1
2 #include "polly/Support/SCEVValidator.h"
3 #include "polly/ScopDetection.h"
4 #include "llvm/Analysis/RegionInfo.h"
5 #include "llvm/Analysis/ScalarEvolution.h"
6 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
7 #include "llvm/Support/Debug.h"
8
9 using namespace llvm;
10 using namespace polly;
11
12 #define DEBUG_TYPE "polly-scev-validator"
13
14 namespace SCEVType {
15 /// The type of a SCEV
16 ///
17 /// To check for the validity of a SCEV we assign to each SCEV a type. The
18 /// possible types are INT, PARAM, IV and INVALID. The order of the types is
19 /// important. The subexpressions of SCEV with a type X can only have a type
20 /// that is smaller or equal than X.
21 enum TYPE {
22 // An integer value.
23 INT,
24
25 // An expression that is constant during the execution of the Scop,
26 // but that may depend on parameters unknown at compile time.
27 PARAM,
28
29 // An expression that may change during the execution of the SCoP.
30 IV,
31
32 // An invalid expression.
33 INVALID
34 };
35 } // namespace SCEVType
36
37 /// The result the validator returns for a SCEV expression.
38 class ValidatorResult {
39 /// The type of the expression
40 SCEVType::TYPE Type;
41
42 /// The set of Parameters in the expression.
43 ParameterSetTy Parameters;
44
45 public:
46 /// The copy constructor
ValidatorResult(const ValidatorResult & Source)47 ValidatorResult(const ValidatorResult &Source) {
48 Type = Source.Type;
49 Parameters = Source.Parameters;
50 }
51
52 /// Construct a result with a certain type and no parameters.
ValidatorResult(SCEVType::TYPE Type)53 ValidatorResult(SCEVType::TYPE Type) : Type(Type) {
54 assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter");
55 }
56
57 /// Construct a result with a certain type and a single parameter.
ValidatorResult(SCEVType::TYPE Type,const SCEV * Expr)58 ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) {
59 Parameters.insert(Expr);
60 }
61
62 /// Get the type of the ValidatorResult.
getType()63 SCEVType::TYPE getType() { return Type; }
64
65 /// Is the analyzed SCEV constant during the execution of the SCoP.
isConstant()66 bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; }
67
68 /// Is the analyzed SCEV valid.
isValid()69 bool isValid() { return Type != SCEVType::INVALID; }
70
71 /// Is the analyzed SCEV of Type IV.
isIV()72 bool isIV() { return Type == SCEVType::IV; }
73
74 /// Is the analyzed SCEV of Type INT.
isINT()75 bool isINT() { return Type == SCEVType::INT; }
76
77 /// Is the analyzed SCEV of Type PARAM.
isPARAM()78 bool isPARAM() { return Type == SCEVType::PARAM; }
79
80 /// Get the parameters of this validator result.
getParameters()81 const ParameterSetTy &getParameters() { return Parameters; }
82
83 /// Add the parameters of Source to this result.
addParamsFrom(const ValidatorResult & Source)84 void addParamsFrom(const ValidatorResult &Source) {
85 Parameters.insert(Source.Parameters.begin(), Source.Parameters.end());
86 }
87
88 /// Merge a result.
89 ///
90 /// This means to merge the parameters and to set the Type to the most
91 /// specific Type that matches both.
merge(const ValidatorResult & ToMerge)92 void merge(const ValidatorResult &ToMerge) {
93 Type = std::max(Type, ToMerge.Type);
94 addParamsFrom(ToMerge);
95 }
96
print(raw_ostream & OS)97 void print(raw_ostream &OS) {
98 switch (Type) {
99 case SCEVType::INT:
100 OS << "SCEVType::INT";
101 break;
102 case SCEVType::PARAM:
103 OS << "SCEVType::PARAM";
104 break;
105 case SCEVType::IV:
106 OS << "SCEVType::IV";
107 break;
108 case SCEVType::INVALID:
109 OS << "SCEVType::INVALID";
110 break;
111 }
112 }
113 };
114
operator <<(raw_ostream & OS,class ValidatorResult & VR)115 raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) {
116 VR.print(OS);
117 return OS;
118 }
119
isConstCall(llvm::CallInst * Call)120 bool polly::isConstCall(llvm::CallInst *Call) {
121 if (Call->mayReadOrWriteMemory())
122 return false;
123
124 for (auto &Operand : Call->arg_operands())
125 if (!isa<ConstantInt>(&Operand))
126 return false;
127
128 return true;
129 }
130
131 /// Check if a SCEV is valid in a SCoP.
