1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/MC/MCAsmLayout.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/TargetParser.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
40
41 namespace {
42 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
43 public:
ARMELFObjectWriter(uint8_t OSABI)44 ARMELFObjectWriter(uint8_t OSABI)
45 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
46 /*HasRelocationAddend*/ false) {}
47 };
48 } // end anonymous namespace
49
getFixupKind(StringRef Name) const50 Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const {
51 if (STI.getTargetTriple().isOSBinFormatELF() && Name == "R_ARM_NONE")
52 return FK_NONE;
53
54 return MCAsmBackend::getFixupKind(Name);
55 }
56
getFixupKindInfo(MCFixupKind Kind) const57 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
58 unsigned IsPCRelConstant =
59 MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_Constant;
60 const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
61 // This table *must* be in the order that the fixup_* kinds are defined in
62 // ARMFixupKinds.h.
63 //
64 // Name Offset (bits) Size (bits) Flags
65 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
66 {"fixup_t2_ldst_pcrel_12", 0, 32,
67 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
68 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
69 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
70 {"fixup_t2_pcrel_10", 0, 32,
71 MCFixupKindInfo::FKF_IsPCRel |
72 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
73 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
74 {"fixup_t2_pcrel_9", 0, 32,
75 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
76 {"fixup_thumb_adr_pcrel_10", 0, 8,
77 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
78 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
79 {"fixup_t2_adr_pcrel_12", 0, 32,
80 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
81 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
82 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
83 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
84 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
85 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
86 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
87 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
88 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
89 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
90 {"fixup_arm_thumb_blx", 0, 32,
91 MCFixupKindInfo::FKF_IsPCRel |
92 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
93 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
94 {"fixup_arm_thumb_cp", 0, 8,
95 MCFixupKindInfo::FKF_IsPCRel |
96 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
97 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
98 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
99 // - 19.
100 {"fixup_arm_movt_hi16", 0, 20, 0},
101 {"fixup_arm_movw_lo16", 0, 20, 0},
102 {"fixup_t2_movt_hi16", 0, 20, 0},
103 {"fixup_t2_movw_lo16", 0, 20, 0},
104 {"fixup_arm_mod_imm", 0, 12, 0},
105 {"fixup_t2_so_imm", 0, 26, 0},
106 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
107 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
108 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
109 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
110 {"fixup_bfcsel_else_target", 0, 32, 0},
111 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
112 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}
113 };
114 const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
115 // This table *must* be in the order that the fixup_* kinds are defined in
116 // ARMFixupKinds.h.
117 //
118 // Name Offset (bits) Size (bits) Flags
119 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
120 {"fixup_t2_ldst_pcrel_12", 0, 32,
121 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
122 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
123 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
124 {"fixup_t2_pcrel_10", 0, 32,
125 MCFixupKindInfo::FKF_IsPCRel |
126 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
127 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
128 {"fixup_t2_pcrel_9", 0, 32,
129 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
130 {"fixup_thumb_adr_pcrel_10", 8, 8,
131 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
132 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
133 {"fixup_t2_adr_pcrel_12", 0, 32,
134 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
135 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
136 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
137 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
138 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
139 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
140 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
141 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
142 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
143 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
144 {"fixup_arm_thumb_blx", 0, 32,
145 MCFixupKindInfo::FKF_IsPCRel |
146 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
147 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
148 {"fixup_arm_thumb_cp", 8, 8,
149 MCFixupKindInfo::FKF_IsPCRel |
150 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
151 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
152 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
153 // - 19.
154 {"fixup_arm_movt_hi16", 12, 20, 0},
155 {"fixup_arm_movw_lo16", 12, 20, 0},
156 {"fixup_t2_movt_hi16", 12, 20, 0},
157 {"fixup_t2_movw_lo16", 12, 20, 0},
158 {"fixup_arm_mod_imm", 20, 12, 0},
159 {"fixup_t2_so_imm", 26, 6, 0},
160 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
161 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
162 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
163 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
164 {"fixup_bfcsel_else_target", 0, 32, 0},
165 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
166 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}
167 };
168
169 if (Kind < FirstTargetFixupKind)
170 return MCAsmBackend::getFixupKindInfo(Kind);
171
172 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
173 "Invalid kind!");
174 return (Endian == support::little ? InfosLE
175 : InfosBE)[Kind - FirstTargetFixupKind];
176 }
177
handleAssemblerFlag(MCAssemblerFlag Flag)178 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
179 switch (Flag) {
180 default:
181 break;
182 case MCAF_Code16:
183 setIsThumb(true);
184 break;
185 case MCAF_Code32:
186 setIsThumb(false);
187 break;
188 }
189 }
190
getRelaxedOpcode(unsigned Op,const MCSubtargetInfo & STI) const191 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
192 const MCSubtargetInfo &STI) const {
193 bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
194 bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
195
196 switch (Op) {
197 default:
198 return Op;
199 case ARM::tBcc:
200 return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
201 case ARM::tLDRpci:
202 return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
203 case ARM::tADR:
204 return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
205 case ARM::tB:
206 return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
207 case ARM::tCBZ:
208 return ARM::tHINT;
209 case ARM::tCBNZ:
210 return ARM::tHINT;
211 }
212 }
213
mayNeedRelaxation(const MCInst & Inst,const MCSubtargetInfo & STI) const214 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
215 const MCSubtargetInfo &STI) const {
216 if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
217 return true;
218 return false;
219 }
220
checkPCRelOffset(uint64_t Value,int64_t Min,int64_t Max)221 static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) {
222 int64_t Offset = int64_t(Value) - 4;
223 if (Offset < Min || Offset > Max)
224 return "out of range pc-relative fixup value";
225 return nullptr;
226 }
227
reasonForFixupRelaxation(const MCFixup & Fixup,uint64_t Value) const228 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
229 uint64_t Value) const {
230 switch (Fixup.getTargetKind()) {
231 case ARM::fixup_arm_thumb_br: {
232 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
233 // low bit being an implied zero. There's an implied +4 offset for the
234 // branch, so we adjust the other way here to determine what's
235 // encodable.
