1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/CodeGen/ValueTypes.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
makeVTList(const EVT * VTs,unsigned NumVTs)84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
NodeDeleted(SDNode *,SDNode *)90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
NodeUpdated(SDNode *)91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
NodeInserted(SDNode *)92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
anchor()94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
NewSDValueDbgMsg(SDValue V,StringRef Msg,SelectionDAG * G)106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
isExactlyValue(const APFloat & V) const118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
isValueValidForType(EVT VT,const APFloat & Val)122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
isConstantSplatVector(const SDNode * N,APInt & SplatVal)139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   auto *BV = dyn_cast<BuildVectorSDNode>(N);
141   if (!BV)
142     return false;
143 
144   APInt SplatUndef;
145   unsigned SplatBitSize;
146   bool HasUndefs;
147   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
148   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
149                              EltSize) &&
150          EltSize == SplatBitSize;
151 }
152 
153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
154 // specializations of the more general isConstantSplatVector()?
155 
isBuildVectorAllOnes(const SDNode * N)156 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   unsigned i = 0, e = N->getNumOperands();
164 
165   // Skip over all of the undef values.
166   while (i != e && N->getOperand(i).isUndef())
167     ++i;
168 
169   // Do not accept an all-undef vector.
170   if (i == e) return false;
171 
172   // Do not accept build_vectors that aren't all constants or which have non-~0
173   // elements. We have to be a bit careful here, as the type of the constant
174   // may not be the same as the type of the vector elements due to type
175   // legalization (the elements are promoted to a legal type for the target and
176   // a vector of a type may be legal when the base element type is not).
177   // We only want to check enough bits to cover the vector elements, because
178   // we care if the resultant vector is all ones, not whether the individual
179   // constants are.
180   SDValue NotZero = N->getOperand(i);
181   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
182   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
183     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
184       return false;
185   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
186     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
187       return false;
188   } else
189     return false;
190 
191   // Okay, we have at least one ~0 value, check to see if the rest match or are
192   // undefs. Even with the above element type twiddling, this should be OK, as
193   // the same type legalization should have applied to all the elements.
194   for (++i; i != e; ++i)
195     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
196       return false;
197   return true;
198 }
199 
isBuildVectorAllZeros(const SDNode * N)200 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
201   // Look through a bit convert.
202   while (N->getOpcode() == ISD::BITCAST)
203     N = N->getOperand(0).getNode();
204 
205   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
206 
207   bool IsAllUndef = true;
208   for (const SDValue &Op : N->op_values()) {
209     if (Op.isUndef())
210       continue;
211     IsAllUndef = false;
212     // Do not accept build_vectors that aren't all constants or which have non-0
213     // elements. We have to be a bit careful here, as the type of the constant
214     // may not be the same as the type of the vector elements due to type
215     // legalization (the elements are promoted to a legal type for the target
216     // and a vector of a type may be legal when the base element type is not).
217     // We only want to check enough bits to cover the vector elements, because
218     // we care if the resultant vector is all zeros, not whether the individual
219     // constants are.
220     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
221     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
222       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
223         return false;
224     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
225       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
226         return false;
227     } else
228       return false;
229   }
230 
231   // Do not accept an all-undef vector.
232   if (IsAllUndef)
233     return false;
234   return true;
235 }
236 
isBuildVectorOfConstantSDNodes(const SDNode * N)237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
238   if (N->getOpcode() != ISD::BUILD_VECTOR)
239     return false;
240 
241   for (const SDValue &Op : N->op_values()) {
242     if (Op.isUndef())
243       continue;
244     if (!isa<ConstantSDNode>(Op))
245       return false;
246   }
247   return true;
248 }
249 
isBuildVectorOfConstantFPSDNodes(const SDNode * N)250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
251   if (N->getOpcode() != ISD::BUILD_VECTOR)
252     return false;
253 
254   for (const SDValue &Op : N->op_values()) {
255     if (Op.isUndef())
256       continue;
257     if (!isa<ConstantFPSDNode>(Op))
258       return false;
259   }
260   return true;
261 }
262 
allOperandsUndef(const SDNode * N)263 bool ISD::allOperandsUndef(const SDNode *N) {
264   // Return false if the node has no operands.
265   // This is "logically inconsistent" with the definition of "all" but
266   // is probably the desired behavior.
267   if (N->getNumOperands() == 0)
268     return false;
269   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
270 }
271 
matchUnaryPredicate(SDValue Op,std::function<bool (ConstantSDNode *)> Match,bool AllowUndefs)272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
matchBinaryPredicate(SDValue LHS,SDValue RHS,std::function<bool (ConstantSDNode *,ConstantSDNode *)> Match,bool AllowUndefs,bool AllowTypeMismatch)298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs, bool AllowTypeMismatch) {
302   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
326                                LHSOp.getValueType() != RHSOp.getValueType()))
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
getExtForLoadExtType(bool IsFP,ISD::LoadExtType ExtType)334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
getSetCCSwappedOperands(ISD::CondCode Operation)349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
getSetCCInverseImpl(ISD::CondCode Op,bool isIntegerLike)359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
360   unsigned Operation = Op;
361   if (isIntegerLike)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
getSetCCInverse(ISD::CondCode Op,EVT Type)372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
373   return getSetCCInverseImpl(Op, Type.isInteger());
374 }
375 
getSetCCInverse(ISD::CondCode Op,bool isIntegerLike)376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
377                                                bool isIntegerLike) {
378   return getSetCCInverseImpl(Op, isIntegerLike);
379 }
380 
381 /// For an integer comparison, return 1 if the comparison is a signed operation
382 /// and 2 if the result is an unsigned comparison. Return zero if the operation
383 /// does not depend on the sign of the input (setne and seteq).
isSignedOp(ISD::CondCode Opcode)384 static int isSignedOp(ISD::CondCode Opcode) {
385   switch (Opcode) {
386   default: llvm_unreachable("Illegal integer setcc operation!");
387   case ISD::SETEQ:
388   case ISD::SETNE: return 0;
389   case ISD::SETLT:
390   case ISD::SETLE:
391   case ISD::SETGT:
392   case ISD::SETGE: return 1;
393   case ISD::SETULT:
394   case ISD::SETULE:
395   case ISD::SETUGT:
396   case ISD::SETUGE: return 2;
397   }
398 }
399 
getSetCCOrOperation(ISD::CondCode Op1,ISD::CondCode Op2,EVT Type)400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
401                                        EVT Type) {
402   bool IsInteger = Type.isInteger();
403   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
404     // Cannot fold a signed integer setcc with an unsigned integer setcc.
405     return ISD::SETCC_INVALID;
406 
407   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
408 
409   // If the N and U bits get set, then the resultant comparison DOES suddenly
410   // care about orderedness, and it is true when ordered.
411   if (Op > ISD::SETTRUE2)
412     Op &= ~16;     // Clear the U bit if the N bit is set.
413 
414   // Canonicalize illegal integer setcc's.
415   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
416     Op = ISD::SETNE;
417 
418   return ISD::CondCode(Op);
419 }
420 
getSetCCAndOperation(ISD::CondCode Op1,ISD::CondCode Op2,EVT Type)421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
422                                         EVT Type) {
423   bool IsInteger = Type.isInteger();
424   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
425     // Cannot fold a signed setcc with an unsigned setcc.
426     return ISD::SETCC_INVALID;
427 
428   // Combine all of the condition bits.
429   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
430 
431   // Canonicalize illegal integer setcc's.
432   if (IsInteger) {
433     switch (Result) {
434     default: break;
435     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
436     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
437     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
438     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
439     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
440     }
441   }
442 
443   return Result;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                           SDNode Profile Support
448 //===----------------------------------------------------------------------===//
449 
450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
AddNodeIDOpcode(FoldingSetNodeID & ID,unsigned OpC)451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
452   ID.AddInteger(OpC);
453 }
454 
455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
456 /// solely with their pointer.
AddNodeIDValueTypes(FoldingSetNodeID & ID,SDVTList VTList)457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
458   ID.AddPointer(VTList.VTs);
459 }
460 
461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDValue> Ops)462 static void AddNodeIDOperands(FoldingSetNodeID &ID,
463                               ArrayRef<SDValue> Ops) {
464   for (auto& Op : Ops) {
465     ID.AddPointer(Op.getNode());
466     ID.AddInteger(Op.getResNo());
467   }
468 }
469 
470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDUse> Ops)471 static void AddNodeIDOperands(FoldingSetNodeID &ID,
472                               ArrayRef<SDUse> Ops) {
473   for (auto& Op : Ops) {
474     ID.AddPointer(Op.getNode());
475     ID.AddInteger(Op.getResNo());
476   }
477 }
478 
AddNodeIDNode(FoldingSetNodeID & ID,unsigned short OpC,SDVTList VTList,ArrayRef<SDValue> OpList)479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
480                           SDVTList VTList, ArrayRef<SDValue> OpList) {
481   AddNodeIDOpcode(ID, OpC);
482   AddNodeIDValueTypes(ID, VTList);
483   AddNodeIDOperands(ID, OpList);
484 }
485 
486 /// If this is an SDNode with special info, add this info to the NodeID data.
AddNodeIDCustom(FoldingSetNodeID & ID,const SDNode * N)487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
488   switch (N->getOpcode()) {
489   case ISD::TargetExternalSymbol:
490   case ISD::ExternalSymbol:
491   case ISD::MCSymbol:
492     llvm_unreachable("Should only be used on nodes with operands");
493   default: break;  // Normal nodes don't need extra info.
494   case ISD::TargetConstant:
495   case ISD::Constant: {
496     const ConstantSDNode *C = cast<ConstantSDNode>(N);
497     ID.AddPointer(C->getConstantIntValue());
498     ID.AddBoolean(C->isOpaque());
499     break;
500   }
501   case ISD::TargetConstantFP:
502   case ISD::ConstantFP:
503     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
504     break;
505   case ISD::TargetGlobalAddress:
506   case ISD::GlobalAddress:
507   case ISD::TargetGlobalTLSAddress:
508   case ISD::GlobalTLSAddress: {
509     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
510     ID.AddPointer(GA->getGlobal());
511     ID.AddInteger(GA->getOffset());
512     ID.AddInteger(GA->getTargetFlags());
513     break;
514   }
515   case ISD::BasicBlock:
516     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
517     break;
518   case ISD::Register:
519     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
520     break;
521   case ISD::RegisterMask:
522     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
523     break;
524   case ISD::SRCVALUE:
525     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
526     break;
527   case ISD::FrameIndex:
528   case ISD::TargetFrameIndex:
529     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
530     break;
531   case ISD::LIFETIME_START:
532   case ISD::LIFETIME_END:
533     if (cast<LifetimeSDNode>(N)->hasOffset()) {
534       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
536     }
537     break;
538   case ISD::JumpTable:
539   case ISD::TargetJumpTable:
540     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
542     break;
543   case ISD::ConstantPool:
544   case ISD::TargetConstantPool: {
545     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
546     ID.AddInteger(CP->getAlignment());
547     ID.AddInteger(CP->getOffset());
548     if (CP->isMachineConstantPoolEntry())
549       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
550     else
551       ID.AddPointer(CP->getConstVal());
552     ID.AddInteger(CP->getTargetFlags());
553     break;
554   }
555   case ISD::TargetIndex: {
556     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
557     ID.AddInteger(TI->getIndex());
558     ID.AddInteger(TI->getOffset());
559     ID.AddInteger(TI->getTargetFlags());
560     break;
561   }
562   case ISD::LOAD: {
563     const LoadSDNode *LD = cast<LoadSDNode>(N);
564     ID.AddInteger(LD->getMemoryVT().getRawBits());
565     ID.AddInteger(LD->getRawSubclassData());
566     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::STORE: {
570     const StoreSDNode *ST = cast<StoreSDNode>(N);
571     ID.AddInteger(ST->getMemoryVT().getRawBits());
572     ID.AddInteger(ST->getRawSubclassData());
573     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
574     break;
575   }
576   case ISD::MLOAD: {
577     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
578     ID.AddInteger(MLD->getMemoryVT().getRawBits());
579     ID.AddInteger(MLD->getRawSubclassData());
580     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
581     break;
582   }
583   case ISD::MSTORE: {
584     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
585     ID.AddInteger(MST->getMemoryVT().getRawBits());
586     ID.AddInteger(MST->getRawSubclassData());
587     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
588     break;
589   }
590   case ISD::MGATHER: {
591     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
592     ID.AddInteger(MG->getMemoryVT().getRawBits());
593     ID.AddInteger(MG->getRawSubclassData());
594     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
595     break;
596   }
597   case ISD::MSCATTER: {
598     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
599     ID.AddInteger(MS->getMemoryVT().getRawBits());
600     ID.AddInteger(MS->getRawSubclassData());
601     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
602     break;
603   }
604   case ISD::ATOMIC_CMP_SWAP:
605   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
606   case ISD::ATOMIC_SWAP:
607   case ISD::ATOMIC_LOAD_ADD:
608   case ISD::ATOMIC_LOAD_SUB:
609   case ISD::ATOMIC_LOAD_AND:
610   case ISD::ATOMIC_LOAD_CLR:
611   case ISD::ATOMIC_LOAD_OR:
612   case ISD::ATOMIC_LOAD_XOR:
613   case ISD::ATOMIC_LOAD_NAND:
614   case ISD::ATOMIC_LOAD_MIN:
615   case ISD::ATOMIC_LOAD_MAX:
616   case ISD::ATOMIC_LOAD_UMIN:
617   case ISD::ATOMIC_LOAD_UMAX:
618   case ISD::ATOMIC_LOAD:
619   case ISD::ATOMIC_STORE: {
620     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
621     ID.AddInteger(AT->getMemoryVT().getRawBits());
622     ID.AddInteger(AT->getRawSubclassData());
623     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
624     break;
625   }
626   case ISD::PREFETCH: {
627     const MemSDNode *PF = cast<MemSDNode>(N);
628     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
629     break;
630   }
631   case ISD::VECTOR_SHUFFLE: {
632     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
633     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
634          i != e; ++i)
635       ID.AddInteger(SVN->getMaskElt(i));
636     break;
637   }
638   case ISD::TargetBlockAddress:
639   case ISD::BlockAddress: {
640     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
641     ID.AddPointer(BA->getBlockAddress());
642     ID.AddInteger(BA->getOffset());
643     ID.AddInteger(BA->getTargetFlags());
644     break;
645   }
646   } // end switch (N->getOpcode())
647 
648   // Target specific memory nodes could also have address spaces to check.
649   if (N->isTargetMemoryOpcode())
650     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
651 }
652 
653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
654 /// data.
AddNodeIDNode(FoldingSetNodeID & ID,const SDNode * N)655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
656   AddNodeIDOpcode(ID, N->getOpcode());
657   // Add the return value info.
658   AddNodeIDValueTypes(ID, N->getVTList());
659   // Add the operand info.
660   AddNodeIDOperands(ID, N->ops());
661 
662   // Handle SDNode leafs with special info.
663   AddNodeIDCustom(ID, N);
664 }
665 
666 //===----------------------------------------------------------------------===//
667 //                              SelectionDAG Class
668 //===----------------------------------------------------------------------===//
669 
670 /// doNotCSE - Return true if CSE should not be performed for this node.
doNotCSE(SDNode * N)671 static bool doNotCSE(SDNode *N) {
672   if (N->getValueType(0) == MVT::Glue)
673     return true; // Never CSE anything that produces a flag.
674 
675   switch (N->getOpcode()) {
676   default: break;
677   case ISD::HANDLENODE:
678   case ISD::EH_LABEL:
679     return true;   // Never CSE these nodes.
680   }
681 
682   // Check that remaining values produced are not flags.
683   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
684     if (N->getValueType(i) == MVT::Glue)
685       return true; // Never CSE anything that produces a flag.
686 
687   return false;
688 }
689 
690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
691 /// SelectionDAG.
RemoveDeadNodes()692 void SelectionDAG::RemoveDeadNodes() {
693   // Create a dummy node (which is not added to allnodes), that adds a reference
694   // to the root node, preventing it from being deleted.
695   HandleSDNode Dummy(getRoot());
696 
697   SmallVector<SDNode*, 128> DeadNodes;
698 
699   // Add all obviously-dead nodes to the DeadNodes worklist.
700   for (SDNode &Node : allnodes())
701     if (Node.use_empty())
702       DeadNodes.push_back(&Node);
703 
704   RemoveDeadNodes(DeadNodes);
705 
706   // If the root changed (e.g. it was a dead load, update the root).
707   setRoot(Dummy.getValue());
708 }
709 
710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
711 /// given list, and any nodes that become unreachable as a result.
RemoveDeadNodes(SmallVectorImpl<SDNode * > & DeadNodes)712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
713 
714   // Process the worklist, deleting the nodes and adding their uses to the
715   // worklist.
716   while (!DeadNodes.empty()) {
717     SDNode *N = DeadNodes.pop_back_val();
718     // Skip to next node if we've already managed to delete the node. This could
719     // happen if replacing a node causes a node previously added to the node to
720     // be deleted.
721     if (N->getOpcode() == ISD::DELETED_NODE)
722       continue;
723 
724     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
725       DUL->NodeDeleted(N, nullptr);
726 
727     // Take the node out of the appropriate CSE map.
728     RemoveNodeFromCSEMaps(N);
729 
730     // Next, brutally remove the operand list.  This is safe to do, as there are
731     // no cycles in the graph.
732     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
733       SDUse &Use = *I++;
734       SDNode *Operand = Use.getNode();
735       Use.set(SDValue());
736 
737       // Now that we removed this operand, see if there are no uses of it left.
738       if (Operand->use_empty())
739         DeadNodes.push_back(Operand);
740     }
741 
742     DeallocateNode(N);
743   }
744 }
745 
RemoveDeadNode(SDNode * N)746 void SelectionDAG::RemoveDeadNode(SDNode *N){
747   SmallVector<SDNode*, 16> DeadNodes(1, N);
748 
749   // Create a dummy node that adds a reference to the root node, preventing
750   // it from being deleted.  (This matters if the root is an operand of the
751   // dead node.)
752   HandleSDNode Dummy(getRoot());
753 
754   RemoveDeadNodes(DeadNodes);
755 }
756 
DeleteNode(SDNode * N)757 void SelectionDAG::DeleteNode(SDNode *N) {
758   // First take this out of the appropriate CSE map.
759   RemoveNodeFromCSEMaps(N);
760 
761   // Finally, remove uses due to operands of this node, remove from the
762   // AllNodes list, and delete the node.
763   DeleteNodeNotInCSEMaps(N);
764 }
765 
DeleteNodeNotInCSEMaps(SDNode * N)766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
767   assert(N->getIterator() != AllNodes.begin() &&
768          "Cannot delete the entry node!");
769   assert(N->use_empty() && "Cannot delete a node that is not dead!");
770 
771   // Drop all of the operands and decrement used node's use counts.
772   N->DropOperands();
773 
774   DeallocateNode(N);
775 }
776 
erase(const SDNode * Node)777 void SDDbgInfo::erase(const SDNode *Node) {
778   DbgValMapType::iterator I = DbgValMap.find(Node);
779   if (I == DbgValMap.end())
780     return;
781   for (auto &Val: I->second)
782     Val->setIsInvalidated();
783   DbgValMap.erase(I);
784 }
785 
DeallocateNode(SDNode * N)786 void SelectionDAG::DeallocateNode(SDNode *N) {
787   // If we have operands, deallocate them.
788   removeOperands(N);
789 
790   NodeAllocator.Deallocate(AllNodes.remove(N));
791 
792   // Set the opcode to DELETED_NODE to help catch bugs when node
793   // memory is reallocated.
794   // FIXME: There are places in SDag that have grown a dependency on the opcode
795   // value in the released node.
796   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
797   N->NodeType = ISD::DELETED_NODE;
798 
799   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
800   // them and forget about that node.
801   DbgInfo->erase(N);
802 }
803 
804 #ifndef NDEBUG
805 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
VerifySDNode(SDNode * N)806 static void VerifySDNode(SDNode *N) {
807   switch (N->getOpcode()) {
808   default:
809     break;
810   case ISD::BUILD_PAIR: {
811     EVT VT = N->getValueType(0);
812     assert(N->getNumValues() == 1 && "Too many results!");
813     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
814            "Wrong return type!");
815     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
816     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
817            "Mismatched operand types!");
818     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
819            "Wrong operand type!");
820     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
821            "Wrong return type size");
822     break;
823   }
824   case ISD::BUILD_VECTOR: {
825     assert(N->getNumValues() == 1 && "Too many results!");
826     assert(N->getValueType(0).isVector() && "Wrong return type!");
827     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
828            "Wrong number of operands!");
829     EVT EltVT = N->getValueType(0).getVectorElementType();
830     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
831       assert((I->getValueType() == EltVT ||
832              (EltVT.isInteger() && I->getValueType().isInteger() &&
833               EltVT.bitsLE(I->getValueType()))) &&
834             "Wrong operand type!");
835       assert(I->getValueType() == N->getOperand(0).getValueType() &&
836              "Operands must all have the same type");
837     }
838     break;
839   }
840   }
841 }
842 #endif // NDEBUG
843 
844 /// Insert a newly allocated node into the DAG.
845 ///
846 /// Handles insertion into the all nodes list and CSE map, as well as
847 /// verification and other common operations when a new node is allocated.
InsertNode(SDNode * N)848 void SelectionDAG::InsertNode(SDNode *N) {
849   AllNodes.push_back(N);
850 #ifndef NDEBUG
851   N->PersistentId = NextPersistentId++;
852   VerifySDNode(N);
853 #endif
854   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
855     DUL->NodeInserted(N);
856 }
857 
858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
859 /// correspond to it.  This is useful when we're about to delete or repurpose
860 /// the node.  We don't want future request for structurally identical nodes
861 /// to return N anymore.
RemoveNodeFromCSEMaps(SDNode * N)862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
863   bool Erased = false;
864   switch (N->getOpcode()) {
865   case ISD::HANDLENODE: return false;  // noop.
866   case ISD::CONDCODE:
867     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
868            "Cond code doesn't exist!");
869     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
870     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
871     break;
872   case ISD::ExternalSymbol:
873     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
874     break;
875   case ISD::TargetExternalSymbol: {
876     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
877     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
878         ESN->getSymbol(), ESN->getTargetFlags()));
879     break;
880   }
881   case ISD::MCSymbol: {
882     auto *MCSN = cast<MCSymbolSDNode>(N);
883     Erased = MCSymbols.erase(MCSN->getMCSymbol());
884     break;
885   }
886   case ISD::VALUETYPE: {
887     EVT VT = cast<VTSDNode>(N)->getVT();
888     if (VT.isExtended()) {
889       Erased = ExtendedValueTypeNodes.erase(VT);
890     } else {
891       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
892       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
893     }
894     break;
895   }
896   default:
897     // Remove it from the CSE Map.
898     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
899     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
900     Erased = CSEMap.RemoveNode(N);
901     break;
902   }
903 #ifndef NDEBUG
904   // Verify that the node was actually in one of the CSE maps, unless it has a
905   // flag result (which cannot be CSE'd) or is one of the special cases that are
906   // not subject to CSE.
907   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
908       !N->isMachineOpcode() && !doNotCSE(N)) {
909     N->dump(this);
910     dbgs() << "\n";
911     llvm_unreachable("Node is not in map!");
912   }
913 #endif
914   return Erased;
915 }
916 
917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
918 /// maps and modified in place. Add it back to the CSE maps, unless an identical
919 /// node already exists, in which case transfer all its users to the existing
920 /// node. This transfer can potentially trigger recursive merging.
921 void
AddModifiedNodeToCSEMaps(SDNode * N)922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
923   // For node types that aren't CSE'd, just act as if no identical node
924   // already exists.
925   if (!doNotCSE(N)) {
926     SDNode *Existing = CSEMap.GetOrInsertNode(N);
927     if (Existing != N) {
928       // If there was already an existing matching node, use ReplaceAllUsesWith
929       // to replace the dead one with the existing one.  This can cause
930       // recursive merging of other unrelated nodes down the line.
931       ReplaceAllUsesWith(N, Existing);
932 
933       // N is now dead. Inform the listeners and delete it.
934       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
935         DUL->NodeDeleted(N, Existing);
936       DeleteNodeNotInCSEMaps(N);
937       return;
938     }
939   }
940 
941   // If the node doesn't already exist, we updated it.  Inform listeners.
942   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
943     DUL->NodeUpdated(N);
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op,void * & InsertPos)950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
951                                            void *&InsertPos) {
952   if (doNotCSE(N))
953     return nullptr;
954 
955   SDValue Ops[] = { Op };
956   FoldingSetNodeID ID;
957   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
958   AddNodeIDCustom(ID, N);
959   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
960   if (Node)
961     Node->intersectFlagsWith(N->getFlags());
962   return Node;
963 }
964 
965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
966 /// were replaced with those specified.  If this node is never memoized,
967 /// return null, otherwise return a pointer to the slot it would take.  If a
968 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op1,SDValue Op2,void * & InsertPos)969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
970                                            SDValue Op1, SDValue Op2,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   SDValue Ops[] = { Op1, Op2 };
976   FoldingSetNodeID ID;
977   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978   AddNodeIDCustom(ID, N);
979   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980   if (Node)
981     Node->intersectFlagsWith(N->getFlags());
982   return Node;
983 }
984 
985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
986 /// were replaced with those specified.  If this node is never memoized,
987 /// return null, otherwise return a pointer to the slot it would take.  If a
988 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,ArrayRef<SDValue> Ops,void * & InsertPos)989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
990                                            void *&InsertPos) {
991   if (doNotCSE(N))
992     return nullptr;
993 
994   FoldingSetNodeID ID;
995   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
996   AddNodeIDCustom(ID, N);
997   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
998   if (Node)
999     Node->intersectFlagsWith(N->getFlags());
1000   return Node;
1001 }
1002 
getEVTAlignment(EVT VT) const1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
1004   Type *Ty = VT == MVT::iPTR ?
1005                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1006                    VT.getTypeForEVT(*getContext());
1007 
1008   return getDataLayout().getABITypeAlignment(Ty);
1009 }
1010 
1011 // EntryNode could meaningfully have debug info if we can find it...
SelectionDAG(const TargetMachine & tm,CodeGenOpt::Level OL)1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1013     : TM(tm), OptLevel(OL),
1014       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1015       Root(getEntryNode()) {
1016   InsertNode(&EntryNode);
1017   DbgInfo = new SDDbgInfo();
1018 }
1019 
init(MachineFunction & NewMF,OptimizationRemarkEmitter & NewORE,Pass * PassPtr,const TargetLibraryInfo * LibraryInfo,LegacyDivergenceAnalysis * Divergence,ProfileSummaryInfo * PSIin,BlockFrequencyInfo * BFIin)1020 void SelectionDAG::init(MachineFunction &NewMF,
1021                         OptimizationRemarkEmitter &NewORE,
1022                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1023                         LegacyDivergenceAnalysis * Divergence,
1024                         ProfileSummaryInfo *PSIin,
1025                         BlockFrequencyInfo *BFIin) {
1026   MF = &NewMF;
1027   SDAGISelPass = PassPtr;
1028   ORE = &NewORE;
1029   TLI = getSubtarget().getTargetLowering();
1030   TSI = getSubtarget().getSelectionDAGInfo();
1031   LibInfo = LibraryInfo;
1032   Context = &MF->getFunction().getContext();
1033   DA = Divergence;
1034   PSI = PSIin;
1035   BFI = BFIin;
1036 }
1037 
~SelectionDAG()1038 SelectionDAG::~SelectionDAG() {
1039   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1040   allnodes_clear();
1041   OperandRecycler.clear(OperandAllocator);
1042   delete DbgInfo;
1043 }
1044 
shouldOptForSize() const1045 bool SelectionDAG::shouldOptForSize() const {
1046   return MF->getFunction().hasOptSize() ||
1047       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1048 }
1049 
allnodes_clear()1050 void SelectionDAG::allnodes_clear() {
1051   assert(&*AllNodes.begin() == &EntryNode);
1052   AllNodes.remove(AllNodes.begin());
1053   while (!AllNodes.empty())
1054     DeallocateNode(&AllNodes.front());
1055 #ifndef NDEBUG
1056   NextPersistentId = 0;
1057 #endif
1058 }
1059 
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1061                                           void *&InsertPos) {
1062   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1063   if (N) {
1064     switch (N->getOpcode()) {
1065     default: break;
1066     case ISD::Constant:
1067     case ISD::ConstantFP:
1068       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1069                        "debug location.  Use another overload.");
1070     }
1071   }
1072   return N;
1073 }
1074 
FindNodeOrInsertPos(const FoldingSetNodeID & ID,const SDLoc & DL,void * & InsertPos)1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1076                                           const SDLoc &DL, void *&InsertPos) {
1077   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1078   if (N) {
1079     switch (N->getOpcode()) {
1080     case ISD::Constant:
1081     case ISD::ConstantFP:
1082       // Erase debug location from the node if the node is used at several
1083       // different places. Do not propagate one location to all uses as it
1084       // will cause a worse single stepping debugging experience.
1085       if (N->getDebugLoc() != DL.getDebugLoc())
1086         N->setDebugLoc(DebugLoc());
1087       break;
1088     default:
1089       // When the node's point of use is located earlier in the instruction
1090       // sequence than its prior point of use, update its debug info to the
1091       // earlier location.
1092       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1093         N->setDebugLoc(DL.getDebugLoc());
1094       break;
1095     }
1096   }
1097   return N;
1098 }
1099 
clear()1100 void SelectionDAG::clear() {
1101   allnodes_clear();
1102   OperandRecycler.clear(OperandAllocator);
1103   OperandAllocator.Reset();
1104   CSEMap.clear();
1105 
1106   ExtendedValueTypeNodes.clear();
1107   ExternalSymbols.clear();
1108   TargetExternalSymbols.clear();
1109   MCSymbols.clear();
1110   SDCallSiteDbgInfo.clear();
1111   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1112             static_cast<CondCodeSDNode*>(nullptr));
1113   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1114             static_cast<SDNode*>(nullptr));
1115 
1116   EntryNode.UseList = nullptr;
1117   InsertNode(&EntryNode);
1118   Root = getEntryNode();
1119   DbgInfo->clear();
1120 }
1121 
getFPExtendOrRound(SDValue Op,const SDLoc & DL,EVT VT)1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1123   return VT.bitsGT(Op.getValueType())
1124              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1125              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1126 }
1127 
1128 std::pair<SDValue, SDValue>
getStrictFPExtendOrRound(SDValue Op,SDValue Chain,const SDLoc & DL,EVT VT)1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1130                                        const SDLoc &DL, EVT VT) {
1131   assert(!VT.bitsEq(Op.getValueType()) &&
1132          "Strict no-op FP extend/round not allowed.");
1133   SDValue Res =
1134       VT.bitsGT(Op.getValueType())
1135           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1136           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1137                     {Chain, Op, getIntPtrConstant(0, DL)});
1138 
1139   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1140 }
1141 
getAnyExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143   return VT.bitsGT(Op.getValueType()) ?
1144     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1145     getNode(ISD::TRUNCATE, DL, VT, Op);
1146 }
1147 
getSExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1149   return VT.bitsGT(Op.getValueType()) ?
1150     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1151     getNode(ISD::TRUNCATE, DL, VT, Op);
1152 }
1153 
getZExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1155   return VT.bitsGT(Op.getValueType()) ?
1156     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1157     getNode(ISD::TRUNCATE, DL, VT, Op);
1158 }
1159 
getBoolExtOrTrunc(SDValue Op,const SDLoc & SL,EVT VT,EVT OpVT)1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1161                                         EVT OpVT) {
1162   if (VT.bitsLE(Op.getValueType()))
1163     return getNode(ISD::TRUNCATE, SL, VT, Op);
1164 
1165   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1166   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1167 }
1168 
getZeroExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1170   assert(!VT.isVector() &&
1171          "getZeroExtendInReg should use the vector element type instead of "
1172          "the vector type!");
1173   if (Op.getValueType().getScalarType() == VT) return Op;
1174   unsigned BitWidth = Op.getScalarValueSizeInBits();
1175   APInt Imm = APInt::getLowBitsSet(BitWidth,
1176                                    VT.getSizeInBits());
1177   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1178                  getConstant(Imm, DL, Op.getValueType()));
1179 }
1180 
getPtrExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1182   // Only unsigned pointer semantics are supported right now. In the future this
1183   // might delegate to TLI to check pointer signedness.
1184   return getZExtOrTrunc(Op, DL, VT);
1185 }
1186 
getPtrExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1188   // Only unsigned pointer semantics are supported right now. In the future this
1189   // might delegate to TLI to check pointer signedness.
1190   return getZeroExtendInReg(Op, DL, VT);
1191 }
1192 
1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
getNOT(const SDLoc & DL,SDValue Val,EVT VT)1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1195   EVT EltVT = VT.getScalarType();
1196   SDValue NegOne =
1197     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1198   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1199 }
1200 
getLogicalNOT(const SDLoc & DL,SDValue Val,EVT VT)1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1203   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1204 }
1205 
getBoolConstant(bool V,const SDLoc & DL,EVT VT,EVT OpVT)1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1207                                       EVT OpVT) {
1208   if (!V)
1209     return getConstant(0, DL, VT);
1210 
1211   switch (TLI->getBooleanContents(OpVT)) {
1212   case TargetLowering::ZeroOrOneBooleanContent:
1213   case TargetLowering::UndefinedBooleanContent:
1214     return getConstant(1, DL, VT);
1215   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1216     return getAllOnesConstant(DL, VT);
1217   }
1218   llvm_unreachable("Unexpected boolean content enum!");
1219 }
1220 
getConstant(uint64_t Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1222                                   bool isT, bool isO) {
1223   EVT EltVT = VT.getScalarType();
1224   assert((EltVT.getSizeInBits() >= 64 ||
1225          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1226          "getConstant with a uint64_t value that doesn't fit in the type!");
1227   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1228 }
1229 
getConstant(const APInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1231                                   bool isT, bool isO) {
1232   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1233 }
1234 
getConstant(const ConstantInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1236                                   EVT VT, bool isT, bool isO) {
1237   assert(VT.isInteger() && "Cannot create FP integer constant!");
1238 
1239   EVT EltVT = VT.getScalarType();
1240   const ConstantInt *Elt = &Val;
1241 
1242   // In some cases the vector type is legal but the element type is illegal and
1243   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1244   // inserted value (the type does not need to match the vector element type).
1245   // Any extra bits introduced will be truncated away.
1246   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1247       TargetLowering::TypePromoteInteger) {
1248    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1249    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1250    Elt = ConstantInt::get(*getContext(), NewVal);
1251   }
1252   // In other cases the element type is illegal and needs to be expanded, for
1253   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1254   // the value into n parts and use a vector type with n-times the elements.
1255   // Then bitcast to the type requested.
1256   // Legalizing constants too early makes the DAGCombiner's job harder so we
1257   // only legalize if the DAG tells us we must produce legal types.
1258   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1259            TLI->getTypeAction(*getContext(), EltVT) ==
1260            TargetLowering::TypeExpandInteger) {
1261     const APInt &NewVal = Elt->getValue();
1262     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1263     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1264     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1265     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1266 
1267     // Check the temporary vector is the correct size. If this fails then
1268     // getTypeToTransformTo() probably returned a type whose size (in bits)
1269     // isn't a power-of-2 factor of the requested type size.
1270     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1271 
1272     SmallVector<SDValue, 2> EltParts;
1273     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1274       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1275                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1276                                      ViaEltVT, isT, isO));
1277     }
1278 
1279     // EltParts is currently in little endian order. If we actually want
1280     // big-endian order then reverse it now.
1281     if (getDataLayout().isBigEndian())
1282       std::reverse(EltParts.begin(), EltParts.end());
1283 
1284     // The elements must be reversed when the element order is different
1285     // to the endianness of the elements (because the BITCAST is itself a
1286     // vector shuffle in this situation). However, we do not need any code to
1287     // perform this reversal because getConstant() is producing a vector
1288     // splat.
1289     // This situation occurs in MIPS MSA.
1290 
1291     SmallVector<SDValue, 8> Ops;
1292     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1293       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1294 
1295     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1296     return V;
1297   }
1298 
1299   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1300          "APInt size does not match type size!");
1301   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1302   FoldingSetNodeID ID;
1303   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1304   ID.AddPointer(Elt);
1305   ID.AddBoolean(isO);
1306   void *IP = nullptr;
1307   SDNode *N = nullptr;
1308   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1309     if (!VT.isVector())
1310       return SDValue(N, 0);
1311 
1312   if (!N) {
1313     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1314     CSEMap.InsertNode(N, IP);
1315     InsertNode(N);
1316     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1317   }
1318 
1319   SDValue Result(N, 0);
1320   if (VT.isScalableVector())
1321     Result = getSplatVector(VT, DL, Result);
1322   else if (VT.isVector())
1323     Result = getSplatBuildVector(VT, DL, Result);
1324 
1325   return Result;
1326 }
1327 
getIntPtrConstant(uint64_t Val,const SDLoc & DL,bool isTarget)1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1329                                         bool isTarget) {
1330   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1331 }
1332 
getShiftAmountConstant(uint64_t Val,EVT VT,const SDLoc & DL,bool LegalTypes)1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1334                                              const SDLoc &DL, bool LegalTypes) {
1335   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1336   return getConstant(Val, DL, ShiftVT);
1337 }
1338 
getConstantFP(const APFloat & V,const SDLoc & DL,EVT VT,bool isTarget)1339 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1340                                     bool isTarget) {
1341   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1342 }
1343 
getConstantFP(const ConstantFP & V,const SDLoc & DL,EVT VT,bool isTarget)1344 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1345                                     EVT VT, bool isTarget) {
1346   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1347 
1348   EVT EltVT = VT.getScalarType();
1349 
1350   // Do the map lookup using the actual bit pattern for the floating point
1351   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1352   // we don't have issues with SNANs.
1353   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1354   FoldingSetNodeID ID;
1355   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1356   ID.AddPointer(&V);
1357   void *IP = nullptr;
1358   SDNode *N = nullptr;
1359   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1360     if (!VT.isVector())
1361       return SDValue(N, 0);
1362 
1363   if (!N) {
1364     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1365     CSEMap.InsertNode(N, IP);
1366     InsertNode(N);
1367   }
1368 
1369   SDValue Result(N, 0);
1370   if (VT.isVector())
1371     Result = getSplatBuildVector(VT, DL, Result);
1372   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1373   return Result;
1374 }
1375 
getConstantFP(double Val,const SDLoc & DL,EVT VT,bool isTarget)1376 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1377                                     bool isTarget) {
1378   EVT EltVT = VT.getScalarType();
1379   if (EltVT == MVT::f32)
1380     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1381   else if (EltVT == MVT::f64)
1382     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1383   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1384            EltVT == MVT::f16) {
1385     bool Ignored;
1386     APFloat APF = APFloat(Val);
1387     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1388                 &Ignored);
1389     return getConstantFP(APF, DL, VT, isTarget);
1390   } else
1391     llvm_unreachable("Unsupported type in getConstantFP");
1392 }
1393 
getGlobalAddress(const GlobalValue * GV,const SDLoc & DL,EVT VT,int64_t Offset,bool isTargetGA,unsigned TargetFlags)1394 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1395                                        EVT VT, int64_t Offset, bool isTargetGA,
1396                                        unsigned TargetFlags) {
1397   assert((TargetFlags == 0 || isTargetGA) &&
1398          "Cannot set target flags on target-independent globals");
1399 
1400   // Truncate (with sign-extension) the offset value to the pointer size.
