1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops that contain branches on loop-invariant conditions
10 // to multiple loops. For example, it turns the left into the right code:
11 //
12 // for (...) if (lic)
13 // A for (...)
14 // if (lic) A; B; C
15 // B else
16 // C for (...)
17 // A; C
18 //
19 // This can increase the size of the code exponentially (doubling it every time
20 // a loop is unswitched) so we only unswitch if the resultant code will be
21 // smaller than a threshold.
22 //
23 // This pass expects LICM to be run before it to hoist invariant conditions out
24 // of the loop, to make the unswitching opportunity obvious.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/CodeMetrics.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopIterator.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/IRBuilder.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueHandle.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Scalar/LoopPassManager.h"
70 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
71 #include "llvm/Transforms/Utils/Cloning.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/LoopUtils.h"
74 #include "llvm/Transforms/Utils/ValueMapper.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82
83 using namespace llvm;
84
85 #define DEBUG_TYPE "loop-unswitch"
86
87 STATISTIC(NumBranches, "Number of branches unswitched");
88 STATISTIC(NumSwitches, "Number of switches unswitched");
89 STATISTIC(NumGuards, "Number of guards unswitched");
90 STATISTIC(NumSelects , "Number of selects unswitched");
91 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
92 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
93 STATISTIC(TotalInsts, "Total number of instructions analyzed");
94
95 // The specific value of 100 here was chosen based only on intuition and a
96 // few specific examples.
97 static cl::opt<unsigned>
98 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
99 cl::init(100), cl::Hidden);
100
101 namespace {
102
103 class LUAnalysisCache {
104 using UnswitchedValsMap =
105 DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
106 using UnswitchedValsIt = UnswitchedValsMap::iterator;
107
108 struct LoopProperties {
109 unsigned CanBeUnswitchedCount;
110 unsigned WasUnswitchedCount;
111 unsigned SizeEstimation;
112 UnswitchedValsMap UnswitchedVals;
113 };
114
115 // Here we use std::map instead of DenseMap, since we need to keep valid
116 // LoopProperties pointer for current loop for better performance.
117 using LoopPropsMap = std::map<const Loop *, LoopProperties>;
118 using LoopPropsMapIt = LoopPropsMap::iterator;
119
120 LoopPropsMap LoopsProperties;
121 UnswitchedValsMap *CurLoopInstructions = nullptr;
122 LoopProperties *CurrentLoopProperties = nullptr;
123
124 // A loop unswitching with an estimated cost above this threshold
125 // is not performed. MaxSize is turned into unswitching quota for
126 // the current loop, and reduced correspondingly, though note that
127 // the quota is returned by releaseMemory() when the loop has been
128 // processed, so that MaxSize will return to its previous
129 // value. So in most cases MaxSize will equal the Threshold flag
130 // when a new loop is processed. An exception to that is that
131 // MaxSize will have a smaller value while processing nested loops
132 // that were introduced due to loop unswitching of an outer loop.
133 //
134 // FIXME: The way that MaxSize works is subtle and depends on the
135 // pass manager processing loops and calling releaseMemory() in a
136 // specific order. It would be good to find a more straightforward
137 // way of doing what MaxSize does.
138 unsigned MaxSize;
139
140 public:
LUAnalysisCache()141 LUAnalysisCache() : MaxSize(Threshold) {}
142
143 // Analyze loop. Check its size, calculate is it possible to unswitch
144 // it. Returns true if we can unswitch this loop.
145 bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
146 AssumptionCache *AC);
147
148 // Clean all data related to given loop.
149 void forgetLoop(const Loop *L);
150
151 // Mark case value as unswitched.
152 // Since SI instruction can be partly unswitched, in order to avoid
153 // extra unswitching in cloned loops keep track all unswitched values.
154 void setUnswitched(const SwitchInst *SI, const Value *V);
155
156 // Check was this case value unswitched before or not.
157 bool isUnswitched(const SwitchInst *SI, const Value *V);
158
159 // Returns true if another unswitching could be done within the cost
160 // threshold.
161 bool CostAllowsUnswitching();
162
163 // Clone all loop-unswitch related loop properties.
164 // Redistribute unswitching quotas.
165 // Note, that new loop data is stored inside the VMap.
166 void cloneData(const Loop *NewLoop, const Loop *OldLoop,
167 const ValueToValueMapTy &VMap);
168 };
169
170 class LoopUnswitch : public LoopPass {
171 LoopInfo *LI; // Loop information
172 LPPassManager *LPM;
173 AssumptionCache *AC;
174
175 // Used to check if second loop needs processing after
176 // RewriteLoopBodyWithConditionConstant rewrites first loop.
177 std::vector<Loop*> LoopProcessWorklist;
178
179 LUAnalysisCache BranchesInfo;
180
181 bool OptimizeForSize;
182 bool redoLoop = false;
183
184 Loop *currentLoop = nullptr;
185 DominatorTree *DT = nullptr;
186 MemorySSA *MSSA = nullptr;
187 std::unique_ptr<MemorySSAUpdater> MSSAU;
188 BasicBlock *loopHeader = nullptr;
189 BasicBlock *loopPreheader = nullptr;
190
191 bool SanitizeMemory;
192 SimpleLoopSafetyInfo SafetyInfo;
193
194 // LoopBlocks contains all of the basic blocks of the loop, including the
195 // preheader of the loop, the body of the loop, and the exit blocks of the
196 // loop, in that order.
197 std::vector<BasicBlock*> LoopBlocks;
198 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
199 std::vector<BasicBlock*> NewBlocks;
200
201 bool hasBranchDivergence;
202
203 public:
204 static char ID; // Pass ID, replacement for typeid
205
LoopUnswitch(bool Os=false,bool hasBranchDivergence=false)206 explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
207 : LoopPass(ID), OptimizeForSize(Os),
208 hasBranchDivergence(hasBranchDivergence) {
209 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
210 }
211
212 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
213 bool processCurrentLoop();
214 bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
215
216 /// This transformation requires natural loop information & requires that
217 /// loop preheaders be inserted into the CFG.
218 ///
getAnalysisUsage(AnalysisUsage & AU) const219 void getAnalysisUsage(AnalysisUsage &AU) const override {
220 AU.addRequired<AssumptionCacheTracker>();
221 AU.addRequired<TargetTransformInfoWrapperPass>();
222 if (EnableMSSALoopDependency) {
223 AU.addRequired<MemorySSAWrapperPass>();
224 AU.addPreserved<MemorySSAWrapperPass>();
225 }
226 if (hasBranchDivergence)
227 AU.addRequired<LegacyDivergenceAnalysis>();
228 getLoopAnalysisUsage(AU);
229 }
230
231 private:
releaseMemory()232 void releaseMemory() override {
233 BranchesInfo.forgetLoop(currentLoop);
234 }
235
initLoopData()236 void initLoopData() {
237 loopHeader = currentLoop->getHeader();
238 loopPreheader = currentLoop->getLoopPreheader();
239 }
240
241 /// Split all of the edges from inside the loop to their exit blocks.
242 /// Update the appropriate Phi nodes as we do so.