132 struct SCEVValidator
133 : public SCEVVisitor<SCEVValidator, class ValidatorResult> {
134 private:
135 const Region *R;
136 Loop *Scope;
137 ScalarEvolution &SE;
138 InvariantLoadsSetTy *ILS;
139
140 public:
SCEVValidatorSCEVValidator141 SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE,
142 InvariantLoadsSetTy *ILS)
143 : R(R), Scope(Scope), SE(SE), ILS(ILS) {}
144
visitConstantSCEVValidator145 class ValidatorResult visitConstant(const SCEVConstant *Constant) {
146 return ValidatorResult(SCEVType::INT);
147 }
148
visitZeroExtendOrTruncateExprSCEVValidator149 class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr,
150 const SCEV *Operand) {
151 ValidatorResult Op = visit(Operand);
152 auto Type = Op.getType();
153
154 // If unsigned operations are allowed return the operand, otherwise
155 // check if we can model the expression without unsigned assumptions.
156 if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID)
157 return Op;
158
159 if (Type == SCEVType::IV)
160 return ValidatorResult(SCEVType::INVALID);
161 return ValidatorResult(SCEVType::PARAM, Expr);
162 }
163
visitTruncateExprSCEVValidator164 class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) {
165 return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
166 }
167
visitZeroExtendExprSCEVValidator168 class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
169 return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
170 }
171
visitSignExtendExprSCEVValidator172 class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
173 return visit(Expr->getOperand());
174 }
175
visitAddExprSCEVValidator176 class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) {
177 ValidatorResult Return(SCEVType::INT);
178
179 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
180 ValidatorResult Op = visit(Expr->getOperand(i));
181 Return.merge(Op);
182
183 // Early exit.
184 if (!Return.isValid())
185 break;
186 }
187
188 return Return;
189 }
190
visitMulExprSCEVValidator191 class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) {
192 ValidatorResult Return(SCEVType::INT);
193
194 bool HasMultipleParams = false;
195
196 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
197 ValidatorResult Op = visit(Expr->getOperand(i));
198
199 if (Op.isINT())
200 continue;
201
202 if (Op.isPARAM() && Return.isPARAM()) {
203 HasMultipleParams = true;
204 continue;
205 }
206
207 if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) {
208 LLVM_DEBUG(
209 dbgs() << "INVALID: More than one non-int operand in MulExpr\n"
210 << "\tExpr: " << *Expr << "\n"
211 << "\tPrevious expression type: " << Return << "\n"
212 << "\tNext operand (" << Op << "): " << *Expr->getOperand(i)
213 << "\n");
214
215 return ValidatorResult(SCEVType::INVALID);
216 }
217
218 Return.merge(Op);
219 }
220
221 if (HasMultipleParams && Return.isValid())
222 return ValidatorResult(SCEVType::PARAM, Expr);
223
224 return Return;
225 }
226
visitAddRecExprSCEVValidator227 class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) {
228 if (!Expr->isAffine()) {
229 LLVM_DEBUG(dbgs() << "INVALID: AddRec is not affine");
230 return ValidatorResult(SCEVType::INVALID);
231 }
232
233 ValidatorResult Start = visit(Expr->getStart());
234 ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE));
235
236 if (!Start.isValid())
237 return Start;
238
239 if (!Recurrence.isValid())
240 return Recurrence;
241
242 auto *L = Expr->getLoop();
243 if (R->contains(L) && (!Scope || !L->contains(Scope))) {
244 LLVM_DEBUG(
245 dbgs() << "INVALID: Loop of AddRec expression boxed in an a "
246 "non-affine subregion or has a non-synthesizable exit "
247 "value.");
248 return ValidatorResult(SCEVType::INVALID);
249 }
250
251 if (R->contains(L)) {
252 if (Recurrence.isINT()) {
253 ValidatorResult Result(SCEVType::IV);
254 Result.addParamsFrom(Start);
255 return Result;
256 }
257
258 LLVM_DEBUG(dbgs() << "INVALID: AddRec within scop has non-int"
259 "recurrence part");
260 return ValidatorResult(SCEVType::INVALID);
261 }
262
263 assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant");
264
265 // Directly generate ValidatorResult for Expr if 'start' is zero.
