1 // RUN: %clang_cc1 -std=c++1z -verify %s -DERRORS -Wundefined-func-template
2 // RUN: %clang_cc1 -std=c++1z -verify %s -UERRORS -Wundefined-func-template
3
4 // This test is split into two because we only produce "undefined internal"
5 // warnings if we didn't produce any errors.
6 #if ERRORS
7
8 namespace std {
9 using size_t = decltype(sizeof(0));
10 template<typename T> struct initializer_list {
11 const T *p;
12 size_t n;
13 initializer_list();
14 };
15 // FIXME: This should probably not be necessary.
16 template<typename T> initializer_list(initializer_list<T>) -> initializer_list<T>;
17 }
18
has_type(...)19 template<typename T> constexpr bool has_type(...) { return false; }
has_type(T &)20 template<typename T> constexpr bool has_type(T&) { return true; }
21
22 std::initializer_list il = {1, 2, 3, 4, 5};
23
24 template<typename T> struct vector {
25 template<typename Iter> vector(Iter, Iter);
26 vector(std::initializer_list<T>);
27 };
28
29 template<typename T> vector(std::initializer_list<T>) -> vector<T>;
30 template<typename Iter> explicit vector(Iter, Iter) -> vector<typename Iter::value_type>;
31 template<typename T> explicit vector(std::size_t, T) -> vector<T>;
32
33 vector v1 = {1, 2, 3, 4};
34 static_assert(has_type<vector<int>>(v1));
35
36 struct iter { typedef char value_type; } it, end;
37 vector v2(it, end);
38 static_assert(has_type<vector<char>>(v2));
39
40 vector v3(5, 5);
41 static_assert(has_type<vector<int>>(v3));
42
43 vector v4 = {it, end};
44 static_assert(has_type<vector<iter>>(v4));
45
46 vector v5{it, end};
47 static_assert(has_type<vector<iter>>(v5));
48
49 template<typename ...T> struct tuple { tuple(T...); };
50 template<typename ...T> explicit tuple(T ...t) -> tuple<T...>; // expected-note {{declared}}
51 // FIXME: Remove
52 template<typename ...T> tuple(tuple<T...>) -> tuple<T...>;
53
54 const int n = 4;
55 tuple ta = tuple{1, 'a', "foo", n};
56 static_assert(has_type<tuple<int, char, const char*, int>>(ta));
57
58 tuple tb{ta};
59 static_assert(has_type<tuple<int, char, const char*, int>>(tb));
60
61 // FIXME: This should be tuple<tuple<...>>; when the above guide is removed.
62 tuple tc = {ta};
63 static_assert(has_type<tuple<int, char, const char*, int>>(tc));
64
65 tuple td = {1, 2, 3}; // expected-error {{selected an explicit deduction guide}}
66 static_assert(has_type<tuple<int, char, const char*, int>>(td));
67
68 // FIXME: This is a GCC extension for now; if CWG don't allow this, at least
69 // add a warning for it.
70 namespace new_expr {
71 tuple<int> *p = new tuple{0};
72 tuple<float, float> *q = new tuple(1.0f, 2.0f);
73 }
74
75 namespace ambiguity {
76 template<typename T> struct A {};
77 A(unsigned short) -> A<int>; // expected-note {{candidate}}
78 A(short) -> A<int>; // expected-note {{candidate}}
79 A a = 0; // expected-error {{ambiguous deduction for template arguments of 'A'}}
80
81 template<typename T> struct B {};
82 template<typename T> B(T(&)(int)) -> B<int>; // expected-note {{candidate function [with T = int]}}
83 template<typename T> B(int(&)(T)) -> B<int>; // expected-note {{candidate function [with T = int]}}
84 int f(int);
85 B b = f; // expected-error {{ambiguous deduction for template arguments of 'B'}}
86 }
87
88 // FIXME: Revisit this once CWG decides if attributes, and [[deprecated]] in
89 // particular, should be permitted here.