243 void SplitExitEdges(Loop *L,
244 const SmallVectorImpl<BasicBlock *> &ExitBlocks);
245
246 bool TryTrivialLoopUnswitch(bool &Changed);
247
248 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
249 Instruction *TI = nullptr);
250 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
251 BasicBlock *ExitBlock, Instruction *TI);
252 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
253 Instruction *TI);
254
255 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
256 Constant *Val, bool isEqual);
257
258 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
259 BasicBlock *TrueDest,
260 BasicBlock *FalseDest,
261 BranchInst *OldBranch, Instruction *TI);
262
263 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
264
265 /// Given that the Invariant is not equal to Val. Simplify instructions
266 /// in the loop.
267 Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
268 Constant *Val);
269 };
270
271 } // end anonymous namespace
272
273 // Analyze loop. Check its size, calculate is it possible to unswitch
274 // it. Returns true if we can unswitch this loop.
countLoop(const Loop * L,const TargetTransformInfo & TTI,AssumptionCache * AC)275 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
276 AssumptionCache *AC) {
277 LoopPropsMapIt PropsIt;
278 bool Inserted;
279 std::tie(PropsIt, Inserted) =
280 LoopsProperties.insert(std::make_pair(L, LoopProperties()));
281
282 LoopProperties &Props = PropsIt->second;
283
284 if (Inserted) {
285 // New loop.
286
287 // Limit the number of instructions to avoid causing significant code
288 // expansion, and the number of basic blocks, to avoid loops with
289 // large numbers of branches which cause loop unswitching to go crazy.
290 // This is a very ad-hoc heuristic.
291
292 SmallPtrSet<const Value *, 32> EphValues;
293 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
294
295 // FIXME: This is overly conservative because it does not take into
296 // consideration code simplification opportunities and code that can
297 // be shared by the resultant unswitched loops.
298 CodeMetrics Metrics;
299 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
300 ++I)
301 Metrics.analyzeBasicBlock(*I, TTI, EphValues);
302
303 Props.SizeEstimation = Metrics.NumInsts;
304 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
305 Props.WasUnswitchedCount = 0;
306 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
307
308 if (Metrics.notDuplicatable) {
309 LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
310 << ", contents cannot be "
311 << "duplicated!\n");
312 return false;
313 }
314 }
315
316 // Be careful. This links are good only before new loop addition.
317 CurrentLoopProperties = &Props;
318 CurLoopInstructions = &Props.UnswitchedVals;
319
320 return true;
321 }
322
323 // Clean all data related to given loop.
forgetLoop(const Loop * L)324 void LUAnalysisCache::forgetLoop(const Loop *L) {
325 LoopPropsMapIt LIt = LoopsProperties.find(L);
326
327 if (LIt != LoopsProperties.end()) {
328 LoopProperties &Props = LIt->second;
329 MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
330 Props.SizeEstimation;
331 LoopsProperties.erase(LIt);
332 }
333
334 CurrentLoopProperties = nullptr;
335 CurLoopInstructions = nullptr;
336 }
337
338 // Mark case value as unswitched.
339 // Since SI instruction can be partly unswitched, in order to avoid
340 // extra unswitching in cloned loops keep track all unswitched values.
setUnswitched(const SwitchInst * SI,const Value * V)341 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
342 (*CurLoopInstructions)[SI].insert(V);
343 }
344
345 // Check was this case value unswitched before or not.
isUnswitched(const SwitchInst * SI,const Value * V)346 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
347 return (*CurLoopInstructions)[SI].count(V);
348 }
349
CostAllowsUnswitching()350 bool LUAnalysisCache::CostAllowsUnswitching() {
351 return CurrentLoopProperties->CanBeUnswitchedCount > 0;
352 }
353
354 // Clone all loop-unswitch related loop properties.
355 // Redistribute unswitching quotas.
356 // Note, that new loop data is stored inside the VMap.
cloneData(const Loop * NewLoop,const Loop * OldLoop,const ValueToValueMapTy & VMap)357 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
358 const ValueToValueMapTy &VMap) {
359 LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
360 LoopProperties &OldLoopProps = *CurrentLoopProperties;
361 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
362
363 // Reallocate "can-be-unswitched quota"
364
365 --OldLoopProps.CanBeUnswitchedCount;
366 ++OldLoopProps.WasUnswitchedCount;
367 NewLoopProps.WasUnswitchedCount = 0;
368 unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
369 NewLoopProps.CanBeUnswitchedCount = Quota / 2;
370 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
371
372 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
373
374 // Clone unswitched values info:
375 // for new loop switches we clone info about values that was
376 // already unswitched and has redundant successors.
377 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
378 const SwitchInst *OldInst = I->first;
379 Value *NewI = VMap.lookup(OldInst);
380 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
381 assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
382
383 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
384 }
385 }
386
387 char LoopUnswitch::ID = 0;
388
389 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
390 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)391 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
392 INITIALIZE_PASS_DEPENDENCY(LoopPass)
393 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
394 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
395 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
396 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
397 false, false)
398
399 Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
400 return new LoopUnswitch(Os, hasBranchDivergence);
401 }
402
403 /// Operator chain lattice.
404 enum OperatorChain {
405 OC_OpChainNone, ///< There is no operator.
406 OC_OpChainOr, ///< There are only ORs.
407 OC_OpChainAnd, ///< There are only ANDs.
408 OC_OpChainMixed ///< There are ANDs and ORs.
409 };
410
411 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
412 /// an invariant piece, return the invariant. Otherwise, return null.
413 //
414 /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
415 /// mixed operator chain, as we can not reliably find a value which will simplify
416 /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
417 /// to simplify the chain.
418 ///
419 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
420 /// simplify the condition itself to a loop variant condition, but at the
421 /// cost of creating an entirely new loop.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed,OperatorChain & ParentChain,DenseMap<Value *,Value * > & Cache,MemorySSAUpdater * MSSAU)422 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
423 OperatorChain &ParentChain,
424 DenseMap<Value *, Value *> &Cache,
425 MemorySSAUpdater *MSSAU) {
426 auto CacheIt = Cache.find(Cond);
427 if (CacheIt != Cache.end())
428 return CacheIt->second;
429
430 // We started analyze new instruction, increment scanned instructions counter.
431 ++TotalInsts;
432
433 // We can never unswitch on vector conditions.
434 if (Cond->getType()->isVectorTy())
435 return nullptr;
436
437 // Constants should be folded, not unswitched on!
438 if (isa<Constant>(Cond)) return nullptr;
439
440 // TODO: Handle: br (VARIANT|INVARIANT).
441
442 // Hoist simple values out.
443 if (L->makeLoopInvariant(Cond, Changed, nullptr, MSSAU)) {
444 Cache[Cond] = Cond;
445 return Cond;
446 }
447
448 // Walk up the operator chain to find partial invariant conditions.
449 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
450 if (BO->getOpcode() == Instruction::And ||
451 BO->getOpcode() == Instruction::Or) {
452 // Given the previous operator, compute the current operator chain status.
453 OperatorChain NewChain;
454 switch (ParentChain) {
455 case OC_OpChainNone:
456 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
457 OC_OpChainOr;
458 break;
459 case OC_OpChainOr:
460 NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
461 OC_OpChainMixed;
462 break;
463 case OC_OpChainAnd:
464 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
465 OC_OpChainMixed;
466 break;
467 case OC_OpChainMixed:
468 NewChain = OC_OpChainMixed;
469 break;
470 }
471
472 // If we reach a Mixed state, we do not want to keep walking up as we can not
473 // reliably find a value that will simplify the chain. With this check, we
474 // will return null on the first sight of mixed chain and the caller will
475 // either backtrack to find partial LIV in other operand or return null.
