type:
2704 // [...] the namespaces and classes associated with the types of the
2705 // template arguments provided for template type parameters (excluding
2706 // template template parameters)
2707 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2708 break;
2709
2710 case TemplateArgument::Template:
2711 case TemplateArgument::TemplateExpansion: {
2712 // [...] the namespaces in which any template template arguments are
2713 // defined; and the classes in which any member templates used as
2714 // template template arguments are defined.
2715 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2716 if (ClassTemplateDecl *ClassTemplate
2717 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2718 DeclContext *Ctx = ClassTemplate->getDeclContext();
2719 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2720 Result.Classes.insert(EnclosingClass);
2721 // Add the associated namespace for this class.
2722 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2723 }
2724 break;
2725 }
2726
2727 case TemplateArgument::Declaration:
2728 case TemplateArgument::Integral:
2729 case TemplateArgument::Expression:
2730 case TemplateArgument::NullPtr:
2731 // [Note: non-type template arguments do not contribute to the set of
2732 // associated namespaces. ]
2733 break;
2734
2735 case TemplateArgument::Pack:
2736 for (const auto &P : Arg.pack_elements())
2737 addAssociatedClassesAndNamespaces(Result, P);
2738 break;
2739 }
2740 }
2741
2742 // Add the associated classes and namespaces for argument-dependent lookup
2743 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2744 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)2745 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2746 CXXRecordDecl *Class) {
2747
2748 // Just silently ignore anything whose name is __va_list_tag.
2749 if (Class->getDeclName() == Result.S.VAListTagName)
2750 return;
2751
2752 // C++ [basic.lookup.argdep]p2:
2753 // [...]
2754 // -- If T is a class type (including unions), its associated
2755 // classes are: the class itself; the class of which it is a
2756 // member, if any; and its direct and indirect base classes.
2757 // Its associated namespaces are the innermost enclosing
2758 // namespaces of its associated classes.
2759
2760 // Add the class of which it is a member, if any.
2761 DeclContext *Ctx = Class->getDeclContext();
2762 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2763 Result.Classes.insert(EnclosingClass);
2764
2765 // Add the associated namespace for this class.
2766 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2767
2768 // -- If T is a template-id, its associated namespaces and classes are
2769 // the namespace in which the template is defined; for member
2770 // templates, the member template's class; the namespaces and classes
2771 // associated with the types of the template arguments provided for
2772 // template type parameters (excluding template template parameters); the
2773 // namespaces in which any template template arguments are defined; and
2774 // the classes in which any member templates used as template template
2775 // arguments are defined. [Note: non-type template arguments do not
2776 // contribute to the set of associated namespaces. ]
2777 if (ClassTemplateSpecializationDecl *Spec
2778 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2779 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2780 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2781 Result.Classes.insert(EnclosingClass);
2782 // Add the associated namespace for this class.
2783 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2784
2785 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2786 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2787 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2788 }
2789
2790 // Add the class itself. If we've already transitively visited this class,
2791 // we don't need to visit base classes.
2792 if (!Result.addClassTransitive(Class))
2793 return;
2794
2795 // Only recurse into base classes for complete types.
2796 if (!Result.S.isCompleteType(Result.InstantiationLoc,
2797 Result.S.Context.getRecordType(Class)))
2798 return;
2799
2800 // Add direct and indirect base classes along with their associated
2801 // namespaces.
2802 SmallVector<CXXRecordDecl *, 32> Bases;
2803 Bases.push_back(Class);
2804 while (!Bases.empty()) {
2805 // Pop this class off the stack.
2806 Class = Bases.pop_back_val();
2807
2808 // Visit the base classes.
2809 for (const auto &Base : Class->bases()) {
2810 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2811 // In dependent contexts, we do ADL twice, and the first time around,
2812 // the base type might be a dependent TemplateSpecializationType, or a
2813 // TemplateTypeParmType. If that happens, simply ignore it.
2814 // FIXME: If we want to support export, we probably need to add the
2815 // namespace of the template in a TemplateSpecializationType, or even
2816 // the classes and namespaces of known non-dependent arguments.
2817 if (!BaseType)
2818 continue;
2819 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2820 if (Result.addClassTransitive(BaseDecl)) {
2821 // Find the associated namespace for this base class.
2822 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2823 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2824
2825 // Make sure we visit the bases of this base class.
2826 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2827 Bases.push_back(BaseDecl);
2828 }
2829 }
2830 }
2831 }
2832
2833 // Add the associated classes and namespaces for
2834 // argument-dependent lookup with an argument of type T
2835 // (C++ [basic.lookup.koenig]p2).
2836 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)2837 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2838 // C++ [basic.lookup.koenig]p2:
2839 //
2840 // For each argument type T in the function call, there is a set
2841 // of zero or more associated namespaces and a set of zero or more
2842 // associated classes to be considered. The sets of namespaces and
2843 // classes is determined entirely by the types of the function
2844 // arguments (and the namespace of any template template
2845 // argument). Typedef names and using-declarations used to specify
2846 // the types do not contribute to this set. The sets of namespaces
2847 // and classes are determined in the following way:
2848
2849 SmallVector<const Type *, 16> Queue;
2850 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2851
2852 while (true) {
2853 switch (T->getTypeClass()) {
2854
2855 #define TYPE(Class, Base)
2856 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2857 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2858 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2859 #define ABSTRACT_TYPE(Class, Base)
2860 #include "clang/AST/TypeNodes.inc"
2861 // T is canonical. We can also ignore dependent types because
2862 // we don't need to do ADL at the definition point, but if we
2863 // wanted to implement template export (or if we find some other
2864 // use for associated classes and namespaces...) this would be
2865 // wrong.
2866 break;
2867
2868 // -- If T is a pointer to U or an array of U, its associated
2869 // namespaces and classes are those associated with U.
2870 case Type::Pointer:
2871 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2872 continue;
2873 case Type::ConstantArray:
2874 case Type::IncompleteArray:
2875 case Type::VariableArray:
2876 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2877 continue;
2878
2879 // -- If T is a fundamental type, its associated sets of
2880 // namespaces and classes are both empty.
2881 case Type::Builtin:
2882 break;
2883
2884 // -- If T is a class type (including unions), its associated
2885 // classes are: the class itself; the class of which it is
2886 // a member, if any; and its direct and indirect base classes.
2887 // Its associated namespaces are the innermost enclosing
2888 // namespaces of its associated classes.
2889 case Type::Record: {
2890 CXXRecordDecl *Class =
2891 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2892 addAssociatedClassesAndNamespaces(Result, Class);
2893 break;
2894 }
2895
2896 // -- If T is an enumeration type, its associated namespace
2897 // is the innermost enclosing namespace of its declaration.
2898 // If it is a class member, its associated class is the
2899 // member’s class; else it has no associated class.
2900 case Type::Enum: {
2901 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2902
2903 DeclContext *Ctx = Enum->getDeclContext();
2904 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2905 Result.Classes.insert(EnclosingClass);
2906
2907 // Add the associated namespace for this enumeration.
2908 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2909
2910 break;
2911 }
2912
2913 // -- If T is a function type, its associated namespaces and
2914 // classes are those associated with the function parameter
2915 // types and those associated with the return type.
2916 case Type::FunctionProto: {
2917 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2918 for (const auto &Arg : Proto->param_types())
2919 Queue.push_back(Arg.getTypePtr());
2920 // fallthrough
2921 LLVM_FALLTHROUGH;
2922 }
2923 case Type::FunctionNoProto: {
2924 const FunctionType *FnType = cast<FunctionType>(T);
2925 T = FnType->getReturnType().getTypePtr();
2926 continue;
2927 }
2928
2929 // -- If T is a pointer to a member function of a class X, its
2930 // associated namespaces and classes are those associated
2931 // with the function parameter types and return type,
2932 // together with those associated with X.
2933 //
2934 // -- If T is a pointer to a data member of class X, its
2935 // associated namespaces and classes are those associated
2936 // with the member type together with those associated with
2937 // X.
2938 case Type::MemberPointer: {
2939 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2940
2941 // Queue up the class type into which this points.
2942 Queue.push_back(MemberPtr->getClass());
2943
2944 // And directly continue with the pointee type.
2945 T = MemberPtr->getPointeeType().getTypePtr();
2946 continue;
2947 }
2948
2949 // As an extension, treat this like a normal pointer.
2950 case Type::BlockPointer:
2951 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2952 continue;
2953
2954 // References aren't covered by the standard, but that's such an
2955 // obvious defect that we cover them anyway.
2956 case Type::LValueReference:
2957 case Type::RValueReference:
2958 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2959 continue;
2960
2961 // These are fundamental types.
2962 case Type::Vector:
2963 case Type::ExtVector:
2964 case Type::Complex:
2965 break;
2966
2967 // Non-deduced auto types only get here for error cases.
2968 case Type::Auto:
2969 case Type::DeducedTemplateSpecialization:
2970 break;
2971
2972 // If T is an Objective-C object or interface type, or a pointer to an
2973 // object or interface type, the associated namespace is the global
2974 // namespace.
2975 case Type::ObjCObject:
2976 case Type::ObjCInterface:
2977 case Type::ObjCObjectPointer:
2978 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2979 break;
2980
2981 // Atomic types are just wrappers; use the associations of the
2982 // contained type.
2983 case Type::Atomic:
2984 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2985 continue;
2986 case Type::Pipe:
2987 T = cast<PipeType>(T)->getElementType().getTypePtr();
2988 continue;
2989 }
2990
2991 if (Queue.empty())
2992 break;
2993 T = Queue.pop_back_val();
2994 }
2995 }
2996
2997 /// Find the associated classes and namespaces for
2998 /// argument-dependent lookup for a call with the given set of
2999 /// arguments.
3000 ///
3001 /// This routine computes the sets of associated classes and associated
3002 /// namespaces searched by argument-dependent lookup
3003 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)3004 void Sema::FindAssociatedClassesAndNamespaces(
3005 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3006 AssociatedNamespaceSet &AssociatedNamespaces,
3007 AssociatedClassSet &AssociatedClasses) {
3008 AssociatedNamespaces.clear();
3009 AssociatedClasses.clear();
3010
3011 AssociatedLookup Result(*this, InstantiationLoc,
3012 AssociatedNamespaces, AssociatedClasses);
3013
3014 // C++ [basic.lookup.koenig]p2:
3015 // For each argument type T in the function call, there is a set
3016 // of zero or more associated namespaces and a set of zero or more
3017 // associated classes to be considered. The sets of namespaces and
3018 // classes is determined entirely by the types of the function
3019 // arguments (and the namespace of any template template
3020 // argument).
3021 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3022 Expr *Arg = Args[ArgIdx];
3023
3024 if (Arg->getType() != Context.OverloadTy) {
3025 addAssociatedClassesAndNamespaces(Result, Arg->getType());
3026 continue;
3027 }
3028
3029 // [...] In addition, if the argument is the name or address of a
3030 // set of overloaded functions and/or function templates, its
3031 // associated classes and namespaces are the union of those
3032 // associated with each of the members of the set: the namespace
3033 // in which the function or function template is defined and the
3034 // classes and namespaces associated with its (non-dependent)
3035 // parameter types and return type.
3036 OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3037
3038 for (const NamedDecl *D : OE->decls()) {
3039 // Look through any using declarations to find the underlying function.
3040 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3041
3042 // Add the classes and namespaces associated with the parameter
3043 // types and return type of this function.