1401   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1402   if (BitWidth < 64)
1403     Offset = SignExtend64(Offset, BitWidth);
1404 
1405   unsigned Opc;
1406   if (GV->isThreadLocal())
1407     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1408   else
1409     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1410 
1411   FoldingSetNodeID ID;
1412   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1413   ID.AddPointer(GV);
1414   ID.AddInteger(Offset);
1415   ID.AddInteger(TargetFlags);
1416   void *IP = nullptr;
1417   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1418     return SDValue(E, 0);
1419 
1420   auto *N = newSDNode<GlobalAddressSDNode>(
1421       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1422   CSEMap.InsertNode(N, IP);
1423     InsertNode(N);
1424   return SDValue(N, 0);
1425 }
1426 
getFrameIndex(int FI,EVT VT,bool isTarget)1427 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1428   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1429   FoldingSetNodeID ID;
1430   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1431   ID.AddInteger(FI);
1432   void *IP = nullptr;
1433   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1434     return SDValue(E, 0);
1435 
1436   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1437   CSEMap.InsertNode(N, IP);
1438   InsertNode(N);
1439   return SDValue(N, 0);
1440 }
1441 
getJumpTable(int JTI,EVT VT,bool isTarget,unsigned TargetFlags)1442 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1443                                    unsigned TargetFlags) {
1444   assert((TargetFlags == 0 || isTarget) &&
1445          "Cannot set target flags on target-independent jump tables");
1446   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1447   FoldingSetNodeID ID;
1448   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1449   ID.AddInteger(JTI);
1450   ID.AddInteger(TargetFlags);
1451   void *IP = nullptr;
1452   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1453     return SDValue(E, 0);
1454 
1455   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1456   CSEMap.InsertNode(N, IP);
1457   InsertNode(N);
1458   return SDValue(N, 0);
1459 }
1460 
getConstantPool(const Constant * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned TargetFlags)1461 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1462                                       unsigned Alignment, int Offset,
1463                                       bool isTarget,
1464                                       unsigned TargetFlags) {
1465   assert((TargetFlags == 0 || isTarget) &&
1466          "Cannot set target flags on target-independent globals");
1467   if (Alignment == 0)
1468     Alignment = shouldOptForSize()
1469                     ? getDataLayout().getABITypeAlignment(C->getType())
1470                     : getDataLayout().getPrefTypeAlignment(C->getType());
1471   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1472   FoldingSetNodeID ID;
1473   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1474   ID.AddInteger(Alignment);
1475   ID.AddInteger(Offset);
1476   ID.AddPointer(C);
1477   ID.AddInteger(TargetFlags);
1478   void *IP = nullptr;
1479   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1480     return SDValue(E, 0);
1481 
1482   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1483                                           TargetFlags);
1484   CSEMap.InsertNode(N, IP);
1485   InsertNode(N);
1486   return SDValue(N, 0);
1487 }
1488 
getConstantPool(MachineConstantPoolValue * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned TargetFlags)1489 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1490                                       unsigned Alignment, int Offset,
1491                                       bool isTarget,
1492                                       unsigned TargetFlags) {
1493   assert((TargetFlags == 0 || isTarget) &&
1494          "Cannot set target flags on target-independent globals");
1495   if (Alignment == 0)
1496     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1497   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1498   FoldingSetNodeID ID;
1499   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1500   ID.AddInteger(Alignment);
1501   ID.AddInteger(Offset);
1502   C->addSelectionDAGCSEId(ID);
1503   ID.AddInteger(TargetFlags);
1504   void *IP = nullptr;
1505   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1506     return SDValue(E, 0);
1507 
1508   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1509                                           TargetFlags);
1510   CSEMap.InsertNode(N, IP);
1511   InsertNode(N);
1512   return SDValue(N, 0);
1513 }
1514 
getTargetIndex(int Index,EVT VT,int64_t Offset,unsigned TargetFlags)1515 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1516                                      unsigned TargetFlags) {
1517   FoldingSetNodeID ID;
1518   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1519   ID.AddInteger(Index);
1520   ID.AddInteger(Offset);
1521   ID.AddInteger(TargetFlags);
1522   void *IP = nullptr;
1523   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1524     return SDValue(E, 0);
1525 
1526   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1527   CSEMap.InsertNode(N, IP);
1528   InsertNode(N);
1529   return SDValue(N, 0);
1530 }
1531 
getBasicBlock(MachineBasicBlock * MBB)1532 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1533   FoldingSetNodeID ID;
1534   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1535   ID.AddPointer(MBB);
1536   void *IP = nullptr;
1537   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1538     return SDValue(E, 0);
1539 
1540   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1541   CSEMap.InsertNode(N, IP);
1542   InsertNode(N);
1543   return SDValue(N, 0);
1544 }
1545 
getValueType(EVT VT)1546 SDValue SelectionDAG::getValueType(EVT VT) {
1547   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1548       ValueTypeNodes.size())
1549     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1550 
1551   SDNode *&N = VT.isExtended() ?
1552     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1553 
1554   if (N) return SDValue(N, 0);
1555   N = newSDNode<VTSDNode>(VT);
1556   InsertNode(N);
1557   return SDValue(N, 0);
1558 }
1559 
getExternalSymbol(const char * Sym,EVT VT)1560 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1561   SDNode *&N = ExternalSymbols[Sym];
1562   if (N) return SDValue(N, 0);
1563   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1564   InsertNode(N);
1565   return SDValue(N, 0);
1566 }
1567 
getMCSymbol(MCSymbol * Sym,EVT VT)1568 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1569   SDNode *&N = MCSymbols[Sym];
1570   if (N)
1571     return SDValue(N, 0);
1572   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1573   InsertNode(N);
1574   return SDValue(N, 0);
1575 }
1576 
getTargetExternalSymbol(const char * Sym,EVT VT,unsigned TargetFlags)1577 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1578                                               unsigned TargetFlags) {
1579   SDNode *&N =
1580       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1581   if (N) return SDValue(N, 0);
1582   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1583   InsertNode(N);
1584   return SDValue(N, 0);
1585 }
1586 
getCondCode(ISD::CondCode Cond)1587 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1588   if ((unsigned)Cond >= CondCodeNodes.size())
1589     CondCodeNodes.resize(Cond+1);
1590 
1591   if (!CondCodeNodes[Cond]) {
1592     auto *N = newSDNode<CondCodeSDNode>(Cond);
1593     CondCodeNodes[Cond] = N;
1594     InsertNode(N);
1595   }
1596 
1597   return SDValue(CondCodeNodes[Cond], 0);
1598 }
1599 
1600 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1601 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
commuteShuffle(SDValue & N1,SDValue & N2,MutableArrayRef<int> M)1602 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1603   std::swap(N1, N2);
1604   ShuffleVectorSDNode::commuteMask(M);
1605 }
1606 
getVectorShuffle(EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask)1607 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1608                                        SDValue N2, ArrayRef<int> Mask) {
1609   assert(VT.getVectorNumElements() == Mask.size() &&
1610            "Must have the same number of vector elements as mask elements!");
1611   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1612          "Invalid VECTOR_SHUFFLE");
1613 
1614   // Canonicalize shuffle undef, undef -> undef
1615   if (N1.isUndef() && N2.isUndef())
1616     return getUNDEF(VT);
1617 
1618   // Validate that all indices in Mask are within the range of the elements
1619   // input to the shuffle.
1620   int NElts = Mask.size();
1621   assert(llvm::all_of(Mask,
1622                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1623          "Index out of range");
1624 
1625   // Copy the mask so we can do any needed cleanup.
1626   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1627 
1628   // Canonicalize shuffle v, v -> v, undef
1629   if (N1 == N2) {
1630     N2 = getUNDEF(VT);
1631     for (int i = 0; i != NElts; ++i)
1632       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1633   }
1634 
1635   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1636   if (N1.isUndef())
1637     commuteShuffle(N1, N2, MaskVec);
1638 
1639   if (TLI->hasVectorBlend()) {
1640     // If shuffling a splat, try to blend the splat instead. We do this here so
1641     // that even when this arises during lowering we don't have to re-handle it.
1642     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1643       BitVector UndefElements;
1644       SDValue Splat = BV->getSplatValue(&UndefElements);
1645       if (!Splat)
1646         return;
1647 
1648       for (int i = 0; i < NElts; ++i) {
1649         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1650           continue;
1651 
1652         // If this input comes from undef, mark it as such.
1653         if (UndefElements[MaskVec[i] - Offset]) {
1654           MaskVec[i] = -1;
1655           continue;
1656         }
1657 
1658         // If we can blend a non-undef lane, use that instead.
1659         if (!UndefElements[i])
1660           MaskVec[i] = i + Offset;
1661       }
1662     };
1663     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1664       BlendSplat(N1BV, 0);
1665     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1666       BlendSplat(N2BV, NElts);
1667   }
1668 
1669   // Canonicalize all index into lhs, -> shuffle lhs, undef
1670   // Canonicalize all index into rhs, -> shuffle rhs, undef
1671   bool AllLHS = true, AllRHS = true;
1672   bool N2Undef = N2.isUndef();
1673   for (int i = 0; i != NElts; ++i) {
1674     if (MaskVec[i] >= NElts) {
1675       if (N2Undef)
1676         MaskVec[i] = -1;
1677       else
1678         AllLHS = false;
1679     } else if (MaskVec[i] >= 0) {
1680       AllRHS = false;
1681     }
1682   }
1683   if (AllLHS && AllRHS)
1684     return getUNDEF(VT);
1685   if (AllLHS && !N2Undef)
1686     N2 = getUNDEF(VT);
1687   if (AllRHS) {
1688     N1 = getUNDEF(VT);
1689     commuteShuffle(N1, N2, MaskVec);
1690   }
1691   // Reset our undef status after accounting for the mask.
1692   N2Undef = N2.isUndef();
1693   // Re-check whether both sides ended up undef.
1694   if (N1.isUndef() && N2Undef)
1695     return getUNDEF(VT);
1696 
1697   // If Identity shuffle return that node.
1698   bool Identity = true, AllSame = true;
1699   for (int i = 0; i != NElts; ++i) {
1700     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1701     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1702   }
1703   if (Identity && NElts)
1704     return N1;
1705 
1706   // Shuffling a constant splat doesn't change the result.
1707   if (N2Undef) {
1708     SDValue V = N1;
1709 
1710     // Look through any bitcasts. We check that these don't change the number
1711     // (and size) of elements and just changes their types.
1712     while (V.getOpcode() == ISD::BITCAST)
1713       V = V->getOperand(0);
1714 
1715     // A splat should always show up as a build vector node.
1716     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1717       BitVector UndefElements;
1718       SDValue Splat = BV->getSplatValue(&UndefElements);
1719       // If this is a splat of an undef, shuffling it is also undef.
1720       if (Splat && Splat.isUndef())
1721         return getUNDEF(VT);
1722 
1723       bool SameNumElts =
1724           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1725 
1726       // We only have a splat which can skip shuffles if there is a splatted
1727       // value and no undef lanes rearranged by the shuffle.
1728       if (Splat && UndefElements.none()) {
1729         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1730         // number of elements match or the value splatted is a zero constant.
1731         if (SameNumElts)
1732           return N1;
1733         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1734           if (C->isNullValue())
1735             return N1;
1736       }
1737 
1738       // If the shuffle itself creates a splat, build the vector directly.
1739       if (AllSame && SameNumElts) {
1740         EVT BuildVT = BV->getValueType(0);
1741         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1742         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1743 
1744         // We may have jumped through bitcasts, so the type of the
1745         // BUILD_VECTOR may not match the type of the shuffle.
1746         if (BuildVT != VT)
1747           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1748         return NewBV;
1749       }
1750     }
1751   }
1752 
1753   FoldingSetNodeID ID;
1754   SDValue Ops[2] = { N1, N2 };
1755   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1756   for (int i = 0; i != NElts; ++i)
1757     ID.AddInteger(MaskVec[i]);
1758 
1759   void* IP = nullptr;
1760   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1761     return SDValue(E, 0);
1762 
1763   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1764   // SDNode doesn't have access to it.  This memory will be "leaked" when
1765   // the node is deallocated, but recovered when the NodeAllocator is released.
1766   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1767   llvm::copy(MaskVec, MaskAlloc);
1768 
1769   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1770                                            dl.getDebugLoc(), MaskAlloc);
1771   createOperands(N, Ops);
1772 
1773   CSEMap.InsertNode(N, IP);
1774   InsertNode(N);
1775   SDValue V = SDValue(N, 0);
1776   NewSDValueDbgMsg(V, "Creating new node: ", this);
1777   return V;
1778 }
1779 
getCommutedVectorShuffle(const ShuffleVectorSDNode & SV)1780 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1781   EVT VT = SV.getValueType(0);
1782   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1783   ShuffleVectorSDNode::commuteMask(MaskVec);
1784 
1785   SDValue Op0 = SV.getOperand(0);
1786   SDValue Op1 = SV.getOperand(1);
1787   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1788 }
1789 
getRegister(unsigned RegNo,EVT VT)1790 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1791   FoldingSetNodeID ID;
1792   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1793   ID.AddInteger(RegNo);
1794   void *IP = nullptr;
1795   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1796     return SDValue(E, 0);
1797 
1798   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1799   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1800   CSEMap.InsertNode(N, IP);
1801   InsertNode(N);
1802   return SDValue(N, 0);
1803 }
1804 
getRegisterMask(const uint32_t * RegMask)1805 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1806   FoldingSetNodeID ID;
1807   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1808   ID.AddPointer(RegMask);
1809   void *IP = nullptr;
1810   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1811     return SDValue(E, 0);
1812 
1813   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1814   CSEMap.InsertNode(N, IP);
1815   InsertNode(N);
1816   return SDValue(N, 0);
1817 }
1818 
getEHLabel(const SDLoc & dl,SDValue Root,MCSymbol * Label)1819 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1820                                  MCSymbol *Label) {
1821   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1822 }
1823 
getLabelNode(unsigned Opcode,const SDLoc & dl,SDValue Root,MCSymbol * Label)1824 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1825                                    SDValue Root, MCSymbol *Label) {
1826   FoldingSetNodeID ID;
1827   SDValue Ops[] = { Root };
1828   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1829   ID.AddPointer(Label);
1830   void *IP = nullptr;
1831   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1832     return SDValue(E, 0);
1833 
1834   auto *N =
1835       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1836   createOperands(N, Ops);
1837 
1838   CSEMap.InsertNode(N, IP);
1839   InsertNode(N);
1840   return SDValue(N, 0);
1841 }
1842 
getBlockAddress(const BlockAddress * BA,EVT VT,int64_t Offset,bool isTarget,unsigned TargetFlags)1843 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1844                                       int64_t Offset, bool isTarget,
1845                                       unsigned TargetFlags) {
1846   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1847 
1848   FoldingSetNodeID ID;
1849   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1850   ID.AddPointer(BA);
1851   ID.AddInteger(Offset);
1852   ID.AddInteger(TargetFlags);
1853   void *IP = nullptr;
1854   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1855     return SDValue(E, 0);
1856 
1857   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1858   CSEMap.InsertNode(N, IP);
1859   InsertNode(N);
1860   return SDValue(N, 0);
1861 }
1862 
getSrcValue(const Value * V)1863 SDValue SelectionDAG::getSrcValue(const Value *V) {
1864   assert((!V || V->getType()->isPointerTy()) &&
1865          "SrcValue is not a pointer?");
1866 
1867   FoldingSetNodeID ID;
1868   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1869   ID.AddPointer(V);
1870 
1871   void *IP = nullptr;
1872   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1873     return SDValue(E, 0);
1874 
1875   auto *N = newSDNode<SrcValueSDNode>(V);
1876   CSEMap.InsertNode(N, IP);
1877   InsertNode(N);
1878   return SDValue(N, 0);
1879 }
1880 
getMDNode(const MDNode * MD)1881 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1882   FoldingSetNodeID ID;
1883   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1884   ID.AddPointer(MD);
1885 
1886   void *IP = nullptr;
1887   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1888     return SDValue(E, 0);
1889 
1890   auto *N = newSDNode<MDNodeSDNode>(MD);
1891   CSEMap.InsertNode(N, IP);
1892   InsertNode(N);
1893   return SDValue(N, 0);
1894 }
1895 
getBitcast(EVT VT,SDValue V)1896 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1897   if (VT == V.getValueType())
1898     return V;
1899 
1900   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1901 }
1902 
getAddrSpaceCast(const SDLoc & dl,EVT VT,SDValue Ptr,unsigned SrcAS,unsigned DestAS)1903 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1904                                        unsigned SrcAS, unsigned DestAS) {
1905   SDValue Ops[] = {Ptr};
1906   FoldingSetNodeID ID;
1907   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1908   ID.AddInteger(SrcAS);
1909   ID.AddInteger(DestAS);
1910 
1911   void *IP = nullptr;
1912   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1913     return SDValue(E, 0);
1914 
1915   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1916                                            VT, SrcAS, DestAS);
1917   createOperands(N, Ops);
1918 
1919   CSEMap.InsertNode(N, IP);
1920   InsertNode(N);
1921   return SDValue(N, 0);
1922 }
1923 
1924 /// getShiftAmountOperand - Return the specified value casted to
1925 /// the target's desired shift amount type.
getShiftAmountOperand(EVT LHSTy,SDValue Op)1926 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1927   EVT OpTy = Op.getValueType();
1928   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1929   if (OpTy == ShTy || OpTy.isVector()) return Op;
1930 
1931   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1932 }
1933 
expandVAArg(SDNode * Node)1934 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1935   SDLoc dl(Node);
1936   const TargetLowering &TLI = getTargetLoweringInfo();
1937   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1938   EVT VT = Node->getValueType(0);
1939   SDValue Tmp1 = Node->getOperand(0);
1940   SDValue Tmp2 = Node->getOperand(1);
1941   const MaybeAlign MA(Node->getConstantOperandVal(3));
1942 
1943   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1944                                Tmp2, MachinePointerInfo(V));
1945   SDValue VAList = VAListLoad;
1946 
1947   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1948     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1949                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1950 
1951     VAList =
1952         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1953                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1954   }
1955 
1956   // Increment the pointer, VAList, to the next vaarg
1957   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1958                  getConstant(getDataLayout().getTypeAllocSize(
1959                                                VT.getTypeForEVT(*getContext())),
1960                              dl, VAList.getValueType()));
1961   // Store the incremented VAList to the legalized pointer
1962   Tmp1 =
1963       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1964   // Load the actual argument out of the pointer VAList
1965   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1966 }
1967 
expandVACopy(SDNode * Node)1968 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1969   SDLoc dl(Node);
1970   const TargetLowering &TLI = getTargetLoweringInfo();
1971   // This defaults to loading a pointer from the input and storing it to the
1972   // output, returning the chain.
1973   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1974   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1975   SDValue Tmp1 =
1976       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1977               Node->getOperand(2), MachinePointerInfo(VS));
1978   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1979                   MachinePointerInfo(VD));
1980 }
1981 
CreateStackTemporary(EVT VT,unsigned minAlign)1982 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1983   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1984   unsigned ByteSize = VT.getStoreSize();
1985   Type *Ty = VT.getTypeForEVT(*getContext());
1986   unsigned StackAlign =
1987       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1988 
1989   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1990   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1991 }
1992 
CreateStackTemporary(EVT VT1,EVT VT2)1993 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1994   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1995   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1996   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1997   const DataLayout &DL = getDataLayout();
1998   unsigned Align =
1999       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
2000 
2001   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
2002   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
2003   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2004 }
2005 
FoldSetCC(EVT VT,SDValue N1,SDValue N2,ISD::CondCode Cond,const SDLoc & dl)2006 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2007                                 ISD::CondCode Cond, const SDLoc &dl) {
2008   EVT OpVT = N1.getValueType();
2009 
2010   // These setcc operations always fold.
2011   switch (Cond) {
2012   default: break;
2013   case ISD::SETFALSE:
2014   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2015   case ISD::SETTRUE:
2016   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2017 
2018   case ISD::SETOEQ:
2019   case ISD::SETOGT:
2020   case ISD::SETOGE:
2021   case ISD::SETOLT:
2022   case ISD::SETOLE:
2023   case ISD::SETONE:
2024   case ISD::SETO:
2025   case ISD::SETUO:
2026   case ISD::SETUEQ:
2027   case ISD::SETUNE:
2028     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2029     break;
2030   }
2031 
2032   if (OpVT.isInteger()) {
2033     // For EQ and NE, we can always pick a value for the undef to make the
2034     // predicate pass or fail, so we can return undef.
2035     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2036     // icmp eq/ne X, undef -> undef.
2037     if ((N1.isUndef() || N2.isUndef()) &&
2038         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2039       return getUNDEF(VT);
2040 
2041     // If both operands are undef, we can return undef for int comparison.
2042     // icmp undef, undef -> undef.
2043     if (N1.isUndef() && N2.isUndef())
2044       return getUNDEF(VT);
2045 
2046     // icmp X, X -> true/false
2047     // icmp X, undef -> true/false because undef could be X.
2048     if (N1 == N2)
2049       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2050   }
2051 
2052   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2053     const APInt &C2 = N2C->getAPIntValue();
2054     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2055       const APInt &C1 = N1C->getAPIntValue();
2056 
2057       switch (Cond) {
2058       default: llvm_unreachable("Unknown integer setcc!");
2059       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2060       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2061       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2062       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2063       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2064       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2065       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2066       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2067       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2068       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2069       }
2070     }
2071   }
2072 
2073   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2074   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2075 
2076   if (N1CFP && N2CFP) {
2077     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2078     switch (Cond) {
2079     default: break;
2080     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2081                         return getUNDEF(VT);
2082                       LLVM_FALLTHROUGH;
2083     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2084                                              OpVT);
2085     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2086                         return getUNDEF(VT);
2087                       LLVM_FALLTHROUGH;
2088     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2089                                              R==APFloat::cmpLessThan, dl, VT,
2090                                              OpVT);
2091     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2092                         return getUNDEF(VT);
2093                       LLVM_FALLTHROUGH;
2094     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2095                                              OpVT);
2096     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2097                         return getUNDEF(VT);
2098                       LLVM_FALLTHROUGH;
2099     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2100                                              VT, OpVT);
2101     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2102                         return getUNDEF(VT);
2103                       LLVM_FALLTHROUGH;
2104     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2105                                              R==APFloat::cmpEqual, dl, VT,
2106                                              OpVT);
2107     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2108                         return getUNDEF(VT);
2109                       LLVM_FALLTHROUGH;
2110     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2111                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2112     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2113                                              OpVT);
2114     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2115                                              OpVT);
2116     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2117                                              R==APFloat::cmpEqual, dl, VT,
2118                                              OpVT);
2119     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2120                                              OpVT);
2121     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2122                                              R==APFloat::cmpLessThan, dl, VT,
2123                                              OpVT);
2124     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2125                                              R==APFloat::cmpUnordered, dl, VT,
2126                                              OpVT);
2127     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2128                                              VT, OpVT);
2129     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2130                                              OpVT);
2131     }
2132   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2133     // Ensure that the constant occurs on the RHS.
2134     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2135     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2136       return SDValue();
2137     return getSetCC(dl, VT, N2, N1, SwappedCond);
2138   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2139              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2140     // If an operand is known to be a nan (or undef that could be a nan), we can
2141     // fold it.
2142     // Choosing NaN for the undef will always make unordered comparison succeed
2143     // and ordered comparison fails.
2144     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2145     switch (ISD::getUnorderedFlavor(Cond)) {
2146     default:
2147       llvm_unreachable("Unknown flavor!");
2148     case 0: // Known false.
2149       return getBoolConstant(false, dl, VT, OpVT);
2150     case 1: // Known true.
2151       return getBoolConstant(true, dl, VT, OpVT);
2152     case 2: // Undefined.
2153       return getUNDEF(VT);
2154     }
2155   }
2156 
2157   // Could not fold it.
2158   return SDValue();
2159 }
2160 
2161 /// See if the specified operand can be simplified with the knowledge that only
2162 /// the bits specified by DemandedBits are used.
2163 /// TODO: really we should be making this into the DAG equivalent of
2164 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
GetDemandedBits(SDValue V,const APInt & DemandedBits)2165 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2166   EVT VT = V.getValueType();
2167   APInt DemandedElts = VT.isVector()
2168                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2169                            : APInt(1, 1);
2170   return GetDemandedBits(V, DemandedBits, DemandedElts);
2171 }
2172 
2173 /// See if the specified operand can be simplified with the knowledge that only
2174 /// the bits specified by DemandedBits are used in the elements specified by
2175 /// DemandedElts.
2176 /// TODO: really we should be making this into the DAG equivalent of
2177 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
GetDemandedBits(SDValue V,const APInt & DemandedBits,const APInt & DemandedElts)2178 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2179                                       const APInt &DemandedElts) {
2180   switch (V.getOpcode()) {
2181   default:
2182     break;
2183   case ISD::Constant: {
2184     auto *CV = cast<ConstantSDNode>(V.getNode());
2185     assert(CV && "Const value should be ConstSDNode.");
2186     const APInt &CVal = CV->getAPIntValue();
2187     APInt NewVal = CVal & DemandedBits;
2188     if (NewVal != CVal)
2189       return getConstant(NewVal, SDLoc(V), V.getValueType());
2190     break;
2191   }
2192   case ISD::OR:
2193   case ISD::XOR:
2194   case ISD::SIGN_EXTEND_INREG:
2195     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2196                                                 *this, 0);
2197   case ISD::SRL:
2198     // Only look at single-use SRLs.
2199     if (!V.getNode()->hasOneUse())
2200       break;
2201     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2202       // See if we can recursively simplify the LHS.
2203       unsigned Amt = RHSC->getZExtValue();
2204 
2205       // Watch out for shift count overflow though.
2206       if (Amt >= DemandedBits.getBitWidth())
2207         break;
2208       APInt SrcDemandedBits = DemandedBits << Amt;
2209       if (SDValue SimplifyLHS =
2210               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2211         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2212                        V.getOperand(1));
2213     }
2214     break;
2215   case ISD::AND: {
2216     // X & -1 -> X (ignoring bits which aren't demanded).
2217     // Also handle the case where masked out bits in X are known to be zero.
2218     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2219       const APInt &AndVal = RHSC->getAPIntValue();
2220       if (DemandedBits.isSubsetOf(AndVal) ||
2221           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2222                                   AndVal))
2223         return V.getOperand(0);
2224     }
2225     break;
2226   }
2227   case ISD::ANY_EXTEND: {
2228     SDValue Src = V.getOperand(0);
2229     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2230     // Being conservative here - only peek through if we only demand bits in the
2231     // non-extended source (even though the extended bits are technically
2232     // undef).
2233     if (DemandedBits.getActiveBits() > SrcBitWidth)
2234       break;
2235     APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
2236     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
2237       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2238     break;
2239   }
2240   }
2241   return SDValue();
2242 }
2243 
2244 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2245 /// use this predicate to simplify operations downstream.
SignBitIsZero(SDValue Op,unsigned Depth) const2246 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2247   unsigned BitWidth = Op.getScalarValueSizeInBits();
2248   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2249 }
2250 
2251 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2252 /// this predicate to simplify operations downstream.  Mask is known to be zero
2253 /// for bits that V cannot have.
MaskedValueIsZero(SDValue V,const APInt & Mask,unsigned Depth) const2254 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2255                                      unsigned Depth) const {
2256   EVT VT = V.getValueType();
2257   APInt DemandedElts = VT.isVector()
2258                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2259                            : APInt(1, 1);
2260   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2261 }
2262 
2263 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2264 /// DemandedElts.  We use this predicate to simplify operations downstream.
2265 /// Mask is known to be zero for bits that V cannot have.
MaskedValueIsZero(SDValue V,const APInt & Mask,const APInt & DemandedElts,unsigned Depth) const2266 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2267                                      const APInt &DemandedElts,
2268                                      unsigned Depth) const {
2269   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2270 }
2271 
2272 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
MaskedValueIsAllOnes(SDValue V,const APInt & Mask,unsigned Depth) const2273 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2274                                         unsigned Depth) const {
2275   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2276 }
2277 
2278 /// isSplatValue - Return true if the vector V has the same value
2279 /// across all DemandedElts.
isSplatValue(SDValue V,const APInt & DemandedElts,APInt & UndefElts)2280 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2281                                 APInt &UndefElts) {
2282   if (!DemandedElts)
2283     return false; // No demanded elts, better to assume we don't know anything.
2284 
2285   EVT VT = V.getValueType();
2286   assert(VT.isVector() && "Vector type expected");
2287 
2288   unsigned NumElts = VT.getVectorNumElements();
2289   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2290   UndefElts = APInt::getNullValue(NumElts);
2291 
2292   switch (V.getOpcode()) {
2293   case ISD::BUILD_VECTOR: {
2294     SDValue Scl;
2295     for (unsigned i = 0; i != NumElts; ++i) {
2296       SDValue Op = V.getOperand(i);
2297       if (Op.isUndef()) {
2298         UndefElts.setBit(i);
2299         continue;
2300       }
2301       if (!DemandedElts[i])
2302         continue;
2303       if (Scl && Scl != Op)
2304         return false;
2305       Scl = Op;
2306     }
2307     return true;
2308   }
2309   case ISD::VECTOR_SHUFFLE: {
2310     // Check if this is a shuffle node doing a splat.
2311     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2312     int SplatIndex = -1;
2313     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2314     for (int i = 0; i != (int)NumElts; ++i) {
2315       int M = Mask[i];
2316       if (M < 0) {
2317         UndefElts.setBit(i);
2318         continue;
2319       }
2320       if (!DemandedElts[i])
2321         continue;
2322       if (0 <= SplatIndex && SplatIndex != M)
2323         return false;
2324       SplatIndex = M;
2325     }
2326     return true;
2327   }
2328   case ISD::EXTRACT_SUBVECTOR: {
2329     SDValue Src = V.getOperand(0);
2330     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2331     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2332     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2333       // Offset the demanded elts by the subvector index.
2334       uint64_t Idx = SubIdx->getZExtValue();
2335       APInt UndefSrcElts;
2336       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2337       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2338         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2339         return true;
2340       }
2341     }
2342     break;
2343   }
2344   case ISD::ADD:
2345   case ISD::SUB:
2346   case ISD::AND: {
2347     APInt UndefLHS, UndefRHS;
2348     SDValue LHS = V.getOperand(0);
2349     SDValue RHS = V.getOperand(1);
2350     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2351         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2352       UndefElts = UndefLHS | UndefRHS;
2353       return true;
2354     }
2355     break;
2356   }
2357   }
2358 
2359   return false;
2360 }
2361 
2362 /// Helper wrapper to main isSplatValue function.
isSplatValue(SDValue V,bool AllowUndefs)2363 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2364   EVT VT = V.getValueType();
2365   assert(VT.isVector() && "Vector type expected");
2366   unsigned NumElts = VT.getVectorNumElements();
2367 
2368   APInt UndefElts;
2369   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2370   return isSplatValue(V, DemandedElts, UndefElts) &&
2371          (AllowUndefs || !UndefElts);
2372 }
2373 
getSplatSourceVector(SDValue V,int & SplatIdx)2374 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2375   V = peekThroughExtractSubvectors(V);
2376 
2377   EVT VT = V.getValueType();
2378   unsigned Opcode = V.getOpcode();
2379   switch (Opcode) {
2380   default: {
2381     APInt UndefElts;
2382     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2383     if (isSplatValue(V, DemandedElts, UndefElts)) {
2384       // Handle case where all demanded elements are UNDEF.
2385       if (DemandedElts.isSubsetOf(UndefElts)) {
2386         SplatIdx = 0;
2387         return getUNDEF(VT);
2388       }
2389       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2390       return V;
2391     }
2392     break;
2393   }
2394   case ISD::VECTOR_SHUFFLE: {
2395     // Check if this is a shuffle node doing a splat.
2396     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2397     // getTargetVShiftNode currently struggles without the splat source.
2398     auto *SVN = cast<ShuffleVectorSDNode>(V);
2399     if (!SVN->isSplat())
2400       break;
2401     int Idx = SVN->getSplatIndex();
2402     int NumElts = V.getValueType().getVectorNumElements();
2403     SplatIdx = Idx % NumElts;
2404     return V.getOperand(Idx / NumElts);
2405   }
2406   }
2407 
2408   return SDValue();
2409 }
2410 
getSplatValue(SDValue V)2411 SDValue SelectionDAG::getSplatValue(SDValue V) {
2412   int SplatIdx;
2413   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2414     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2415                    SrcVector.getValueType().getScalarType(), SrcVector,
2416                    getIntPtrConstant(SplatIdx, SDLoc(V)));
2417   return SDValue();
2418 }
2419 
2420 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2421 /// is less than the element bit-width of the shift node, return it.
getValidShiftAmountConstant(SDValue V,const APInt & DemandedElts)2422 static const APInt *getValidShiftAmountConstant(SDValue V,
2423                                                 const APInt &DemandedElts) {
2424   unsigned BitWidth = V.getScalarValueSizeInBits();
2425   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2426     // Shifting more than the bitwidth is not valid.
2427     const APInt &ShAmt = SA->getAPIntValue();
2428     if (ShAmt.ult(BitWidth))
2429       return &ShAmt;
2430   }
2431   return nullptr;
2432 }
2433 
2434 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2435 /// than the element bit-width of the shift node, return the minimum value.
2436 static const APInt *
getValidMinimumShiftAmountConstant(SDValue V,const APInt & DemandedElts)2437 getValidMinimumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2438   unsigned BitWidth = V.getScalarValueSizeInBits();
2439   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2440   if (!BV)
2441     return nullptr;
2442   const APInt *MinShAmt = nullptr;
2443   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2444     if (!DemandedElts[i])
2445       continue;
2446     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2447     if (!SA)
2448       return nullptr;
2449     // Shifting more than the bitwidth is not valid.
2450     const APInt &ShAmt = SA->getAPIntValue();
2451     if (ShAmt.uge(BitWidth))
2452       return nullptr;
2453     if (MinShAmt && MinShAmt->ule(ShAmt))
2454       continue;
2455     MinShAmt = &ShAmt;
2456   }
2457   return MinShAmt;
2458 }
2459 
2460 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2461 /// than the element bit-width of the shift node, return the maximum value.
2462 static const APInt *
getValidMaximumShiftAmountConstant(SDValue V,const APInt & DemandedElts)2463 getValidMaximumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2464   unsigned BitWidth = V.getScalarValueSizeInBits();
2465   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2466   if (!BV)
2467     return nullptr;
2468   const APInt *MaxShAmt = nullptr;
2469   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2470     if (!DemandedElts[i])
2471       continue;
2472     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2473     if (!SA)
2474       return nullptr;
2475     // Shifting more than the bitwidth is not valid.
2476     const APInt &ShAmt = SA->getAPIntValue();
2477     if (ShAmt.uge(BitWidth))
2478       return nullptr;
2479     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2480       continue;
2481     MaxShAmt = &ShAmt;
2482   }
2483   return MaxShAmt;
2484 }
2485 
2486 /// Determine which bits of Op are known to be either zero or one and return
2487 /// them in Known. For vectors, the known bits are those that are shared by
2488 /// every vector element.
computeKnownBits(SDValue Op,unsigned Depth) const2489 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2490   EVT VT = Op.getValueType();
2491   APInt DemandedElts = VT.isVector()
2492                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2493                            : APInt(1, 1);
2494   return computeKnownBits(Op, DemandedElts, Depth);
2495 }
2496 
2497 /// Determine which bits of Op are known to be either zero or one and return
2498 /// them in Known. The DemandedElts argument allows us to only collect the known
2499 /// bits that are shared by the requested vector elements.
computeKnownBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const2500 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2501                                          unsigned Depth) const {
2502   unsigned BitWidth = Op.getScalarValueSizeInBits();
2503 
2504   KnownBits Known(BitWidth);   // Don't know anything.
2505 
2506   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2507     // We know all of the bits for a constant!
2508     Known.One = C->getAPIntValue();
2509     Known.Zero = ~Known.One;
2510     return Known;
2511   }
2512   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2513     // We know all of the bits for a constant fp!
2514     Known.One = C->getValueAPF().bitcastToAPInt();
2515     Known.Zero = ~Known.One;
2516     return Known;
2517   }
2518 
2519   if (Depth >= MaxRecursionDepth)
2520     return Known;  // Limit search depth.
2521 
2522   KnownBits Known2;
2523   unsigned NumElts = DemandedElts.getBitWidth();
2524   assert((!Op.getValueType().isVector() ||
2525           NumElts == Op.getValueType().getVectorNumElements()) &&
2526          "Unexpected vector size");
2527 
2528   if (!DemandedElts)
2529     return Known;  // No demanded elts, better to assume we don't know anything.
2530 
2531   unsigned Opcode = Op.getOpcode();
2532   switch (Opcode) {
2533   case ISD::BUILD_VECTOR:
2534     // Collect the known bits that are shared by every demanded vector element.
2535     Known.Zero.setAllBits(); Known.One.setAllBits();
2536     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2537       if (!DemandedElts[i])
2538         continue;
2539 
2540       SDValue SrcOp = Op.getOperand(i);
2541       Known2 = computeKnownBits(SrcOp, Depth + 1);
2542 
2543       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2544       if (SrcOp.getValueSizeInBits() != BitWidth) {
2545         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2546                "Expected BUILD_VECTOR implicit truncation");
2547         Known2 = Known2.trunc(BitWidth);
2548       }
2549 
2550       // Known bits are the values that are shared by every demanded element.
2551       Known.One &= Known2.One;
2552       Known.Zero &= Known2.Zero;
2553 
2554       // If we don't know any bits, early out.
2555       if (Known.isUnknown())
2556         break;
2557     }
2558     break;
2559   case ISD::VECTOR_SHUFFLE: {
2560     // Collect the known bits that are shared by every vector element referenced
2561     // by the shuffle.
2562     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2563     Known.Zero.setAllBits(); Known.One.setAllBits();
2564     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2565     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2566     for (unsigned i = 0; i != NumElts; ++i) {
2567       if (!DemandedElts[i])
2568         continue;
2569 
2570       int M = SVN->getMaskElt(i);
2571       if (M < 0) {
2572         // For UNDEF elements, we don't know anything about the common state of
2573         // the shuffle result.
2574         Known.resetAll();
2575         DemandedLHS.clearAllBits();
2576         DemandedRHS.clearAllBits();
2577         break;
2578       }
2579 
2580       if ((unsigned)M < NumElts)
2581         DemandedLHS.setBit((unsigned)M % NumElts);
2582       else
2583         DemandedRHS.setBit((unsigned)M % NumElts);
2584     }
2585     // Known bits are the values that are shared by every demanded element.
2586     if (!!DemandedLHS) {
2587       SDValue LHS = Op.getOperand(0);
2588       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2589       Known.One &= Known2.One;
2590       Known.Zero &= Known2.Zero;
2591     }
2592     // If we don't know any bits, early out.
2593     if (Known.isUnknown())
2594       break;
2595     if (!!DemandedRHS) {
2596       SDValue RHS = Op.getOperand(1);
2597       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2598       Known.One &= Known2.One;
2599       Known.Zero &= Known2.Zero;
2600     }
2601     break;
2602   }
2603   case ISD::CONCAT_VECTORS: {
2604     // Split DemandedElts and test each of the demanded subvectors.
2605     Known.Zero.setAllBits(); Known.One.setAllBits();
2606     EVT SubVectorVT = Op.getOperand(0).getValueType();
2607     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2608     unsigned NumSubVectors = Op.getNumOperands();
2609     for (unsigned i = 0; i != NumSubVectors; ++i) {
2610       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2611       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2612       if (!!DemandedSub) {
2613         SDValue Sub = Op.getOperand(i);
2614         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2615         Known.One &= Known2.One;
2616         Known.Zero &= Known2.Zero;
2617       }
2618       // If we don't know any bits, early out.
2619       if (Known.isUnknown())
2620         break;
2621     }
2622     break;
2623   }
2624   case ISD::INSERT_SUBVECTOR: {
2625     // If we know the element index, demand any elements from the subvector and
2626     // the remainder from the src its inserted into, otherwise demand them all.
2627     SDValue Src = Op.getOperand(0);
2628     SDValue Sub = Op.getOperand(1);
2629     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2630     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2631     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2632       Known.One.setAllBits();
2633       Known.Zero.setAllBits();
2634       uint64_t Idx = SubIdx->getZExtValue();
2635       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2636       if (!!DemandedSubElts) {
2637         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2638         if (Known.isUnknown())
2639           break; // early-out.
