1 //===-- lib/Parser/expr-parsers.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 // Per-type parsers for expressions.
10
11 #include "expr-parsers.h"
12 #include "basic-parsers.h"
13 #include "debug-parser.h"
14 #include "misc-parsers.h"
15 #include "stmt-parser.h"
16 #include "token-parsers.h"
17 #include "type-parser-implementation.h"
18 #include "flang/Parser/characters.h"
19 #include "flang/Parser/parse-tree.h"
20
21 namespace Fortran::parser {
22
23 // R764 boz-literal-constant -> binary-constant | octal-constant | hex-constant
24 // R765 binary-constant -> B ' digit [digit]... ' | B " digit [digit]... "
25 // R766 octal-constant -> O ' digit [digit]... ' | O " digit [digit]... "
26 // R767 hex-constant ->
27 // Z ' hex-digit [hex-digit]... ' | Z " hex-digit [hex-digit]... "
28 // extension: X accepted for Z
29 // extension: BOZX suffix accepted
30 TYPE_PARSER(construct<BOZLiteralConstant>(BOZLiteral{}))
31
32 // R769 array-constructor -> (/ ac-spec /) | lbracket ac-spec rbracket
33 TYPE_CONTEXT_PARSER("array constructor"_en_US,
34 construct<ArrayConstructor>(
35 "(/" >> Parser<AcSpec>{} / "/)" || bracketed(Parser<AcSpec>{})))
36
37 // R770 ac-spec -> type-spec :: | [type-spec ::] ac-value-list
38 TYPE_PARSER(construct<AcSpec>(maybe(typeSpec / "::"),
39 nonemptyList("expected array constructor values"_err_en_US,
40 Parser<AcValue>{})) ||
41 construct<AcSpec>(typeSpec / "::"))
42
43 // R773 ac-value -> expr | ac-implied-do
44 TYPE_PARSER(
45 // PGI/Intel extension: accept triplets in array constructors
46 extension<LanguageFeature::TripletInArrayConstructor>(
47 construct<AcValue>(construct<AcValue::Triplet>(scalarIntExpr,
48 ":" >> scalarIntExpr, maybe(":" >> scalarIntExpr)))) ||
49 construct<AcValue>(indirect(expr)) ||
50 construct<AcValue>(indirect(Parser<AcImpliedDo>{})))
51
52 // R774 ac-implied-do -> ( ac-value-list , ac-implied-do-control )
53 TYPE_PARSER(parenthesized(
54 construct<AcImpliedDo>(nonemptyList(Parser<AcValue>{} / lookAhead(","_tok)),
55 "," >> Parser<AcImpliedDoControl>{})))
56
57 // R775 ac-implied-do-control ->
58 // [integer-type-spec ::] ac-do-variable = scalar-int-expr ,
59 // scalar-int-expr [, scalar-int-expr]
60 // R776 ac-do-variable -> do-variable
61 TYPE_PARSER(construct<AcImpliedDoControl>(
62 maybe(integerTypeSpec / "::"), loopBounds(scalarIntExpr)))
63
64 // R1001 primary ->
65 // literal-constant | designator | array-constructor |
66 // structure-constructor | function-reference | type-param-inquiry |
67 // type-param-name | ( expr )
68 // N.B. type-param-inquiry is parsed as a structure component
69 constexpr auto primary{instrumented("primary"_en_US,
70 first(construct<Expr>(indirect(Parser<CharLiteralConstantSubstring>{})),
71 construct<Expr>(literalConstant),
72 construct<Expr>(construct<Expr::Parentheses>(parenthesized(expr))),
73 construct<Expr>(indirect(functionReference) / !"("_tok),
74 construct<Expr>(designator / !"("_tok),
75 construct<Expr>(Parser<StructureConstructor>{}),
76 construct<Expr>(Parser<ArrayConstructor>{}),
77 // PGI/XLF extension: COMPLEX constructor (x,y)
78 extension<LanguageFeature::ComplexConstructor>(
79 construct<Expr>(parenthesized(
80 construct<Expr::ComplexConstructor>(expr, "," >> expr)))),
81 extension<LanguageFeature::PercentLOC>(construct<Expr>("%LOC" >>
82 parenthesized(construct<Expr::PercentLoc>(indirect(variable)))))))};
83
84 // R1002 level-1-expr -> [defined-unary-op] primary
85 // TODO: Reasonable extension: permit multiple defined-unary-ops
86 constexpr auto level1Expr{sourced(
87 first(primary, // must come before define op to resolve .TRUE._8 ambiguity
88 construct<Expr>(construct<Expr::DefinedUnary>(definedOpName, primary)),
89 extension<LanguageFeature::SignedPrimary>(
90 construct<Expr>(construct<Expr::UnaryPlus>("+" >> primary))),
91 extension<LanguageFeature::SignedPrimary>(
92 construct<Expr>(construct<Expr::Negate>("-" >> primary)))))};
93
94 // R1004 mult-operand -> level-1-expr [power-op mult-operand]
95 // R1007 power-op -> **
96 // Exponentiation (**) is Fortran's only right-associative binary operation.