3044 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3045 }
3046 }
3047 }
3048
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)3049 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3050 SourceLocation Loc,
3051 LookupNameKind NameKind,
3052 RedeclarationKind Redecl) {
3053 LookupResult R(*this, Name, Loc, NameKind, Redecl);
3054 LookupName(R, S);
3055 return R.getAsSingle<NamedDecl>();
3056 }
3057
3058 /// Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)3059 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3060 SourceLocation IdLoc,
3061 RedeclarationKind Redecl) {
3062 Decl *D = LookupSingleName(TUScope, II, IdLoc,
3063 LookupObjCProtocolName, Redecl);
3064 return cast_or_null<ObjCProtocolDecl>(D);
3065 }
3066
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)3067 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3068 QualType T1, QualType T2,
3069 UnresolvedSetImpl &Functions) {
3070 // C++ [over.match.oper]p3:
3071 // -- The set of non-member candidates is the result of the
3072 // unqualified lookup of operator@ in the context of the
3073 // expression according to the usual rules for name lookup in
3074 // unqualified function calls (3.4.2) except that all member
3075 // functions are ignored.
3076 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3077 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3078 LookupName(Operators, S);
3079
3080 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3081 Functions.append(Operators.begin(), Operators.end());
3082 }
3083
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)3084 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3085 CXXSpecialMember SM,
3086 bool ConstArg,
3087 bool VolatileArg,
3088 bool RValueThis,
3089 bool ConstThis,
3090 bool VolatileThis) {
3091 assert(CanDeclareSpecialMemberFunction(RD) &&
3092 "doing special member lookup into record that isn't fully complete");
3093 RD = RD->getDefinition();
3094 if (RValueThis || ConstThis || VolatileThis)
3095 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3096 "constructors and destructors always have unqualified lvalue this");
3097 if (ConstArg || VolatileArg)
3098 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3099 "parameter-less special members can't have qualified arguments");
3100
3101 // FIXME: Get the caller to pass in a location for the lookup.
3102 SourceLocation LookupLoc = RD->getLocation();
3103
3104 llvm::FoldingSetNodeID ID;
3105 ID.AddPointer(RD);
3106 ID.AddInteger(SM);
3107 ID.AddInteger(ConstArg);
3108 ID.AddInteger(VolatileArg);
3109 ID.AddInteger(RValueThis);
3110 ID.AddInteger(ConstThis);
3111 ID.AddInteger(VolatileThis);
3112
3113 void *InsertPoint;
3114 SpecialMemberOverloadResultEntry *Result =
3115 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3116
3117 // This was already cached
3118 if (Result)
3119 return *Result;
3120
3121 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3122 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3123 SpecialMemberCache.InsertNode(Result, InsertPoint);
3124
3125 if (SM == CXXDestructor) {
3126 if (RD->needsImplicitDestructor()) {
3127 runWithSufficientStackSpace(RD->getLocation(), [&] {
3128 DeclareImplicitDestructor(RD);
3129 });
3130 }
3131 CXXDestructorDecl *DD = RD->getDestructor();
3132 Result->setMethod(DD);
3133 Result->setKind(DD && !DD->isDeleted()
3134 ? SpecialMemberOverloadResult::Success
3135 : SpecialMemberOverloadResult::NoMemberOrDeleted);
3136 return *Result;
3137 }
3138
3139 // Prepare for overload resolution. Here we construct a synthetic argument
3140 // if necessary and make sure that implicit functions are declared.
3141 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3142 DeclarationName Name;
3143 Expr *Arg = nullptr;
3144 unsigned NumArgs;
3145
3146 QualType ArgType = CanTy;
3147 ExprValueKind VK = VK_LValue;
3148
3149 if (SM == CXXDefaultConstructor) {
3150 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3151 NumArgs = 0;
3152 if (RD->needsImplicitDefaultConstructor()) {
3153 runWithSufficientStackSpace(RD->getLocation(), [&] {
3154 DeclareImplicitDefaultConstructor(RD);
3155 });
3156 }
3157 } else {
3158 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3159 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3160 if (RD->needsImplicitCopyConstructor()) {
3161 runWithSufficientStackSpace(RD->getLocation(), [&] {
3162 DeclareImplicitCopyConstructor(RD);
3163 });
3164 }
3165 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3166 runWithSufficientStackSpace(RD->getLocation(), [&] {
3167 DeclareImplicitMoveConstructor(RD);
3168 });
3169 }
3170 } else {
3171 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3172 if (RD->needsImplicitCopyAssignment()) {
3173 runWithSufficientStackSpace(RD->getLocation(), [&] {
3174 DeclareImplicitCopyAssignment(RD);
3175 });
3176 }
3177 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3178 runWithSufficientStackSpace(RD->getLocation(), [&] {
3179 DeclareImplicitMoveAssignment(RD);
3180 });
3181 }
3182 }
3183
3184 if (ConstArg)
3185 ArgType.addConst();
3186 if (VolatileArg)
3187 ArgType.addVolatile();
3188
3189 // This isn't /really/ specified by the standard, but it's implied
3190 // we should be working from an RValue in the case of move to ensure
3191 // that we prefer to bind to rvalue references, and an LValue in the
3192 // case of copy to ensure we don't bind to rvalue references.
3193 // Possibly an XValue is actually correct in the case of move, but
3194 // there is no semantic difference for class types in this restricted
3195 // case.
3196 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3197 VK = VK_LValue;
3198 else
3199 VK = VK_RValue;
3200 }
3201
3202 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3203
3204 if (SM != CXXDefaultConstructor) {
3205 NumArgs = 1;
3206 Arg = &FakeArg;
3207 }
3208
3209 // Create the object argument
3210 QualType ThisTy = CanTy;
3211 if (ConstThis)
3212 ThisTy.addConst();
3213 if (VolatileThis)
3214 ThisTy.addVolatile();
3215 Expr::Classification Classification =
3216 OpaqueValueExpr(LookupLoc, ThisTy,
3217 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3218
3219 // Now we perform lookup on the name we computed earlier and do overload
3220 // resolution. Lookup is only performed directly into the class since there
3221 // will always be a (possibly implicit) declaration to shadow any others.
3222 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3223 DeclContext::lookup_result R = RD->lookup(Name);
3224
3225 if (R.empty()) {
3226 // We might have no default constructor because we have a lambda's closure
3227 // type, rather than because there's some other declared constructor.
3228 // Every class has a copy/move constructor, copy/move assignment, and
3229 // destructor.
3230 assert(SM == CXXDefaultConstructor &&
3231 "lookup for a constructor or assignment operator was empty");
3232 Result->setMethod(nullptr);
3233 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3234 return *Result;
3235 }
3236
3237 // Copy the candidates as our processing of them may load new declarations
3238 // from an external source and invalidate lookup_result.
3239 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3240
3241 for (NamedDecl *CandDecl : Candidates) {
3242 if (CandDecl->isInvalidDecl())
3243 continue;
3244
3245 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3246 auto CtorInfo = getConstructorInfo(Cand);
3247 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3248 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3249 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3250 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3251 else if (CtorInfo)
3252 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3253 llvm::makeArrayRef(&Arg, NumArgs), OCS,
3254 /*SuppressUserConversions*/ true);
3255 else
3256 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3257 /*SuppressUserConversions*/ true);
3258 } else if (FunctionTemplateDecl *Tmpl =
3259 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3260 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3261 AddMethodTemplateCandidate(
3262 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3263 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3264 else if (CtorInfo)
3265 AddTemplateOverloadCandidate(
3266 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3267 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3268 else
3269 AddTemplateOverloadCandidate(
3270 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3271 } else {
3272 assert(isa<UsingDecl>(Cand.getDecl()) &&
3273 "illegal Kind of operator = Decl");
3274 }
3275 }
3276
3277 OverloadCandidateSet::iterator Best;
3278 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3279 case OR_Success:
3280 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3281 Result->setKind(SpecialMemberOverloadResult::Success);
3282 break;
3283
3284 case OR_Deleted:
3285 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3286 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3287 break;
3288
3289 case OR_Ambiguous:
3290 Result->setMethod(nullptr);
3291 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3292 break;
3293
3294 case OR_No_Viable_Function:
3295 Result->setMethod(nullptr);
3296 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3297 break;
3298 }
3299
3300 return *Result;
3301 }
3302
3303 /// Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)3304 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3305 SpecialMemberOverloadResult Result =
3306 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3307 false, false);
3308
3309 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3310 }
3311
3312 /// Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals)3313 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3314 unsigned Quals) {
3315 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3316 "non-const, non-volatile qualifiers for copy ctor arg");
3317 SpecialMemberOverloadResult Result =
3318 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3319 Quals & Qualifiers::Volatile, false, false, false);
3320
3321 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3322 }
3323
3324 /// Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class,unsigned Quals)3325 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3326 unsigned Quals) {
3327 SpecialMemberOverloadResult Result =
3328 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3329 Quals & Qualifiers::Volatile, false, false, false);
3330
3331 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3332 }
3333
3334 /// Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)3335 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3336 // If the implicit constructors have not yet been declared, do so now.
3337 if (CanDeclareSpecialMemberFunction(Class)) {
3338 runWithSufficientStackSpace(Class->getLocation(), [&] {
3339 if (Class->needsImplicitDefaultConstructor())
3340 DeclareImplicitDefaultConstructor(Class);
3341 if (Class->needsImplicitCopyConstructor())
3342 DeclareImplicitCopyConstructor(Class);
3343 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3344 DeclareImplicitMoveConstructor(Class);
3345 });
3346 }
3347
3348 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3349 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3350 return Class->lookup(Name);
3351 }
3352
3353 /// Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)3354 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3355 unsigned Quals, bool RValueThis,
3356 unsigned ThisQuals) {
3357 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3358 "non-const, non-volatile qualifiers for copy assignment arg");
3359 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3360 "non-const, non-volatile qualifiers for copy assignment this");
3361 SpecialMemberOverloadResult Result =
3362 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3363 Quals & Qualifiers::Volatile, RValueThis,
3364 ThisQuals & Qualifiers::Const,
3365 ThisQuals & Qualifiers::Volatile);
3366
3367 return Result.getMethod();
3368 }
3369
3370 /// Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)3371 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3372 unsigned Quals,
3373 bool RValueThis,
3374 unsigned ThisQuals) {
3375 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3376 "non-const, non-volatile qualifiers for copy assignment this");
3377 SpecialMemberOverloadResult Result =
3378 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3379 Quals & Qualifiers::Volatile, RValueThis,
3380 ThisQuals & Qualifiers::Const,
3381 ThisQuals & Qualifiers::Volatile);
3382
3383 return Result.getMethod();
3384 }
3385
3386 /// Look for the destructor of the given class.
3387 ///
3388 /// During semantic analysis, this routine should be used in lieu of
3389 /// CXXRecordDecl::getDestructor().
3390 ///
3391 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)3392 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3393 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3394 false, false, false,
3395 false, false).getMethod());
3396 }
3397
3398 /// LookupLiteralOperator - Determine which literal operator should be used for
3399 /// a user-defined literal, per C++11 [lex.ext].
3400 ///
3401 /// Normal overload resolution is not used to select which literal operator to
3402 /// call for a user-defined literal. Look up the provided literal operator name,
3403 /// and filter the results to the appropriate set for the given argument types.
3404 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRaw,bool AllowTemplate,bool AllowStringTemplate,bool DiagnoseMissing)3405 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3406 ArrayRef<QualType> ArgTys,
3407 bool AllowRaw, bool AllowTemplate,
3408 bool AllowStringTemplate, bool DiagnoseMissing) {
3409 LookupName(R, S);
3410 assert(R.getResultKind() != LookupResult::Ambiguous &&
3411 "literal operator lookup can't be ambiguous");
3412
3413 // Filter the lookup results appropriately.
3414 LookupResult::Filter F = R.makeFilter();
3415
3416 bool FoundRaw = false;
3417 bool FoundTemplate = false;
3418 bool FoundStringTemplate = false;
3419 bool FoundExactMatch = false;
3420
3421 while (F.hasNext()) {
3422 Decl *D = F.next();
3423 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3424 D = USD->getTargetDecl();
3425
3426 // If the declaration we found is invalid, skip it.
