1 //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
2 //
3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements loop fusion.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/AffineAnalysis.h"
14 #include "mlir/Analysis/AffineStructures.h"
15 #include "mlir/Analysis/LoopAnalysis.h"
16 #include "mlir/Analysis/Utils.h"
17 #include "mlir/Dialect/AffineOps/AffineOps.h"
18 #include "mlir/Dialect/StandardOps/Ops.h"
19 #include "mlir/IR/AffineExpr.h"
20 #include "mlir/IR/AffineMap.h"
21 #include "mlir/IR/Builders.h"
22 #include "mlir/Pass/Pass.h"
23 #include "mlir/Transforms/LoopFusionUtils.h"
24 #include "mlir/Transforms/LoopUtils.h"
25 #include "mlir/Transforms/Passes.h"
26 #include "mlir/Transforms/Utils.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <iomanip>
34 #include <sstream>
35 #define DEBUG_TYPE "affine-loop-fusion"
36 
37 using llvm::SetVector;
38 
39 using namespace mlir;
40 
41 static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
42 
43 /// Disables fusion profitability check and fuses if valid. Ignore any
44 /// additional (redundant) computation tolerance threshold
45 /// that would have prevented fusion.
46 static llvm::cl::opt<bool>
47     clMaximalLoopFusion("fusion-maximal",
48                         llvm::cl::desc("Enables maximal loop fusion"),
49                         llvm::cl::cat(clOptionsCategory));
50 
51 /// A threshold in percent of additional computation allowed when fusing.
52 static llvm::cl::opt<double> clFusionAddlComputeTolerance(
53     "fusion-compute-tolerance",
54     llvm::cl::desc("Fractional increase in additional "
55                    "computation tolerated while fusing"),
56     llvm::cl::cat(clOptionsCategory));
57 
58 static llvm::cl::opt<unsigned> clFusionFastMemorySpace(
59     "fusion-fast-mem-space",
60     llvm::cl::desc("Faster memory space number to promote fusion buffers to"),
61     llvm::cl::cat(clOptionsCategory));
62 
63 // A local buffer of size less than or equal to this size is automatically
64 // promoted to fast memory after producer-consumer fusion.
65 static llvm::cl::opt<unsigned long long> clFusionLocalBufThreshold(
66     "fusion-local-buf-threshold",
67     llvm::cl::desc("Threshold size (KiB) for promoting local buffers to fast "
68                    "memory space"),
69     llvm::cl::cat(clOptionsCategory));
70 
71 namespace {
72 
73 /// Loop fusion pass. This pass currently supports a greedy fusion policy,
74 /// which fuses loop nests with single-writer/single-reader memref dependences
75 /// with the goal of improving locality.
76 
77 // TODO(andydavis) Support fusion of source loop nests which write to multiple
78 // memrefs, where each memref can have multiple users (if profitable).
79 // TODO(andydavis) Extend this pass to check for fusion preventing dependences,
80 // and add support for more general loop fusion algorithms.
81 
82 struct LoopFusion : public FunctionPass<LoopFusion> {
LoopFusion__anon5a3accbe0111::LoopFusion83   LoopFusion(unsigned fastMemorySpace = 0, uint64_t localBufSizeThreshold = 0,
84              bool maximalFusion = false)
85       : localBufSizeThreshold(localBufSizeThreshold),
86         fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion) {}
87 
88   void runOnFunction() override;
89 
90   // Any local buffers smaller than this size (in bytes) will be created in
91   // `fastMemorySpace` if provided.
92   uint64_t localBufSizeThreshold;
93   Optional<unsigned> fastMemorySpace = None;
94   // If true, ignore any additional (redundant) computation tolerance threshold
95   // that would have prevented fusion.
96   bool maximalFusion;
97 
98   // The amount of additional computation that is tolerated while fusing
99   // pair-wise as a fraction of the total computation.
100   constexpr static double kComputeToleranceThreshold = 0.30f;
101 };
102 
103 } // end anonymous namespace
104 
105 std::unique_ptr<OpPassBase<FuncOp>>
createLoopFusionPass(unsigned fastMemorySpace,uint64_t localBufSizeThreshold,bool maximalFusion)106 mlir::createLoopFusionPass(unsigned fastMemorySpace,
107                            uint64_t localBufSizeThreshold, bool maximalFusion) {
108   return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
109                                       maximalFusion);
110 }
111 
112 // TODO(b/117228571) Replace when this is modeled through side-effects/op traits
isMemRefDereferencingOp(Operation & op)113 static bool isMemRefDereferencingOp(Operation &op) {
114   if (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op) ||
115       isa<AffineDmaStartOp>(op) || isa<AffineDmaWaitOp>(op))
116     return true;
117   return false;
118 }
119 
120 namespace {
121 
122 // LoopNestStateCollector walks loop nests and collects load and store
123 // operations, and whether or not an IfInst was encountered in the loop nest.
124 struct LoopNestStateCollector {
125   SmallVector<AffineForOp, 4> forOps;
126   SmallVector<Operation *, 4> loadOpInsts;
127   SmallVector<Operation *, 4> storeOpInsts;
128   bool hasNonForRegion = false;
129 
collect__anon5a3accbe0211::LoopNestStateCollector130   void collect(Operation *opToWalk) {
131     opToWalk->walk([&](Operation *op) {
132       if (isa<AffineForOp>(op))
133         forOps.push_back(cast<AffineForOp>(op));
134       else if (op->getNumRegions() != 0)
135         hasNonForRegion = true;
136       else if (isa<AffineLoadOp>(op))
137         loadOpInsts.push_back(op);
138       else if (isa<AffineStoreOp>(op))
139         storeOpInsts.push_back(op);
140     });
141   }
142 };
143 
144 // MemRefDependenceGraph is a graph data structure where graph nodes are
145 // top-level operations in a FuncOp which contain load/store ops, and edges
146 // are memref dependences between the nodes.
147 // TODO(andydavis) Add a more flexible dependence graph representation.
148 // TODO(andydavis) Add a depth parameter to dependence graph construction.
149 struct MemRefDependenceGraph {
150 public:
151   // Node represents a node in the graph. A Node is either an entire loop nest
152   // rooted at the top level which contains loads/stores, or a top level
153   // load/store.
154   struct Node {
155     // The unique identifier of this node in the graph.
156     unsigned id;
157     // The top-level statement which is (or contains) a load/store.
158     Operation *op;
159     // List of load operations.
160     SmallVector<Operation *, 4> loads;
161     // List of store op insts.
162     SmallVector<Operation *, 4> stores;
Node__anon5a3accbe0211::MemRefDependenceGraph::Node163     Node(unsigned id, Operation *op) : id(id), op(op) {}
164 
165     // Returns the load op count for 'memref'.
getLoadOpCount__anon5a3accbe0211::MemRefDependenceGraph::Node166     unsigned getLoadOpCount(Value memref) {
167       unsigned loadOpCount = 0;
168       for (auto *loadOpInst : loads) {
169         if (memref == cast<AffineLoadOp>(loadOpInst).getMemRef())
170           ++loadOpCount;
171       }
172       return loadOpCount;
173     }
174 
175     // Returns the store op count for 'memref'.
getStoreOpCount__anon5a3accbe0211::MemRefDependenceGraph::Node176     unsigned getStoreOpCount(Value memref) {
177       unsigned storeOpCount = 0;
178       for (auto *storeOpInst : stores) {
179         if (memref == cast<AffineStoreOp>(storeOpInst).getMemRef())
180           ++storeOpCount;
181       }
182       return storeOpCount;
183     }
184 
185     // Returns all store ops in 'storeOps' which access 'memref'.
getStoreOpsForMemref__anon5a3accbe0211::MemRefDependenceGraph::Node186     void getStoreOpsForMemref(Value memref,
187                               SmallVectorImpl<Operation *> *storeOps) {
188       for (auto *storeOpInst : stores) {
189         if (memref == cast<AffineStoreOp>(storeOpInst).getMemRef())
190           storeOps->push_back(storeOpInst);
191       }
192     }
193 
194     // Returns all load ops in 'loadOps' which access 'memref'.
getLoadOpsForMemref__anon5a3accbe0211::MemRefDependenceGraph::Node195     void getLoadOpsForMemref(Value memref,
196                              SmallVectorImpl<Operation *> *loadOps) {
197       for (auto *loadOpInst : loads) {
198         if (memref == cast<AffineLoadOp>(loadOpInst).getMemRef())
199           loadOps->push_back(loadOpInst);
200       }
201     }
202 
203     // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
204     // has at least one load and store operation.
getLoadAndStoreMemrefSet__anon5a3accbe0211::MemRefDependenceGraph::Node205     void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) {
206       llvm::SmallDenseSet<Value, 2> loadMemrefs;
207       for (auto *loadOpInst : loads) {
208         loadMemrefs.insert(cast<AffineLoadOp>(loadOpInst).getMemRef());
209       }
210       for (auto *storeOpInst : stores) {
211         auto memref = cast<AffineStoreOp>(storeOpInst).getMemRef();
212         if (loadMemrefs.count(memref) > 0)
213           loadAndStoreMemrefSet->insert(memref);
214       }
215     }
216   };
217 
218   // Edge represents a data dependence between nodes in the graph.
219   struct Edge {
220     // The id of the node at the other end of the edge.
221     // If this edge is stored in Edge = Node.inEdges[i], then
222     // 'Node.inEdges[i].id' is the identifier of the source node of the edge.
223     // If this edge is stored in Edge = Node.outEdges[i], then
224     // 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
225     unsigned id;
226     // The SSA value on which this edge represents a dependence.
227     // If the value is a memref, then the dependence is between graph nodes
228     // which contain accesses to the same memref 'value'. If the value is a
229     // non-memref value, then the dependence is between a graph node which
230     // defines an SSA value and another graph node which uses the SSA value
231     // (e.g. a constant operation defining a value which is used inside a loop
232     // nest).
233     Value value;
234   };
235 
236   // Map from node id to Node.
237   DenseMap<unsigned, Node> nodes;
238   // Map from node id to list of input edges.
239   DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
240   // Map from node id to list of output edges.
241   DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
242   // Map from memref to a count on the dependence edges associated with that
243   // memref.
244   DenseMap<Value, unsigned> memrefEdgeCount;
245   // The next unique identifier to use for newly created graph nodes.
246   unsigned nextNodeId = 0;
247 
MemRefDependenceGraph__anon5a3accbe0211::MemRefDependenceGraph248   MemRefDependenceGraph() {}
249 
250   // Initializes the dependence graph based on operations in 'f'.
251   // Returns true on success, false otherwise.