90 namespace deprecated {
91 template<typename T> struct A { A(int); };
92 [[deprecated]] A(int) -> A<void>; // expected-note {{marked deprecated here}}
93 A a = 0; // expected-warning {{'<deduction guide for A>' is deprecated}}
94 }
95
96 namespace dependent {
97 template<template<typename...> typename A> decltype(auto) a = A{1, 2, 3};
98 static_assert(has_type<vector<int>>(a<vector>));
99 static_assert(has_type<tuple<int, int, int>>(a<tuple>));
100
101 struct B {
102 template<typename T> struct X { X(T); };
103 X(int) -> X<int>;
104 template<typename T> using Y = X<T>; // expected-note {{template}}
105 };
f()106 template<typename T> void f() {
107 typename T::X tx = 0;
108 typename T::Y ty = 0; // expected-error {{alias template 'Y' requires template arguments; argument deduction only allowed for class templates}}
109 }
110 template void f<B>(); // expected-note {{in instantiation of}}
111
112 template<typename T> struct C { C(T); };
113 template<typename T> C(T) -> C<T>;
g(T a)114 template<typename T> void g(T a) {
115 C b = 0;
116 C c = a;
117 using U = decltype(b); // expected-note {{previous}}
118 using U = decltype(c); // expected-error {{different types ('C<const char *>' vs 'C<int>')}}
119 }
h()120 void h() {
121 g(0);
122 g("foo"); // expected-note {{instantiation of}}
123 }
124 }
125
126 namespace look_into_current_instantiation {
127 template<typename U> struct Q {};
128 template<typename T> struct A {
129 using U = T;
130 template<typename> using V = Q<A<T>::U>;
131 template<typename W = int> A(V<W>);
132 };
133 A a = Q<float>(); // ok, can look through class-scope typedefs and alias
134 // templates, and members of the current instantiation
135 A<float> &r = a;
136
137 template<typename T> struct B { // expected-note {{could not match 'B<T>' against 'int'}}
138 struct X {
139 typedef T type;
140 };
141 B(typename X::type); // expected-note {{couldn't infer template argument 'T'}}
142 };
143 B b = 0; // expected-error {{no viable}}
144
145 // We should have a substitution failure in the immediate context of
146 // deduction when using the C(T, U) constructor (probably; core wording
147 // unclear).
148 template<typename T> struct C {
149 using U = typename T::type;
150 C(T, U);
151 };
152
153 struct R { R(int); typedef R type; };
154 C(...) -> C<R>;
155
156 C c = {1, 2};
157 }
158
159 namespace nondeducible {
160 template<typename A, typename B> struct X {};
161
162 template<typename A> // expected-note {{non-deducible template parameter 'A'}}
163 X() -> X<A, int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
164
165 template<typename A> // expected-note {{non-deducible template parameter 'A'}}
166 X(typename X<A, int>::type) -> X<A, int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
167
168 template<typename A = int,
169 typename B> // expected-note {{non-deducible template parameter 'B'}}
170 X(int) -> X<A, B>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
171
172 template<typename A = int,
173 typename ...B>
174 X(float) -> X<A, B...>; // ok
175
176 template <typename> struct UnnamedTemplateParam {};
177 template <typename> // expected-note {{non-deducible template parameter (anonymous)}}
178 UnnamedTemplateParam() -> UnnamedTemplateParam<int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
179 }
180
181 namespace default_args_from_ctor {
Sdefault_args_from_ctor::S182 template <class A> struct S { S(A = 0) {} };
183 S s(0);
184
Tdefault_args_from_ctor::T185 template <class A> struct T { template<typename B> T(A = 0, B = 0) {} };
186 T t(0, 0);
187 }
188
189 namespace transform_params {
190 template<typename T, T N, template<T (*v)[N]> typename U, T (*X)[N]>