3427 if (D->isInvalidDecl()) {
3428 F.erase();
3429 continue;
3430 }
3431
3432 bool IsRaw = false;
3433 bool IsTemplate = false;
3434 bool IsStringTemplate = false;
3435 bool IsExactMatch = false;
3436
3437 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3438 if (FD->getNumParams() == 1 &&
3439 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3440 IsRaw = true;
3441 else if (FD->getNumParams() == ArgTys.size()) {
3442 IsExactMatch = true;
3443 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3444 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3445 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3446 IsExactMatch = false;
3447 break;
3448 }
3449 }
3450 }
3451 }
3452 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3453 TemplateParameterList *Params = FD->getTemplateParameters();
3454 if (Params->size() == 1)
3455 IsTemplate = true;
3456 else
3457 IsStringTemplate = true;
3458 }
3459
3460 if (IsExactMatch) {
3461 FoundExactMatch = true;
3462 AllowRaw = false;
3463 AllowTemplate = false;
3464 AllowStringTemplate = false;
3465 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3466 // Go through again and remove the raw and template decls we've
3467 // already found.
3468 F.restart();
3469 FoundRaw = FoundTemplate = FoundStringTemplate = false;
3470 }
3471 } else if (AllowRaw && IsRaw) {
3472 FoundRaw = true;
3473 } else if (AllowTemplate && IsTemplate) {
3474 FoundTemplate = true;
3475 } else if (AllowStringTemplate && IsStringTemplate) {
3476 FoundStringTemplate = true;
3477 } else {
3478 F.erase();
3479 }
3480 }
3481
3482 F.done();
3483
3484 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3485 // parameter type, that is used in preference to a raw literal operator
3486 // or literal operator template.
3487 if (FoundExactMatch)
3488 return LOLR_Cooked;
3489
3490 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3491 // operator template, but not both.
3492 if (FoundRaw && FoundTemplate) {
3493 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3494 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3495 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3496 return LOLR_Error;
3497 }
3498
3499 if (FoundRaw)
3500 return LOLR_Raw;
3501
3502 if (FoundTemplate)
3503 return LOLR_Template;
3504
3505 if (FoundStringTemplate)
3506 return LOLR_StringTemplate;
3507
3508 // Didn't find anything we could use.
3509 if (DiagnoseMissing) {
3510 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3511 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3512 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3513 << (AllowTemplate || AllowStringTemplate);
3514 return LOLR_Error;
3515 }
3516
3517 return LOLR_ErrorNoDiagnostic;
3518 }
3519
insert(NamedDecl * New)3520 void ADLResult::insert(NamedDecl *New) {
3521 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3522
3523 // If we haven't yet seen a decl for this key, or the last decl
3524 // was exactly this one, we're done.
3525 if (Old == nullptr || Old == New) {
3526 Old = New;
3527 return;
3528 }
3529
3530 // Otherwise, decide which is a more recent redeclaration.
3531 FunctionDecl *OldFD = Old->getAsFunction();
3532 FunctionDecl *NewFD = New->getAsFunction();
3533
3534 FunctionDecl *Cursor = NewFD;
3535 while (true) {
3536 Cursor = Cursor->getPreviousDecl();
3537
3538 // If we got to the end without finding OldFD, OldFD is the newer
3539 // declaration; leave things as they are.
3540 if (!Cursor) return;
3541
3542 // If we do find OldFD, then NewFD is newer.
3543 if (Cursor == OldFD) break;
3544
3545 // Otherwise, keep looking.
3546 }
3547
3548 Old = New;
3549 }
3550
ArgumentDependentLookup(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,ADLResult & Result)3551 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3552 ArrayRef<Expr *> Args, ADLResult &Result) {
3553 // Find all of the associated namespaces and classes based on the
3554 // arguments we have.
3555 AssociatedNamespaceSet AssociatedNamespaces;
3556 AssociatedClassSet AssociatedClasses;
3557 FindAssociatedClassesAndNamespaces(Loc, Args,
3558 AssociatedNamespaces,
3559 AssociatedClasses);
3560
3561 // C++ [basic.lookup.argdep]p3:
3562 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3563 // and let Y be the lookup set produced by argument dependent
3564 // lookup (defined as follows). If X contains [...] then Y is
3565 // empty. Otherwise Y is the set of declarations found in the
3566 // namespaces associated with the argument types as described
3567 // below. The set of declarations found by the lookup of the name
3568 // is the union of X and Y.
3569 //
3570 // Here, we compute Y and add its members to the overloaded
3571 // candidate set.
3572 for (auto *NS : AssociatedNamespaces) {
3573 // When considering an associated namespace, the lookup is the
3574 // same as the lookup performed when the associated namespace is
3575 // used as a qualifier (3.4.3.2) except that:
3576 //
3577 // -- Any using-directives in the associated namespace are
3578 // ignored.
3579 //
3580 // -- Any namespace-scope friend functions declared in
3581 // associated classes are visible within their respective
3582 // namespaces even if they are not visible during an ordinary
3583 // lookup (11.4).
3584 DeclContext::lookup_result R = NS->lookup(Name);
3585 for (auto *D : R) {
3586 auto *Underlying = D;
3587 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3588 Underlying = USD->getTargetDecl();
3589
3590 if (!isa<FunctionDecl>(Underlying) &&
3591 !isa<FunctionTemplateDecl>(Underlying))
3592 continue;
3593
3594 // The declaration is visible to argument-dependent lookup if either
3595 // it's ordinarily visible or declared as a friend in an associated
3596 // class.
3597 bool Visible = false;
3598 for (D = D->getMostRecentDecl(); D;
3599 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3600 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3601 if (isVisible(D)) {
3602 Visible = true;
3603 break;
3604 }
3605 } else if (D->getFriendObjectKind()) {
3606 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3607 if (AssociatedClasses.count(RD) && isVisible(D)) {
3608 Visible = true;
3609 break;
3610 }
3611 }
3612 }
3613
3614 // FIXME: Preserve D as the FoundDecl.
3615 if (Visible)
3616 Result.insert(Underlying);
3617 }
3618 }
3619 }
3620
3621 //----------------------------------------------------------------------------
3622 // Search for all visible declarations.
3623 //----------------------------------------------------------------------------
~VisibleDeclConsumer()3624 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3625
includeHiddenDecls() const3626 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3627
3628 namespace {
3629
3630 class ShadowContextRAII;
3631
3632 class VisibleDeclsRecord {
3633 public:
3634 /// An entry in the shadow map, which is optimized to store a
3635 /// single declaration (the common case) but can also store a list
3636 /// of declarations.
3637 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3638
3639 private:
3640 /// A mapping from declaration names to the declarations that have
3641 /// this name within a particular scope.
3642 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3643
3644 /// A list of shadow maps, which is used to model name hiding.
3645 std::list<ShadowMap> ShadowMaps;
3646
3647 /// The declaration contexts we have already visited.
3648 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3649
3650 friend class ShadowContextRAII;
3651
3652 public:
3653 /// Determine whether we have already visited this context
3654 /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)3655 bool visitedContext(DeclContext *Ctx) {
3656 return !VisitedContexts.insert(Ctx).second;
3657 }
3658
alreadyVisitedContext(DeclContext * Ctx)3659 bool alreadyVisitedContext(DeclContext *Ctx) {
3660 return VisitedContexts.count(Ctx);
3661 }
3662
3663 /// Determine whether the given declaration is hidden in the
3664 /// current scope.
3665 ///
3666 /// \returns the declaration that hides the given declaration, or
3667 /// NULL if no such declaration exists.
3668 NamedDecl *checkHidden(NamedDecl *ND);
3669
3670 /// Add a declaration to the current shadow map.
add(NamedDecl * ND)3671 void add(NamedDecl *ND) {
3672 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3673 }
3674 };
3675
3676 /// RAII object that records when we've entered a shadow context.
3677 class ShadowContextRAII {
3678 VisibleDeclsRecord &Visible;
3679
3680 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3681
3682 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)3683 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3684 Visible.ShadowMaps.emplace_back();
3685 }
3686
~ShadowContextRAII()3687 ~ShadowContextRAII() {
3688 Visible.ShadowMaps.pop_back();
3689 }
3690 };
3691
3692 } // end anonymous namespace
3693
checkHidden(NamedDecl * ND)3694 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3695 unsigned IDNS = ND->getIdentifierNamespace();
3696 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3697 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3698 SM != SMEnd; ++SM) {
3699 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3700 if (Pos == SM->end())
3701 continue;
3702
3703 for (auto *D : Pos->second) {
3704 // A tag declaration does not hide a non-tag declaration.
3705 if (D->hasTagIdentifierNamespace() &&
3706 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3707 Decl::IDNS_ObjCProtocol)))
3708 continue;
3709
3710 // Protocols are in distinct namespaces from everything else.
3711 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3712 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3713 D->getIdentifierNamespace() != IDNS)
3714 continue;
3715
3716 // Functions and function templates in the same scope overload
3717 // rather than hide. FIXME: Look for hiding based on function
3718 // signatures!
3719 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3720 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3721 SM == ShadowMaps.rbegin())
3722 continue;
3723
3724 // A shadow declaration that's created by a resolved using declaration
3725 // is not hidden by the same using declaration.
3726 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3727 cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3728 continue;
3729
3730 // We've found a declaration that hides this one.
3731 return D;
3732 }
3733 }
3734
3735 return nullptr;
3736 }
3737
3738 namespace {
3739 class LookupVisibleHelper {
3740 public:
LookupVisibleHelper(VisibleDeclConsumer & Consumer,bool IncludeDependentBases,bool LoadExternal)3741 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3742 bool LoadExternal)
3743 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3744 LoadExternal(LoadExternal) {}
3745
lookupVisibleDecls(Sema & SemaRef,Scope * S,Sema::LookupNameKind Kind,bool IncludeGlobalScope)3746 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3747 bool IncludeGlobalScope) {
3748 // Determine the set of using directives available during
3749 // unqualified name lookup.
3750 Scope *Initial = S;
3751 UnqualUsingDirectiveSet UDirs(SemaRef);
3752 if (SemaRef.getLangOpts().CPlusPlus) {
3753 // Find the first namespace or translation-unit scope.
3754 while (S && !isNamespaceOrTranslationUnitScope(S))
3755 S = S->getParent();
3756
3757 UDirs.visitScopeChain(Initial, S);
3758 }
3759 UDirs.done();
3760
3761 // Look for visible declarations.
3762 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3763 Result.setAllowHidden(Consumer.includeHiddenDecls());
3764 if (!IncludeGlobalScope)
3765 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3766 ShadowContextRAII Shadow(Visited);
3767 lookupInScope(Initial, Result, UDirs);
3768 }
3769
lookupVisibleDecls(Sema & SemaRef,DeclContext * Ctx,Sema::LookupNameKind Kind,bool IncludeGlobalScope)3770 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3771 Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3772 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3773 Result.setAllowHidden(Consumer.includeHiddenDecls());
3774 if (!IncludeGlobalScope)
3775 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3776
3777 ShadowContextRAII Shadow(Visited);
3778 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3779 /*InBaseClass=*/false);
3780 }
3781
3782 private:
lookupInDeclContext(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass)3783 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3784 bool QualifiedNameLookup, bool InBaseClass) {
3785 if (!Ctx)
3786 return;
3787
3788 // Make sure we don't visit the same context twice.
3789 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3790 return;
3791
3792 Consumer.EnteredContext(Ctx);
3793
3794 // Outside C++, lookup results for the TU live on identifiers.