266 if (Expr->getStart()->isZero())
267 return ValidatorResult(SCEVType::PARAM, Expr);
268
269 // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
270 // if 'start' is not zero.
271 const SCEV *ZeroStartExpr = SE.getAddRecExpr(
272 SE.getConstant(Expr->getStart()->getType(), 0),
273 Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags());
274
275 ValidatorResult ZeroStartResult =
276 ValidatorResult(SCEVType::PARAM, ZeroStartExpr);
277 ZeroStartResult.addParamsFrom(Start);
278
279 return ZeroStartResult;
280 }
281
visitSMaxExprSCEVValidator282 class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
283 ValidatorResult Return(SCEVType::INT);
284
285 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
286 ValidatorResult Op = visit(Expr->getOperand(i));
287
288 if (!Op.isValid())
289 return Op;
290
291 Return.merge(Op);
292 }
293
294 return Return;
295 }
296
visitSMinExprSCEVValidator297 class ValidatorResult visitSMinExpr(const SCEVSMinExpr *Expr) {
298 ValidatorResult Return(SCEVType::INT);
299
300 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
301 ValidatorResult Op = visit(Expr->getOperand(i));
302
303 if (!Op.isValid())
304 return Op;
305
306 Return.merge(Op);
307 }
308
309 return Return;
310 }
311
visitUMaxExprSCEVValidator312 class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) {
313 // We do not support unsigned max operations. If 'Expr' is constant during
314 // Scop execution we treat this as a parameter, otherwise we bail out.
315 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
316 ValidatorResult Op = visit(Expr->getOperand(i));
317
318 if (!Op.isConstant()) {
319 LLVM_DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand");
320 return ValidatorResult(SCEVType::INVALID);
321 }
322 }
323
324 return ValidatorResult(SCEVType::PARAM, Expr);
325 }
326
visitUMinExprSCEVValidator327 class ValidatorResult visitUMinExpr(const SCEVUMinExpr *Expr) {
328 // We do not support unsigned min operations. If 'Expr' is constant during
329 // Scop execution we treat this as a parameter, otherwise we bail out.
330 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
331 ValidatorResult Op = visit(Expr->getOperand(i));
332
333 if (!Op.isConstant()) {
334 LLVM_DEBUG(dbgs() << "INVALID: UMinExpr has a non-constant operand");
335 return ValidatorResult(SCEVType::INVALID);
336 }
337 }
338
339 return ValidatorResult(SCEVType::PARAM, Expr);
340 }
341
visitGenericInstSCEVValidator342 ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) {
343 if (R->contains(I)) {
344 LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction "
345 "within the region\n");
346 return ValidatorResult(SCEVType::INVALID);
347 }
348
349 return ValidatorResult(SCEVType::PARAM, S);
350 }
351
visitCallInstructionSCEVValidator352 ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) {
353 assert(I->getOpcode() == Instruction::Call && "Call instruction expected");
354
355 if (R->contains(I)) {
356 auto Call = cast<CallInst>(I);
357
358 if (!isConstCall(Call))
359 return ValidatorResult(SCEVType::INVALID, S);
360 }
361 return ValidatorResult(SCEVType::PARAM, S);
362 }
363
visitLoadInstructionSCEVValidator364 ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) {
365 if (R->contains(I) && ILS) {
366 ILS->insert(cast<LoadInst>(I));
367 return ValidatorResult(SCEVType::PARAM, S);
368 }
369
370 return visitGenericInst(I, S);
371 }
372
visitDivisionSCEVValidator373 ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor,
374 const SCEV *DivExpr,
375 Instruction *SDiv = nullptr) {
376
377 // First check if we might be able to model the division, thus if the
378 // divisor is constant. If so, check the dividend, otherwise check if
379 // the whole division can be seen as a parameter.
