1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten. This is similar
17 /// to the current Emscripten asm.js exception handling in fastcomp. For
18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19 /// (Location: https://github.com/kripken/emscripten-fastcomp)
20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22 /// lib/Target/JSBackend/JSBackend.cpp
23 /// lib/Target/JSBackend/CallHandlers.h
24 ///
25 /// * Exception handling
26 /// This pass lowers invokes and landingpads into library functions in JS glue
27 /// code. Invokes are lowered into function wrappers called invoke wrappers that
28 /// exist in JS side, which wraps the original function call with JS try-catch.
29 /// If an exception occurred, cxa_throw() function in JS side sets some
30 /// variables (see below) so we can check whether an exception occurred from
31 /// wasm code and handle it appropriately.
32 ///
33 /// * Setjmp-longjmp handling
34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35 /// The idea is that each block with a setjmp is broken up into two parts: the
36 /// part containing setjmp and the part right after the setjmp. The latter part
37 /// is either reached from the setjmp, or later from a longjmp. To handle the
38 /// longjmp, all calls that might longjmp are also called using invoke wrappers
39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
40 /// we can check / whether a longjmp occurred from wasm code. Each block with a
41 /// function call that might longjmp is also split up after the longjmp call.
42 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
43 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
44 /// We assume setjmp-longjmp handling always run after EH handling, which means
45 /// we don't expect any exception-related instructions when SjLj runs.
46 /// FIXME Currently this scheme does not support indirect call of setjmp,
47 /// because of the limitation of the scheme itself. fastcomp does not support it
48 /// either.
49 ///
50 /// In detail, this pass does following things:
51 ///
52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
53 ///    __THREW__ and __threwValue will be set in invoke wrappers
54 ///    in JS glue code. For what invoke wrappers are, refer to 3). These
55 ///    variables are used for both exceptions and setjmp/longjmps.
56 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57 ///    means nothing occurred, 1 means an exception occurred, and other numbers
58 ///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
59 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
60 ///
61 /// * Exception handling
62 ///
63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
64 ///    at link time.
65 ///    The global variables in 1) will exist in wasm address space,
66 ///    but their values should be set in JS code, so these functions
67 ///    as interfaces to JS glue code. These functions are equivalent to the
68 ///    following JS functions, which actually exist in asm.js version of JS
69 ///    library.
70 ///
71 ///    function setThrew(threw, value) {
72 ///      if (__THREW__ == 0) {
73 ///        __THREW__ = threw;
74 ///        __threwValue = value;
75 ///      }
76 ///    }
77 //
78 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
79 ///
80 ///    In exception handling, getTempRet0 indicates the type of an exception
81 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
82 ///    function.
83 ///
84 /// 3) Lower
85 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
86 ///    into
87 ///      __THREW__ = 0;
88 ///      call @__invoke_SIG(func, arg1, arg2)
89 ///      %__THREW__.val = __THREW__;
90 ///      __THREW__ = 0;
91 ///      if (%__THREW__.val == 1)
92 ///        goto %lpad
93 ///      else
94 ///         goto %invoke.cont
95 ///    SIG is a mangled string generated based on the LLVM IR-level function
96 ///    signature. After LLVM IR types are lowered to the target wasm types,
97 ///    the names for these wrappers will change based on wasm types as well,
98 ///    as in invoke_vi (function takes an int and returns void). The bodies of
99 ///    these wrappers will be generated in JS glue code, and inside those
100 ///    wrappers we use JS try-catch to generate actual exception effects. It
101 ///    also calls the original callee function. An example wrapper in JS code
102 ///    would look like this:
103 ///      function invoke_vi(index,a1) {
104 ///        try {
105 ///          Module["dynCall_vi"](index,a1); // This calls original callee
106 ///        } catch(e) {
107 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
108 ///          asm["setThrew"](1, 0); // setThrew is called here
109 ///        }
110 ///      }
111 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
112 ///    so we can jump to the right BB based on this value.
113 ///
114 /// 4) Lower
115 ///      %val = landingpad catch c1 catch c2 catch c3 ...
116 ///      ... use %val ...
117 ///    into
118 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119 ///      %val = {%fmc, getTempRet0()}
120 ///      ... use %val ...
121 ///    Here N is a number calculated based on the number of clauses.
122 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
123 ///
124 /// 5) Lower
125 ///      resume {%a, %b}
126 ///    into
127 ///      call @__resumeException(%a)
128 ///    where __resumeException() is a function in JS glue code.
129 ///
130 /// 6) Lower
131 ///      call @llvm.eh.typeid.for(type) (intrinsic)
132 ///    into
133 ///      call @llvm_eh_typeid_for(type)
134 ///    llvm_eh_typeid_for function will be generated in JS glue code.