3795 if (isa<TranslationUnitDecl>(Ctx) &&
3796 !Result.getSema().getLangOpts().CPlusPlus) {
3797 auto &S = Result.getSema();
3798 auto &Idents = S.Context.Idents;
3799
3800 // Ensure all external identifiers are in the identifier table.
3801 if (LoadExternal)
3802 if (IdentifierInfoLookup *External =
3803 Idents.getExternalIdentifierLookup()) {
3804 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3805 for (StringRef Name = Iter->Next(); !Name.empty();
3806 Name = Iter->Next())
3807 Idents.get(Name);
3808 }
3809
3810 // Walk all lookup results in the TU for each identifier.
3811 for (const auto &Ident : Idents) {
3812 for (auto I = S.IdResolver.begin(Ident.getValue()),
3813 E = S.IdResolver.end();
3814 I != E; ++I) {
3815 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3816 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3817 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3818 Visited.add(ND);
3819 }
3820 }
3821 }
3822 }
3823
3824 return;
3825 }
3826
3827 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3828 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3829
3830 // We sometimes skip loading namespace-level results (they tend to be huge).
3831 bool Load = LoadExternal ||
3832 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3833 // Enumerate all of the results in this context.
3834 for (DeclContextLookupResult R :
3835 Load ? Ctx->lookups()
3836 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3837 for (auto *D : R) {
3838 if (auto *ND = Result.getAcceptableDecl(D)) {
3839 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3840 Visited.add(ND);
3841 }
3842 }
3843 }
3844
3845 // Traverse using directives for qualified name lookup.
3846 if (QualifiedNameLookup) {
3847 ShadowContextRAII Shadow(Visited);
3848 for (auto I : Ctx->using_directives()) {
3849 if (!Result.getSema().isVisible(I))
3850 continue;
3851 lookupInDeclContext(I->getNominatedNamespace(), Result,
3852 QualifiedNameLookup, InBaseClass);
3853 }
3854 }
3855
3856 // Traverse the contexts of inherited C++ classes.
3857 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3858 if (!Record->hasDefinition())
3859 return;
3860
3861 for (const auto &B : Record->bases()) {
3862 QualType BaseType = B.getType();
3863
3864 RecordDecl *RD;
3865 if (BaseType->isDependentType()) {
3866 if (!IncludeDependentBases) {
3867 // Don't look into dependent bases, because name lookup can't look
3868 // there anyway.
3869 continue;
3870 }
3871 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3872 if (!TST)
3873 continue;
3874 TemplateName TN = TST->getTemplateName();
3875 const auto *TD =
3876 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3877 if (!TD)
3878 continue;
3879 RD = TD->getTemplatedDecl();
3880 } else {
3881 const auto *Record = BaseType->getAs<RecordType>();
3882 if (!Record)
3883 continue;
3884 RD = Record->getDecl();
3885 }
3886
3887 // FIXME: It would be nice to be able to determine whether referencing
3888 // a particular member would be ambiguous. For example, given
3889 //
3890 // struct A { int member; };
3891 // struct B { int member; };
3892 // struct C : A, B { };
3893 //
3894 // void f(C *c) { c->### }
3895 //
3896 // accessing 'member' would result in an ambiguity. However, we
3897 // could be smart enough to qualify the member with the base
3898 // class, e.g.,
3899 //
3900 // c->B::member
3901 //
3902 // or
3903 //
3904 // c->A::member
3905
3906 // Find results in this base class (and its bases).
3907 ShadowContextRAII Shadow(Visited);
3908 lookupInDeclContext(RD, Result, QualifiedNameLookup,
3909 /*InBaseClass=*/true);
3910 }
3911 }
3912
3913 // Traverse the contexts of Objective-C classes.
3914 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3915 // Traverse categories.
3916 for (auto *Cat : IFace->visible_categories()) {
3917 ShadowContextRAII Shadow(Visited);
3918 lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3919 /*InBaseClass=*/false);
3920 }
3921
3922 // Traverse protocols.
3923 for (auto *I : IFace->all_referenced_protocols()) {
3924 ShadowContextRAII Shadow(Visited);
3925 lookupInDeclContext(I, Result, QualifiedNameLookup,
3926 /*InBaseClass=*/false);
3927 }
3928
3929 // Traverse the superclass.
3930 if (IFace->getSuperClass()) {
3931 ShadowContextRAII Shadow(Visited);
3932 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3933 /*InBaseClass=*/true);
3934 }
3935
3936 // If there is an implementation, traverse it. We do this to find
3937 // synthesized ivars.
3938 if (IFace->getImplementation()) {
3939 ShadowContextRAII Shadow(Visited);
3940 lookupInDeclContext(IFace->getImplementation(), Result,
3941 QualifiedNameLookup, InBaseClass);
3942 }
3943 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3944 for (auto *I : Protocol->protocols()) {
3945 ShadowContextRAII Shadow(Visited);
3946 lookupInDeclContext(I, Result, QualifiedNameLookup,
3947 /*InBaseClass=*/false);
3948 }
3949 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3950 for (auto *I : Category->protocols()) {
3951 ShadowContextRAII Shadow(Visited);
3952 lookupInDeclContext(I, Result, QualifiedNameLookup,
3953 /*InBaseClass=*/false);
3954 }
3955
3956 // If there is an implementation, traverse it.
3957 if (Category->getImplementation()) {
3958 ShadowContextRAII Shadow(Visited);
3959 lookupInDeclContext(Category->getImplementation(), Result,
3960 QualifiedNameLookup, /*InBaseClass=*/true);
3961 }
3962 }
3963 }
3964
lookupInScope(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs)3965 void lookupInScope(Scope *S, LookupResult &Result,
3966 UnqualUsingDirectiveSet &UDirs) {
3967 // No clients run in this mode and it's not supported. Please add tests and
3968 // remove the assertion if you start relying on it.
3969 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
3970
3971 if (!S)
3972 return;
3973
3974 if (!S->getEntity() ||
3975 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3976 (S->getEntity())->isFunctionOrMethod()) {
3977 FindLocalExternScope FindLocals(Result);
3978 // Walk through the declarations in this Scope. The consumer might add new
3979 // decls to the scope as part of deserialization, so make a copy first.
3980 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3981 for (Decl *D : ScopeDecls) {
3982 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3983 if ((ND = Result.getAcceptableDecl(ND))) {
3984 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3985 Visited.add(ND);
3986 }
3987 }
3988 }
3989
3990 // FIXME: C++ [temp.local]p8
3991 DeclContext *Entity = nullptr;
3992 if (S->getEntity()) {
3993 // Look into this scope's declaration context, along with any of its
3994 // parent lookup contexts (e.g., enclosing classes), up to the point
3995 // where we hit the context stored in the next outer scope.
3996 Entity = S->getEntity();
3997 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3998
3999 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4000 Ctx = Ctx->getLookupParent()) {
4001 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4002 if (Method->isInstanceMethod()) {
4003 // For instance methods, look for ivars in the method's interface.
4004 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4005 Result.getNameLoc(),
4006 Sema::LookupMemberName);
4007 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4008 lookupInDeclContext(IFace, IvarResult,
4009 /*QualifiedNameLookup=*/false,
4010 /*InBaseClass=*/false);
4011 }
4012 }
4013
4014 // We've already performed all of the name lookup that we need
4015 // to for Objective-C methods; the next context will be the
4016 // outer scope.
4017 break;
4018 }
4019
4020 if (Ctx->isFunctionOrMethod())
4021 continue;
4022
4023 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4024 /*InBaseClass=*/false);
4025 }
4026 } else if (!S->getParent()) {
4027 // Look into the translation unit scope. We walk through the translation
4028 // unit's declaration context, because the Scope itself won't have all of
4029 // the declarations if we loaded a precompiled header.
4030 // FIXME: We would like the translation unit's Scope object to point to
4031 // the translation unit, so we don't need this special "if" branch.
4032 // However, doing so would force the normal C++ name-lookup code to look
4033 // into the translation unit decl when the IdentifierInfo chains would
4034 // suffice. Once we fix that problem (which is part of a more general
4035 // "don't look in DeclContexts unless we have to" optimization), we can
4036 // eliminate this.
4037 Entity = Result.getSema().Context.getTranslationUnitDecl();
4038 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4039 /*InBaseClass=*/false);
4040 }
4041
4042 if (Entity) {
4043 // Lookup visible declarations in any namespaces found by using
4044 // directives.
4045 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4046 lookupInDeclContext(
4047 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4048 /*QualifiedNameLookup=*/false,
4049 /*InBaseClass=*/false);
4050 }
4051
4052 // Lookup names in the parent scope.
4053 ShadowContextRAII Shadow(Visited);
4054 lookupInScope(S->getParent(), Result, UDirs);
4055 }
4056
4057 private:
4058 VisibleDeclsRecord Visited;
4059 VisibleDeclConsumer &Consumer;
4060 bool IncludeDependentBases;
4061 bool LoadExternal;
4062 };
4063 } // namespace
4064
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope,bool LoadExternal)4065 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4066 VisibleDeclConsumer &Consumer,
4067 bool IncludeGlobalScope, bool LoadExternal) {
4068 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4069 LoadExternal);
4070 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4071 }
4072
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope,bool IncludeDependentBases,bool LoadExternal)4073 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4074 VisibleDeclConsumer &Consumer,
4075 bool IncludeGlobalScope,
4076 bool IncludeDependentBases, bool LoadExternal) {
4077 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4078 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4079 }
4080
4081 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4082 /// If GnuLabelLoc is a valid source location, then this is a definition
4083 /// of an __label__ label name, otherwise it is a normal label definition
4084 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)4085 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4086 SourceLocation GnuLabelLoc) {
4087 // Do a lookup to see if we have a label with this name already.
4088 NamedDecl *Res = nullptr;
4089
4090 if (GnuLabelLoc.isValid()) {
4091 // Local label definitions always shadow existing labels.
4092 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4093 Scope *S = CurScope;
4094 PushOnScopeChains(Res, S, true);
4095 return cast<LabelDecl>(Res);
4096 }
4097
4098 // Not a GNU local label.
4099 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4100 // If we found a label, check to see if it is in the same context as us.
4101 // When in a Block, we don't want to reuse a label in an enclosing function.
4102 if (Res && Res->getDeclContext() != CurContext)
4103 Res = nullptr;
4104 if (!Res) {
4105 // If not forward referenced or defined already, create the backing decl.
4106 Res = LabelDecl::Create(Context, CurContext, Loc, II);
4107 Scope *S = CurScope->getFnParent();
4108 assert(S && "Not in a function?");
4109 PushOnScopeChains(Res, S, true);
4110 }
4111 return cast<LabelDecl>(Res);
4112 }
4113
4114 //===----------------------------------------------------------------------===//
4115 // Typo correction
4116 //===----------------------------------------------------------------------===//
4117
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)4118 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4119 TypoCorrection &Candidate) {
4120 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4121 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4122 }
4123
4124 static void LookupPotentialTypoResult(Sema &SemaRef,
4125 LookupResult &Res,
4126 IdentifierInfo *Name,
4127 Scope *S, CXXScopeSpec *SS,
4128 DeclContext *MemberContext,
4129 bool EnteringContext,
4130 bool isObjCIvarLookup,
4131 bool FindHidden);
4132
4133 /// Check whether the declarations found for a typo correction are
4134 /// visible. Set the correction's RequiresImport flag to true if none of the
4135 /// declarations are visible, false otherwise.
checkCorrectionVisibility(Sema & SemaRef,TypoCorrection & TC)4136 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4137 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4138
4139 for (/**/; DI != DE; ++DI)
4140 if (!LookupResult::isVisible(SemaRef, *DI))
4141 break;
4142 // No filtering needed if all decls are visible.