476 if (NewChain != OC_OpChainMixed) {
477 // Update the current operator chain type before we search up the chain.
478 ParentChain = NewChain;
479 // If either the left or right side is invariant, we can unswitch on this,
480 // which will cause the branch to go away in one loop and the condition to
481 // simplify in the other one.
482 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
483 ParentChain, Cache, MSSAU)) {
484 Cache[Cond] = LHS;
485 return LHS;
486 }
487 // We did not manage to find a partial LIV in operand(0). Backtrack and try
488 // operand(1).
489 ParentChain = NewChain;
490 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
491 ParentChain, Cache, MSSAU)) {
492 Cache[Cond] = RHS;
493 return RHS;
494 }
495 }
496 }
497
498 Cache[Cond] = nullptr;
499 return nullptr;
500 }
501
502 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
503 /// an invariant piece, return the invariant along with the operator chain type.
504 /// Otherwise, return null.
505 static std::pair<Value *, OperatorChain>
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed,MemorySSAUpdater * MSSAU)506 FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
507 MemorySSAUpdater *MSSAU) {
508 DenseMap<Value *, Value *> Cache;
509 OperatorChain OpChain = OC_OpChainNone;
510 Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache, MSSAU);
511
512 // In case we do find a LIV, it can not be obtained by walking up a mixed
513 // operator chain.
514 assert((!FCond || OpChain != OC_OpChainMixed) &&
515 "Do not expect a partial LIV with mixed operator chain");
516 return {FCond, OpChain};
517 }
518
runOnLoop(Loop * L,LPPassManager & LPM_Ref)519 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
520 if (skipLoop(L))
521 return false;
522
523 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
524 *L->getHeader()->getParent());
525 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
526 LPM = &LPM_Ref;
527 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
528 if (EnableMSSALoopDependency) {
529 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
530 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
531 assert(DT && "Cannot update MemorySSA without a valid DomTree.");
532 }
533 currentLoop = L;
534 Function *F = currentLoop->getHeader()->getParent();
535
536 SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
537 if (SanitizeMemory)
538 SafetyInfo.computeLoopSafetyInfo(L);
539
540 if (MSSA && VerifyMemorySSA)
541 MSSA->verifyMemorySSA();
542
543 bool Changed = false;
544 do {
545 assert(currentLoop->isLCSSAForm(*DT));
546 if (MSSA && VerifyMemorySSA)
547 MSSA->verifyMemorySSA();
548 redoLoop = false;
549 Changed |= processCurrentLoop();
550 } while(redoLoop);
551
552 if (MSSA && VerifyMemorySSA)
553 MSSA->verifyMemorySSA();
554
555 return Changed;
556 }
557
558 // Return true if the BasicBlock BB is unreachable from the loop header.
559 // Return false, otherwise.
isUnreachableDueToPreviousUnswitching(BasicBlock * BB)560 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
561 auto *Node = DT->getNode(BB)->getIDom();
562 BasicBlock *DomBB = Node->getBlock();
563 while (currentLoop->contains(DomBB)) {
564 BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
565
566 Node = DT->getNode(DomBB)->getIDom();
567 DomBB = Node->getBlock();
568
569 if (!BInst || !BInst->isConditional())
570 continue;
571
572 Value *Cond = BInst->getCondition();
573 if (!isa<ConstantInt>(Cond))
574 continue;
575
576 BasicBlock *UnreachableSucc =
577 Cond == ConstantInt::getTrue(Cond->getContext())
578 ? BInst->getSuccessor(1)
579 : BInst->getSuccessor(0);
580
581 if (DT->dominates(UnreachableSucc, BB))
582 return true;
583 }
584 return false;
585 }
586
587 /// FIXME: Remove this workaround when freeze related patches are done.
588 /// LoopUnswitch and Equality propagation in GVN have discrepancy about
589 /// whether branch on undef/poison has undefine behavior. Here it is to
590 /// rule out some common cases that we found such discrepancy already
591 /// causing problems. Detail could be found in PR31652. Note if the
592 /// func returns true, it is unsafe. But if it is false, it doesn't mean
593 /// it is necessarily safe.
EqualityPropUnSafe(Value & LoopCond)594 static bool EqualityPropUnSafe(Value &LoopCond) {
595 ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
596 if (!CI || !CI->isEquality())
597 return false;
598
599 Value *LHS = CI->getOperand(0);
600 Value *RHS = CI->getOperand(1);
601 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
602 return true;
603
604 auto hasUndefInPHI = [](PHINode &PN) {
605 for (Value *Opd : PN.incoming_values()) {
606 if (isa<UndefValue>(Opd))
607 return true;
608 }
609 return false;
610 };
611 PHINode *LPHI = dyn_cast<PHINode>(LHS);
612 PHINode *RPHI = dyn_cast<PHINode>(RHS);
613 if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
614 return true;
615
616 auto hasUndefInSelect = [](SelectInst &SI) {
617 if (isa<UndefValue>(SI.getTrueValue()) ||
618 isa<UndefValue>(SI.getFalseValue()))
619 return true;
620 return false;
621 };
622 SelectInst *LSI = dyn_cast<SelectInst>(LHS);
623 SelectInst *RSI = dyn_cast<SelectInst>(RHS);
624 if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
625 return true;
626 return false;
627 }
628
629 /// Do actual work and unswitch loop if possible and profitable.
processCurrentLoop()630 bool LoopUnswitch::processCurrentLoop() {
631 bool Changed = false;
632
633 initLoopData();
634
635 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
636 if (!loopPreheader)
637 return false;
638
639 // Loops with indirectbr cannot be cloned.
640 if (!currentLoop->isSafeToClone())
641 return false;
642
643 // Without dedicated exits, splitting the exit edge may fail.
644 if (!currentLoop->hasDedicatedExits())
645 return false;
646
647 LLVMContext &Context = loopHeader->getContext();
648
649 // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
650 if (!BranchesInfo.countLoop(
651 currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
652 *currentLoop->getHeader()->getParent()),
653 AC))
654 return false;
655
656 // Try trivial unswitch first before loop over other basic blocks in the loop.
657 if (TryTrivialLoopUnswitch(Changed)) {
658 return true;
659 }
660
661 // Do not do non-trivial unswitch while optimizing for size.
662 // FIXME: Use Function::hasOptSize().
663 if (OptimizeForSize ||
664 loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
665 return false;
666
667 // Run through the instructions in the loop, keeping track of three things:
668 //
669 // - That we do not unswitch loops containing convergent operations, as we
670 // might be making them control dependent on the unswitch value when they
671 // were not before.
672 // FIXME: This could be refined to only bail if the convergent operation is
673 // not already control-dependent on the unswitch value.
674 //
675 // - That basic blocks in the loop contain invokes whose predecessor edges we
676 // cannot split.
677 //
678 // - The set of guard intrinsics encountered (these are non terminator
679 // instructions that are also profitable to be unswitched).