252   bool init(FuncOp f);
253 
254   // Returns the graph node for 'id'.
getNode__anon5a3accbe0211::MemRefDependenceGraph255   Node *getNode(unsigned id) {
256     auto it = nodes.find(id);
257     assert(it != nodes.end());
258     return &it->second;
259   }
260 
261   // Returns the graph node for 'forOp'.
getForOpNode__anon5a3accbe0211::MemRefDependenceGraph262   Node *getForOpNode(AffineForOp forOp) {
263     for (auto &idAndNode : nodes)
264       if (idAndNode.second.op == forOp.getOperation())
265         return &idAndNode.second;
266     return nullptr;
267   }
268 
269   // Adds a node with 'op' to the graph and returns its unique identifier.
addNode__anon5a3accbe0211::MemRefDependenceGraph270   unsigned addNode(Operation *op) {
271     Node node(nextNodeId++, op);
272     nodes.insert({node.id, node});
273     return node.id;
274   }
275 
276   // Remove node 'id' (and its associated edges) from graph.
removeNode__anon5a3accbe0211::MemRefDependenceGraph277   void removeNode(unsigned id) {
278     // Remove each edge in 'inEdges[id]'.
279     if (inEdges.count(id) > 0) {
280       SmallVector<Edge, 2> oldInEdges = inEdges[id];
281       for (auto &inEdge : oldInEdges) {
282         removeEdge(inEdge.id, id, inEdge.value);
283       }
284     }
285     // Remove each edge in 'outEdges[id]'.
286     if (outEdges.count(id) > 0) {
287       SmallVector<Edge, 2> oldOutEdges = outEdges[id];
288       for (auto &outEdge : oldOutEdges) {
289         removeEdge(id, outEdge.id, outEdge.value);
290       }
291     }
292     // Erase remaining node state.
293     inEdges.erase(id);
294     outEdges.erase(id);
295     nodes.erase(id);
296   }
297 
298   // Returns true if node 'id' writes to any memref which escapes (or is an
299   // argument to) the function/block. Returns false otherwise.
writesToLiveInOrEscapingMemrefs__anon5a3accbe0211::MemRefDependenceGraph300   bool writesToLiveInOrEscapingMemrefs(unsigned id) {
301     Node *node = getNode(id);
302     for (auto *storeOpInst : node->stores) {
303       auto memref = cast<AffineStoreOp>(storeOpInst).getMemRef();
304       auto *op = memref.getDefiningOp();
305       // Return true if 'memref' is a block argument.
306       if (!op)
307         return true;
308       // Return true if any use of 'memref' escapes the function.
309       for (auto *user : memref.getUsers())
310         if (!isMemRefDereferencingOp(*user))
311           return true;
312     }
313     return false;
314   }
315 
316   // Returns the unique AffineStoreOp in `node` that meets all the following:
317   //   *) store is the only one that writes to a function-local memref live out
318   //      of `node`,
319   //   *) store is not the source of a self-dependence on `node`.
320   // Otherwise, returns a null AffineStoreOp.
getUniqueOutgoingStore__anon5a3accbe0211::MemRefDependenceGraph321   AffineStoreOp getUniqueOutgoingStore(Node *node) {
322     AffineStoreOp uniqueStore;
323 
324     // Return null if `node` doesn't have any outgoing edges.
325     auto outEdgeIt = outEdges.find(node->id);
326     if (outEdgeIt == outEdges.end())
327       return nullptr;
328 
329     const auto &nodeOutEdges = outEdgeIt->second;
330     for (auto *op : node->stores) {
331       auto storeOp = cast<AffineStoreOp>(op);
332       auto memref = storeOp.getMemRef();
333       // Skip this store if there are no dependences on its memref. This means
334       // that store either:
335       // *) writes to a memref that is only read within the same loop nest
336       //    (self-dependence edges are not represented in graph at the moment),
337       // *) writes to a function live out memref (function parameter), or
338       // *) is dead.
339       if (llvm::all_of(nodeOutEdges, [=](const Edge &edge) {
340             return (edge.value != memref);
341           }))
342         continue;
343 
344       if (uniqueStore)
345         // Found multiple stores to function-local live-out memrefs.
346         return nullptr;
347       // Found first store to function-local live-out memref.
348       uniqueStore = storeOp;
349     }
350 
351     return uniqueStore;
352   }
353 
354   // Returns true if node 'id' can be removed from the graph. Returns false
355   // otherwise. A node can be removed from the graph iff the following
356   // conditions are met:
357   // *) The node does not write to any memref which escapes (or is a
358   //    function/block argument).
359   // *) The node has no successors in the dependence graph.
canRemoveNode__anon5a3accbe0211::MemRefDependenceGraph360   bool canRemoveNode(unsigned id) {
361     if (writesToLiveInOrEscapingMemrefs(id))
362       return false;
363     Node *node = getNode(id);
364     for (auto *storeOpInst : node->stores) {
365       // Return false if there exist out edges from 'id' on 'memref'.
366       if (getOutEdgeCount(id, cast<AffineStoreOp>(storeOpInst).getMemRef()) > 0)
367         return false;
368     }
369     return true;
370   }
371 
372   // Returns true iff there is an edge from node 'srcId' to node 'dstId' which
373   // is for 'value' if non-null, or for any value otherwise. Returns false
374   // otherwise.
hasEdge__anon5a3accbe0211::MemRefDependenceGraph375   bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) {
376     if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
377       return false;
378     }
379     bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
380       return edge.id == dstId && (!value || edge.value == value);
381     });
382     bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
383       return edge.id == srcId && (!value || edge.value == value);
384     });
385     return hasOutEdge && hasInEdge;
386   }
387 
388   // Adds an edge from node 'srcId' to node 'dstId' for 'value'.
addEdge__anon5a3accbe0211::MemRefDependenceGraph389   void addEdge(unsigned srcId, unsigned dstId, Value value) {
390     if (!hasEdge(srcId, dstId, value)) {
391       outEdges[srcId].push_back({dstId, value});
392       inEdges[dstId].push_back({srcId, value});
393       if (value.getType().isa<MemRefType>())
394         memrefEdgeCount[value]++;
395     }
396   }
397 
398   // Removes an edge from node 'srcId' to node 'dstId' for 'value'.
removeEdge__anon5a3accbe0211::MemRefDependenceGraph399   void removeEdge(unsigned srcId, unsigned dstId, Value value) {
400     assert(inEdges.count(dstId) > 0);
401     assert(outEdges.count(srcId) > 0);
402     if (value.getType().isa<MemRefType>()) {
403       assert(memrefEdgeCount.count(value) > 0);
404       memrefEdgeCount[value]--;
405     }
406     // Remove 'srcId' from 'inEdges[dstId]'.
407     for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
408       if ((*it).id == srcId && (*it).value == value) {
409         inEdges[dstId].erase(it);
410         break;
411       }
412     }
413     // Remove 'dstId' from 'outEdges[srcId]'.
414     for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
415       if ((*it).id == dstId && (*it).value == value) {
416         outEdges[srcId].erase(it);
417         break;
418       }
419     }
420   }
421 
422   // Returns true if there is a path in the dependence graph from node 'srcId'
423   // to node 'dstId'. Returns false otherwise.
hasDependencePath__anon5a3accbe0211::MemRefDependenceGraph424   bool hasDependencePath(unsigned srcId, unsigned dstId) {
425     // Worklist state is: <node-id, next-output-edge-index-to-visit>
426     SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
427     worklist.push_back({srcId, 0});
428     // Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
429     while (!worklist.empty()) {
430       auto &idAndIndex = worklist.back();
431       // Return true if we have reached 'dstId'.
432       if (idAndIndex.first == dstId)
433         return true;
434       // Pop and continue if node has no out edges, or if all out edges have
435       // already been visited.
436       if (outEdges.count(idAndIndex.first) == 0 ||
437           idAndIndex.second == outEdges[idAndIndex.first].size()) {
438         worklist.pop_back();
439         continue;
440       }
441       // Get graph edge to traverse.
442       Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
443       // Increment next output edge index for 'idAndIndex'.
444       ++idAndIndex.second;
445       // Add node at 'edge.id' to worklist.
446       worklist.push_back({edge.id, 0});
447     }
448     return false;
449   }
450 
451   // Returns the input edge count for node 'id' and 'memref' from src nodes
452   // which access 'memref' with a store operation.
getIncomingMemRefAccesses__anon5a3accbe0211::MemRefDependenceGraph453   unsigned getIncomingMemRefAccesses(unsigned id, Value memref) {
454     unsigned inEdgeCount = 0;
455     if (inEdges.count(id) > 0)
456       for (auto &inEdge : inEdges[id])
457         if (inEdge.value == memref) {
458           Node *srcNode = getNode(inEdge.id);
459           // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
460           if (srcNode->getStoreOpCount(memref) > 0)
461             ++inEdgeCount;
462         }
463     return inEdgeCount;
464   }
465 
466   // Returns the output edge count for node 'id' and 'memref' (if non-null),
467   // otherwise returns the total output edge count from node 'id'.
getOutEdgeCount__anon5a3accbe0211::MemRefDependenceGraph468   unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) {
469     unsigned outEdgeCount = 0;
470     if (outEdges.count(id) > 0)
471       for (auto &outEdge : outEdges[id])
472         if (!memref || outEdge.value == memref)
473           ++outEdgeCount;
474     return outEdgeCount;
475   }
476 
477   // Computes and returns an insertion point operation, before which the
478   // the fused <srcId, dstId> loop nest can be inserted while preserving
479   // dependences. Returns nullptr if no such insertion point is found.
getFusedLoopNestInsertionPoint__anon5a3accbe0211::MemRefDependenceGraph480   Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
481     if (outEdges.count(srcId) == 0)
482       return getNode(dstId)->op;
483 
484     // Build set of insts in range (srcId, dstId) which depend on 'srcId'.
485     SmallPtrSet<Operation *, 2> srcDepInsts;
486     for (auto &outEdge : outEdges[srcId])
487       if (outEdge.id != dstId)
488         srcDepInsts.insert(getNode(outEdge.id)->op);
489 
490     // Build set of insts in range (srcId, dstId) on which 'dstId' depends.
491     SmallPtrSet<Operation *, 2> dstDepInsts;
492     for (auto &inEdge : inEdges[dstId])
493       if (inEdge.id != srcId)
494         dstDepInsts.insert(getNode(inEdge.id)->op);
495 
496     Operation *srcNodeInst = getNode(srcId)->op;
497     Operation *dstNodeInst = getNode(dstId)->op;
498 
499     // Computing insertion point:
500     // *) Walk all operation positions in Block operation list in the
501     //    range (src, dst). For each operation 'op' visited in this search:
502     //   *) Store in 'firstSrcDepPos' the first position where 'op' has a
503     //      dependence edge from 'srcNode'.
504     //   *) Store in 'lastDstDepPost' the last position where 'op' has a
505     //      dependence edge to 'dstNode'.
506     // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
507     //    operation insertion point (or return null pointer if no such
508     //    insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
509     SmallVector<Operation *, 2> depInsts;
510     Optional<unsigned> firstSrcDepPos;
511     Optional<unsigned> lastDstDepPos;
512     unsigned pos = 0;
513     for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
514          it != Block::iterator(dstNodeInst); ++it) {
515       Operation *op = &(*it);
516       if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
517         firstSrcDepPos = pos;
518       if (dstDepInsts.count(op) > 0)
519         lastDstDepPos = pos;
520       depInsts.push_back(op);
521       ++pos;
522     }
523 
524     if (firstSrcDepPos.hasValue()) {
525       if (lastDstDepPos.hasValue()) {
526         if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) {
527           // No valid insertion point exists which preserves dependences.