135 ///
136 /// * Setjmp / Longjmp handling
137 ///
138 /// In case calls to longjmp() exists
139 ///
140 /// 1) Lower
141 ///      longjmp(buf, value)
142 ///    into
143 ///      emscripten_longjmp_jmpbuf(buf, value)
144 ///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
145 ///
146 /// In case calls to setjmp() exists
147 ///
148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
149 ///    sejmpTableSize as follows:
150 ///      setjmpTableSize = 4;
151 ///      setjmpTable = (int *) malloc(40);
152 ///      setjmpTable[0] = 0;
153 ///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
154 ///    code.
155 ///
156 /// 3) Lower
157 ///      setjmp(buf)
158 ///    into
159 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160 ///      setjmpTableSize = getTempRet0();
161 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
162 ///    is incrementally assigned from 0) and its label (a unique number that
163 ///    represents each callsite of setjmp). When we need more entries in
164 ///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165 ///    return the new table address, and assign the new table size in
166 ///    setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167 ///    buf. A BB with setjmp is split into two after setjmp call in order to
168 ///    make the post-setjmp BB the possible destination of longjmp BB.
169 ///
170 ///
171 /// 4) Lower every call that might longjmp into
172 ///      __THREW__ = 0;
173 ///      call @__invoke_SIG(func, arg1, arg2)
174 ///      %__THREW__.val = __THREW__;
175 ///      __THREW__ = 0;
176 ///      if (%__THREW__.val != 0 & __threwValue != 0) {
177 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178 ///                            setjmpTableSize);
179 ///        if (%label == 0)
180 ///          emscripten_longjmp(%__THREW__.val, __threwValue);
181 ///        setTempRet0(__threwValue);
182 ///      } else {
183 ///        %label = -1;
184 ///      }
185 ///      longjmp_result = getTempRet0();
186 ///      switch label {
187 ///        label 1: goto post-setjmp BB 1
188 ///        label 2: goto post-setjmp BB 2
189 ///        ...
190 ///        default: goto splitted next BB
191 ///      }
192 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
193 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194 ///    will be the address of matching jmp_buf buffer and __threwValue be the
195 ///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
198 ///    correspond to one of the setjmp callsites in this function, so in this
199 ///    case we just chain the longjmp to the caller. (Here we call
200 ///    emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201 ///    emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202 ///    emscripten_longjmp takes an int. Both of them will eventually be lowered
203 ///    to emscripten_longjmp in s2wasm, but here we need two signatures - we
204 ///    can't translate an int value to a jmp_buf.)
205 ///    Label -1 means no longjmp occurred. Otherwise we jump to the right
206 ///    post-setjmp BB based on the label.
207 ///
208 ///===----------------------------------------------------------------------===//
209 
210 #include "WebAssembly.h"
211 #include "llvm/IR/CallSite.h"
212 #include "llvm/IR/Dominators.h"
213 #include "llvm/IR/IRBuilder.h"
214 #include "llvm/Support/CommandLine.h"
215 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
216 #include "llvm/Transforms/Utils/SSAUpdater.h"
217 
218 using namespace llvm;
219 
220 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
221 
222 static cl::list<std::string>
223     EHWhitelist("emscripten-cxx-exceptions-whitelist",
224                 cl::desc("The list of function names in which Emscripten-style "
225                          "exception handling is enabled (see emscripten "
226                          "EMSCRIPTEN_CATCHING_WHITELIST options)"),
227                 cl::CommaSeparated);
228 
229 namespace {
230 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
231   bool EnableEH;   // Enable exception handling
232   bool EnableSjLj; // Enable setjmp/longjmp handling
233 
234   GlobalVariable *ThrewGV = nullptr;
235   GlobalVariable *ThrewValueGV = nullptr;
236   Function *GetTempRet0Func = nullptr;
237   Function *SetTempRet0Func = nullptr;
238   Function *ResumeF = nullptr;
239   Function *EHTypeIDF = nullptr;
240   Function *EmLongjmpF = nullptr;
241   Function *EmLongjmpJmpbufF = nullptr;
242   Function *SaveSetjmpF = nullptr;
243   Function *TestSetjmpF = nullptr;
244 
245   // __cxa_find_matching_catch_N functions.
246   // Indexed by the number of clauses in an original landingpad instruction.