680
681 SmallVector<IntrinsicInst *, 4> Guards;
682
683 for (const auto BB : currentLoop->blocks()) {
684 for (auto &I : *BB) {
685 auto CS = CallSite(&I);
686 if (!CS) continue;
687 if (CS.isConvergent())
688 return false;
689 if (auto *II = dyn_cast<InvokeInst>(&I))
690 if (!II->getUnwindDest()->canSplitPredecessors())
691 return false;
692 if (auto *II = dyn_cast<IntrinsicInst>(&I))
693 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
694 Guards.push_back(II);
695 }
696 }
697
698 for (IntrinsicInst *Guard : Guards) {
699 Value *LoopCond = FindLIVLoopCondition(Guard->getOperand(0), currentLoop,
700 Changed, MSSAU.get())
701 .first;
702 if (LoopCond &&
703 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
704 // NB! Unswitching (if successful) could have erased some of the
705 // instructions in Guards leaving dangling pointers there. This is fine
706 // because we're returning now, and won't look at Guards again.
707 ++NumGuards;
708 return true;
709 }
710 }
711
712 // Loop over all of the basic blocks in the loop. If we find an interior
713 // block that is branching on a loop-invariant condition, we can unswitch this
714 // loop.
715 for (Loop::block_iterator I = currentLoop->block_begin(),
716 E = currentLoop->block_end(); I != E; ++I) {
717 Instruction *TI = (*I)->getTerminator();
718
719 // Unswitching on a potentially uninitialized predicate is not
720 // MSan-friendly. Limit this to the cases when the original predicate is
721 // guaranteed to execute, to avoid creating a use-of-uninitialized-value
722 // in the code that did not have one.
723 // This is a workaround for the discrepancy between LLVM IR and MSan
724 // semantics. See PR28054 for more details.
725 if (SanitizeMemory &&
726 !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop))
727 continue;
728
729 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
730 // Some branches may be rendered unreachable because of previous
731 // unswitching.
732 // Unswitch only those branches that are reachable.
733 if (isUnreachableDueToPreviousUnswitching(*I))
734 continue;
735
736 // If this isn't branching on an invariant condition, we can't unswitch
737 // it.
738 if (BI->isConditional()) {
739 // See if this, or some part of it, is loop invariant. If so, we can
740 // unswitch on it if we desire.
741 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), currentLoop,
742 Changed, MSSAU.get())
743 .first;
744 if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
745 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
746 ++NumBranches;
747 return true;
748 }
749 }
750 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
751 Value *SC = SI->getCondition();
752 Value *LoopCond;
753 OperatorChain OpChain;
754 std::tie(LoopCond, OpChain) =
755 FindLIVLoopCondition(SC, currentLoop, Changed, MSSAU.get());
756
757 unsigned NumCases = SI->getNumCases();
758 if (LoopCond && NumCases) {
759 // Find a value to unswitch on:
760 // FIXME: this should chose the most expensive case!
761 // FIXME: scan for a case with a non-critical edge?
762 Constant *UnswitchVal = nullptr;
763 // Find a case value such that at least one case value is unswitched
764 // out.
765 if (OpChain == OC_OpChainAnd) {
766 // If the chain only has ANDs and the switch has a case value of 0.
767 // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
768 auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
769 if (BranchesInfo.isUnswitched(SI, AllZero))
770 continue;
771 // We are unswitching 0 out.
772 UnswitchVal = AllZero;
773 } else if (OpChain == OC_OpChainOr) {
774 // If the chain only has ORs and the switch has a case value of ~0.
775 // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
776 auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
777 if (BranchesInfo.isUnswitched(SI, AllOne))
778 continue;
779 // We are unswitching ~0 out.
780 UnswitchVal = AllOne;
781 } else {
782 assert(OpChain == OC_OpChainNone &&
783 "Expect to unswitch on trivial chain");
784 // Do not process same value again and again.
785 // At this point we have some cases already unswitched and
786 // some not yet unswitched. Let's find the first not yet unswitched one.
787 for (auto Case : SI->cases()) {
788 Constant *UnswitchValCandidate = Case.getCaseValue();
789 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
790 UnswitchVal = UnswitchValCandidate;
791 break;
792 }
793 }
794 }
795
796 if (!UnswitchVal)
797 continue;
798
799 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
800 ++NumSwitches;
801 // In case of a full LIV, UnswitchVal is the value we unswitched out.
802 // In case of a partial LIV, we only unswitch when its an AND-chain
803 // or OR-chain. In both cases switch input value simplifies to
804 // UnswitchVal.
805 BranchesInfo.setUnswitched(SI, UnswitchVal);
806 return true;
807 }
808 }
809 }
810
811 // Scan the instructions to check for unswitchable values.
812 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
813 BBI != E; ++BBI)
814 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
815 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), currentLoop,
816 Changed, MSSAU.get())
817 .first;
818 if (LoopCond && UnswitchIfProfitable(LoopCond,
819 ConstantInt::getTrue(Context))) {
820 ++NumSelects;
821 return true;
822 }
823 }
824 }
825 return Changed;
826 }
827
828 /// Check to see if all paths from BB exit the loop with no side effects
829 /// (including infinite loops).
830 ///
831 /// If true, we return true and set ExitBB to the block we
832 /// exit through.
833 ///
isTrivialLoopExitBlockHelper(Loop * L,BasicBlock * BB,BasicBlock * & ExitBB,std::set<BasicBlock * > & Visited)834 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
835 BasicBlock *&ExitBB,
836 std::set<BasicBlock*> &Visited) {
837 if (!Visited.insert(BB).second) {
838 // Already visited. Without more analysis, this could indicate an infinite
839 // loop.
840 return false;
841 }
842 if (!L->contains(BB)) {
843 // Otherwise, this is a loop exit, this is fine so long as this is the
844 // first exit.
845 if (ExitBB) return false;
846 ExitBB = BB;
847 return true;
848 }
849
850 // Otherwise, this is an unvisited intra-loop node. Check all successors.
851 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
852 // Check to see if the successor is a trivial loop exit.
853 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
854 return false;
855 }
856
857 // Okay, everything after this looks good, check to make sure that this block
858 // doesn't include any side effects.
859 for (Instruction &I : *BB)
860 if (I.mayHaveSideEffects())
861 return false;
862
863 return true;
864 }
865
866 /// Return true if the specified block unconditionally leads to an exit from
867 /// the specified loop, and has no side-effects in the process. If so, return
868 /// the block that is exited to, otherwise return null.
isTrivialLoopExitBlock(Loop * L,BasicBlock * BB)869 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
870 std::set<BasicBlock*> Visited;
871 Visited.insert(L->getHeader()); // Branches to header make infinite loops.
872 BasicBlock *ExitBB = nullptr;
873 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
874 return ExitBB;
875 return nullptr;
876 }
877
878 /// We have found that we can unswitch currentLoop when LoopCond == Val to
879 /// simplify the loop. If we decide that this is profitable,
880 /// unswitch the loop, reprocess the pieces, then return true.
UnswitchIfProfitable(Value * LoopCond,Constant * Val,Instruction * TI)881 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
882 Instruction *TI) {
883 // Check to see if it would be profitable to unswitch current loop.
884 if (!BranchesInfo.CostAllowsUnswitching()) {
885 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
886 << currentLoop->getHeader()->getName()
887 << " at non-trivial condition '" << *Val
888 << "' == " << *LoopCond << "\n"
889 << ". Cost too high.\n");
890 return false;
891 }
892 if (hasBranchDivergence &&
893 getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
894 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
895 << currentLoop->getHeader()->getName()
896 << " at non-trivial condition '" << *Val
897 << "' == " << *LoopCond << "\n"
898 << ". Condition is divergent.\n");
899 return false;
900 }
901
902 UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
903 return true;
904 }
905
906 /// Recursively clone the specified loop and all of its children,
907 /// mapping the blocks with the specified map.
CloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)908 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
909 LoopInfo *LI, LPPassManager *LPM) {
910 Loop &New = *LI->AllocateLoop();
911 if (PL)
912 PL->addChildLoop(&New);
913 else
914 LI->addTopLevelLoop(&New);
915 LPM->addLoop(New);
916
917 // Add all of the blocks in L to the new loop.
918 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
919 I != E; ++I)
920 if (LI->getLoopFor(*I) == L)
921 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
922
923 // Add all of the subloops to the new loop.
924 for (Loop *I : *L)
925 CloneLoop(I, &New, VM, LI, LPM);
926
927 return &New;
928 }
929
930 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
931 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
932 /// and remove (but not erase!) it from the function.
EmitPreheaderBranchOnCondition(Value * LIC,Constant * Val,BasicBlock * TrueDest,BasicBlock * FalseDest,BranchInst * OldBranch,Instruction * TI)933 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
934 BasicBlock *TrueDest,
935 BasicBlock *FalseDest,
936 BranchInst *OldBranch,
937 Instruction *TI) {
938 assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
939 assert(TrueDest != FalseDest && "Branch targets should be different");
940 // Insert a conditional branch on LIC to the two preheaders. The original
941 // code is the true version and the new code is the false version.
942 Value *BranchVal = LIC;
943 bool Swapped = false;
944 if (!isa<ConstantInt>(Val) ||
945 Val->getType() != Type::getInt1Ty(LIC->getContext()))
946 BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
947 else if (Val != ConstantInt::getTrue(Val->getContext())) {
948 // We want to enter the new loop when the condition is true.
949 std::swap(TrueDest, FalseDest);
950 Swapped = true;
951 }
952
953 // Old branch will be removed, so save its parent and successor to update the
954 // DomTree.
955 auto *OldBranchSucc = OldBranch->getSuccessor(0);
956 auto *OldBranchParent = OldBranch->getParent();
957
958 // Insert the new branch.
959 BranchInst *BI =
960 IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
961 if (Swapped)
962 BI->swapProfMetadata();
963
964 // Remove the old branch so there is only one branch at the end. This is
965 // needed to perform DomTree's internal DFS walk on the function's CFG.
966 OldBranch->removeFromParent();
967
968 // Inform the DT about the new branch.
969 if (DT) {
970 // First, add both successors.
971 SmallVector<DominatorTree::UpdateType, 3> Updates;
972 if (TrueDest != OldBranchSucc)
973 Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
974 if (FalseDest != OldBranchSucc)
975 Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
976 // If both of the new successors are different from the old one, inform the
977 // DT that the edge was deleted.
978 if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
979 Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
980 }
981 DT->applyUpdates(Updates);
982
983 if (MSSAU)
984 MSSAU->applyUpdates(Updates, *DT);
985 }
986
987 // If either edge is critical, split it. This helps preserve LoopSimplify
988 // form for enclosing loops.
989 auto Options =
990 CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
991 SplitCriticalEdge(BI, 0, Options);
992 SplitCriticalEdge(BI, 1, Options);
993 }
994
995 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
996 /// from its header block to its latch block, where the path through the loop
997 /// that doesn't execute its body has no side-effects), unswitch it. This
998 /// doesn't involve any code duplication, just moving the conditional branch
999 /// outside of the loop and updating loop info.
UnswitchTrivialCondition(Loop * L,Value * Cond,Constant * Val,BasicBlock * ExitBlock,Instruction * TI)1000 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
1001 BasicBlock *ExitBlock,
1002 Instruction *TI) {
1003 LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
1004 << loopHeader->getName() << " [" << L->getBlocks().size()
1005 << " blocks] in Function "
1006 << L->getHeader()->getParent()->getName()
1007 << " on cond: " << *Val << " == " << *Cond << "\n");
1008 // We are going to make essential changes to CFG. This may invalidate cached
1009 // information for L or one of its parent loops in SCEV.
1010 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1011 SEWP->getSE().forgetTopmostLoop(L);
1012
1013 // First step, split the preheader, so that we know that there is a safe place
1014 // to insert the conditional branch. We will change loopPreheader to have a
1015 // conditional branch on Cond.
1016 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
1017
1018 // Now that we have a place to insert the conditional branch, create a place
1019 // to branch to: this is the exit block out of the loop that we should
1020 // short-circuit to.
1021
1022 // Split this block now, so that the loop maintains its exit block, and so
1023 // that the jump from the preheader can execute the contents of the exit block
1024 // without actually branching to it (the exit block should be dominated by the
1025 // loop header, not the preheader).
1026 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
1027 BasicBlock *NewExit =
1028 SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());
1029
1030 // Okay, now we have a position to branch from and a position to branch to,
1031 // insert the new conditional branch.
1032 auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
1033 assert(OldBranch && "Failed to split the preheader");
1034 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
1035 LPM->deleteSimpleAnalysisValue(OldBranch, L);
1036
1037 // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
1038 // Delete it, as it is no longer needed.
1039 delete OldBranch;
1040
1041 // We need to reprocess this loop, it could be unswitched again.
1042 redoLoop = true;
1043
1044 // Now that we know that the loop is never entered when this condition is a
1045 // particular value, rewrite the loop with this info. We know that this will
1046 // at least eliminate the old branch.
1047 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
1048
1049 ++NumTrivial;
1050 }
1051
1052 /// Check if the first non-constant condition starting from the loop header is
1053 /// a trivial unswitch condition: that is, a condition controls whether or not
1054 /// the loop does anything at all. If it is a trivial condition, unswitching
1055 /// produces no code duplications (equivalently, it produces a simpler loop and
1056 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
1057 /// condition.
TryTrivialLoopUnswitch(bool & Changed)1058 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
1059 BasicBlock *CurrentBB = currentLoop->getHeader();
1060 Instruction *CurrentTerm = CurrentBB->getTerminator();
1061 LLVMContext &Context = CurrentBB->getContext();
1062
1063 // If loop header has only one reachable successor (currently via an
1064 // unconditional branch or constant foldable conditional branch, but
1065 // should also consider adding constant foldable switch instruction in
1066 // future), we should keep looking for trivial condition candidates in
1067 // the successor as well. An alternative is to constant fold conditions
1068 // and merge successors into loop header (then we only need to check header's
1069 // terminator). The reason for not doing this in LoopUnswitch pass is that
1070 // it could potentially break LoopPassManager's invariants. Folding dead
1071 // branches could either eliminate the current loop or make other loops
1072 // unreachable. LCSSA form might also not be preserved after deleting
1073 // branches. The following code keeps traversing loop header's successors
1074 // until it finds the trivial condition candidate (condition that is not a
1075 // constant). Since unswitching generates branches with constant conditions,
1076 // this scenario could be very common in practice.
1077 SmallPtrSet<BasicBlock*, 8> Visited;
1078
1079 while (true) {
1080 // If we exit loop or reach a previous visited block, then
1081 // we can not reach any trivial condition candidates (unfoldable
1082 // branch instructions or switch instructions) and no unswitch
1083 // can happen. Exit and return false.
