1 /*
2  * Copyright 2006-2007 Universiteit Leiden
3  * Copyright 2008-2009 Katholieke Universiteit Leuven
4  * Copyright 2010      INRIA Saclay
5  *
6  * Use of this software is governed by the MIT license
7  *
8  * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9  * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10  * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11  * B-3001 Leuven, Belgium
12  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14  */
15 
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include <isl/set.h>
19 #include <isl_seq.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_options_private.h>
25 #include <isl_vec_private.h>
26 #include <isl_bernstein.h>
27 
28 struct bernstein_data {
29 	enum isl_fold type;
30 	isl_qpolynomial *poly;
31 	int check_tight;
32 
33 	isl_cell *cell;
34 
35 	isl_qpolynomial_fold *fold;
36 	isl_qpolynomial_fold *fold_tight;
37 	isl_pw_qpolynomial_fold *pwf;
38 	isl_pw_qpolynomial_fold *pwf_tight;
39 };
40 
vertex_is_integral(__isl_keep isl_basic_set * vertex)41 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
42 {
43 	unsigned nvar;
44 	unsigned nparam;
45 	int i;
46 
47 	nvar = isl_basic_set_dim(vertex, isl_dim_set);
48 	nparam = isl_basic_set_dim(vertex, isl_dim_param);
49 	for (i = 0; i < nvar; ++i) {
50 		int r = nvar - 1 - i;
51 		if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
52 		    !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
53 			return 0;
54 	}
55 
56 	return 1;
57 }
58 
vertex_coordinate(__isl_keep isl_basic_set * vertex,int i,__isl_take isl_space * dim)59 static __isl_give isl_qpolynomial *vertex_coordinate(
60 	__isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *dim)
61 {
62 	unsigned nvar;
63 	unsigned nparam;
64 	int r;
65 	isl_int denom;
66 	isl_qpolynomial *v;
67 
68 	nvar = isl_basic_set_dim(vertex, isl_dim_set);
69 	nparam = isl_basic_set_dim(vertex, isl_dim_param);
70 	r = nvar - 1 - i;
71 
72 	isl_int_init(denom);
73 	isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
74 	isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
75 
76 	if (isl_int_is_pos(denom))
77 		isl_seq_neg(vertex->eq[r], vertex->eq[r],
78 				1 + isl_basic_set_total_dim(vertex));
79 	else
80 		isl_int_neg(denom, denom);
81 
82 	v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
83 	isl_int_clear(denom);
84 
85 	return v;
86 error:
87 	isl_space_free(dim);
88 	isl_int_clear(denom);
89 	return NULL;
90 }
91 
92 /* Check whether the bound associated to the selection "k" is tight,
93  * which is the case if we select exactly one vertex and if that vertex
94  * is integral for all values of the parameters.
95  */
is_tight(int * k,int n,int d,isl_cell * cell)96 static int is_tight(int *k, int n, int d, isl_cell *cell)
97 {
98 	int i;
99 
100 	for (i = 0; i < n; ++i) {
101 		int v;
102 		if (k[i] != d) {
103 			if (k[i])
104 				return 0;
105 			continue;
106 		}
107 		v = cell->ids[n - 1 - i];
108 		return vertex_is_integral(cell->vertices->v[v].vertex);
109 	}
110 
111 	return 0;
112 }
113 
add_fold(__isl_take isl_qpolynomial * b,__isl_keep isl_set * dom,int * k,int n,int d,struct bernstein_data * data)114 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
115 	int *k, int n, int d, struct bernstein_data *data)
116 {
117 	isl_qpolynomial_fold *fold;
118 
119 	fold = isl_qpolynomial_fold_alloc(data->type, b);
120 
121 	if (data->check_tight && is_tight(k, n, d, data->cell))
122 		data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
123 							data->fold_tight, fold);
124 	else
125 		data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
126 							data->fold, fold);
127 }
128 
129 /* Extract the coefficients of the Bernstein base polynomials and store
130  * them in data->fold and data->fold_tight.
131  *
132  * In particular, the coefficient of each monomial
133  * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
134  * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
135  *
136  * c[i] contains the coefficient of the selected powers of the first i+1 vars.
137  * multinom[i] contains the partial multinomial coefficient.