4143 if (DI == DE) {
4144 TC.setRequiresImport(false);
4145 return;
4146 }
4147
4148 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4149 bool AnyVisibleDecls = !NewDecls.empty();
4150
4151 for (/**/; DI != DE; ++DI) {
4152 if (LookupResult::isVisible(SemaRef, *DI)) {
4153 if (!AnyVisibleDecls) {
4154 // Found a visible decl, discard all hidden ones.
4155 AnyVisibleDecls = true;
4156 NewDecls.clear();
4157 }
4158 NewDecls.push_back(*DI);
4159 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4160 NewDecls.push_back(*DI);
4161 }
4162
4163 if (NewDecls.empty())
4164 TC = TypoCorrection();
4165 else {
4166 TC.setCorrectionDecls(NewDecls);
4167 TC.setRequiresImport(!AnyVisibleDecls);
4168 }
4169 }
4170
4171 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4172 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4173 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)4174 static void getNestedNameSpecifierIdentifiers(
4175 NestedNameSpecifier *NNS,
4176 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4177 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4178 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4179 else
4180 Identifiers.clear();
4181
4182 const IdentifierInfo *II = nullptr;
4183
4184 switch (NNS->getKind()) {
4185 case NestedNameSpecifier::Identifier:
4186 II = NNS->getAsIdentifier();
4187 break;
4188
4189 case NestedNameSpecifier::Namespace:
4190 if (NNS->getAsNamespace()->isAnonymousNamespace())
4191 return;
4192 II = NNS->getAsNamespace()->getIdentifier();
4193 break;
4194
4195 case NestedNameSpecifier::NamespaceAlias:
4196 II = NNS->getAsNamespaceAlias()->getIdentifier();
4197 break;
4198
4199 case NestedNameSpecifier::TypeSpecWithTemplate:
4200 case NestedNameSpecifier::TypeSpec:
4201 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4202 break;
4203
4204 case NestedNameSpecifier::Global:
4205 case NestedNameSpecifier::Super:
4206 return;
4207 }
4208
4209 if (II)
4210 Identifiers.push_back(II);
4211 }
4212
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)4213 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4214 DeclContext *Ctx, bool InBaseClass) {
4215 // Don't consider hidden names for typo correction.
4216 if (Hiding)
4217 return;
4218
4219 // Only consider entities with identifiers for names, ignoring
4220 // special names (constructors, overloaded operators, selectors,
4221 // etc.).
4222 IdentifierInfo *Name = ND->getIdentifier();
4223 if (!Name)
4224 return;
4225
4226 // Only consider visible declarations and declarations from modules with
4227 // names that exactly match.
4228 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4229 return;
4230
4231 FoundName(Name->getName());
4232 }
4233
FoundName(StringRef Name)4234 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4235 // Compute the edit distance between the typo and the name of this
4236 // entity, and add the identifier to the list of results.
4237 addName(Name, nullptr);
4238 }
4239
addKeywordResult(StringRef Keyword)4240 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4241 // Compute the edit distance between the typo and this keyword,
4242 // and add the keyword to the list of results.
4243 addName(Keyword, nullptr, nullptr, true);
4244 }
4245
addName(StringRef Name,NamedDecl * ND,NestedNameSpecifier * NNS,bool isKeyword)4246 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4247 NestedNameSpecifier *NNS, bool isKeyword) {
4248 // Use a simple length-based heuristic to determine the minimum possible
4249 // edit distance. If the minimum isn't good enough, bail out early.
4250 StringRef TypoStr = Typo->getName();
4251 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4252 if (MinED && TypoStr.size() / MinED < 3)
4253 return;
4254
4255 // Compute an upper bound on the allowable edit distance, so that the
4256 // edit-distance algorithm can short-circuit.
4257 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4258 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4259 if (ED > UpperBound) return;
4260
4261 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4262 if (isKeyword) TC.makeKeyword();
4263 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4264 addCorrection(TC);
4265 }
4266
4267 static const unsigned MaxTypoDistanceResultSets = 5;
4268
addCorrection(TypoCorrection Correction)4269 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4270 StringRef TypoStr = Typo->getName();
4271 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4272
4273 // For very short typos, ignore potential corrections that have a different
4274 // base identifier from the typo or which have a normalized edit distance
4275 // longer than the typo itself.
4276 if (TypoStr.size() < 3 &&
4277 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4278 return;
4279
4280 // If the correction is resolved but is not viable, ignore it.
4281 if (Correction.isResolved()) {
4282 checkCorrectionVisibility(SemaRef, Correction);
4283 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4284 return;
4285 }
4286
4287 TypoResultList &CList =
4288 CorrectionResults[Correction.getEditDistance(false)][Name];
4289
4290 if (!CList.empty() && !CList.back().isResolved())
4291 CList.pop_back();
4292 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4293 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4294 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4295 RI != RIEnd; ++RI) {
4296 // If the Correction refers to a decl already in the result list,
4297 // replace the existing result if the string representation of Correction
4298 // comes before the current result alphabetically, then stop as there is
4299 // nothing more to be done to add Correction to the candidate set.
4300 if (RI->getCorrectionDecl() == NewND) {
4301 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4302 *RI = Correction;
4303 return;
4304 }
4305 }
4306 }
4307 if (CList.empty() || Correction.isResolved())
4308 CList.push_back(Correction);
4309
4310 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4311 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4312 }
4313
addNamespaces(const llvm::MapVector<NamespaceDecl *,bool> & KnownNamespaces)4314 void TypoCorrectionConsumer::addNamespaces(
4315 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4316 SearchNamespaces = true;
4317
4318 for (auto KNPair : KnownNamespaces)
4319 Namespaces.addNameSpecifier(KNPair.first);
4320
4321 bool SSIsTemplate = false;
4322 if (NestedNameSpecifier *NNS =
4323 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4324 if (const Type *T = NNS->getAsType())
4325 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4326 }
4327 // Do not transform this into an iterator-based loop. The loop body can
4328 // trigger the creation of further types (through lazy deserialization) and
4329 // invalid iterators into this list.
4330 auto &Types = SemaRef.getASTContext().getTypes();
4331 for (unsigned I = 0; I != Types.size(); ++I) {
4332 const auto *TI = Types[I];
4333 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4334 CD = CD->getCanonicalDecl();
4335 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4336 !CD->isUnion() && CD->getIdentifier() &&
4337 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4338 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4339 Namespaces.addNameSpecifier(CD);
4340 }
4341 }
4342 }
4343
getNextCorrection()4344 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4345 if (++CurrentTCIndex < ValidatedCorrections.size())
4346 return ValidatedCorrections[CurrentTCIndex];
4347
4348 CurrentTCIndex = ValidatedCorrections.size();
4349 while (!CorrectionResults.empty()) {
4350 auto DI = CorrectionResults.begin();
4351 if (DI->second.empty()) {
4352 CorrectionResults.erase(DI);
4353 continue;
4354 }
4355
4356 auto RI = DI->second.begin();
4357 if (RI->second.empty()) {
4358 DI->second.erase(RI);
4359 performQualifiedLookups();
4360 continue;
4361 }
4362
4363 TypoCorrection TC = RI->second.pop_back_val();
4364 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4365 ValidatedCorrections.push_back(TC);
4366 return ValidatedCorrections[CurrentTCIndex];
4367 }
4368 }
4369 return ValidatedCorrections[0]; // The empty correction.
4370 }
4371
resolveCorrection(TypoCorrection & Candidate)4372 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4373 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4374 DeclContext *TempMemberContext = MemberContext;
4375 CXXScopeSpec *TempSS = SS.get();
4376 retry_lookup:
4377 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4378 EnteringContext,
4379 CorrectionValidator->IsObjCIvarLookup,
4380 Name == Typo && !Candidate.WillReplaceSpecifier());
4381 switch (Result.getResultKind()) {
4382 case LookupResult::NotFound:
4383 case LookupResult::NotFoundInCurrentInstantiation:
4384 case LookupResult::FoundUnresolvedValue:
4385 if (TempSS) {
4386 // Immediately retry the lookup without the given CXXScopeSpec
4387 TempSS = nullptr;
4388 Candidate.WillReplaceSpecifier(true);
4389 goto retry_lookup;
4390 }
4391 if (TempMemberContext) {
4392 if (SS && !TempSS)
4393 TempSS = SS.get();
4394 TempMemberContext = nullptr;
4395 goto retry_lookup;
4396 }
4397 if (SearchNamespaces)
4398 QualifiedResults.push_back(Candidate);
4399 break;
4400
4401 case LookupResult::Ambiguous:
4402 // We don't deal with ambiguities.
4403 break;
4404
4405 case LookupResult::Found:
4406 case LookupResult::FoundOverloaded:
4407 // Store all of the Decls for overloaded symbols
4408 for (auto *TRD : Result)
4409 Candidate.addCorrectionDecl(TRD);
4410 checkCorrectionVisibility(SemaRef, Candidate);
4411 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4412 if (SearchNamespaces)
4413 QualifiedResults.push_back(Candidate);
4414 break;
4415 }
4416 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4417 return true;
4418 }
4419 return false;
4420 }
4421
performQualifiedLookups()4422 void TypoCorrectionConsumer::performQualifiedLookups() {
4423 unsigned TypoLen = Typo->getName().size();
4424 for (const TypoCorrection &QR : QualifiedResults) {
4425 for (const auto &NSI : Namespaces) {
4426 DeclContext *Ctx = NSI.DeclCtx;
4427 const Type *NSType = NSI.NameSpecifier->getAsType();
4428
4429 // If the current NestedNameSpecifier refers to a class and the
4430 // current correction candidate is the name of that class, then skip
4431 // it as it is unlikely a qualified version of the class' constructor
4432 // is an appropriate correction.
4433 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4434 nullptr) {
4435 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4436 continue;
4437 }
4438
4439 TypoCorrection TC(QR);
4440 TC.ClearCorrectionDecls();
4441 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4442 TC.setQualifierDistance(NSI.EditDistance);
4443 TC.setCallbackDistance(0); // Reset the callback distance
4444
4445 // If the current correction candidate and namespace combination are
4446 // too far away from the original typo based on the normalized edit
4447 // distance, then skip performing a qualified name lookup.
4448 unsigned TmpED = TC.getEditDistance(true);
4449 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4450 TypoLen / TmpED < 3)
4451 continue;
4452
4453 Result.clear();
4454 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4455 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4456 continue;
4457
4458 // Any corrections added below will be validated in subsequent
4459 // iterations of the main while() loop over the Consumer's contents.
4460 switch (Result.getResultKind()) {
4461 case LookupResult::Found:
4462 case LookupResult::FoundOverloaded: {
4463 if (SS && SS->isValid()) {
4464 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4465 std::string OldQualified;
4466 llvm::raw_string_ostream OldOStream(OldQualified);
4467 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4468 OldOStream << Typo->getName();
4469 // If correction candidate would be an identical written qualified
4470 // identifier, then the existing CXXScopeSpec probably included a
4471 // typedef that didn't get accounted for properly.
4472 if (OldOStream.str() == NewQualified)
4473 break;
4474 }
4475 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4476 TRD != TRDEnd; ++TRD) {
4477 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4478 NSType ? NSType->getAsCXXRecordDecl()
4479 : nullptr,
4480 TRD.getPair()) == Sema::AR_accessible)
4481 TC.addCorrectionDecl(*TRD);
4482 }
4483 if (TC.isResolved()) {
4484 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4485 addCorrection(TC);
4486 }
4487 break;
4488 }
4489 case LookupResult::NotFound:
4490 case LookupResult::NotFoundInCurrentInstantiation:
4491 case LookupResult::Ambiguous:
4492 case LookupResult::FoundUnresolvedValue:
4493 break;
4494 }
4495 }
4496 }
4497 QualifiedResults.clear();
4498 }
4499
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)4500 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4501 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4502 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4503 if (NestedNameSpecifier *NNS =
4504 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4505 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4506 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4507
4508 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4509 }
4510 // Build the list of identifiers that would be used for an absolute
4511 // (from the global context) NestedNameSpecifier referring to the current
4512 // context.