528           return nullptr;
529         }
530       }
531       // Return the insertion point at 'firstSrcDepPos'.
532       return depInsts[firstSrcDepPos.getValue()];
533     }
534     // No dependence targets in range (or only dst deps in range), return
535     // 'dstNodInst' insertion point.
536     return dstNodeInst;
537   }
538 
539   // Updates edge mappings from node 'srcId' to node 'dstId' after 'oldMemRef'
540   // has been replaced in node at 'dstId' by a private memref depending
541   // on the value of 'createPrivateMemRef'.
updateEdges__anon5a3accbe0211::MemRefDependenceGraph542   void updateEdges(unsigned srcId, unsigned dstId, Value oldMemRef,
543                    bool createPrivateMemRef) {
544     // For each edge in 'inEdges[srcId]': add new edge remaping to 'dstId'.
545     if (inEdges.count(srcId) > 0) {
546       SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
547       for (auto &inEdge : oldInEdges) {
548         // Add edge from 'inEdge.id' to 'dstId' if not for 'oldMemRef'.
549         if (inEdge.value != oldMemRef)
550           addEdge(inEdge.id, dstId, inEdge.value);
551       }
552     }
553     // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
554     if (outEdges.count(srcId) > 0) {
555       SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
556       for (auto &outEdge : oldOutEdges) {
557         // Remove any out edges from 'srcId' to 'dstId' across memrefs.
558         if (outEdge.id == dstId)
559           removeEdge(srcId, outEdge.id, outEdge.value);
560       }
561     }
562     // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
563     // replaced by a private memref). These edges could come from nodes
564     // other than 'srcId' which were removed in the previous step.
565     if (inEdges.count(dstId) > 0 && createPrivateMemRef) {
566       SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
567       for (auto &inEdge : oldInEdges)
568         if (inEdge.value == oldMemRef)
569           removeEdge(inEdge.id, dstId, inEdge.value);
570     }
571   }
572 
573   // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
574   // of sibling node 'sidId' into node 'dstId'.
updateEdges__anon5a3accbe0211::MemRefDependenceGraph575   void updateEdges(unsigned sibId, unsigned dstId) {
576     // For each edge in 'inEdges[sibId]':
577     // *) Add new edge from source node 'inEdge.id' to 'dstNode'.
578     // *) Remove edge from source node 'inEdge.id' to 'sibNode'.
579     if (inEdges.count(sibId) > 0) {
580       SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
581       for (auto &inEdge : oldInEdges) {
582         addEdge(inEdge.id, dstId, inEdge.value);
583         removeEdge(inEdge.id, sibId, inEdge.value);
584       }
585     }
586 
587     // For each edge in 'outEdges[sibId]' to node 'id'
588     // *) Add new edge from 'dstId' to 'outEdge.id'.
589     // *) Remove edge from 'sibId' to 'outEdge.id'.
590     if (outEdges.count(sibId) > 0) {
591       SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
592       for (auto &outEdge : oldOutEdges) {
593         addEdge(dstId, outEdge.id, outEdge.value);
594         removeEdge(sibId, outEdge.id, outEdge.value);
595       }
596     }
597   }
598 
599   // Adds ops in 'loads' and 'stores' to node at 'id'.
addToNode__anon5a3accbe0211::MemRefDependenceGraph600   void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
601                  const SmallVectorImpl<Operation *> &stores) {
602     Node *node = getNode(id);
603     for (auto *loadOpInst : loads)
604       node->loads.push_back(loadOpInst);
605     for (auto *storeOpInst : stores)
606       node->stores.push_back(storeOpInst);
607   }
608 
clearNodeLoadAndStores__anon5a3accbe0211::MemRefDependenceGraph609   void clearNodeLoadAndStores(unsigned id) {
610     Node *node = getNode(id);
611     node->loads.clear();
612     node->stores.clear();
613   }
614 
615   // Calls 'callback' for each input edge incident to node 'id' which carries a
616   // memref dependence.
forEachMemRefInputEdge__anon5a3accbe0211::MemRefDependenceGraph617   void forEachMemRefInputEdge(unsigned id,
618                               const std::function<void(Edge)> &callback) {
619     if (inEdges.count(id) > 0)
620       forEachMemRefEdge(inEdges[id], callback);
621   }
622 
623   // Calls 'callback' for each output edge from node 'id' which carries a
624   // memref dependence.
forEachMemRefOutputEdge__anon5a3accbe0211::MemRefDependenceGraph625   void forEachMemRefOutputEdge(unsigned id,
626                                const std::function<void(Edge)> &callback) {
627     if (outEdges.count(id) > 0)
628       forEachMemRefEdge(outEdges[id], callback);
629   }
630 
631   // Calls 'callback' for each edge in 'edges' which carries a memref
632   // dependence.
forEachMemRefEdge__anon5a3accbe0211::MemRefDependenceGraph633   void forEachMemRefEdge(ArrayRef<Edge> edges,
634                          const std::function<void(Edge)> &callback) {
635     for (auto &edge : edges) {
636       // Skip if 'edge' is not a memref dependence edge.
637       if (!edge.value.getType().isa<MemRefType>())
638         continue;
639       assert(nodes.count(edge.id) > 0);
640       // Skip if 'edge.id' is not a loop nest.
641       if (!isa<AffineForOp>(getNode(edge.id)->op))
642         continue;
643       // Visit current input edge 'edge'.
644       callback(edge);
645     }
646   }
647 
print__anon5a3accbe0211::MemRefDependenceGraph648   void print(raw_ostream &os) const {
649     os << "\nMemRefDependenceGraph\n";
650     os << "\nNodes:\n";
651     for (auto &idAndNode : nodes) {
652       os << "Node: " << idAndNode.first << "\n";
653       auto it = inEdges.find(idAndNode.first);
654       if (it != inEdges.end()) {
655         for (const auto &e : it->second)
656           os << "  InEdge: " << e.id << " " << e.value << "\n";
657       }
658       it = outEdges.find(idAndNode.first);
659       if (it != outEdges.end()) {
660         for (const auto &e : it->second)
661           os << "  OutEdge: " << e.id << " " << e.value << "\n";
662       }
663     }
664   }
dump__anon5a3accbe0211::MemRefDependenceGraph665   void dump() const { print(llvm::errs()); }
666 };
667 
668 } // end anonymous namespace
669 
670 // Initializes the data dependence graph by walking operations in 'f'.
671 // Assigns each node in the graph a node id based on program order in 'f'.
672 // TODO(andydavis) Add support for taking a Block arg to construct the
673 // dependence graph at a different depth.
init(FuncOp f)674 bool MemRefDependenceGraph::init(FuncOp f) {
675   DenseMap<Value, SetVector<unsigned>> memrefAccesses;
676 
677   // TODO: support multi-block functions.
678   if (f.getBlocks().size() != 1)
679     return false;
680 
681   DenseMap<Operation *, unsigned> forToNodeMap;
682   for (auto &op : f.front()) {
683     if (auto forOp = dyn_cast<AffineForOp>(op)) {
684       // Create graph node 'id' to represent top-level 'forOp' and record
685       // all loads and store accesses it contains.
686       LoopNestStateCollector collector;
687       collector.collect(&op);
688       // Return false if a non 'affine.for' region was found (not currently
689       // supported).
690       if (collector.hasNonForRegion)
691         return false;
692       Node node(nextNodeId++, &op);
693       for (auto *opInst : collector.loadOpInsts) {
694         node.loads.push_back(opInst);
695         auto memref = cast<AffineLoadOp>(opInst).getMemRef();
696         memrefAccesses[memref].insert(node.id);
697       }
698       for (auto *opInst : collector.storeOpInsts) {
699         node.stores.push_back(opInst);
700         auto memref = cast<AffineStoreOp>(opInst).getMemRef();
701         memrefAccesses[memref].insert(node.id);
702       }
703       forToNodeMap[&op] = node.id;
704       nodes.insert({node.id, node});
705     } else if (auto loadOp = dyn_cast<AffineLoadOp>(op)) {
706       // Create graph node for top-level load op.
707       Node node(nextNodeId++, &op);
708       node.loads.push_back(&op);
709       auto memref = cast<AffineLoadOp>(op).getMemRef();
710       memrefAccesses[memref].insert(node.id);
711       nodes.insert({node.id, node});
712     } else if (auto storeOp = dyn_cast<AffineStoreOp>(op)) {
713       // Create graph node for top-level store op.
714       Node node(nextNodeId++, &op);
715       node.stores.push_back(&op);
716       auto memref = cast<AffineStoreOp>(op).getMemRef();
717       memrefAccesses[memref].insert(node.id);
718       nodes.insert({node.id, node});
719     } else if (op.getNumRegions() != 0) {
720       // Return false if another region is found (not currently supported).
721       return false;
722     } else if (op.getNumResults() > 0 && !op.use_empty()) {
723       // Create graph node for top-level producer of SSA values, which
724       // could be used by loop nest nodes.
725       Node node(nextNodeId++, &op);
726       nodes.insert({node.id, node});
727     }
728   }
729 
730   // Add dependence edges between nodes which produce SSA values and their
731   // users.
732   for (auto &idAndNode : nodes) {
733     const Node &node = idAndNode.second;
734     if (!node.loads.empty() || !node.stores.empty())
735       continue;
736     auto *opInst = node.op;
737     for (auto value : opInst->getResults()) {
738       for (auto *user : value.getUsers()) {
739         SmallVector<AffineForOp, 4> loops;
740         getLoopIVs(*user, &loops);
741         if (loops.empty())
742           continue;
743         assert(forToNodeMap.count(loops[0].getOperation()) > 0);
744         unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
745         addEdge(node.id, userLoopNestId, value);
746       }
747     }
748   }
749 
750   // Walk memref access lists and add graph edges between dependent nodes.