247   DenseMap<int, Function *> FindMatchingCatches;
248   // Map of <function signature string, invoke_ wrappers>
249   StringMap<Function *> InvokeWrappers;
250   // Set of whitelisted function names for exception handling
251   std::set<std::string> EHWhitelistSet;
252 
getPassName() const253   StringRef getPassName() const override {
254     return "WebAssembly Lower Emscripten Exceptions";
255   }
256 
257   bool runEHOnFunction(Function &F);
258   bool runSjLjOnFunction(Function &F);
259   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
260 
261   template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
262   void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
263                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
264                       Value *&LongjmpResult, BasicBlock *&EndBB);
265   template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
266 
areAllExceptionsAllowed() const267   bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
268   bool canLongjmp(Module &M, const Value *Callee) const;
269   bool isEmAsmCall(Module &M, const Value *Callee) const;
270 
271   void rebuildSSA(Function &F);
272 
273 public:
274   static char ID;
275 
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH=true,bool EnableSjLj=true)276   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
277       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
278     EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
279   }
280   bool runOnModule(Module &M) override;
281 
getAnalysisUsage(AnalysisUsage & AU) const282   void getAnalysisUsage(AnalysisUsage &AU) const override {
283     AU.addRequired<DominatorTreeWrapperPass>();
284   }
285 };
286 } // End anonymous namespace
287 
288 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
289 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
290                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
291                 false, false)
292 
createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,bool EnableSjLj)293 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
294                                                          bool EnableSjLj) {
295   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
296 }
297 
canThrow(const Value * V)298 static bool canThrow(const Value *V) {
299   if (const auto *F = dyn_cast<const Function>(V)) {
300     // Intrinsics cannot throw
301     if (F->isIntrinsic())
302       return false;
303     StringRef Name = F->getName();
304     // leave setjmp and longjmp (mostly) alone, we process them properly later
305     if (Name == "setjmp" || Name == "longjmp")
306       return false;
307     return !F->doesNotThrow();
308   }
309   // not a function, so an indirect call - can throw, we can't tell
310   return true;
311 }
312 
313 // Get a global variable with the given name.  If it doesn't exist declare it,
314 // which will generate an import and asssumes that it will exist at link time.
getGlobalVariableI32(Module & M,IRBuilder<> & IRB,const char * Name)315 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
316                                             const char *Name) {
317 
318   auto *GV =
319       dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty()));
320   if (!GV)
321     report_fatal_error(Twine("unable to create global: ") + Name);
322 
323   return GV;
324 }
325 
326 // Simple function name mangler.
327 // This function simply takes LLVM's string representation of parameter types
328 // and concatenate them with '_'. There are non-alphanumeric characters but llc
329 // is ok with it, and we need to postprocess these names after the lowering
330 // phase anyway.
getSignature(FunctionType * FTy)331 static std::string getSignature(FunctionType *FTy) {
332   std::string Sig;
333   raw_string_ostream OS(Sig);
334   OS << *FTy->getReturnType();
335   for (Type *ParamTy : FTy->params())
336     OS << "_" << *ParamTy;
337   if (FTy->isVarArg())
338     OS << "_...";
339   Sig = OS.str();
340   Sig.erase(remove_if(Sig, isspace), Sig.end());
341   // When s2wasm parses .s file, a comma means the end of an argument. So a
342   // mangled function name can contain any character but a comma.
343   std::replace(Sig.begin(), Sig.end(), ',', '.');
344   return Sig;
345 }
346 
347 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
348 // This is because a landingpad instruction contains two more arguments, a
349 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
350 // functions are named after the number of arguments in the original landingpad
351 // instruction.
352 Function *
getFindMatchingCatch(Module & M,unsigned NumClauses)353 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
354                                                        unsigned NumClauses) {
355   if (FindMatchingCatches.count(NumClauses))
356     return FindMatchingCatches[NumClauses];
357   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
358   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
359   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
360   Function *F = Function::Create(
361       FTy, GlobalValue::ExternalLinkage,
362       "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
363   FindMatchingCatches[NumClauses] = F;
364   return F;
365 }
366 
367 // Generate invoke wrapper seqence with preamble and postamble
368 // Preamble:
369 // __THREW__ = 0;
370 // Postamble:
371 // %__THREW__.val = __THREW__; __THREW__ = 0;
372 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
373 // whether longjmp occurred), for future use.
374 template <typename CallOrInvoke>
wrapInvoke(CallOrInvoke * CI)375 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
376   LLVMContext &C = CI->getModule()->getContext();
377 
378   // If we are calling a function that is noreturn, we must remove that
379   // attribute. The code we insert here does expect it to return, after we
380   // catch the exception.
381   if (CI->doesNotReturn()) {
382     if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
383       F->removeFnAttr(Attribute::NoReturn);
384     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
385   }
386 
387   IRBuilder<> IRB(C);
388   IRB.SetInsertPoint(CI);
389 
390   // Pre-invoke
391   // __THREW__ = 0;
392   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
393 
394   // Invoke function wrapper in JavaScript
395   SmallVector<Value *, 16> Args;
396   // Put the pointer to the callee as first argument, so it can be called
397   // within the invoke wrapper later
398   Args.push_back(CI->getCalledValue());
399   Args.append(CI->arg_begin(), CI->arg_end());
400   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
401   NewCall->takeName(CI);
402   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
403   NewCall->setDebugLoc(CI->getDebugLoc());
404 
405   // Because we added the pointer to the callee as first argument, all
406   // argument attribute indices have to be incremented by one.