4513 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4514 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4515 CurContextIdentifiers.push_back(ND->getIdentifier());
4516 }
4517
4518 // Add the global context as a NestedNameSpecifier
4519 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4520 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4521 DistanceMap[1].push_back(SI);
4522 }
4523
buildContextChain(DeclContext * Start)4524 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4525 DeclContext *Start) -> DeclContextList {
4526 assert(Start && "Building a context chain from a null context");
4527 DeclContextList Chain;
4528 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4529 DC = DC->getLookupParent()) {
4530 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4531 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4532 !(ND && ND->isAnonymousNamespace()))
4533 Chain.push_back(DC->getPrimaryContext());
4534 }
4535 return Chain;
4536 }
4537
4538 unsigned
buildNestedNameSpecifier(DeclContextList & DeclChain,NestedNameSpecifier * & NNS)4539 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4540 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4541 unsigned NumSpecifiers = 0;
4542 for (DeclContext *C : llvm::reverse(DeclChain)) {
4543 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4544 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4545 ++NumSpecifiers;
4546 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4547 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4548 RD->getTypeForDecl());
4549 ++NumSpecifiers;
4550 }
4551 }
4552 return NumSpecifiers;
4553 }
4554
addNameSpecifier(DeclContext * Ctx)4555 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4556 DeclContext *Ctx) {
4557 NestedNameSpecifier *NNS = nullptr;
4558 unsigned NumSpecifiers = 0;
4559 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4560 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4561
4562 // Eliminate common elements from the two DeclContext chains.
4563 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4564 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4565 break;
4566 NamespaceDeclChain.pop_back();
4567 }
4568
4569 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4570 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4571
4572 // Add an explicit leading '::' specifier if needed.
4573 if (NamespaceDeclChain.empty()) {
4574 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4575 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4576 NumSpecifiers =
4577 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4578 } else if (NamedDecl *ND =
4579 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4580 IdentifierInfo *Name = ND->getIdentifier();
4581 bool SameNameSpecifier = false;
4582 if (std::find(CurNameSpecifierIdentifiers.begin(),
4583 CurNameSpecifierIdentifiers.end(),
4584 Name) != CurNameSpecifierIdentifiers.end()) {
4585 std::string NewNameSpecifier;
4586 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4587 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4588 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4589 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4590 SpecifierOStream.flush();
4591 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4592 }
4593 if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4594 CurContextIdentifiers.end()) {
4595 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4596 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4597 NumSpecifiers =
4598 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4599 }
4600 }
4601
4602 // If the built NestedNameSpecifier would be replacing an existing
4603 // NestedNameSpecifier, use the number of component identifiers that
4604 // would need to be changed as the edit distance instead of the number
4605 // of components in the built NestedNameSpecifier.
4606 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4607 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4608 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4609 NumSpecifiers = llvm::ComputeEditDistance(
4610 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4611 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4612 }
4613
4614 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4615 DistanceMap[NumSpecifiers].push_back(SI);
4616 }
4617
4618 /// Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup,bool FindHidden)4619 static void LookupPotentialTypoResult(Sema &SemaRef,
4620 LookupResult &Res,
4621 IdentifierInfo *Name,
4622 Scope *S, CXXScopeSpec *SS,
4623 DeclContext *MemberContext,
4624 bool EnteringContext,
4625 bool isObjCIvarLookup,
4626 bool FindHidden) {
4627 Res.suppressDiagnostics();
4628 Res.clear();
4629 Res.setLookupName(Name);
4630 Res.setAllowHidden(FindHidden);
4631 if (MemberContext) {
4632 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4633 if (isObjCIvarLookup) {
4634 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4635 Res.addDecl(Ivar);
4636 Res.resolveKind();
4637 return;
4638 }
4639 }
4640
4641 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4642 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4643 Res.addDecl(Prop);
4644 Res.resolveKind();
4645 return;
4646 }
4647 }
4648
4649 SemaRef.LookupQualifiedName(Res, MemberContext);
4650 return;
4651 }
4652
4653 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4654 EnteringContext);
4655
4656 // Fake ivar lookup; this should really be part of
4657 // LookupParsedName.
4658 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4659 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4660 (Res.empty() ||
4661 (Res.isSingleResult() &&
4662 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4663 if (ObjCIvarDecl *IV
4664 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4665 Res.addDecl(IV);
4666 Res.resolveKind();
4667 }
4668 }
4669 }
4670 }
4671
4672 /// Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC,bool AfterNestedNameSpecifier)4673 static void AddKeywordsToConsumer(Sema &SemaRef,
4674 TypoCorrectionConsumer &Consumer,
4675 Scope *S, CorrectionCandidateCallback &CCC,
4676 bool AfterNestedNameSpecifier) {
4677 if (AfterNestedNameSpecifier) {
4678 // For 'X::', we know exactly which keywords can appear next.
4679 Consumer.addKeywordResult("template");
4680 if (CCC.WantExpressionKeywords)
4681 Consumer.addKeywordResult("operator");
4682 return;
4683 }
4684
4685 if (CCC.WantObjCSuper)
4686 Consumer.addKeywordResult("super");
4687
4688 if (CCC.WantTypeSpecifiers) {
4689 // Add type-specifier keywords to the set of results.
4690 static const char *const CTypeSpecs[] = {
4691 "char", "const", "double", "enum", "float", "int", "long", "short",
4692 "signed", "struct", "union", "unsigned", "void", "volatile",
4693 "_Complex", "_Imaginary",
4694 // storage-specifiers as well
4695 "extern", "inline", "static", "typedef"
4696 };
4697
4698 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4699 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4700 Consumer.addKeywordResult(CTypeSpecs[I]);
4701
4702 if (SemaRef.getLangOpts().C99)
4703 Consumer.addKeywordResult("restrict");
4704 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4705 Consumer.addKeywordResult("bool");
4706 else if (SemaRef.getLangOpts().C99)
4707 Consumer.addKeywordResult("_Bool");
4708
4709 if (SemaRef.getLangOpts().CPlusPlus) {
4710 Consumer.addKeywordResult("class");
4711 Consumer.addKeywordResult("typename");
4712 Consumer.addKeywordResult("wchar_t");
4713
4714 if (SemaRef.getLangOpts().CPlusPlus11) {
4715 Consumer.addKeywordResult("char16_t");
4716 Consumer.addKeywordResult("char32_t");
4717 Consumer.addKeywordResult("constexpr");
4718 Consumer.addKeywordResult("decltype");
4719 Consumer.addKeywordResult("thread_local");
4720 }
4721 }
4722
4723 if (SemaRef.getLangOpts().GNUKeywords)
4724 Consumer.addKeywordResult("typeof");
4725 } else if (CCC.WantFunctionLikeCasts) {
4726 static const char *const CastableTypeSpecs[] = {
4727 "char", "double", "float", "int", "long", "short",
4728 "signed", "unsigned", "void"
4729 };
4730 for (auto *kw : CastableTypeSpecs)
4731 Consumer.addKeywordResult(kw);
4732 }
4733
4734 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4735 Consumer.addKeywordResult("const_cast");
4736 Consumer.addKeywordResult("dynamic_cast");
4737 Consumer.addKeywordResult("reinterpret_cast");
4738 Consumer.addKeywordResult("static_cast");
4739 }
4740
4741 if (CCC.WantExpressionKeywords) {
4742 Consumer.addKeywordResult("sizeof");
4743 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4744 Consumer.addKeywordResult("false");
4745 Consumer.addKeywordResult("true");
4746 }
4747
4748 if (SemaRef.getLangOpts().CPlusPlus) {
4749 static const char *const CXXExprs[] = {
4750 "delete", "new", "operator", "throw", "typeid"
4751 };
4752 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4753 for (unsigned I = 0; I != NumCXXExprs; ++I)
4754 Consumer.addKeywordResult(CXXExprs[I]);
4755
4756 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4757 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4758 Consumer.addKeywordResult("this");
4759
4760 if (SemaRef.getLangOpts().CPlusPlus11) {
4761 Consumer.addKeywordResult("alignof");
4762 Consumer.addKeywordResult("nullptr");
4763 }
4764 }
4765
4766 if (SemaRef.getLangOpts().C11) {
4767 // FIXME: We should not suggest _Alignof if the alignof macro
4768 // is present.
4769 Consumer.addKeywordResult("_Alignof");
4770 }
4771 }
4772
4773 if (CCC.WantRemainingKeywords) {
4774 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4775 // Statements.
4776 static const char *const CStmts[] = {
4777 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4778 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4779 for (unsigned I = 0; I != NumCStmts; ++I)
4780 Consumer.addKeywordResult(CStmts[I]);
4781
4782 if (SemaRef.getLangOpts().CPlusPlus) {
4783 Consumer.addKeywordResult("catch");
4784 Consumer.addKeywordResult("try");
4785 }
4786
4787 if (S && S->getBreakParent())
4788 Consumer.addKeywordResult("break");
4789
4790 if (S && S->getContinueParent())
4791 Consumer.addKeywordResult("continue");
4792
4793 if (SemaRef.getCurFunction() &&
4794 !SemaRef.getCurFunction()->SwitchStack.empty()) {
4795 Consumer.addKeywordResult("case");
4796 Consumer.addKeywordResult("default");
4797 }
4798 } else {
4799 if (SemaRef.getLangOpts().CPlusPlus) {
4800 Consumer.addKeywordResult("namespace");
4801 Consumer.addKeywordResult("template");
4802 }
4803
4804 if (S && S->isClassScope()) {
4805 Consumer.addKeywordResult("explicit");
4806 Consumer.addKeywordResult("friend");
4807 Consumer.addKeywordResult("mutable");
4808 Consumer.addKeywordResult("private");
4809 Consumer.addKeywordResult("protected");
4810 Consumer.addKeywordResult("public");
4811 Consumer.addKeywordResult("virtual");
4812 }
4813 }
4814
4815 if (SemaRef.getLangOpts().CPlusPlus) {
4816 Consumer.addKeywordResult("using");
4817
4818 if (SemaRef.getLangOpts().CPlusPlus11)
4819 Consumer.addKeywordResult("static_assert");
4820 }
4821 }
4822 }
4823
makeTypoCorrectionConsumer(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool ErrorRecovery)4824 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4825 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4826 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4827 DeclContext *MemberContext, bool EnteringContext,
4828 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4829
4830 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4831 DisableTypoCorrection)
4832 return nullptr;
4833
4834 // In Microsoft mode, don't perform typo correction in a template member
4835 // function dependent context because it interferes with the "lookup into
4836 // dependent bases of class templates" feature.
4837 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4838 isa<CXXMethodDecl>(CurContext))
4839 return nullptr;
4840
4841 // We only attempt to correct typos for identifiers.
4842 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4843 if (!Typo)
4844 return nullptr;
4845
4846 // If the scope specifier itself was invalid, don't try to correct
4847 // typos.
4848 if (SS && SS->isInvalid())
4849 return nullptr;
4850
4851 // Never try to correct typos during any kind of code synthesis.
4852 if (!CodeSynthesisContexts.empty())
4853 return nullptr;
4854
4855 // Don't try to correct 'super'.
4856 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4857 return nullptr;
4858
4859 // Abort if typo correction already failed for this specific typo.
4860 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4861 if (locs != TypoCorrectionFailures.end() &&
4862 locs->second.count(TypoName.getLoc()))
4863 return nullptr;
4864
4865 // Don't try to correct the identifier "vector" when in AltiVec mode.
4866 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4867 // remove this workaround.