751   for (auto &memrefAndList : memrefAccesses) {
752     unsigned n = memrefAndList.second.size();
753     for (unsigned i = 0; i < n; ++i) {
754       unsigned srcId = memrefAndList.second[i];
755       bool srcHasStore =
756           getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
757       for (unsigned j = i + 1; j < n; ++j) {
758         unsigned dstId = memrefAndList.second[j];
759         bool dstHasStore =
760             getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
761         if (srcHasStore || dstHasStore)
762           addEdge(srcId, dstId, memrefAndList.first);
763       }
764     }
765   }
766   return true;
767 }
768 
769 // Removes load operations from 'srcLoads' which operate on 'memref', and
770 // adds them to 'dstLoads'.
moveLoadsAccessingMemrefTo(Value memref,SmallVectorImpl<Operation * > * srcLoads,SmallVectorImpl<Operation * > * dstLoads)771 static void moveLoadsAccessingMemrefTo(Value memref,
772                                        SmallVectorImpl<Operation *> *srcLoads,
773                                        SmallVectorImpl<Operation *> *dstLoads) {
774   dstLoads->clear();
775   SmallVector<Operation *, 4> srcLoadsToKeep;
776   for (auto *load : *srcLoads) {
777     if (cast<AffineLoadOp>(load).getMemRef() == memref)
778       dstLoads->push_back(load);
779     else
780       srcLoadsToKeep.push_back(load);
781   }
782   srcLoads->swap(srcLoadsToKeep);
783 }
784 
785 // Returns the innermost common loop depth for the set of operations in 'ops'.
getInnermostCommonLoopDepth(ArrayRef<Operation * > ops)786 static unsigned getInnermostCommonLoopDepth(ArrayRef<Operation *> ops) {
787   unsigned numOps = ops.size();
788   assert(numOps > 0);
789 
790   std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
791   unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
792   for (unsigned i = 0; i < numOps; ++i) {
793     getLoopIVs(*ops[i], &loops[i]);
794     loopDepthLimit =
795         std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
796   }
797 
798   unsigned loopDepth = 0;
799   for (unsigned d = 0; d < loopDepthLimit; ++d) {
800     unsigned i;
801     for (i = 1; i < numOps; ++i) {
802       if (loops[i - 1][d] != loops[i][d])
803         break;
804     }
805     if (i != numOps)
806       break;
807     ++loopDepth;
808   }
809   return loopDepth;
810 }
811 
812 // Returns the maximum loop depth at which no dependences between 'loadOpInsts'
813 // and 'storeOpInsts' are satisfied.
getMaxLoopDepth(ArrayRef<Operation * > loadOpInsts,ArrayRef<Operation * > storeOpInsts)814 static unsigned getMaxLoopDepth(ArrayRef<Operation *> loadOpInsts,
815                                 ArrayRef<Operation *> storeOpInsts) {
816   // Merge loads and stores into the same array.
817   SmallVector<Operation *, 2> ops(loadOpInsts.begin(), loadOpInsts.end());
818   ops.append(storeOpInsts.begin(), storeOpInsts.end());
819 
820   // Compute the innermost common loop depth for loads and stores.
821   unsigned loopDepth = getInnermostCommonLoopDepth(ops);
822 
823   // Return common loop depth for loads if there are no store ops.
824   if (storeOpInsts.empty())
825     return loopDepth;
826 
827   // Check dependences on all pairs of ops in 'ops' and store the minimum
828   // loop depth at which a dependence is satisfied.
829   for (unsigned i = 0, e = ops.size(); i < e; ++i) {
830     auto *srcOpInst = ops[i];
831     MemRefAccess srcAccess(srcOpInst);
832     for (unsigned j = 0; j < e; ++j) {
833       auto *dstOpInst = ops[j];
834       MemRefAccess dstAccess(dstOpInst);
835 
836       unsigned numCommonLoops =
837           getNumCommonSurroundingLoops(*srcOpInst, *dstOpInst);
838       for (unsigned d = 1; d <= numCommonLoops + 1; ++d) {
839         FlatAffineConstraints dependenceConstraints;
840         // TODO(andydavis) Cache dependence analysis results, check cache here.
841         DependenceResult result = checkMemrefAccessDependence(
842             srcAccess, dstAccess, d, &dependenceConstraints,
843             /*dependenceComponents=*/nullptr);
844         if (hasDependence(result)) {
845           // Store minimum loop depth and break because we want the min 'd' at
846           // which there is a dependence.
847           loopDepth = std::min(loopDepth, d - 1);
848           break;
849         }
850       }
851     }
852   }
853   return loopDepth;
854 }
855 
856 // Sinks all sequential loops to the innermost levels (while preserving
857 // relative order among them) and moves all parallel loops to the
858 // outermost (while again preserving relative order among them).
859 // This can increase the loop depth at which we can fuse a slice, since we are
860 // pushing loop carried dependence to a greater depth in the loop nest.
sinkSequentialLoops(MemRefDependenceGraph::Node * node)861 static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
862   assert(isa<AffineForOp>(node->op));
863   AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
864   node->op = newRootForOp.getOperation();
865 }
866 
867 //  TODO(mlir-team): improve/complete this when we have target data.
getMemRefEltSizeInBytes(MemRefType memRefType)868 static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
869   auto elementType = memRefType.getElementType();
870 
871   unsigned sizeInBits;
872   if (elementType.isIntOrFloat()) {
873     sizeInBits = elementType.getIntOrFloatBitWidth();
874   } else {
875     auto vectorType = elementType.cast<VectorType>();
876     sizeInBits =
877         vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
878   }
879   return llvm::divideCeil(sizeInBits, 8);
880 }
881 
882 // Creates and returns a private (single-user) memref for fused loop rooted
883 // at 'forOp', with (potentially reduced) memref size based on the
884 // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
885 // TODO(bondhugula): consider refactoring the common code from generateDma and
886 // this one.
createPrivateMemRef(AffineForOp forOp,Operation * srcStoreOpInst,unsigned dstLoopDepth,Optional<unsigned> fastMemorySpace,uint64_t localBufSizeThreshold)887 static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
888                                  unsigned dstLoopDepth,
889                                  Optional<unsigned> fastMemorySpace,
890                                  uint64_t localBufSizeThreshold) {
891   auto *forInst = forOp.getOperation();
892 
893   // Create builder to insert alloc op just before 'forOp'.
894   OpBuilder b(forInst);
895   // Builder to create constants at the top level.
896   OpBuilder top(forInst->getParentOfType<FuncOp>().getBody());
897   // Create new memref type based on slice bounds.
898   auto oldMemRef = cast<AffineStoreOp>(srcStoreOpInst).getMemRef();
899   auto oldMemRefType = oldMemRef.getType().cast<MemRefType>();
900   unsigned rank = oldMemRefType.getRank();
901 
902   // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
903   MemRefRegion region(srcStoreOpInst->getLoc());
904   bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
905   (void)validRegion;
906   assert(validRegion && "unexpected memref region failure");
907   SmallVector<int64_t, 4> newShape;
908   std::vector<SmallVector<int64_t, 4>> lbs;
909   SmallVector<int64_t, 8> lbDivisors;
910   lbs.reserve(rank);
911   // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
912   // by 'srcStoreOpInst' at depth 'dstLoopDepth'.
913   Optional<int64_t> numElements =
914       region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
915   assert(numElements.hasValue() &&
916          "non-constant number of elts in local buffer");
917 
918   const FlatAffineConstraints *cst = region.getConstraints();
919   // 'outerIVs' holds the values that this memory region is symbolic/parametric
920   // on; this would correspond to loop IVs surrounding the level at which the
921   // slice is being materialized.
922   SmallVector<Value, 8> outerIVs;
923   cst->getIdValues(rank, cst->getNumIds(), &outerIVs);
924 
925   // Build 'rank' AffineExprs from MemRefRegion 'lbs'
926   SmallVector<AffineExpr, 4> offsets;
927   offsets.reserve(rank);
928   for (unsigned d = 0; d < rank; ++d) {
929     assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
930 
931     AffineExpr offset = top.getAffineConstantExpr(0);
932     for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
933       offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
934     }
935     assert(lbDivisors[d] > 0);
936     offset =
937         (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
938     offsets.push_back(offset);
939   }
940 
941   // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
942   // by 'srcStoreOpInst'.
943   uint64_t bufSize =
944       getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue();
945   unsigned newMemSpace;
946   if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) {
947     newMemSpace = fastMemorySpace.getValue();
948   } else {
949     newMemSpace = oldMemRefType.getMemorySpace();
950   }
951   auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
952                                        {}, newMemSpace);
953   // Gather alloc operands for the dynamic dimensions of the memref.
954   SmallVector<Value, 4> allocOperands;
955   unsigned dynamicDimCount = 0;
956   for (auto dimSize : oldMemRefType.getShape()) {
957     if (dimSize == -1)
958       allocOperands.push_back(
959           top.create<DimOp>(forOp.getLoc(), oldMemRef, dynamicDimCount++));
960   }
961 
962   // Create new private memref for fused loop 'forOp'.
963   // TODO(andydavis) Create/move alloc ops for private memrefs closer to their
964   // consumer loop nests to reduce their live range. Currently they are added
965   // at the beginning of the function, because loop nests can be reordered
966   // during the fusion pass.
967   Value newMemRef =
968       top.create<AllocOp>(forOp.getLoc(), newMemRefType, allocOperands);
969 
970   // Build an AffineMap to remap access functions based on lower bound offsets.
971   SmallVector<AffineExpr, 4> remapExprs;
972   remapExprs.reserve(rank);
973   unsigned zeroOffsetCount = 0;
974   for (unsigned i = 0; i < rank; i++) {
975     if (auto constExpr = offsets[i].dyn_cast<AffineConstantExpr>())
976       if (constExpr.getValue() == 0)
977         ++zeroOffsetCount;
978     auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
979 
980     auto remapExpr =
981         simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
982     remapExprs.push_back(remapExpr);
983   }
984   auto indexRemap = zeroOffsetCount == rank
985                         ? AffineMap()
986                         : AffineMap::get(outerIVs.size() + rank, 0, remapExprs);
987   // Replace all users of 'oldMemRef' with 'newMemRef'.
988   LogicalResult res =
989       replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
990                                /*extraOperands=*/outerIVs,
991                                /*symbolOperands=*/{},
992                                /*domInstFilter=*/&*forOp.getBody()->begin());
993   assert(succeeded(res) &&
994          "replaceAllMemrefUsesWith should always succeed here");
995   (void)res;
996   return newMemRef;
997 }
998 
999 // Checks if node 'srcId' can be safely fused into node 'dstId'. Node 'srcId'
1000 // may write to multiple memrefs but it is required that only one of them,
1001 // 'srcLiveOutStoreOp', has output edges.
1002 // Returns true if 'dstNode's read/write region to 'memref' is a super set of
1003 // 'srcNode's write region to 'memref' and 'srcId' has only one output edge.
1004 // TODO(andydavis) Generalize this to handle more live in/out cases.
canFuseSrcWhichWritesToLiveOut(unsigned srcId,unsigned dstId,AffineStoreOp srcLiveOutStoreOp,MemRefDependenceGraph * mdg)1005 static bool canFuseSrcWhichWritesToLiveOut(unsigned srcId, unsigned dstId,
1006                                            AffineStoreOp srcLiveOutStoreOp,
1007                                            MemRefDependenceGraph *mdg) {
1008   assert(srcLiveOutStoreOp && "Expected a valid store op");
1009   auto *dstNode = mdg->getNode(dstId);
1010   Value memref = srcLiveOutStoreOp.getMemRef();
1011   // Return false if 'srcNode' has more than one output edge on 'memref'.
1012   if (mdg->getOutEdgeCount(srcId, memref) > 1)
1013     return false;
1014 
1015   // Compute MemRefRegion 'srcWriteRegion' for 'srcStoreOp' on 'memref'.
1016   MemRefRegion srcWriteRegion(srcLiveOutStoreOp.getLoc());
1017   if (failed(srcWriteRegion.compute(srcLiveOutStoreOp, /*loopDepth=*/0))) {
1018     LLVM_DEBUG(llvm::dbgs()
1019                << "Unable to compute MemRefRegion for source operation\n.");
1020     return false;
1021   }
1022   SmallVector<int64_t, 4> srcShape;
1023   // Query 'srcWriteRegion' for 'srcShape' and 'srcNumElements'.