191 struct A {
192 template<typename V, V M, V (*Y)[M], template<V (*v)[M]> typename W>
193 A(U<X>, W<Y>);
194
195 static constexpr T v = N;
196 };
197
198 int n[12];
199 template<int (*)[12]> struct Q {};
200 Q<&n> qn;
201 A a(qn, qn);
202 static_assert(a.v == 12);
203
204 template<typename ...T> struct B {
Btransform_params::B205 template<T ...V> B(const T (&...p)[V]) {
206 constexpr int Vs[] = {V...};
207 static_assert(Vs[0] == 3 && Vs[1] == 4 && Vs[2] == 4);
208 }
209 static constexpr int (*p)(T...) = (int(*)(int, char, char))nullptr;
210 };
211 B b({1, 2, 3}, "foo", {'x', 'y', 'z', 'w'}); // ok
212
213 template<typename ...T> struct C {
214 template<T ...V, template<T...> typename X>
215 C(X<V...>);
216 };
217 template<int...> struct Y {};
218 C c(Y<0, 1, 2>{});
219
220 template<typename ...T> struct D {
221 template<T ...V> D(Y<V...>);
222 };
223 D d(Y<0, 1, 2>{});
224 }
225
226 namespace variadic {
227 int arr3[3], arr4[4];
228
229 // PR32673
230 template<typename T> struct A {
231 template<typename ...U> A(T, U...);
232 };
233 A a(1, 2, 3);
234
235 template<typename T> struct B {
236 template<int ...N> B(T, int (&...r)[N]);
237 };
238 B b(1, arr3, arr4);
239
240 template<typename T> struct C {
241 template<template<typename> typename ...U> C(T, U<int>...);
242 };
243 C c(1, a, b);
244
245 template<typename ...U> struct X {
246 template<typename T> X(T, U...);
247 };
248 X x(1, 2, 3);
249
250 template<int ...N> struct Y {
251 template<typename T> Y(T, int (&...r)[N]);
252 };
253 Y y(1, arr3, arr4);
254
255 template<template<typename> typename ...U> struct Z {
256 template<typename T> Z(T, U<int>...);
257 };
258 Z z(1, a, b);
259 }
260
261 namespace tuple_tests {
262 // The converting n-ary constructor appears viable, deducing T as an empty
263 // pack (until we check its SFINAE constraints).
264 namespace libcxx_1 {
265 template<class ...T> struct tuple {
266 template<class ...Args> struct X { static const bool value = false; };
267 template<class ...U, bool Y = X<U...>::value> tuple(U &&...u);
268 };
269 tuple a = {1, 2, 3};
270 }
271
272 // Don't get caught by surprise when X<...> doesn't even exist in the
273 // selected specialization!
274 namespace libcxx_2 {
275 template<class ...T> struct tuple {
276 template<class ...Args> struct X { static const bool value = false; };
277 // Substitution into X<U...>::value succeeds but produces the
278 // value-dependent expression
279 // tuple<T...>::X<>::value
280 // FIXME: Is that the right behavior?
281 template<class ...U, bool Y = X<U...>::value> tuple(U &&...u);
282 };
283 template <> class tuple<> {};
284 tuple a = {1, 2, 3}; // expected-error {{excess elements in struct initializer}}
285 }
286
287 namespace libcxx_3 {
288 template<typename ...T> struct scoped_lock {
289 scoped_lock(T...);
290 };
291 template<> struct scoped_lock<> {};
292 scoped_lock l = {};
293 }
294 }
295
296 namespace dependent {
297 template<typename T> struct X {
298 X(T);
299 };
Var(T t)300 template<typename T> int Var(T t) {
301 X x(t);
302 return X(x) + 1; // expected-error {{invalid operands}}
303 }
Cast(T t)304 template<typename T> int Cast(T t) {
305 return X(X(t)) + 1; // expected-error {{invalid operands}}
306 }
New(T t)307 template<typename T> int New(T t) {
308 return X(new X(t)) + 1; // expected-error {{invalid operands}}
309 };
310 template int Var(float); // expected-note {{instantiation of}}
311 template int Cast(float); // expected-note {{instantiation of}}
312 template int New(float); // expected-note {{instantiation of}}
313 template<typename T> int operator+(X<T>, int);
314 template int Var(int);