380 if (isa<SCEVConstant>(Divisor) && !Divisor->isZero())
381 return visit(Dividend);
382
383 // For signed divisions use the SDiv instruction to check for a parameter
384 // division, for unsigned divisions check the operands.
385 if (SDiv)
386 return visitGenericInst(SDiv, DivExpr);
387
388 ValidatorResult LHS = visit(Dividend);
389 ValidatorResult RHS = visit(Divisor);
390 if (LHS.isConstant() && RHS.isConstant())
391 return ValidatorResult(SCEVType::PARAM, DivExpr);
392
393 LLVM_DEBUG(
394 dbgs() << "INVALID: unsigned division of non-constant expressions");
395 return ValidatorResult(SCEVType::INVALID);
396 }
397
visitUDivExprSCEVValidator398 ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) {
399 if (!PollyAllowUnsignedOperations)
400 return ValidatorResult(SCEVType::INVALID);
401
402 auto *Dividend = Expr->getLHS();
403 auto *Divisor = Expr->getRHS();
404 return visitDivision(Dividend, Divisor, Expr);
405 }
406
visitSDivInstructionSCEVValidator407 ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) {
408 assert(SDiv->getOpcode() == Instruction::SDiv &&
409 "Assumed SDiv instruction!");
410
411 auto *Dividend = SE.getSCEV(SDiv->getOperand(0));
412 auto *Divisor = SE.getSCEV(SDiv->getOperand(1));
413 return visitDivision(Dividend, Divisor, Expr, SDiv);
414 }
415
visitSRemInstructionSCEVValidator416 ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) {
417 assert(SRem->getOpcode() == Instruction::SRem &&
418 "Assumed SRem instruction!");
419
420 auto *Divisor = SRem->getOperand(1);
421 auto *CI = dyn_cast<ConstantInt>(Divisor);
422 if (!CI || CI->isZeroValue())
423 return visitGenericInst(SRem, S);
424
425 auto *Dividend = SRem->getOperand(0);
426 auto *DividendSCEV = SE.getSCEV(Dividend);
427 return visit(DividendSCEV);
428 }
429
visitUnknownSCEVValidator430 ValidatorResult visitUnknown(const SCEVUnknown *Expr) {
431 Value *V = Expr->getValue();
432
433 if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) {
434 LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer");
435 return ValidatorResult(SCEVType::INVALID);
436 }
437
438 if (isa<UndefValue>(V)) {
439 LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value");
440 return ValidatorResult(SCEVType::INVALID);
441 }
442
443 if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
444 switch (I->getOpcode()) {
445 case Instruction::IntToPtr:
446 return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
447 case Instruction::PtrToInt:
448 return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
449 case Instruction::Load:
450 return visitLoadInstruction(I, Expr);
451 case Instruction::SDiv:
452 return visitSDivInstruction(I, Expr);
453 case Instruction::SRem:
454 return visitSRemInstruction(I, Expr);
455 case Instruction::Call:
456 return visitCallInstruction(I, Expr);
457 default:
458 return visitGenericInst(I, Expr);
459 }
460 }
461
462 return ValidatorResult(SCEVType::PARAM, Expr);
463 }
464 };
465
466 class SCEVHasIVParams {
467 bool HasIVParams = false;
468
469 public:
SCEVHasIVParams()470 SCEVHasIVParams() {}
471
follow(const SCEV * S)472 bool follow(const SCEV *S) {
473 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
474 if (!Unknown)
475 return true;
476
477 CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
478
479 if (!Call)
480 return true;
481
482 if (isConstCall(Call)) {
483 HasIVParams = true;
484 return false;
485 }
486
487 return true;
488 }
489
isDone()490 bool isDone() { return HasIVParams; }
hasIVParams()491 bool hasIVParams() { return HasIVParams; }
492 };
493
494 /// Check whether a SCEV refers to an SSA name defined inside a region.