236 //
237 // Relax if the value is too big for a (signed) i8.
238 int64_t Offset = int64_t(Value) - 4;
239 if (Offset > 2046 || Offset < -2048)
240 return "out of range pc-relative fixup value";
241 break;
242 }
243 case ARM::fixup_arm_thumb_bcc: {
244 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
245 // low bit being an implied zero. There's an implied +4 offset for the
246 // branch, so we adjust the other way here to determine what's
247 // encodable.
248 //
249 // Relax if the value is too big for a (signed) i8.
250 int64_t Offset = int64_t(Value) - 4;
251 if (Offset > 254 || Offset < -256)
252 return "out of range pc-relative fixup value";
253 break;
254 }
255 case ARM::fixup_thumb_adr_pcrel_10:
256 case ARM::fixup_arm_thumb_cp: {
257 // If the immediate is negative, greater than 1020, or not a multiple
258 // of four, the wide version of the instruction must be used.
259 int64_t Offset = int64_t(Value) - 4;
260 if (Offset & 3)
261 return "misaligned pc-relative fixup value";
262 else if (Offset > 1020 || Offset < 0)
263 return "out of range pc-relative fixup value";
264 break;
265 }
266 case ARM::fixup_arm_thumb_cb: {
267 // If we have a Thumb CBZ or CBNZ instruction and its target is the next
268 // instruction it is actually out of range for the instruction.
269 // It will be changed to a NOP.
270 int64_t Offset = (Value & ~1);
271 if (Offset == 2)
272 return "will be converted to nop";
273 break;
274 }
275 case ARM::fixup_bf_branch:
276 return checkPCRelOffset(Value, 0, 30);
277 case ARM::fixup_bf_target:
278 return checkPCRelOffset(Value, -0x10000, +0xfffe);
279 case ARM::fixup_bfl_target:
280 return checkPCRelOffset(Value, -0x40000, +0x3fffe);
281 case ARM::fixup_bfc_target:
282 return checkPCRelOffset(Value, -0x1000, +0xffe);
283 case ARM::fixup_wls:
284 return checkPCRelOffset(Value, 0, +0xffe);
285 case ARM::fixup_le:
286 // The offset field in the LE and LETP instructions is an 11-bit
287 // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
288 // interpreted as a negative offset from the value read from pc,
289 // i.e. from instruction_address+4.
290 //
291 // So an LE instruction can in principle address the instruction
292 // immediately after itself, or (not very usefully) the address
293 // half way through the 4-byte LE.
294 return checkPCRelOffset(Value, -0xffe, 0);
295 case ARM::fixup_bfcsel_else_target: {
296 if (Value != 2 && Value != 4)
297 return "out of range label-relative fixup value";
298 break;
299 }
300
301 default:
302 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
303 }
304 return nullptr;
305 }
306
fixupNeedsRelaxation(const MCFixup & Fixup,uint64_t Value,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const307 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
308 const MCRelaxableFragment *DF,
309 const MCAsmLayout &Layout) const {
310 return reasonForFixupRelaxation(Fixup, Value);
311 }
312
relaxInstruction(const MCInst & Inst,const MCSubtargetInfo & STI,MCInst & Res) const313 void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
314 const MCSubtargetInfo &STI,
315 MCInst &Res) const {
316 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);
317
318 // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
319 if (RelaxedOp == Inst.getOpcode()) {
320 SmallString<256> Tmp;
321 raw_svector_ostream OS(Tmp);
322 Inst.dump_pretty(OS);
323 OS << "\n";
324 report_fatal_error("unexpected instruction to relax: " + OS.str());
325 }
326
327 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
328 // have to change the operands too.
329 if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
330 RelaxedOp == ARM::tHINT) {
331 Res.setOpcode(RelaxedOp);
332 Res.addOperand(MCOperand::createImm(0));
333 Res.addOperand(MCOperand::createImm(14));
334 Res.addOperand(MCOperand::createReg(0));
335 return;
336 }
337
338 // The rest of instructions we're relaxing have the same operands.
339 // We just need to update to the proper opcode.
340 Res = Inst;
341 Res.setOpcode(RelaxedOp);
342 }
343
writeNopData(raw_ostream & OS,uint64_t Count) const344 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
345 const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
346 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
347 const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
348 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
349 if (isThumb()) {
350 const uint16_t nopEncoding =
351 hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
352 uint64_t NumNops = Count / 2;
353 for (uint64_t i = 0; i != NumNops; ++i)
354 support::endian::write(OS, nopEncoding, Endian);
355 if (Count & 1)
356 OS << '\0';
357 return true;
358 }
359 // ARM mode
360 const uint32_t nopEncoding =
361 hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
362 uint64_t NumNops = Count / 4;
363 for (uint64_t i = 0; i != NumNops; ++i)
364 support::endian::write(OS, nopEncoding, Endian);
365 // FIXME: should this function return false when unable to write exactly
366 // 'Count' bytes with NOP encodings?
367 switch (Count % 4) {
368 default:
369 break; // No leftover bytes to write
370 case 1:
371 OS << '\0';
372 break;
373 case 2:
374 OS.write("\0\0", 2);
375 break;
376 case 3:
377 OS.write("\0\0\xa0", 3);
378 break;
379 }
380
381 return true;
382 }
383
swapHalfWords(uint32_t Value,bool IsLittleEndian)384 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
385 if (IsLittleEndian) {
386 // Note that the halfwords are stored high first and low second in thumb;
387 // so we need to swap the fixup value here to map properly.