2640       }
2641       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2642       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2643       if (!!DemandedSrcElts) {
2644         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2645         Known.One &= Known2.One;
2646         Known.Zero &= Known2.Zero;
2647       }
2648     } else {
2649       Known = computeKnownBits(Sub, Depth + 1);
2650       if (Known.isUnknown())
2651         break; // early-out.
2652       Known2 = computeKnownBits(Src, Depth + 1);
2653       Known.One &= Known2.One;
2654       Known.Zero &= Known2.Zero;
2655     }
2656     break;
2657   }
2658   case ISD::EXTRACT_SUBVECTOR: {
2659     // If we know the element index, just demand that subvector elements,
2660     // otherwise demand them all.
2661     SDValue Src = Op.getOperand(0);
2662     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2663     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2664     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2665     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2666       // Offset the demanded elts by the subvector index.
2667       uint64_t Idx = SubIdx->getZExtValue();
2668       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2669     }
2670     Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2671     break;
2672   }
2673   case ISD::SCALAR_TO_VECTOR: {
2674     // We know about scalar_to_vector as much as we know about it source,
2675     // which becomes the first element of otherwise unknown vector.
2676     if (DemandedElts != 1)
2677       break;
2678 
2679     SDValue N0 = Op.getOperand(0);
2680     Known = computeKnownBits(N0, Depth + 1);
2681     if (N0.getValueSizeInBits() != BitWidth)
2682       Known = Known.trunc(BitWidth);
2683 
2684     break;
2685   }
2686   case ISD::BITCAST: {
2687     SDValue N0 = Op.getOperand(0);
2688     EVT SubVT = N0.getValueType();
2689     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2690 
2691     // Ignore bitcasts from unsupported types.
2692     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2693       break;
2694 
2695     // Fast handling of 'identity' bitcasts.
2696     if (BitWidth == SubBitWidth) {
2697       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2698       break;
2699     }
2700 
2701     bool IsLE = getDataLayout().isLittleEndian();
2702 
2703     // Bitcast 'small element' vector to 'large element' scalar/vector.
2704     if ((BitWidth % SubBitWidth) == 0) {
2705       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2706 
2707       // Collect known bits for the (larger) output by collecting the known
2708       // bits from each set of sub elements and shift these into place.
2709       // We need to separately call computeKnownBits for each set of
2710       // sub elements as the knownbits for each is likely to be different.
2711       unsigned SubScale = BitWidth / SubBitWidth;
2712       APInt SubDemandedElts(NumElts * SubScale, 0);
2713       for (unsigned i = 0; i != NumElts; ++i)
2714         if (DemandedElts[i])
2715           SubDemandedElts.setBit(i * SubScale);
2716 
2717       for (unsigned i = 0; i != SubScale; ++i) {
2718         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2719                          Depth + 1);
2720         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2721         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2722         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2723       }
2724     }
2725 
2726     // Bitcast 'large element' scalar/vector to 'small element' vector.
2727     if ((SubBitWidth % BitWidth) == 0) {
2728       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2729 
2730       // Collect known bits for the (smaller) output by collecting the known
2731       // bits from the overlapping larger input elements and extracting the
2732       // sub sections we actually care about.
2733       unsigned SubScale = SubBitWidth / BitWidth;
2734       APInt SubDemandedElts(NumElts / SubScale, 0);
2735       for (unsigned i = 0; i != NumElts; ++i)
2736         if (DemandedElts[i])
2737           SubDemandedElts.setBit(i / SubScale);
2738 
2739       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2740 
2741       Known.Zero.setAllBits(); Known.One.setAllBits();
2742       for (unsigned i = 0; i != NumElts; ++i)
2743         if (DemandedElts[i]) {
2744           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2745           unsigned Offset = (Shifts % SubScale) * BitWidth;
2746           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2747           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2748           // If we don't know any bits, early out.
2749           if (Known.isUnknown())
2750             break;
2751         }
2752     }
2753     break;
2754   }
2755   case ISD::AND:
2756     // If either the LHS or the RHS are Zero, the result is zero.
2757     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2758     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2759 
2760     // Output known-1 bits are only known if set in both the LHS & RHS.
2761     Known.One &= Known2.One;
2762     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2763     Known.Zero |= Known2.Zero;
2764     break;
2765   case ISD::OR:
2766     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2767     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2768 
2769     // Output known-0 bits are only known if clear in both the LHS & RHS.
2770     Known.Zero &= Known2.Zero;
2771     // Output known-1 are known to be set if set in either the LHS | RHS.
2772     Known.One |= Known2.One;
2773     break;
2774   case ISD::XOR: {
2775     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2776     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2777 
2778     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2779     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2780     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2781     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2782     Known.Zero = KnownZeroOut;
2783     break;
2784   }
2785   case ISD::MUL: {
2786     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2787     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2788 
2789     // If low bits are zero in either operand, output low known-0 bits.
2790     // Also compute a conservative estimate for high known-0 bits.
2791     // More trickiness is possible, but this is sufficient for the
2792     // interesting case of alignment computation.
2793     unsigned TrailZ = Known.countMinTrailingZeros() +
2794                       Known2.countMinTrailingZeros();
2795     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2796                                Known2.countMinLeadingZeros(),
2797                                BitWidth) - BitWidth;
2798 
2799     Known.resetAll();
2800     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2801     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2802     break;
2803   }
2804   case ISD::UDIV: {
2805     // For the purposes of computing leading zeros we can conservatively
2806     // treat a udiv as a logical right shift by the power of 2 known to
2807     // be less than the denominator.
2808     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2809     unsigned LeadZ = Known2.countMinLeadingZeros();
2810 
2811     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2812     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2813     if (RHSMaxLeadingZeros != BitWidth)
2814       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2815 
2816     Known.Zero.setHighBits(LeadZ);
2817     break;
2818   }
2819   case ISD::SELECT:
2820   case ISD::VSELECT:
2821     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2822     // If we don't know any bits, early out.
2823     if (Known.isUnknown())
2824       break;
2825     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2826 
2827     // Only known if known in both the LHS and RHS.
2828     Known.One &= Known2.One;
2829     Known.Zero &= Known2.Zero;
2830     break;
2831   case ISD::SELECT_CC:
2832     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2833     // If we don't know any bits, early out.
2834     if (Known.isUnknown())
2835       break;
2836     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2837 
2838     // Only known if known in both the LHS and RHS.
2839     Known.One &= Known2.One;
2840     Known.Zero &= Known2.Zero;
2841     break;
2842   case ISD::SMULO:
2843   case ISD::UMULO:
2844   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2845     if (Op.getResNo() != 1)
2846       break;
2847     // The boolean result conforms to getBooleanContents.
2848     // If we know the result of a setcc has the top bits zero, use this info.
2849     // We know that we have an integer-based boolean since these operations
2850     // are only available for integer.
2851     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2852             TargetLowering::ZeroOrOneBooleanContent &&
2853         BitWidth > 1)
2854       Known.Zero.setBitsFrom(1);
2855     break;
2856   case ISD::SETCC:
2857   case ISD::STRICT_FSETCC:
2858   case ISD::STRICT_FSETCCS: {
2859     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2860     // If we know the result of a setcc has the top bits zero, use this info.
2861     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2862             TargetLowering::ZeroOrOneBooleanContent &&
2863         BitWidth > 1)
2864       Known.Zero.setBitsFrom(1);
2865     break;
2866   }
2867   case ISD::SHL:
2868     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2869 
2870     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2871       unsigned Shift = ShAmt->getZExtValue();
2872       Known.Zero <<= Shift;
2873       Known.One <<= Shift;
2874       // Low bits are known zero.
2875       Known.Zero.setLowBits(Shift);
2876       break;
2877     }
2878 
2879     // No matter the shift amount, the trailing zeros will stay zero.
2880     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2881     Known.One.clearAllBits();
2882 
2883     // Minimum shift low bits are known zero.
2884     if (const APInt *ShMinAmt =
2885             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2886       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2887     break;
2888   case ISD::SRL:
2889     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2890 
2891     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2892       unsigned Shift = ShAmt->getZExtValue();
2893       Known.Zero.lshrInPlace(Shift);
2894       Known.One.lshrInPlace(Shift);
2895       // High bits are known zero.
2896       Known.Zero.setHighBits(Shift);
2897       break;
2898     }
2899 
2900     // No matter the shift amount, the leading zeros will stay zero.
2901     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2902     Known.One.clearAllBits();
2903 
2904     // Minimum shift high bits are known zero.
2905     if (const APInt *ShMinAmt =
2906             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2907       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2908     break;
2909   case ISD::SRA:
2910     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2911       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2912       unsigned Shift = ShAmt->getZExtValue();
2913       // Sign extend known zero/one bit (else is unknown).
2914       Known.Zero.ashrInPlace(Shift);
2915       Known.One.ashrInPlace(Shift);
2916     }
2917     break;
2918   case ISD::FSHL:
2919   case ISD::FSHR:
2920     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2921       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2922 
2923       // For fshl, 0-shift returns the 1st arg.
2924       // For fshr, 0-shift returns the 2nd arg.
2925       if (Amt == 0) {
2926         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2927                                  DemandedElts, Depth + 1);
2928         break;
2929       }
2930 
2931       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2932       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2933       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2934       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2935       if (Opcode == ISD::FSHL) {
2936         Known.One <<= Amt;
2937         Known.Zero <<= Amt;
2938         Known2.One.lshrInPlace(BitWidth - Amt);
2939         Known2.Zero.lshrInPlace(BitWidth - Amt);
2940       } else {
2941         Known.One <<= BitWidth - Amt;
2942         Known.Zero <<= BitWidth - Amt;
2943         Known2.One.lshrInPlace(Amt);
2944         Known2.Zero.lshrInPlace(Amt);
2945       }
2946       Known.One |= Known2.One;
2947       Known.Zero |= Known2.Zero;
2948     }
2949     break;
2950   case ISD::SIGN_EXTEND_INREG: {
2951     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2952     unsigned EBits = EVT.getScalarSizeInBits();
2953 
2954     // Sign extension.  Compute the demanded bits in the result that are not
2955     // present in the input.
2956     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2957 
2958     APInt InSignMask = APInt::getSignMask(EBits);
2959     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2960 
2961     // If the sign extended bits are demanded, we know that the sign
2962     // bit is demanded.
2963     InSignMask = InSignMask.zext(BitWidth);
2964     if (NewBits.getBoolValue())
2965       InputDemandedBits |= InSignMask;
2966 
2967     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2968     Known.One &= InputDemandedBits;
2969     Known.Zero &= InputDemandedBits;
2970 
2971     // If the sign bit of the input is known set or clear, then we know the
2972     // top bits of the result.
2973     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2974       Known.Zero |= NewBits;
2975       Known.One  &= ~NewBits;
2976     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2977       Known.One  |= NewBits;
2978       Known.Zero &= ~NewBits;
2979     } else {                              // Input sign bit unknown
2980       Known.Zero &= ~NewBits;
2981       Known.One  &= ~NewBits;
2982     }
2983     break;
2984   }
2985   case ISD::CTTZ:
2986   case ISD::CTTZ_ZERO_UNDEF: {
2987     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2988     // If we have a known 1, its position is our upper bound.
2989     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2990     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2991     Known.Zero.setBitsFrom(LowBits);
2992     break;
2993   }
2994   case ISD::CTLZ:
2995   case ISD::CTLZ_ZERO_UNDEF: {
2996     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2997     // If we have a known 1, its position is our upper bound.
2998     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2999     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3000     Known.Zero.setBitsFrom(LowBits);
3001     break;
3002   }
3003   case ISD::CTPOP: {
3004     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3005     // If we know some of the bits are zero, they can't be one.
3006     unsigned PossibleOnes = Known2.countMaxPopulation();
3007     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3008     break;
3009   }
3010   case ISD::LOAD: {
3011     LoadSDNode *LD = cast<LoadSDNode>(Op);
3012     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3013     if (ISD::isNON_EXTLoad(LD) && Cst) {
3014       // Determine any common known bits from the loaded constant pool value.
3015       Type *CstTy = Cst->getType();
3016       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3017         // If its a vector splat, then we can (quickly) reuse the scalar path.
3018         // NOTE: We assume all elements match and none are UNDEF.
3019         if (CstTy->isVectorTy()) {
3020           if (const Constant *Splat = Cst->getSplatValue()) {
3021             Cst = Splat;
3022             CstTy = Cst->getType();
3023           }
3024         }
3025         // TODO - do we need to handle different bitwidths?
3026         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3027           // Iterate across all vector elements finding common known bits.
3028           Known.One.setAllBits();
3029           Known.Zero.setAllBits();
3030           for (unsigned i = 0; i != NumElts; ++i) {
3031             if (!DemandedElts[i])
3032               continue;
3033             if (Constant *Elt = Cst->getAggregateElement(i)) {
3034               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3035                 const APInt &Value = CInt->getValue();
3036                 Known.One &= Value;
3037                 Known.Zero &= ~Value;
3038                 continue;
3039               }
3040               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3041                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3042                 Known.One &= Value;
3043                 Known.Zero &= ~Value;
3044                 continue;
3045               }
3046             }
3047             Known.One.clearAllBits();
3048             Known.Zero.clearAllBits();
3049             break;
3050           }
3051         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3052           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3053             const APInt &Value = CInt->getValue();
3054             Known.One = Value;
3055             Known.Zero = ~Value;
3056           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3057             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3058             Known.One = Value;
3059             Known.Zero = ~Value;
3060           }
3061         }
3062       }
3063     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3064       // If this is a ZEXTLoad and we are looking at the loaded value.
3065       EVT VT = LD->getMemoryVT();
3066       unsigned MemBits = VT.getScalarSizeInBits();
3067       Known.Zero.setBitsFrom(MemBits);
3068     } else if (const MDNode *Ranges = LD->getRanges()) {
3069       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3070         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3071     }
3072     break;
3073   }
3074   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3075     EVT InVT = Op.getOperand(0).getValueType();
3076     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3077     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3078     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
3079     break;
3080   }
3081   case ISD::ZERO_EXTEND: {
3082     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3083     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
3084     break;
3085   }
3086   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3087     EVT InVT = Op.getOperand(0).getValueType();
3088     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3089     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3090     // If the sign bit is known to be zero or one, then sext will extend
3091     // it to the top bits, else it will just zext.
3092     Known = Known.sext(BitWidth);
3093     break;
3094   }
3095   case ISD::SIGN_EXTEND: {
3096     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3097     // If the sign bit is known to be zero or one, then sext will extend
3098     // it to the top bits, else it will just zext.
3099     Known = Known.sext(BitWidth);
3100     break;
3101   }
3102   case ISD::ANY_EXTEND: {
3103     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3104     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3105     break;
3106   }
3107   case ISD::TRUNCATE: {
3108     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3109     Known = Known.trunc(BitWidth);
3110     break;
3111   }
3112   case ISD::AssertZext: {
3113     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3114     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3115     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3116     Known.Zero |= (~InMask);
3117     Known.One  &= (~Known.Zero);
3118     break;
3119   }
3120   case ISD::FGETSIGN:
3121     // All bits are zero except the low bit.
3122     Known.Zero.setBitsFrom(1);
3123     break;
3124   case ISD::USUBO:
3125   case ISD::SSUBO:
3126     if (Op.getResNo() == 1) {
3127       // If we know the result of a setcc has the top bits zero, use this info.
3128       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3129               TargetLowering::ZeroOrOneBooleanContent &&
3130           BitWidth > 1)
3131         Known.Zero.setBitsFrom(1);
3132       break;
3133     }
3134     LLVM_FALLTHROUGH;
3135   case ISD::SUB:
3136   case ISD::SUBC: {
3137     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3138     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3139     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3140                                         Known, Known2);
3141     break;
3142   }
3143   case ISD::UADDO:
3144   case ISD::SADDO:
3145   case ISD::ADDCARRY:
3146     if (Op.getResNo() == 1) {
3147       // If we know the result of a setcc has the top bits zero, use this info.
3148       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3149               TargetLowering::ZeroOrOneBooleanContent &&
3150           BitWidth > 1)
3151         Known.Zero.setBitsFrom(1);
3152       break;
3153     }
3154     LLVM_FALLTHROUGH;
3155   case ISD::ADD:
3156   case ISD::ADDC:
3157   case ISD::ADDE: {
3158     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3159 
3160     // With ADDE and ADDCARRY, a carry bit may be added in.
3161     KnownBits Carry(1);
3162     if (Opcode == ISD::ADDE)
3163       // Can't track carry from glue, set carry to unknown.
3164       Carry.resetAll();
3165     else if (Opcode == ISD::ADDCARRY)
3166       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3167       // the trouble (how often will we find a known carry bit). And I haven't
3168       // tested this very much yet, but something like this might work:
3169       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3170       //   Carry = Carry.zextOrTrunc(1, false);
3171       Carry.resetAll();
3172     else
3173       Carry.setAllZero();
3174 
3175     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3176     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3177     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3178     break;
3179   }
3180   case ISD::SREM:
3181     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3182       const APInt &RA = Rem->getAPIntValue().abs();
3183       if (RA.isPowerOf2()) {
3184         APInt LowBits = RA - 1;
3185         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3186 
3187         // The low bits of the first operand are unchanged by the srem.
3188         Known.Zero = Known2.Zero & LowBits;
3189         Known.One = Known2.One & LowBits;
3190 
3191         // If the first operand is non-negative or has all low bits zero, then
3192         // the upper bits are all zero.
3193         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3194           Known.Zero |= ~LowBits;
3195 
3196         // If the first operand is negative and not all low bits are zero, then
3197         // the upper bits are all one.
3198         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3199           Known.One |= ~LowBits;
3200         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3201       }
3202     }
3203     break;
3204   case ISD::UREM: {
3205     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3206       const APInt &RA = Rem->getAPIntValue();
3207       if (RA.isPowerOf2()) {
3208         APInt LowBits = (RA - 1);
3209         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3210 
3211         // The upper bits are all zero, the lower ones are unchanged.
3212         Known.Zero = Known2.Zero | ~LowBits;
3213         Known.One = Known2.One & LowBits;
3214         break;
3215       }
3216     }
3217 
3218     // Since the result is less than or equal to either operand, any leading
3219     // zero bits in either operand must also exist in the result.
3220     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3221     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3222 
3223     uint32_t Leaders =
3224         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3225     Known.resetAll();
3226     Known.Zero.setHighBits(Leaders);
3227     break;
3228   }
3229   case ISD::EXTRACT_ELEMENT: {
3230     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3231     const unsigned Index = Op.getConstantOperandVal(1);
3232     const unsigned EltBitWidth = Op.getValueSizeInBits();
3233 
3234     // Remove low part of known bits mask
3235     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3236     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3237 
3238     // Remove high part of known bit mask
3239     Known = Known.trunc(EltBitWidth);
3240     break;
3241   }
3242   case ISD::EXTRACT_VECTOR_ELT: {
3243     SDValue InVec = Op.getOperand(0);
3244     SDValue EltNo = Op.getOperand(1);
3245     EVT VecVT = InVec.getValueType();
3246     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3247     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3248     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3249     // anything about the extended bits.
3250     if (BitWidth > EltBitWidth)
3251       Known = Known.trunc(EltBitWidth);
3252     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3253     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3254       // If we know the element index, just demand that vector element.
3255       unsigned Idx = ConstEltNo->getZExtValue();
3256       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3257       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3258     } else {
3259       // Unknown element index, so ignore DemandedElts and demand them all.
3260       Known = computeKnownBits(InVec, Depth + 1);
3261     }
3262     if (BitWidth > EltBitWidth)
3263       Known = Known.zext(BitWidth, false /* => any extend */);
3264     break;
3265   }
3266   case ISD::INSERT_VECTOR_ELT: {
3267     SDValue InVec = Op.getOperand(0);
3268     SDValue InVal = Op.getOperand(1);
3269     SDValue EltNo = Op.getOperand(2);
3270 
3271     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3272     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3273       // If we know the element index, split the demand between the
3274       // source vector and the inserted element.
3275       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3276       unsigned EltIdx = CEltNo->getZExtValue();
3277 
3278       // If we demand the inserted element then add its common known bits.
3279       if (DemandedElts[EltIdx]) {
3280         Known2 = computeKnownBits(InVal, Depth + 1);
3281         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3282         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3283       }
3284 
3285       // If we demand the source vector then add its common known bits, ensuring
3286       // that we don't demand the inserted element.
3287       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3288       if (!!VectorElts) {
3289         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3290         Known.One &= Known2.One;
3291         Known.Zero &= Known2.Zero;
3292       }
3293     } else {
3294       // Unknown element index, so ignore DemandedElts and demand them all.
3295       Known = computeKnownBits(InVec, Depth + 1);
3296       Known2 = computeKnownBits(InVal, Depth + 1);
3297       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3298       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3299     }
3300     break;
3301   }
3302   case ISD::BITREVERSE: {
3303     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3304     Known.Zero = Known2.Zero.reverseBits();
3305     Known.One = Known2.One.reverseBits();
3306     break;
3307   }
3308   case ISD::BSWAP: {
3309     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3310     Known.Zero = Known2.Zero.byteSwap();
3311     Known.One = Known2.One.byteSwap();
3312     break;
3313   }
3314   case ISD::ABS: {
3315     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3316 
3317     // If the source's MSB is zero then we know the rest of the bits already.
3318     if (Known2.isNonNegative()) {
3319       Known.Zero = Known2.Zero;
3320       Known.One = Known2.One;
3321       break;
3322     }
3323 
3324     // We only know that the absolute values's MSB will be zero iff there is
3325     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3326     Known2.One.clearSignBit();
3327     if (Known2.One.getBoolValue()) {
3328       Known.Zero = APInt::getSignMask(BitWidth);
3329       break;
3330     }
3331     break;
3332   }
3333   case ISD::UMIN: {
3334     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3335     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3336 
3337     // UMIN - we know that the result will have the maximum of the
3338     // known zero leading bits of the inputs.
3339     unsigned LeadZero = Known.countMinLeadingZeros();
3340     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3341 
3342     Known.Zero &= Known2.Zero;
3343     Known.One &= Known2.One;
3344     Known.Zero.setHighBits(LeadZero);
3345     break;
3346   }
3347   case ISD::UMAX: {
3348     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3349     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3350 
3351     // UMAX - we know that the result will have the maximum of the
3352     // known one leading bits of the inputs.
3353     unsigned LeadOne = Known.countMinLeadingOnes();
3354     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3355 
3356     Known.Zero &= Known2.Zero;
3357     Known.One &= Known2.One;
3358     Known.One.setHighBits(LeadOne);
3359     break;
3360   }
3361   case ISD::SMIN:
3362   case ISD::SMAX: {
3363     // If we have a clamp pattern, we know that the number of sign bits will be
3364     // the minimum of the clamp min/max range.
3365     bool IsMax = (Opcode == ISD::SMAX);
3366     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3367     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3368       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3369         CstHigh =
3370             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3371     if (CstLow && CstHigh) {
3372       if (!IsMax)
3373         std::swap(CstLow, CstHigh);
3374 
3375       const APInt &ValueLow = CstLow->getAPIntValue();
3376       const APInt &ValueHigh = CstHigh->getAPIntValue();
3377       if (ValueLow.sle(ValueHigh)) {
3378         unsigned LowSignBits = ValueLow.getNumSignBits();
3379         unsigned HighSignBits = ValueHigh.getNumSignBits();
3380         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3381         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3382           Known.One.setHighBits(MinSignBits);
3383           break;
3384         }
3385         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3386           Known.Zero.setHighBits(MinSignBits);
3387           break;
3388         }
3389       }
3390     }
3391 
3392     // Fallback - just get the shared known bits of the operands.
3393     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3394     if (Known.isUnknown()) break; // Early-out
3395     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3396     Known.Zero &= Known2.Zero;
3397     Known.One &= Known2.One;
3398     break;
3399   }
3400   case ISD::FrameIndex:
3401   case ISD::TargetFrameIndex:
3402     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3403     break;
3404 
3405   default:
3406     if (Opcode < ISD::BUILTIN_OP_END)
3407       break;
3408     LLVM_FALLTHROUGH;
3409   case ISD::INTRINSIC_WO_CHAIN:
3410   case ISD::INTRINSIC_W_CHAIN:
3411   case ISD::INTRINSIC_VOID:
3412     // Allow the target to implement this method for its nodes.
3413     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3414     break;
3415   }
3416 
3417   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3418   return Known;
3419 }
3420 
computeOverflowKind(SDValue N0,SDValue N1) const3421 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3422                                                              SDValue N1) const {
3423   // X + 0 never overflow
3424   if (isNullConstant(N1))
3425     return OFK_Never;
3426 
3427   KnownBits N1Known = computeKnownBits(N1);
3428   if (N1Known.Zero.getBoolValue()) {
3429     KnownBits N0Known = computeKnownBits(N0);
3430 
3431     bool overflow;
3432     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3433     if (!overflow)
3434       return OFK_Never;
3435   }
3436 
3437   // mulhi + 1 never overflow
3438   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3439       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3440     return OFK_Never;
3441 
3442   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3443     KnownBits N0Known = computeKnownBits(N0);
3444 
3445     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3446       return OFK_Never;
3447   }
3448 
3449   return OFK_Sometime;
3450 }
3451 
isKnownToBeAPowerOfTwo(SDValue Val) const3452 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3453   EVT OpVT = Val.getValueType();
3454   unsigned BitWidth = OpVT.getScalarSizeInBits();
3455 
3456   // Is the constant a known power of 2?
3457   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3458     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3459 
3460   // A left-shift of a constant one will have exactly one bit set because
3461   // shifting the bit off the end is undefined.
3462   if (Val.getOpcode() == ISD::SHL) {
3463     auto *C = isConstOrConstSplat(Val.getOperand(0));
3464     if (C && C->getAPIntValue() == 1)
3465       return true;
3466   }
3467 
3468   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3469   // one bit set.
3470   if (Val.getOpcode() == ISD::SRL) {
3471     auto *C = isConstOrConstSplat(Val.getOperand(0));
3472     if (C && C->getAPIntValue().isSignMask())
3473       return true;
3474   }
3475 
3476   // Are all operands of a build vector constant powers of two?
3477   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3478     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3479           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3480             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3481           return false;
3482         }))
3483       return true;
3484 
3485   // More could be done here, though the above checks are enough
3486   // to handle some common cases.
3487 
3488   // Fall back to computeKnownBits to catch other known cases.
3489   KnownBits Known = computeKnownBits(Val);
3490   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3491 }
3492 
ComputeNumSignBits(SDValue Op,unsigned Depth) const3493 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3494   EVT VT = Op.getValueType();
3495   APInt DemandedElts = VT.isVector()
3496                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3497                            : APInt(1, 1);
3498   return ComputeNumSignBits(Op, DemandedElts, Depth);
3499 }
3500 
ComputeNumSignBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const3501 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3502                                           unsigned Depth) const {
3503   EVT VT = Op.getValueType();
3504   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3505   unsigned VTBits = VT.getScalarSizeInBits();
3506   unsigned NumElts = DemandedElts.getBitWidth();
3507   unsigned Tmp, Tmp2;
3508   unsigned FirstAnswer = 1;
3509 
3510   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3511     const APInt &Val = C->getAPIntValue();
3512     return Val.getNumSignBits();
3513   }
3514 
3515   if (Depth >= MaxRecursionDepth)
3516     return 1;  // Limit search depth.
3517 
3518   if (!DemandedElts)
3519     return 1;  // No demanded elts, better to assume we don't know anything.
3520 
3521   unsigned Opcode = Op.getOpcode();
3522   switch (Opcode) {
3523   default: break;
3524   case ISD::AssertSext:
3525     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3526     return VTBits-Tmp+1;
3527   case ISD::AssertZext:
3528     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3529     return VTBits-Tmp;
3530 
3531   case ISD::BUILD_VECTOR:
3532     Tmp = VTBits;
3533     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3534       if (!DemandedElts[i])
3535         continue;
3536 
3537       SDValue SrcOp = Op.getOperand(i);
3538       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3539 
3540       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3541       if (SrcOp.getValueSizeInBits() != VTBits) {
3542         assert(SrcOp.getValueSizeInBits() > VTBits &&
3543                "Expected BUILD_VECTOR implicit truncation");
3544         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3545         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3546       }
3547       Tmp = std::min(Tmp, Tmp2);
3548     }
3549     return Tmp;
3550 
3551   case ISD::VECTOR_SHUFFLE: {
3552     // Collect the minimum number of sign bits that are shared by every vector
3553     // element referenced by the shuffle.
3554     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3555     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3556     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3557     for (unsigned i = 0; i != NumElts; ++i) {
3558       int M = SVN->getMaskElt(i);
3559       if (!DemandedElts[i])
3560         continue;
3561       // For UNDEF elements, we don't know anything about the common state of
3562       // the shuffle result.
3563       if (M < 0)
3564         return 1;
3565       if ((unsigned)M < NumElts)
3566         DemandedLHS.setBit((unsigned)M % NumElts);
3567       else
3568         DemandedRHS.setBit((unsigned)M % NumElts);
3569     }
3570     Tmp = std::numeric_limits<unsigned>::max();
3571     if (!!DemandedLHS)
3572       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3573     if (!!DemandedRHS) {
3574       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3575       Tmp = std::min(Tmp, Tmp2);
3576     }
3577     // If we don't know anything, early out and try computeKnownBits fall-back.
3578     if (Tmp == 1)
3579       break;
3580     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3581     return Tmp;
3582   }
3583 
3584   case ISD::BITCAST: {
3585     SDValue N0 = Op.getOperand(0);
3586     EVT SrcVT = N0.getValueType();
3587     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3588 
3589     // Ignore bitcasts from unsupported types..
3590     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3591       break;
3592 
3593     // Fast handling of 'identity' bitcasts.
3594     if (VTBits == SrcBits)
3595       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3596 
3597     bool IsLE = getDataLayout().isLittleEndian();
3598 
3599     // Bitcast 'large element' scalar/vector to 'small element' vector.
3600     if ((SrcBits % VTBits) == 0) {
3601       assert(VT.isVector() && "Expected bitcast to vector");
3602 
3603       unsigned Scale = SrcBits / VTBits;
3604       APInt SrcDemandedElts(NumElts / Scale, 0);
3605       for (unsigned i = 0; i != NumElts; ++i)
3606         if (DemandedElts[i])
3607           SrcDemandedElts.setBit(i / Scale);
3608 
3609       // Fast case - sign splat can be simply split across the small elements.
3610       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3611       if (Tmp == SrcBits)
3612         return VTBits;
3613 
3614       // Slow case - determine how far the sign extends into each sub-element.
3615       Tmp2 = VTBits;
3616       for (unsigned i = 0; i != NumElts; ++i)
3617         if (DemandedElts[i]) {
3618           unsigned SubOffset = i % Scale;
3619           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3620           SubOffset = SubOffset * VTBits;
3621           if (Tmp <= SubOffset)
3622             return 1;
3623           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3624         }
3625       return Tmp2;
3626     }
3627     break;
3628   }
3629 
3630   case ISD::SIGN_EXTEND:
3631     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3632     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3633   case ISD::SIGN_EXTEND_INREG:
3634     // Max of the input and what this extends.
3635     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3636     Tmp = VTBits-Tmp+1;
3637     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3638     return std::max(Tmp, Tmp2);
3639   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3640     SDValue Src = Op.getOperand(0);
3641     EVT SrcVT = Src.getValueType();
3642     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3643     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3644     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3645   }
3646   case ISD::SRA:
3647     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3648     // SRA X, C -> adds C sign bits.
3649     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts))
3650       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3651     else if (const APInt *ShAmt =
3652                  getValidMinimumShiftAmountConstant(Op, DemandedElts))
3653       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3654     return Tmp;
3655   case ISD::SHL:
3656     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3657       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3658       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3659       if (ShAmt->ult(Tmp))
3660         return Tmp - ShAmt->getZExtValue();
3661     } else if (const APInt *ShAmt =
3662                    getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3663       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3664       if (ShAmt->ult(Tmp))
3665         return Tmp - ShAmt->getZExtValue();
3666     }
3667     break;
3668   case ISD::AND:
3669   case ISD::OR:
3670   case ISD::XOR:    // NOT is handled here.
3671     // Logical binary ops preserve the number of sign bits at the worst.
3672     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3673     if (Tmp != 1) {
3674       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3675       FirstAnswer = std::min(Tmp, Tmp2);
3676       // We computed what we know about the sign bits as our first
3677       // answer. Now proceed to the generic code that uses
3678       // computeKnownBits, and pick whichever answer is better.
3679     }
3680     break;
3681 
3682   case ISD::SELECT:
3683   case ISD::VSELECT:
3684     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3685     if (Tmp == 1) return 1;  // Early out.
3686     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3687     return std::min(Tmp, Tmp2);
3688   case ISD::SELECT_CC:
3689     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3690     if (Tmp == 1) return 1;  // Early out.
3691     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3692     return std::min(Tmp, Tmp2);
3693 
3694   case ISD::SMIN:
3695   case ISD::SMAX: {
3696     // If we have a clamp pattern, we know that the number of sign bits will be
3697     // the minimum of the clamp min/max range.
3698     bool IsMax = (Opcode == ISD::SMAX);
3699     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3700     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3701       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3702         CstHigh =
3703             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3704     if (CstLow && CstHigh) {
3705       if (!IsMax)
3706         std::swap(CstLow, CstHigh);
3707       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3708         Tmp = CstLow->getAPIntValue().getNumSignBits();
3709         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3710         return std::min(Tmp, Tmp2);
3711       }
3712     }
3713 
3714     // Fallback - just get the minimum number of sign bits of the operands.
3715     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3716     if (Tmp == 1)
3717       return 1;  // Early out.
3718     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3719     return std::min(Tmp, Tmp2);
3720   }
3721   case ISD::UMIN:
3722   case ISD::UMAX:
3723     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3724     if (Tmp == 1)
3725       return 1;  // Early out.
3726     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3727     return std::min(Tmp, Tmp2);
3728   case ISD::SADDO:
3729   case ISD::UADDO:
3730   case ISD::SSUBO:
3731   case ISD::USUBO:
3732   case ISD::SMULO:
3733   case ISD::UMULO:
3734     if (Op.getResNo() != 1)
3735       break;
3736     // The boolean result conforms to getBooleanContents.  Fall through.
3737     // If setcc returns 0/-1, all bits are sign bits.
3738     // We know that we have an integer-based boolean since these operations
3739     // are only available for integer.
3740     if (TLI->getBooleanContents(VT.isVector(), false) ==
3741         TargetLowering::ZeroOrNegativeOneBooleanContent)
3742       return VTBits;
3743     break;
3744   case ISD::SETCC:
3745   case ISD::STRICT_FSETCC:
3746   case ISD::STRICT_FSETCCS: {
3747     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3748     // If setcc returns 0/-1, all bits are sign bits.
3749     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3750         TargetLowering::ZeroOrNegativeOneBooleanContent)
3751       return VTBits;
3752     break;
3753   }
3754   case ISD::ROTL:
3755   case ISD::ROTR:
3756     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3757       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3758 
3759       // Handle rotate right by N like a rotate left by 32-N.
3760       if (Opcode == ISD::ROTR)
3761         RotAmt = (VTBits - RotAmt) % VTBits;
3762 
3763       // If we aren't rotating out all of the known-in sign bits, return the
3764       // number that are left.  This handles rotl(sext(x), 1) for example.
3765       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3766       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3767     }
3768     break;
3769   case ISD::ADD:
3770   case ISD::ADDC:
3771     // Add can have at most one carry bit.  Thus we know that the output
3772     // is, at worst, one more bit than the inputs.
3773     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3774     if (Tmp == 1) return 1;  // Early out.
3775 
3776     // Special case decrementing a value (ADD X, -1):
3777     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3778       if (CRHS->isAllOnesValue()) {
3779         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3780 
3781         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3782         // sign bits set.
3783         if ((Known.Zero | 1).isAllOnesValue())
3784           return VTBits;
3785 
3786         // If we are subtracting one from a positive number, there is no carry
3787         // out of the result.
3788         if (Known.isNonNegative())
3789           return Tmp;
3790       }
3791 
3792     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3793     if (Tmp2 == 1) return 1;
3794     return std::min(Tmp, Tmp2)-1;
3795 
3796   case ISD::SUB:
3797     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3798     if (Tmp2 == 1) return 1;
3799 
3800     // Handle NEG.
3801     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3802       if (CLHS->isNullValue()) {
3803         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3804         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3805         // sign bits set.
3806         if ((Known.Zero | 1).isAllOnesValue())
3807           return VTBits;
3808 
3809         // If the input is known to be positive (the sign bit is known clear),
3810         // the output of the NEG has the same number of sign bits as the input.
3811         if (Known.isNonNegative())
3812           return Tmp2;
3813 
3814         // Otherwise, we treat this like a SUB.
3815       }
3816 
3817     // Sub can have at most one carry bit.  Thus we know that the output
3818     // is, at worst, one more bit than the inputs.
3819     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3820     if (Tmp == 1) return 1;  // Early out.
3821     return std::min(Tmp, Tmp2)-1;
3822   case ISD::MUL: {
3823     // The output of the Mul can be at most twice the valid bits in the inputs.
3824     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3825     if (SignBitsOp0 == 1)
3826       break;
3827     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3828     if (SignBitsOp1 == 1)
3829       break;
3830     unsigned OutValidBits =
3831         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3832     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3833   }
3834   case ISD::TRUNCATE: {
3835     // Check if the sign bits of source go down as far as the truncated value.
3836     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3837     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3838     if (NumSrcSignBits > (NumSrcBits - VTBits))
3839       return NumSrcSignBits - (NumSrcBits - VTBits);
3840     break;
3841   }
3842   case ISD::EXTRACT_ELEMENT: {
3843     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3844     const int BitWidth = Op.getValueSizeInBits();
3845     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3846 
3847     // Get reverse index (starting from 1), Op1 value indexes elements from
3848     // little end. Sign starts at big end.
3849     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3850 
3851     // If the sign portion ends in our element the subtraction gives correct
3852     // result. Otherwise it gives either negative or > bitwidth result
3853     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3854   }
3855   case ISD::INSERT_VECTOR_ELT: {
3856     SDValue InVec = Op.getOperand(0);
3857     SDValue InVal = Op.getOperand(1);
3858     SDValue EltNo = Op.getOperand(2);
3859 
3860     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3861     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3862       // If we know the element index, split the demand between the
3863       // source vector and the inserted element.
3864       unsigned EltIdx = CEltNo->getZExtValue();
3865 
3866       // If we demand the inserted element then get its sign bits.
3867       Tmp = std::numeric_limits<unsigned>::max();
3868       if (DemandedElts[EltIdx]) {
3869         // TODO - handle implicit truncation of inserted elements.
3870         if (InVal.getScalarValueSizeInBits() != VTBits)
3871           break;
3872         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3873       }
3874 
3875       // If we demand the source vector then get its sign bits, and determine
3876       // the minimum.
3877       APInt VectorElts = DemandedElts;
3878       VectorElts.clearBit(EltIdx);
3879       if (!!VectorElts) {
3880         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3881         Tmp = std::min(Tmp, Tmp2);
3882       }
3883     } else {
3884       // Unknown element index, so ignore DemandedElts and demand them all.
3885       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3886       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3887       Tmp = std::min(Tmp, Tmp2);
3888     }
3889     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3890     return Tmp;
3891   }
3892   case ISD::EXTRACT_VECTOR_ELT: {
3893     SDValue InVec = Op.getOperand(0);
3894     SDValue EltNo = Op.getOperand(1);
3895     EVT VecVT = InVec.getValueType();
3896     const unsigned BitWidth = Op.getValueSizeInBits();
3897     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3898     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3899 
3900     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3901     // anything about sign bits. But if the sizes match we can derive knowledge
3902     // about sign bits from the vector operand.