315 template int Cast(int);
316 template int New(int);
317
test()318 template<template<typename> typename Y> void test() {
319 Y(0);
320 new Y(0);
321 Y y(0);
322 }
323 template void test<X>();
324 }
325
326 namespace injected_class_name {
327 template<typename T = void> struct A {
328 A();
329 template<typename U> A(A<U>);
330 };
331 A<int> a;
332 A b = a;
333 using T = decltype(a);
334 using T = decltype(b);
335 }
336
337 namespace member_guides {
338 // PR34520
339 template<class>
340 struct Foo {
341 template <class T> struct Bar {
Barmember_guides::Foo::Bar342 Bar(...) {}
343 };
344 Bar(int) -> Bar<int>;
345 };
346 Foo<int>::Bar b = 0;
347
348 struct A {
349 template<typename T> struct Public; // expected-note {{declared public}}
350 Public(float) -> Public<float>;
351 protected: // expected-note {{declared protected by intervening access specifier}}
352 template<typename T> struct Protected; // expected-note 2{{declared protected}}
353 Protected(float) -> Protected<float>;
354 Public(int) -> Public<int>; // expected-error {{different access}}
355 private: // expected-note {{declared private by intervening access specifier}}
356 template<typename T> struct Private; // expected-note {{declared private}}
357 Protected(int) -> Protected<int>; // expected-error {{different access}}
358 public: // expected-note 2{{declared public by intervening access specifier}}
359 template<typename T> Public(T) -> Public<T>;
360 template<typename T> Protected(T) -> Protected<T>; // expected-error {{different access}}
361 template<typename T> Private(T) -> Private<T>; // expected-error {{different access}}
362 };
363 }
364
365 namespace rdar41903969 {
366 template <class T> struct A {};
367 template <class T> struct B;
368 template <class T> struct C {
369 C(A<T>&);
370 C(B<T>&);
371 };
372
foo(A<int> & a,B<int> & b)373 void foo(A<int> &a, B<int> &b) {
374 (void)C{b};
375 (void)C{a};
376 }
377
378 template<typename T> struct X {
379 X(std::initializer_list<T>) = delete;
380 X(const X&);
381 };
382
383 template <class T> struct D : X<T> {};
384
bar(D<int> & d)385 void bar(D<int>& d) {
386 (void)X{d};
387 }
388 }
389
390 namespace rdar41330135 {
391 template <int> struct A {};
392 template <class T>
393 struct S {
394 template <class U>
395 S(T a, U t, A<sizeof(t)>);
396 };
397 template <class T> struct D {
398 D(T t, A<sizeof(t)>);
399 };
f()400 int f() {
401 S s(0, 0, A<sizeof(int)>());
402 D d(0, A<sizeof(int)>());
403 }
404
405 namespace test_dupls {
406 template<unsigned long> struct X {};
407 template<typename T> struct A {
408 A(T t, X<sizeof(t)>);
409 };
410 A a(0, {});
411 template<typename U> struct B {
412 B(U u, X<sizeof(u)>);
413 };
414 B b(0, {});
415 }
416
417 }
418
419 #pragma clang diagnostic push
420 #pragma clang diagnostic warning "-Wctad-maybe-unsupported"
421 namespace test_implicit_ctad_warning {
422
423 template <class T>
424 struct Tag {};
425
426 template <class T>
427 struct NoExplicit { // expected-note {{add a deduction guide to suppress this warning}}
NoExplicittest_implicit_ctad_warning::NoExplicit428 NoExplicit(T) {}
NoExplicittest_implicit_ctad_warning::NoExplicit429 NoExplicit(T, int) {}
430 };
431
432 // expected-warning@+1 {{'NoExplicit' may not intend to support class template argument deduction}}
433 NoExplicit ne(42);
434
435 template <class U>
436 struct HasExplicit {
HasExplicittest_implicit_ctad_warning::HasExplicit437 HasExplicit(U) {}
HasExplicittest_implicit_ctad_warning::HasExplicit438 HasExplicit(U, int) {}
439 };
440 template <class U> HasExplicit(U, int) -> HasExplicit<Tag<U>>;
441
442 HasExplicit he(42);
443