138  */
extract_coefficients(isl_qpolynomial * poly,__isl_keep isl_set * dom,struct bernstein_data * data)139 static void extract_coefficients(isl_qpolynomial *poly,
140 	__isl_keep isl_set *dom, struct bernstein_data *data)
141 {
142 	int i;
143 	int d;
144 	int n;
145 	isl_ctx *ctx;
146 	isl_qpolynomial **c = NULL;
147 	int *k = NULL;
148 	int *left = NULL;
149 	isl_vec *multinom = NULL;
150 
151 	if (!poly)
152 		return;
153 
154 	ctx = isl_qpolynomial_get_ctx(poly);
155 	n = isl_qpolynomial_dim(poly, isl_dim_in);
156 	d = isl_qpolynomial_degree(poly);
157 	isl_assert(ctx, n >= 2, return);
158 
159 	c = isl_calloc_array(ctx, isl_qpolynomial *, n);
160 	k = isl_alloc_array(ctx, int, n);
161 	left = isl_alloc_array(ctx, int, n);
162 	multinom = isl_vec_alloc(ctx, n);
163 	if (!c || !k || !left || !multinom)
164 		goto error;
165 
166 	isl_int_set_si(multinom->el[0], 1);
167 	for (k[0] = d; k[0] >= 0; --k[0]) {
168 		int i = 1;
169 		isl_qpolynomial_free(c[0]);
170 		c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
171 		left[0] = d - k[0];
172 		k[1] = -1;
173 		isl_int_set(multinom->el[1], multinom->el[0]);
174 		while (i > 0) {
175 			if (i == n - 1) {
176 				int j;
177 				isl_space *dim;
178 				isl_qpolynomial *b;
179 				isl_qpolynomial *f;
180 				for (j = 2; j <= left[i - 1]; ++j)
181 					isl_int_divexact_ui(multinom->el[i],
182 						multinom->el[i], j);
183 				b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
184 					n - 1 - i, left[i - 1]);
185 				b = isl_qpolynomial_project_domain_on_params(b);
186 				dim = isl_qpolynomial_get_domain_space(b);
187 				f = isl_qpolynomial_rat_cst_on_domain(dim, ctx->one,
188 					multinom->el[i]);
189 				b = isl_qpolynomial_mul(b, f);
190 				k[n - 1] = left[n - 2];
191 				add_fold(b, dom, k, n, d, data);
192 				--i;
193 				continue;
194 			}
195 			if (k[i] >= left[i - 1]) {
196 				--i;
197 				continue;
198 			}
199 			++k[i];
200 			if (k[i])
201 				isl_int_divexact_ui(multinom->el[i],
202 					multinom->el[i], k[i]);
203 			isl_qpolynomial_free(c[i]);
204 			c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
205 					n - 1 - i, k[i]);
206 			left[i] = left[i - 1] - k[i];
207 			k[i + 1] = -1;
208 			isl_int_set(multinom->el[i + 1], multinom->el[i]);
209 			++i;
210 		}
211 		isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
212 	}
213 
214 	for (i = 0; i < n; ++i)
215 		isl_qpolynomial_free(c[i]);
216 
217 	isl_vec_free(multinom);
218 	free(left);
219 	free(k);
220 	free(c);
221 	return;
222 error:
223 	isl_vec_free(multinom);
224 	free(left);
225 	free(k);
226 	if (c)
227 		for (i = 0; i < n; ++i)
228 			isl_qpolynomial_free(c[i]);
229 	free(c);
230 	return;
231 }
232 
233 /* Perform bernstein expansion on the parametric vertices that are active
234  * on "cell".
235  *
236  * data->poly has been homogenized in the calling function.
237  *
238  * We plug in the barycentric coordinates for the set variables
239  *
240  *		\vec x = \sum_i \alpha_i v_i(\vec p)
241  *
242  * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
243  * Next, we extract the coefficients of the Bernstein base polynomials.