4868 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4869 return nullptr;
4870
4871 // Provide a stop gap for files that are just seriously broken. Trying
4872 // to correct all typos can turn into a HUGE performance penalty, causing
4873 // some files to take minutes to get rejected by the parser.
4874 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4875 if (Limit && TyposCorrected >= Limit)
4876 return nullptr;
4877 ++TyposCorrected;
4878
4879 // If we're handling a missing symbol error, using modules, and the
4880 // special search all modules option is used, look for a missing import.
4881 if (ErrorRecovery && getLangOpts().Modules &&
4882 getLangOpts().ModulesSearchAll) {
4883 // The following has the side effect of loading the missing module.
4884 getModuleLoader().lookupMissingImports(Typo->getName(),
4885 TypoName.getBeginLoc());
4886 }
4887
4888 // Extend the lifetime of the callback. We delayed this until here
4889 // to avoid allocations in the hot path (which is where no typo correction
4890 // occurs). Note that CorrectionCandidateCallback is polymorphic and
4891 // initially stack-allocated.
4892 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4893 auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4894 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4895 EnteringContext);
4896
4897 // Perform name lookup to find visible, similarly-named entities.
4898 bool IsUnqualifiedLookup = false;
4899 DeclContext *QualifiedDC = MemberContext;
4900 if (MemberContext) {
4901 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4902
4903 // Look in qualified interfaces.
4904 if (OPT) {
4905 for (auto *I : OPT->quals())
4906 LookupVisibleDecls(I, LookupKind, *Consumer);
4907 }
4908 } else if (SS && SS->isSet()) {
4909 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4910 if (!QualifiedDC)
4911 return nullptr;
4912
4913 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4914 } else {
4915 IsUnqualifiedLookup = true;
4916 }
4917
4918 // Determine whether we are going to search in the various namespaces for
4919 // corrections.
4920 bool SearchNamespaces
4921 = getLangOpts().CPlusPlus &&
4922 (IsUnqualifiedLookup || (SS && SS->isSet()));
4923
4924 if (IsUnqualifiedLookup || SearchNamespaces) {
4925 // For unqualified lookup, look through all of the names that we have
4926 // seen in this translation unit.
4927 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4928 for (const auto &I : Context.Idents)
4929 Consumer->FoundName(I.getKey());
4930
4931 // Walk through identifiers in external identifier sources.
4932 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4933 if (IdentifierInfoLookup *External
4934 = Context.Idents.getExternalIdentifierLookup()) {
4935 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4936 do {
4937 StringRef Name = Iter->Next();
4938 if (Name.empty())
4939 break;
4940
4941 Consumer->FoundName(Name);
4942 } while (true);
4943 }
4944 }
4945
4946 AddKeywordsToConsumer(*this, *Consumer, S,
4947 *Consumer->getCorrectionValidator(),
4948 SS && SS->isNotEmpty());
4949
4950 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4951 // to search those namespaces.
4952 if (SearchNamespaces) {
4953 // Load any externally-known namespaces.
4954 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4955 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4956 LoadedExternalKnownNamespaces = true;
4957 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4958 for (auto *N : ExternalKnownNamespaces)
4959 KnownNamespaces[N] = true;
4960 }
4961
4962 Consumer->addNamespaces(KnownNamespaces);
4963 }
4964
4965 return Consumer;
4966 }
4967
4968 /// Try to "correct" a typo in the source code by finding
4969 /// visible declarations whose names are similar to the name that was
4970 /// present in the source code.
4971 ///
4972 /// \param TypoName the \c DeclarationNameInfo structure that contains
4973 /// the name that was present in the source code along with its location.
4974 ///
4975 /// \param LookupKind the name-lookup criteria used to search for the name.
4976 ///
4977 /// \param S the scope in which name lookup occurs.
4978 ///
4979 /// \param SS the nested-name-specifier that precedes the name we're
4980 /// looking for, if present.
4981 ///
4982 /// \param CCC A CorrectionCandidateCallback object that provides further
4983 /// validation of typo correction candidates. It also provides flags for
4984 /// determining the set of keywords permitted.
4985 ///
4986 /// \param MemberContext if non-NULL, the context in which to look for
4987 /// a member access expression.
4988 ///
4989 /// \param EnteringContext whether we're entering the context described by
4990 /// the nested-name-specifier SS.
4991 ///
4992 /// \param OPT when non-NULL, the search for visible declarations will
4993 /// also walk the protocols in the qualified interfaces of \p OPT.
4994 ///
4995 /// \returns a \c TypoCorrection containing the corrected name if the typo
4996 /// along with information such as the \c NamedDecl where the corrected name
4997 /// was declared, and any additional \c NestedNameSpecifier needed to access
4998 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool RecordFailure)4999 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5000 Sema::LookupNameKind LookupKind,
5001 Scope *S, CXXScopeSpec *SS,
5002 CorrectionCandidateCallback &CCC,
5003 CorrectTypoKind Mode,
5004 DeclContext *MemberContext,
5005 bool EnteringContext,
5006 const ObjCObjectPointerType *OPT,
5007 bool RecordFailure) {
5008 // Always let the ExternalSource have the first chance at correction, even
5009 // if we would otherwise have given up.
5010 if (ExternalSource) {
5011 if (TypoCorrection Correction =
5012 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5013 MemberContext, EnteringContext, OPT))
5014 return Correction;
5015 }
5016
5017 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5018 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5019 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5020 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5021 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5022
5023 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5024 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5025 MemberContext, EnteringContext,
5026 OPT, Mode == CTK_ErrorRecovery);
5027
5028 if (!Consumer)
5029 return TypoCorrection();
5030
5031 // If we haven't found anything, we're done.
5032 if (Consumer->empty())
5033 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5034
5035 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5036 // is not more that about a third of the length of the typo's identifier.
5037 unsigned ED = Consumer->getBestEditDistance(true);
5038 unsigned TypoLen = Typo->getName().size();
5039 if (ED > 0 && TypoLen / ED < 3)
5040 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5041
5042 TypoCorrection BestTC = Consumer->getNextCorrection();
5043 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5044 if (!BestTC)
5045 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5046
5047 ED = BestTC.getEditDistance();
5048
5049 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5050 // If this was an unqualified lookup and we believe the callback
5051 // object wouldn't have filtered out possible corrections, note
5052 // that no correction was found.
5053 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5054 }
5055
5056 // If only a single name remains, return that result.
5057 if (!SecondBestTC ||
5058 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5059 const TypoCorrection &Result = BestTC;
5060
5061 // Don't correct to a keyword that's the same as the typo; the keyword
5062 // wasn't actually in scope.
5063 if (ED == 0 && Result.isKeyword())
5064 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5065
5066 TypoCorrection TC = Result;
5067 TC.setCorrectionRange(SS, TypoName);
5068 checkCorrectionVisibility(*this, TC);
5069 return TC;
5070 } else if (SecondBestTC && ObjCMessageReceiver) {
5071 // Prefer 'super' when we're completing in a message-receiver
5072 // context.
5073
5074 if (BestTC.getCorrection().getAsString() != "super") {
5075 if (SecondBestTC.getCorrection().getAsString() == "super")
5076 BestTC = SecondBestTC;
5077 else if ((*Consumer)["super"].front().isKeyword())
5078 BestTC = (*Consumer)["super"].front();
5079 }
5080 // Don't correct to a keyword that's the same as the typo; the keyword
5081 // wasn't actually in scope.
5082 if (BestTC.getEditDistance() == 0 ||
5083 BestTC.getCorrection().getAsString() != "super")
5084 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5085
5086 BestTC.setCorrectionRange(SS, TypoName);
5087 return BestTC;
5088 }
5089
5090 // Record the failure's location if needed and return an empty correction. If
5091 // this was an unqualified lookup and we believe the callback object did not
5092 // filter out possible corrections, also cache the failure for the typo.
5093 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5094 }
5095
5096 /// Try to "correct" a typo in the source code by finding
5097 /// visible declarations whose names are similar to the name that was
5098 /// present in the source code.
5099 ///
5100 /// \param TypoName the \c DeclarationNameInfo structure that contains
5101 /// the name that was present in the source code along with its location.
5102 ///
5103 /// \param LookupKind the name-lookup criteria used to search for the name.
5104 ///
5105 /// \param S the scope in which name lookup occurs.
5106 ///
5107 /// \param SS the nested-name-specifier that precedes the name we're
5108 /// looking for, if present.
5109 ///
5110 /// \param CCC A CorrectionCandidateCallback object that provides further
5111 /// validation of typo correction candidates. It also provides flags for
5112 /// determining the set of keywords permitted.
5113 ///
5114 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5115 /// diagnostics when the actual typo correction is attempted.
5116 ///
5117 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5118 /// Expr from a typo correction candidate.
5119 ///
5120 /// \param MemberContext if non-NULL, the context in which to look for
5121 /// a member access expression.
5122 ///
5123 /// \param EnteringContext whether we're entering the context described by
5124 /// the nested-name-specifier SS.
5125 ///
5126 /// \param OPT when non-NULL, the search for visible declarations will
5127 /// also walk the protocols in the qualified interfaces of \p OPT.
5128 ///
5129 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5130 /// Expr representing the result of performing typo correction, or nullptr if
5131 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5132 /// be emitted and it is the responsibility of the caller to emit any that are
5133 /// needed.
CorrectTypoDelayed(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)5134 TypoExpr *Sema::CorrectTypoDelayed(
5135 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5136 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5137 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5138 DeclContext *MemberContext, bool EnteringContext,
5139 const ObjCObjectPointerType *OPT) {
5140 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5141 MemberContext, EnteringContext,
5142 OPT, Mode == CTK_ErrorRecovery);
5143
5144 // Give the external sema source a chance to correct the typo.
5145 TypoCorrection ExternalTypo;
5146 if (ExternalSource && Consumer) {
5147 ExternalTypo = ExternalSource->CorrectTypo(
5148 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5149 MemberContext, EnteringContext, OPT);
5150 if (ExternalTypo)
5151 Consumer->addCorrection(ExternalTypo);
5152 }
5153
5154 if (!Consumer || Consumer->empty())
5155 return nullptr;
5156
5157 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5158 // is not more that about a third of the length of the typo's identifier.
5159 unsigned ED = Consumer->getBestEditDistance(true);
5160 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5161 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5162 return nullptr;
5163
5164 ExprEvalContexts.back().NumTypos++;
5165 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
5166 }
5167
addCorrectionDecl(NamedDecl * CDecl)5168 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5169 if (!CDecl) return;
5170
5171 if (isKeyword())
5172 CorrectionDecls.clear();
5173
5174 CorrectionDecls.push_back(CDecl);
5175
5176 if (!CorrectionName)
5177 CorrectionName = CDecl->getDeclName();
5178 }
5179
getAsString(const LangOptions & LO) const5180 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5181 if (CorrectionNameSpec) {
5182 std::string tmpBuffer;
5183 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5184 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5185 PrefixOStream << CorrectionName;
5186 return PrefixOStream.str();
5187 }
5188
5189 return CorrectionName.getAsString();
5190 }
5191
ValidateCandidate(const TypoCorrection & candidate)5192 bool CorrectionCandidateCallback::ValidateCandidate(
5193 const TypoCorrection &candidate) {
5194 if (!candidate.isResolved())
5195 return true;
5196
5197 if (candidate.isKeyword())
5198 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5199 WantRemainingKeywords || WantObjCSuper;
5200
5201 bool HasNonType = false;
5202 bool HasStaticMethod = false;
5203 bool HasNonStaticMethod = false;
5204 for (Decl *D : candidate) {
5205 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5206 D = FTD->getTemplatedDecl();
5207 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5208 if (Method->isStatic())
5209 HasStaticMethod = true;
5210 else
5211 HasNonStaticMethod = true;
5212 }
5213 if (!isa<TypeDecl>(D))
5214 HasNonType = true;
5215 }
5216
5217 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5218 !candidate.getCorrectionSpecifier())
5219 return false;
5220
5221 return WantTypeSpecifiers || HasNonType;
5222 }
5223
FunctionCallFilterCCC(Sema & SemaRef,unsigned NumArgs,bool HasExplicitTemplateArgs,MemberExpr * ME)5224 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5225 bool HasExplicitTemplateArgs,
5226 MemberExpr *ME)
5227 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5228 CurContext(SemaRef.CurContext), MemberFn(ME) {
5229 WantTypeSpecifiers = false;
5230 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5231 !HasExplicitTemplateArgs && NumArgs == 1;
5232 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5233 WantRemainingKeywords = false;
5234 }
5235
ValidateCandidate(const TypoCorrection & candidate)5236 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5237 if (!candidate.getCorrectionDecl())
5238 return candidate.isKeyword();
5239
5240 for (auto *C : candidate) {
5241 FunctionDecl *FD = nullptr;
5242 NamedDecl *ND = C->getUnderlyingDecl();
5243 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5244 FD = FTD->getTemplatedDecl();
5245 if (!HasExplicitTemplateArgs && !FD) {
5246 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5247 // If the Decl is neither a function nor a template function,
5248 // determine if it is a pointer or reference to a function. If so,
5249 // check against the number of arguments expected for the pointee.