3903     if (BitWidth != EltBitWidth)
3904       break;
3905 
3906     // If we know the element index, just demand that vector element, else for
3907     // an unknown element index, ignore DemandedElts and demand them all.
3908     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3909     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3910     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3911       DemandedSrcElts =
3912           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3913 
3914     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3915   }
3916   case ISD::EXTRACT_SUBVECTOR: {
3917     // If we know the element index, just demand that subvector elements,
3918     // otherwise demand them all.
3919     SDValue Src = Op.getOperand(0);
3920     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3921     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3922     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3923     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3924       // Offset the demanded elts by the subvector index.
3925       uint64_t Idx = SubIdx->getZExtValue();
3926       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3927     }
3928     return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3929   }
3930   case ISD::CONCAT_VECTORS: {
3931     // Determine the minimum number of sign bits across all demanded
3932     // elts of the input vectors. Early out if the result is already 1.
3933     Tmp = std::numeric_limits<unsigned>::max();
3934     EVT SubVectorVT = Op.getOperand(0).getValueType();
3935     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3936     unsigned NumSubVectors = Op.getNumOperands();
3937     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3938       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3939       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3940       if (!DemandedSub)
3941         continue;
3942       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3943       Tmp = std::min(Tmp, Tmp2);
3944     }
3945     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3946     return Tmp;
3947   }
3948   case ISD::INSERT_SUBVECTOR: {
3949     // If we know the element index, demand any elements from the subvector and
3950     // the remainder from the src its inserted into, otherwise demand them all.
3951     SDValue Src = Op.getOperand(0);
3952     SDValue Sub = Op.getOperand(1);
3953     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3954     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3955     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3956       Tmp = std::numeric_limits<unsigned>::max();
3957       uint64_t Idx = SubIdx->getZExtValue();
3958       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3959       if (!!DemandedSubElts) {
3960         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3961         if (Tmp == 1) return 1; // early-out
3962       }
3963       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3964       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3965       if (!!DemandedSrcElts) {
3966         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3967         Tmp = std::min(Tmp, Tmp2);
3968       }
3969       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3970       return Tmp;
3971     }
3972 
3973     // Not able to determine the index so just assume worst case.
3974     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3975     if (Tmp == 1) return 1; // early-out
3976     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3977     Tmp = std::min(Tmp, Tmp2);
3978     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3979     return Tmp;
3980   }
3981   }
3982 
3983   // If we are looking at the loaded value of the SDNode.
3984   if (Op.getResNo() == 0) {
3985     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3986     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3987       unsigned ExtType = LD->getExtensionType();
3988       switch (ExtType) {
3989       default: break;
3990       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3991         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3992         return VTBits - Tmp + 1;
3993       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3994         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3995         return VTBits - Tmp;
3996       case ISD::NON_EXTLOAD:
3997         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3998           // We only need to handle vectors - computeKnownBits should handle
3999           // scalar cases.
4000           Type *CstTy = Cst->getType();
4001           if (CstTy->isVectorTy() &&
4002               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4003             Tmp = VTBits;
4004             for (unsigned i = 0; i != NumElts; ++i) {
4005               if (!DemandedElts[i])
4006                 continue;
4007               if (Constant *Elt = Cst->getAggregateElement(i)) {
4008                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4009                   const APInt &Value = CInt->getValue();
4010                   Tmp = std::min(Tmp, Value.getNumSignBits());
4011                   continue;
4012                 }
4013                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4014                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4015                   Tmp = std::min(Tmp, Value.getNumSignBits());
4016                   continue;
4017                 }
4018               }
4019               // Unknown type. Conservatively assume no bits match sign bit.
4020               return 1;
4021             }
4022             return Tmp;
4023           }
4024         }
4025         break;
4026       }
4027     }
4028   }
4029 
4030   // Allow the target to implement this method for its nodes.
4031   if (Opcode >= ISD::BUILTIN_OP_END ||
4032       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4033       Opcode == ISD::INTRINSIC_W_CHAIN ||
4034       Opcode == ISD::INTRINSIC_VOID) {
4035     unsigned NumBits =
4036         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4037     if (NumBits > 1)
4038       FirstAnswer = std::max(FirstAnswer, NumBits);
4039   }
4040 
4041   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4042   // use this information.
4043   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4044 
4045   APInt Mask;
4046   if (Known.isNonNegative()) {        // sign bit is 0
4047     Mask = Known.Zero;
4048   } else if (Known.isNegative()) {  // sign bit is 1;
4049     Mask = Known.One;
4050   } else {
4051     // Nothing known.
4052     return FirstAnswer;
4053   }
4054 
4055   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
4056   // the number of identical bits in the top of the input value.
4057   Mask = ~Mask;
4058   Mask <<= Mask.getBitWidth()-VTBits;
4059   // Return # leading zeros.  We use 'min' here in case Val was zero before
4060   // shifting.  We don't want to return '64' as for an i32 "0".
4061   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
4062 }
4063 
isBaseWithConstantOffset(SDValue Op) const4064 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4065   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4066       !isa<ConstantSDNode>(Op.getOperand(1)))
4067     return false;
4068 
4069   if (Op.getOpcode() == ISD::OR &&
4070       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4071     return false;
4072 
4073   return true;
4074 }
4075 
isKnownNeverNaN(SDValue Op,bool SNaN,unsigned Depth) const4076 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4077   // If we're told that NaNs won't happen, assume they won't.
4078   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4079     return true;
4080 
4081   if (Depth >= MaxRecursionDepth)
4082     return false; // Limit search depth.
4083 
4084   // TODO: Handle vectors.
4085   // If the value is a constant, we can obviously see if it is a NaN or not.
4086   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4087     return !C->getValueAPF().isNaN() ||
4088            (SNaN && !C->getValueAPF().isSignaling());
4089   }
4090 
4091   unsigned Opcode = Op.getOpcode();
4092   switch (Opcode) {
4093   case ISD::FADD:
4094   case ISD::FSUB:
4095   case ISD::FMUL:
4096   case ISD::FDIV:
4097   case ISD::FREM:
4098   case ISD::FSIN:
4099   case ISD::FCOS: {
4100     if (SNaN)
4101       return true;
4102     // TODO: Need isKnownNeverInfinity
4103     return false;
4104   }
4105   case ISD::FCANONICALIZE:
4106   case ISD::FEXP:
4107   case ISD::FEXP2:
4108   case ISD::FTRUNC:
4109   case ISD::FFLOOR:
4110   case ISD::FCEIL:
4111   case ISD::FROUND:
4112   case ISD::FRINT:
4113   case ISD::FNEARBYINT: {
4114     if (SNaN)
4115       return true;
4116     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4117   }
4118   case ISD::FABS:
4119   case ISD::FNEG:
4120   case ISD::FCOPYSIGN: {
4121     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4122   }
4123   case ISD::SELECT:
4124     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4125            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4126   case ISD::FP_EXTEND:
4127   case ISD::FP_ROUND: {
4128     if (SNaN)
4129       return true;
4130     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4131   }
4132   case ISD::SINT_TO_FP:
4133   case ISD::UINT_TO_FP:
4134     return true;
4135   case ISD::FMA:
4136   case ISD::FMAD: {
4137     if (SNaN)
4138       return true;
4139     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4140            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4141            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4142   }
4143   case ISD::FSQRT: // Need is known positive
4144   case ISD::FLOG:
4145   case ISD::FLOG2:
4146   case ISD::FLOG10:
4147   case ISD::FPOWI:
4148   case ISD::FPOW: {
4149     if (SNaN)
4150       return true;
4151     // TODO: Refine on operand
4152     return false;
4153   }
4154   case ISD::FMINNUM:
4155   case ISD::FMAXNUM: {
4156     // Only one needs to be known not-nan, since it will be returned if the
4157     // other ends up being one.
4158     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4159            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4160   }
4161   case ISD::FMINNUM_IEEE:
4162   case ISD::FMAXNUM_IEEE: {
4163     if (SNaN)
4164       return true;
4165     // This can return a NaN if either operand is an sNaN, or if both operands
4166     // are NaN.
4167     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4168             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4169            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4170             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4171   }
4172   case ISD::FMINIMUM:
4173   case ISD::FMAXIMUM: {
4174     // TODO: Does this quiet or return the origina NaN as-is?
4175     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4176            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4177   }
4178   case ISD::EXTRACT_VECTOR_ELT: {
4179     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4180   }
4181   default:
4182     if (Opcode >= ISD::BUILTIN_OP_END ||
4183         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4184         Opcode == ISD::INTRINSIC_W_CHAIN ||
4185         Opcode == ISD::INTRINSIC_VOID) {
4186       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4187     }
4188 
4189     return false;
4190   }
4191 }
4192 
isKnownNeverZeroFloat(SDValue Op) const4193 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4194   assert(Op.getValueType().isFloatingPoint() &&
4195          "Floating point type expected");
4196 
4197   // If the value is a constant, we can obviously see if it is a zero or not.
4198   // TODO: Add BuildVector support.
4199   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4200     return !C->isZero();
4201   return false;
4202 }
4203 
isKnownNeverZero(SDValue Op) const4204 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4205   assert(!Op.getValueType().isFloatingPoint() &&
4206          "Floating point types unsupported - use isKnownNeverZeroFloat");
4207 
4208   // If the value is a constant, we can obviously see if it is a zero or not.
4209   if (ISD::matchUnaryPredicate(
4210           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4211     return true;
4212 
4213   // TODO: Recognize more cases here.
4214   switch (Op.getOpcode()) {
4215   default: break;
4216   case ISD::OR:
4217     if (isKnownNeverZero(Op.getOperand(1)) ||
4218         isKnownNeverZero(Op.getOperand(0)))
4219       return true;
4220     break;
4221   }
4222 
4223   return false;
4224 }
4225 
isEqualTo(SDValue A,SDValue B) const4226 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4227   // Check the obvious case.
4228   if (A == B) return true;
4229 
4230   // For for negative and positive zero.
4231   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4232     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4233       if (CA->isZero() && CB->isZero()) return true;
4234 
4235   // Otherwise they may not be equal.
4236   return false;
4237 }
4238 
4239 // FIXME: unify with llvm::haveNoCommonBitsSet.
4240 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
haveNoCommonBitsSet(SDValue A,SDValue B) const4241 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4242   assert(A.getValueType() == B.getValueType() &&
4243          "Values must have the same type");
4244   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4245 }
4246 
FoldBUILD_VECTOR(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)4247 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4248                                 ArrayRef<SDValue> Ops,
4249                                 SelectionDAG &DAG) {
4250   int NumOps = Ops.size();
4251   assert(NumOps != 0 && "Can't build an empty vector!");
4252   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4253          "Incorrect element count in BUILD_VECTOR!");
4254 
4255   // BUILD_VECTOR of UNDEFs is UNDEF.
4256   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4257     return DAG.getUNDEF(VT);
4258 
4259   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4260   SDValue IdentitySrc;
4261   bool IsIdentity = true;
4262   for (int i = 0; i != NumOps; ++i) {
4263     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4264         Ops[i].getOperand(0).getValueType() != VT ||
4265         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4266         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4267         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4268       IsIdentity = false;
4269       break;
4270     }
4271     IdentitySrc = Ops[i].getOperand(0);
4272   }
4273   if (IsIdentity)
4274     return IdentitySrc;
4275 
4276   return SDValue();
4277 }
4278 
4279 /// Try to simplify vector concatenation to an input value, undef, or build
4280 /// vector.
foldCONCAT_VECTORS(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)4281 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4282                                   ArrayRef<SDValue> Ops,
4283                                   SelectionDAG &DAG) {
4284   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4285   assert(llvm::all_of(Ops,
4286                       [Ops](SDValue Op) {
4287                         return Ops[0].getValueType() == Op.getValueType();
4288                       }) &&
4289          "Concatenation of vectors with inconsistent value types!");
4290   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4291              VT.getVectorNumElements() &&
4292          "Incorrect element count in vector concatenation!");
4293 
4294   if (Ops.size() == 1)
4295     return Ops[0];
4296 
4297   // Concat of UNDEFs is UNDEF.
4298   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4299     return DAG.getUNDEF(VT);
4300 
4301   // Scan the operands and look for extract operations from a single source
4302   // that correspond to insertion at the same location via this concatenation:
4303   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4304   SDValue IdentitySrc;
4305   bool IsIdentity = true;
4306   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4307     SDValue Op = Ops[i];
4308     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4309     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4310         Op.getOperand(0).getValueType() != VT ||
4311         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4312         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4313         Op.getConstantOperandVal(1) != IdentityIndex) {
4314       IsIdentity = false;
4315       break;
4316     }
4317     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4318            "Unexpected identity source vector for concat of extracts");
4319     IdentitySrc = Op.getOperand(0);
4320   }
4321   if (IsIdentity) {
4322     assert(IdentitySrc && "Failed to set source vector of extracts");
4323     return IdentitySrc;
4324   }
4325 
4326   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4327   // simplified to one big BUILD_VECTOR.
4328   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4329   EVT SVT = VT.getScalarType();
4330   SmallVector<SDValue, 16> Elts;
4331   for (SDValue Op : Ops) {
4332     EVT OpVT = Op.getValueType();
4333     if (Op.isUndef())
4334       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4335     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4336       Elts.append(Op->op_begin(), Op->op_end());
4337     else
4338       return SDValue();
4339   }
4340 
4341   // BUILD_VECTOR requires all inputs to be of the same type, find the
4342   // maximum type and extend them all.
4343   for (SDValue Op : Elts)
4344     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4345 
4346   if (SVT.bitsGT(VT.getScalarType()))
4347     for (SDValue &Op : Elts)
4348       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4349                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4350                : DAG.getSExtOrTrunc(Op, DL, SVT);
4351 
4352   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4353   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4354   return V;
4355 }
4356 
4357 /// Gets or creates the specified node.
getNode(unsigned Opcode,const SDLoc & DL,EVT VT)4358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4359   FoldingSetNodeID ID;
4360   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4361   void *IP = nullptr;
4362   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4363     return SDValue(E, 0);
4364 
4365   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4366                               getVTList(VT));
4367   CSEMap.InsertNode(N, IP);
4368 
4369   InsertNode(N);
4370   SDValue V = SDValue(N, 0);
4371   NewSDValueDbgMsg(V, "Creating new node: ", this);
4372   return V;
4373 }
4374 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue Operand,const SDNodeFlags Flags)4375 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4376                               SDValue Operand, const SDNodeFlags Flags) {
4377   // Constant fold unary operations with an integer constant operand. Even
4378   // opaque constant will be folded, because the folding of unary operations
4379   // doesn't create new constants with different values. Nevertheless, the
4380   // opaque flag is preserved during folding to prevent future folding with
4381   // other constants.
4382   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4383     const APInt &Val = C->getAPIntValue();
4384     switch (Opcode) {
4385     default: break;
4386     case ISD::SIGN_EXTEND:
4387       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4388                          C->isTargetOpcode(), C->isOpaque());
4389     case ISD::TRUNCATE:
4390       if (C->isOpaque())
4391         break;
4392       LLVM_FALLTHROUGH;
4393     case ISD::ANY_EXTEND:
4394     case ISD::ZERO_EXTEND:
4395       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4396                          C->isTargetOpcode(), C->isOpaque());
4397     case ISD::UINT_TO_FP:
4398     case ISD::SINT_TO_FP: {
4399       APFloat apf(EVTToAPFloatSemantics(VT),
4400                   APInt::getNullValue(VT.getSizeInBits()));
4401       (void)apf.convertFromAPInt(Val,
4402                                  Opcode==ISD::SINT_TO_FP,
4403                                  APFloat::rmNearestTiesToEven);
4404       return getConstantFP(apf, DL, VT);
4405     }
4406     case ISD::BITCAST:
4407       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4408         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4409       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4410         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4411       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4412         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4413       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4414         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4415       break;
4416     case ISD::ABS:
4417       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4418                          C->isOpaque());
4419     case ISD::BITREVERSE:
4420       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4421                          C->isOpaque());
4422     case ISD::BSWAP:
4423       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4424                          C->isOpaque());
4425     case ISD::CTPOP:
4426       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4427                          C->isOpaque());
4428     case ISD::CTLZ:
4429     case ISD::CTLZ_ZERO_UNDEF:
4430       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4431                          C->isOpaque());
4432     case ISD::CTTZ:
4433     case ISD::CTTZ_ZERO_UNDEF:
4434       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4435                          C->isOpaque());
4436     case ISD::FP16_TO_FP: {
4437       bool Ignored;
4438       APFloat FPV(APFloat::IEEEhalf(),
4439                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4440 
4441       // This can return overflow, underflow, or inexact; we don't care.
4442       // FIXME need to be more flexible about rounding mode.
4443       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4444                         APFloat::rmNearestTiesToEven, &Ignored);
4445       return getConstantFP(FPV, DL, VT);
4446     }
4447     }
4448   }
4449 
4450   // Constant fold unary operations with a floating point constant operand.
4451   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4452     APFloat V = C->getValueAPF();    // make copy
4453     switch (Opcode) {
4454     case ISD::FNEG:
4455       V.changeSign();
4456       return getConstantFP(V, DL, VT);
4457     case ISD::FABS:
4458       V.clearSign();
4459       return getConstantFP(V, DL, VT);
4460     case ISD::FCEIL: {
4461       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4462       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4463         return getConstantFP(V, DL, VT);
4464       break;
4465     }
4466     case ISD::FTRUNC: {
4467       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4468       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4469         return getConstantFP(V, DL, VT);
4470       break;
4471     }
4472     case ISD::FFLOOR: {
4473       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4474       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4475         return getConstantFP(V, DL, VT);
4476       break;
4477     }
4478     case ISD::FP_EXTEND: {
4479       bool ignored;
4480       // This can return overflow, underflow, or inexact; we don't care.
4481       // FIXME need to be more flexible about rounding mode.
4482       (void)V.convert(EVTToAPFloatSemantics(VT),
4483                       APFloat::rmNearestTiesToEven, &ignored);
4484       return getConstantFP(V, DL, VT);
4485     }
4486     case ISD::FP_TO_SINT:
4487     case ISD::FP_TO_UINT: {
4488       bool ignored;
4489       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4490       // FIXME need to be more flexible about rounding mode.
4491       APFloat::opStatus s =
4492           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4493       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4494         break;
4495       return getConstant(IntVal, DL, VT);
4496     }
4497     case ISD::BITCAST:
4498       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4499         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4500       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4501         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4502       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4503         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4504       break;
4505     case ISD::FP_TO_FP16: {
4506       bool Ignored;
4507       // This can return overflow, underflow, or inexact; we don't care.
4508       // FIXME need to be more flexible about rounding mode.
4509       (void)V.convert(APFloat::IEEEhalf(),
4510                       APFloat::rmNearestTiesToEven, &Ignored);
4511       return getConstant(V.bitcastToAPInt(), DL, VT);
4512     }
4513     }
4514   }
4515 
4516   // Constant fold unary operations with a vector integer or float operand.
4517   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4518     if (BV->isConstant()) {
4519       switch (Opcode) {
4520       default:
4521         // FIXME: Entirely reasonable to perform folding of other unary
4522         // operations here as the need arises.
4523         break;
4524       case ISD::FNEG:
4525       case ISD::FABS:
4526       case ISD::FCEIL:
4527       case ISD::FTRUNC:
4528       case ISD::FFLOOR:
4529       case ISD::FP_EXTEND:
4530       case ISD::FP_TO_SINT:
4531       case ISD::FP_TO_UINT:
4532       case ISD::TRUNCATE:
4533       case ISD::ANY_EXTEND:
4534       case ISD::ZERO_EXTEND:
4535       case ISD::SIGN_EXTEND:
4536       case ISD::UINT_TO_FP:
4537       case ISD::SINT_TO_FP:
4538       case ISD::ABS:
4539       case ISD::BITREVERSE:
4540       case ISD::BSWAP:
4541       case ISD::CTLZ:
4542       case ISD::CTLZ_ZERO_UNDEF:
4543       case ISD::CTTZ:
4544       case ISD::CTTZ_ZERO_UNDEF:
4545       case ISD::CTPOP: {
4546         SDValue Ops = { Operand };
4547         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4548           return Fold;
4549       }
4550       }
4551     }
4552   }
4553 
4554   unsigned OpOpcode = Operand.getNode()->getOpcode();
4555   switch (Opcode) {
4556   case ISD::TokenFactor:
4557   case ISD::MERGE_VALUES:
4558   case ISD::CONCAT_VECTORS:
4559     return Operand;         // Factor, merge or concat of one node?  No need.
4560   case ISD::BUILD_VECTOR: {
4561     // Attempt to simplify BUILD_VECTOR.
4562     SDValue Ops[] = {Operand};
4563     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4564       return V;
4565     break;
4566   }
4567   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4568   case ISD::FP_EXTEND:
4569     assert(VT.isFloatingPoint() &&
4570            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4571     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4572     assert((!VT.isVector() ||
4573             VT.getVectorNumElements() ==
4574             Operand.getValueType().getVectorNumElements()) &&
4575            "Vector element count mismatch!");
4576     assert(Operand.getValueType().bitsLT(VT) &&
4577            "Invalid fpext node, dst < src!");
4578     if (Operand.isUndef())
4579       return getUNDEF(VT);
4580     break;
4581   case ISD::FP_TO_SINT:
4582   case ISD::FP_TO_UINT:
4583     if (Operand.isUndef())
4584       return getUNDEF(VT);
4585     break;
4586   case ISD::SINT_TO_FP:
4587   case ISD::UINT_TO_FP:
4588     // [us]itofp(undef) = 0, because the result value is bounded.
4589     if (Operand.isUndef())
4590       return getConstantFP(0.0, DL, VT);
4591     break;
4592   case ISD::SIGN_EXTEND:
4593     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4594            "Invalid SIGN_EXTEND!");
4595     assert(VT.isVector() == Operand.getValueType().isVector() &&
4596            "SIGN_EXTEND result type type should be vector iff the operand "
4597            "type is vector!");
4598     if (Operand.getValueType() == VT) return Operand;   // noop extension
4599     assert((!VT.isVector() ||
4600             VT.getVectorNumElements() ==
4601             Operand.getValueType().getVectorNumElements()) &&
4602            "Vector element count mismatch!");
4603     assert(Operand.getValueType().bitsLT(VT) &&
4604            "Invalid sext node, dst < src!");
4605     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4606       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4607     else if (OpOpcode == ISD::UNDEF)
4608       // sext(undef) = 0, because the top bits will all be the same.
4609       return getConstant(0, DL, VT);
4610     break;
4611   case ISD::ZERO_EXTEND:
4612     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4613            "Invalid ZERO_EXTEND!");
4614     assert(VT.isVector() == Operand.getValueType().isVector() &&
4615            "ZERO_EXTEND result type type should be vector iff the operand "
4616            "type is vector!");
4617     if (Operand.getValueType() == VT) return Operand;   // noop extension
4618     assert((!VT.isVector() ||
4619             VT.getVectorNumElements() ==
4620             Operand.getValueType().getVectorNumElements()) &&
4621            "Vector element count mismatch!");
4622     assert(Operand.getValueType().bitsLT(VT) &&
4623            "Invalid zext node, dst < src!");
4624     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4625       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4626     else if (OpOpcode == ISD::UNDEF)
4627       // zext(undef) = 0, because the top bits will be zero.
4628       return getConstant(0, DL, VT);
4629     break;
4630   case ISD::ANY_EXTEND:
4631     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4632            "Invalid ANY_EXTEND!");
4633     assert(VT.isVector() == Operand.getValueType().isVector() &&
4634            "ANY_EXTEND result type type should be vector iff the operand "
4635            "type is vector!");
4636     if (Operand.getValueType() == VT) return Operand;   // noop extension
4637     assert((!VT.isVector() ||
4638             VT.getVectorNumElements() ==
4639             Operand.getValueType().getVectorNumElements()) &&
4640            "Vector element count mismatch!");
4641     assert(Operand.getValueType().bitsLT(VT) &&
4642            "Invalid anyext node, dst < src!");
4643 
4644     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4645         OpOpcode == ISD::ANY_EXTEND)
4646       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4647       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4648     else if (OpOpcode == ISD::UNDEF)
4649       return getUNDEF(VT);
4650 
4651     // (ext (trunc x)) -> x
4652     if (OpOpcode == ISD::TRUNCATE) {
4653       SDValue OpOp = Operand.getOperand(0);
4654       if (OpOp.getValueType() == VT) {
4655         transferDbgValues(Operand, OpOp);
4656         return OpOp;
4657       }
4658     }
4659     break;
4660   case ISD::TRUNCATE:
4661     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4662            "Invalid TRUNCATE!");
4663     assert(VT.isVector() == Operand.getValueType().isVector() &&
4664            "TRUNCATE result type type should be vector iff the operand "
4665            "type is vector!");
4666     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4667     assert((!VT.isVector() ||
4668             VT.getVectorNumElements() ==
4669             Operand.getValueType().getVectorNumElements()) &&
4670            "Vector element count mismatch!");
4671     assert(Operand.getValueType().bitsGT(VT) &&
4672            "Invalid truncate node, src < dst!");
4673     if (OpOpcode == ISD::TRUNCATE)
4674       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4675     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4676         OpOpcode == ISD::ANY_EXTEND) {
4677       // If the source is smaller than the dest, we still need an extend.
4678       if (Operand.getOperand(0).getValueType().getScalarType()
4679             .bitsLT(VT.getScalarType()))
4680         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4681       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4682         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4683       return Operand.getOperand(0);
4684     }
4685     if (OpOpcode == ISD::UNDEF)
4686       return getUNDEF(VT);
4687     break;
4688   case ISD::ANY_EXTEND_VECTOR_INREG:
4689   case ISD::ZERO_EXTEND_VECTOR_INREG:
4690   case ISD::SIGN_EXTEND_VECTOR_INREG:
4691     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4692     assert(Operand.getValueType().bitsLE(VT) &&
4693            "The input must be the same size or smaller than the result.");
4694     assert(VT.getVectorNumElements() <
4695              Operand.getValueType().getVectorNumElements() &&
4696            "The destination vector type must have fewer lanes than the input.");
4697     break;
4698   case ISD::ABS:
4699     assert(VT.isInteger() && VT == Operand.getValueType() &&
4700            "Invalid ABS!");
4701     if (OpOpcode == ISD::UNDEF)
4702       return getUNDEF(VT);
4703     break;
4704   case ISD::BSWAP:
4705     assert(VT.isInteger() && VT == Operand.getValueType() &&
4706            "Invalid BSWAP!");
4707     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4708            "BSWAP types must be a multiple of 16 bits!");
4709     if (OpOpcode == ISD::UNDEF)
4710       return getUNDEF(VT);
4711     break;
4712   case ISD::BITREVERSE:
4713     assert(VT.isInteger() && VT == Operand.getValueType() &&
4714            "Invalid BITREVERSE!");
4715     if (OpOpcode == ISD::UNDEF)
4716       return getUNDEF(VT);
4717     break;
4718   case ISD::BITCAST:
4719     // Basic sanity checking.
4720     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4721            "Cannot BITCAST between types of different sizes!");
4722     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4723     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4724       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4725     if (OpOpcode == ISD::UNDEF)
4726       return getUNDEF(VT);
4727     break;
4728   case ISD::SCALAR_TO_VECTOR:
4729     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4730            (VT.getVectorElementType() == Operand.getValueType() ||
4731             (VT.getVectorElementType().isInteger() &&
4732              Operand.getValueType().isInteger() &&
4733              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4734            "Illegal SCALAR_TO_VECTOR node!");
4735     if (OpOpcode == ISD::UNDEF)
4736       return getUNDEF(VT);
4737     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4738     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4739         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4740         Operand.getConstantOperandVal(1) == 0 &&
4741         Operand.getOperand(0).getValueType() == VT)
4742       return Operand.getOperand(0);
4743     break;
4744   case ISD::FNEG:
4745     // Negation of an unknown bag of bits is still completely undefined.
4746     if (OpOpcode == ISD::UNDEF)
4747       return getUNDEF(VT);
4748 
4749     if (OpOpcode == ISD::FNEG)  // --X -> X
4750       return Operand.getOperand(0);
4751     break;
4752   case ISD::FABS:
4753     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4754       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4755     break;
4756   }
4757 
4758   SDNode *N;
4759   SDVTList VTs = getVTList(VT);
4760   SDValue Ops[] = {Operand};
4761   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4762     FoldingSetNodeID ID;
4763     AddNodeIDNode(ID, Opcode, VTs, Ops);
4764     void *IP = nullptr;
4765     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4766       E->intersectFlagsWith(Flags);
4767       return SDValue(E, 0);
4768     }
4769 
4770     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4771     N->setFlags(Flags);
4772     createOperands(N, Ops);
4773     CSEMap.InsertNode(N, IP);
4774   } else {
4775     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4776     createOperands(N, Ops);
4777   }
4778 
4779   InsertNode(N);
4780   SDValue V = SDValue(N, 0);
4781   NewSDValueDbgMsg(V, "Creating new node: ", this);
4782   return V;
4783 }
4784 
FoldValue(unsigned Opcode,const APInt & C1,const APInt & C2)4785 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4786                                        const APInt &C2) {
4787   switch (Opcode) {
4788   case ISD::ADD:  return C1 + C2;
4789   case ISD::SUB:  return C1 - C2;
4790   case ISD::MUL:  return C1 * C2;
4791   case ISD::AND:  return C1 & C2;
4792   case ISD::OR:   return C1 | C2;
4793   case ISD::XOR:  return C1 ^ C2;
4794   case ISD::SHL:  return C1 << C2;
4795   case ISD::SRL:  return C1.lshr(C2);
4796   case ISD::SRA:  return C1.ashr(C2);
4797   case ISD::ROTL: return C1.rotl(C2);
4798   case ISD::ROTR: return C1.rotr(C2);
4799   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4800   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4801   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4802   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4803   case ISD::SADDSAT: return C1.sadd_sat(C2);
4804   case ISD::UADDSAT: return C1.uadd_sat(C2);
4805   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4806   case ISD::USUBSAT: return C1.usub_sat(C2);
4807   case ISD::UDIV:
4808     if (!C2.getBoolValue())
4809       break;
4810     return C1.udiv(C2);
4811   case ISD::UREM:
4812     if (!C2.getBoolValue())
4813       break;
4814     return C1.urem(C2);
4815   case ISD::SDIV:
4816     if (!C2.getBoolValue())
4817       break;
4818     return C1.sdiv(C2);
4819   case ISD::SREM:
4820     if (!C2.getBoolValue())
4821       break;
4822     return C1.srem(C2);
4823   }
4824   return llvm::None;
4825 }
4826 
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,const ConstantSDNode * C1,const ConstantSDNode * C2)4827 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4828                                              EVT VT, const ConstantSDNode *C1,
4829                                              const ConstantSDNode *C2) {
4830   if (C1->isOpaque() || C2->isOpaque())
4831     return SDValue();
4832   if (Optional<APInt> Folded =
4833           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()))
4834     return getConstant(Folded.getValue(), DL, VT);
4835   return SDValue();
4836 }
4837 
FoldSymbolOffset(unsigned Opcode,EVT VT,const GlobalAddressSDNode * GA,const SDNode * N2)4838 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4839                                        const GlobalAddressSDNode *GA,
4840                                        const SDNode *N2) {
4841   if (GA->getOpcode() != ISD::GlobalAddress)
4842     return SDValue();
4843   if (!TLI->isOffsetFoldingLegal(GA))
4844     return SDValue();
4845   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4846   if (!C2)
4847     return SDValue();
4848   int64_t Offset = C2->getSExtValue();
4849   switch (Opcode) {
4850   case ISD::ADD: break;
4851   case ISD::SUB: Offset = -uint64_t(Offset); break;
4852   default: return SDValue();
4853   }
4854   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4855                           GA->getOffset() + uint64_t(Offset));
4856 }
4857 
isUndef(unsigned Opcode,ArrayRef<SDValue> Ops)4858 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4859   switch (Opcode) {
4860   case ISD::SDIV:
4861   case ISD::UDIV:
4862   case ISD::SREM:
4863   case ISD::UREM: {
4864     // If a divisor is zero/undef or any element of a divisor vector is
4865     // zero/undef, the whole op is undef.
4866     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4867     SDValue Divisor = Ops[1];
4868     if (Divisor.isUndef() || isNullConstant(Divisor))
4869       return true;
4870 
4871     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4872            llvm::any_of(Divisor->op_values(),
4873                         [](SDValue V) { return V.isUndef() ||
4874                                         isNullConstant(V); });
4875     // TODO: Handle signed overflow.
4876   }
4877   // TODO: Handle oversized shifts.
4878   default:
4879     return false;
4880   }
4881 }
4882 
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,SDNode * N1,SDNode * N2)4883 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4884                                              EVT VT, SDNode *N1, SDNode *N2) {
4885   // If the opcode is a target-specific ISD node, there's nothing we can
4886   // do here and the operand rules may not line up with the below, so
4887   // bail early.
4888   if (Opcode >= ISD::BUILTIN_OP_END)
4889     return SDValue();
4890 
4891   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4892     return getUNDEF(VT);
4893 
4894   // Handle the case of two scalars.
4895   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4896     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4897       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4898       assert((!Folded || !VT.isVector()) &&
4899              "Can't fold vectors ops with scalar operands");
4900       return Folded;
4901     }
4902   }
4903 
4904   // fold (add Sym, c) -> Sym+c
4905   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4906     return FoldSymbolOffset(Opcode, VT, GA, N2);
4907   if (TLI->isCommutativeBinOp(Opcode))
4908     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4909       return FoldSymbolOffset(Opcode, VT, GA, N1);
4910 
4911   // For vectors, extract each constant element and fold them individually.
4912   // Either input may be an undef value.
4913   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4914   if (!BV1 && !N1->isUndef())
4915     return SDValue();
4916   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4917   if (!BV2 && !N2->isUndef())
4918     return SDValue();
4919   // If both operands are undef, that's handled the same way as scalars.
4920   if (!BV1 && !BV2)
4921     return SDValue();
4922 
4923   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4924          "Vector binop with different number of elements in operands?");
4925 
4926   EVT SVT = VT.getScalarType();
4927   EVT LegalSVT = SVT;
4928   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4929     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4930     if (LegalSVT.bitsLT(SVT))
4931       return SDValue();
4932   }
4933   SmallVector<SDValue, 4> Outputs;
4934   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4935   for (unsigned I = 0; I != NumOps; ++I) {
4936     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4937     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4938     if (SVT.isInteger()) {
4939       if (V1->getValueType(0).bitsGT(SVT))
4940         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4941       if (V2->getValueType(0).bitsGT(SVT))
4942         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4943     }
4944 
4945     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4946       return SDValue();
4947 
4948     // Fold one vector element.
4949     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4950     if (LegalSVT != SVT)
4951       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4952 
4953     // Scalar folding only succeeded if the result is a constant or UNDEF.
4954     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4955         ScalarResult.getOpcode() != ISD::ConstantFP)
4956       return SDValue();
4957     Outputs.push_back(ScalarResult);
4958   }
4959 
4960   assert(VT.getVectorNumElements() == Outputs.size() &&
4961          "Vector size mismatch!");
4962 
4963   // We may have a vector type but a scalar result. Create a splat.
4964   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4965 
4966   // Build a big vector out of the scalar elements we generated.
4967   return getBuildVector(VT, SDLoc(), Outputs);
4968 }
4969 
4970 // TODO: Merge with FoldConstantArithmetic
FoldConstantVectorArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)4971 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4972                                                    const SDLoc &DL, EVT VT,
4973                                                    ArrayRef<SDValue> Ops,
4974                                                    const SDNodeFlags Flags) {
4975   // If the opcode is a target-specific ISD node, there's nothing we can
4976   // do here and the operand rules may not line up with the below, so
4977   // bail early.
4978   if (Opcode >= ISD::BUILTIN_OP_END)
4979     return SDValue();
4980 
4981   if (isUndef(Opcode, Ops))
4982     return getUNDEF(VT);
4983 
4984   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4985   if (!VT.isVector())
4986     return SDValue();
4987 
4988   unsigned NumElts = VT.getVectorNumElements();
4989 
4990   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4991     return !Op.getValueType().isVector() ||
4992            Op.getValueType().getVectorNumElements() == NumElts;
4993   };
4994 
4995   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4996     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4997     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4998            (BV && BV->isConstant());
4999   };
5000 
5001   // All operands must be vector types with the same number of elements as
5002   // the result type and must be either UNDEF or a build vector of constant
5003   // or UNDEF scalars.
5004   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5005       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5006     return SDValue();
5007 
5008   // If we are comparing vectors, then the result needs to be a i1 boolean
5009   // that is then sign-extended back to the legal result type.
5010   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5011 
5012   // Find legal integer scalar type for constant promotion and
5013   // ensure that its scalar size is at least as large as source.
5014   EVT LegalSVT = VT.getScalarType();
5015   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5016     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5017     if (LegalSVT.bitsLT(VT.getScalarType()))
5018       return SDValue();
5019   }
5020 
5021   // Constant fold each scalar lane separately.
5022   SmallVector<SDValue, 4> ScalarResults;
5023   for (unsigned i = 0; i != NumElts; i++) {
5024     SmallVector<SDValue, 4> ScalarOps;
5025     for (SDValue Op : Ops) {
5026       EVT InSVT = Op.getValueType().getScalarType();
5027       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5028       if (!InBV) {
5029         // We've checked that this is UNDEF or a constant of some kind.
5030         if (Op.isUndef())
5031           ScalarOps.push_back(getUNDEF(InSVT));
5032         else
5033           ScalarOps.push_back(Op);
5034         continue;
5035       }
5036 
5037       SDValue ScalarOp = InBV->getOperand(i);
5038       EVT ScalarVT = ScalarOp.getValueType();
5039 
5040       // Build vector (integer) scalar operands may need implicit
5041       // truncation - do this before constant folding.
5042       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5043         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5044 
5045       ScalarOps.push_back(ScalarOp);
5046     }
5047 
5048     // Constant fold the scalar operands.
5049     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5050 
5051     // Legalize the (integer) scalar constant if necessary.
5052     if (LegalSVT != SVT)
5053       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5054 
5055     // Scalar folding only succeeded if the result is a constant or UNDEF.
5056     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5057         ScalarResult.getOpcode() != ISD::ConstantFP)
5058       return SDValue();
5059     ScalarResults.push_back(ScalarResult);
5060   }
5061 
5062   SDValue V = getBuildVector(VT, DL, ScalarResults);
5063   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5064   return V;
5065 }
5066 
foldConstantFPMath(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2)5067 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5068                                          EVT VT, SDValue N1, SDValue N2) {
5069   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5070   //       should. That will require dealing with a potentially non-default
5071   //       rounding mode, checking the "opStatus" return value from the APFloat
5072   //       math calculations, and possibly other variations.
5073   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5074   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5075   if (N1CFP && N2CFP) {
5076     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5077     switch (Opcode) {
5078     case ISD::FADD:
5079       C1.add(C2, APFloat::rmNearestTiesToEven);
5080       return getConstantFP(C1, DL, VT);
5081     case ISD::FSUB:
5082       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5083       return getConstantFP(C1, DL, VT);
5084     case ISD::FMUL:
5085       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5086       return getConstantFP(C1, DL, VT);
5087     case ISD::FDIV:
5088       C1.divide(C2, APFloat::rmNearestTiesToEven);
5089       return getConstantFP(C1, DL, VT);
5090     case ISD::FREM:
5091       C1.mod(C2);
5092       return getConstantFP(C1, DL, VT);
5093     case ISD::FCOPYSIGN:
5094       C1.copySign(C2);
5095       return getConstantFP(C1, DL, VT);
5096     default: break;
5097     }
5098   }
5099   if (N1CFP && Opcode == ISD::FP_ROUND) {
5100     APFloat C1 = N1CFP->getValueAPF();    // make copy
5101     bool Unused;
5102     // This can return overflow, underflow, or inexact; we don't care.