407   SmallVector<AttributeSet, 8> ArgAttributes;
408   const AttributeList &InvokeAL = CI->getAttributes();
409 
410   // No attributes for the callee pointer.
411   ArgAttributes.push_back(AttributeSet());
412   // Copy the argument attributes from the original
413   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
414     ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
415 
416   AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
417   if (FnAttrs.contains(Attribute::AllocSize)) {
418     // The allocsize attribute (if any) referes to parameters by index and needs
419     // to be adjusted.
420     unsigned SizeArg;
421     Optional<unsigned> NEltArg;
422     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
423     SizeArg += 1;
424     if (NEltArg.hasValue())
425       NEltArg = NEltArg.getValue() + 1;
426     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
427   }
428 
429   // Reconstruct the AttributesList based on the vector we constructed.
430   AttributeList NewCallAL =
431       AttributeList::get(C, AttributeSet::get(C, FnAttrs),
432                          InvokeAL.getRetAttributes(), ArgAttributes);
433   NewCall->setAttributes(NewCallAL);
434 
435   CI->replaceAllUsesWith(NewCall);
436 
437   // Post-invoke
438   // %__THREW__.val = __THREW__; __THREW__ = 0;
439   Value *Threw =
440       IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
441   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
442   return Threw;
443 }
444 
445 // Get matching invoke wrapper based on callee signature
446 template <typename CallOrInvoke>
getInvokeWrapper(CallOrInvoke * CI)447 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
448   Module *M = CI->getModule();
449   SmallVector<Type *, 16> ArgTys;
450   Value *Callee = CI->getCalledValue();
451   FunctionType *CalleeFTy;
452   if (auto *F = dyn_cast<Function>(Callee))
453     CalleeFTy = F->getFunctionType();
454   else {
455     auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
456     CalleeFTy = cast<FunctionType>(CalleeTy);
457   }
458 
459   std::string Sig = getSignature(CalleeFTy);
460   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
461     return InvokeWrappers[Sig];
462 
463   // Put the pointer to the callee as first argument
464   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
465   // Add argument types
466   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
467 
468   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
469                                         CalleeFTy->isVarArg());
470   Function *F =
471       Function::Create(FTy, GlobalValue::ExternalLinkage, "__invoke_" + Sig, M);
472   InvokeWrappers[Sig] = F;
473   return F;
474 }
475 
canLongjmp(Module & M,const Value * Callee) const476 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
477                                                   const Value *Callee) const {
478   if (auto *CalleeF = dyn_cast<Function>(Callee))
479     if (CalleeF->isIntrinsic())
480       return false;
481 
482   // Attempting to transform inline assembly will result in something like:
483   //     call void @__invoke_void(void ()* asm ...)
484   // which is invalid because inline assembly blocks do not have addresses
485   // and can't be passed by pointer. The result is a crash with illegal IR.
486   if (isa<InlineAsm>(Callee))
487     return false;
488   StringRef CalleeName = Callee->getName();
489 
490   // The reason we include malloc/free here is to exclude the malloc/free
491   // calls generated in setjmp prep / cleanup routines.
492   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
493     return false;
494 
495   // There are functions in JS glue code
496   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
497       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
498       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
499     return false;
500 
501   // __cxa_find_matching_catch_N functions cannot longjmp
502   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
503     return false;
504 
505   // Exception-catching related functions
506   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
507       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
508       CalleeName == "__clang_call_terminate")
509     return false;
510 
511   // Otherwise we don't know
512   return true;
513 }
514 
isEmAsmCall(Module & M,const Value * Callee) const515 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
516                                                    const Value *Callee) const {
517   StringRef CalleeName = Callee->getName();
518   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
519   return CalleeName == "emscripten_asm_const_int" ||
520          CalleeName == "emscripten_asm_const_double" ||
521          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
522          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
523          CalleeName == "emscripten_asm_const_async_on_main_thread";
524 }
525 
526 // Generate testSetjmp function call seqence with preamble and postamble.
527 // The code this generates is equivalent to the following JavaScript code:
528 // if (%__THREW__.val != 0 & threwValue != 0) {
529 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
530 //   if (%label == 0)
531 //     emscripten_longjmp(%__THREW__.val, threwValue);
532 //   setTempRet0(threwValue);
533 // } else {
534 //   %label = -1;
535 // }
536 // %longjmp_result = getTempRet0();
537 //
538 // As output parameters. returns %label, %longjmp_result, and the BB the last
539 // instruction (%longjmp_result = ...) is in.