495 class SCEVInRegionDependences {
496 const Region *R;
497 Loop *Scope;
498 const InvariantLoadsSetTy &ILS;
499 bool AllowLoops;
500 bool HasInRegionDeps = false;
501
502 public:
SCEVInRegionDependences(const Region * R,Loop * Scope,bool AllowLoops,const InvariantLoadsSetTy & ILS)503 SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops,
504 const InvariantLoadsSetTy &ILS)
505 : R(R), Scope(Scope), ILS(ILS), AllowLoops(AllowLoops) {}
506
follow(const SCEV * S)507 bool follow(const SCEV *S) {
508 if (auto Unknown = dyn_cast<SCEVUnknown>(S)) {
509 Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
510
511 CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
512
513 if (Call && isConstCall(Call))
514 return false;
515
516 if (Inst) {
517 // When we invariant load hoist a load, we first make sure that there
518 // can be no dependences created by it in the Scop region. So, we should
519 // not consider scalar dependences to `LoadInst`s that are invariant
520 // load hoisted.
521 //
522 // If this check is not present, then we create data dependences which
523 // are strictly not necessary by tracking the invariant load as a
524 // scalar.
525 LoadInst *LI = dyn_cast<LoadInst>(Inst);
526 if (LI && ILS.count(LI) > 0)
527 return false;
528 }
529
530 // Return true when Inst is defined inside the region R.
531 if (!Inst || !R->contains(Inst))
532 return true;
533
534 HasInRegionDeps = true;
535 return false;
536 }
537
538 if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
539 if (AllowLoops)
540 return true;
541
542 auto *L = AddRec->getLoop();
543 if (R->contains(L) && !L->contains(Scope)) {
544 HasInRegionDeps = true;
545 return false;
546 }
547 }
548
549 return true;
550 }
isDone()551 bool isDone() { return false; }
hasDependences()552 bool hasDependences() { return HasInRegionDeps; }
553 };
554
555 namespace polly {
556 /// Find all loops referenced in SCEVAddRecExprs.
557 class SCEVFindLoops {
558 SetVector<const Loop *> &Loops;
559
560 public:
SCEVFindLoops(SetVector<const Loop * > & Loops)561 SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {}
562
follow(const SCEV * S)563 bool follow(const SCEV *S) {
564 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
565 Loops.insert(AddRec->getLoop());
566 return true;
567 }
isDone()568 bool isDone() { return false; }
569 };
570
findLoops(const SCEV * Expr,SetVector<const Loop * > & Loops)571 void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) {
572 SCEVFindLoops FindLoops(Loops);
573 SCEVTraversal<SCEVFindLoops> ST(FindLoops);
574 ST.visitAll(Expr);
575 }
576
577 /// Find all values referenced in SCEVUnknowns.