1024   // by 'srcStoreOp' at depth 'dstLoopDepth'.
1025   Optional<int64_t> srcNumElements =
1026       srcWriteRegion.getConstantBoundingSizeAndShape(&srcShape);
1027   if (!srcNumElements.hasValue())
1028     return false;
1029 
1030   // Compute MemRefRegion 'dstRegion' for 'dstStore/LoadOpInst' on 'memref'.
1031   // TODO(andydavis) Compute 'unionboundingbox' of all write regions (one for
1032   // each store op in 'dstStoreOps').
1033   SmallVector<Operation *, 2> dstStoreOps;
1034   dstNode->getStoreOpsForMemref(memref, &dstStoreOps);
1035   SmallVector<Operation *, 2> dstLoadOps;
1036   dstNode->getLoadOpsForMemref(memref, &dstLoadOps);
1037 
1038   auto *dstOpInst = dstStoreOps.empty() ? dstLoadOps[0] : dstStoreOps[0];
1039   MemRefRegion dstRegion(dstOpInst->getLoc());
1040   if (failed(dstRegion.compute(dstOpInst, /*loopDepth=*/0))) {
1041     LLVM_DEBUG(llvm::dbgs()
1042                << "Unable to compute MemRefRegion for dest operation\n.");
1043     return false;
1044   }
1045   SmallVector<int64_t, 4> dstShape;
1046   // Query 'dstRegion' for 'dstShape' and 'dstNumElements'.
1047   // by 'dstOpInst' at depth 'dstLoopDepth'.
1048   Optional<int64_t> dstNumElements =
1049       dstRegion.getConstantBoundingSizeAndShape(&dstShape);
1050   if (!dstNumElements.hasValue())
1051     return false;
1052 
1053   // Return false if write region is not a superset of 'srcNodes' write
1054   // region to 'memref'.
1055   // TODO(andydavis) Check the shape and lower bounds here too.
1056   if (srcNumElements != dstNumElements)
1057     return false;
1058   return true;
1059 }
1060 
1061 // Checks the profitability of fusing a backwards slice of the loop nest
1062 // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
1063 // The argument 'srcStoreOpInst' is used to calculate the storage reduction on
1064 // the memref being produced and consumed, which is an input to the cost model.
1065 // For producer-consumer fusion, 'srcStoreOpInst' will be the same as
1066 // 'srcOpInst', as we are slicing w.r.t to that producer.
1067 // For input-reuse fusion, 'srcOpInst' will be the src loop nest LoadOp which
1068 // reads from the same memref as dst loop nest load ops, and 'srcStoreOpInst'
1069 // will be the unique store op in the src node, which will be used to check
1070 // that the write region is the same after input-reuse fusion.
1071 // Returns true if it is profitable to fuse the candidate loop nests. Returns
1072 // false otherwise. `dstLoopDepth` is set to the most profitable depth at which
1073 // to materialize the source loop nest slice.
1074 // The profitability model executes the following steps:
1075 // *) Computes the backward computation slice at 'srcOpInst'. This
1076 //    computation slice of the loop nest surrounding 'srcOpInst' is
1077 //    represented by modified src loop bounds in 'sliceState', which are
1078 //    functions of loop IVs in the loop nest surrounding 'srcOpInst'.
1079 // *) Computes the cost of unfused src/dst loop nests (currently the cost of a
1080 //    loop nest is the total number of dynamic operation instances in the loop
1081 //    nest).
1082 // *) Computes the cost of fusing a slice of the src loop nest into the dst
1083 //    loop nest at various values of dst loop depth, attempting to fuse
1084 //    the largest computation slice at the maximal dst loop depth (closest to
1085 //    the load) to minimize reuse distance and potentially enable subsequent
1086 //    load/store forwarding.
1087 //    NOTE: If the dst loop nest includes multiple loads in 'dstLoadOpInsts' for
1088 //    the same memref as is written by 'srcOpInst', then the union of slice
1089 //    loop bounds is used to compute the slice and associated slice cost.
1090 //    NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
1091 //    nest, at which the src computation slice is inserted/fused.
1092 //    NOTE: We attempt to maximize the dst loop depth, but there are cases
1093 //    where a particular setting for 'dstLoopNest' might fuse an unsliced
1094 //    loop (within the src computation slice) at a depth which results in
1095 //    excessive recomputation (see unit tests for examples).
1096 // *) Compares the total cost of the unfused loop nests to the min cost fused
1097 //    loop nest computed in the previous step, and returns true if the latter
1098 //    is lower.
isFusionProfitable(Operation * srcOpInst,Operation * srcStoreOpInst,ArrayRef<Operation * > dstLoadOpInsts,ArrayRef<Operation * > dstStoreOpInsts,ComputationSliceState * sliceState,unsigned * dstLoopDepth,bool maximalFusion)1099 static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
1100                                ArrayRef<Operation *> dstLoadOpInsts,
1101                                ArrayRef<Operation *> dstStoreOpInsts,
1102                                ComputationSliceState *sliceState,
1103                                unsigned *dstLoopDepth, bool maximalFusion) {
1104   LLVM_DEBUG({
1105     llvm::dbgs() << "Checking whether fusion is profitable between:\n";
1106     llvm::dbgs() << " " << *srcOpInst << " and \n";
1107     for (auto dstOpInst : dstLoadOpInsts) {
1108       llvm::dbgs() << " " << *dstOpInst << "\n";
1109     };
1110   });
1111 
1112   // Compute cost of sliced and unsliced src loop nest.
1113   SmallVector<AffineForOp, 4> srcLoopIVs;
1114   getLoopIVs(*srcOpInst, &srcLoopIVs);
1115   unsigned numSrcLoopIVs = srcLoopIVs.size();
1116 
1117   // Walk src loop nest and collect stats.
1118   LoopNestStats srcLoopNestStats;
1119   if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
1120     return false;
1121 
1122   // Compute cost of dst loop nest.
1123   SmallVector<AffineForOp, 4> dstLoopIVs;
1124   getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
1125 
1126   LoopNestStats dstLoopNestStats;
1127   if (!getLoopNestStats(dstLoopIVs[0], &dstLoopNestStats))
1128     return false;
1129 
1130   // Compute the maximum loop depth at which we can can insert the src slice
1131   // and still satisfy dest loop nest dependences, for producer-consumer fusion.
1132   unsigned maxDstLoopDepth =
1133       (srcOpInst == srcStoreOpInst)
1134           ? getMaxLoopDepth(dstLoadOpInsts, dstStoreOpInsts)
1135           : dstLoopIVs.size();
1136   if (maxDstLoopDepth == 0) {
1137     LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxDstLoopDepth == 0 .\n");
1138     return false;
1139   }
1140 
1141   // Search for min cost value for 'dstLoopDepth'. At each value of
1142   // 'dstLoopDepth' from 'maxDstLoopDepth' to '1', compute computation slice
1143   // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
1144   // of these bounds). Next the union slice bounds are used to calculate
1145   // the cost of the slice and the cost of the slice inserted into the dst
1146   // loop nest at 'dstLoopDepth'.
1147   uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
1148   double maxStorageReduction = 0.0;
1149   Optional<uint64_t> sliceMemEstimate = None;
1150 
1151   SmallVector<ComputationSliceState, 4> sliceStates;
1152   sliceStates.resize(maxDstLoopDepth);
1153   // The best loop depth at which to materialize the slice.
1154   Optional<unsigned> bestDstLoopDepth = None;
1155 
1156   // Compute op instance count for the src loop nest without iteration slicing.
1157   uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
1158 
1159   // Compute src loop nest write region size.
1160   MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
1161   if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
1162     LLVM_DEBUG(llvm::dbgs()
1163                << "Unable to compute MemRefRegion for source operation\n.");
1164     return false;
1165   }
1166 
1167   Optional<int64_t> maybeSrcWriteRegionSizeBytes =
1168       srcWriteRegion.getRegionSize();
1169   if (!maybeSrcWriteRegionSizeBytes.hasValue())
1170     return false;
1171   int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue();
1172 
1173   // Compute op instance count for the src loop nest.
1174   uint64_t dstLoopNestCost = getComputeCost(dstLoopIVs[0], dstLoopNestStats);
1175 
1176   // Evaluate all depth choices for materializing the slice in the destination
1177   // loop nest.
1178   for (unsigned i = maxDstLoopDepth; i >= 1; --i) {
1179     // Compute the union of slice bounds of all ops in 'dstLoadOpInsts'.
1180     if (failed(mlir::computeSliceUnion({srcOpInst}, dstLoadOpInsts,
1181                                        /*loopDepth=*/i,
1182                                        /*numCommonLoops=*/0,
1183                                        /*isBackwardSlice=*/true,
1184                                        &sliceStates[i - 1]))) {
1185       LLVM_DEBUG(llvm::dbgs()
1186                  << "computeSliceUnion failed for loopDepth: " << i << "\n");
1187       continue;
1188     }
1189 
1190     int64_t fusedLoopNestComputeCost;
1191     if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstLoopIVs[0],
1192                               dstLoopNestStats, &sliceStates[i - 1],
1193                               &fusedLoopNestComputeCost)) {
1194       LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
1195       continue;
1196     }
1197 
1198     double additionalComputeFraction =
1199         fusedLoopNestComputeCost /
1200             (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1201         1;
1202 
1203     // Determine what the slice write MemRefRegion would be, if the src loop
1204     // nest slice 'sliceStates[i - 1]' were to be inserted into the dst loop
1205     // nest at loop depth 'i'
1206     MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
1207     if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
1208                                         &sliceStates[i - 1]))) {
1209       LLVM_DEBUG(llvm::dbgs()
1210                  << "Failed to compute slice write region at loopDepth: " << i
1211                  << "\n");
1212       continue;
1213     }
1214 
1215     Optional<int64_t> maybeSliceWriteRegionSizeBytes =
1216         sliceWriteRegion.getRegionSize();
1217     if (!maybeSliceWriteRegionSizeBytes.hasValue() ||
1218         maybeSliceWriteRegionSizeBytes.getValue() == 0) {
1219       LLVM_DEBUG(llvm::dbgs()
1220                  << "Failed to get slice write region size at loopDepth: " << i
1221                  << "\n");
1222       continue;
1223     }
1224     int64_t sliceWriteRegionSizeBytes =
1225         maybeSliceWriteRegionSizeBytes.getValue();
1226 
1227     // If we are fusing for reuse, check that write regions remain the same.
1228     // TODO(andydavis) Write region check should check sizes and offsets in
1229     // each dimension, so that we are sure they are covering the same memref
1230     // region. Also, move this out to a isMemRefRegionSuperSet helper function.