5103     // FIXME need to be more flexible about rounding mode.
5104     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5105                       &Unused);
5106     return getConstantFP(C1, DL, VT);
5107   }
5108 
5109   switch (Opcode) {
5110   case ISD::FADD:
5111   case ISD::FSUB:
5112   case ISD::FMUL:
5113   case ISD::FDIV:
5114   case ISD::FREM:
5115     // If both operands are undef, the result is undef. If 1 operand is undef,
5116     // the result is NaN. This should match the behavior of the IR optimizer.
5117     if (N1.isUndef() && N2.isUndef())
5118       return getUNDEF(VT);
5119     if (N1.isUndef() || N2.isUndef())
5120       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5121   }
5122   return SDValue();
5123 }
5124 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,const SDNodeFlags Flags)5125 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5126                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5127   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5128   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5129   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5130   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5131 
5132   // Canonicalize constant to RHS if commutative.
5133   if (TLI->isCommutativeBinOp(Opcode)) {
5134     if (N1C && !N2C) {
5135       std::swap(N1C, N2C);
5136       std::swap(N1, N2);
5137     } else if (N1CFP && !N2CFP) {
5138       std::swap(N1CFP, N2CFP);
5139       std::swap(N1, N2);
5140     }
5141   }
5142 
5143   switch (Opcode) {
5144   default: break;
5145   case ISD::TokenFactor:
5146     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5147            N2.getValueType() == MVT::Other && "Invalid token factor!");
5148     // Fold trivial token factors.
5149     if (N1.getOpcode() == ISD::EntryToken) return N2;
5150     if (N2.getOpcode() == ISD::EntryToken) return N1;
5151     if (N1 == N2) return N1;
5152     break;
5153   case ISD::BUILD_VECTOR: {
5154     // Attempt to simplify BUILD_VECTOR.
5155     SDValue Ops[] = {N1, N2};
5156     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5157       return V;
5158     break;
5159   }
5160   case ISD::CONCAT_VECTORS: {
5161     SDValue Ops[] = {N1, N2};
5162     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5163       return V;
5164     break;
5165   }
5166   case ISD::AND:
5167     assert(VT.isInteger() && "This operator does not apply to FP types!");
5168     assert(N1.getValueType() == N2.getValueType() &&
5169            N1.getValueType() == VT && "Binary operator types must match!");
5170     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5171     // worth handling here.
5172     if (N2C && N2C->isNullValue())
5173       return N2;
5174     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5175       return N1;
5176     break;
5177   case ISD::OR:
5178   case ISD::XOR:
5179   case ISD::ADD:
5180   case ISD::SUB:
5181     assert(VT.isInteger() && "This operator does not apply to FP types!");
5182     assert(N1.getValueType() == N2.getValueType() &&
5183            N1.getValueType() == VT && "Binary operator types must match!");
5184     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5185     // it's worth handling here.
5186     if (N2C && N2C->isNullValue())
5187       return N1;
5188     break;
5189   case ISD::UDIV:
5190   case ISD::UREM:
5191   case ISD::MULHU:
5192   case ISD::MULHS:
5193   case ISD::MUL:
5194   case ISD::SDIV:
5195   case ISD::SREM:
5196   case ISD::SMIN:
5197   case ISD::SMAX:
5198   case ISD::UMIN:
5199   case ISD::UMAX:
5200   case ISD::SADDSAT:
5201   case ISD::SSUBSAT:
5202   case ISD::UADDSAT:
5203   case ISD::USUBSAT:
5204     assert(VT.isInteger() && "This operator does not apply to FP types!");
5205     assert(N1.getValueType() == N2.getValueType() &&
5206            N1.getValueType() == VT && "Binary operator types must match!");
5207     break;
5208   case ISD::FADD:
5209   case ISD::FSUB:
5210   case ISD::FMUL:
5211   case ISD::FDIV:
5212   case ISD::FREM:
5213     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5214     assert(N1.getValueType() == N2.getValueType() &&
5215            N1.getValueType() == VT && "Binary operator types must match!");
5216     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5217       return V;
5218     break;
5219   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5220     assert(N1.getValueType() == VT &&
5221            N1.getValueType().isFloatingPoint() &&
5222            N2.getValueType().isFloatingPoint() &&
5223            "Invalid FCOPYSIGN!");
5224     break;
5225   case ISD::SHL:
5226   case ISD::SRA:
5227   case ISD::SRL:
5228     if (SDValue V = simplifyShift(N1, N2))
5229       return V;
5230     LLVM_FALLTHROUGH;
5231   case ISD::ROTL:
5232   case ISD::ROTR:
5233     assert(VT == N1.getValueType() &&
5234            "Shift operators return type must be the same as their first arg");
5235     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5236            "Shifts only work on integers");
5237     assert((!VT.isVector() || VT == N2.getValueType()) &&
5238            "Vector shift amounts must be in the same as their first arg");
5239     // Verify that the shift amount VT is big enough to hold valid shift
5240     // amounts.  This catches things like trying to shift an i1024 value by an
5241     // i8, which is easy to fall into in generic code that uses
5242     // TLI.getShiftAmount().
5243     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5244            "Invalid use of small shift amount with oversized value!");
5245 
5246     // Always fold shifts of i1 values so the code generator doesn't need to
5247     // handle them.  Since we know the size of the shift has to be less than the
5248     // size of the value, the shift/rotate count is guaranteed to be zero.
5249     if (VT == MVT::i1)
5250       return N1;
5251     if (N2C && N2C->isNullValue())
5252       return N1;
5253     break;
5254   case ISD::FP_ROUND:
5255     assert(VT.isFloatingPoint() &&
5256            N1.getValueType().isFloatingPoint() &&
5257            VT.bitsLE(N1.getValueType()) &&
5258            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5259            "Invalid FP_ROUND!");
5260     if (N1.getValueType() == VT) return N1;  // noop conversion.
5261     break;
5262   case ISD::AssertSext:
5263   case ISD::AssertZext: {
5264     EVT EVT = cast<VTSDNode>(N2)->getVT();
5265     assert(VT == N1.getValueType() && "Not an inreg extend!");
5266     assert(VT.isInteger() && EVT.isInteger() &&
5267            "Cannot *_EXTEND_INREG FP types");
5268     assert(!EVT.isVector() &&
5269            "AssertSExt/AssertZExt type should be the vector element type "
5270            "rather than the vector type!");
5271     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5272     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5273     break;
5274   }
5275   case ISD::SIGN_EXTEND_INREG: {
5276     EVT EVT = cast<VTSDNode>(N2)->getVT();
5277     assert(VT == N1.getValueType() && "Not an inreg extend!");
5278     assert(VT.isInteger() && EVT.isInteger() &&
5279            "Cannot *_EXTEND_INREG FP types");
5280     assert(EVT.isVector() == VT.isVector() &&
5281            "SIGN_EXTEND_INREG type should be vector iff the operand "
5282            "type is vector!");
5283     assert((!EVT.isVector() ||
5284             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5285            "Vector element counts must match in SIGN_EXTEND_INREG");
5286     assert(EVT.bitsLE(VT) && "Not extending!");
5287     if (EVT == VT) return N1;  // Not actually extending
5288 
5289     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5290       unsigned FromBits = EVT.getScalarSizeInBits();
5291       Val <<= Val.getBitWidth() - FromBits;
5292       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5293       return getConstant(Val, DL, ConstantVT);
5294     };
5295 
5296     if (N1C) {
5297       const APInt &Val = N1C->getAPIntValue();
5298       return SignExtendInReg(Val, VT);
5299     }
5300     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5301       SmallVector<SDValue, 8> Ops;
5302       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5303       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5304         SDValue Op = N1.getOperand(i);
5305         if (Op.isUndef()) {
5306           Ops.push_back(getUNDEF(OpVT));
5307           continue;
5308         }
5309         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5310         APInt Val = C->getAPIntValue();
5311         Ops.push_back(SignExtendInReg(Val, OpVT));
5312       }
5313       return getBuildVector(VT, DL, Ops);
5314     }
5315     break;
5316   }
5317   case ISD::EXTRACT_VECTOR_ELT:
5318     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5319            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5320              element type of the vector.");
5321 
5322     // Extract from an undefined value or using an undefined index is undefined.
5323     if (N1.isUndef() || N2.isUndef())
5324       return getUNDEF(VT);
5325 
5326     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5327     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5328       return getUNDEF(VT);
5329 
5330     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5331     // expanding copies of large vectors from registers.
5332     if (N2C &&
5333         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5334         N1.getNumOperands() > 0) {
5335       unsigned Factor =
5336         N1.getOperand(0).getValueType().getVectorNumElements();
5337       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5338                      N1.getOperand(N2C->getZExtValue() / Factor),
5339                      getConstant(N2C->getZExtValue() % Factor, DL,
5340                                  N2.getValueType()));
5341     }
5342 
5343     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5344     // expanding large vector constants.
5345     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5346       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5347 
5348       if (VT != Elt.getValueType())
5349         // If the vector element type is not legal, the BUILD_VECTOR operands
5350         // are promoted and implicitly truncated, and the result implicitly
5351         // extended. Make that explicit here.
5352         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5353 
5354       return Elt;
5355     }
5356 
5357     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5358     // operations are lowered to scalars.
5359     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5360       // If the indices are the same, return the inserted element else
5361       // if the indices are known different, extract the element from
5362       // the original vector.
5363       SDValue N1Op2 = N1.getOperand(2);
5364       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5365 
5366       if (N1Op2C && N2C) {
5367         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5368           if (VT == N1.getOperand(1).getValueType())
5369             return N1.getOperand(1);
5370           else
5371             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5372         }
5373 
5374         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5375       }
5376     }
5377 
5378     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5379     // when vector types are scalarized and v1iX is legal.
5380     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5381     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5382         N1.getValueType().getVectorNumElements() == 1) {
5383       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5384                      N1.getOperand(1));
5385     }
5386     break;
5387   case ISD::EXTRACT_ELEMENT:
5388     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5389     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5390            (N1.getValueType().isInteger() == VT.isInteger()) &&
5391            N1.getValueType() != VT &&
5392            "Wrong types for EXTRACT_ELEMENT!");
5393 
5394     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5395     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5396     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5397     if (N1.getOpcode() == ISD::BUILD_PAIR)
5398       return N1.getOperand(N2C->getZExtValue());
5399 
5400     // EXTRACT_ELEMENT of a constant int is also very common.
5401     if (N1C) {
5402       unsigned ElementSize = VT.getSizeInBits();
5403       unsigned Shift = ElementSize * N2C->getZExtValue();
5404       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5405       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5406     }
5407     break;
5408   case ISD::EXTRACT_SUBVECTOR:
5409     if (VT.isSimple() && N1.getValueType().isSimple()) {
5410       assert(VT.isVector() && N1.getValueType().isVector() &&
5411              "Extract subvector VTs must be a vectors!");
5412       assert(VT.getVectorElementType() ==
5413              N1.getValueType().getVectorElementType() &&
5414              "Extract subvector VTs must have the same element type!");
5415       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5416              "Extract subvector must be from larger vector to smaller vector!");
5417 
5418       if (N2C) {
5419         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5420                 <= N1.getValueType().getVectorNumElements())
5421                && "Extract subvector overflow!");
5422       }
5423 
5424       // Trivial extraction.
5425       if (VT.getSimpleVT() == N1.getSimpleValueType())
5426         return N1;
5427 
5428       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5429       if (N1.isUndef())
5430         return getUNDEF(VT);
5431 
5432       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5433       // the concat have the same type as the extract.
5434       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5435           N1.getNumOperands() > 0 &&
5436           VT == N1.getOperand(0).getValueType()) {
5437         unsigned Factor = VT.getVectorNumElements();
5438         return N1.getOperand(N2C->getZExtValue() / Factor);
5439       }
5440 
5441       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5442       // during shuffle legalization.
5443       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5444           VT == N1.getOperand(1).getValueType())
5445         return N1.getOperand(1);
5446     }
5447     break;
5448   }
5449 
5450   // Perform trivial constant folding.
5451   if (SDValue SV =
5452           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5453     return SV;
5454 
5455   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5456     return V;
5457 
5458   // Canonicalize an UNDEF to the RHS, even over a constant.
5459   if (N1.isUndef()) {
5460     if (TLI->isCommutativeBinOp(Opcode)) {
5461       std::swap(N1, N2);
5462     } else {
5463       switch (Opcode) {
5464       case ISD::SIGN_EXTEND_INREG:
5465       case ISD::SUB:
5466         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5467       case ISD::UDIV:
5468       case ISD::SDIV:
5469       case ISD::UREM:
5470       case ISD::SREM:
5471       case ISD::SSUBSAT:
5472       case ISD::USUBSAT:
5473         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5474       }
5475     }
5476   }
5477 
5478   // Fold a bunch of operators when the RHS is undef.
5479   if (N2.isUndef()) {
5480     switch (Opcode) {
5481     case ISD::XOR:
5482       if (N1.isUndef())
5483         // Handle undef ^ undef -> 0 special case. This is a common
5484         // idiom (misuse).
5485         return getConstant(0, DL, VT);
5486       LLVM_FALLTHROUGH;
5487     case ISD::ADD:
5488     case ISD::SUB:
5489     case ISD::UDIV:
5490     case ISD::SDIV:
5491     case ISD::UREM:
5492     case ISD::SREM:
5493       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5494     case ISD::MUL:
5495     case ISD::AND:
5496     case ISD::SSUBSAT:
5497     case ISD::USUBSAT:
5498       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5499     case ISD::OR:
5500     case ISD::SADDSAT:
5501     case ISD::UADDSAT:
5502       return getAllOnesConstant(DL, VT);
5503     }
5504   }
5505 
5506   // Memoize this node if possible.
5507   SDNode *N;
5508   SDVTList VTs = getVTList(VT);
5509   SDValue Ops[] = {N1, N2};
5510   if (VT != MVT::Glue) {
5511     FoldingSetNodeID ID;
5512     AddNodeIDNode(ID, Opcode, VTs, Ops);
5513     void *IP = nullptr;
5514     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5515       E->intersectFlagsWith(Flags);
5516       return SDValue(E, 0);
5517     }
5518 
5519     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5520     N->setFlags(Flags);
5521     createOperands(N, Ops);
5522     CSEMap.InsertNode(N, IP);
5523   } else {
5524     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5525     createOperands(N, Ops);
5526   }
5527 
5528   InsertNode(N);
5529   SDValue V = SDValue(N, 0);
5530   NewSDValueDbgMsg(V, "Creating new node: ", this);
5531   return V;
5532 }
5533 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,const SDNodeFlags Flags)5534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5535                               SDValue N1, SDValue N2, SDValue N3,
5536                               const SDNodeFlags Flags) {
5537   // Perform various simplifications.
5538   switch (Opcode) {
5539   case ISD::FMA: {
5540     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5541     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5542            N3.getValueType() == VT && "FMA types must match!");
5543     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5544     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5545     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5546     if (N1CFP && N2CFP && N3CFP) {
5547       APFloat  V1 = N1CFP->getValueAPF();
5548       const APFloat &V2 = N2CFP->getValueAPF();
5549       const APFloat &V3 = N3CFP->getValueAPF();
5550       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5551       return getConstantFP(V1, DL, VT);
5552     }
5553     break;
5554   }
5555   case ISD::BUILD_VECTOR: {
5556     // Attempt to simplify BUILD_VECTOR.
5557     SDValue Ops[] = {N1, N2, N3};
5558     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5559       return V;
5560     break;
5561   }
5562   case ISD::CONCAT_VECTORS: {
5563     SDValue Ops[] = {N1, N2, N3};
5564     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5565       return V;
5566     break;
5567   }
5568   case ISD::SETCC: {
5569     assert(VT.isInteger() && "SETCC result type must be an integer!");
5570     assert(N1.getValueType() == N2.getValueType() &&
5571            "SETCC operands must have the same type!");
5572     assert(VT.isVector() == N1.getValueType().isVector() &&
5573            "SETCC type should be vector iff the operand type is vector!");
5574     assert((!VT.isVector() ||
5575             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5576            "SETCC vector element counts must match!");
5577     // Use FoldSetCC to simplify SETCC's.
5578     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5579       return V;
5580     // Vector constant folding.
5581     SDValue Ops[] = {N1, N2, N3};
5582     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5583       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5584       return V;
5585     }
5586     break;
5587   }
5588   case ISD::SELECT:
5589   case ISD::VSELECT:
5590     if (SDValue V = simplifySelect(N1, N2, N3))
5591       return V;
5592     break;
5593   case ISD::VECTOR_SHUFFLE:
5594     llvm_unreachable("should use getVectorShuffle constructor!");
5595   case ISD::INSERT_VECTOR_ELT: {
5596     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5597     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5598     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5599       return getUNDEF(VT);
5600 
5601     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5602     if (N3.isUndef())
5603       return getUNDEF(VT);
5604 
5605     // If the inserted element is an UNDEF, just use the input vector.
5606     if (N2.isUndef())
5607       return N1;
5608 
5609     break;
5610   }
5611   case ISD::INSERT_SUBVECTOR: {
5612     // Inserting undef into undef is still undef.
5613     if (N1.isUndef() && N2.isUndef())
5614       return getUNDEF(VT);
5615     SDValue Index = N3;
5616     if (VT.isSimple() && N1.getValueType().isSimple()
5617         && N2.getValueType().isSimple()) {
5618       assert(VT.isVector() && N1.getValueType().isVector() &&
5619              N2.getValueType().isVector() &&
5620              "Insert subvector VTs must be a vectors");
5621       assert(VT == N1.getValueType() &&
5622              "Dest and insert subvector source types must match!");
5623       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5624              "Insert subvector must be from smaller vector to larger vector!");
5625       if (isa<ConstantSDNode>(Index)) {
5626         assert((N2.getValueType().getVectorNumElements() +
5627                 cast<ConstantSDNode>(Index)->getZExtValue()
5628                 <= VT.getVectorNumElements())
5629                && "Insert subvector overflow!");
5630       }
5631 
5632       // Trivial insertion.
5633       if (VT.getSimpleVT() == N2.getSimpleValueType())
5634         return N2;
5635 
5636       // If this is an insert of an extracted vector into an undef vector, we
5637       // can just use the input to the extract.
5638       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5639           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5640         return N2.getOperand(0);
5641     }
5642     break;
5643   }
5644   case ISD::BITCAST:
5645     // Fold bit_convert nodes from a type to themselves.
5646     if (N1.getValueType() == VT)
5647       return N1;
5648     break;
5649   }
5650 
5651   // Memoize node if it doesn't produce a flag.
5652   SDNode *N;
5653   SDVTList VTs = getVTList(VT);
5654   SDValue Ops[] = {N1, N2, N3};
5655   if (VT != MVT::Glue) {
5656     FoldingSetNodeID ID;
5657     AddNodeIDNode(ID, Opcode, VTs, Ops);
5658     void *IP = nullptr;
5659     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5660       E->intersectFlagsWith(Flags);
5661       return SDValue(E, 0);
5662     }
5663 
5664     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5665     N->setFlags(Flags);
5666     createOperands(N, Ops);
5667     CSEMap.InsertNode(N, IP);
5668   } else {
5669     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5670     createOperands(N, Ops);
5671   }
5672 
5673   InsertNode(N);
5674   SDValue V = SDValue(N, 0);
5675   NewSDValueDbgMsg(V, "Creating new node: ", this);
5676   return V;
5677 }
5678 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4)5679 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5680                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5681   SDValue Ops[] = { N1, N2, N3, N4 };
5682   return getNode(Opcode, DL, VT, Ops);
5683 }
5684 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)5685 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5686                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5687                               SDValue N5) {
5688   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5689   return getNode(Opcode, DL, VT, Ops);
5690 }
5691 
5692 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5693 /// the incoming stack arguments to be loaded from the stack.
getStackArgumentTokenFactor(SDValue Chain)5694 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5695   SmallVector<SDValue, 8> ArgChains;
5696 
5697   // Include the original chain at the beginning of the list. When this is
5698   // used by target LowerCall hooks, this helps legalize find the
5699   // CALLSEQ_BEGIN node.
5700   ArgChains.push_back(Chain);
5701 
5702   // Add a chain value for each stack argument.
5703   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5704        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5705     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5706       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5707         if (FI->getIndex() < 0)
5708           ArgChains.push_back(SDValue(L, 1));
5709 
5710   // Build a tokenfactor for all the chains.
5711   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5712 }
5713 
5714 /// getMemsetValue - Vectorized representation of the memset value
5715 /// operand.
getMemsetValue(SDValue Value,EVT VT,SelectionDAG & DAG,const SDLoc & dl)5716 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5717                               const SDLoc &dl) {
5718   assert(!Value.isUndef());
5719 
5720   unsigned NumBits = VT.getScalarSizeInBits();
5721   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5722     assert(C->getAPIntValue().getBitWidth() == 8);
5723     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5724     if (VT.isInteger()) {
5725       bool IsOpaque = VT.getSizeInBits() > 64 ||
5726           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5727       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5728     }
5729     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5730                              VT);
5731   }
5732 
5733   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5734   EVT IntVT = VT.getScalarType();
5735   if (!IntVT.isInteger())
5736     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5737 
5738   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5739   if (NumBits > 8) {
5740     // Use a multiplication with 0x010101... to extend the input to the
5741     // required length.
5742     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5743     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5744                         DAG.getConstant(Magic, dl, IntVT));
5745   }
5746 
5747   if (VT != Value.getValueType() && !VT.isInteger())
5748     Value = DAG.getBitcast(VT.getScalarType(), Value);
5749   if (VT != Value.getValueType())
5750     Value = DAG.getSplatBuildVector(VT, dl, Value);
5751 
5752   return Value;
5753 }
5754 
5755 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5756 /// used when a memcpy is turned into a memset when the source is a constant
5757 /// string ptr.
getMemsetStringVal(EVT VT,const SDLoc & dl,SelectionDAG & DAG,const TargetLowering & TLI,const ConstantDataArraySlice & Slice)5758 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5759                                   const TargetLowering &TLI,
5760                                   const ConstantDataArraySlice &Slice) {
5761   // Handle vector with all elements zero.
5762   if (Slice.Array == nullptr) {
5763     if (VT.isInteger())
5764       return DAG.getConstant(0, dl, VT);
5765     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5766       return DAG.getConstantFP(0.0, dl, VT);
5767     else if (VT.isVector()) {
5768       unsigned NumElts = VT.getVectorNumElements();
5769       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5770       return DAG.getNode(ISD::BITCAST, dl, VT,
5771                          DAG.getConstant(0, dl,
5772                                          EVT::getVectorVT(*DAG.getContext(),
5773                                                           EltVT, NumElts)));
5774     } else
5775       llvm_unreachable("Expected type!");
5776   }
5777 
5778   assert(!VT.isVector() && "Can't handle vector type here!");
5779   unsigned NumVTBits = VT.getSizeInBits();
5780   unsigned NumVTBytes = NumVTBits / 8;
5781   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5782 
5783   APInt Val(NumVTBits, 0);
5784   if (DAG.getDataLayout().isLittleEndian()) {
5785     for (unsigned i = 0; i != NumBytes; ++i)
5786       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5787   } else {
5788     for (unsigned i = 0; i != NumBytes; ++i)
5789       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5790   }
5791 
5792   // If the "cost" of materializing the integer immediate is less than the cost
5793   // of a load, then it is cost effective to turn the load into the immediate.
5794   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5795   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5796     return DAG.getConstant(Val, dl, VT);
5797   return SDValue(nullptr, 0);
5798 }
5799 
getMemBasePlusOffset(SDValue Base,int64_t Offset,const SDLoc & DL,const SDNodeFlags Flags)5800 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5801                                            const SDLoc &DL,
5802                                            const SDNodeFlags Flags) {
5803   EVT VT = Base.getValueType();
5804   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5805 }
5806 
getMemBasePlusOffset(SDValue Ptr,SDValue Offset,const SDLoc & DL,const SDNodeFlags Flags)5807 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5808                                            const SDLoc &DL,
5809                                            const SDNodeFlags Flags) {
5810   assert(Offset.getValueType().isInteger());
5811   EVT BasePtrVT = Ptr.getValueType();
5812   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5813 }
5814 
5815 /// Returns true if memcpy source is constant data.
isMemSrcFromConstant(SDValue Src,ConstantDataArraySlice & Slice)5816 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5817   uint64_t SrcDelta = 0;
5818   GlobalAddressSDNode *G = nullptr;
5819   if (Src.getOpcode() == ISD::GlobalAddress)
5820     G = cast<GlobalAddressSDNode>(Src);
5821   else if (Src.getOpcode() == ISD::ADD &&
5822            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5823            Src.getOperand(1).getOpcode() == ISD::Constant) {
5824     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5825     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5826   }
5827   if (!G)
5828     return false;
5829 
5830   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5831                                   SrcDelta + G->getOffset());
5832 }
5833 
shouldLowerMemFuncForSize(const MachineFunction & MF,SelectionDAG & DAG)5834 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5835                                       SelectionDAG &DAG) {
5836   // On Darwin, -Os means optimize for size without hurting performance, so
5837   // only really optimize for size when -Oz (MinSize) is used.
5838   if (MF.getTarget().getTargetTriple().isOSDarwin())
5839     return MF.getFunction().hasMinSize();
5840   return DAG.shouldOptForSize();
5841 }
5842 
chainLoadsAndStoresForMemcpy(SelectionDAG & DAG,const SDLoc & dl,SmallVector<SDValue,32> & OutChains,unsigned From,unsigned To,SmallVector<SDValue,16> & OutLoadChains,SmallVector<SDValue,16> & OutStoreChains)5843 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5844                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5845                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5846                           SmallVector<SDValue, 16> &OutStoreChains) {
5847   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5848   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5849   SmallVector<SDValue, 16> GluedLoadChains;
5850   for (unsigned i = From; i < To; ++i) {
5851     OutChains.push_back(OutLoadChains[i]);
5852     GluedLoadChains.push_back(OutLoadChains[i]);
5853   }
5854 
5855   // Chain for all loads.
5856   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5857                                   GluedLoadChains);
5858 
5859   for (unsigned i = From; i < To; ++i) {
5860     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5861     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5862                                   ST->getBasePtr(), ST->getMemoryVT(),
5863                                   ST->getMemOperand());
5864     OutChains.push_back(NewStore);
5865   }
5866 }
5867 
getMemcpyLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Alignment,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)5868 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5869                                        SDValue Chain, SDValue Dst, SDValue Src,
5870                                        uint64_t Size, unsigned Alignment,
5871                                        bool isVol, bool AlwaysInline,
5872                                        MachinePointerInfo DstPtrInfo,
5873                                        MachinePointerInfo SrcPtrInfo) {
5874   // Turn a memcpy of undef to nop.
5875   // FIXME: We need to honor volatile even is Src is undef.
5876   if (Src.isUndef())
5877     return Chain;
5878 
5879   // Expand memcpy to a series of load and store ops if the size operand falls
5880   // below a certain threshold.
5881   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5882   // rather than maybe a humongous number of loads and stores.
5883   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5884   const DataLayout &DL = DAG.getDataLayout();
5885   LLVMContext &C = *DAG.getContext();
5886   std::vector<EVT> MemOps;
5887   bool DstAlignCanChange = false;
5888   MachineFunction &MF = DAG.getMachineFunction();
5889   MachineFrameInfo &MFI = MF.getFrameInfo();
5890   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5891   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5892   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5893     DstAlignCanChange = true;
5894   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5895   if (Alignment > SrcAlign)
5896     SrcAlign = Alignment;
5897   ConstantDataArraySlice Slice;
5898   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5899   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5900   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5901 
5902   if (!TLI.findOptimalMemOpLowering(
5903           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment),
5904           (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5905           /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5906           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5907           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5908     return SDValue();
5909 
5910   if (DstAlignCanChange) {
5911     Type *Ty = MemOps[0].getTypeForEVT(C);
5912     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5913 
5914     // Don't promote to an alignment that would require dynamic stack
5915     // realignment.
5916     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5917     if (!TRI->needsStackRealignment(MF))
5918       while (NewAlign > Alignment &&
5919              DL.exceedsNaturalStackAlignment(Align(NewAlign)))
5920         NewAlign /= 2;
5921 
5922     if (NewAlign > Alignment) {
5923       // Give the stack frame object a larger alignment if needed.
5924       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5925         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5926       Alignment = NewAlign;
5927     }
5928   }
5929 
5930   MachineMemOperand::Flags MMOFlags =
5931       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5932   SmallVector<SDValue, 16> OutLoadChains;
5933   SmallVector<SDValue, 16> OutStoreChains;
5934   SmallVector<SDValue, 32> OutChains;
5935   unsigned NumMemOps = MemOps.size();
5936   uint64_t SrcOff = 0, DstOff = 0;
5937   for (unsigned i = 0; i != NumMemOps; ++i) {
5938     EVT VT = MemOps[i];
5939     unsigned VTSize = VT.getSizeInBits() / 8;
5940     SDValue Value, Store;
5941 
5942     if (VTSize > Size) {
5943       // Issuing an unaligned load / store pair  that overlaps with the previous
5944       // pair. Adjust the offset accordingly.
5945       assert(i == NumMemOps-1 && i != 0);
5946       SrcOff -= VTSize - Size;
5947       DstOff -= VTSize - Size;
5948     }
5949 
5950     if (CopyFromConstant &&
5951         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5952       // It's unlikely a store of a vector immediate can be done in a single
5953       // instruction. It would require a load from a constantpool first.
5954       // We only handle zero vectors here.
5955       // FIXME: Handle other cases where store of vector immediate is done in
5956       // a single instruction.
5957       ConstantDataArraySlice SubSlice;
5958       if (SrcOff < Slice.Length) {
5959         SubSlice = Slice;
5960         SubSlice.move(SrcOff);
5961       } else {
5962         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5963         SubSlice.Array = nullptr;
5964         SubSlice.Offset = 0;
5965         SubSlice.Length = VTSize;
5966       }
5967       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5968       if (Value.getNode()) {
5969         Store = DAG.getStore(
5970             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5971             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
5972         OutChains.push_back(Store);
5973       }
5974     }
5975 
5976     if (!Store.getNode()) {
5977       // The type might not be legal for the target.  This should only happen
5978       // if the type is smaller than a legal type, as on PPC, so the right
5979       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5980       // to Load/Store if NVT==VT.
5981       // FIXME does the case above also need this?
5982       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5983       assert(NVT.bitsGE(VT));
5984 
5985       bool isDereferenceable =
5986         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5987       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5988       if (isDereferenceable)
5989         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5990 
5991       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5992                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5993                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5994                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5995       OutLoadChains.push_back(Value.getValue(1));
5996 
5997       Store = DAG.getTruncStore(
5998           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5999           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6000       OutStoreChains.push_back(Store);
6001     }
6002     SrcOff += VTSize;
6003     DstOff += VTSize;
6004     Size -= VTSize;
6005   }
6006 
6007   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6008                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6009   unsigned NumLdStInMemcpy = OutStoreChains.size();
6010 
6011   if (NumLdStInMemcpy) {
6012     // It may be that memcpy might be converted to memset if it's memcpy
6013     // of constants. In such a case, we won't have loads and stores, but
6014     // just stores. In the absence of loads, there is nothing to gang up.
6015     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6016       // If target does not care, just leave as it.
6017       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6018         OutChains.push_back(OutLoadChains[i]);
6019         OutChains.push_back(OutStoreChains[i]);
6020       }
6021     } else {
6022       // Ld/St less than/equal limit set by target.
6023       if (NumLdStInMemcpy <= GluedLdStLimit) {
6024           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6025                                         NumLdStInMemcpy, OutLoadChains,
6026                                         OutStoreChains);
6027       } else {
6028         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6029         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6030         unsigned GlueIter = 0;
6031 
6032         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6033           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6034           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6035 
6036           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6037                                        OutLoadChains, OutStoreChains);
6038           GlueIter += GluedLdStLimit;
6039         }
6040 
6041         // Residual ld/st.
6042         if (RemainingLdStInMemcpy) {
6043           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6044                                         RemainingLdStInMemcpy, OutLoadChains,
6045                                         OutStoreChains);
6046         }
6047       }
6048     }
6049   }
6050   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6051 }
6052 
getMemmoveLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6053 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6054                                         SDValue Chain, SDValue Dst, SDValue Src,
6055                                         uint64_t Size, unsigned Align,
6056                                         bool isVol, bool AlwaysInline,
6057                                         MachinePointerInfo DstPtrInfo,
6058                                         MachinePointerInfo SrcPtrInfo) {
6059   // Turn a memmove of undef to nop.
6060   // FIXME: We need to honor volatile even is Src is undef.
6061   if (Src.isUndef())
6062     return Chain;
6063 
6064   // Expand memmove to a series of load and store ops if the size operand falls
6065   // below a certain threshold.
6066   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6067   const DataLayout &DL = DAG.getDataLayout();
6068   LLVMContext &C = *DAG.getContext();
6069   std::vector<EVT> MemOps;
6070   bool DstAlignCanChange = false;
6071   MachineFunction &MF = DAG.getMachineFunction();
6072   MachineFrameInfo &MFI = MF.getFrameInfo();
6073   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6074   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6075   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6076     DstAlignCanChange = true;
6077   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6078   if (Align > SrcAlign)
6079     SrcAlign = Align;
6080   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6081   // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
6082   // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
6083   // correct code.
6084   bool AllowOverlap = false;
6085   if (!TLI.findOptimalMemOpLowering(
6086           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
6087           /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
6088           AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6089           MF.getFunction().getAttributes()))
6090     return SDValue();
6091 
6092   if (DstAlignCanChange) {
6093     Type *Ty = MemOps[0].getTypeForEVT(C);
6094     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
6095     if (NewAlign > Align) {
6096       // Give the stack frame object a larger alignment if needed.
6097       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6098         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6099       Align = NewAlign;
6100     }
6101   }
6102 
6103   MachineMemOperand::Flags MMOFlags =
6104       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6105   uint64_t SrcOff = 0, DstOff = 0;
6106   SmallVector<SDValue, 8> LoadValues;
6107   SmallVector<SDValue, 8> LoadChains;
6108   SmallVector<SDValue, 8> OutChains;
6109   unsigned NumMemOps = MemOps.size();
6110   for (unsigned i = 0; i < NumMemOps; i++) {
6111     EVT VT = MemOps[i];
6112     unsigned VTSize = VT.getSizeInBits() / 8;
6113     SDValue Value;
6114 
6115     bool isDereferenceable =
6116       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6117     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6118     if (isDereferenceable)
6119       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6120 
6121     Value =
6122         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6123                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6124     LoadValues.push_back(Value);
6125     LoadChains.push_back(Value.getValue(1));
6126     SrcOff += VTSize;
6127   }
6128   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6129   OutChains.clear();
6130   for (unsigned i = 0; i < NumMemOps; i++) {
6131     EVT VT = MemOps[i];
6132     unsigned VTSize = VT.getSizeInBits() / 8;
6133     SDValue Store;
6134 
6135     Store = DAG.getStore(Chain, dl, LoadValues[i],
6136                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6137                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6138     OutChains.push_back(Store);
6139     DstOff += VTSize;
6140   }
6141 
6142   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6143 }
6144 
6145 /// Lower the call to 'memset' intrinsic function into a series of store
6146 /// operations.
6147 ///
6148 /// \param DAG Selection DAG where lowered code is placed.
6149 /// \param dl Link to corresponding IR location.
6150 /// \param Chain Control flow dependency.
6151 /// \param Dst Pointer to destination memory location.
6152 /// \param Src Value of byte to write into the memory.
6153 /// \param Size Number of bytes to write.
6154 /// \param Align Alignment of the destination in bytes.
6155 /// \param isVol True if destination is volatile.
6156 /// \param DstPtrInfo IR information on the memory pointer.
6157 /// \returns New head in the control flow, if lowering was successful, empty
6158 /// SDValue otherwise.
6159 ///
6160 /// The function tries to replace 'llvm.memset' intrinsic with several store
6161 /// operations and value calculation code. This is usually profitable for small
6162 /// memory size.
getMemsetStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,MachinePointerInfo DstPtrInfo)6163 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6164                                SDValue Chain, SDValue Dst, SDValue Src,
6165                                uint64_t Size, unsigned Align, bool isVol,
6166                                MachinePointerInfo DstPtrInfo) {
6167   // Turn a memset of undef to nop.
6168   // FIXME: We need to honor volatile even is Src is undef.
6169   if (Src.isUndef())
6170     return Chain;
6171 
6172   // Expand memset to a series of load/store ops if the size operand
6173   // falls below a certain threshold.
6174   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6175   std::vector<EVT> MemOps;
6176   bool DstAlignCanChange = false;
6177   MachineFunction &MF = DAG.getMachineFunction();
6178   MachineFrameInfo &MFI = MF.getFrameInfo();
6179   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6180   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6181   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6182     DstAlignCanChange = true;
6183   bool IsZeroVal =
6184     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6185   if (!TLI.findOptimalMemOpLowering(
6186           MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6187           (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6188           /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6189           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6190           MF.getFunction().getAttributes()))
6191     return SDValue();
6192 
6193   if (DstAlignCanChange) {
6194     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6195     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6196     if (NewAlign > Align) {
6197       // Give the stack frame object a larger alignment if needed.
6198       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6199         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6200       Align = NewAlign;
6201     }
6202   }
6203 
6204   SmallVector<SDValue, 8> OutChains;
6205   uint64_t DstOff = 0;
6206   unsigned NumMemOps = MemOps.size();
6207 
6208   // Find the largest store and generate the bit pattern for it.
6209   EVT LargestVT = MemOps[0];
6210   for (unsigned i = 1; i < NumMemOps; i++)
6211     if (MemOps[i].bitsGT(LargestVT))
6212       LargestVT = MemOps[i];
6213   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6214 
6215   for (unsigned i = 0; i < NumMemOps; i++) {
6216     EVT VT = MemOps[i];
6217     unsigned VTSize = VT.getSizeInBits() / 8;
6218     if (VTSize > Size) {
6219       // Issuing an unaligned load / store pair  that overlaps with the previous
6220       // pair. Adjust the offset accordingly.
6221       assert(i == NumMemOps-1 && i != 0);
6222       DstOff -= VTSize - Size;
6223     }
6224 
6225     // If this store is smaller than the largest store see whether we can get
6226     // the smaller value for free with a truncate.
6227     SDValue Value = MemSetValue;
6228     if (VT.bitsLT(LargestVT)) {
6229       if (!LargestVT.isVector() && !VT.isVector() &&
6230           TLI.isTruncateFree(LargestVT, VT))
6231         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6232       else
6233         Value = getMemsetValue(Src, VT, DAG, dl);
6234     }
6235     assert(Value.getValueType() == VT && "Value with wrong type.");
6236     SDValue Store = DAG.getStore(
6237         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6238         DstPtrInfo.getWithOffset(DstOff), Align,
6239         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6240     OutChains.push_back(Store);
6241     DstOff += VT.getSizeInBits() / 8;
6242     Size -= VTSize;
6243   }
6244 
6245   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6246 }
6247 
checkAddrSpaceIsValidForLibcall(const TargetLowering * TLI,unsigned AS)6248 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6249                                             unsigned AS) {
6250   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6251   // pointer operands can be losslessly bitcasted to pointers of address space 0
6252   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6253     report_fatal_error("cannot lower memory intrinsic in address space " +
6254                        Twine(AS));
6255   }
6256 }
6257 
getMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool AlwaysInline,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6258 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6259                                 SDValue Src, SDValue Size, unsigned Align,
6260                                 bool isVol, bool AlwaysInline, bool isTailCall,
6261                                 MachinePointerInfo DstPtrInfo,
6262                                 MachinePointerInfo SrcPtrInfo) {
6263   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6264 
6265   // Check to see if we should lower the memcpy to loads and stores first.
6266   // For cases within the target-specified limits, this is the best choice.
6267   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6268   if (ConstantSize) {
6269     // Memcpy with size zero? Just return the original chain.