444 // Motivating examples from (taken from Stephan Lavavej's 2018 Cppcon talk)
445 template <class T, class U>
446 struct AmateurPair { // expected-note {{add a deduction guide to suppress this warning}}
447 T first;
448 U second;
AmateurPairtest_implicit_ctad_warning::AmateurPair449 explicit AmateurPair(const T &t, const U &u) {}
450 };
451 // expected-warning@+1 {{'AmateurPair' may not intend to support class template argument deduction}}
452 AmateurPair p1(42, "hello world"); // deduces to Pair<int, char[12]>
453
454 template <class T, class U>
455 struct AmateurPair2 { // expected-note {{add a deduction guide to suppress this warning}}
456 T first;
457 U second;
AmateurPair2test_implicit_ctad_warning::AmateurPair2458 explicit AmateurPair2(T t, U u) {}
459 };
460 // expected-warning@+1 {{'AmateurPair2' may not intend to support class template argument deduction}}
461 AmateurPair2 p2(42, "hello world"); // deduces to Pair2<int, const char*>
462
463 template <class T, class U>
464 struct ProPair {
465 T first; U second;
ProPairtest_implicit_ctad_warning::ProPair466 explicit ProPair(T const& t, U const& u) {}
467 };
468 template<class T1, class T2>
469 ProPair(T1, T2) -> ProPair<T1, T2>;
470 ProPair p3(42, "hello world"); // deduces to ProPair<int, const char*>
471 static_assert(__is_same(decltype(p3), ProPair<int, const char*>));
472
473 // Test that user-defined explicit guides suppress the warning even if they
474 // aren't used as candidates.
475 template <class T>
476 struct TestExplicitCtor {
TestExplicitCtortest_implicit_ctad_warning::TestExplicitCtor477 TestExplicitCtor(T) {}
478 };
479 template <class T>
480 explicit TestExplicitCtor(TestExplicitCtor<T> const&) -> TestExplicitCtor<void>;
481 TestExplicitCtor<int> ce1{42};
482 TestExplicitCtor ce2 = ce1;
483 static_assert(__is_same(decltype(ce2), TestExplicitCtor<int>), "");
484
485 struct allow_ctad_t {
486 allow_ctad_t() = delete;
487 };
488
489 template <class T>
490 struct TestSuppression {
TestSuppressiontest_implicit_ctad_warning::TestSuppression491 TestSuppression(T) {}
492 };
493 TestSuppression(allow_ctad_t)->TestSuppression<void>;
494 TestSuppression ta("abc");
495 static_assert(__is_same(decltype(ta), TestSuppression<const char *>), "");
496 }
497 #pragma clang diagnostic pop
498
499 namespace PR41549 {
500
501 template <class H, class P> struct umm;
502
503 template <class H = int, class P = int>
504 struct umm {
505 umm(H h = 0, P p = 0);
506 };
507
508 template <class H, class P> struct umm;
509
510 umm m(1);
511
512 }
513
514 namespace PR45124 {
515 class a { int d; };
516 class b : a {};
517
518 struct x { ~x(); };
519 template<typename> class y { y(x = x()); };
520 template<typename z> y(z)->y<z>;
521
522 // Not a constant initializer, but trivial default initialization. We won't
523 // detect this as trivial default initialization if synthesizing the implicit
524 // deduction guide 'template<typename T> y(x = x()) -> Y<T>;' leaves behind a
525 // pending cleanup.
526 __thread b g;
527 }
528
529 namespace PR47175 {
530 template<typename T> struct A { A(T); T x; };
531 template<typename T> int &&n = A(T()).x;
532 int m = n<int>;
533 }
534
535 #else
536
537 // expected-no-diagnostics
538 namespace undefined_warnings {
539 // Make sure we don't get an "undefined but used internal symbol" warning for the deduction guide here.
540 namespace {
541 template <typename T>
542 struct TemplDObj {
TemplDObjundefined_warnings::__anon1c15853d0111::TemplDObj543 explicit TemplDObj(T func) noexcept {}
544 };
545 auto test1 = TemplDObj(0);
546
547 TemplDObj(float) -> TemplDObj<double>;
548 auto test2 = TemplDObj(.0f);
549 }
550 }
551 #endif
552