1231     if (srcOpInst != srcStoreOpInst &&
1232         sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
1233       continue;
1234 
1235     double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
1236                               static_cast<double>(sliceWriteRegionSizeBytes);
1237 
1238     LLVM_DEBUG({
1239       std::stringstream msg;
1240       msg << "  evaluating fusion profitability at depth : " << i << "\n"
1241           << std::fixed << std::setprecision(2)
1242           << "   additional compute fraction: "
1243           << 100.0 * additionalComputeFraction << "%\n"
1244           << "   storage reduction factor: " << storageReduction << "x\n"
1245           << "   fused nest cost: " << fusedLoopNestComputeCost << "\n"
1246           << "   src write region size: " << srcWriteRegionSizeBytes << "\n"
1247           << "   slice write region size: " << sliceWriteRegionSizeBytes
1248           << "\n";
1249       llvm::dbgs() << msg.str();
1250     });
1251 
1252     double computeToleranceThreshold =
1253         clFusionAddlComputeTolerance.getNumOccurrences() > 0
1254             ? clFusionAddlComputeTolerance
1255             : LoopFusion::kComputeToleranceThreshold;
1256 
1257     // TODO(b/123247369): This is a placeholder cost model.
1258     // Among all choices that add an acceptable amount of redundant computation
1259     // (as per computeToleranceThreshold), we will simply pick the one that
1260     // reduces the intermediary size the most.
1261     if ((storageReduction > maxStorageReduction) &&
1262         (maximalFusion ||
1263          (additionalComputeFraction < computeToleranceThreshold))) {
1264       maxStorageReduction = storageReduction;
1265       bestDstLoopDepth = i;
1266       minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
1267       sliceMemEstimate = sliceWriteRegionSizeBytes;
1268     }
1269   }
1270 
1271   // A simple cost model: fuse if it reduces the memory footprint. If
1272   // -maximal-fusion is set, fuse nevertheless.
1273 
1274   if (!maximalFusion && !bestDstLoopDepth.hasValue()) {
1275     LLVM_DEBUG(
1276         llvm::dbgs()
1277         << "All fusion choices involve more than the threshold amount of "
1278            "redundant computation; NOT fusing.\n");
1279     return false;
1280   }
1281 
1282   if (!bestDstLoopDepth.hasValue()) {
1283     LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
1284     return false;
1285   }
1286 
1287   // Set dstLoopDepth based on best values from search.
1288   *dstLoopDepth = bestDstLoopDepth.getValue();
1289 
1290   LLVM_DEBUG(
1291       llvm::dbgs() << " LoopFusion fusion stats:"
1292                    << "\n  best loop depth: " << bestDstLoopDepth
1293                    << "\n  src loop nest compute cost: " << srcLoopNestCost
1294                    << "\n  dst loop nest compute cost: " << dstLoopNestCost
1295                    << "\n  fused loop nest compute cost: "
1296                    << minFusedLoopNestComputeCost << "\n");
1297 
1298   auto dstMemSize = getMemoryFootprintBytes(dstLoopIVs[0]);
1299   auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
1300 
1301   Optional<double> storageReduction = None;
1302 
1303   if (!maximalFusion) {
1304     if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) {
1305       LLVM_DEBUG(
1306           llvm::dbgs()
1307           << "  fusion memory benefit cannot be evaluated; NOT fusing.\n");
1308       return false;
1309     }
1310 
1311     auto srcMemSizeVal = srcMemSize.getValue();
1312     auto dstMemSizeVal = dstMemSize.getValue();
1313 
1314     assert(sliceMemEstimate.hasValue() && "expected value");
1315     auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue();
1316 
1317     LLVM_DEBUG(llvm::dbgs() << "   src mem: " << srcMemSizeVal << "\n"
1318                             << "   dst mem: " << dstMemSizeVal << "\n"
1319                             << "   fused mem: " << fusedMem << "\n"
1320                             << "   slice mem: " << sliceMemEstimate << "\n");
1321 
1322     if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
1323       LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
1324       return false;
1325     }
1326     storageReduction =
1327         100.0 *
1328         (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
1329   }
1330 
1331   double additionalComputeFraction =
1332       100.0 * (minFusedLoopNestComputeCost /
1333                    (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1334                1);
1335   (void)additionalComputeFraction;
1336   LLVM_DEBUG({
1337     std::stringstream msg;
1338     msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
1339         << std::setprecision(2) << additionalComputeFraction
1340         << "% redundant computation and a ";
1341     msg << (storageReduction.hasValue()
1342                 ? std::to_string(storageReduction.getValue())
1343                 : "<unknown>");
1344     msg << "% storage reduction.\n";
1345     llvm::dbgs() << msg.str();
1346   });
1347 
1348   // Update return parameter 'sliceState' with 'bestSliceState'.
1349   ComputationSliceState *bestSliceState = &sliceStates[*dstLoopDepth - 1];
1350   sliceState->lbs = bestSliceState->lbs;
1351   sliceState->ubs = bestSliceState->ubs;
1352   sliceState->lbOperands = bestSliceState->lbOperands;
1353   sliceState->ubOperands = bestSliceState->ubOperands;
1354 
1355   // Canonicalize slice bound affine maps.
1356   for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
1357     if (sliceState->lbs[i] != AffineMap()) {
1358       canonicalizeMapAndOperands(&sliceState->lbs[i],
1359                                  &sliceState->lbOperands[i]);
1360     }
1361     if (sliceState->ubs[i] != AffineMap()) {
1362       canonicalizeMapAndOperands(&sliceState->ubs[i],
1363                                  &sliceState->ubOperands[i]);
1364     }
1365   }
1366   return true;
1367 }
1368 
1369 namespace {
1370 
1371 // GreedyFusion greedily fuses loop nests which have a producer/consumer or
1372 // input-reuse relationship on a memref, with the goal of improving locality.
1373 //
1374 // The steps of the producer-consumer fusion algorithm are as follows:
1375 //
1376 // *) A worklist is initialized with node ids from the dependence graph.
1377 // *) For each node id in the worklist:
1378 //   *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
1379 //      candidate destination AffineForOp into which fusion will be attempted.
1380 //   *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
1381 //   *) For each LoadOp in 'dstLoadOps' do:
1382 //      *) Look up dependent loop nests which have a single store op to the same
1383 //         memref.
1384 //      *) Check if dependences would be violated by the fusion.
1385 //      *) Get a computation slice of 'srcLoopNest', which adjusts its loop
1386 //         bounds to be functions of 'dstLoopNest' IVs and symbols.
1387 //      *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
1388 //         at a loop depth determined by the cost model in 'isFusionProfitable'.
1389 //      *) Add the newly fused load/store operations to the state,
1390 //         and also add newly fused load ops to 'dstLoopOps' to be considered
1391 //         as fusion dst load ops in another iteration.
1392 //      *) Remove old src loop nest and its associated state.
1393 //
1394 // The steps of the input-reuse fusion algorithm are as follows:
1395 //
1396 // *) Initialize 'worklist' with node ids from the dependence graph.
1397 // *) For each 'dstNode' in the worklist:
1398 //   *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
1399 //      loads from the same memref, but which has no dependence paths to/from.
1400 //   *) Get a computation slice of 'sibLoopNest', which adjusts its loop
1401 //      bounds to be functions of 'dstLoopNest' IVs and symbols.
1402 //   *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
1403 //      at a loop depth determined by the cost model in 'isFusionProfitable'.
1404 //      This function also checks that the memref write region of 'sibLoopNest',
1405 //      is preserved in the fused loop nest.
1406 //   *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
1407 //
1408 // Given a graph where top-level operations are vertices in the set 'V' and
1409 // edges in the set 'E' are dependences between vertices, this algorithm
1410 // takes O(V) time for initialization, and has runtime O(V + E).
1411 //
1412 // This greedy algorithm is not 'maximal' due to the current restriction of
1413 // fusing along single producer consumer edges, but there is a TODO to fix this.
1414 //
1415 // TODO(andydavis) Experiment with other fusion policies.
1416 struct GreedyFusion {
1417 public:
1418   // The data dependence graph to traverse during fusion.
1419   MemRefDependenceGraph *mdg;
1420   // Worklist of graph nodes visited during the fusion pass.
1421   SmallVector<unsigned, 8> worklist;
1422   // Set of graph nodes which are present on the worklist.
1423   llvm::SmallDenseSet<unsigned, 16> worklistSet;
1424   // Parameter for local buffer size threshold.
1425   unsigned localBufSizeThreshold;
1426   // Parameter for fast memory space.
1427   Optional<unsigned> fastMemorySpace;
1428   // If true, ignore any additional (redundant) computation tolerance threshold
1429   // that would have prevented fusion.
1430   bool maximalFusion;
1431 
1432   using Node = MemRefDependenceGraph::Node;
1433 
GreedyFusion__anon5a3accbe0711::GreedyFusion1434   GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
1435                Optional<unsigned> fastMemorySpace, bool maximalFusion)
1436       : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
1437         fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion) {}
1438 
1439   // Initializes 'worklist' with nodes from 'mdg'
init__anon5a3accbe0711::GreedyFusion1440   void init() {
1441     // TODO(andydavis) Add a priority queue for prioritizing nodes by different
1442     // metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
1443     worklist.clear();
1444     worklistSet.clear();
1445     for (auto &idAndNode : mdg->nodes) {
1446       const Node &node = idAndNode.second;
1447       worklist.push_back(node.id);
1448       worklistSet.insert(node.id);
1449     }
1450   }
1451 
1452   // Run the GreedyFusion pass.
1453   // *) First pass through the nodes fuses single-use producer nodes into their
1454   //    unique consumer.
1455   // *) Second pass fuses sibling nodes which share no dependence edges.
1456   // *) Third pass fuses any remaining producer nodes into their users.
run__anon5a3accbe0711::GreedyFusion1457   void run() {
1458     // TODO(andydavis) Run this repeatedly until a fixed-point is reached.
1459     fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
1460     fuseSiblingNodes();
1461     fuseProducerConsumerNodes(
1462         /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
1463     eraseUnusedMemRefAllocations();
1464   }
1465 
fuseProducerConsumerNodes__anon5a3accbe0711::GreedyFusion1466   void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
1467     init();
1468     while (!worklist.empty()) {
1469       unsigned dstId = worklist.back();
1470       worklist.pop_back();
1471       worklistSet.erase(dstId);
1472 
1473       // Skip if this node was removed (fused into another node).
1474       if (mdg->nodes.count(dstId) == 0)
1475         continue;
1476       // Get 'dstNode' into which to attempt fusion.
1477       auto *dstNode = mdg->getNode(dstId);
1478       // Skip if 'dstNode' is not a loop nest.
1479       if (!isa<AffineForOp>(dstNode->op))
1480         continue;
1481       // Sink sequential loops in 'dstNode' (and thus raise parallel loops)
1482       // while preserving relative order. This can increase the maximum loop
1483       // depth at which we can fuse a slice of a producer loop nest into a
1484       // consumer loop nest.
1485       sinkSequentialLoops(dstNode);
1486 
1487       SmallVector<Operation *, 4> loads = dstNode->loads;
1488       SmallVector<Operation *, 4> dstLoadOpInsts;
1489       DenseSet<Value> visitedMemrefs;
1490       while (!loads.empty()) {
1491         // Get memref of load on top of the stack.