388 uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
389 Swapped |= (Value & 0x0000FFFF) << 16;
390 return Swapped;
391 } else
392 return Value;
393 }
394
joinHalfWords(uint32_t FirstHalf,uint32_t SecondHalf,bool IsLittleEndian)395 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
396 bool IsLittleEndian) {
397 uint32_t Value;
398
399 if (IsLittleEndian) {
400 Value = (SecondHalf & 0xFFFF) << 16;
401 Value |= (FirstHalf & 0xFFFF);
402 } else {
403 Value = (SecondHalf & 0xFFFF);
404 Value |= (FirstHalf & 0xFFFF) << 16;
405 }
406
407 return Value;
408 }
409
adjustFixupValue(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target,uint64_t Value,bool IsResolved,MCContext & Ctx,const MCSubtargetInfo * STI) const410 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
411 const MCFixup &Fixup,
412 const MCValue &Target, uint64_t Value,
413 bool IsResolved, MCContext &Ctx,
414 const MCSubtargetInfo* STI) const {
415 unsigned Kind = Fixup.getKind();
416
417 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
418 // and .word relocations they put the Thumb bit into the addend if possible.
419 // Other relocation types don't want this bit though (branches couldn't encode
420 // it if it *was* present, and no other relocations exist) and it can
421 // interfere with checking valid expressions.
422 if (const MCSymbolRefExpr *A = Target.getSymA()) {
423 if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
424 A->getSymbol().isExternal() &&
425 (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
426 Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
427 Kind == ARM::fixup_t2_movt_hi16))
428 Value |= 1;
429 }
430
431 switch (Kind) {
432 default:
433 Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
434 return 0;
435 case FK_NONE:
436 case FK_Data_1:
437 case FK_Data_2:
438 case FK_Data_4:
439 return Value;
440 case FK_SecRel_2:
441 return Value;
442 case FK_SecRel_4:
443 return Value;
444 case ARM::fixup_arm_movt_hi16:
445 assert(STI != nullptr);
446 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
447 Value >>= 16;
448 LLVM_FALLTHROUGH;
449 case ARM::fixup_arm_movw_lo16: {
450 unsigned Hi4 = (Value & 0xF000) >> 12;
451 unsigned Lo12 = Value & 0x0FFF;
452 // inst{19-16} = Hi4;
453 // inst{11-0} = Lo12;
454 Value = (Hi4 << 16) | (Lo12);
455 return Value;
456 }
457 case ARM::fixup_t2_movt_hi16:
458 assert(STI != nullptr);
459 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
460 Value >>= 16;
461 LLVM_FALLTHROUGH;
462 case ARM::fixup_t2_movw_lo16: {
463 unsigned Hi4 = (Value & 0xF000) >> 12;
464 unsigned i = (Value & 0x800) >> 11;
465 unsigned Mid3 = (Value & 0x700) >> 8;
466 unsigned Lo8 = Value & 0x0FF;
467 // inst{19-16} = Hi4;
468 // inst{26} = i;
469 // inst{14-12} = Mid3;
470 // inst{7-0} = Lo8;
471 Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
472 return swapHalfWords(Value, Endian == support::little);
473 }
474 case ARM::fixup_arm_ldst_pcrel_12:
475 // ARM PC-relative values are offset by 8.
476 Value -= 4;
477 LLVM_FALLTHROUGH;
478 case ARM::fixup_t2_ldst_pcrel_12: {
479 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
480 Value -= 4;
481 bool isAdd = true;
482 if ((int64_t)Value < 0) {
483 Value = -Value;
484 isAdd = false;
485 }
486 if (Value >= 4096) {
487 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
488 return 0;
489 }
490 Value |= isAdd << 23;
491
492 // Same addressing mode as fixup_arm_pcrel_10,
493 // but with 16-bit halfwords swapped.
494 if (Kind == ARM::fixup_t2_ldst_pcrel_12)
495 return swapHalfWords(Value, Endian == support::little);
496
497 return Value;
498 }
499 case ARM::fixup_arm_adr_pcrel_12: {
500 // ARM PC-relative values are offset by 8.
501 Value -= 8;
502 unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
503 if ((int64_t)Value < 0) {
504 Value = -Value;
505 opc = 2; // 0b0010
506 }
507 if (ARM_AM::getSOImmVal(Value) == -1) {
508 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
509 return 0;
510 }
511 // Encode the immediate and shift the opcode into place.
512 return ARM_AM::getSOImmVal(Value) | (opc << 21);
513 }
514
515 case ARM::fixup_t2_adr_pcrel_12: {
516 Value -= 4;
517 unsigned opc = 0;
518 if ((int64_t)Value < 0) {
519 Value = -Value;
520 opc = 5;
521 }
522
523 uint32_t out = (opc << 21);
524 out |= (Value & 0x800) << 15;
525 out |= (Value & 0x700) << 4;
526 out |= (Value & 0x0FF);
527
528 return swapHalfWords(out, Endian == support::little);
529 }
530
531 case ARM::fixup_arm_condbranch:
532 case ARM::fixup_arm_uncondbranch:
533 case ARM::fixup_arm_uncondbl:
534 case ARM::fixup_arm_condbl:
535 case ARM::fixup_arm_blx:
536 // These values don't encode the low two bits since they're always zero.
537 // Offset by 8 just as above.