1084 if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
1085 return false;
1086
1087 // Check if this loop will execute any side-effecting instructions (e.g.
1088 // stores, calls, volatile loads) in the part of the loop that the code
1089 // *would* execute. Check the header first.
1090 for (Instruction &I : *CurrentBB)
1091 if (I.mayHaveSideEffects())
1092 return false;
1093
1094 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1095 if (BI->isUnconditional()) {
1096 CurrentBB = BI->getSuccessor(0);
1097 } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
1098 CurrentBB = BI->getSuccessor(0);
1099 } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
1100 CurrentBB = BI->getSuccessor(1);
1101 } else {
1102 // Found a trivial condition candidate: non-foldable conditional branch.
1103 break;
1104 }
1105 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1106 // At this point, any constant-foldable instructions should have probably
1107 // been folded.
1108 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
1109 if (!Cond)
1110 break;
1111 // Find the target block we are definitely going to.
1112 CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
1113 } else {
1114 // We do not understand these terminator instructions.
1115 break;
1116 }
1117
1118 CurrentTerm = CurrentBB->getTerminator();
1119 }
1120
1121 // CondVal is the condition that controls the trivial condition.
1122 // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
1123 Constant *CondVal = nullptr;
1124 BasicBlock *LoopExitBB = nullptr;
1125
1126 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1127 // If this isn't branching on an invariant condition, we can't unswitch it.
1128 if (!BI->isConditional())
1129 return false;
1130
1131 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), currentLoop,
1132 Changed, MSSAU.get())
1133 .first;
1134
1135 // Unswitch only if the trivial condition itself is an LIV (not
1136 // partial LIV which could occur in and/or)
1137 if (!LoopCond || LoopCond != BI->getCondition())
1138 return false;
1139
1140 // Check to see if a successor of the branch is guaranteed to
1141 // exit through a unique exit block without having any
1142 // side-effects. If so, determine the value of Cond that causes
1143 // it to do this.
1144 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1145 BI->getSuccessor(0)))) {
1146 CondVal = ConstantInt::getTrue(Context);
1147 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1148 BI->getSuccessor(1)))) {
1149 CondVal = ConstantInt::getFalse(Context);
1150 }
1151
1152 // If we didn't find a single unique LoopExit block, or if the loop exit
1153 // block contains phi nodes, this isn't trivial.
1154 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1155 return false; // Can't handle this.
1156
1157 if (EqualityPropUnSafe(*LoopCond))
1158 return false;
1159
1160 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1161 CurrentTerm);
1162 ++NumBranches;
1163 return true;
1164 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1165 // If this isn't switching on an invariant condition, we can't unswitch it.
1166 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), currentLoop,
1167 Changed, MSSAU.get())
1168 .first;
1169
1170 // Unswitch only if the trivial condition itself is an LIV (not
1171 // partial LIV which could occur in and/or)
1172 if (!LoopCond || LoopCond != SI->getCondition())
1173 return false;
1174
1175 // Check to see if a successor of the switch is guaranteed to go to the
1176 // latch block or exit through a one exit block without having any
1177 // side-effects. If so, determine the value of Cond that causes it to do
1178 // this.
1179 // Note that we can't trivially unswitch on the default case or
1180 // on already unswitched cases.
1181 for (auto Case : SI->cases()) {
1182 BasicBlock *LoopExitCandidate;
1183 if ((LoopExitCandidate =
1184 isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
1185 // Okay, we found a trivial case, remember the value that is trivial.
1186 ConstantInt *CaseVal = Case.getCaseValue();
1187
1188 // Check that it was not unswitched before, since already unswitched
1189 // trivial vals are looks trivial too.
1190 if (BranchesInfo.isUnswitched(SI, CaseVal))
1191 continue;
1192 LoopExitBB = LoopExitCandidate;
1193 CondVal = CaseVal;
1194 break;
1195 }
1196 }
1197
1198 // If we didn't find a single unique LoopExit block, or if the loop exit
1199 // block contains phi nodes, this isn't trivial.
1200 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1201 return false; // Can't handle this.
1202
1203 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1204 nullptr);
1205
1206 // We are only unswitching full LIV.
1207 BranchesInfo.setUnswitched(SI, CondVal);
1208 ++NumSwitches;
1209 return true;
1210 }
1211 return false;
1212 }
1213
1214 /// Split all of the edges from inside the loop to their exit blocks.
1215 /// Update the appropriate Phi nodes as we do so.
SplitExitEdges(Loop * L,const SmallVectorImpl<BasicBlock * > & ExitBlocks)1216 void LoopUnswitch::SplitExitEdges(Loop *L,
1217 const SmallVectorImpl<BasicBlock *> &ExitBlocks){
1218
1219 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1220 BasicBlock *ExitBlock = ExitBlocks[i];
1221 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
1222 pred_end(ExitBlock));
1223
1224 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1225 // general, if we call it on all predecessors of all exits then it does.
1226 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
1227 /*PreserveLCSSA*/ true);
1228 }
1229 }
1230
1231 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1232 /// Split it into loop versions and test the condition outside of either loop.
1233 /// Return the loops created as Out1/Out2.
UnswitchNontrivialCondition(Value * LIC,Constant * Val,Loop * L,Instruction * TI)1234 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
1235 Loop *L, Instruction *TI) {
1236 Function *F = loopHeader->getParent();
1237 LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1238 << loopHeader->getName() << " [" << L->getBlocks().size()
1239 << " blocks] in Function " << F->getName() << " when '"
1240 << *Val << "' == " << *LIC << "\n");
1241
1242 // We are going to make essential changes to CFG. This may invalidate cached
1243 // information for L or one of its parent loops in SCEV.
1244 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1245 SEWP->getSE().forgetTopmostLoop(L);
1246
1247 LoopBlocks.clear();
1248 NewBlocks.clear();
1249
1250 if (MSSAU && VerifyMemorySSA)
1251 MSSA->verifyMemorySSA();
1252
1253 // First step, split the preheader and exit blocks, and add these blocks to
1254 // the LoopBlocks list.
1255 BasicBlock *NewPreheader =
1256 SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
1257 LoopBlocks.push_back(NewPreheader);
1258
1259 // We want the loop to come after the preheader, but before the exit blocks.
1260 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
1261
1262 SmallVector<BasicBlock*, 8> ExitBlocks;
1263 L->getUniqueExitBlocks(ExitBlocks);
1264
1265 // Split all of the edges from inside the loop to their exit blocks. Update
1266 // the appropriate Phi nodes as we do so.
1267 SplitExitEdges(L, ExitBlocks);
1268
1269 // The exit blocks may have been changed due to edge splitting, recompute.
1270 ExitBlocks.clear();
1271 L->getUniqueExitBlocks(ExitBlocks);
1272
1273 // Add exit blocks to the loop blocks.
1274 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1275
1276 // Next step, clone all of the basic blocks that make up the loop (including
1277 // the loop preheader and exit blocks), keeping track of the mapping between
1278 // the instructions and blocks.
1279 NewBlocks.reserve(LoopBlocks.size());
1280 ValueToValueMapTy VMap;
1281 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1282 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1283
1284 NewBlocks.push_back(NewBB);
1285 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
1286 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1287 }
1288
1289 // Splice the newly inserted blocks into the function right before the
1290 // original preheader.