578 class SCEVFindValues {
579 ScalarEvolution &SE;
580 SetVector<Value *> &Values;
581
582 public:
SCEVFindValues(ScalarEvolution & SE,SetVector<Value * > & Values)583 SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values)
584 : SE(SE), Values(Values) {}
585
follow(const SCEV * S)586 bool follow(const SCEV *S) {
587 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
588 if (!Unknown)
589 return true;
590
591 Values.insert(Unknown->getValue());
592 Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
593 if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
594 Inst->getOpcode() != Instruction::SDiv))
595 return false;
596
597 auto *Dividend = SE.getSCEV(Inst->getOperand(1));
598 if (!isa<SCEVConstant>(Dividend))
599 return false;
600
601 auto *Divisor = SE.getSCEV(Inst->getOperand(0));
602 SCEVFindValues FindValues(SE, Values);
603 SCEVTraversal<SCEVFindValues> ST(FindValues);
604 ST.visitAll(Dividend);
605 ST.visitAll(Divisor);
606
607 return false;
608 }
isDone()609 bool isDone() { return false; }
610 };
611
findValues(const SCEV * Expr,ScalarEvolution & SE,SetVector<Value * > & Values)612 void findValues(const SCEV *Expr, ScalarEvolution &SE,
613 SetVector<Value *> &Values) {
614 SCEVFindValues FindValues(SE, Values);
615 SCEVTraversal<SCEVFindValues> ST(FindValues);
616 ST.visitAll(Expr);
617 }
618
hasIVParams(const SCEV * Expr)619 bool hasIVParams(const SCEV *Expr) {
620 SCEVHasIVParams HasIVParams;
621 SCEVTraversal<SCEVHasIVParams> ST(HasIVParams);
622 ST.visitAll(Expr);
623 return HasIVParams.hasIVParams();
624 }
625
hasScalarDepsInsideRegion(const SCEV * Expr,const Region * R,llvm::Loop * Scope,bool AllowLoops,const InvariantLoadsSetTy & ILS)626 bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
627 llvm::Loop *Scope, bool AllowLoops,
628 const InvariantLoadsSetTy &ILS) {
629 SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops, ILS);
630 SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps);
631 ST.visitAll(Expr);
632 return InRegionDeps.hasDependences();
633 }
634
isAffineExpr(const Region * R,llvm::Loop * Scope,const SCEV * Expr,ScalarEvolution & SE,InvariantLoadsSetTy * ILS)635 bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr,
636 ScalarEvolution &SE, InvariantLoadsSetTy *ILS) {
637 if (isa<SCEVCouldNotCompute>(Expr))
638 return false;
639
640 SCEVValidator Validator(R, Scope, SE, ILS);
641 LLVM_DEBUG({
642 dbgs() << "\n";
643 dbgs() << "Expr: " << *Expr << "\n";
644 dbgs() << "Region: " << R->getNameStr() << "\n";
645 dbgs() << " -> ";
646 });
647
648 ValidatorResult Result = Validator.visit(Expr);
649
650 LLVM_DEBUG({
651 if (Result.isValid())
652 dbgs() << "VALID\n";
653 dbgs() << "\n";
654 });
655
656 return Result.isValid();
657 }
658
isAffineExpr(Value * V,const Region * R,Loop * Scope,ScalarEvolution & SE,ParameterSetTy & Params)659 static bool isAffineExpr(Value *V, const Region *R, Loop *Scope,
660 ScalarEvolution &SE, ParameterSetTy &Params) {
661 auto *E = SE.getSCEV(V);
662 if (isa<SCEVCouldNotCompute>(E))
663 return false;
664
665 SCEVValidator Validator(R, Scope, SE, nullptr);
666 ValidatorResult Result = Validator.visit(E);
667 if (!Result.isValid())
668 return false;
669
670 auto ResultParams = Result.getParameters();
671 Params.insert(ResultParams.begin(), ResultParams.end());
672
673 return true;
674 }
675
isAffineConstraint(Value * V,const Region * R,llvm::Loop * Scope,ScalarEvolution & SE,ParameterSetTy & Params,bool OrExpr)676 bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope,
677 ScalarEvolution &SE, ParameterSetTy &Params,
678 bool OrExpr) {
679 if (auto *ICmp = dyn_cast<ICmpInst>(V)) {
680 return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params,
681 true) &&
682 isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true);
683 } else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) {
684 auto Opcode = BinOp->getOpcode();
685 if (Opcode == Instruction::And || Opcode == Instruction::Or)
686 return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params,
687 false) &&
688 isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params,
689 false);
690 /* Fall through */