wrapTestSetjmp(BasicBlock * BB,Instruction * InsertPt,Value * Threw,Value * SetjmpTable,Value * SetjmpTableSize,Value * & Label,Value * & LongjmpResult,BasicBlock * & EndBB)540 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
541     BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
542     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
543     BasicBlock *&EndBB) {
544   Function *F = BB->getParent();
545   LLVMContext &C = BB->getModule()->getContext();
546   IRBuilder<> IRB(C);
547   IRB.SetInsertPoint(InsertPt);
548 
549   // if (%__THREW__.val != 0 & threwValue != 0)
550   IRB.SetInsertPoint(BB);
551   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
552   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
553   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
554   Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
555   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
556                                      ThrewValueGV->getName() + ".val");
557   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
558   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
559   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
560 
561   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
562   // if (%label == 0)
563   IRB.SetInsertPoint(ThenBB1);
564   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
565   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
566   Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
567                                        Threw->getName() + ".i32p");
568   Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
569                                       ThrewInt->getName() + ".loaded");
570   Value *ThenLabel = IRB.CreateCall(
571       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
572   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
573   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
574 
575   // emscripten_longjmp(%__THREW__.val, threwValue);
576   IRB.SetInsertPoint(ThenBB2);
577   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
578   IRB.CreateUnreachable();
579 
580   // setTempRet0(threwValue);
581   IRB.SetInsertPoint(EndBB2);
582   IRB.CreateCall(SetTempRet0Func, ThrewValue);
583   IRB.CreateBr(EndBB1);
584 
585   IRB.SetInsertPoint(ElseBB1);
586   IRB.CreateBr(EndBB1);
587 
588   // longjmp_result = getTempRet0();
589   IRB.SetInsertPoint(EndBB1);
590   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
591   LabelPHI->addIncoming(ThenLabel, EndBB2);
592 
593   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
594 
595   // Output parameter assignment
596   Label = LabelPHI;
597   EndBB = EndBB1;
598   LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
599 }
600 
rebuildSSA(Function & F)601 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
602   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
603   DT.recalculate(F); // CFG has been changed
604   SSAUpdater SSA;
605   for (BasicBlock &BB : F) {
606     for (Instruction &I : BB) {
607       SSA.Initialize(I.getType(), I.getName());
608       SSA.AddAvailableValue(&BB, &I);
609       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
610         Use &U = *UI;
611         ++UI;
612         auto *User = cast<Instruction>(U.getUser());
613         if (auto *UserPN = dyn_cast<PHINode>(User))
614           if (UserPN->getIncomingBlock(U) == &BB)
615             continue;
616 
617         if (DT.dominates(&I, User))
618           continue;
619         SSA.RewriteUseAfterInsertions(U);
620       }
621     }
622   }
623 }
624 
runOnModule(Module & M)625 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
626   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
627 
628   LLVMContext &C = M.getContext();
629   IRBuilder<> IRB(C);
630 
631   Function *SetjmpF = M.getFunction("setjmp");
632   Function *LongjmpF = M.getFunction("longjmp");
633   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
634   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
635   bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
636 
637   // Declare (or get) global variables __THREW__, __threwValue, and
638   // getTempRet0/setTempRet0 function which are used in common for both
639   // exception handling and setjmp/longjmp handling
640   ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
641   ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
642   GetTempRet0Func =
643       Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
644                        GlobalValue::ExternalLinkage, "getTempRet0", &M);
645   SetTempRet0Func = Function::Create(
646       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
647       GlobalValue::ExternalLinkage, "setTempRet0", &M);
648   GetTempRet0Func->setDoesNotThrow();
649   SetTempRet0Func->setDoesNotThrow();
650 
651   bool Changed = false;
652 
653   // Exception handling
654   if (EnableEH) {
655     // Register __resumeException function
656     FunctionType *ResumeFTy =
657         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
658     ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
659                                "__resumeException", &M);
660 
661     // Register llvm_eh_typeid_for function
662     FunctionType *EHTypeIDTy =
663         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
664     EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
665                                  "llvm_eh_typeid_for", &M);
666 
667     for (Function &F : M) {
668       if (F.isDeclaration())
669         continue;
670       Changed |= runEHOnFunction(F);
671     }
672   }
673 
674   // Setjmp/longjmp handling
675   if (DoSjLj) {
676     Changed = true; // We have setjmp or longjmp somewhere
677 
678     if (LongjmpF) {
679       // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
680       // defined in JS code
681       EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
682                                           GlobalValue::ExternalLinkage,
683                                           "emscripten_longjmp_jmpbuf", &M);
684 
685       LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