1291 F->getBasicBlockList().splice(NewPreheader->getIterator(),
1292 F->getBasicBlockList(),
1293 NewBlocks[0]->getIterator(), F->end());
1294
1295 // Now we create the new Loop object for the versioned loop.
1296 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1297
1298 // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1299 // Probably clone more loop-unswitch related loop properties.
1300 BranchesInfo.cloneData(NewLoop, L, VMap);
1301
1302 Loop *ParentLoop = L->getParentLoop();
1303 if (ParentLoop) {
1304 // Make sure to add the cloned preheader and exit blocks to the parent loop
1305 // as well.
1306 ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1307 }
1308
1309 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1310 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1311 // The new exit block should be in the same loop as the old one.
1312 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1313 ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1314
1315 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1316 "Exit block should have been split to have one successor!");
1317 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1318
1319 // If the successor of the exit block had PHI nodes, add an entry for
1320 // NewExit.
1321 for (PHINode &PN : ExitSucc->phis()) {
1322 Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
1323 ValueToValueMapTy::iterator It = VMap.find(V);
1324 if (It != VMap.end()) V = It->second;
1325 PN.addIncoming(V, NewExit);
1326 }
1327
1328 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1329 PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1330 &*ExitSucc->getFirstInsertionPt());
1331
1332 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1333 I != E; ++I) {
1334 BasicBlock *BB = *I;
1335 LandingPadInst *LPI = BB->getLandingPadInst();
1336 LPI->replaceAllUsesWith(PN);
1337 PN->addIncoming(LPI, BB);
1338 }
1339 }
1340 }
1341
1342 // Rewrite the code to refer to itself.
1343 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
1344 for (Instruction &I : *NewBlocks[i]) {
1345 RemapInstruction(&I, VMap,
1346 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1347 if (auto *II = dyn_cast<IntrinsicInst>(&I))
1348 if (II->getIntrinsicID() == Intrinsic::assume)
1349 AC->registerAssumption(II);
1350 }
1351 }
1352
1353 // Rewrite the original preheader to select between versions of the loop.
1354 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1355 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1356 "Preheader splitting did not work correctly!");
1357
1358 if (MSSAU) {
1359 // Update MemorySSA after cloning, and before splitting to unreachables,
1360 // since that invalidates the 1:1 mapping of clones in VMap.
1361 LoopBlocksRPO LBRPO(L);
1362 LBRPO.perform(LI);
1363 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
1364 }
1365
1366 // Emit the new branch that selects between the two versions of this loop.
1367 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1368 TI);
1369 LPM->deleteSimpleAnalysisValue(OldBR, L);
1370 if (MSSAU) {
1371 // Update MemoryPhis in Exit blocks.
1372 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
1373 if (VerifyMemorySSA)
1374 MSSA->verifyMemorySSA();
1375 }
1376
1377 // The OldBr was replaced by a new one and removed (but not erased) by
1378 // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
1379 delete OldBR;
1380
1381 LoopProcessWorklist.push_back(NewLoop);
1382 redoLoop = true;
1383
1384 // Keep a WeakTrackingVH holding onto LIC. If the first call to
1385 // RewriteLoopBody
1386 // deletes the instruction (for example by simplifying a PHI that feeds into
1387 // the condition that we're unswitching on), we don't rewrite the second
1388 // iteration.
1389 WeakTrackingVH LICHandle(LIC);
1390
1391 // Now we rewrite the original code to know that the condition is true and the
1392 // new code to know that the condition is false.
1393 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1394
1395 // It's possible that simplifying one loop could cause the other to be
1396 // changed to another value or a constant. If its a constant, don't simplify
1397 // it.
1398 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1399 LICHandle && !isa<Constant>(LICHandle))
1400 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1401
1402 if (MSSA && VerifyMemorySSA)
1403 MSSA->verifyMemorySSA();
1404 }
1405
1406 /// Remove all instances of I from the worklist vector specified.
RemoveFromWorklist(Instruction * I,std::vector<Instruction * > & Worklist)1407 static void RemoveFromWorklist(Instruction *I,
1408 std::vector<Instruction*> &Worklist) {
1409
1410 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1411 Worklist.end());
1412 }
1413
1414 /// When we find that I really equals V, remove I from the
1415 /// program, replacing all uses with V and update the worklist.
ReplaceUsesOfWith(Instruction * I,Value * V,std::vector<Instruction * > & Worklist,Loop * L,LPPassManager * LPM,MemorySSAUpdater * MSSAU)1416 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1417 std::vector<Instruction *> &Worklist, Loop *L,
1418 LPPassManager *LPM, MemorySSAUpdater *MSSAU) {
1419 LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
1420
1421 // Add uses to the worklist, which may be dead now.
1422 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1423 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1424 Worklist.push_back(Use);
1425
1426 // Add users to the worklist which may be simplified now.
1427 for (User *U : I->users())
1428 Worklist.push_back(cast<Instruction>(U));
1429 LPM->deleteSimpleAnalysisValue(I, L);
1430 RemoveFromWorklist(I, Worklist);
1431 I->replaceAllUsesWith(V);
1432 if (!I->mayHaveSideEffects()) {
1433 if (MSSAU)
1434 MSSAU->removeMemoryAccess(I);
1435 I->eraseFromParent();
1436 }
1437 ++NumSimplify;
1438 }
1439
1440 /// We know either that the value LIC has the value specified by Val in the
1441 /// specified loop, or we know it does NOT have that value.
1442 /// Rewrite any uses of LIC or of properties correlated to it.
RewriteLoopBodyWithConditionConstant(Loop * L,Value * LIC,Constant * Val,bool IsEqual)1443 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1444 Constant *Val,
1445 bool IsEqual) {
1446 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1447
1448 // FIXME: Support correlated properties, like:
1449 // for (...)
1450 // if (li1 < li2)
1451 // ...
1452 // if (li1 > li2)
1453 // ...
1454
1455 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1456 // selects, switches.
1457 std::vector<Instruction*> Worklist;
1458 LLVMContext &Context = Val->getContext();
1459
1460 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1461 // in the loop with the appropriate one directly.
1462 if (IsEqual || (isa<ConstantInt>(Val) &&
1463 Val->getType()->isIntegerTy(1))) {
1464 Value *Replacement;
1465 if (IsEqual)
1466 Replacement = Val;
1467 else
1468 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1469 !cast<ConstantInt>(Val)->getZExtValue());
1470
1471 for (User *U : LIC->users()) {
1472 Instruction *UI = dyn_cast<Instruction>(U);
1473 if (!UI || !L->contains(UI))
1474 continue;
1475 Worklist.push_back(UI);
1476 }
1477
1478 for (Instruction *UI : Worklist)
1479 UI->replaceUsesOfWith(LIC, Replacement);
1480
1481 SimplifyCode(Worklist, L);
1482 return;
1483 }
1484
1485 // Otherwise, we don't know the precise value of LIC, but we do know that it
1486 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1487 // can. This case occurs when we unswitch switch statements.
1488 for (User *U : LIC->users()) {
1489 Instruction *UI = dyn_cast<Instruction>(U);
1490 if (!UI || !L->contains(UI))
1491 continue;
1492
1493 // At this point, we know LIC is definitely not Val. Try to use some simple
1494 // logic to simplify the user w.r.t. to the context.