244  */
bernstein_coefficients_cell(__isl_take isl_cell * cell,void * user)245 static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell,
246 	void *user)
247 {
248 	int i, j;
249 	struct bernstein_data *data = (struct bernstein_data *)user;
250 	isl_space *dim_param;
251 	isl_space *dim_dst;
252 	isl_qpolynomial *poly = data->poly;
253 	unsigned nvar;
254 	int n_vertices;
255 	isl_qpolynomial **subs;
256 	isl_pw_qpolynomial_fold *pwf;
257 	isl_set *dom;
258 	isl_ctx *ctx;
259 
260 	if (!poly)
261 		goto error;
262 
263 	nvar = isl_qpolynomial_dim(poly, isl_dim_in) - 1;
264 	n_vertices = cell->n_vertices;
265 
266 	ctx = isl_qpolynomial_get_ctx(poly);
267 	if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
268 		return isl_cell_foreach_simplex(cell,
269 					    &bernstein_coefficients_cell, user);
270 
271 	subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
272 	if (!subs)
273 		goto error;
274 
275 	dim_param = isl_basic_set_get_space(cell->dom);
276 	dim_dst = isl_qpolynomial_get_domain_space(poly);
277 	dim_dst = isl_space_add_dims(dim_dst, isl_dim_set, n_vertices);
278 
279 	for (i = 0; i < 1 + nvar; ++i)
280 		subs[i] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst));
281 
282 	for (i = 0; i < n_vertices; ++i) {
283 		isl_qpolynomial *c;
284 		c = isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst), isl_dim_set,
285 					1 + nvar + i);
286 		for (j = 0; j < nvar; ++j) {
287 			int k = cell->ids[i];
288 			isl_qpolynomial *v;
289 			v = vertex_coordinate(cell->vertices->v[k].vertex, j,
290 						isl_space_copy(dim_param));
291 			v = isl_qpolynomial_add_dims(v, isl_dim_in,
292 							1 + nvar + n_vertices);
293 			v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
294 			subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
295 		}
296 		subs[0] = isl_qpolynomial_add(subs[0], c);
297 	}
298 	isl_space_free(dim_dst);
299 
300 	poly = isl_qpolynomial_copy(poly);
301 
302 	poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
303 	poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
304 	poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
305 
306 	data->cell = cell;
307 	dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
308 	data->fold = isl_qpolynomial_fold_empty(data->type, isl_space_copy(dim_param));
309 	data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
310 	extract_coefficients(poly, dom, data);
311 
312 	pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
313 					    data->fold);
314 	data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
315 	pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
316 	data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
317 
318 	isl_qpolynomial_free(poly);
319 	isl_cell_free(cell);
320 	for (i = 0; i < 1 + nvar; ++i)
321 		isl_qpolynomial_free(subs[i]);
322 	free(subs);
323 	return isl_stat_ok;
324 error:
325 	isl_cell_free(cell);
326 	return isl_stat_error;
327 }
328 
329 /* Base case of applying bernstein expansion.
330  *
331  * We compute the chamber decomposition of the parametric polytope "bset"
332  * and then perform bernstein expansion on the parametric vertices
333  * that are active on each chamber.
334  */
bernstein_coefficients_base(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct bernstein_data * data,int * tight)335 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
336 	__isl_take isl_basic_set *bset,
337 	__isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
338 {
339 	unsigned nvar;
340 	isl_space *dim;
341 	isl_pw_qpolynomial_fold *pwf;
342 	isl_vertices *vertices;
343 	int covers;
344 
345 	nvar = isl_basic_set_dim(bset, isl_dim_set);
346 	if (nvar == 0) {
347 		isl_set *dom;
348 		isl_qpolynomial_fold *fold;
349 
350 		fold = isl_qpolynomial_fold_alloc(data->type, poly);
351 		dom = isl_set_from_basic_set(bset);
352 		if (tight)
353 			*tight = 1;
354 		pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
355 		return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
356 	}
357 
358 	if (isl_qpolynomial_is_zero(poly)) {
359 		isl_set *dom;
360 		isl_qpolynomial_fold *fold;
361 		fold = isl_qpolynomial_fold_alloc(data->type, poly);
362 		dom = isl_set_from_basic_set(bset);
363 		pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
364 		if (tight)
365 			*tight = 1;
366 		return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
367 	}
368 
369 	dim = isl_basic_set_get_space(bset);
370 	dim = isl_space_params(dim);
371 	dim = isl_space_from_domain(dim);
372 	dim = isl_space_add_dims(dim, isl_dim_set, 1);
373 	data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(dim), data->type);
374 	data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
375 	data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
376 	vertices = isl_basic_set_compute_vertices(bset);
377 	if (isl_vertices_foreach_disjoint_cell(vertices,
378 					&bernstein_coefficients_cell, data) < 0)
379 		data->pwf = isl_pw_qpolynomial_fold_free(data->pwf);
380 	isl_vertices_free(vertices);
381 	isl_qpolynomial_free(data->poly);
382 
383 	isl_basic_set_free(bset);
384 	isl_qpolynomial_free(poly);
385 
386 	covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
387 	if (covers < 0)
388 		goto error;
389 
390 	if (tight)
391 		*tight = covers;
392 
393 	if (covers) {
394 		isl_pw_qpolynomial_fold_free(data->pwf);
395 		return data->pwf_tight;
396 	}
397 
398 	data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
399 
400 	return data->pwf;
401 error:
402 	isl_pw_qpolynomial_fold_free(data->pwf_tight);
403 	isl_pw_qpolynomial_fold_free(data->pwf);
404 	return NULL;
405 }
406 
407 /* Apply bernstein expansion recursively by working in on len[i]
408  * set variables at a time, with i ranging from n_group - 1 to 0.