686     }
687 
688     if (SetjmpF) {
689       // Register saveSetjmp function
690       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
691       SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
692                                        IRB.getInt32Ty(), Type::getInt32PtrTy(C),
693                                        IRB.getInt32Ty()};
694       FunctionType *FTy =
695           FunctionType::get(Type::getInt32PtrTy(C), Params, false);
696       SaveSetjmpF =
697           Function::Create(FTy, GlobalValue::ExternalLinkage, "saveSetjmp", &M);
698 
699       // Register testSetjmp function
700       Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
701       FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
702       TestSetjmpF =
703           Function::Create(FTy, GlobalValue::ExternalLinkage, "testSetjmp", &M);
704 
705       FTy = FunctionType::get(IRB.getVoidTy(),
706                               {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
707       EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
708                                     "emscripten_longjmp", &M);
709 
710       // Only traverse functions that uses setjmp in order not to insert
711       // unnecessary prep / cleanup code in every function
712       SmallPtrSet<Function *, 8> SetjmpUsers;
713       for (User *U : SetjmpF->users()) {
714         auto *UI = cast<Instruction>(U);
715         SetjmpUsers.insert(UI->getFunction());
716       }
717       for (Function *F : SetjmpUsers)
718         runSjLjOnFunction(*F);
719     }
720   }
721 
722   if (!Changed) {
723     // Delete unused global variables and functions
724     if (ResumeF)
725       ResumeF->eraseFromParent();
726     if (EHTypeIDF)
727       EHTypeIDF->eraseFromParent();
728     if (EmLongjmpF)
729       EmLongjmpF->eraseFromParent();
730     if (SaveSetjmpF)
731       SaveSetjmpF->eraseFromParent();
732     if (TestSetjmpF)
733       TestSetjmpF->eraseFromParent();
734     return false;
735   }
736 
737   return true;
738 }
739 
runEHOnFunction(Function & F)740 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
741   Module &M = *F.getParent();
742   LLVMContext &C = F.getContext();
743   IRBuilder<> IRB(C);
744   bool Changed = false;
745   SmallVector<Instruction *, 64> ToErase;
746   SmallPtrSet<LandingPadInst *, 32> LandingPads;
747   bool AllowExceptions =
748       areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
749 
750   for (BasicBlock &BB : F) {
751     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
752     if (!II)
753       continue;
754     Changed = true;
755     LandingPads.insert(II->getLandingPadInst());
756     IRB.SetInsertPoint(II);
757 
758     bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
759     if (NeedInvoke) {
760       // Wrap invoke with invoke wrapper and generate preamble/postamble
761       Value *Threw = wrapInvoke(II);
762       ToErase.push_back(II);
763 
764       // Insert a branch based on __THREW__ variable
765       Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
766       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
767 
768     } else {
769       // This can't throw, and we don't need this invoke, just replace it with a
770       // call+branch
771       SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
772       CallInst *NewCall =
773           IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args);
774       NewCall->takeName(II);
775       NewCall->setCallingConv(II->getCallingConv());
776       NewCall->setDebugLoc(II->getDebugLoc());
777       NewCall->setAttributes(II->getAttributes());
778       II->replaceAllUsesWith(NewCall);
779       ToErase.push_back(II);
780 
781       IRB.CreateBr(II->getNormalDest());
782 
783       // Remove any PHI node entries from the exception destination
784       II->getUnwindDest()->removePredecessor(&BB);
785     }
786   }
787 
788   // Process resume instructions
789   for (BasicBlock &BB : F) {
790     // Scan the body of the basic block for resumes
791     for (Instruction &I : BB) {
792       auto *RI = dyn_cast<ResumeInst>(&I);
793       if (!RI)
794         continue;
795       Changed = true;
796 
797       // Split the input into legal values
798       Value *Input = RI->getValue();
799       IRB.SetInsertPoint(RI);
800       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
801       // Create a call to __resumeException function
802       IRB.CreateCall(ResumeF, {Low});
803       // Add a terminator to the block
804       IRB.CreateUnreachable();
805       ToErase.push_back(RI);
806     }
807   }
808 
809   // Process llvm.eh.typeid.for intrinsics
810   for (BasicBlock &BB : F) {
811     for (Instruction &I : BB) {
812       auto *CI = dyn_cast<CallInst>(&I);
813       if (!CI)
814         continue;
815       const Function *Callee = CI->getCalledFunction();
816       if (!Callee)
817         continue;
818       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
819         continue;
820       Changed = true;
821 
822       IRB.SetInsertPoint(CI);
823       CallInst *NewCI =
824           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
825       CI->replaceAllUsesWith(NewCI);
826       ToErase.push_back(CI);
827     }
828   }
829 
830   // Look for orphan landingpads, can occur in blocks with no predecessors
831   for (BasicBlock &BB : F) {
832     Instruction *I = BB.getFirstNonPHI();
833     if (auto *LPI = dyn_cast<LandingPadInst>(I))
834       LandingPads.insert(LPI);
835   }
836   Changed |= !LandingPads.empty();
837 
838   // Handle all the landingpad for this function together, as multiple invokes
839   // may share a single lp
840   for (LandingPadInst *LPI : LandingPads) {
841     IRB.SetInsertPoint(LPI);
842     SmallVector<Value *, 16> FMCArgs;
843     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
844       Constant *Clause = LPI->getClause(I);
845       // As a temporary workaround for the lack of aggregate varargs support
846       // in the interface between JS and wasm, break out filter operands into
847       // their component elements.