1495 if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
1496 if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
1497 // This in-loop instruction has been simplified w.r.t. its context,
1498 // i.e. LIC != Val, make sure we propagate its replacement value to
1499 // all its users.
1500 //
1501 // We can not yet delete UI, the LIC user, yet, because that would invalidate
1502 // the LIC->users() iterator !. However, we can make this instruction
1503 // dead by replacing all its users and push it onto the worklist so that
1504 // it can be properly deleted and its operands simplified.
1505 UI->replaceAllUsesWith(Replacement);
1506 }
1507 }
1508
1509 // This is a LIC user, push it into the worklist so that SimplifyCode can
1510 // attempt to simplify it.
1511 Worklist.push_back(UI);
1512
1513 // If we know that LIC is not Val, use this info to simplify code.
1514 SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1515 if (!SI || !isa<ConstantInt>(Val)) continue;
1516
1517 // NOTE: if a case value for the switch is unswitched out, we record it
1518 // after the unswitch finishes. We can not record it here as the switch
1519 // is not a direct user of the partial LIV.
1520 SwitchInst::CaseHandle DeadCase =
1521 *SI->findCaseValue(cast<ConstantInt>(Val));
1522 // Default case is live for multiple values.
1523 if (DeadCase == *SI->case_default())
1524 continue;
1525
1526 // Found a dead case value. Don't remove PHI nodes in the
1527 // successor if they become single-entry, those PHI nodes may
1528 // be in the Users list.
1529
1530 BasicBlock *Switch = SI->getParent();
1531 BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1532 BasicBlock *Latch = L->getLoopLatch();
1533
1534 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
1535 // If the DeadCase successor dominates the loop latch, then the
1536 // transformation isn't safe since it will delete the sole predecessor edge
1537 // to the latch.
1538 if (Latch && DT->dominates(SISucc, Latch))
1539 continue;
1540
1541 // FIXME: This is a hack. We need to keep the successor around
1542 // and hooked up so as to preserve the loop structure, because
1543 // trying to update it is complicated. So instead we preserve the
1544 // loop structure and put the block on a dead code path.
1545 SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
1546 // Compute the successors instead of relying on the return value
1547 // of SplitEdge, since it may have split the switch successor
1548 // after PHI nodes.
1549 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1550 BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1551 // Create an "unreachable" destination.
1552 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1553 Switch->getParent(),
1554 OldSISucc);
1555 new UnreachableInst(Context, Abort);
1556 // Force the new case destination to branch to the "unreachable"
1557 // block while maintaining a (dead) CFG edge to the old block.
1558 NewSISucc->getTerminator()->eraseFromParent();
1559 BranchInst::Create(Abort, OldSISucc,
1560 ConstantInt::getTrue(Context), NewSISucc);
1561 // Release the PHI operands for this edge.
1562 for (PHINode &PN : NewSISucc->phis())
1563 PN.setIncomingValueForBlock(Switch, UndefValue::get(PN.getType()));
1564 // Tell the domtree about the new block. We don't fully update the
1565 // domtree here -- instead we force it to do a full recomputation
1566 // after the pass is complete -- but we do need to inform it of
1567 // new blocks.
1568 DT->addNewBlock(Abort, NewSISucc);
1569 }
1570
1571 SimplifyCode(Worklist, L);
1572 }
1573
1574 /// Now that we have simplified some instructions in the loop, walk over it and
1575 /// constant prop, dce, and fold control flow where possible. Note that this is
1576 /// effectively a very simple loop-structure-aware optimizer. During processing
1577 /// of this loop, L could very well be deleted, so it must not be used.
1578 ///
1579 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1580 /// pass.
1581 ///
SimplifyCode(std::vector<Instruction * > & Worklist,Loop * L)1582 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1583 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1584 while (!Worklist.empty()) {
1585 Instruction *I = Worklist.back();
1586 Worklist.pop_back();
1587
1588 // Simple DCE.
1589 if (isInstructionTriviallyDead(I)) {
1590 LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
1591
1592 // Add uses to the worklist, which may be dead now.
1593 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1594 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1595 Worklist.push_back(Use);
1596 LPM->deleteSimpleAnalysisValue(I, L);
1597 RemoveFromWorklist(I, Worklist);
1598 if (MSSAU)
1599 MSSAU->removeMemoryAccess(I);
1600 I->eraseFromParent();
1601 ++NumSimplify;
1602 continue;
1603 }
1604
1605 // See if instruction simplification can hack this up. This is common for
1606 // things like "select false, X, Y" after unswitching made the condition be
1607 // 'false'. TODO: update the domtree properly so we can pass it here.
1608 if (Value *V = SimplifyInstruction(I, DL))
1609 if (LI->replacementPreservesLCSSAForm(I, V)) {
1610 ReplaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get());
1611 continue;
1612 }
1613
1614 // Special case hacks that appear commonly in unswitched code.
1615 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1616 if (BI->isUnconditional()) {
1617 // If BI's parent is the only pred of the successor, fold the two blocks
1618 // together.
1619 BasicBlock *Pred = BI->getParent();
1620 (void)Pred;
1621 BasicBlock *Succ = BI->getSuccessor(0);
1622 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1623 if (!SinglePred) continue; // Nothing to do.
1624 assert(SinglePred == Pred && "CFG broken");
1625
1626 // Make the LPM and Worklist updates specific to LoopUnswitch.
1627 LPM->deleteSimpleAnalysisValue(BI, L);
1628 RemoveFromWorklist(BI, Worklist);
1629 LPM->deleteSimpleAnalysisValue(Succ, L);
1630 auto SuccIt = Succ->begin();
1631 while (PHINode *PN = dyn_cast<PHINode>(SuccIt++)) {
1632 for (unsigned It = 0, E = PN->getNumOperands(); It != E; ++It)
1633 if (Instruction *Use = dyn_cast<Instruction>(PN->getOperand(It)))
1634 Worklist.push_back(Use);
1635 for (User *U : PN->users())
1636 Worklist.push_back(cast<Instruction>(U));
1637 LPM->deleteSimpleAnalysisValue(PN, L);
1638 RemoveFromWorklist(PN, Worklist);
1639 ++NumSimplify;
1640 }
1641 // Merge the block and make the remaining analyses updates.
1642 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1643 MergeBlockIntoPredecessor(Succ, &DTU, LI, MSSAU.get());
1644 ++NumSimplify;
1645 continue;
1646 }
1647
1648 continue;
1649 }
1650 }
1651 }
1652
1653 /// Simple simplifications we can do given the information that Cond is
1654 /// definitely not equal to Val.
SimplifyInstructionWithNotEqual(Instruction * Inst,Value * Invariant,Constant * Val)1655 Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
1656 Value *Invariant,
1657 Constant *Val) {
1658 // icmp eq cond, val -> false
1659 ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
1660 if (CI && CI->isEquality()) {
1661 Value *Op0 = CI->getOperand(0);
1662 Value *Op1 = CI->getOperand(1);
1663 if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
1664 LLVMContext &Ctx = Inst->getContext();
1665 if (CI->getPredicate() == CmpInst::ICMP_EQ)
1666 return ConstantInt::getFalse(Ctx);
1667 else
1668 return ConstantInt::getTrue(Ctx);
1669 }
1670 }
1671
1672 // FIXME: there may be other opportunities, e.g. comparison with floating
1673 // point, or Invariant - Val != 0, etc.
1674 return nullptr;
1675 }
1676