538 if (const MCSymbolRefExpr *SRE =
539 dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
540 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
541 return 0;
542 return 0xffffff & ((Value - 8) >> 2);
543 case ARM::fixup_t2_uncondbranch: {
544 Value = Value - 4;
545 if (!isInt<25>(Value)) {
546 Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
547 return 0;
548 }
549
550 Value >>= 1; // Low bit is not encoded.
551
552 uint32_t out = 0;
553 bool I = Value & 0x800000;
554 bool J1 = Value & 0x400000;
555 bool J2 = Value & 0x200000;
556 J1 ^= I;
557 J2 ^= I;
558
559 out |= I << 26; // S bit
560 out |= !J1 << 13; // J1 bit
561 out |= !J2 << 11; // J2 bit
562 out |= (Value & 0x1FF800) << 5; // imm6 field
563 out |= (Value & 0x0007FF); // imm11 field
564
565 return swapHalfWords(out, Endian == support::little);
566 }
567 case ARM::fixup_t2_condbranch: {
568 Value = Value - 4;
569 if (!isInt<21>(Value)) {
570 Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
571 return 0;
572 }
573
574 Value >>= 1; // Low bit is not encoded.
575
576 uint64_t out = 0;
577 out |= (Value & 0x80000) << 7; // S bit
578 out |= (Value & 0x40000) >> 7; // J2 bit
579 out |= (Value & 0x20000) >> 4; // J1 bit
580 out |= (Value & 0x1F800) << 5; // imm6 field
581 out |= (Value & 0x007FF); // imm11 field
582
583 return swapHalfWords(out, Endian == support::little);
584 }
585 case ARM::fixup_arm_thumb_bl: {
586 if (!isInt<25>(Value - 4) ||
587 (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
588 !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
589 !STI->getFeatureBits()[ARM::HasV6MOps] &&
590 !isInt<23>(Value - 4))) {
591 Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
592 return 0;
593 }
594
595 // The value doesn't encode the low bit (always zero) and is offset by
596 // four. The 32-bit immediate value is encoded as
597 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
598 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
599 // The value is encoded into disjoint bit positions in the destination
600 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
601 // J = either J1 or J2 bit
602 //
603 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
604 //
605 // Note that the halfwords are stored high first, low second; so we need
606 // to transpose the fixup value here to map properly.
607 uint32_t offset = (Value - 4) >> 1;
608 uint32_t signBit = (offset & 0x800000) >> 23;
609 uint32_t I1Bit = (offset & 0x400000) >> 22;
610 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
611 uint32_t I2Bit = (offset & 0x200000) >> 21;
612 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
613 uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
614 uint32_t imm11Bits = (offset & 0x000007FF);
615
616 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
617 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
618 (uint16_t)imm11Bits);
619 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
620 }
621 case ARM::fixup_arm_thumb_blx: {
622 // The value doesn't encode the low two bits (always zero) and is offset by
623 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
624 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
625 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
626 // The value is encoded into disjoint bit positions in the destination
627 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
628 // J = either J1 or J2 bit, 0 = zero.
629 //
630 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
631 //
632 // Note that the halfwords are stored high first, low second; so we need
633 // to transpose the fixup value here to map properly.
634 if (Value % 4 != 0) {
635 Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
636 return 0;
637 }
638
639 uint32_t offset = (Value - 4) >> 2;
640 if (const MCSymbolRefExpr *SRE =
641 dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
642 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
643 offset = 0;
644 uint32_t signBit = (offset & 0x400000) >> 22;
645 uint32_t I1Bit = (offset & 0x200000) >> 21;
646 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
647 uint32_t I2Bit = (offset & 0x100000) >> 20;
648 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
649 uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
650 uint32_t imm10LBits = (offset & 0x3FF);
651
652 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
653 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
654 ((uint16_t)imm10LBits) << 1);
655 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
656 }
657 case ARM::fixup_thumb_adr_pcrel_10:
658 case ARM::fixup_arm_thumb_cp:
659 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
660 // could have an error on our hands.
661 assert(STI != nullptr);
662 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
663 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
664 if (FixupDiagnostic) {
665 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
666 return 0;
667 }
668 }
669 // Offset by 4, and don't encode the low two bits.
670 return ((Value - 4) >> 2) & 0xff;
671 case ARM::fixup_arm_thumb_cb: {
672 // CB instructions can only branch to offsets in [4, 126] in multiples of 2
673 // so ensure that the raw value LSB is zero and it lies in [2, 130].
674 // An offset of 2 will be relaxed to a NOP.
675 if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
676 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
677 return 0;
678 }
679 // Offset by 4 and don't encode the lower bit, which is always 0.
680 // FIXME: diagnose if no Thumb2
681 uint32_t Binary = (Value - 4) >> 1;
682 return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
683 }
684 case ARM::fixup_arm_thumb_br:
685 // Offset by 4 and don't encode the lower bit, which is always 0.
686 assert(STI != nullptr);
687 if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
688 !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
689 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
690 if (FixupDiagnostic) {
691 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
692 return 0;
693 }
694 }
695 return ((Value - 4) >> 1) & 0x7ff;
696 case ARM::fixup_arm_thumb_bcc:
697 // Offset by 4 and don't encode the lower bit, which is always 0.
698 assert(STI != nullptr);
699 if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
700 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
701 if (FixupDiagnostic) {
702 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
703 return 0;
704 }
705 }
706 return ((Value - 4) >> 1) & 0xff;
707 case ARM::fixup_arm_pcrel_10_unscaled: {
708 Value = Value - 8; // ARM fixups offset by an additional word and don't
709 // need to adjust for the half-word ordering.