1492         auto memref = cast<AffineLoadOp>(loads.back()).getMemRef();
1493         if (visitedMemrefs.count(memref) > 0)
1494           continue;
1495         visitedMemrefs.insert(memref);
1496         // Move all loads in 'loads' accessing 'memref' to 'dstLoadOpInsts'.
1497         moveLoadsAccessingMemrefTo(memref, &loads, &dstLoadOpInsts);
1498         // Skip if no input edges along which to fuse.
1499         if (mdg->inEdges.count(dstId) == 0)
1500           continue;
1501         // Iterate through in-edges for 'dstId' and src node id for any
1502         // edges on 'memref'.
1503         SmallVector<unsigned, 2> srcNodeIds;
1504         for (auto &srcEdge : mdg->inEdges[dstId]) {
1505           // Skip 'srcEdge' if not for 'memref'.
1506           if (srcEdge.value != memref)
1507             continue;
1508           srcNodeIds.push_back(srcEdge.id);
1509         }
1510         for (unsigned srcId : srcNodeIds) {
1511           // Skip if this node was removed (fused into another node).
1512           if (mdg->nodes.count(srcId) == 0)
1513             continue;
1514           // Get 'srcNode' from which to attempt fusion into 'dstNode'.
1515           auto *srcNode = mdg->getNode(srcId);
1516           // Skip if 'srcNode' is not a loop nest.
1517           if (!isa<AffineForOp>(srcNode->op))
1518             continue;
1519           // Skip if 'srcNode' has more than one live-out store to a
1520           // function-local memref.
1521           // TODO(andydavis) Support more generic multi-output src loop nests
1522           // fusion.
1523           auto srcStoreOp = mdg->getUniqueOutgoingStore(srcNode);
1524           if (!srcStoreOp) {
1525             // Get the src store op at the deepest loop depth.
1526             // We will use 'LoopFusionUtils::canFuseLoops' to check fusion
1527             // feasibility for loops with multiple stores.
1528             unsigned maxLoopDepth = 0;
1529             for (auto *op : srcNode->stores) {
1530               auto storeOp = cast<AffineStoreOp>(op);
1531               if (storeOp.getMemRef() != memref) {
1532                 srcStoreOp = nullptr;
1533                 break;
1534               }
1535               unsigned loopDepth = getNestingDepth(*storeOp);
1536               if (loopDepth > maxLoopDepth) {
1537                 maxLoopDepth = loopDepth;
1538                 srcStoreOp = storeOp;
1539               }
1540             }
1541             if (!srcStoreOp)
1542               continue;
1543           }
1544 
1545           // Unique outgoing store found must write to 'memref' since 'memref'
1546           // is the one that established the producer-consumer relationship
1547           // between 'srcNode' and 'dstNode'.
1548           assert(srcStoreOp.getMemRef() == memref &&
1549                  "Found store to unexpected memref");
1550 
1551           // Skip if 'srcNode' writes to any live in or escaping memrefs,
1552           // and cannot be fused.
1553           bool writesToLiveInOrOut =
1554               mdg->writesToLiveInOrEscapingMemrefs(srcNode->id);
1555           if (writesToLiveInOrOut &&
1556               !canFuseSrcWhichWritesToLiveOut(srcId, dstId, srcStoreOp, mdg))
1557             continue;
1558 
1559           // Don't create a private memref if 'writesToLiveInOrOut'.
1560           bool createPrivateMemref = !writesToLiveInOrOut;
1561           // Don't create a private memref if 'srcNode' has in edges on
1562           // 'memref', or if 'dstNode' has out edges on 'memref'.
1563           if (mdg->getIncomingMemRefAccesses(srcNode->id, memref) > 0 ||
1564               mdg->getOutEdgeCount(dstNode->id, memref) > 0) {
1565             createPrivateMemref = false;
1566           }
1567 
1568           // Skip if 'srcNode' out edge count on 'memref' > 'maxSrcUserCount'.
1569           if (mdg->getOutEdgeCount(srcNode->id, memref) > maxSrcUserCount)
1570             continue;
1571 
1572           // Compute an operation list insertion point for the fused loop
1573           // nest which preserves dependences.
1574           Operation *insertPointInst =
1575               mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
1576           if (insertPointInst == nullptr)
1577             continue;
1578 
1579           // Compute the innermost common loop depth for dstNode loads/stores.
1580           SmallVector<Operation *, 2> dstOps(dstNode->loads.begin(),
1581                                              dstNode->loads.end());
1582           dstOps.append(dstNode->stores.begin(), dstNode->stores.end());
1583           unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstOps);
1584           // Check the feasibility of fusing src loop nest into dst loop nest
1585           // at loop depths in range [1, dstLoopDepthTest].
1586           // TODO(andydavis) Use slice union computation and union of memref
1587           // read/write regions to cost model and fusion.
1588           bool canFuse = false;
1589           for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1590             ComputationSliceState sliceUnion;
1591             FusionResult result = mlir::canFuseLoops(
1592                 cast<AffineForOp>(srcNode->op), cast<AffineForOp>(dstNode->op),
1593                 /*dstLoopDepth=*/i, &sliceUnion);
1594             if (result.value == FusionResult::Success)
1595               canFuse = true;
1596           }
1597 
1598           // Skip if fusion is not feasible at all loop depths.
1599           if (!canFuse)
1600             continue;
1601 
1602           // Gather 'dstNode' store ops to 'memref'.
1603           SmallVector<Operation *, 2> dstStoreOpInsts;
1604           for (auto *storeOpInst : dstNode->stores)
1605             if (cast<AffineStoreOp>(storeOpInst).getMemRef() == memref)
1606               dstStoreOpInsts.push_back(storeOpInst);
1607 
1608           unsigned bestDstLoopDepth;
1609           mlir::ComputationSliceState sliceState;
1610           // Check if fusion would be profitable.
1611           if (!isFusionProfitable(srcStoreOp, srcStoreOp, dstLoadOpInsts,
1612                                   dstStoreOpInsts, &sliceState,
1613                                   &bestDstLoopDepth, maximalFusion))
1614             continue;
1615 
1616           // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
1617           auto sliceLoopNest = mlir::insertBackwardComputationSlice(
1618               srcStoreOp, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
1619           if (sliceLoopNest) {
1620             LLVM_DEBUG(llvm::dbgs() << "\tslice loop nest:\n"
1621                                     << *sliceLoopNest.getOperation() << "\n");
1622             // Move 'dstAffineForOp' before 'insertPointInst' if needed.
1623             auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1624             if (insertPointInst != dstAffineForOp.getOperation()) {
1625               dstAffineForOp.getOperation()->moveBefore(insertPointInst);
1626             }
1627             // Update edges between 'srcNode' and 'dstNode'.
1628             mdg->updateEdges(srcNode->id, dstNode->id, memref,
1629                              createPrivateMemref);
1630 
1631             // Collect slice loop stats.
1632             LoopNestStateCollector sliceCollector;
1633             sliceCollector.collect(sliceLoopNest.getOperation());
1634             // Promote single iteration slice loops to single IV value.
1635             for (auto forOp : sliceCollector.forOps) {
1636               promoteIfSingleIteration(forOp);
1637             }
1638             if (createPrivateMemref) {
1639               // Create private memref for 'memref' in 'dstAffineForOp'.
1640               SmallVector<Operation *, 4> storesForMemref;
1641               for (auto *storeOpInst : sliceCollector.storeOpInsts) {
1642                 if (cast<AffineStoreOp>(storeOpInst).getMemRef() == memref)
1643                   storesForMemref.push_back(storeOpInst);
1644               }
1645               // TODO(andydavis) Use union of memref write regions to compute
1646               // private memref footprint.
1647               auto newMemRef = createPrivateMemRef(
1648                   dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
1649                   fastMemorySpace, localBufSizeThreshold);
1650               visitedMemrefs.insert(newMemRef);
1651               // Create new node in dependence graph for 'newMemRef' alloc op.
1652               unsigned newMemRefNodeId =
1653                   mdg->addNode(newMemRef.getDefiningOp());
1654               // Add edge from 'newMemRef' node to dstNode.
1655               mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
1656             }
1657 
1658             // Collect dst loop stats after memref privatization transformation.
1659             LoopNestStateCollector dstLoopCollector;
1660             dstLoopCollector.collect(dstAffineForOp.getOperation());
1661 
1662             // Add new load ops to current Node load op list 'loads' to
1663             // continue fusing based on new operands.
1664             for (auto *loadOpInst : dstLoopCollector.loadOpInsts) {
1665               auto loadMemRef = cast<AffineLoadOp>(loadOpInst).getMemRef();
1666               if (visitedMemrefs.count(loadMemRef) == 0)
1667                 loads.push_back(loadOpInst);
1668             }
1669 
1670             // Clear and add back loads and stores.
1671             mdg->clearNodeLoadAndStores(dstNode->id);
1672             mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
1673                            dstLoopCollector.storeOpInsts);
1674             // Remove old src loop nest if it no longer has outgoing dependence
1675             // edges, and if it does not write to a memref which escapes the
1676             // function. If 'writesToLiveInOrOut' is true, then 'srcNode' has
1677             // been fused into 'dstNode' and write region of 'dstNode' covers
1678             // the write region of 'srcNode', and 'srcNode' has no other users
1679             // so it is safe to remove.
1680             if (writesToLiveInOrOut || mdg->canRemoveNode(srcNode->id)) {
1681               mdg->removeNode(srcNode->id);
1682               srcNode->op->erase();
1683             } else {
1684               // Add remaining users of 'oldMemRef' back on the worklist (if not
1685               // already there), as its replacement with a local/private memref
1686               // has reduced dependences on 'oldMemRef' which may have created
1687               // new fusion opportunities.
1688               if (mdg->outEdges.count(srcNode->id) > 0) {
1689                 SmallVector<MemRefDependenceGraph::Edge, 2> oldOutEdges =
1690                     mdg->outEdges[srcNode->id];
1691                 for (auto &outEdge : oldOutEdges) {
1692                   if (outEdge.value == memref &&
1693                       worklistSet.count(outEdge.id) == 0) {
1694                     worklist.push_back(outEdge.id);
1695                     worklistSet.insert(outEdge.id);
1696                   }
1697                 }
1698               }
1699             }
1700           }
1701         }
1702       }
1703     }
1704   }
1705 
1706   // Visits each node in the graph, and for each node, attempts to fuse it with
1707   // its sibling nodes (nodes which share a parent, but no dependence edges).
fuseSiblingNodes__anon5a3accbe0711::GreedyFusion1708   void fuseSiblingNodes() {
1709     init();
1710     while (!worklist.empty()) {
1711       unsigned dstId = worklist.back();
1712       worklist.pop_back();
1713       worklistSet.erase(dstId);
1714 
1715       // Skip if this node was removed (fused into another node).
1716       if (mdg->nodes.count(dstId) == 0)
1717         continue;
1718       // Get 'dstNode' into which to attempt fusion.
1719       auto *dstNode = mdg->getNode(dstId);
1720       // Skip if 'dstNode' is not a loop nest.
1721       if (!isa<AffineForOp>(dstNode->op))
1722         continue;
1723       // Attempt to fuse 'dstNode' with its sibling nodes in the graph.