6270     if (ConstantSize->isNullValue())
6271       return Chain;
6272 
6273     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6274                                              ConstantSize->getZExtValue(),Align,
6275                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6276     if (Result.getNode())
6277       return Result;
6278   }
6279 
6280   // Then check to see if we should lower the memcpy with target-specific
6281   // code. If the target chooses to do this, this is the next best.
6282   if (TSI) {
6283     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6284         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6285         DstPtrInfo, SrcPtrInfo);
6286     if (Result.getNode())
6287       return Result;
6288   }
6289 
6290   // If we really need inline code and the target declined to provide it,
6291   // use a (potentially long) sequence of loads and stores.
6292   if (AlwaysInline) {
6293     assert(ConstantSize && "AlwaysInline requires a constant size!");
6294     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6295                                    ConstantSize->getZExtValue(), Align, isVol,
6296                                    true, DstPtrInfo, SrcPtrInfo);
6297   }
6298 
6299   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6300   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6301 
6302   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6303   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6304   // respect volatile, so they may do things like read or write memory
6305   // beyond the given memory regions. But fixing this isn't easy, and most
6306   // people don't care.
6307 
6308   // Emit a library call.
6309   TargetLowering::ArgListTy Args;
6310   TargetLowering::ArgListEntry Entry;
6311   Entry.Ty = Type::getInt8PtrTy(*getContext());
6312   Entry.Node = Dst; Args.push_back(Entry);
6313   Entry.Node = Src; Args.push_back(Entry);
6314 
6315   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6316   Entry.Node = Size; Args.push_back(Entry);
6317   // FIXME: pass in SDLoc
6318   TargetLowering::CallLoweringInfo CLI(*this);
6319   CLI.setDebugLoc(dl)
6320       .setChain(Chain)
6321       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6322                     Dst.getValueType().getTypeForEVT(*getContext()),
6323                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6324                                       TLI->getPointerTy(getDataLayout())),
6325                     std::move(Args))
6326       .setDiscardResult()
6327       .setTailCall(isTailCall);
6328 
6329   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6330   return CallResult.second;
6331 }
6332 
getAtomicMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Src,unsigned SrcAlign,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6333 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6334                                       SDValue Dst, unsigned DstAlign,
6335                                       SDValue Src, unsigned SrcAlign,
6336                                       SDValue Size, Type *SizeTy,
6337                                       unsigned ElemSz, bool isTailCall,
6338                                       MachinePointerInfo DstPtrInfo,
6339                                       MachinePointerInfo SrcPtrInfo) {
6340   // Emit a library call.
6341   TargetLowering::ArgListTy Args;
6342   TargetLowering::ArgListEntry Entry;
6343   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6344   Entry.Node = Dst;
6345   Args.push_back(Entry);
6346 
6347   Entry.Node = Src;
6348   Args.push_back(Entry);
6349 
6350   Entry.Ty = SizeTy;
6351   Entry.Node = Size;
6352   Args.push_back(Entry);
6353 
6354   RTLIB::Libcall LibraryCall =
6355       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6356   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6357     report_fatal_error("Unsupported element size");
6358 
6359   TargetLowering::CallLoweringInfo CLI(*this);
6360   CLI.setDebugLoc(dl)
6361       .setChain(Chain)
6362       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6363                     Type::getVoidTy(*getContext()),
6364                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6365                                       TLI->getPointerTy(getDataLayout())),
6366                     std::move(Args))
6367       .setDiscardResult()
6368       .setTailCall(isTailCall);
6369 
6370   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6371   return CallResult.second;
6372 }
6373 
getMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6374 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6375                                  SDValue Src, SDValue Size, unsigned Align,
6376                                  bool isVol, bool isTailCall,
6377                                  MachinePointerInfo DstPtrInfo,
6378                                  MachinePointerInfo SrcPtrInfo) {
6379   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6380 
6381   // Check to see if we should lower the memmove to loads and stores first.
6382   // For cases within the target-specified limits, this is the best choice.
6383   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6384   if (ConstantSize) {
6385     // Memmove with size zero? Just return the original chain.
6386     if (ConstantSize->isNullValue())
6387       return Chain;
6388 
6389     SDValue Result =
6390       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6391                                ConstantSize->getZExtValue(), Align, isVol,
6392                                false, DstPtrInfo, SrcPtrInfo);
6393     if (Result.getNode())
6394       return Result;
6395   }
6396 
6397   // Then check to see if we should lower the memmove with target-specific
6398   // code. If the target chooses to do this, this is the next best.
6399   if (TSI) {
6400     SDValue Result = TSI->EmitTargetCodeForMemmove(
6401         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6402     if (Result.getNode())
6403       return Result;
6404   }
6405 
6406   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6407   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6408 
6409   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6410   // not be safe.  See memcpy above for more details.
6411 
6412   // Emit a library call.
6413   TargetLowering::ArgListTy Args;
6414   TargetLowering::ArgListEntry Entry;
6415   Entry.Ty = Type::getInt8PtrTy(*getContext());
6416   Entry.Node = Dst; Args.push_back(Entry);
6417   Entry.Node = Src; Args.push_back(Entry);
6418 
6419   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6420   Entry.Node = Size; Args.push_back(Entry);
6421   // FIXME:  pass in SDLoc
6422   TargetLowering::CallLoweringInfo CLI(*this);
6423   CLI.setDebugLoc(dl)
6424       .setChain(Chain)
6425       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6426                     Dst.getValueType().getTypeForEVT(*getContext()),
6427                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6428                                       TLI->getPointerTy(getDataLayout())),
6429                     std::move(Args))
6430       .setDiscardResult()
6431       .setTailCall(isTailCall);
6432 
6433   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6434   return CallResult.second;
6435 }
6436 
getAtomicMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Src,unsigned SrcAlign,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6437 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6438                                        SDValue Dst, unsigned DstAlign,
6439                                        SDValue Src, unsigned SrcAlign,
6440                                        SDValue Size, Type *SizeTy,
6441                                        unsigned ElemSz, bool isTailCall,
6442                                        MachinePointerInfo DstPtrInfo,
6443                                        MachinePointerInfo SrcPtrInfo) {
6444   // Emit a library call.
6445   TargetLowering::ArgListTy Args;
6446   TargetLowering::ArgListEntry Entry;
6447   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6448   Entry.Node = Dst;
6449   Args.push_back(Entry);
6450 
6451   Entry.Node = Src;
6452   Args.push_back(Entry);
6453 
6454   Entry.Ty = SizeTy;
6455   Entry.Node = Size;
6456   Args.push_back(Entry);
6457 
6458   RTLIB::Libcall LibraryCall =
6459       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6460   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6461     report_fatal_error("Unsupported element size");
6462 
6463   TargetLowering::CallLoweringInfo CLI(*this);
6464   CLI.setDebugLoc(dl)
6465       .setChain(Chain)
6466       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6467                     Type::getVoidTy(*getContext()),
6468                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6469                                       TLI->getPointerTy(getDataLayout())),
6470                     std::move(Args))
6471       .setDiscardResult()
6472       .setTailCall(isTailCall);
6473 
6474   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6475   return CallResult.second;
6476 }
6477 
getMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo)6478 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6479                                 SDValue Src, SDValue Size, unsigned Align,
6480                                 bool isVol, bool isTailCall,
6481                                 MachinePointerInfo DstPtrInfo) {
6482   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6483 
6484   // Check to see if we should lower the memset to stores first.
6485   // For cases within the target-specified limits, this is the best choice.
6486   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6487   if (ConstantSize) {
6488     // Memset with size zero? Just return the original chain.
6489     if (ConstantSize->isNullValue())
6490       return Chain;
6491 
6492     SDValue Result =
6493       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6494                       Align, isVol, DstPtrInfo);
6495 
6496     if (Result.getNode())
6497       return Result;
6498   }
6499 
6500   // Then check to see if we should lower the memset with target-specific
6501   // code. If the target chooses to do this, this is the next best.
6502   if (TSI) {
6503     SDValue Result = TSI->EmitTargetCodeForMemset(
6504         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6505     if (Result.getNode())
6506       return Result;
6507   }
6508 
6509   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6510 
6511   // Emit a library call.
6512   TargetLowering::ArgListTy Args;
6513   TargetLowering::ArgListEntry Entry;
6514   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6515   Args.push_back(Entry);
6516   Entry.Node = Src;
6517   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6518   Args.push_back(Entry);
6519   Entry.Node = Size;
6520   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6521   Args.push_back(Entry);
6522 
6523   // FIXME: pass in SDLoc
6524   TargetLowering::CallLoweringInfo CLI(*this);
6525   CLI.setDebugLoc(dl)
6526       .setChain(Chain)
6527       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6528                     Dst.getValueType().getTypeForEVT(*getContext()),
6529                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6530                                       TLI->getPointerTy(getDataLayout())),
6531                     std::move(Args))
6532       .setDiscardResult()
6533       .setTailCall(isTailCall);
6534 
6535   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6536   return CallResult.second;
6537 }
6538 
getAtomicMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Value,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo)6539 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6540                                       SDValue Dst, unsigned DstAlign,
6541                                       SDValue Value, SDValue Size, Type *SizeTy,
6542                                       unsigned ElemSz, bool isTailCall,
6543                                       MachinePointerInfo DstPtrInfo) {
6544   // Emit a library call.
6545   TargetLowering::ArgListTy Args;
6546   TargetLowering::ArgListEntry Entry;
6547   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6548   Entry.Node = Dst;
6549   Args.push_back(Entry);
6550 
6551   Entry.Ty = Type::getInt8Ty(*getContext());
6552   Entry.Node = Value;
6553   Args.push_back(Entry);
6554 
6555   Entry.Ty = SizeTy;
6556   Entry.Node = Size;
6557   Args.push_back(Entry);
6558 
6559   RTLIB::Libcall LibraryCall =
6560       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6561   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6562     report_fatal_error("Unsupported element size");
6563 
6564   TargetLowering::CallLoweringInfo CLI(*this);
6565   CLI.setDebugLoc(dl)
6566       .setChain(Chain)
6567       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6568                     Type::getVoidTy(*getContext()),
6569                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6570                                       TLI->getPointerTy(getDataLayout())),
6571                     std::move(Args))
6572       .setDiscardResult()
6573       .setTailCall(isTailCall);
6574 
6575   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6576   return CallResult.second;
6577 }
6578 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTList,ArrayRef<SDValue> Ops,MachineMemOperand * MMO)6579 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6580                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6581                                 MachineMemOperand *MMO) {
6582   FoldingSetNodeID ID;
6583   ID.AddInteger(MemVT.getRawBits());
6584   AddNodeIDNode(ID, Opcode, VTList, Ops);
6585   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6586   void* IP = nullptr;
6587   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6588     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6589     return SDValue(E, 0);
6590   }
6591 
6592   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6593                                     VTList, MemVT, MMO);
6594   createOperands(N, Ops);
6595 
6596   CSEMap.InsertNode(N, IP);
6597   InsertNode(N);
6598   return SDValue(N, 0);
6599 }
6600 
getAtomicCmpSwap(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTs,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachineMemOperand * MMO)6601 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6602                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6603                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6604                                        MachineMemOperand *MMO) {
6605   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6606          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6607   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6608 
6609   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6610   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6611 }
6612 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,MachineMemOperand * MMO)6613 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6614                                 SDValue Chain, SDValue Ptr, SDValue Val,
6615                                 MachineMemOperand *MMO) {
6616   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6617           Opcode == ISD::ATOMIC_LOAD_SUB ||
6618           Opcode == ISD::ATOMIC_LOAD_AND ||
6619           Opcode == ISD::ATOMIC_LOAD_CLR ||
6620           Opcode == ISD::ATOMIC_LOAD_OR ||
6621           Opcode == ISD::ATOMIC_LOAD_XOR ||
6622           Opcode == ISD::ATOMIC_LOAD_NAND ||
6623           Opcode == ISD::ATOMIC_LOAD_MIN ||
6624           Opcode == ISD::ATOMIC_LOAD_MAX ||
6625           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6626           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6627           Opcode == ISD::ATOMIC_LOAD_FADD ||
6628           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6629           Opcode == ISD::ATOMIC_SWAP ||
6630           Opcode == ISD::ATOMIC_STORE) &&
6631          "Invalid Atomic Op");
6632 
6633   EVT VT = Val.getValueType();
6634 
6635   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6636                                                getVTList(VT, MVT::Other);
6637   SDValue Ops[] = {Chain, Ptr, Val};
6638   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6639 }
6640 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,EVT VT,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)6641 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6642                                 EVT VT, SDValue Chain, SDValue Ptr,
6643                                 MachineMemOperand *MMO) {
6644   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6645 
6646   SDVTList VTs = getVTList(VT, MVT::Other);
6647   SDValue Ops[] = {Chain, Ptr};
6648   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6649 }
6650 
6651 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
getMergeValues(ArrayRef<SDValue> Ops,const SDLoc & dl)6652 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6653   if (Ops.size() == 1)
6654     return Ops[0];
6655 
6656   SmallVector<EVT, 4> VTs;
6657   VTs.reserve(Ops.size());
6658   for (unsigned i = 0; i < Ops.size(); ++i)
6659     VTs.push_back(Ops[i].getValueType());
6660   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6661 }
6662 
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachinePointerInfo PtrInfo,unsigned Align,MachineMemOperand::Flags Flags,uint64_t Size,const AAMDNodes & AAInfo)6663 SDValue SelectionDAG::getMemIntrinsicNode(
6664     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6665     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6666     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6667   if (Align == 0)  // Ensure that codegen never sees alignment 0
6668     Align = getEVTAlignment(MemVT);
6669 
6670   if (!Size && MemVT.isScalableVector())
6671     Size = MemoryLocation::UnknownSize;
6672   else if (!Size)
6673     Size = MemVT.getStoreSize();
6674 
6675   MachineFunction &MF = getMachineFunction();
6676   MachineMemOperand *MMO =
6677       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6678 
6679   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6680 }
6681 
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachineMemOperand * MMO)6682 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6683                                           SDVTList VTList,
6684                                           ArrayRef<SDValue> Ops, EVT MemVT,
6685                                           MachineMemOperand *MMO) {
6686   assert((Opcode == ISD::INTRINSIC_VOID ||
6687           Opcode == ISD::INTRINSIC_W_CHAIN ||
6688           Opcode == ISD::PREFETCH ||
6689           Opcode == ISD::LIFETIME_START ||
6690           Opcode == ISD::LIFETIME_END ||
6691           ((int)Opcode <= std::numeric_limits<int>::max() &&
6692            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6693          "Opcode is not a memory-accessing opcode!");
6694 
6695   // Memoize the node unless it returns a flag.
6696   MemIntrinsicSDNode *N;
6697   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6698     FoldingSetNodeID ID;
6699     AddNodeIDNode(ID, Opcode, VTList, Ops);
6700     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6701         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6702     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6703     void *IP = nullptr;
6704     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6705       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6706       return SDValue(E, 0);
6707     }
6708 
6709     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6710                                       VTList, MemVT, MMO);
6711     createOperands(N, Ops);
6712 
6713   CSEMap.InsertNode(N, IP);
6714   } else {
6715     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6716                                       VTList, MemVT, MMO);
6717     createOperands(N, Ops);
6718   }
6719   InsertNode(N);
6720   SDValue V(N, 0);
6721   NewSDValueDbgMsg(V, "Creating new node: ", this);
6722   return V;
6723 }
6724 
getLifetimeNode(bool IsStart,const SDLoc & dl,SDValue Chain,int FrameIndex,int64_t Size,int64_t Offset)6725 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6726                                       SDValue Chain, int FrameIndex,
6727                                       int64_t Size, int64_t Offset) {
6728   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6729   const auto VTs = getVTList(MVT::Other);
6730   SDValue Ops[2] = {
6731       Chain,
6732       getFrameIndex(FrameIndex,
6733                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6734                     true)};
6735 
6736   FoldingSetNodeID ID;
6737   AddNodeIDNode(ID, Opcode, VTs, Ops);
6738   ID.AddInteger(FrameIndex);
6739   ID.AddInteger(Size);
6740   ID.AddInteger(Offset);
6741   void *IP = nullptr;
6742   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6743     return SDValue(E, 0);
6744 
6745   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6746       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6747   createOperands(N, Ops);
6748   CSEMap.InsertNode(N, IP);
6749   InsertNode(N);
6750   SDValue V(N, 0);
6751   NewSDValueDbgMsg(V, "Creating new node: ", this);
6752   return V;
6753 }
6754 
6755 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6756 /// MachinePointerInfo record from it.  This is particularly useful because the
6757 /// code generator has many cases where it doesn't bother passing in a
6758 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,int64_t Offset=0)6759 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6760                                            SelectionDAG &DAG, SDValue Ptr,
6761                                            int64_t Offset = 0) {
6762   // If this is FI+Offset, we can model it.
6763   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6764     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6765                                              FI->getIndex(), Offset);
6766 
6767   // If this is (FI+Offset1)+Offset2, we can model it.
6768   if (Ptr.getOpcode() != ISD::ADD ||
6769       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6770       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6771     return Info;
6772 
6773   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6774   return MachinePointerInfo::getFixedStack(
6775       DAG.getMachineFunction(), FI,
6776       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6777 }
6778 
6779 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6780 /// MachinePointerInfo record from it.  This is particularly useful because the
6781 /// code generator has many cases where it doesn't bother passing in a
6782 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,SDValue OffsetOp)6783 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6784                                            SelectionDAG &DAG, SDValue Ptr,
6785                                            SDValue OffsetOp) {
6786   // If the 'Offset' value isn't a constant, we can't handle this.
6787   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6788     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6789   if (OffsetOp.isUndef())
6790     return InferPointerInfo(Info, DAG, Ptr);
6791   return Info;
6792 }
6793 
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,MachinePointerInfo PtrInfo,EVT MemVT,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)6794 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6795                               EVT VT, const SDLoc &dl, SDValue Chain,
6796                               SDValue Ptr, SDValue Offset,
6797                               MachinePointerInfo PtrInfo, EVT MemVT,
6798                               unsigned Alignment,
6799                               MachineMemOperand::Flags MMOFlags,
6800                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6801   assert(Chain.getValueType() == MVT::Other &&
6802         "Invalid chain type");
6803   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6804     Alignment = getEVTAlignment(MemVT);
6805 
6806   MMOFlags |= MachineMemOperand::MOLoad;
6807   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6808   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6809   // clients.
6810   if (PtrInfo.V.isNull())
6811     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6812 
6813   MachineFunction &MF = getMachineFunction();
6814   MachineMemOperand *MMO = MF.getMachineMemOperand(
6815       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6816   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6817 }
6818 
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,EVT MemVT,MachineMemOperand * MMO)6819 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6820                               EVT VT, const SDLoc &dl, SDValue Chain,
6821                               SDValue Ptr, SDValue Offset, EVT MemVT,
6822                               MachineMemOperand *MMO) {
6823   if (VT == MemVT) {
6824     ExtType = ISD::NON_EXTLOAD;
6825   } else if (ExtType == ISD::NON_EXTLOAD) {
6826     assert(VT == MemVT && "Non-extending load from different memory type!");
6827   } else {
6828     // Extending load.
6829     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6830            "Should only be an extending load, not truncating!");
6831     assert(VT.isInteger() == MemVT.isInteger() &&
6832            "Cannot convert from FP to Int or Int -> FP!");
6833     assert(VT.isVector() == MemVT.isVector() &&
6834            "Cannot use an ext load to convert to or from a vector!");
6835     assert((!VT.isVector() ||
6836             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6837            "Cannot use an ext load to change the number of vector elements!");
6838   }
6839 
6840   bool Indexed = AM != ISD::UNINDEXED;
6841   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6842 
6843   SDVTList VTs = Indexed ?
6844     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6845   SDValue Ops[] = { Chain, Ptr, Offset };
6846   FoldingSetNodeID ID;
6847   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6848   ID.AddInteger(MemVT.getRawBits());
6849   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6850       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6851   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6852   void *IP = nullptr;
6853   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6854     cast<LoadSDNode>(E)->refineAlignment(MMO);
6855     return SDValue(E, 0);
6856   }
6857   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6858                                   ExtType, MemVT, MMO);
6859   createOperands(N, Ops);
6860 
6861   CSEMap.InsertNode(N, IP);
6862   InsertNode(N);
6863   SDValue V(N, 0);
6864   NewSDValueDbgMsg(V, "Creating new node: ", this);
6865   return V;
6866 }
6867 
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)6868 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6869                               SDValue Ptr, MachinePointerInfo PtrInfo,
6870                               unsigned Alignment,
6871                               MachineMemOperand::Flags MMOFlags,
6872                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6873   SDValue Undef = getUNDEF(Ptr.getValueType());
6874   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6875                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6876 }
6877 
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)6878 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6879                               SDValue Ptr, MachineMemOperand *MMO) {
6880   SDValue Undef = getUNDEF(Ptr.getValueType());
6881   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6882                  VT, MMO);
6883 }
6884 
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,EVT MemVT,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)6885 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6886                                  EVT VT, SDValue Chain, SDValue Ptr,
6887                                  MachinePointerInfo PtrInfo, EVT MemVT,
6888                                  unsigned Alignment,
6889                                  MachineMemOperand::Flags MMOFlags,
6890                                  const AAMDNodes &AAInfo) {
6891   SDValue Undef = getUNDEF(Ptr.getValueType());
6892   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6893                  MemVT, Alignment, MMOFlags, AAInfo);
6894 }
6895 
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,EVT MemVT,MachineMemOperand * MMO)6896 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6897                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6898                                  MachineMemOperand *MMO) {
6899   SDValue Undef = getUNDEF(Ptr.getValueType());
6900   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6901                  MemVT, MMO);
6902 }
6903 
getIndexedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)6904 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6905                                      SDValue Base, SDValue Offset,
6906                                      ISD::MemIndexedMode AM) {
6907   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6908   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6909   // Don't propagate the invariant or dereferenceable flags.
6910   auto MMOFlags =
6911       LD->getMemOperand()->getFlags() &
6912       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6913   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6914                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6915                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6916                  LD->getAAInfo());
6917 }
6918 
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)6919 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6920                                SDValue Ptr, MachinePointerInfo PtrInfo,
6921                                unsigned Alignment,
6922                                MachineMemOperand::Flags MMOFlags,
6923                                const AAMDNodes &AAInfo) {
6924   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6925   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6926     Alignment = getEVTAlignment(Val.getValueType());
6927 
6928   MMOFlags |= MachineMemOperand::MOStore;
6929   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6930 
6931   if (PtrInfo.V.isNull())
6932     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6933 
6934   MachineFunction &MF = getMachineFunction();
6935   MachineMemOperand *MMO = MF.getMachineMemOperand(
6936       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6937   return getStore(Chain, dl, Val, Ptr, MMO);
6938 }
6939 
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachineMemOperand * MMO)6940 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6941                                SDValue Ptr, MachineMemOperand *MMO) {
6942   assert(Chain.getValueType() == MVT::Other &&
6943         "Invalid chain type");
6944   EVT VT = Val.getValueType();
6945   SDVTList VTs = getVTList(MVT::Other);
6946   SDValue Undef = getUNDEF(Ptr.getValueType());
6947   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6948   FoldingSetNodeID ID;
6949   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6950   ID.AddInteger(VT.getRawBits());
6951   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6952       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6953   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6954   void *IP = nullptr;
6955   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6956     cast<StoreSDNode>(E)->refineAlignment(MMO);
6957     return SDValue(E, 0);
6958   }
6959   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6960                                    ISD::UNINDEXED, false, VT, MMO);
6961   createOperands(N, Ops);
6962 
6963   CSEMap.InsertNode(N, IP);
6964   InsertNode(N);
6965   SDValue V(N, 0);
6966   NewSDValueDbgMsg(V, "Creating new node: ", this);
6967   return V;
6968 }
6969 
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,EVT SVT,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)6970 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6971                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6972                                     EVT SVT, unsigned Alignment,
6973                                     MachineMemOperand::Flags MMOFlags,
6974                                     const AAMDNodes &AAInfo) {
6975   assert(Chain.getValueType() == MVT::Other &&
6976         "Invalid chain type");
6977   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6978     Alignment = getEVTAlignment(SVT);
6979 
6980   MMOFlags |= MachineMemOperand::MOStore;
6981   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6982 
6983   if (PtrInfo.V.isNull())
6984     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6985 
6986   MachineFunction &MF = getMachineFunction();
6987   MachineMemOperand *MMO = MF.getMachineMemOperand(
6988       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6989   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6990 }
6991 
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,EVT SVT,MachineMemOperand * MMO)6992 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6993                                     SDValue Ptr, EVT SVT,
6994                                     MachineMemOperand *MMO) {
6995   EVT VT = Val.getValueType();
6996 
6997   assert(Chain.getValueType() == MVT::Other &&
6998         "Invalid chain type");
6999   if (VT == SVT)
7000     return getStore(Chain, dl, Val, Ptr, MMO);
7001 
7002   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7003          "Should only be a truncating store, not extending!");
7004   assert(VT.isInteger() == SVT.isInteger() &&
7005          "Can't do FP-INT conversion!");
7006   assert(VT.isVector() == SVT.isVector() &&
7007          "Cannot use trunc store to convert to or from a vector!");
7008   assert((!VT.isVector() ||
7009           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7010          "Cannot use trunc store to change the number of vector elements!");
7011 
7012   SDVTList VTs = getVTList(MVT::Other);
7013   SDValue Undef = getUNDEF(Ptr.getValueType());
7014   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7015   FoldingSetNodeID ID;
7016   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7017   ID.AddInteger(SVT.getRawBits());
7018   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7019       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7020   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7021   void *IP = nullptr;
7022   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7023     cast<StoreSDNode>(E)->refineAlignment(MMO);
7024     return SDValue(E, 0);
7025   }
7026   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7027                                    ISD::UNINDEXED, true, SVT, MMO);
7028   createOperands(N, Ops);
7029 
7030   CSEMap.InsertNode(N, IP);
7031   InsertNode(N);
7032   SDValue V(N, 0);
7033   NewSDValueDbgMsg(V, "Creating new node: ", this);
7034   return V;
7035 }
7036 
getIndexedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7037 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7038                                       SDValue Base, SDValue Offset,
7039                                       ISD::MemIndexedMode AM) {
7040   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7041   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7042   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7043   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7044   FoldingSetNodeID ID;
7045   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7046   ID.AddInteger(ST->getMemoryVT().getRawBits());
7047   ID.AddInteger(ST->getRawSubclassData());
7048   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7049   void *IP = nullptr;
7050   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7051     return SDValue(E, 0);
7052 
7053   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7054                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7055                                    ST->getMemOperand());
7056   createOperands(N, Ops);
7057 
7058   CSEMap.InsertNode(N, IP);
7059   InsertNode(N);
7060   SDValue V(N, 0);
7061   NewSDValueDbgMsg(V, "Creating new node: ", this);
7062   return V;
7063 }
7064 
getMaskedLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Base,SDValue Offset,SDValue Mask,SDValue PassThru,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,ISD::LoadExtType ExtTy,bool isExpanding)7065 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7066                                     SDValue Base, SDValue Offset, SDValue Mask,
7067                                     SDValue PassThru, EVT MemVT,
7068                                     MachineMemOperand *MMO,
7069                                     ISD::MemIndexedMode AM,
7070                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7071   bool Indexed = AM != ISD::UNINDEXED;
7072   assert((Indexed || Offset.isUndef()) &&
7073          "Unindexed masked load with an offset!");
7074   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7075                          : getVTList(VT, MVT::Other);
7076   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7077   FoldingSetNodeID ID;
7078   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7079   ID.AddInteger(MemVT.getRawBits());
7080   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7081       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7082   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7083   void *IP = nullptr;
7084   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7085     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7086     return SDValue(E, 0);
7087   }
7088   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7089                                         AM, ExtTy, isExpanding, MemVT, MMO);
7090   createOperands(N, Ops);
7091 
7092   CSEMap.InsertNode(N, IP);
7093   InsertNode(N);
7094   SDValue V(N, 0);
7095   NewSDValueDbgMsg(V, "Creating new node: ", this);
7096   return V;
7097 }
7098 
getIndexedMaskedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7099 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7100                                            SDValue Base, SDValue Offset,
7101                                            ISD::MemIndexedMode AM) {
7102   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7103   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7104   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7105                        Offset, LD->getMask(), LD->getPassThru(),
7106                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7107                        LD->getExtensionType(), LD->isExpandingLoad());
7108 }
7109 
getMaskedStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Base,SDValue Offset,SDValue Mask,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,bool IsTruncating,bool IsCompressing)7110 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7111                                      SDValue Val, SDValue Base, SDValue Offset,
7112                                      SDValue Mask, EVT MemVT,
7113                                      MachineMemOperand *MMO,
7114                                      ISD::MemIndexedMode AM, bool IsTruncating,
7115                                      bool IsCompressing) {
7116   assert(Chain.getValueType() == MVT::Other &&
7117         "Invalid chain type");
7118   bool Indexed = AM != ISD::UNINDEXED;
7119   assert((Indexed || Offset.isUndef()) &&
7120          "Unindexed masked store with an offset!");
7121   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7122                          : getVTList(MVT::Other);
7123   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7124   FoldingSetNodeID ID;
7125   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7126   ID.AddInteger(MemVT.getRawBits());
7127   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7128       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7129   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7130   void *IP = nullptr;
7131   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7132     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7133     return SDValue(E, 0);
7134   }
7135   auto *N =
7136       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7137                                    IsTruncating, IsCompressing, MemVT, MMO);
7138   createOperands(N, Ops);
7139 
7140   CSEMap.InsertNode(N, IP);
7141   InsertNode(N);
7142   SDValue V(N, 0);
7143   NewSDValueDbgMsg(V, "Creating new node: ", this);
7144   return V;
7145 }
7146 
getIndexedMaskedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7147 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7148                                             SDValue Base, SDValue Offset,
7149                                             ISD::MemIndexedMode AM) {
7150   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7151   assert(ST->getOffset().isUndef() &&
7152          "Masked store is already a indexed store!");
7153   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7154                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7155                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7156 }
7157 
getMaskedGather(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType)7158 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7159                                       ArrayRef<SDValue> Ops,
7160                                       MachineMemOperand *MMO,
7161                                       ISD::MemIndexType IndexType) {
7162   assert(Ops.size() == 6 && "Incompatible number of operands");
7163 
7164   FoldingSetNodeID ID;
7165   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7166   ID.AddInteger(VT.getRawBits());
7167   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7168       dl.getIROrder(), VTs, VT, MMO, IndexType));
7169   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7170   void *IP = nullptr;
7171   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7172     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7173     return SDValue(E, 0);
7174   }
7175 
7176   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7177                                           VTs, VT, MMO, IndexType);
7178   createOperands(N, Ops);
7179 
7180   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7181          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7182   assert(N->getMask().getValueType().getVectorNumElements() ==
7183              N->getValueType(0).getVectorNumElements() &&
7184          "Vector width mismatch between mask and data");
7185   assert(N->getIndex().getValueType().getVectorNumElements() >=
7186              N->getValueType(0).getVectorNumElements() &&
7187          "Vector width mismatch between index and data");
7188   assert(isa<ConstantSDNode>(N->getScale()) &&
7189          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7190          "Scale should be a constant power of 2");
7191 
7192   CSEMap.InsertNode(N, IP);
7193   InsertNode(N);
7194   SDValue V(N, 0);
7195   NewSDValueDbgMsg(V, "Creating new node: ", this);
7196   return V;
7197 }
7198 
getMaskedScatter(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType)7199 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7200                                        ArrayRef<SDValue> Ops,
7201                                        MachineMemOperand *MMO,
7202                                        ISD::MemIndexType IndexType) {
7203   assert(Ops.size() == 6 && "Incompatible number of operands");
7204 
7205   FoldingSetNodeID ID;
7206   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7207   ID.AddInteger(VT.getRawBits());
7208   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7209       dl.getIROrder(), VTs, VT, MMO, IndexType));
7210   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7211   void *IP = nullptr;
7212   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7213     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7214     return SDValue(E, 0);
7215   }
7216   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7217                                            VTs, VT, MMO, IndexType);
7218   createOperands(N, Ops);
7219 
7220   assert(N->getMask().getValueType().getVectorNumElements() ==
7221              N->getValue().getValueType().getVectorNumElements() &&
7222          "Vector width mismatch between mask and data");
7223   assert(N->getIndex().getValueType().getVectorNumElements() >=
7224              N->getValue().getValueType().getVectorNumElements() &&
7225          "Vector width mismatch between index and data");
7226   assert(isa<ConstantSDNode>(N->getScale()) &&
7227          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7228          "Scale should be a constant power of 2");
7229 
7230   CSEMap.InsertNode(N, IP);
7231   InsertNode(N);
7232   SDValue V(N, 0);
7233   NewSDValueDbgMsg(V, "Creating new node: ", this);
7234   return V;
7235 }
7236 
simplifySelect(SDValue Cond,SDValue T,SDValue F)7237 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7238   // select undef, T, F --> T (if T is a constant), otherwise F
7239   // select, ?, undef, F --> F
7240   // select, ?, T, undef --> T
7241   if (Cond.isUndef())
7242     return isConstantValueOfAnyType(T) ? T : F;
7243   if (T.isUndef())
7244     return F;
7245   if (F.isUndef())
7246     return T;
7247 
7248   // select true, T, F --> T
7249   // select false, T, F --> F
7250   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7251     return CondC->isNullValue() ? F : T;
7252 
7253   // TODO: This should simplify VSELECT with constant condition using something
7254   // like this (but check boolean contents to be complete?):
7255   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7256   //    return T;
7257   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7258   //    return F;
7259 
7260   // select ?, T, T --> T
7261   if (T == F)
7262     return T;
7263 
7264   return SDValue();
7265 }
7266 
simplifyShift(SDValue X,SDValue Y)7267 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7268   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7269   if (X.isUndef())
7270     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7271   // shift X, undef --> undef (because it may shift by the bitwidth)
7272   if (Y.isUndef())
7273     return getUNDEF(X.getValueType());
7274 
7275   // shift 0, Y --> 0
7276   // shift X, 0 --> X
7277   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7278     return X;
7279 
7280   // shift X, C >= bitwidth(X) --> undef
7281   // All vector elements must be too big (or undef) to avoid partial undefs.
7282   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7283     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7284   };
7285   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7286     return getUNDEF(X.getValueType());
7287 
7288   return SDValue();
7289 }
7290 
7291 // TODO: Use fast-math-flags to enable more simplifications.
simplifyFPBinop(unsigned Opcode,SDValue X,SDValue Y)7292 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7293   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7294   if (!YC)
7295     return SDValue();
7296 
7297   // X + -0.0 --> X
7298   if (Opcode == ISD::FADD)
7299     if (YC->getValueAPF().isNegZero())
7300       return X;
7301 
7302   // X - +0.0 --> X
7303   if (Opcode == ISD::FSUB)
7304     if (YC->getValueAPF().isPosZero())
7305       return X;
7306 
7307   // X * 1.0 --> X
7308   // X / 1.0 --> X
7309   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7310     if (YC->getValueAPF().isExactlyValue(1.0))
7311       return X;
7312 
7313   return SDValue();
7314 }
7315 
getVAArg(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue SV,unsigned Align)7316 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7317                                SDValue Ptr, SDValue SV, unsigned Align) {
7318   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7319   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7320 }
7321 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDUse> Ops)7322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7323                               ArrayRef<SDUse> Ops) {
7324   switch (Ops.size()) {
7325   case 0: return getNode(Opcode, DL, VT);
7326   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7327   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7328   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7329   default: break;
7330   }
7331 
7332   // Copy from an SDUse array into an SDValue array for use with
7333   // the regular getNode logic.
7334   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7335   return getNode(Opcode, DL, VT, NewOps);
7336 }
7337 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)7338 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7339                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7340   unsigned NumOps = Ops.size();
7341   switch (NumOps) {
7342   case 0: return getNode(Opcode, DL, VT);
7343   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7344   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7345   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7346   default: break;
7347   }
7348 
7349   switch (Opcode) {
7350   default: break;
7351   case ISD::BUILD_VECTOR:
7352     // Attempt to simplify BUILD_VECTOR.
7353     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7354       return V;
7355     break;
7356   case ISD::CONCAT_VECTORS:
7357     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7358       return V;
7359     break;
7360   case ISD::SELECT_CC:
7361     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7362     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7363            "LHS and RHS of condition must have same type!");
7364     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7365            "True and False arms of SelectCC must have same type!");
7366     assert(Ops[2].getValueType() == VT &&
7367            "select_cc node must be of same type as true and false value!");
7368     break;
7369   case ISD::BR_CC:
7370     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7371     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7372            "LHS/RHS of comparison should match types!");
7373     break;
7374   }
7375 
7376   // Memoize nodes.
7377   SDNode *N;
7378   SDVTList VTs = getVTList(VT);
7379 
7380   if (VT != MVT::Glue) {
7381     FoldingSetNodeID ID;
7382     AddNodeIDNode(ID, Opcode, VTs, Ops);
7383     void *IP = nullptr;
7384 
7385     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7386       return SDValue(E, 0);
7387 
7388     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7389     createOperands(N, Ops);
7390 
7391     CSEMap.InsertNode(N, IP);
7392   } else {
7393     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7394     createOperands(N, Ops);
7395   }
7396 
7397   InsertNode(N);
7398   SDValue V(N, 0);
7399   NewSDValueDbgMsg(V, "Creating new node: ", this);
7400   return V;
7401 }
7402 
getNode(unsigned Opcode,const SDLoc & DL,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)7403 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7404                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7405   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7406 }
7407 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops)7408 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7409                               ArrayRef<SDValue> Ops) {
7410   if (VTList.NumVTs == 1)
7411     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7412 
7413   switch (Opcode) {
7414   case ISD::STRICT_FP_EXTEND:
7415     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7416            "Invalid STRICT_FP_EXTEND!");
7417     assert(VTList.VTs[0].isFloatingPoint() &&
7418            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7419     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7420            "STRICT_FP_EXTEND result type should be vector iff the operand "
7421            "type is vector!");
7422     assert((!VTList.VTs[0].isVector() ||
7423             VTList.VTs[0].getVectorNumElements() ==
7424             Ops[1].getValueType().getVectorNumElements()) &&
7425            "Vector element count mismatch!");
7426     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7427            "Invalid fpext node, dst <= src!");
7428     break;
7429   case ISD::STRICT_FP_ROUND:
7430     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7431     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7432            "STRICT_FP_ROUND result type should be vector iff the operand "
7433            "type is vector!");
7434     assert((!VTList.VTs[0].isVector() ||
7435             VTList.VTs[0].getVectorNumElements() ==
7436             Ops[1].getValueType().getVectorNumElements()) &&
7437            "Vector element count mismatch!");
7438     assert(VTList.VTs[0].isFloatingPoint() &&
7439            Ops[1].getValueType().isFloatingPoint() &&
7440            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7441            isa<ConstantSDNode>(Ops[2]) &&
7442            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7443             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7444            "Invalid STRICT_FP_ROUND!");
7445     break;
7446 #if 0
7447   // FIXME: figure out how to safely handle things like
7448   // int foo(int x) { return 1 << (x & 255); }
7449   // int bar() { return foo(256); }
7450   case ISD::SRA_PARTS:
7451   case ISD::SRL_PARTS:
7452   case ISD::SHL_PARTS:
7453     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7454         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7455       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7456     else if (N3.getOpcode() == ISD::AND)
7457       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7458         // If the and is only masking out bits that cannot effect the shift,
7459         // eliminate the and.
7460         unsigned NumBits = VT.getScalarSizeInBits()*2;
7461         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7462           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7463       }
7464     break;
7465 #endif
7466   }
7467 
7468   // Memoize the node unless it returns a flag.