710 bool isAdd = true;
711 if ((int64_t)Value < 0) {
712 Value = -Value;
713 isAdd = false;
714 }
715 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
716 if (Value >= 256) {
717 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
718 return 0;
719 }
720 Value = (Value & 0xf) | ((Value & 0xf0) << 4);
721 return Value | (isAdd << 23);
722 }
723 case ARM::fixup_arm_pcrel_10:
724 Value = Value - 4; // ARM fixups offset by an additional word and don't
725 // need to adjust for the half-word ordering.
726 LLVM_FALLTHROUGH;
727 case ARM::fixup_t2_pcrel_10: {
728 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
729 Value = Value - 4;
730 bool isAdd = true;
731 if ((int64_t)Value < 0) {
732 Value = -Value;
733 isAdd = false;
734 }
735 // These values don't encode the low two bits since they're always zero.
736 Value >>= 2;
737 if (Value >= 256) {
738 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
739 return 0;
740 }
741 Value |= isAdd << 23;
742
743 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
744 // swapped.
745 if (Kind == ARM::fixup_t2_pcrel_10)
746 return swapHalfWords(Value, Endian == support::little);
747
748 return Value;
749 }
750 case ARM::fixup_arm_pcrel_9:
751 Value = Value - 4; // ARM fixups offset by an additional word and don't
752 // need to adjust for the half-word ordering.
753 LLVM_FALLTHROUGH;
754 case ARM::fixup_t2_pcrel_9: {
755 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
756 Value = Value - 4;
757 bool isAdd = true;
758 if ((int64_t)Value < 0) {
759 Value = -Value;
760 isAdd = false;
761 }
762 // These values don't encode the low bit since it's always zero.
763 if (Value & 1) {
764 Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
765 return 0;
766 }
767 Value >>= 1;
768 if (Value >= 256) {
769 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
770 return 0;
771 }
772 Value |= isAdd << 23;
773
774 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
775 // swapped.
776 if (Kind == ARM::fixup_t2_pcrel_9)
777 return swapHalfWords(Value, Endian == support::little);
778
779 return Value;
780 }
781 case ARM::fixup_arm_mod_imm:
782 Value = ARM_AM::getSOImmVal(Value);
783 if (Value >> 12) {
784 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
785 return 0;
786 }
787 return Value;
788 case ARM::fixup_t2_so_imm: {
789 Value = ARM_AM::getT2SOImmVal(Value);
790 if ((int64_t)Value < 0) {
791 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
792 return 0;
793 }
794 // Value will contain a 12-bit value broken up into a 4-bit shift in bits
795 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
796 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
797 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
798 // half-word.
799 uint64_t EncValue = 0;
800 EncValue |= (Value & 0x800) << 15;
801 EncValue |= (Value & 0x700) << 4;
802 EncValue |= (Value & 0xff);
803 return swapHalfWords(EncValue, Endian == support::little);
804 }
805 case ARM::fixup_bf_branch: {
806 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
807 if (FixupDiagnostic) {
808 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
809 return 0;
810 }
811 uint32_t out = (((Value - 4) >> 1) & 0xf) << 23;
812 return swapHalfWords(out, Endian == support::little);
813 }
814 case ARM::fixup_bf_target:
815 case ARM::fixup_bfl_target:
816 case ARM::fixup_bfc_target: {
817 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
818 if (FixupDiagnostic) {
819 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
820 return 0;
821 }
822 uint32_t out = 0;
823 uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 :
824 Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800);
825 out |= (((Value - 4) >> 1) & 0x1) << 11;
826 out |= (((Value - 4) >> 1) & 0x7fe);
827 out |= (((Value - 4) >> 1) & HighBitMask) << 5;
828 return swapHalfWords(out, Endian == support::little);
829 }
830 case ARM::fixup_bfcsel_else_target: {
831 // If this is a fixup of a branch future's else target then it should be a
832 // constant MCExpr representing the distance between the branch targetted
833 // and the instruction after that same branch.
834 Value = Target.getConstant();
835
836 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
837 if (FixupDiagnostic) {
838 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
839 return 0;
840 }
841 uint32_t out = ((Value >> 2) & 1) << 17;
842 return swapHalfWords(out, Endian == support::little);
843 }
844 case ARM::fixup_wls:
845 case ARM::fixup_le: {
846 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
847 if (FixupDiagnostic) {
848 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
849 return 0;
850 }
851 uint64_t real_value = Value - 4;
852 uint32_t out = 0;
853 if (Kind == ARM::fixup_le)
854 real_value = -real_value;
855 out |= ((real_value >> 1) & 0x1) << 11;
856 out |= ((real_value >> 1) & 0x7fe);
857 return swapHalfWords(out, Endian == support::little);
858 }
859 }
860 }
861
shouldForceRelocation(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target)862 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
863 const MCFixup &Fixup,
864 const MCValue &Target) {
865 const MCSymbolRefExpr *A = Target.getSymA();
866 const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
867 const unsigned FixupKind = Fixup.getKind();
868 if (FixupKind == FK_NONE)
869 return true;
870 if (FixupKind == ARM::fixup_arm_thumb_bl) {
871 assert(Sym && "How did we resolve this?");
872
873 // If the symbol is external the linker will handle it.
874 // FIXME: Should we handle it as an optimization?
875
876 // If the symbol is out of range, produce a relocation and hope the
877 // linker can handle it. GNU AS produces an error in this case.
878 if (Sym->isExternal())
879 return true;
880 }
881 // Create relocations for unconditional branches to function symbols with
882 // different execution mode in ELF binaries.
883 if (Sym && Sym->isELF()) {
884 unsigned Type = cast<MCSymbolELF>(Sym)->getType();
885 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
886 if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
887 return true;
888 if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
889 FixupKind == ARM::fixup_arm_thumb_bl ||
890 FixupKind == ARM::fixup_t2_condbranch ||
891 FixupKind == ARM::fixup_t2_uncondbranch))
892 return true;
893 }
894 }
895 // We must always generate a relocation for BL/BLX instructions if we have
896 // a symbol to reference, as the linker relies on knowing the destination
897 // symbol's thumb-ness to get interworking right.