848       if (LPI->isFilter(I)) {
849         auto *ATy = cast<ArrayType>(Clause->getType());
850         for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
851           Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
852           FMCArgs.push_back(EV);
853         }
854       } else
855         FMCArgs.push_back(Clause);
856     }
857 
858     // Create a call to __cxa_find_matching_catch_N function
859     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
860     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
861     Value *Undef = UndefValue::get(LPI->getType());
862     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
863     Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
864     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
865 
866     LPI->replaceAllUsesWith(Pair1);
867     ToErase.push_back(LPI);
868   }
869 
870   // Erase everything we no longer need in this function
871   for (Instruction *I : ToErase)
872     I->eraseFromParent();
873 
874   return Changed;
875 }
876 
runSjLjOnFunction(Function & F)877 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
878   Module &M = *F.getParent();
879   LLVMContext &C = F.getContext();
880   IRBuilder<> IRB(C);
881   SmallVector<Instruction *, 64> ToErase;
882   // Vector of %setjmpTable values
883   std::vector<Instruction *> SetjmpTableInsts;
884   // Vector of %setjmpTableSize values
885   std::vector<Instruction *> SetjmpTableSizeInsts;
886 
887   // Setjmp preparation
888 
889   // This instruction effectively means %setjmpTableSize = 4.
890   // We create this as an instruction intentionally, and we don't want to fold
891   // this instruction to a constant 4, because this value will be used in
892   // SSAUpdater.AddAvailableValue(...) later.
893   BasicBlock &EntryBB = F.getEntryBlock();
894   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
895       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
896       &*EntryBB.getFirstInsertionPt());
897   // setjmpTable = (int *) malloc(40);
898   Instruction *SetjmpTable = CallInst::CreateMalloc(
899       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
900       nullptr, nullptr, "setjmpTable");
901   // setjmpTable[0] = 0;
902   IRB.SetInsertPoint(SetjmpTableSize);
903   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
904   SetjmpTableInsts.push_back(SetjmpTable);
905   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
906 
907   // Setjmp transformation
908   std::vector<PHINode *> SetjmpRetPHIs;
909   Function *SetjmpF = M.getFunction("setjmp");
910   for (User *U : SetjmpF->users()) {
911     auto *CI = dyn_cast<CallInst>(U);
912     if (!CI)
913       report_fatal_error("Does not support indirect calls to setjmp");
914 
915     BasicBlock *BB = CI->getParent();
916     if (BB->getParent() != &F) // in other function
917       continue;
918 
919     // The tail is everything right after the call, and will be reached once
920     // when setjmp is called, and later when longjmp returns to the setjmp
921     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
922     // Add a phi to the tail, which will be the output of setjmp, which
923     // indicates if this is the first call or a longjmp back. The phi directly
924     // uses the right value based on where we arrive from
925     IRB.SetInsertPoint(Tail->getFirstNonPHI());
926     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
927 
928     // setjmp initial call returns 0
929     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
930     // The proper output is now this, not the setjmp call itself
931     CI->replaceAllUsesWith(SetjmpRet);
932     // longjmp returns to the setjmp will add themselves to this phi
933     SetjmpRetPHIs.push_back(SetjmpRet);
934 
935     // Fix call target
936     // Our index in the function is our place in the array + 1 to avoid index
937     // 0, because index 0 means the longjmp is not ours to handle.
938     IRB.SetInsertPoint(CI);
939     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
940                      SetjmpTable, SetjmpTableSize};
941     Instruction *NewSetjmpTable =
942         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
943     Instruction *NewSetjmpTableSize =
944         IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
945     SetjmpTableInsts.push_back(NewSetjmpTable);
946     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
947     ToErase.push_back(CI);
948   }
949 
950   // Update each call that can longjmp so it can return to a setjmp where
951   // relevant.
952 
953   // Because we are creating new BBs while processing and don't want to make
954   // all these newly created BBs candidates again for longjmp processing, we
955   // first make the vector of candidate BBs.