7469   SDNode *N;
7470   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7471     FoldingSetNodeID ID;
7472     AddNodeIDNode(ID, Opcode, VTList, Ops);
7473     void *IP = nullptr;
7474     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7475       return SDValue(E, 0);
7476 
7477     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7478     createOperands(N, Ops);
7479     CSEMap.InsertNode(N, IP);
7480   } else {
7481     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7482     createOperands(N, Ops);
7483   }
7484   InsertNode(N);
7485   SDValue V(N, 0);
7486   NewSDValueDbgMsg(V, "Creating new node: ", this);
7487   return V;
7488 }
7489 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList)7490 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7491                               SDVTList VTList) {
7492   return getNode(Opcode, DL, VTList, None);
7493 }
7494 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1)7495 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7496                               SDValue N1) {
7497   SDValue Ops[] = { N1 };
7498   return getNode(Opcode, DL, VTList, Ops);
7499 }
7500 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2)7501 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7502                               SDValue N1, SDValue N2) {
7503   SDValue Ops[] = { N1, N2 };
7504   return getNode(Opcode, DL, VTList, Ops);
7505 }
7506 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3)7507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7508                               SDValue N1, SDValue N2, SDValue N3) {
7509   SDValue Ops[] = { N1, N2, N3 };
7510   return getNode(Opcode, DL, VTList, Ops);
7511 }
7512 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4)7513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7514                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7515   SDValue Ops[] = { N1, N2, N3, N4 };
7516   return getNode(Opcode, DL, VTList, Ops);
7517 }
7518 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)7519 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7520                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7521                               SDValue N5) {
7522   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7523   return getNode(Opcode, DL, VTList, Ops);
7524 }
7525 
getVTList(EVT VT)7526 SDVTList SelectionDAG::getVTList(EVT VT) {
7527   return makeVTList(SDNode::getValueTypeList(VT), 1);
7528 }
7529 
getVTList(EVT VT1,EVT VT2)7530 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7531   FoldingSetNodeID ID;
7532   ID.AddInteger(2U);
7533   ID.AddInteger(VT1.getRawBits());
7534   ID.AddInteger(VT2.getRawBits());
7535 
7536   void *IP = nullptr;
7537   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7538   if (!Result) {
7539     EVT *Array = Allocator.Allocate<EVT>(2);
7540     Array[0] = VT1;
7541     Array[1] = VT2;
7542     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7543     VTListMap.InsertNode(Result, IP);
7544   }
7545   return Result->getSDVTList();
7546 }
7547 
getVTList(EVT VT1,EVT VT2,EVT VT3)7548 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7549   FoldingSetNodeID ID;
7550   ID.AddInteger(3U);
7551   ID.AddInteger(VT1.getRawBits());
7552   ID.AddInteger(VT2.getRawBits());
7553   ID.AddInteger(VT3.getRawBits());
7554 
7555   void *IP = nullptr;
7556   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7557   if (!Result) {
7558     EVT *Array = Allocator.Allocate<EVT>(3);
7559     Array[0] = VT1;
7560     Array[1] = VT2;
7561     Array[2] = VT3;
7562     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7563     VTListMap.InsertNode(Result, IP);
7564   }
7565   return Result->getSDVTList();
7566 }
7567 
getVTList(EVT VT1,EVT VT2,EVT VT3,EVT VT4)7568 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7569   FoldingSetNodeID ID;
7570   ID.AddInteger(4U);
7571   ID.AddInteger(VT1.getRawBits());
7572   ID.AddInteger(VT2.getRawBits());
7573   ID.AddInteger(VT3.getRawBits());
7574   ID.AddInteger(VT4.getRawBits());
7575 
7576   void *IP = nullptr;
7577   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7578   if (!Result) {
7579     EVT *Array = Allocator.Allocate<EVT>(4);
7580     Array[0] = VT1;
7581     Array[1] = VT2;
7582     Array[2] = VT3;
7583     Array[3] = VT4;
7584     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7585     VTListMap.InsertNode(Result, IP);
7586   }
7587   return Result->getSDVTList();
7588 }
7589 
getVTList(ArrayRef<EVT> VTs)7590 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7591   unsigned NumVTs = VTs.size();
7592   FoldingSetNodeID ID;
7593   ID.AddInteger(NumVTs);
7594   for (unsigned index = 0; index < NumVTs; index++) {
7595     ID.AddInteger(VTs[index].getRawBits());
7596   }
7597 
7598   void *IP = nullptr;
7599   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7600   if (!Result) {
7601     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7602     llvm::copy(VTs, Array);
7603     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7604     VTListMap.InsertNode(Result, IP);
7605   }
7606   return Result->getSDVTList();
7607 }
7608 
7609 
7610 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7611 /// specified operands.  If the resultant node already exists in the DAG,
7612 /// this does not modify the specified node, instead it returns the node that
7613 /// already exists.  If the resultant node does not exist in the DAG, the
7614 /// input node is returned.  As a degenerate case, if you specify the same
7615 /// input operands as the node already has, the input node is returned.
UpdateNodeOperands(SDNode * N,SDValue Op)7616 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7617   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7618 
7619   // Check to see if there is no change.
7620   if (Op == N->getOperand(0)) return N;
7621 
7622   // See if the modified node already exists.
7623   void *InsertPos = nullptr;
7624   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7625     return Existing;
7626 
7627   // Nope it doesn't.  Remove the node from its current place in the maps.
7628   if (InsertPos)
7629     if (!RemoveNodeFromCSEMaps(N))
7630       InsertPos = nullptr;
7631 
7632   // Now we update the operands.
7633   N->OperandList[0].set(Op);
7634 
7635   updateDivergence(N);
7636   // If this gets put into a CSE map, add it.
7637   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7638   return N;
7639 }
7640 
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2)7641 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7642   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7643 
7644   // Check to see if there is no change.
7645   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7646     return N;   // No operands changed, just return the input node.
7647 
7648   // See if the modified node already exists.
7649   void *InsertPos = nullptr;
7650   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7651     return Existing;
7652 
7653   // Nope it doesn't.  Remove the node from its current place in the maps.
7654   if (InsertPos)
7655     if (!RemoveNodeFromCSEMaps(N))
7656       InsertPos = nullptr;
7657 
7658   // Now we update the operands.
7659   if (N->OperandList[0] != Op1)
7660     N->OperandList[0].set(Op1);
7661   if (N->OperandList[1] != Op2)
7662     N->OperandList[1].set(Op2);
7663 
7664   updateDivergence(N);
7665   // If this gets put into a CSE map, add it.
7666   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7667   return N;
7668 }
7669 
7670 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3)7671 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7672   SDValue Ops[] = { Op1, Op2, Op3 };
7673   return UpdateNodeOperands(N, Ops);
7674 }
7675 
7676 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4)7677 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7678                    SDValue Op3, SDValue Op4) {
7679   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7680   return UpdateNodeOperands(N, Ops);
7681 }
7682 
7683 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4,SDValue Op5)7684 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7685                    SDValue Op3, SDValue Op4, SDValue Op5) {
7686   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7687   return UpdateNodeOperands(N, Ops);
7688 }
7689 
7690 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,ArrayRef<SDValue> Ops)7691 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7692   unsigned NumOps = Ops.size();
7693   assert(N->getNumOperands() == NumOps &&
7694          "Update with wrong number of operands");
7695 
7696   // If no operands changed just return the input node.
7697   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7698     return N;
7699 
7700   // See if the modified node already exists.
7701   void *InsertPos = nullptr;
7702   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7703     return Existing;
7704 
7705   // Nope it doesn't.  Remove the node from its current place in the maps.
7706   if (InsertPos)
7707     if (!RemoveNodeFromCSEMaps(N))
7708       InsertPos = nullptr;
7709 
7710   // Now we update the operands.
7711   for (unsigned i = 0; i != NumOps; ++i)
7712     if (N->OperandList[i] != Ops[i])
7713       N->OperandList[i].set(Ops[i]);
7714 
7715   updateDivergence(N);
7716   // If this gets put into a CSE map, add it.
7717   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7718   return N;
7719 }
7720 
7721 /// DropOperands - Release the operands and set this node to have
7722 /// zero operands.
DropOperands()7723 void SDNode::DropOperands() {
7724   // Unlike the code in MorphNodeTo that does this, we don't need to
7725   // watch for dead nodes here.
7726   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7727     SDUse &Use = *I++;
7728     Use.set(SDValue());
7729   }
7730 }
7731 
setNodeMemRefs(MachineSDNode * N,ArrayRef<MachineMemOperand * > NewMemRefs)7732 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7733                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7734   if (NewMemRefs.empty()) {
7735     N->clearMemRefs();
7736     return;
7737   }
7738 
7739   // Check if we can avoid allocating by storing a single reference directly.
7740   if (NewMemRefs.size() == 1) {
7741     N->MemRefs = NewMemRefs[0];
7742     N->NumMemRefs = 1;
7743     return;
7744   }
7745 
7746   MachineMemOperand **MemRefsBuffer =
7747       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7748   llvm::copy(NewMemRefs, MemRefsBuffer);
7749   N->MemRefs = MemRefsBuffer;
7750   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7751 }
7752 
7753 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7754 /// machine opcode.
7755 ///
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT)7756 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7757                                    EVT VT) {
7758   SDVTList VTs = getVTList(VT);
7759   return SelectNodeTo(N, MachineOpc, VTs, None);
7760 }
7761 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1)7762 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7763                                    EVT VT, SDValue Op1) {
7764   SDVTList VTs = getVTList(VT);
7765   SDValue Ops[] = { Op1 };
7766   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7767 }
7768 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2)7769 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7770                                    EVT VT, SDValue Op1,
7771                                    SDValue Op2) {
7772   SDVTList VTs = getVTList(VT);
7773   SDValue Ops[] = { Op1, Op2 };
7774   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7775 }
7776 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)7777 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7778                                    EVT VT, SDValue Op1,
7779                                    SDValue Op2, SDValue Op3) {
7780   SDVTList VTs = getVTList(VT);
7781   SDValue Ops[] = { Op1, Op2, Op3 };
7782   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7783 }
7784 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,ArrayRef<SDValue> Ops)7785 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7786                                    EVT VT, ArrayRef<SDValue> Ops) {
7787   SDVTList VTs = getVTList(VT);
7788   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7789 }
7790 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)7791 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7792                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7793   SDVTList VTs = getVTList(VT1, VT2);
7794   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7795 }
7796 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2)7797 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7798                                    EVT VT1, EVT VT2) {
7799   SDVTList VTs = getVTList(VT1, VT2);
7800   return SelectNodeTo(N, MachineOpc, VTs, None);
7801 }
7802 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)7803 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7804                                    EVT VT1, EVT VT2, EVT VT3,
7805                                    ArrayRef<SDValue> Ops) {
7806   SDVTList VTs = getVTList(VT1, VT2, VT3);
7807   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7808 }
7809 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)7810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7811                                    EVT VT1, EVT VT2,
7812                                    SDValue Op1, SDValue Op2) {
7813   SDVTList VTs = getVTList(VT1, VT2);
7814   SDValue Ops[] = { Op1, Op2 };
7815   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7816 }
7817 
SelectNodeTo(SDNode * N,unsigned MachineOpc,SDVTList VTs,ArrayRef<SDValue> Ops)7818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7819                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7820   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7821   // Reset the NodeID to -1.
7822   New->setNodeId(-1);
7823   if (New != N) {
7824     ReplaceAllUsesWith(N, New);
7825     RemoveDeadNode(N);
7826   }
7827   return New;
7828 }
7829 
7830 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7831 /// the line number information on the merged node since it is not possible to
7832 /// preserve the information that operation is associated with multiple lines.
7833 /// This will make the debugger working better at -O0, were there is a higher
7834 /// probability having other instructions associated with that line.
7835 ///
7836 /// For IROrder, we keep the smaller of the two
UpdateSDLocOnMergeSDNode(SDNode * N,const SDLoc & OLoc)7837 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7838   DebugLoc NLoc = N->getDebugLoc();
7839   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7840     N->setDebugLoc(DebugLoc());
7841   }
7842   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7843   N->setIROrder(Order);
7844   return N;
7845 }
7846 
7847 /// MorphNodeTo - This *mutates* the specified node to have the specified
7848 /// return type, opcode, and operands.
7849 ///
7850 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7851 /// node of the specified opcode and operands, it returns that node instead of
7852 /// the current one.  Note that the SDLoc need not be the same.
7853 ///
7854 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7855 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7856 /// node, and because it doesn't require CSE recalculation for any of
7857 /// the node's users.
7858 ///
7859 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7860 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7861 /// the legalizer which maintain worklists that would need to be updated when
7862 /// deleting things.
MorphNodeTo(SDNode * N,unsigned Opc,SDVTList VTs,ArrayRef<SDValue> Ops)7863 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7864                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7865   // If an identical node already exists, use it.
7866   void *IP = nullptr;
7867   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7868     FoldingSetNodeID ID;
7869     AddNodeIDNode(ID, Opc, VTs, Ops);
7870     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7871       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7872   }
7873 
7874   if (!RemoveNodeFromCSEMaps(N))
7875     IP = nullptr;
7876 
7877   // Start the morphing.
7878   N->NodeType = Opc;
7879   N->ValueList = VTs.VTs;
7880   N->NumValues = VTs.NumVTs;
7881 
7882   // Clear the operands list, updating used nodes to remove this from their
7883   // use list.  Keep track of any operands that become dead as a result.
7884   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7885   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7886     SDUse &Use = *I++;
7887     SDNode *Used = Use.getNode();
7888     Use.set(SDValue());
7889     if (Used->use_empty())
7890       DeadNodeSet.insert(Used);
7891   }
7892 
7893   // For MachineNode, initialize the memory references information.
7894   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7895     MN->clearMemRefs();
7896 
7897   // Swap for an appropriately sized array from the recycler.
7898   removeOperands(N);
7899   createOperands(N, Ops);
7900 
7901   // Delete any nodes that are still dead after adding the uses for the
7902   // new operands.
7903   if (!DeadNodeSet.empty()) {
7904     SmallVector<SDNode *, 16> DeadNodes;
7905     for (SDNode *N : DeadNodeSet)
7906       if (N->use_empty())
7907         DeadNodes.push_back(N);
7908     RemoveDeadNodes(DeadNodes);
7909   }
7910 
7911   if (IP)
7912     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7913   return N;
7914 }
7915 
mutateStrictFPToFP(SDNode * Node)7916 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7917   unsigned OrigOpc = Node->getOpcode();
7918   unsigned NewOpc;
7919   switch (OrigOpc) {
7920   default:
7921     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7922 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
7923   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7924 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7925   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
7926 #include "llvm/IR/ConstrainedOps.def"
7927   }
7928 
7929   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7930 
7931   // We're taking this node out of the chain, so we need to re-link things.
7932   SDValue InputChain = Node->getOperand(0);
7933   SDValue OutputChain = SDValue(Node, 1);
7934   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7935 
7936   SmallVector<SDValue, 3> Ops;
7937   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7938     Ops.push_back(Node->getOperand(i));
7939 
7940   SDVTList VTs = getVTList(Node->getValueType(0));
7941   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7942 
7943   // MorphNodeTo can operate in two ways: if an existing node with the
7944   // specified operands exists, it can just return it.  Otherwise, it
7945   // updates the node in place to have the requested operands.
7946   if (Res == Node) {
7947     // If we updated the node in place, reset the node ID.  To the isel,
7948     // this should be just like a newly allocated machine node.
7949     Res->setNodeId(-1);
7950   } else {
7951     ReplaceAllUsesWith(Node, Res);
7952     RemoveDeadNode(Node);
7953   }
7954 
7955   return Res;
7956 }
7957 
7958 /// getMachineNode - These are used for target selectors to create a new node
7959 /// with specified return type(s), MachineInstr opcode, and operands.
7960 ///
7961 /// Note that getMachineNode returns the resultant node.  If there is already a
7962 /// node of the specified opcode and operands, it returns that node instead of
7963 /// the current one.
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT)7964 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7965                                             EVT VT) {
7966   SDVTList VTs = getVTList(VT);
7967   return getMachineNode(Opcode, dl, VTs, None);
7968 }
7969 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1)7970 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7971                                             EVT VT, SDValue Op1) {
7972   SDVTList VTs = getVTList(VT);
7973   SDValue Ops[] = { Op1 };
7974   return getMachineNode(Opcode, dl, VTs, Ops);
7975 }
7976 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2)7977 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7978                                             EVT VT, SDValue Op1, SDValue Op2) {
7979   SDVTList VTs = getVTList(VT);
7980   SDValue Ops[] = { Op1, Op2 };
7981   return getMachineNode(Opcode, dl, VTs, Ops);
7982 }
7983 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)7984 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7985                                             EVT VT, SDValue Op1, SDValue Op2,
7986                                             SDValue Op3) {
7987   SDVTList VTs = getVTList(VT);
7988   SDValue Ops[] = { Op1, Op2, Op3 };
7989   return getMachineNode(Opcode, dl, VTs, Ops);
7990 }
7991 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,ArrayRef<SDValue> Ops)7992 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7993                                             EVT VT, ArrayRef<SDValue> Ops) {
7994   SDVTList VTs = getVTList(VT);
7995   return getMachineNode(Opcode, dl, VTs, Ops);
7996 }
7997 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)7998 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7999                                             EVT VT1, EVT VT2, SDValue Op1,
8000                                             SDValue Op2) {
8001   SDVTList VTs = getVTList(VT1, VT2);
8002   SDValue Ops[] = { Op1, Op2 };
8003   return getMachineNode(Opcode, dl, VTs, Ops);
8004 }
8005 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)8006 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8007                                             EVT VT1, EVT VT2, SDValue Op1,
8008                                             SDValue Op2, SDValue Op3) {
8009   SDVTList VTs = getVTList(VT1, VT2);
8010   SDValue Ops[] = { Op1, Op2, Op3 };
8011   return getMachineNode(Opcode, dl, VTs, Ops);
8012 }
8013 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)8014 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8015                                             EVT VT1, EVT VT2,
8016                                             ArrayRef<SDValue> Ops) {
8017   SDVTList VTs = getVTList(VT1, VT2);
8018   return getMachineNode(Opcode, dl, VTs, Ops);
8019 }
8020 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2)8021 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8022                                             EVT VT1, EVT VT2, EVT VT3,
8023                                             SDValue Op1, SDValue Op2) {
8024   SDVTList VTs = getVTList(VT1, VT2, VT3);
8025   SDValue Ops[] = { Op1, Op2 };
8026   return getMachineNode(Opcode, dl, VTs, Ops);
8027 }
8028 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)8029 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8030                                             EVT VT1, EVT VT2, EVT VT3,
8031                                             SDValue Op1, SDValue Op2,
8032                                             SDValue Op3) {
8033   SDVTList VTs = getVTList(VT1, VT2, VT3);
8034   SDValue Ops[] = { Op1, Op2, Op3 };
8035   return getMachineNode(Opcode, dl, VTs, Ops);
8036 }
8037 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)8038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8039                                             EVT VT1, EVT VT2, EVT VT3,
8040                                             ArrayRef<SDValue> Ops) {
8041   SDVTList VTs = getVTList(VT1, VT2, VT3);
8042   return getMachineNode(Opcode, dl, VTs, Ops);
8043 }
8044 
getMachineNode(unsigned Opcode,const SDLoc & dl,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)8045 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8046                                             ArrayRef<EVT> ResultTys,
8047                                             ArrayRef<SDValue> Ops) {
8048   SDVTList VTs = getVTList(ResultTys);
8049   return getMachineNode(Opcode, dl, VTs, Ops);
8050 }
8051 
getMachineNode(unsigned Opcode,const SDLoc & DL,SDVTList VTs,ArrayRef<SDValue> Ops)8052 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8053                                             SDVTList VTs,
8054                                             ArrayRef<SDValue> Ops) {
8055   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8056   MachineSDNode *N;
8057   void *IP = nullptr;
8058 
8059   if (DoCSE) {
8060     FoldingSetNodeID ID;
8061     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8062     IP = nullptr;
8063     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8064       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8065     }
8066   }
8067 
8068   // Allocate a new MachineSDNode.
8069   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8070   createOperands(N, Ops);
8071 
8072   if (DoCSE)
8073     CSEMap.InsertNode(N, IP);
8074 
8075   InsertNode(N);
8076   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8077   return N;
8078 }
8079 
8080 /// getTargetExtractSubreg - A convenience function for creating
8081 /// TargetOpcode::EXTRACT_SUBREG nodes.
getTargetExtractSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand)8082 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8083                                              SDValue Operand) {
8084   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8085   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8086                                   VT, Operand, SRIdxVal);
8087   return SDValue(Subreg, 0);
8088 }
8089 
8090 /// getTargetInsertSubreg - A convenience function for creating
8091 /// TargetOpcode::INSERT_SUBREG nodes.
getTargetInsertSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand,SDValue Subreg)8092 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8093                                             SDValue Operand, SDValue Subreg) {
8094   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8095   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8096                                   VT, Operand, Subreg, SRIdxVal);
8097   return SDValue(Result, 0);
8098 }
8099 
8100 /// getNodeIfExists - Get the specified node if it's already available, or
8101 /// else return NULL.
getNodeIfExists(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)8102 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8103                                       ArrayRef<SDValue> Ops,
8104                                       const SDNodeFlags Flags) {
8105   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8106     FoldingSetNodeID ID;
8107     AddNodeIDNode(ID, Opcode, VTList, Ops);
8108     void *IP = nullptr;
8109     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8110       E->intersectFlagsWith(Flags);
8111       return E;
8112     }
8113   }
8114   return nullptr;
8115 }
8116 
8117 /// getDbgValue - Creates a SDDbgValue node.
8118 ///
8119 /// SDNode
getDbgValue(DIVariable * Var,DIExpression * Expr,SDNode * N,unsigned R,bool IsIndirect,const DebugLoc & DL,unsigned O)8120 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8121                                       SDNode *N, unsigned R, bool IsIndirect,
8122                                       const DebugLoc &DL, unsigned O) {
8123   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8124          "Expected inlined-at fields to agree");
8125   return new (DbgInfo->getAlloc())
8126       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8127 }
8128 
8129 /// Constant
getConstantDbgValue(DIVariable * Var,DIExpression * Expr,const Value * C,const DebugLoc & DL,unsigned O)8130 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8131                                               DIExpression *Expr,
8132                                               const Value *C,
8133                                               const DebugLoc &DL, unsigned O) {
8134   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8135          "Expected inlined-at fields to agree");
8136   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8137 }
8138 
8139 /// FrameIndex
getFrameIndexDbgValue(DIVariable * Var,DIExpression * Expr,unsigned FI,bool IsIndirect,const DebugLoc & DL,unsigned O)8140 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8141                                                 DIExpression *Expr, unsigned FI,
8142                                                 bool IsIndirect,
8143                                                 const DebugLoc &DL,
8144                                                 unsigned O) {
8145   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8146          "Expected inlined-at fields to agree");
8147   return new (DbgInfo->getAlloc())
8148       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8149 }
8150 
8151 /// VReg
getVRegDbgValue(DIVariable * Var,DIExpression * Expr,unsigned VReg,bool IsIndirect,const DebugLoc & DL,unsigned O)8152 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8153                                           DIExpression *Expr,
8154                                           unsigned VReg, bool IsIndirect,
8155                                           const DebugLoc &DL, unsigned O) {
8156   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8157          "Expected inlined-at fields to agree");
8158   return new (DbgInfo->getAlloc())
8159       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8160 }
8161 
transferDbgValues(SDValue From,SDValue To,unsigned OffsetInBits,unsigned SizeInBits,bool InvalidateDbg)8162 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8163                                      unsigned OffsetInBits, unsigned SizeInBits,
8164                                      bool InvalidateDbg) {
8165   SDNode *FromNode = From.getNode();
8166   SDNode *ToNode = To.getNode();
8167   assert(FromNode && ToNode && "Can't modify dbg values");
8168 
8169   // PR35338
8170   // TODO: assert(From != To && "Redundant dbg value transfer");
8171   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8172   if (From == To || FromNode == ToNode)
8173     return;
8174 
8175   if (!FromNode->getHasDebugValue())
8176     return;
8177 
8178   SmallVector<SDDbgValue *, 2> ClonedDVs;
8179   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8180     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8181       continue;
8182 
8183     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8184 
8185     // Just transfer the dbg value attached to From.
8186     if (Dbg->getResNo() != From.getResNo())
8187       continue;
8188 
8189     DIVariable *Var = Dbg->getVariable();
8190     auto *Expr = Dbg->getExpression();
8191     // If a fragment is requested, update the expression.
8192     if (SizeInBits) {
8193       // When splitting a larger (e.g., sign-extended) value whose
8194       // lower bits are described with an SDDbgValue, do not attempt
8195       // to transfer the SDDbgValue to the upper bits.
8196       if (auto FI = Expr->getFragmentInfo())
8197         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8198           continue;
8199       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8200                                                              SizeInBits);
8201       if (!Fragment)
8202         continue;
8203       Expr = *Fragment;
8204     }
8205     // Clone the SDDbgValue and move it to To.
8206     SDDbgValue *Clone = getDbgValue(
8207         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8208         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8209     ClonedDVs.push_back(Clone);
8210 
8211     if (InvalidateDbg) {
8212       // Invalidate value and indicate the SDDbgValue should not be emitted.
8213       Dbg->setIsInvalidated();
8214       Dbg->setIsEmitted();
8215     }
8216   }
8217 
8218   for (SDDbgValue *Dbg : ClonedDVs)
8219     AddDbgValue(Dbg, ToNode, false);
8220 }
8221 
salvageDebugInfo(SDNode & N)8222 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8223   if (!N.getHasDebugValue())
8224     return;
8225 
8226   SmallVector<SDDbgValue *, 2> ClonedDVs;
8227   for (auto DV : GetDbgValues(&N)) {
8228     if (DV->isInvalidated())
8229       continue;
8230     switch (N.getOpcode()) {
8231     default:
8232       break;
8233     case ISD::ADD:
8234       SDValue N0 = N.getOperand(0);
8235       SDValue N1 = N.getOperand(1);
8236       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8237           isConstantIntBuildVectorOrConstantInt(N1)) {
8238         uint64_t Offset = N.getConstantOperandVal(1);
8239         // Rewrite an ADD constant node into a DIExpression. Since we are
8240         // performing arithmetic to compute the variable's *value* in the
8241         // DIExpression, we need to mark the expression with a
8242         // DW_OP_stack_value.
8243         auto *DIExpr = DV->getExpression();
8244         DIExpr =
8245             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8246         SDDbgValue *Clone =
8247             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8248                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8249         ClonedDVs.push_back(Clone);
8250         DV->setIsInvalidated();
8251         DV->setIsEmitted();
8252         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8253                    N0.getNode()->dumprFull(this);
8254                    dbgs() << " into " << *DIExpr << '\n');
8255       }
8256     }
8257   }
8258 
8259   for (SDDbgValue *Dbg : ClonedDVs)
8260     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8261 }
8262 
8263 /// Creates a SDDbgLabel node.
getDbgLabel(DILabel * Label,const DebugLoc & DL,unsigned O)8264 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8265                                       const DebugLoc &DL, unsigned O) {
8266   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8267          "Expected inlined-at fields to agree");
8268   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8269 }
8270 
8271 namespace {
8272 
8273 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8274 /// pointed to by a use iterator is deleted, increment the use iterator
8275 /// so that it doesn't dangle.
8276 ///
8277 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8278   SDNode::use_iterator &UI;
8279   SDNode::use_iterator &UE;
8280 
NodeDeleted(SDNode * N,SDNode * E)8281   void NodeDeleted(SDNode *N, SDNode *E) override {
8282     // Increment the iterator as needed.
8283     while (UI != UE && N == *UI)
8284       ++UI;
8285   }
8286 
8287 public:
RAUWUpdateListener(SelectionDAG & d,SDNode::use_iterator & ui,SDNode::use_iterator & ue)8288   RAUWUpdateListener(SelectionDAG &d,
8289                      SDNode::use_iterator &ui,
8290                      SDNode::use_iterator &ue)
8291     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8292 };
8293 
8294 } // end anonymous namespace
8295 
8296 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8297 /// This can cause recursive merging of nodes in the DAG.
8298 ///
8299 /// This version assumes From has a single result value.
8300 ///
ReplaceAllUsesWith(SDValue FromN,SDValue To)8301 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8302   SDNode *From = FromN.getNode();
8303   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8304          "Cannot replace with this method!");
8305   assert(From != To.getNode() && "Cannot replace uses of with self");
8306 
8307   // Preserve Debug Values
8308   transferDbgValues(FromN, To);
8309 
8310   // Iterate over all the existing uses of From. New uses will be added
8311   // to the beginning of the use list, which we avoid visiting.
8312   // This specifically avoids visiting uses of From that arise while the
8313   // replacement is happening, because any such uses would be the result
8314   // of CSE: If an existing node looks like From after one of its operands
8315   // is replaced by To, we don't want to replace of all its users with To
8316   // too. See PR3018 for more info.
8317   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8318   RAUWUpdateListener Listener(*this, UI, UE);
8319   while (UI != UE) {
8320     SDNode *User = *UI;
8321 
8322     // This node is about to morph, remove its old self from the CSE maps.
8323     RemoveNodeFromCSEMaps(User);
8324 
8325     // A user can appear in a use list multiple times, and when this
8326     // happens the uses are usually next to each other in the list.
8327     // To help reduce the number of CSE recomputations, process all
8328     // the uses of this user that we can find this way.
8329     do {
8330       SDUse &Use = UI.getUse();
8331       ++UI;
8332       Use.set(To);
8333       if (To->isDivergent() != From->isDivergent())
8334         updateDivergence(User);
8335     } while (UI != UE && *UI == User);
8336     // Now that we have modified User, add it back to the CSE maps.  If it
8337     // already exists there, recursively merge the results together.
8338     AddModifiedNodeToCSEMaps(User);
8339   }
8340 
8341   // If we just RAUW'd the root, take note.
8342   if (FromN == getRoot())
8343     setRoot(To);
8344 }
8345 
8346 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8347 /// This can cause recursive merging of nodes in the DAG.
8348 ///
8349 /// This version assumes that for each value of From, there is a
8350 /// corresponding value in To in the same position with the same type.
8351 ///
ReplaceAllUsesWith(SDNode * From,SDNode * To)8352 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8353 #ifndef NDEBUG
8354   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8355     assert((!From->hasAnyUseOfValue(i) ||
8356             From->getValueType(i) == To->getValueType(i)) &&
8357            "Cannot use this version of ReplaceAllUsesWith!");
8358 #endif
8359 
8360   // Handle the trivial case.
8361   if (From == To)
8362     return;
8363 
8364   // Preserve Debug Info. Only do this if there's a use.
8365   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8366     if (From->hasAnyUseOfValue(i)) {
8367       assert((i < To->getNumValues()) && "Invalid To location");
8368       transferDbgValues(SDValue(From, i), SDValue(To, i));
8369     }
8370 
8371   // Iterate over just the existing users of From. See the comments in
8372   // the ReplaceAllUsesWith above.
8373   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8374   RAUWUpdateListener Listener(*this, UI, UE);
8375   while (UI != UE) {
8376     SDNode *User = *UI;
8377 
8378     // This node is about to morph, remove its old self from the CSE maps.
8379     RemoveNodeFromCSEMaps(User);
8380 
8381     // A user can appear in a use list multiple times, and when this
8382     // happens the uses are usually next to each other in the list.
8383     // To help reduce the number of CSE recomputations, process all
8384     // the uses of this user that we can find this way.
8385     do {
8386       SDUse &Use = UI.getUse();
8387       ++UI;
8388       Use.setNode(To);
8389       if (To->isDivergent() != From->isDivergent())
8390         updateDivergence(User);
8391     } while (UI != UE && *UI == User);
8392 
8393     // Now that we have modified User, add it back to the CSE maps.  If it
8394     // already exists there, recursively merge the results together.
8395     AddModifiedNodeToCSEMaps(User);
8396   }
8397 
8398   // If we just RAUW'd the root, take note.
8399   if (From == getRoot().getNode())
8400     setRoot(SDValue(To, getRoot().getResNo()));
8401 }
8402 
8403 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8404 /// This can cause recursive merging of nodes in the DAG.
8405 ///
8406 /// This version can replace From with any result values.  To must match the
8407 /// number and types of values returned by From.
ReplaceAllUsesWith(SDNode * From,const SDValue * To)8408 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8409   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8410     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8411 
8412   // Preserve Debug Info.
8413   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8414     transferDbgValues(SDValue(From, i), To[i]);
8415 
8416   // Iterate over just the existing users of From. See the comments in
8417   // the ReplaceAllUsesWith above.
8418   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8419   RAUWUpdateListener Listener(*this, UI, UE);
8420   while (UI != UE) {
8421     SDNode *User = *UI;
8422 
8423     // This node is about to morph, remove its old self from the CSE maps.
8424     RemoveNodeFromCSEMaps(User);
8425 
8426     // A user can appear in a use list multiple times, and when this happens the
8427     // uses are usually next to each other in the list.  To help reduce the
8428     // number of CSE and divergence recomputations, process all the uses of this
8429     // user that we can find this way.
8430     bool To_IsDivergent = false;
8431     do {
8432       SDUse &Use = UI.getUse();
8433       const SDValue &ToOp = To[Use.getResNo()];
8434       ++UI;
8435       Use.set(ToOp);
8436       To_IsDivergent |= ToOp->isDivergent();
8437     } while (UI != UE && *UI == User);
8438 
8439     if (To_IsDivergent != From->isDivergent())
8440       updateDivergence(User);
8441 
8442     // Now that we have modified User, add it back to the CSE maps.  If it
8443     // already exists there, recursively merge the results together.
8444     AddModifiedNodeToCSEMaps(User);
8445   }
8446 
8447   // If we just RAUW'd the root, take note.
8448   if (From == getRoot().getNode())
8449     setRoot(SDValue(To[getRoot().getResNo()]));
8450 }
8451 
8452 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8453 /// uses of other values produced by From.getNode() alone.  The Deleted
8454 /// vector is handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValueWith(SDValue From,SDValue To)8455 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8456   // Handle the really simple, really trivial case efficiently.
8457   if (From == To) return;
8458 
8459   // Handle the simple, trivial, case efficiently.
8460   if (From.getNode()->getNumValues() == 1) {
8461     ReplaceAllUsesWith(From, To);
8462     return;
8463   }
8464 
8465   // Preserve Debug Info.
8466   transferDbgValues(From, To);
8467 
8468   // Iterate over just the existing users of From. See the comments in
8469   // the ReplaceAllUsesWith above.
8470   SDNode::use_iterator UI = From.getNode()->use_begin(),
8471                        UE = From.getNode()->use_end();
8472   RAUWUpdateListener Listener(*this, UI, UE);
8473   while (UI != UE) {
8474     SDNode *User = *UI;
8475     bool UserRemovedFromCSEMaps = false;
8476 
8477     // A user can appear in a use list multiple times, and when this
8478     // happens the uses are usually next to each other in the list.
8479     // To help reduce the number of CSE recomputations, process all
8480     // the uses of this user that we can find this way.
8481     do {
8482       SDUse &Use = UI.getUse();
8483 
8484       // Skip uses of different values from the same node.
8485       if (Use.getResNo() != From.getResNo()) {
8486         ++UI;
8487         continue;
8488       }
8489 
8490       // If this node hasn't been modified yet, it's still in the CSE maps,
8491       // so remove its old self from the CSE maps.
8492       if (!UserRemovedFromCSEMaps) {
8493         RemoveNodeFromCSEMaps(User);
8494         UserRemovedFromCSEMaps = true;
8495       }
8496 
8497       ++UI;
8498       Use.set(To);
8499       if (To->isDivergent() != From->isDivergent())
8500         updateDivergence(User);
8501     } while (UI != UE && *UI == User);
8502     // We are iterating over all uses of the From node, so if a use
8503     // doesn't use the specific value, no changes are made.
8504     if (!UserRemovedFromCSEMaps)
8505       continue;
8506 
8507     // Now that we have modified User, add it back to the CSE maps.  If it
8508     // already exists there, recursively merge the results together.
8509     AddModifiedNodeToCSEMaps(User);
8510   }
8511 
8512   // If we just RAUW'd the root, take note.
8513   if (From == getRoot())
8514     setRoot(To);
8515 }
8516 
8517 namespace {
8518 
8519   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8520   /// to record information about a use.
8521   struct UseMemo {
8522     SDNode *User;
8523     unsigned Index;
8524     SDUse *Use;
8525   };
8526 
8527   /// operator< - Sort Memos by User.
operator <(const UseMemo & L,const UseMemo & R)8528   bool operator<(const UseMemo &L, const UseMemo &R) {
8529     return (intptr_t)L.User < (intptr_t)R.User;
8530   }
8531 
8532 } // end anonymous namespace
8533 
updateDivergence(SDNode * N)8534 void SelectionDAG::updateDivergence(SDNode * N)
8535 {
8536   if (TLI->isSDNodeAlwaysUniform(N))
8537     return;
8538   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8539   for (auto &Op : N->ops()) {
8540     if (Op.Val.getValueType() != MVT::Other)
8541       IsDivergent |= Op.getNode()->isDivergent();
8542   }
8543   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8544     N->SDNodeBits.IsDivergent = IsDivergent;
8545     for (auto U : N->uses()) {
8546       updateDivergence(U);
8547     }
8548   }
8549 }
8550 
CreateTopologicalOrder(std::vector<SDNode * > & Order)8551 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8552   DenseMap<SDNode *, unsigned> Degree;
8553   Order.reserve(AllNodes.size());
8554   for (auto &N : allnodes()) {
8555     unsigned NOps = N.getNumOperands();
8556     Degree[&N] = NOps;
8557     if (0 == NOps)
8558       Order.push_back(&N);
8559   }
8560   for (size_t I = 0; I != Order.size(); ++I) {
8561     SDNode *N = Order[I];
8562     for (auto U : N->uses()) {
8563       unsigned &UnsortedOps = Degree[U];
8564       if (0 == --UnsortedOps)
8565         Order.push_back(U);
8566     }
8567   }
8568 }
8569 
8570 #ifndef NDEBUG
VerifyDAGDiverence()8571 void SelectionDAG::VerifyDAGDiverence() {
8572   std::vector<SDNode *> TopoOrder;
8573   CreateTopologicalOrder(TopoOrder);
8574   const TargetLowering &TLI = getTargetLoweringInfo();
8575   DenseMap<const SDNode *, bool> DivergenceMap;
8576   for (auto &N : allnodes()) {
8577     DivergenceMap[&N] = false;
8578   }
8579   for (auto N : TopoOrder) {
8580     bool IsDivergent = DivergenceMap[N];
8581     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8582     for (auto &Op : N->ops()) {
8583       if (Op.Val.getValueType() != MVT::Other)
8584         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8585     }
8586     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8587       DivergenceMap[N] = true;
8588     }
8589   }
8590   for (auto &N : allnodes()) {
8591     (void)N;
8592     assert(DivergenceMap[&N] == N.isDivergent() &&
8593            "Divergence bit inconsistency detected\n");
8594   }
8595 }
8596 #endif
8597 
8598 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8599 /// uses of other values produced by From.getNode() alone.  The same value
8600 /// may appear in both the From and To list.  The Deleted vector is
8601 /// handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValuesWith(const SDValue * From,const SDValue * To,unsigned Num)8602 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8603                                               const SDValue *To,
8604                                               unsigned Num){
8605   // Handle the simple, trivial case efficiently.
8606   if (Num == 1)
8607     return ReplaceAllUsesOfValueWith(*From, *To);
8608 
8609   transferDbgValues(*From, *To);
8610 
8611   // Read up all the uses and make records of them. This helps
8612   // processing new uses that are introduced during the
8613   // replacement process.
8614   SmallVector<UseMemo, 4> Uses;
8615   for (unsigned i = 0; i != Num; ++i) {
8616     unsigned FromResNo = From[i].getResNo();
8617     SDNode *FromNode = From[i].getNode();
8618     for (SDNode::use_iterator UI = FromNode->use_begin(),
8619          E = FromNode->use_end(); UI != E; ++UI) {
8620       SDUse &Use = UI.getUse();
8621       if (Use.getResNo() == FromResNo) {
8622         UseMemo Memo = { *UI, i, &Use };
8623         Uses.push_back(Memo);
8624       }
8625     }
8626   }
8627 
8628   // Sort the uses, so that all the uses from a given User are together.