409  */
bernstein_coefficients_recursive(__isl_take isl_pw_qpolynomial * pwqp,int n_group,int * len,struct bernstein_data * data,int * tight)410 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
411 	__isl_take isl_pw_qpolynomial *pwqp,
412 	int n_group, int *len, struct bernstein_data *data, int *tight)
413 {
414 	int i;
415 	unsigned nparam;
416 	unsigned nvar;
417 	isl_pw_qpolynomial_fold *pwf;
418 
419 	if (!pwqp)
420 		return NULL;
421 
422 	nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
423 	nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
424 
425 	pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
426 					isl_dim_in, 0, nvar - len[n_group - 1]);
427 	pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
428 
429 	for (i = n_group - 2; i >= 0; --i) {
430 		nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
431 		pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
432 				isl_dim_param, nparam - len[i], len[i]);
433 		if (tight && !*tight)
434 			tight = NULL;
435 		pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
436 	}
437 
438 	return pwf;
439 }
440 
bernstein_coefficients_factors(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct bernstein_data * data,int * tight)441 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
442 	__isl_take isl_basic_set *bset,
443 	__isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
444 {
445 	isl_factorizer *f;
446 	isl_set *set;
447 	isl_pw_qpolynomial *pwqp;
448 	isl_pw_qpolynomial_fold *pwf;
449 
450 	f = isl_basic_set_factorizer(bset);
451 	if (!f)
452 		goto error;
453 	if (f->n_group == 0) {
454 		isl_factorizer_free(f);
455 		return  bernstein_coefficients_base(bset, poly, data, tight);
456 	}
457 
458 	set = isl_set_from_basic_set(bset);
459 	pwqp = isl_pw_qpolynomial_alloc(set, poly);
460 	pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
461 
462 	pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
463 						tight);
464 
465 	isl_factorizer_free(f);
466 
467 	return pwf;
468 error:
469 	isl_basic_set_free(bset);
470 	isl_qpolynomial_free(poly);
471 	return NULL;
472 }
473 
bernstein_coefficients_full_recursive(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct bernstein_data * data,int * tight)474 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
475 	__isl_take isl_basic_set *bset,
476 	__isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
477 {
478 	int i;
479 	int *len;
480 	unsigned nvar;
481 	isl_pw_qpolynomial_fold *pwf;
482 	isl_set *set;
483 	isl_pw_qpolynomial *pwqp;
484 
485 	if (!bset || !poly)
486 		goto error;
487 
488 	nvar = isl_basic_set_dim(bset, isl_dim_set);
489 
490 	len = isl_alloc_array(bset->ctx, int, nvar);
491 	if (nvar && !len)
492 		goto error;
493 
494 	for (i = 0; i < nvar; ++i)
495 		len[i] = 1;
496 
497 	set = isl_set_from_basic_set(bset);
498 	pwqp = isl_pw_qpolynomial_alloc(set, poly);
499 
500 	pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
501 
502 	free(len);
503 
504 	return pwf;
505 error:
506 	isl_basic_set_free(bset);
507 	isl_qpolynomial_free(poly);
508 	return NULL;
509 }
510 
511 /* Compute a bound on the polynomial defined over the parametric polytope
512  * using bernstein expansion and store the result
513  * in bound->pwf and bound->pwf_tight.
514  *
515  * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
516  * the polytope can be factorized and apply bernstein expansion recursively
517  * on the factors.
518  * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
519  * bernstein expansion recursively on each dimension.
520  * Otherwise, we apply bernstein expansion on the entire polytope.
521  */
isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct isl_bound * bound)522 isl_stat isl_qpolynomial_bound_on_domain_bernstein(
523 	__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
524 	struct isl_bound *bound)
525 {
526 	struct bernstein_data data;
527 	isl_pw_qpolynomial_fold *pwf;
528 	unsigned nvar;
529 	int tight = 0;
530 	int *tp = bound->check_tight ? &tight : NULL;
531 
532 	if (!bset || !poly)
533 		goto error;
534 
535 	data.type = bound->type;
536 	data.check_tight = bound->check_tight;
537 
538 	nvar = isl_basic_set_dim(bset, isl_dim_set);
539 
540 	if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
541 		pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
542 	else if (nvar > 1 &&
543 	    (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
544 		pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
545 	else
546 		pwf = bernstein_coefficients_base(bset, poly, &data, tp);
547 
548 	if (tight)
549 		bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
550 	else
551 		bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
552 
553 	return isl_stat_ok;
554 error:
555 	isl_basic_set_free(bset);
556 	isl_qpolynomial_free(poly);
557 	return isl_stat_error;
558 }
559