898 if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
899 FixupKind == ARM::fixup_arm_blx ||
900 FixupKind == ARM::fixup_arm_uncondbl ||
901 FixupKind == ARM::fixup_arm_condbl))
902 return true;
903 return false;
904 }
905
906 /// getFixupKindNumBytes - The number of bytes the fixup may change.
getFixupKindNumBytes(unsigned Kind)907 static unsigned getFixupKindNumBytes(unsigned Kind) {
908 switch (Kind) {
909 default:
910 llvm_unreachable("Unknown fixup kind!");
911
912 case FK_NONE:
913 return 0;
914
915 case FK_Data_1:
916 case ARM::fixup_arm_thumb_bcc:
917 case ARM::fixup_arm_thumb_cp:
918 case ARM::fixup_thumb_adr_pcrel_10:
919 return 1;
920
921 case FK_Data_2:
922 case ARM::fixup_arm_thumb_br:
923 case ARM::fixup_arm_thumb_cb:
924 case ARM::fixup_arm_mod_imm:
925 return 2;
926
927 case ARM::fixup_arm_pcrel_10_unscaled:
928 case ARM::fixup_arm_ldst_pcrel_12:
929 case ARM::fixup_arm_pcrel_10:
930 case ARM::fixup_arm_pcrel_9:
931 case ARM::fixup_arm_adr_pcrel_12:
932 case ARM::fixup_arm_uncondbl:
933 case ARM::fixup_arm_condbl:
934 case ARM::fixup_arm_blx:
935 case ARM::fixup_arm_condbranch:
936 case ARM::fixup_arm_uncondbranch:
937 return 3;
938
939 case FK_Data_4:
940 case ARM::fixup_t2_ldst_pcrel_12:
941 case ARM::fixup_t2_condbranch:
942 case ARM::fixup_t2_uncondbranch:
943 case ARM::fixup_t2_pcrel_10:
944 case ARM::fixup_t2_pcrel_9:
945 case ARM::fixup_t2_adr_pcrel_12:
946 case ARM::fixup_arm_thumb_bl:
947 case ARM::fixup_arm_thumb_blx:
948 case ARM::fixup_arm_movt_hi16:
949 case ARM::fixup_arm_movw_lo16:
950 case ARM::fixup_t2_movt_hi16:
951 case ARM::fixup_t2_movw_lo16:
952 case ARM::fixup_t2_so_imm:
953 case ARM::fixup_bf_branch:
954 case ARM::fixup_bf_target:
955 case ARM::fixup_bfl_target:
956 case ARM::fixup_bfc_target:
957 case ARM::fixup_bfcsel_else_target:
958 case ARM::fixup_wls:
959 case ARM::fixup_le:
960 return 4;
961
962 case FK_SecRel_2:
963 return 2;
964 case FK_SecRel_4:
965 return 4;
966 }
967 }
968
969 /// getFixupKindContainerSizeBytes - The number of bytes of the
970 /// container involved in big endian.
getFixupKindContainerSizeBytes(unsigned Kind)971 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
972 switch (Kind) {
973 default:
974 llvm_unreachable("Unknown fixup kind!");
975
976 case FK_NONE:
977 return 0;
978
979 case FK_Data_1:
980 return 1;
981 case FK_Data_2:
982 return 2;
983 case FK_Data_4:
984 return 4;
985
986 case ARM::fixup_arm_thumb_bcc:
987 case ARM::fixup_arm_thumb_cp:
988 case ARM::fixup_thumb_adr_pcrel_10:
989 case ARM::fixup_arm_thumb_br:
990 case ARM::fixup_arm_thumb_cb:
991 // Instruction size is 2 bytes.
992 return 2;
993
994 case ARM::fixup_arm_pcrel_10_unscaled:
995 case ARM::fixup_arm_ldst_pcrel_12:
996 case ARM::fixup_arm_pcrel_10:
997 case ARM::fixup_arm_pcrel_9:
998 case ARM::fixup_arm_adr_pcrel_12:
999 case ARM::fixup_arm_uncondbl:
1000 case ARM::fixup_arm_condbl:
1001 case ARM::fixup_arm_blx:
1002 case ARM::fixup_arm_condbranch:
1003 case ARM::fixup_arm_uncondbranch:
1004 case ARM::fixup_t2_ldst_pcrel_12:
1005 case ARM::fixup_t2_condbranch:
1006 case ARM::fixup_t2_uncondbranch:
1007 case ARM::fixup_t2_pcrel_10:
1008 case ARM::fixup_t2_adr_pcrel_12:
1009 case ARM::fixup_arm_thumb_bl:
1010 case ARM::fixup_arm_thumb_blx:
1011 case ARM::fixup_arm_movt_hi16:
1012 case ARM::fixup_arm_movw_lo16:
1013 case ARM::fixup_t2_movt_hi16:
1014 case ARM::fixup_t2_movw_lo16:
1015 case ARM::fixup_arm_mod_imm:
1016 case ARM::fixup_t2_so_imm:
1017 case ARM::fixup_bf_branch:
1018 case ARM::fixup_bf_target:
1019 case ARM::fixup_bfl_target:
1020 case ARM::fixup_bfc_target:
1021 case ARM::fixup_bfcsel_else_target:
1022 case ARM::fixup_wls:
1023 case ARM::fixup_le:
1024 // Instruction size is 4 bytes.