8629   llvm::sort(Uses);
8630 
8631   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8632        UseIndex != UseIndexEnd; ) {
8633     // We know that this user uses some value of From.  If it is the right
8634     // value, update it.
8635     SDNode *User = Uses[UseIndex].User;
8636 
8637     // This node is about to morph, remove its old self from the CSE maps.
8638     RemoveNodeFromCSEMaps(User);
8639 
8640     // The Uses array is sorted, so all the uses for a given User
8641     // are next to each other in the list.
8642     // To help reduce the number of CSE recomputations, process all
8643     // the uses of this user that we can find this way.
8644     do {
8645       unsigned i = Uses[UseIndex].Index;
8646       SDUse &Use = *Uses[UseIndex].Use;
8647       ++UseIndex;
8648 
8649       Use.set(To[i]);
8650     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8651 
8652     // Now that we have modified User, add it back to the CSE maps.  If it
8653     // already exists there, recursively merge the results together.
8654     AddModifiedNodeToCSEMaps(User);
8655   }
8656 }
8657 
8658 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8659 /// based on their topological order. It returns the maximum id and a vector
8660 /// of the SDNodes* in assigned order by reference.
AssignTopologicalOrder()8661 unsigned SelectionDAG::AssignTopologicalOrder() {
8662   unsigned DAGSize = 0;
8663 
8664   // SortedPos tracks the progress of the algorithm. Nodes before it are
8665   // sorted, nodes after it are unsorted. When the algorithm completes
8666   // it is at the end of the list.
8667   allnodes_iterator SortedPos = allnodes_begin();
8668 
8669   // Visit all the nodes. Move nodes with no operands to the front of
8670   // the list immediately. Annotate nodes that do have operands with their
8671   // operand count. Before we do this, the Node Id fields of the nodes
8672   // may contain arbitrary values. After, the Node Id fields for nodes
8673   // before SortedPos will contain the topological sort index, and the
8674   // Node Id fields for nodes At SortedPos and after will contain the
8675   // count of outstanding operands.
8676   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8677     SDNode *N = &*I++;
8678     checkForCycles(N, this);
8679     unsigned Degree = N->getNumOperands();
8680     if (Degree == 0) {
8681       // A node with no uses, add it to the result array immediately.
8682       N->setNodeId(DAGSize++);
8683       allnodes_iterator Q(N);
8684       if (Q != SortedPos)
8685         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8686       assert(SortedPos != AllNodes.end() && "Overran node list");
8687       ++SortedPos;
8688     } else {
8689       // Temporarily use the Node Id as scratch space for the degree count.
8690       N->setNodeId(Degree);
8691     }
8692   }
8693 
8694   // Visit all the nodes. As we iterate, move nodes into sorted order,
8695   // such that by the time the end is reached all nodes will be sorted.
8696   for (SDNode &Node : allnodes()) {
8697     SDNode *N = &Node;
8698     checkForCycles(N, this);
8699     // N is in sorted position, so all its uses have one less operand
8700     // that needs to be sorted.
8701     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8702          UI != UE; ++UI) {
8703       SDNode *P = *UI;
8704       unsigned Degree = P->getNodeId();
8705       assert(Degree != 0 && "Invalid node degree");
8706       --Degree;
8707       if (Degree == 0) {
8708         // All of P's operands are sorted, so P may sorted now.
8709         P->setNodeId(DAGSize++);
8710         if (P->getIterator() != SortedPos)
8711           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8712         assert(SortedPos != AllNodes.end() && "Overran node list");
8713         ++SortedPos;
8714       } else {
8715         // Update P's outstanding operand count.
8716         P->setNodeId(Degree);
8717       }
8718     }
8719     if (Node.getIterator() == SortedPos) {
8720 #ifndef NDEBUG
8721       allnodes_iterator I(N);
8722       SDNode *S = &*++I;
8723       dbgs() << "Overran sorted position:\n";
8724       S->dumprFull(this); dbgs() << "\n";
8725       dbgs() << "Checking if this is due to cycles\n";
8726       checkForCycles(this, true);
8727 #endif
8728       llvm_unreachable(nullptr);
8729     }
8730   }
8731 
8732   assert(SortedPos == AllNodes.end() &&
8733          "Topological sort incomplete!");
8734   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8735          "First node in topological sort is not the entry token!");
8736   assert(AllNodes.front().getNodeId() == 0 &&
8737          "First node in topological sort has non-zero id!");
8738   assert(AllNodes.front().getNumOperands() == 0 &&
8739          "First node in topological sort has operands!");
8740   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8741          "Last node in topologic sort has unexpected id!");
8742   assert(AllNodes.back().use_empty() &&
8743          "Last node in topologic sort has users!");
8744   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8745   return DAGSize;
8746 }
8747 
8748 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8749 /// value is produced by SD.
AddDbgValue(SDDbgValue * DB,SDNode * SD,bool isParameter)8750 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8751   if (SD) {
8752     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8753     SD->setHasDebugValue(true);
8754   }
8755   DbgInfo->add(DB, SD, isParameter);
8756 }
8757 
AddDbgLabel(SDDbgLabel * DB)8758 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8759   DbgInfo->add(DB);
8760 }
8761 
makeEquivalentMemoryOrdering(LoadSDNode * OldLoad,SDValue NewMemOp)8762 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8763                                                    SDValue NewMemOp) {
8764   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8765   // The new memory operation must have the same position as the old load in
8766   // terms of memory dependency. Create a TokenFactor for the old load and new
8767   // memory operation and update uses of the old load's output chain to use that
8768   // TokenFactor.
8769   SDValue OldChain = SDValue(OldLoad, 1);
8770   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8771   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8772     return NewChain;
8773 
8774   SDValue TokenFactor =
8775       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8776   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8777   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8778   return TokenFactor;
8779 }
8780 
getSymbolFunctionGlobalAddress(SDValue Op,Function ** OutFunction)8781 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8782                                                      Function **OutFunction) {
8783   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8784 
8785   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8786   auto *Module = MF->getFunction().getParent();
8787   auto *Function = Module->getFunction(Symbol);
8788 
8789   if (OutFunction != nullptr)
8790       *OutFunction = Function;
8791 
8792   if (Function != nullptr) {
8793     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8794     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8795   }
8796 
8797   std::string ErrorStr;
8798   raw_string_ostream ErrorFormatter(ErrorStr);
8799 
8800   ErrorFormatter << "Undefined external symbol ";
8801   ErrorFormatter << '"' << Symbol << '"';
8802   ErrorFormatter.flush();
8803 
8804   report_fatal_error(ErrorStr);
8805 }
8806 
8807 //===----------------------------------------------------------------------===//
8808 //                              SDNode Class
8809 //===----------------------------------------------------------------------===//
8810 
isNullConstant(SDValue V)8811 bool llvm::isNullConstant(SDValue V) {
8812   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8813   return Const != nullptr && Const->isNullValue();
8814 }
8815 
isNullFPConstant(SDValue V)8816 bool llvm::isNullFPConstant(SDValue V) {
8817   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8818   return Const != nullptr && Const->isZero() && !Const->isNegative();
8819 }
8820 
isAllOnesConstant(SDValue V)8821 bool llvm::isAllOnesConstant(SDValue V) {
8822   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8823   return Const != nullptr && Const->isAllOnesValue();
8824 }
8825 
isOneConstant(SDValue V)8826 bool llvm::isOneConstant(SDValue V) {
8827   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8828   return Const != nullptr && Const->isOne();
8829 }
8830 
peekThroughBitcasts(SDValue V)8831 SDValue llvm::peekThroughBitcasts(SDValue V) {
8832   while (V.getOpcode() == ISD::BITCAST)
8833     V = V.getOperand(0);
8834   return V;
8835 }
8836 
peekThroughOneUseBitcasts(SDValue V)8837 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8838   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8839     V = V.getOperand(0);
8840   return V;
8841 }
8842 
peekThroughExtractSubvectors(SDValue V)8843 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8844   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8845     V = V.getOperand(0);
8846   return V;
8847 }
8848 
isBitwiseNot(SDValue V,bool AllowUndefs)8849 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8850   if (V.getOpcode() != ISD::XOR)
8851     return false;
8852   V = peekThroughBitcasts(V.getOperand(1));
8853   unsigned NumBits = V.getScalarValueSizeInBits();
8854   ConstantSDNode *C =
8855       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8856   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8857 }
8858 
isConstOrConstSplat(SDValue N,bool AllowUndefs,bool AllowTruncation)8859 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8860                                           bool AllowTruncation) {
8861   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8862     return CN;
8863 
8864   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8865     BitVector UndefElements;
8866     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8867 
8868     // BuildVectors can truncate their operands. Ignore that case here unless
8869     // AllowTruncation is set.
8870     if (CN && (UndefElements.none() || AllowUndefs)) {
8871       EVT CVT = CN->getValueType(0);
8872       EVT NSVT = N.getValueType().getScalarType();
8873       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8874       if (AllowTruncation || (CVT == NSVT))
8875         return CN;
8876     }
8877   }
8878 
8879   return nullptr;
8880 }
8881 
isConstOrConstSplat(SDValue N,const APInt & DemandedElts,bool AllowUndefs,bool AllowTruncation)8882 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8883                                           bool AllowUndefs,
8884                                           bool AllowTruncation) {
8885   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8886     return CN;
8887 
8888   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8889     BitVector UndefElements;
8890     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8891 
8892     // BuildVectors can truncate their operands. Ignore that case here unless
8893     // AllowTruncation is set.
8894     if (CN && (UndefElements.none() || AllowUndefs)) {
8895       EVT CVT = CN->getValueType(0);
8896       EVT NSVT = N.getValueType().getScalarType();
8897       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8898       if (AllowTruncation || (CVT == NSVT))
8899         return CN;
8900     }
8901   }
8902 
8903   return nullptr;
8904 }
8905 
isConstOrConstSplatFP(SDValue N,bool AllowUndefs)8906 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8907   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8908     return CN;
8909 
8910   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8911     BitVector UndefElements;
8912     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8913     if (CN && (UndefElements.none() || AllowUndefs))
8914       return CN;
8915   }
8916 
8917   return nullptr;
8918 }
8919 
isConstOrConstSplatFP(SDValue N,const APInt & DemandedElts,bool AllowUndefs)8920 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8921                                               const APInt &DemandedElts,
8922                                               bool AllowUndefs) {
8923   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8924     return CN;
8925 
8926   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8927     BitVector UndefElements;
8928     ConstantFPSDNode *CN =
8929         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8930     if (CN && (UndefElements.none() || AllowUndefs))
8931       return CN;
8932   }
8933 
8934   return nullptr;
8935 }
8936 
isNullOrNullSplat(SDValue N,bool AllowUndefs)8937 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8938   // TODO: may want to use peekThroughBitcast() here.
8939   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8940   return C && C->isNullValue();
8941 }
8942 
isOneOrOneSplat(SDValue N)8943 bool llvm::isOneOrOneSplat(SDValue N) {
8944   // TODO: may want to use peekThroughBitcast() here.
8945   unsigned BitWidth = N.getScalarValueSizeInBits();
8946   ConstantSDNode *C = isConstOrConstSplat(N);
8947   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8948 }
8949 
isAllOnesOrAllOnesSplat(SDValue N)8950 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8951   N = peekThroughBitcasts(N);
8952   unsigned BitWidth = N.getScalarValueSizeInBits();
8953   ConstantSDNode *C = isConstOrConstSplat(N);
8954   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8955 }
8956 
~HandleSDNode()8957 HandleSDNode::~HandleSDNode() {
8958   DropOperands();
8959 }
8960 
GlobalAddressSDNode(unsigned Opc,unsigned Order,const DebugLoc & DL,const GlobalValue * GA,EVT VT,int64_t o,unsigned TF)8961 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8962                                          const DebugLoc &DL,
8963                                          const GlobalValue *GA, EVT VT,
8964                                          int64_t o, unsigned TF)
8965     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8966   TheGlobal = GA;
8967 }
8968 
AddrSpaceCastSDNode(unsigned Order,const DebugLoc & dl,EVT VT,unsigned SrcAS,unsigned DestAS)8969 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8970                                          EVT VT, unsigned SrcAS,
8971                                          unsigned DestAS)
8972     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8973       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8974 
MemSDNode(unsigned Opc,unsigned Order,const DebugLoc & dl,SDVTList VTs,EVT memvt,MachineMemOperand * mmo)8975 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8976                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8977     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8978   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8979   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8980   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8981   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8982 
8983   // We check here that the size of the memory operand fits within the size of
8984   // the MMO. This is because the MMO might indicate only a possible address
8985   // range instead of specifying the affected memory addresses precisely.
8986   // TODO: Make MachineMemOperands aware of scalable vectors.
8987   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
8988          "Size mismatch!");
8989 }
8990 
8991 /// Profile - Gather unique data for the node.
8992 ///
Profile(FoldingSetNodeID & ID) const8993 void SDNode::Profile(FoldingSetNodeID &ID) const {
8994   AddNodeIDNode(ID, this);
8995 }
8996 
8997 namespace {
8998 
8999   struct EVTArray {
9000     std::vector<EVT> VTs;
9001 
EVTArray__anon2e2a20f01011::EVTArray9002     EVTArray() {
9003       VTs.reserve(MVT::LAST_VALUETYPE);
9004       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9005         VTs.push_back(MVT((MVT::SimpleValueType)i));
9006     }
9007   };
9008 
9009 } // end anonymous namespace
9010 
9011 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9012 static ManagedStatic<EVTArray> SimpleVTArray;
9013 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9014 
9015 /// getValueTypeList - Return a pointer to the specified value type.
9016 ///
getValueTypeList(EVT VT)9017 const EVT *SDNode::getValueTypeList(EVT VT) {
9018   if (VT.isExtended()) {
9019     sys::SmartScopedLock<true> Lock(*VTMutex);
9020     return &(*EVTs->insert(VT).first);
9021   } else {
9022     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9023            "Value type out of range!");
9024     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9025   }
9026 }
9027 
9028 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9029 /// indicated value.  This method ignores uses of other values defined by this
9030 /// operation.
hasNUsesOfValue(unsigned NUses,unsigned Value) const9031 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9032   assert(Value < getNumValues() && "Bad value!");
9033 
9034   // TODO: Only iterate over uses of a given value of the node
9035   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9036     if (UI.getUse().getResNo() == Value) {
9037       if (NUses == 0)
9038         return false;
9039       --NUses;
9040     }
9041   }
9042 
9043   // Found exactly the right number of uses?
9044   return NUses == 0;
9045 }
9046 
9047 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9048 /// value. This method ignores uses of other values defined by this operation.
hasAnyUseOfValue(unsigned Value) const9049 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9050   assert(Value < getNumValues() && "Bad value!");
9051 
9052   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9053     if (UI.getUse().getResNo() == Value)
9054       return true;
9055 
9056   return false;
9057 }
9058 
9059 /// isOnlyUserOf - Return true if this node is the only use of N.
isOnlyUserOf(const SDNode * N) const9060 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9061   bool Seen = false;
9062   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9063     SDNode *User = *I;
9064     if (User == this)
9065       Seen = true;
9066     else
9067       return false;
9068   }
9069 
9070   return Seen;
9071 }
9072 
9073 /// Return true if the only users of N are contained in Nodes.
areOnlyUsersOf(ArrayRef<const SDNode * > Nodes,const SDNode * N)9074 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9075   bool Seen = false;
9076   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9077     SDNode *User = *I;
9078     if (llvm::any_of(Nodes,
9079                      [&User](const SDNode *Node) { return User == Node; }))
9080       Seen = true;
9081     else
9082       return false;
9083   }
9084 
9085   return Seen;
9086 }
9087 
9088 /// isOperand - Return true if this node is an operand of N.
isOperandOf(const SDNode * N) const9089 bool SDValue::isOperandOf(const SDNode *N) const {
9090   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9091 }
9092 
isOperandOf(const SDNode * N) const9093 bool SDNode::isOperandOf(const SDNode *N) const {
9094   return any_of(N->op_values(),
9095                 [this](SDValue Op) { return this == Op.getNode(); });
9096 }
9097 
9098 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9099 /// be a chain) reaches the specified operand without crossing any
9100 /// side-effecting instructions on any chain path.  In practice, this looks
9101 /// through token factors and non-volatile loads.  In order to remain efficient,
9102 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9103 ///
9104 /// Note that we only need to examine chains when we're searching for
9105 /// side-effects; SelectionDAG requires that all side-effects are represented
9106 /// by chains, even if another operand would force a specific ordering. This
9107 /// constraint is necessary to allow transformations like splitting loads.
reachesChainWithoutSideEffects(SDValue Dest,unsigned Depth) const9108 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9109                                              unsigned Depth) const {
9110   if (*this == Dest) return true;
9111 
9112   // Don't search too deeply, we just want to be able to see through
9113   // TokenFactor's etc.
9114   if (Depth == 0) return false;
9115 
9116   // If this is a token factor, all inputs to the TF happen in parallel.
9117   if (getOpcode() == ISD::TokenFactor) {
9118     // First, try a shallow search.
9119     if (is_contained((*this)->ops(), Dest)) {
9120       // We found the chain we want as an operand of this TokenFactor.
9121       // Essentially, we reach the chain without side-effects if we could
9122       // serialize the TokenFactor into a simple chain of operations with
9123       // Dest as the last operation. This is automatically true if the
9124       // chain has one use: there are no other ordering constraints.
9125       // If the chain has more than one use, we give up: some other
9126       // use of Dest might force a side-effect between Dest and the current
9127       // node.
9128       if (Dest.hasOneUse())
9129         return true;
9130     }
9131     // Next, try a deep search: check whether every operand of the TokenFactor
9132     // reaches Dest.
9133     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9134       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9135     });
9136   }
9137 
9138   // Loads don't have side effects, look through them.
9139   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9140     if (Ld->isUnordered())
9141       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9142   }
9143   return false;
9144 }
9145 
hasPredecessor(const SDNode * N) const9146 bool SDNode::hasPredecessor(const SDNode *N) const {
9147   SmallPtrSet<const SDNode *, 32> Visited;
9148   SmallVector<const SDNode *, 16> Worklist;
9149   Worklist.push_back(this);
9150   return hasPredecessorHelper(N, Visited, Worklist);
9151 }
9152 
intersectFlagsWith(const SDNodeFlags Flags)9153 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9154   this->Flags.intersectWith(Flags);
9155 }
9156 
9157 SDValue
matchBinOpReduction(SDNode * Extract,ISD::NodeType & BinOp,ArrayRef<ISD::NodeType> CandidateBinOps,bool AllowPartials)9158 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9159                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9160                                   bool AllowPartials) {
9161   // The pattern must end in an extract from index 0.
9162   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9163       !isNullConstant(Extract->getOperand(1)))
9164     return SDValue();
9165 
9166   // Match against one of the candidate binary ops.
9167   SDValue Op = Extract->getOperand(0);
9168   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9169         return Op.getOpcode() == unsigned(BinOp);
9170       }))
9171     return SDValue();
9172 
9173   // Floating-point reductions may require relaxed constraints on the final step
9174   // of the reduction because they may reorder intermediate operations.
9175   unsigned CandidateBinOp = Op.getOpcode();
9176   if (Op.getValueType().isFloatingPoint()) {
9177     SDNodeFlags Flags = Op->getFlags();
9178     switch (CandidateBinOp) {
9179     case ISD::FADD:
9180       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9181         return SDValue();
9182       break;
9183     default:
9184       llvm_unreachable("Unhandled FP opcode for binop reduction");
9185     }
9186   }
9187 
9188   // Matching failed - attempt to see if we did enough stages that a partial
9189   // reduction from a subvector is possible.
9190   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9191     if (!AllowPartials || !Op)
9192       return SDValue();
9193     EVT OpVT = Op.getValueType();
9194     EVT OpSVT = OpVT.getScalarType();
9195     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9196     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9197       return SDValue();
9198     BinOp = (ISD::NodeType)CandidateBinOp;
9199     return getNode(
9200         ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9201         getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout())));
9202   };
9203 
9204   // At each stage, we're looking for something that looks like:
9205   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9206   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9207   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9208   // %a = binop <8 x i32> %op, %s
9209   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9210   // we expect something like:
9211   // <4,5,6,7,u,u,u,u>
9212   // <2,3,u,u,u,u,u,u>
9213   // <1,u,u,u,u,u,u,u>
9214   // While a partial reduction match would be:
9215   // <2,3,u,u,u,u,u,u>
9216   // <1,u,u,u,u,u,u,u>
9217   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9218   SDValue PrevOp;
9219   for (unsigned i = 0; i < Stages; ++i) {
9220     unsigned MaskEnd = (1 << i);
9221 
9222     if (Op.getOpcode() != CandidateBinOp)
9223       return PartialReduction(PrevOp, MaskEnd);
9224 
9225     SDValue Op0 = Op.getOperand(0);
9226     SDValue Op1 = Op.getOperand(1);
9227 
9228     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9229     if (Shuffle) {
9230       Op = Op1;
9231     } else {
9232       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9233       Op = Op0;
9234     }
9235 
9236     // The first operand of the shuffle should be the same as the other operand
9237     // of the binop.
9238     if (!Shuffle || Shuffle->getOperand(0) != Op)
9239       return PartialReduction(PrevOp, MaskEnd);
9240 
9241     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9242     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9243       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9244         return PartialReduction(PrevOp, MaskEnd);
9245 
9246     PrevOp = Op;
9247   }
9248 
9249   BinOp = (ISD::NodeType)CandidateBinOp;
9250   return Op;
9251 }
9252 
UnrollVectorOp(SDNode * N,unsigned ResNE)9253 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9254   assert(N->getNumValues() == 1 &&
9255          "Can't unroll a vector with multiple results!");
9256 
9257   EVT VT = N->getValueType(0);
9258   unsigned NE = VT.getVectorNumElements();
9259   EVT EltVT = VT.getVectorElementType();
9260   SDLoc dl(N);
9261 
9262   SmallVector<SDValue, 8> Scalars;
9263   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9264 
9265   // If ResNE is 0, fully unroll the vector op.
9266   if (ResNE == 0)
9267     ResNE = NE;
9268   else if (NE > ResNE)
9269     NE = ResNE;
9270 
9271   unsigned i;
9272   for (i= 0; i != NE; ++i) {
9273     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9274       SDValue Operand = N->getOperand(j);
9275       EVT OperandVT = Operand.getValueType();
9276       if (OperandVT.isVector()) {
9277         // A vector operand; extract a single element.
9278         EVT OperandEltVT = OperandVT.getVectorElementType();
9279         Operands[j] =
9280             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9281                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9282       } else {
9283         // A scalar operand; just use it as is.
9284         Operands[j] = Operand;
9285       }
9286     }
9287 
9288     switch (N->getOpcode()) {
9289     default: {
9290       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9291                                 N->getFlags()));
9292       break;
9293     }
9294     case ISD::VSELECT:
9295       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9296       break;
9297     case ISD::SHL:
9298     case ISD::SRA:
9299     case ISD::SRL:
9300     case ISD::ROTL:
9301     case ISD::ROTR:
9302       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9303                                getShiftAmountOperand(Operands[0].getValueType(),
9304                                                      Operands[1])));
9305       break;
9306     case ISD::SIGN_EXTEND_INREG: {
9307       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9308       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9309                                 Operands[0],
9310                                 getValueType(ExtVT)));
9311     }
9312     }
9313   }
9314 
9315   for (; i < ResNE; ++i)
9316     Scalars.push_back(getUNDEF(EltVT));
9317 
9318   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9319   return getBuildVector(VecVT, dl, Scalars);
9320 }
9321 
UnrollVectorOverflowOp(SDNode * N,unsigned ResNE)9322 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9323     SDNode *N, unsigned ResNE) {
9324   unsigned Opcode = N->getOpcode();
9325   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9326           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9327           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9328          "Expected an overflow opcode");
9329 
9330   EVT ResVT = N->getValueType(0);
9331   EVT OvVT = N->getValueType(1);
9332   EVT ResEltVT = ResVT.getVectorElementType();
9333   EVT OvEltVT = OvVT.getVectorElementType();
9334   SDLoc dl(N);
9335 
9336   // If ResNE is 0, fully unroll the vector op.
9337   unsigned NE = ResVT.getVectorNumElements();
9338   if (ResNE == 0)
9339     ResNE = NE;
9340   else if (NE > ResNE)
9341     NE = ResNE;
9342 
9343   SmallVector<SDValue, 8> LHSScalars;
9344   SmallVector<SDValue, 8> RHSScalars;
9345   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9346   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9347 
9348   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9349   SDVTList VTs = getVTList(ResEltVT, SVT);
9350   SmallVector<SDValue, 8> ResScalars;
9351   SmallVector<SDValue, 8> OvScalars;
9352   for (unsigned i = 0; i < NE; ++i) {
9353     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9354     SDValue Ov =
9355         getSelect(dl, OvEltVT, Res.getValue(1),
9356                   getBoolConstant(true, dl, OvEltVT, ResVT),
9357                   getConstant(0, dl, OvEltVT));
9358 
9359     ResScalars.push_back(Res);
9360     OvScalars.push_back(Ov);
9361   }
9362 
9363   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9364   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9365 
9366   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9367   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9368   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9369                         getBuildVector(NewOvVT, dl, OvScalars));
9370 }
9371 
areNonVolatileConsecutiveLoads(LoadSDNode * LD,LoadSDNode * Base,unsigned Bytes,int Dist) const9372 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9373                                                   LoadSDNode *Base,
9374                                                   unsigned Bytes,
9375                                                   int Dist) const {
9376   if (LD->isVolatile() || Base->isVolatile())
9377     return false;
9378   // TODO: probably too restrictive for atomics, revisit
9379   if (!LD->isSimple())
9380     return false;
9381   if (LD->isIndexed() || Base->isIndexed())
9382     return false;
9383   if (LD->getChain() != Base->getChain())
9384     return false;
9385   EVT VT = LD->getValueType(0);
9386   if (VT.getSizeInBits() / 8 != Bytes)
9387     return false;
9388 
9389   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9390   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9391 
9392   int64_t Offset = 0;
9393   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9394     return (Dist * Bytes == Offset);
9395   return false;
9396 }
9397 
9398 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9399 /// it cannot be inferred.
InferPtrAlignment(SDValue Ptr) const9400 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9401   // If this is a GlobalAddress + cst, return the alignment.
9402   const GlobalValue *GV = nullptr;
9403   int64_t GVOffset = 0;
9404   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9405     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9406     KnownBits Known(PtrWidth);
9407     llvm::computeKnownBits(GV, Known, getDataLayout());
9408     unsigned AlignBits = Known.countMinTrailingZeros();
9409     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9410     if (Align)
9411       return MinAlign(Align, GVOffset);
9412   }
9413 
9414   // If this is a direct reference to a stack slot, use information about the
9415   // stack slot's alignment.
9416   int FrameIdx = INT_MIN;
9417   int64_t FrameOffset = 0;
9418   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9419     FrameIdx = FI->getIndex();
9420   } else if (isBaseWithConstantOffset(Ptr) &&
9421              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9422     // Handle FI+Cst
9423     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9424     FrameOffset = Ptr.getConstantOperandVal(1);
9425   }
9426 
9427   if (FrameIdx != INT_MIN) {
9428     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9429     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9430                                     FrameOffset);
9431     return FIInfoAlign;
9432   }
9433 
9434   return 0;
9435 }
9436 
9437 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9438 /// which is split (or expanded) into two not necessarily identical pieces.
GetSplitDestVTs(const EVT & VT) const9439 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9440   // Currently all types are split in half.
9441   EVT LoVT, HiVT;
9442   if (!VT.isVector())
9443     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9444   else
9445     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9446 
9447   return std::make_pair(LoVT, HiVT);
9448 }
9449 
9450 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9451 /// low/high part.
9452 std::pair<SDValue, SDValue>
SplitVector(const SDValue & N,const SDLoc & DL,const EVT & LoVT,const EVT & HiVT)9453 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9454                           const EVT &HiVT) {
9455   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9456          N.getValueType().getVectorNumElements() &&
9457          "More vector elements requested than available!");
9458   SDValue Lo, Hi;
9459   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9460                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9461   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9462                getConstant(LoVT.getVectorNumElements(), DL,
9463                            TLI->getVectorIdxTy(getDataLayout())));
9464   return std::make_pair(Lo, Hi);
9465 }
9466 
9467 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
WidenVector(const SDValue & N,const SDLoc & DL)9468 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9469   EVT VT = N.getValueType();
9470   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9471                                 NextPowerOf2(VT.getVectorNumElements()));
9472   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9473                  getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9474 }
9475 
ExtractVectorElements(SDValue Op,SmallVectorImpl<SDValue> & Args,unsigned Start,unsigned Count)9476 void SelectionDAG::ExtractVectorElements(SDValue Op,
9477                                          SmallVectorImpl<SDValue> &Args,
9478                                          unsigned Start, unsigned Count) {
9479   EVT VT = Op.getValueType();
9480   if (Count == 0)
9481     Count = VT.getVectorNumElements();
9482 
9483   EVT EltVT = VT.getVectorElementType();
9484   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9485   SDLoc SL(Op);
9486   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9487     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9488                            Op, getConstant(i, SL, IdxTy)));
9489   }
9490 }
9491 
9492 // getAddressSpace - Return the address space this GlobalAddress belongs to.
getAddressSpace() const9493 unsigned GlobalAddressSDNode::getAddressSpace() const {
9494   return getGlobal()->getType()->getAddressSpace();
9495 }
9496 
getType() const9497 Type *ConstantPoolSDNode::getType() const {
9498   if (isMachineConstantPoolEntry())
9499     return Val.MachineCPVal->getType();
9500   return Val.ConstVal->getType();
9501 }
9502 
isConstantSplat(APInt & SplatValue,APInt & SplatUndef,unsigned & SplatBitSize,bool & HasAnyUndefs,unsigned MinSplatBits,bool IsBigEndian) const9503 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9504                                         unsigned &SplatBitSize,
9505                                         bool &HasAnyUndefs,
9506                                         unsigned MinSplatBits,
9507                                         bool IsBigEndian) const {
9508   EVT VT = getValueType(0);
9509   assert(VT.isVector() && "Expected a vector type");
9510   unsigned VecWidth = VT.getSizeInBits();
9511   if (MinSplatBits > VecWidth)
9512     return false;
9513 
9514   // FIXME: The widths are based on this node's type, but build vectors can
9515   // truncate their operands.
9516   SplatValue = APInt(VecWidth, 0);
9517   SplatUndef = APInt(VecWidth, 0);
9518 
9519   // Get the bits. Bits with undefined values (when the corresponding element
9520   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9521   // in SplatValue. If any of the values are not constant, give up and return
9522   // false.
9523   unsigned int NumOps = getNumOperands();
9524   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9525   unsigned EltWidth = VT.getScalarSizeInBits();
9526 
9527   for (unsigned j = 0; j < NumOps; ++j) {
9528     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9529     SDValue OpVal = getOperand(i);
9530     unsigned BitPos = j * EltWidth;
9531 
9532     if (OpVal.isUndef())
9533       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9534     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9535       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9536     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9537       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9538     else
9539       return false;
9540   }
9541 
9542   // The build_vector is all constants or undefs. Find the smallest element
9543   // size that splats the vector.
9544   HasAnyUndefs = (SplatUndef != 0);
9545 
9546   // FIXME: This does not work for vectors with elements less than 8 bits.
9547   while (VecWidth > 8) {
9548     unsigned HalfSize = VecWidth / 2;
9549     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9550     APInt LowValue = SplatValue.trunc(HalfSize);
9551     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9552     APInt LowUndef = SplatUndef.trunc(HalfSize);
9553 
9554     // If the two halves do not match (ignoring undef bits), stop here.
9555     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9556         MinSplatBits > HalfSize)
9557       break;
9558 
9559     SplatValue = HighValue | LowValue;
9560     SplatUndef = HighUndef & LowUndef;
9561 
9562     VecWidth = HalfSize;
9563   }
9564 
9565   SplatBitSize = VecWidth;
9566   return true;
9567 }
9568 
getSplatValue(const APInt & DemandedElts,BitVector * UndefElements) const9569 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9570                                          BitVector *UndefElements) const {
9571   if (UndefElements) {
9572     UndefElements->clear();
9573     UndefElements->resize(getNumOperands());
9574   }
9575   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9576          "Unexpected vector size");
9577   if (!DemandedElts)
9578     return SDValue();
9579   SDValue Splatted;
9580   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9581     if (!DemandedElts[i])
9582       continue;
9583     SDValue Op = getOperand(i);
9584     if (Op.isUndef()) {
9585       if (UndefElements)
9586         (*UndefElements)[i] = true;
9587     } else if (!Splatted) {
9588       Splatted = Op;
9589     } else if (Splatted != Op) {
9590       return SDValue();
9591     }
9592   }
9593 
9594   if (!Splatted) {
9595     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9596     assert(getOperand(FirstDemandedIdx).isUndef() &&
9597            "Can only have a splat without a constant for all undefs.");
9598     return getOperand(FirstDemandedIdx);
9599   }
9600 
9601   return Splatted;
9602 }
9603 
getSplatValue(BitVector * UndefElements) const9604 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9605   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9606   return getSplatValue(DemandedElts, UndefElements);
9607 }
9608 
9609 ConstantSDNode *
getConstantSplatNode(const APInt & DemandedElts,BitVector * UndefElements) const9610 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9611                                         BitVector *UndefElements) const {
9612   return dyn_cast_or_null<ConstantSDNode>(
9613       getSplatValue(DemandedElts, UndefElements));
9614 }
9615 
9616 ConstantSDNode *
getConstantSplatNode(BitVector * UndefElements) const9617 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9618   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9619 }
9620 
9621 ConstantFPSDNode *
getConstantFPSplatNode(const APInt & DemandedElts,BitVector * UndefElements) const9622 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9623                                           BitVector *UndefElements) const {
9624   return dyn_cast_or_null<ConstantFPSDNode>(
9625       getSplatValue(DemandedElts, UndefElements));
9626 }
9627 
9628 ConstantFPSDNode *
getConstantFPSplatNode(BitVector * UndefElements) const9629 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9630   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9631 }
9632 
9633 int32_t
getConstantFPSplatPow2ToLog2Int(BitVector * UndefElements,uint32_t BitWidth) const9634 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9635                                                    uint32_t BitWidth) const {
9636   if (ConstantFPSDNode *CN =
9637           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9638     bool IsExact;
9639     APSInt IntVal(BitWidth);
9640     const APFloat &APF = CN->getValueAPF();
9641     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9642             APFloat::opOK ||
9643         !IsExact)
9644       return -1;
9645 
9646     return IntVal.exactLogBase2();
9647   }
9648   return -1;
9649 }
9650 
isConstant() const9651 bool BuildVectorSDNode::isConstant() const {
9652   for (const SDValue &Op : op_values()) {
9653     unsigned Opc = Op.getOpcode();
9654     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9655       return false;
9656   }
9657   return true;
9658 }
9659 
isSplatMask(const int * Mask,EVT VT)9660 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9661   // Find the first non-undef value in the shuffle mask.
9662   unsigned i, e;
9663   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9664     /* search */;
9665 
9666   // If all elements are undefined, this shuffle can be considered a splat
9667   // (although it should eventually get simplified away completely).
9668   if (i == e)
9669     return true;
9670 
9671   // Make sure all remaining elements are either undef or the same as the first
9672   // non-undef value.
9673   for (int Idx = Mask[i]; i != e; ++i)
9674     if (Mask[i] >= 0 && Mask[i] != Idx)
9675       return false;
9676   return true;
9677 }
9678 
9679 // Returns the SDNode if it is a constant integer BuildVector
9680 // or constant integer.
isConstantIntBuildVectorOrConstantInt(SDValue N)9681 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9682   if (isa<ConstantSDNode>(N))
9683     return N.getNode();
9684   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9685     return N.getNode();
9686   // Treat a GlobalAddress supporting constant offset folding as a
9687   // constant integer.
9688   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9689     if (GA->getOpcode() == ISD::GlobalAddress &&
9690         TLI->isOffsetFoldingLegal(GA))
9691       return GA;
9692   return nullptr;
9693 }
9694 
isConstantFPBuildVectorOrConstantFP(SDValue N)9695 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9696   if (isa<ConstantFPSDNode>(N))
9697     return N.getNode();
9698 
9699   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9700     return N.getNode();
9701 
9702   return nullptr;
9703 }
9704 
createOperands(SDNode * Node,ArrayRef<SDValue> Vals)9705 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9706   assert(!Node->OperandList && "Node already has operands");
9707   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9708          "too many operands to fit into SDNode");
9709   SDUse *Ops = OperandRecycler.allocate(
9710       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9711 
9712   bool IsDivergent = false;
9713   for (unsigned I = 0; I != Vals.size(); ++I) {
9714     Ops[I].setUser(Node);
9715     Ops[I].setInitial(Vals[I]);
9716     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9717       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9718   }
9719   Node->NumOperands = Vals.size();
9720   Node->OperandList = Ops;
9721   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9722   if (!TLI->isSDNodeAlwaysUniform(Node))
9723     Node->SDNodeBits.IsDivergent = IsDivergent;
9724   checkForCycles(Node);
9725 }
9726 
getTokenFactor(const SDLoc & DL,SmallVectorImpl<SDValue> & Vals)9727 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9728                                      SmallVectorImpl<SDValue> &Vals) {
9729   size_t Limit = SDNode::getMaxNumOperands();
9730   while (Vals.size() > Limit) {
9731     unsigned SliceIdx = Vals.size() - Limit;
9732     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9733     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9734     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9735     Vals.emplace_back(NewTF);
9736   }
9737   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9738 }
9739 
9740 #ifndef NDEBUG
checkForCyclesHelper(const SDNode * N,SmallPtrSetImpl<const SDNode * > & Visited,SmallPtrSetImpl<const SDNode * > & Checked,const llvm::SelectionDAG * DAG)9741 static void checkForCyclesHelper(const SDNode *N,
9742                                  SmallPtrSetImpl<const SDNode*> &Visited,
9743                                  SmallPtrSetImpl<const SDNode*> &Checked,
9744                                  const llvm::SelectionDAG *DAG) {
9745   // If this node has already been checked, don't check it again.
9746   if (Checked.count(N))
9747     return;
9748 
9749   // If a node has already been visited on this depth-first walk, reject it as
9750   // a cycle.
9751   if (!Visited.insert(N).second) {
9752     errs() << "Detected cycle in SelectionDAG\n";
9753     dbgs() << "Offending node:\n";
9754     N->dumprFull(DAG); dbgs() << "\n";
9755     abort();
9756   }
9757 
9758   for (const SDValue &Op : N->op_values())
9759     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9760 
9761   Checked.insert(N);
9762   Visited.erase(N);
9763 }
9764 #endif
9765 
checkForCycles(const llvm::SDNode * N,const llvm::SelectionDAG * DAG,bool force)9766 void llvm::checkForCycles(const llvm::SDNode *N,
9767                           const llvm::SelectionDAG *DAG,
9768                           bool force) {
9769 #ifndef NDEBUG
9770   bool check = force;
9771 #ifdef EXPENSIVE_CHECKS
9772   check = true;
9773 #endif  // EXPENSIVE_CHECKS
9774   if (check) {
9775     assert(N && "Checking nonexistent SDNode");
9776     SmallPtrSet<const SDNode*, 32> visited;
9777     SmallPtrSet<const SDNode*, 32> checked;
9778     checkForCyclesHelper(N, visited, checked, DAG);
9779   }
9780 #endif  // !NDEBUG
9781 }
9782 
checkForCycles(const llvm::SelectionDAG * DAG,bool force)9783 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9784   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9785 }
9786