5250 QualType ValType = cast<ValueDecl>(ND)->getType();
5251 if (ValType.isNull())
5252 continue;
5253 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5254 ValType = ValType->getPointeeType();
5255 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5256 if (FPT->getNumParams() == NumArgs)
5257 return true;
5258 }
5259 }
5260
5261 // A typo for a function-style cast can look like a function call in C++.
5262 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5263 : isa<TypeDecl>(ND)) &&
5264 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5265 // Only a class or class template can take two or more arguments.
5266 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5267
5268 // Skip the current candidate if it is not a FunctionDecl or does not accept
5269 // the current number of arguments.
5270 if (!FD || !(FD->getNumParams() >= NumArgs &&
5271 FD->getMinRequiredArguments() <= NumArgs))
5272 continue;
5273
5274 // If the current candidate is a non-static C++ method, skip the candidate
5275 // unless the method being corrected--or the current DeclContext, if the
5276 // function being corrected is not a method--is a method in the same class
5277 // or a descendent class of the candidate's parent class.
5278 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5279 if (MemberFn || !MD->isStatic()) {
5280 CXXMethodDecl *CurMD =
5281 MemberFn
5282 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5283 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5284 CXXRecordDecl *CurRD =
5285 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5286 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5287 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5288 continue;
5289 }
5290 }
5291 return true;
5292 }
5293 return false;
5294 }
5295
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,bool ErrorRecovery)5296 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5297 const PartialDiagnostic &TypoDiag,
5298 bool ErrorRecovery) {
5299 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5300 ErrorRecovery);
5301 }
5302
5303 /// Find which declaration we should import to provide the definition of
5304 /// the given declaration.
getDefinitionToImport(NamedDecl * D)5305 static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5306 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5307 return VD->getDefinition();
5308 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5309 return FD->getDefinition();
5310 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5311 return TD->getDefinition();
5312 // The first definition for this ObjCInterfaceDecl might be in the TU
5313 // and not associated with any module. Use the one we know to be complete
5314 // and have just seen in a module.
5315 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5316 return ID;
5317 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5318 return PD->getDefinition();
5319 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5320 if (NamedDecl *TTD = TD->getTemplatedDecl())
5321 return getDefinitionToImport(TTD);
5322 return nullptr;
5323 }
5324
diagnoseMissingImport(SourceLocation Loc,NamedDecl * Decl,MissingImportKind MIK,bool Recover)5325 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5326 MissingImportKind MIK, bool Recover) {
5327 // Suggest importing a module providing the definition of this entity, if
5328 // possible.
5329 NamedDecl *Def = getDefinitionToImport(Decl);
5330 if (!Def)
5331 Def = Decl;
5332
5333 Module *Owner = getOwningModule(Def);
5334 assert(Owner && "definition of hidden declaration is not in a module");
5335
5336 llvm::SmallVector<Module*, 8> OwningModules;
5337 OwningModules.push_back(Owner);
5338 auto Merged = Context.getModulesWithMergedDefinition(Def);
5339 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5340
5341 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5342 Recover);
5343 }
5344
5345 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5346 /// suggesting the addition of a #include of the specified file.
getIncludeStringForHeader(Preprocessor & PP,const FileEntry * E,llvm::StringRef IncludingFile)5347 static std::string getIncludeStringForHeader(Preprocessor &PP,
5348 const FileEntry *E,
5349 llvm::StringRef IncludingFile) {
5350 bool IsSystem = false;
5351 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5352 E, IncludingFile, &IsSystem);
5353 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5354 }
5355
diagnoseMissingImport(SourceLocation UseLoc,NamedDecl * Decl,SourceLocation DeclLoc,ArrayRef<Module * > Modules,MissingImportKind MIK,bool Recover)5356 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5357 SourceLocation DeclLoc,
5358 ArrayRef<Module *> Modules,
5359 MissingImportKind MIK, bool Recover) {
5360 assert(!Modules.empty());
5361
5362 auto NotePrevious = [&] {
5363 unsigned DiagID;
5364 switch (MIK) {
5365 case MissingImportKind::Declaration:
5366 DiagID = diag::note_previous_declaration;
5367 break;
5368 case MissingImportKind::Definition:
5369 DiagID = diag::note_previous_definition;
5370 break;
5371 case MissingImportKind::DefaultArgument:
5372 DiagID = diag::note_default_argument_declared_here;
5373 break;
5374 case MissingImportKind::ExplicitSpecialization:
5375 DiagID = diag::note_explicit_specialization_declared_here;
5376 break;
5377 case MissingImportKind::PartialSpecialization:
5378 DiagID = diag::note_partial_specialization_declared_here;
5379 break;
5380 }
5381 Diag(DeclLoc, DiagID);
5382 };
5383
5384 // Weed out duplicates from module list.
5385 llvm::SmallVector<Module*, 8> UniqueModules;
5386 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5387 for (auto *M : Modules) {
5388 if (M->Kind == Module::GlobalModuleFragment)
5389 continue;
5390 if (UniqueModuleSet.insert(M).second)
5391 UniqueModules.push_back(M);
5392 }
5393
5394 llvm::StringRef IncludingFile;
5395 if (const FileEntry *FE =
5396 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5397 IncludingFile = FE->tryGetRealPathName();
5398
5399 if (UniqueModules.empty()) {
5400 // All candidates were global module fragments. Try to suggest a #include.
5401 const FileEntry *E =
5402 PP.getModuleHeaderToIncludeForDiagnostics(UseLoc, Modules[0], DeclLoc);
5403 // FIXME: Find a smart place to suggest inserting a #include, and add
5404 // a FixItHint there.
5405 Diag(UseLoc, diag::err_module_unimported_use_global_module_fragment)
5406 << (int)MIK << Decl << !!E
5407 << (E ? getIncludeStringForHeader(PP, E, IncludingFile) : "");
5408 // Produce a "previous" note if it will point to a header rather than some
5409 // random global module fragment.
5410 // FIXME: Suppress the note backtrace even under
5411 // -fdiagnostics-show-note-include-stack.
5412 if (E)
5413 NotePrevious();
5414 if (Recover)
5415 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5416 return;
5417 }
5418
5419 Modules = UniqueModules;
5420
5421 if (Modules.size() > 1) {
5422 std::string ModuleList;
5423 unsigned N = 0;
5424 for (Module *M : Modules) {
5425 ModuleList += "\n ";
5426 if (++N == 5 && N != Modules.size()) {
5427 ModuleList += "[...]";
5428 break;
5429 }
5430 ModuleList += M->getFullModuleName();
5431 }
5432
5433 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5434 << (int)MIK << Decl << ModuleList;
5435 } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5436 UseLoc, Modules[0], DeclLoc)) {
5437 // The right way to make the declaration visible is to include a header;
5438 // suggest doing so.
5439 //
5440 // FIXME: Find a smart place to suggest inserting a #include, and add
5441 // a FixItHint there.
5442 Diag(UseLoc, diag::err_module_unimported_use_header)
5443 << (int)MIK << Decl << Modules[0]->getFullModuleName()
5444 << getIncludeStringForHeader(PP, E, IncludingFile);
5445 } else {
5446 // FIXME: Add a FixItHint that imports the corresponding module.
5447 Diag(UseLoc, diag::err_module_unimported_use)
5448 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5449 }
5450
5451 NotePrevious();
5452
5453 // Try to recover by implicitly importing this module.
5454 if (Recover)
5455 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5456 }
5457
5458 /// Diagnose a successfully-corrected typo. Separated from the correction
5459 /// itself to allow external validation of the result, etc.
5460 ///
5461 /// \param Correction The result of performing typo correction.
5462 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5463 /// string added to it (and usually also a fixit).
5464 /// \param PrevNote A note to use when indicating the location of the entity to
5465 /// which we are correcting. Will have the correction string added to it.
5466 /// \param ErrorRecovery If \c true (the default), the caller is going to
5467 /// recover from the typo as if the corrected string had been typed.
5468 /// In this case, \c PDiag must be an error, and we will attach a fixit
5469 /// to it.
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,const PartialDiagnostic & PrevNote,bool ErrorRecovery)5470 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5471 const PartialDiagnostic &TypoDiag,
5472 const PartialDiagnostic &PrevNote,
5473 bool ErrorRecovery) {
5474 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5475 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5476 FixItHint FixTypo = FixItHint::CreateReplacement(
5477 Correction.getCorrectionRange(), CorrectedStr);
5478
5479 // Maybe we're just missing a module import.
5480 if (Correction.requiresImport()) {
5481 NamedDecl *Decl = Correction.getFoundDecl();
5482 assert(Decl && "import required but no declaration to import");
5483
5484 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5485 MissingImportKind::Declaration, ErrorRecovery);
5486 return;
5487 }
5488
5489 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5490 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5491
5492 NamedDecl *ChosenDecl =
5493 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5494 if (PrevNote.getDiagID() && ChosenDecl)
5495 Diag(ChosenDecl->getLocation(), PrevNote)
5496 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5497
5498 // Add any extra diagnostics.
5499 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5500 Diag(Correction.getCorrectionRange().getBegin(), PD);
5501 }
5502
createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC)5503 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5504 TypoDiagnosticGenerator TDG,
5505 TypoRecoveryCallback TRC) {
5506 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5507 auto TE = new (Context) TypoExpr(Context.DependentTy);
5508 auto &State = DelayedTypos[TE];
5509 State.Consumer = std::move(TCC);
5510 State.DiagHandler = std::move(TDG);
5511 State.RecoveryHandler = std::move(TRC);
5512 if (TE)
5513 TypoExprs.push_back(TE);
5514 return TE;
5515 }
5516
getTypoExprState(TypoExpr * TE) const5517 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5518 auto Entry = DelayedTypos.find(TE);
5519 assert(Entry != DelayedTypos.end() &&
5520 "Failed to get the state for a TypoExpr!");
5521 return Entry->second;
5522 }
5523
clearDelayedTypo(TypoExpr * TE)5524 void Sema::clearDelayedTypo(TypoExpr *TE) {
5525 DelayedTypos.erase(TE);
5526 }
5527
ActOnPragmaDump(Scope * S,SourceLocation IILoc,IdentifierInfo * II)5528 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5529 DeclarationNameInfo Name(II, IILoc);
5530 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5531 R.suppressDiagnostics();
5532 R.setHideTags(false);
5533 LookupName(R, S);
5534 R.dump();
5535 }
5536