1025 return 4;
1026 }
1027 }
1028
applyFixup(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target,MutableArrayRef<char> Data,uint64_t Value,bool IsResolved,const MCSubtargetInfo * STI) const1029 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
1030 const MCValue &Target,
1031 MutableArrayRef<char> Data, uint64_t Value,
1032 bool IsResolved,
1033 const MCSubtargetInfo* STI) const {
1034 unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
1035 MCContext &Ctx = Asm.getContext();
1036 Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
1037 if (!Value)
1038 return; // Doesn't change encoding.
1039
1040 unsigned Offset = Fixup.getOffset();
1041 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
1042
1043 // Used to point to big endian bytes.
1044 unsigned FullSizeBytes;
1045 if (Endian == support::big) {
1046 FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
1047 assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
1048 assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
1049 }
1050
1051 // For each byte of the fragment that the fixup touches, mask in the bits from
1052 // the fixup value. The Value has been "split up" into the appropriate
1053 // bitfields above.
1054 for (unsigned i = 0; i != NumBytes; ++i) {
1055 unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
1056 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
1057 }
1058 }
1059
1060 namespace CU {
1061
1062 /// Compact unwind encoding values.
1063 enum CompactUnwindEncodings {
1064 UNWIND_ARM_MODE_MASK = 0x0F000000,
1065 UNWIND_ARM_MODE_FRAME = 0x01000000,
1066 UNWIND_ARM_MODE_FRAME_D = 0x02000000,
1067 UNWIND_ARM_MODE_DWARF = 0x04000000,
1068
1069 UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000,
1070
1071 UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001,
1072 UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002,
1073 UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004,
1074
1075 UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008,
1076 UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010,
1077 UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020,
1078 UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040,
1079 UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080,
1080
1081 UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00,
1082
1083 UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF
1084 };
1085
1086 } // end CU namespace
1087
1088 /// Generate compact unwind encoding for the function based on the CFI
1089 /// instructions. If the CFI instructions describe a frame that cannot be
1090 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
1091 /// tells the runtime to fallback and unwind using dwarf.
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const1092 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
1093 ArrayRef<MCCFIInstruction> Instrs) const {
1094 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
1095 // Only armv7k uses CFI based unwinding.
1096 if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
1097 return 0;
1098 // No .cfi directives means no frame.
1099 if (Instrs.empty())
1100 return 0;
1101 // Start off assuming CFA is at SP+0.
1102 unsigned CFARegister = ARM::SP;
1103 int CFARegisterOffset = 0;
1104 // Mark savable registers as initially unsaved
1105 DenseMap<unsigned, int> RegOffsets;
1106 int FloatRegCount = 0;
1107 // Process each .cfi directive and build up compact unwind info.
1108 for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
1109 unsigned Reg;
1110 const MCCFIInstruction &Inst = Instrs[i];
1111 switch (Inst.getOperation()) {
1112 case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
1113 CFARegisterOffset = -Inst.getOffset();
1114 CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1115 break;
1116 case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
1117 CFARegisterOffset = -Inst.getOffset();
1118 break;
1119 case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
1120 CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1121 break;
1122 case MCCFIInstruction::OpOffset: // DW_CFA_offset
1123 Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1124 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
1125 RegOffsets[Reg] = Inst.getOffset();
1126 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
1127 RegOffsets[Reg] = Inst.getOffset();
1128 ++FloatRegCount;
1129 } else {
1130 DEBUG_WITH_TYPE("compact-unwind",
1131 llvm::dbgs() << ".cfi_offset on unknown register="
1132 << Inst.getRegister() << "\n");
1133 return CU::UNWIND_ARM_MODE_DWARF;
1134 }
1135 break;
1136 case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
1137 // Ignore
1138 break;
1139 default:
1140 // Directive not convertable to compact unwind, bail out.
1141 DEBUG_WITH_TYPE("compact-unwind",
1142 llvm::dbgs()
1143 << "CFI directive not compatiable with comact "
1144 "unwind encoding, opcode=" << Inst.getOperation()
1145 << "\n");
1146 return CU::UNWIND_ARM_MODE_DWARF;
1147 break;
1148 }
1149 }
1150
1151 // If no frame set up, return no unwind info.
1152 if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1153 return 0;
1154
1155 // Verify standard frame (lr/r7) was used.
1156 if (CFARegister != ARM::R7) {
1157 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1158 << CFARegister
1159 << " instead of r7\n");
1160 return CU::UNWIND_ARM_MODE_DWARF;
1161 }
1162 int StackAdjust = CFARegisterOffset - 8;
1163 if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1164 DEBUG_WITH_TYPE("compact-unwind",
1165 llvm::dbgs()
1166 << "LR not saved as standard frame, StackAdjust="
1167 << StackAdjust
1168 << ", CFARegisterOffset=" << CFARegisterOffset
1169 << ", lr save at offset=" << RegOffsets[14] << "\n");
1170 return CU::UNWIND_ARM_MODE_DWARF;
1171 }
1172 if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1173 DEBUG_WITH_TYPE("compact-unwind",
1174 llvm::dbgs() << "r7 not saved as standard frame\n");
1175 return CU::UNWIND_ARM_MODE_DWARF;
1176 }
1177 uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1178
1179 // If var-args are used, there may be a stack adjust required.
1180 switch (StackAdjust) {
1181 case 0:
1182 break;
1183 case 4:
1184 CompactUnwindEncoding |= 0x00400000;
1185 break;
1186 case 8:
1187 CompactUnwindEncoding |= 0x00800000;
1188 break;
1189 case 12:
1190 CompactUnwindEncoding |= 0x00C00000;
1191 break;
1192 default:
1193 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1194 << ".cfi_def_cfa stack adjust ("
1195 << StackAdjust << ") out of range\n");
1196 return CU::UNWIND_ARM_MODE_DWARF;
1197 }
1198
1199 // If r6 is saved, it must be right below r7.