1724       fuseWithSiblingNodes(dstNode);
1725     }
1726   }
1727 
1728   // Attempt to fuse 'dstNode' with sibling nodes in the graph.
fuseWithSiblingNodes__anon5a3accbe0711::GreedyFusion1729   void fuseWithSiblingNodes(Node *dstNode) {
1730     DenseSet<unsigned> visitedSibNodeIds;
1731     std::pair<unsigned, Value> idAndMemref;
1732     while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
1733       unsigned sibId = idAndMemref.first;
1734       Value memref = idAndMemref.second;
1735       // TODO(andydavis) Check that 'sibStoreOpInst' post-dominates all other
1736       // stores to the same memref in 'sibNode' loop nest.
1737       auto *sibNode = mdg->getNode(sibId);
1738       // Compute an operation list insertion point for the fused loop
1739       // nest which preserves dependences.
1740       assert(sibNode->op->getBlock() == dstNode->op->getBlock());
1741       Operation *insertPointInst =
1742           sibNode->op->isBeforeInBlock(dstNode->op)
1743               ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
1744               : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
1745       if (insertPointInst == nullptr)
1746         continue;
1747 
1748       // Check if fusion would be profitable and at what depth.
1749 
1750       // Get unique 'sibNode' load op to 'memref'.
1751       SmallVector<Operation *, 2> sibLoadOpInsts;
1752       sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
1753       // Currently findSiblingNodeToFuse searches for siblings with one load.
1754       assert(sibLoadOpInsts.size() == 1);
1755       Operation *sibLoadOpInst = sibLoadOpInsts[0];
1756       assert(!sibNode->stores.empty());
1757       // TODO(andydavis) Choose the store which postdominates all other stores.
1758       auto *sibStoreOpInst = sibNode->stores.back();
1759 
1760       // Gather 'dstNode' load ops to 'memref'.
1761       SmallVector<Operation *, 2> dstLoadOpInsts;
1762       dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
1763 
1764       // Gather 'dstNode' store ops to 'memref'.
1765       SmallVector<Operation *, 2> dstStoreOpInsts;
1766       dstNode->getStoreOpsForMemref(memref, &dstStoreOpInsts);
1767 
1768       unsigned bestDstLoopDepth;
1769       mlir::ComputationSliceState sliceState;
1770 
1771       // Check if fusion would be profitable.
1772       if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstLoadOpInsts,
1773                               dstStoreOpInsts, &sliceState, &bestDstLoopDepth,
1774                               maximalFusion))
1775         continue;
1776 
1777       // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
1778       auto sliceLoopNest = mlir::insertBackwardComputationSlice(
1779           sibLoadOpInst, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
1780       if (sliceLoopNest != nullptr) {
1781         auto dstForInst = cast<AffineForOp>(dstNode->op);
1782         // Update operation position of fused loop nest (if needed).
1783         if (insertPointInst != dstForInst.getOperation()) {
1784           dstForInst.getOperation()->moveBefore(insertPointInst);
1785         }
1786         // Update data dependence graph state post fusion.
1787         updateStateAfterSiblingFusion(sliceLoopNest, sibNode, dstNode);
1788       }
1789     }
1790   }
1791 
1792   // Searches function argument uses and the graph from 'dstNode' looking for a
1793   // fusion candidate sibling node which shares no dependences with 'dstNode'
1794   // but which loads from the same memref. Returns true and sets
1795   // 'idAndMemrefToFuse' on success. Returns false otherwise.
findSiblingNodeToFuse__anon5a3accbe0711::GreedyFusion1796   bool findSiblingNodeToFuse(Node *dstNode,
1797                              DenseSet<unsigned> *visitedSibNodeIds,
1798                              std::pair<unsigned, Value> *idAndMemrefToFuse) {
1799     // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
1800     // on 'memref'.
1801     auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
1802       // Skip if 'outEdge' is not a read-after-write dependence.
1803       // TODO(andydavis) Remove restrict to single load op restriction.
1804       if (sibNode->getLoadOpCount(memref) != 1)
1805         return false;
1806       // Skip if there exists a path of dependent edges between
1807       // 'sibNode' and 'dstNode'.
1808       if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
1809           mdg->hasDependencePath(dstNode->id, sibNode->id))
1810         return false;
1811       // Skip sib node if it loads to (and stores from) the same memref on
1812       // which it also has an input dependence edge.
1813       DenseSet<Value> loadAndStoreMemrefSet;
1814       sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
1815       if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
1816             return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
1817           }))
1818         return false;
1819 
1820       // Check that all stores are to the same memref.
1821       DenseSet<Value> storeMemrefs;
1822       for (auto *storeOpInst : sibNode->stores) {
1823         storeMemrefs.insert(cast<AffineStoreOp>(storeOpInst).getMemRef());
1824       }
1825       if (storeMemrefs.size() != 1)
1826         return false;
1827       return true;
1828     };
1829 
1830     // Search for siblings which load the same memref function argument.
1831     auto fn = dstNode->op->getParentOfType<FuncOp>();
1832     for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
1833       for (auto *user : fn.getArgument(i).getUsers()) {
1834         if (auto loadOp = dyn_cast<AffineLoadOp>(user)) {
1835           // Gather loops surrounding 'use'.
1836           SmallVector<AffineForOp, 4> loops;
1837           getLoopIVs(*user, &loops);
1838           // Skip 'use' if it is not within a loop nest.
1839           if (loops.empty())
1840             continue;
1841           Node *sibNode = mdg->getForOpNode(loops[0]);
1842           assert(sibNode != nullptr);
1843           // Skip 'use' if it not a sibling to 'dstNode'.
1844           if (sibNode->id == dstNode->id)
1845             continue;
1846           // Skip 'use' if it has been visited.
1847           if (visitedSibNodeIds->count(sibNode->id) > 0)
1848             continue;
1849           // Skip 'use' if it does not load from the same memref as 'dstNode'.
1850           auto memref = loadOp.getMemRef();
1851           if (dstNode->getLoadOpCount(memref) == 0)
1852             continue;
1853           // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1854           if (canFuseWithSibNode(sibNode, memref)) {
1855             visitedSibNodeIds->insert(sibNode->id);
1856             idAndMemrefToFuse->first = sibNode->id;
1857             idAndMemrefToFuse->second = memref;
1858             return true;
1859           }
1860         }
1861       }
1862     }
1863 
1864     // Search for siblings by following edges through an intermediate src node.
1865     // Collect candidate 'dstNode' input edges in 'inEdges'.
1866     SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
1867     mdg->forEachMemRefInputEdge(
1868         dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
1869           // Add 'inEdge' if it is a read-after-write dependence.
1870           if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
1871               mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
1872             inEdges.push_back(inEdge);
1873         });
1874 
1875     // Search for sibling nodes to fuse by visiting output edges from each input
1876     // edge in 'inEdges'.
1877     for (auto &inEdge : inEdges) {
1878       // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
1879       SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
1880       mdg->forEachMemRefOutputEdge(
1881           inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
1882             unsigned sibNodeId = outEdge.id;
1883             if (visitedSibNodeIds->count(sibNodeId) > 0)
1884               return;
1885             // Skip output edge if not a sibling using the same memref.
1886             if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
1887               return;
1888             auto *sibNode = mdg->getNode(sibNodeId);
1889             if (!isa<AffineForOp>(sibNode->op))
1890               return;
1891             // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1892             if (canFuseWithSibNode(sibNode, outEdge.value)) {
1893               // Add candidate 'outEdge' to sibling node.
1894               outEdges.push_back(outEdge);
1895             }
1896           });
1897 
1898       // Add first candidate if any were returned.
1899       if (!outEdges.empty()) {
1900         visitedSibNodeIds->insert(outEdges[0].id);
1901         idAndMemrefToFuse->first = outEdges[0].id;
1902         idAndMemrefToFuse->second = outEdges[0].value;
1903         return true;
1904       }
1905     }
1906     return false;
1907   }
1908 
updateStateAfterSiblingFusion__anon5a3accbe0711::GreedyFusion1909   void updateStateAfterSiblingFusion(AffineForOp sliceLoopNest, Node *sibNode,
1910                                      Node *dstNode) {
1911     // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
1912     mdg->updateEdges(sibNode->id, dstNode->id);
1913 
1914     // Collect slice loop stats.
1915     LoopNestStateCollector sliceCollector;
1916     sliceCollector.collect(sliceLoopNest.getOperation());
1917     // Promote single iteration slice loops to single IV value.
1918     for (auto forOp : sliceCollector.forOps) {
1919       promoteIfSingleIteration(forOp);
1920     }
1921 
1922     // Collect dst loop stats after memref privatization transformation.
1923     auto dstForInst = cast<AffineForOp>(dstNode->op);
1924     LoopNestStateCollector dstLoopCollector;
1925     dstLoopCollector.collect(dstForInst.getOperation());
1926     // Clear and add back loads and stores
1927     mdg->clearNodeLoadAndStores(dstNode->id);
1928     mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
1929                    dstLoopCollector.storeOpInsts);
1930     // Remove old sibling loop nest if it no longer has outgoing dependence
1931     // edges, and it does not write to a memref which escapes the
1932     // function.
1933     if (mdg->getOutEdgeCount(sibNode->id) == 0) {
1934       mdg->removeNode(sibNode->id);
1935       sibNode->op->erase();
1936     }
1937   }
1938 
1939   // Clean up any allocs with no users.
eraseUnusedMemRefAllocations__anon5a3accbe0711::GreedyFusion1940   void eraseUnusedMemRefAllocations() {
1941     for (auto &pair : mdg->memrefEdgeCount) {
1942       if (pair.second > 0)
1943         continue;
1944       auto memref = pair.first;
1945       // Skip if there exist other uses (return operation or function calls).
1946       if (!memref.use_empty())
1947         continue;
1948       // Use list expected to match the dep graph info.
1949       auto *op = memref.getDefiningOp();
1950       if (isa_and_nonnull<AllocOp>(op))
1951         op->erase();
1952     }
1953   }
1954 };
1955 
1956 } // end anonymous namespace
1957 
runOnFunction()1958 void LoopFusion::runOnFunction() {
1959   // Override if a command line argument was provided.
1960   if (clFusionFastMemorySpace.getNumOccurrences() > 0) {
1961     fastMemorySpace = clFusionFastMemorySpace.getValue();
1962   }
1963 
1964   // Override if a command line argument was provided.
1965   if (clFusionLocalBufThreshold.getNumOccurrences() > 0) {
1966     localBufSizeThreshold = clFusionLocalBufThreshold * 1024;
1967   }
1968 
1969   if (clMaximalLoopFusion.getNumOccurrences() > 0)
1970     maximalFusion = clMaximalLoopFusion;
1971 
1972   MemRefDependenceGraph g;
1973   if (g.init(getFunction()))
1974     GreedyFusion(&g, localBufSizeThreshold, fastMemorySpace, maximalFusion)
1975         .run();
1976 }
1977 
1978 static PassRegistration<LoopFusion> pass("affine-loop-fusion",
1979                                          "Fuse loop nests");
1980