956   std::vector<BasicBlock *> BBs;
957   for (BasicBlock &BB : F)
958     BBs.push_back(&BB);
959 
960   // BBs.size() will change within the loop, so we query it every time
961   for (unsigned I = 0; I < BBs.size(); I++) {
962     BasicBlock *BB = BBs[I];
963     for (Instruction &I : *BB) {
964       assert(!isa<InvokeInst>(&I));
965       auto *CI = dyn_cast<CallInst>(&I);
966       if (!CI)
967         continue;
968 
969       const Value *Callee = CI->getCalledValue();
970       if (!canLongjmp(M, Callee))
971         continue;
972       if (isEmAsmCall(M, Callee))
973         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
974                                F.getName() +
975                                ". Please consider using EM_JS, or move the "
976                                "EM_ASM into another function.",
977                            false);
978 
979       Value *Threw = nullptr;
980       BasicBlock *Tail;
981       if (Callee->getName().startswith("__invoke_")) {
982         // If invoke wrapper has already been generated for this call in
983         // previous EH phase, search for the load instruction
984         // %__THREW__.val = __THREW__;
985         // in postamble after the invoke wrapper call
986         LoadInst *ThrewLI = nullptr;
987         StoreInst *ThrewResetSI = nullptr;
988         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
989              I != IE; ++I) {
990           if (auto *LI = dyn_cast<LoadInst>(I))
991             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
992               if (GV == ThrewGV) {
993                 Threw = ThrewLI = LI;
994                 break;
995               }
996         }
997         // Search for the store instruction after the load above
998         // __THREW__ = 0;
999         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1000              I != IE; ++I) {
1001           if (auto *SI = dyn_cast<StoreInst>(I))
1002             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
1003               if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
1004                 ThrewResetSI = SI;
1005                 break;
1006               }
1007         }
1008         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1009         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1010         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1011 
1012       } else {
1013         // Wrap call with invoke wrapper and generate preamble/postamble
1014         Threw = wrapInvoke(CI);
1015         ToErase.push_back(CI);
1016         Tail = SplitBlock(BB, CI->getNextNode());
1017       }
1018 
1019       // We need to replace the terminator in Tail - SplitBlock makes BB go
1020       // straight to Tail, we need to check if a longjmp occurred, and go to the
1021       // right setjmp-tail if so
1022       ToErase.push_back(BB->getTerminator());
1023 
1024       // Generate a function call to testSetjmp function and preamble/postamble
1025       // code to figure out (1) whether longjmp occurred (2) if longjmp
1026       // occurred, which setjmp it corresponds to
1027       Value *Label = nullptr;
1028       Value *LongjmpResult = nullptr;
1029       BasicBlock *EndBB = nullptr;
1030       wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1031                      LongjmpResult, EndBB);
1032       assert(Label && LongjmpResult && EndBB);
1033 
1034       // Create switch instruction
1035       IRB.SetInsertPoint(EndBB);
1036       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1037       // -1 means no longjmp happened, continue normally (will hit the default
1038       // switch case). 0 means a longjmp that is not ours to handle, needs a
1039       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1040       // 0).
1041       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1042         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1043         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1044       }
1045 
1046       // We are splitting the block here, and must continue to find other calls
1047       // in the block - which is now split. so continue to traverse in the Tail
1048       BBs.push_back(Tail);
1049     }
1050   }
1051 
1052   // Erase everything we no longer need in this function
1053   for (Instruction *I : ToErase)
1054     I->eraseFromParent();
1055 
1056   // Free setjmpTable buffer before each return instruction
1057   for (BasicBlock &BB : F) {
1058     Instruction *TI = BB.getTerminator();
1059     if (isa<ReturnInst>(TI))
1060       CallInst::CreateFree(SetjmpTable, TI);
1061   }
1062 
1063   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1064   // (when buffer reallocation occurs)
1065   // entry:
1066   //   setjmpTableSize = 4;
1067   //   setjmpTable = (int *) malloc(40);
1068   //   setjmpTable[0] = 0;
1069   // ...
1070   // somebb:
1071   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1072   //   setjmpTableSize = getTempRet0();
1073   // So we need to make sure the SSA for these variables is valid so that every
1074   // saveSetjmp and testSetjmp calls have the correct arguments.
1075   SSAUpdater SetjmpTableSSA;
1076   SSAUpdater SetjmpTableSizeSSA;
1077   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1078   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1079   for (Instruction *I : SetjmpTableInsts)
1080     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1081   for (Instruction *I : SetjmpTableSizeInsts)
1082     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1083 
1084   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1085        UI != UE;) {
1086     // Grab the use before incrementing the iterator.
1087     Use &U = *UI;
1088     // Increment the iterator before removing the use from the list.
1089     ++UI;
1090     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1091       if (I->getParent() != &EntryBB)
1092         SetjmpTableSSA.RewriteUse(U);
1093   }
1094   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1095        UI != UE;) {
1096     Use &U = *UI;
1097     ++UI;
1098     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1099       if (I->getParent() != &EntryBB)
1100         SetjmpTableSizeSSA.RewriteUse(U);
1101   }
1102 
1103   // Finally, our modifications to the cfg can break dominance of SSA variables.
1104   // For example, in this code,
1105   // if (x()) { .. setjmp() .. }
1106   // if (y()) { .. longjmp() .. }
1107   // We must split the longjmp block, and it can jump into the block splitted
1108   // from setjmp one. But that means that when we split the setjmp block, it's
1109   // first part no longer dominates its second part - there is a theoretically
1110   // possible control flow path where x() is false, then y() is true and we
1111   // reach the second part of the setjmp block, without ever reaching the first
1112   // part. So, we rebuild SSA form here.
1113   rebuildSSA(F);
1114   return true;
1115 }
1116