1200 static struct {
1201 unsigned Reg;
1202 unsigned Encoding;
1203 } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1204 {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1205 {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1206 {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1207 {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1208 {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1209 {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1210 {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1211
1212 int CurOffset = -8 - StackAdjust;
1213 for (auto CSReg : GPRCSRegs) {
1214 auto Offset = RegOffsets.find(CSReg.Reg);
1215 if (Offset == RegOffsets.end())
1216 continue;
1217
1218 int RegOffset = Offset->second;
1219 if (RegOffset != CurOffset - 4) {
1220 DEBUG_WITH_TYPE("compact-unwind",
1221 llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1222 << RegOffset << " but only supported at "
1223 << CurOffset << "\n");
1224 return CU::UNWIND_ARM_MODE_DWARF;
1225 }
1226 CompactUnwindEncoding |= CSReg.Encoding;
1227 CurOffset -= 4;
1228 }
1229
1230 // If no floats saved, we are done.
1231 if (FloatRegCount == 0)
1232 return CompactUnwindEncoding;
1233
1234 // Switch mode to include D register saving.
1235 CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1236 CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1237
1238 // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1239 // but needs coordination with the linker and libunwind.
1240 if (FloatRegCount > 4) {
1241 DEBUG_WITH_TYPE("compact-unwind",
1242 llvm::dbgs() << "unsupported number of D registers saved ("
1243 << FloatRegCount << ")\n");
1244 return CU::UNWIND_ARM_MODE_DWARF;
1245 }
1246
1247 // Floating point registers must either be saved sequentially, or we defer to
1248 // DWARF. No gaps allowed here so check that each saved d-register is
1249 // precisely where it should be.
1250 static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1251 for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1252 auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1253 if (Offset == RegOffsets.end()) {
1254 DEBUG_WITH_TYPE("compact-unwind",
1255 llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1256 << MRI.getName(FPRCSRegs[Idx])
1257 << " not saved\n");
1258 return CU::UNWIND_ARM_MODE_DWARF;
1259 } else if (Offset->second != CurOffset - 8) {
1260 DEBUG_WITH_TYPE("compact-unwind",
1261 llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1262 << MRI.getName(FPRCSRegs[Idx])
1263 << " saved at " << Offset->second
1264 << ", expected at " << CurOffset - 8
1265 << "\n");
1266 return CU::UNWIND_ARM_MODE_DWARF;
1267 }
1268 CurOffset -= 8;
1269 }
1270
1271 return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1272 }
1273
getMachOSubTypeFromArch(StringRef Arch)1274 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1275 ARM::ArchKind AK = ARM::parseArch(Arch);
1276 switch (AK) {
1277 default:
1278 return MachO::CPU_SUBTYPE_ARM_V7;
1279 case ARM::ArchKind::ARMV4T:
1280 return MachO::CPU_SUBTYPE_ARM_V4T;
1281 case ARM::ArchKind::ARMV5T:
1282 case ARM::ArchKind::ARMV5TE:
1283 case ARM::ArchKind::ARMV5TEJ:
1284 return MachO::CPU_SUBTYPE_ARM_V5;
1285 case ARM::ArchKind::ARMV6:
1286 case ARM::ArchKind::ARMV6K:
1287 return MachO::CPU_SUBTYPE_ARM_V6;
1288 case ARM::ArchKind::ARMV7A:
1289 return MachO::CPU_SUBTYPE_ARM_V7;
1290 case ARM::ArchKind::ARMV7S:
1291 return MachO::CPU_SUBTYPE_ARM_V7S;
1292 case ARM::ArchKind::ARMV7K:
1293 return MachO::CPU_SUBTYPE_ARM_V7K;
1294 case ARM::ArchKind::ARMV6M:
1295 return MachO::CPU_SUBTYPE_ARM_V6M;
1296 case ARM::ArchKind::ARMV7M:
1297 return MachO::CPU_SUBTYPE_ARM_V7M;
1298 case ARM::ArchKind::ARMV7EM:
1299 return MachO::CPU_SUBTYPE_ARM_V7EM;
1300 }
1301 }
1302
createARMAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const MCTargetOptions & Options,support::endianness Endian)1303 static MCAsmBackend *createARMAsmBackend(const Target &T,
1304 const MCSubtargetInfo &STI,
1305 const MCRegisterInfo &MRI,
1306 const MCTargetOptions &Options,
1307 support::endianness Endian) {
1308 const Triple &TheTriple = STI.getTargetTriple();
1309 switch (TheTriple.getObjectFormat()) {
1310 default:
1311 llvm_unreachable("unsupported object format");
1312 case Triple::MachO: {
1313 MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1314 return new ARMAsmBackendDarwin(T, STI, MRI, CS);
1315 }
1316 case Triple::COFF:
1317 assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1318 return new ARMAsmBackendWinCOFF(T, STI);
1319 case Triple::ELF:
1320 assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1321 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1322 return new ARMAsmBackendELF(T, STI, OSABI, Endian);
1323 }
1324 }
1325
createARMLEAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const MCTargetOptions & Options)1326 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1327 const MCSubtargetInfo &STI,
1328 const MCRegisterInfo &MRI,
1329 const MCTargetOptions &Options) {
1330 return createARMAsmBackend(T, STI, MRI, Options, support::little);
1331 }
1332
createARMBEAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const MCTargetOptions & Options)1333 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1334 const MCSubtargetInfo &STI,
1335 const MCRegisterInfo &MRI,
1336 const MCTargetOptions &Options) {
1337 return createARMAsmBackend(T, STI, MRI, Options, support::big);
1338 }
1339