691 }
692
693 if (!OrExpr)
694 return false;
695
696 return isAffineExpr(V, R, Scope, SE, Params);
697 }
698
getParamsInAffineExpr(const Region * R,Loop * Scope,const SCEV * Expr,ScalarEvolution & SE)699 ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope,
700 const SCEV *Expr, ScalarEvolution &SE) {
701 if (isa<SCEVCouldNotCompute>(Expr))
702 return ParameterSetTy();
703
704 InvariantLoadsSetTy ILS;
705 SCEVValidator Validator(R, Scope, SE, &ILS);
706 ValidatorResult Result = Validator.visit(Expr);
707 assert(Result.isValid() && "Requested parameters for an invalid SCEV!");
708
709 return Result.getParameters();
710 }
711
712 std::pair<const SCEVConstant *, const SCEV *>
extractConstantFactor(const SCEV * S,ScalarEvolution & SE)713 extractConstantFactor(const SCEV *S, ScalarEvolution &SE) {
714 auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1));
715
716 if (auto *Constant = dyn_cast<SCEVConstant>(S))
717 return std::make_pair(Constant, SE.getConstant(S->getType(), 1));
718
719 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
720 if (AddRec) {
721 auto *StartExpr = AddRec->getStart();
722 if (StartExpr->isZero()) {
723 auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE);
724 auto *LeftOverAddRec =
725 SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(),
726 AddRec->getNoWrapFlags());
727 return std::make_pair(StepPair.first, LeftOverAddRec);
728 }
729 return std::make_pair(ConstPart, S);
730 }
731
732 if (auto *Add = dyn_cast<SCEVAddExpr>(S)) {
733 SmallVector<const SCEV *, 4> LeftOvers;
734 auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE);
735 auto *Factor = Op0Pair.first;
736 if (SE.isKnownNegative(Factor)) {
737 Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor));
738 LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second));
739 } else {
740 LeftOvers.push_back(Op0Pair.second);
741 }
742
743 for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) {
744 auto OpUPair = extractConstantFactor(Add->getOperand(u), SE);
745 // TODO: Use something smarter than equality here, e.g., gcd.
746 if (Factor == OpUPair.first)
747 LeftOvers.push_back(OpUPair.second);
748 else if (Factor == SE.getNegativeSCEV(OpUPair.first))
749 LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second));
750 else
751 return std::make_pair(ConstPart, S);
752 }
753
754 auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags());
755 return std::make_pair(Factor, NewAdd);
756 }
757
758 auto *Mul = dyn_cast<SCEVMulExpr>(S);
759 if (!Mul)
760 return std::make_pair(ConstPart, S);
761
762 SmallVector<const SCEV *, 4> LeftOvers;
763 for (auto *Op : Mul->operands())
764 if (isa<SCEVConstant>(Op))
765 ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op));
766 else
767 LeftOvers.push_back(Op);
768
769 return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers));
770 }
771
tryForwardThroughPHI(const SCEV * Expr,Region & R,ScalarEvolution & SE,LoopInfo & LI,const DominatorTree & DT)772 const SCEV *tryForwardThroughPHI(const SCEV *Expr, Region &R,
773 ScalarEvolution &SE, LoopInfo &LI,
774 const DominatorTree &DT) {
775 if (auto *Unknown = dyn_cast<SCEVUnknown>(Expr)) {
776 Value *V = Unknown->getValue();
777 auto *PHI = dyn_cast<PHINode>(V);
778 if (!PHI)
779 return Expr;
780
781 Value *Final = nullptr;
782
783 for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
784 BasicBlock *Incoming = PHI->getIncomingBlock(i);
785 if (isErrorBlock(*Incoming, R, LI, DT) && R.contains(Incoming))
786 continue;
787 if (Final)
788 return Expr;
789 Final = PHI->getIncomingValue(i);
790 }
791
792 if (Final)
793 return SE.getSCEV(Final);
794 }
795 return Expr;
796 }
797
getUniqueNonErrorValue(PHINode * PHI,Region * R,LoopInfo & LI,const DominatorTree & DT)798 Value *getUniqueNonErrorValue(PHINode *PHI, Region *R, LoopInfo &LI,
799 const DominatorTree &DT) {
800 Value *V = nullptr;
801 for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
802 BasicBlock *BB = PHI->getIncomingBlock(i);
803 if (!isErrorBlock(*BB, *R, LI, DT)) {
804 if (V)
805 return nullptr;
806 V = PHI->getIncomingValue(i);
807 }
808 }
809
810 return V;
811 }
812 } // namespace polly
813