97 struct MultOperand {
98 using resultType = Expr;
MultOperandFortran::parser::MultOperand99 constexpr MultOperand() {}
100 static inline std::optional<Expr> Parse(ParseState &);
101 };
102
103 static constexpr auto multOperand{sourced(MultOperand{})};
104
Parse(ParseState & state)105 inline std::optional<Expr> MultOperand::Parse(ParseState &state) {
106 std::optional<Expr> result{level1Expr.Parse(state)};
107 if (result) {
108 static constexpr auto op{attempt("**"_tok)};
109 if (op.Parse(state)) {
110 std::function<Expr(Expr &&)> power{[&result](Expr &&right) {
111 return Expr{Expr::Power(std::move(result).value(), std::move(right))};
112 }};
113 return applyLambda(power, multOperand).Parse(state); // right-recursive
114 }
115 }
116 return result;
117 }
118
119 // R1005 add-operand -> [add-operand mult-op] mult-operand
120 // R1008 mult-op -> * | /
121 // The left recursion in the grammar is implemented iteratively.
122 struct AddOperand {
123 using resultType = Expr;
AddOperandFortran::parser::AddOperand124 constexpr AddOperand() {}
ParseFortran::parser::AddOperand125 static inline std::optional<Expr> Parse(ParseState &state) {
126 std::optional<Expr> result{multOperand.Parse(state)};
127 if (result) {
128 auto source{result->source};
129 std::function<Expr(Expr &&)> multiply{[&result](Expr &&right) {
130 return Expr{
131 Expr::Multiply(std::move(result).value(), std::move(right))};
132 }};
133 std::function<Expr(Expr &&)> divide{[&result](Expr &&right) {
134 return Expr{Expr::Divide(std::move(result).value(), std::move(right))};
135 }};
136 auto more{attempt(sourced("*" >> applyLambda(multiply, multOperand) ||
137 "/" >> applyLambda(divide, multOperand)))};
138 while (std::optional<Expr> next{more.Parse(state)}) {
139 result = std::move(next);
140 result->source.ExtendToCover(source);
141 }
142 }
143 return result;
144 }
145 };
146 constexpr AddOperand addOperand;
147
148 // R1006 level-2-expr -> [[level-2-expr] add-op] add-operand
149 // R1009 add-op -> + | -
150 // These are left-recursive productions, implemented iteratively.
151 // Note that standard Fortran admits a unary + or - to appear only here,
152 // by means of a missing first operand; e.g., 2*-3 is valid in C but not
153 // standard Fortran. We accept unary + and - to appear before any primary
154 // as an extension.
155 struct Level2Expr {
156 using resultType = Expr;
Level2ExprFortran::parser::Level2Expr157 constexpr Level2Expr() {}
ParseFortran::parser::Level2Expr158 static inline std::optional<Expr> Parse(ParseState &state) {
159 static constexpr auto unary{
160 sourced(
161 construct<Expr>(construct<Expr::UnaryPlus>("+" >> addOperand)) ||
162 construct<Expr>(construct<Expr::Negate>("-" >> addOperand))) ||
163 addOperand};
164 std::optional<Expr> result{unary.Parse(state)};
165 if (result) {
166 auto source{result->source};
167 std::function<Expr(Expr &&)> add{[&result](Expr &&right) {
168 return Expr{Expr::Add(std::move(result).value(), std::move(right))};
169 }};
170 std::function<Expr(Expr &&)> subtract{[&result](Expr &&right) {
171 return Expr{
172 Expr::Subtract(std::move(result).value(), std::move(right))};
173 }};
174 auto more{attempt(sourced("+" >> applyLambda(add, addOperand) ||
175 "-" >> applyLambda(subtract, addOperand)))};
176 while (std::optional<Expr> next{more.Parse(state)}) {
177 result = std::move(next);
178 result->source.ExtendToCover(source);
179 }
180 }
181 return result;
182 }
183 };
184 constexpr Level2Expr level2Expr;
185
186 // R1010 level-3-expr -> [level-3-expr concat-op] level-2-expr
187 // R1011 concat-op -> //
188 // Concatenation (//) is left-associative for parsing performance, although
189 // one would never notice if it were right-associated.
190 struct Level3Expr {
191 using resultType = Expr;
Level3ExprFortran::parser::Level3Expr192 constexpr Level3Expr() {}
ParseFortran::parser::Level3Expr193 static inline std::optional<Expr> Parse(ParseState &state) {
194 std::optional<Expr> result{level2Expr.Parse(state)};
195 if (result) {
196 auto source{result->source};
197 std::function<Expr(Expr &&)> concat{[&result](Expr &&right) {
198 return Expr{Expr::Concat(std::move(result).value(), std::move(right))};
199 }};
200 auto more{attempt(sourced("//" >> applyLambda(concat, level2Expr)))};
201 while (std::optional<Expr> next{more.Parse(state)}) {
202 result = std::move(next);
203 result->source.ExtendToCover(source);
204 }
205 }
206 return result;
207 }
208 };
209 constexpr Level3Expr level3Expr;
210
211 // R1012 level-4-expr -> [level-3-expr rel-op] level-3-expr
212 // R1013 rel-op ->
213 // .EQ. | .NE. | .LT. | .LE. | .GT. | .GE. |
214 // == | /= | < | <= | > | >= @ | <>
215 // N.B. relations are not recursive (i.e., LOGICAL is not ordered)
216 struct Level4Expr {
217 using resultType = Expr;
Level4ExprFortran::parser::Level4Expr218 constexpr Level4Expr() {}
ParseFortran::parser::Level4Expr219 static inline std::optional<Expr> Parse(ParseState &state) {
220 std::optional<Expr> result{level3Expr.Parse(state)};
221 if (result) {
222 auto source{result->source};
223 std::function<Expr(Expr &&)> lt{[&result](Expr &&right) {
224 return Expr{Expr::LT(std::move(result).value(), std::move(right))};
225 }};
226 std::function<Expr(Expr &&)> le{[&result](Expr &&right) {
227 return Expr{Expr::LE(std::move(result).value(), std::move(right))};
228 }};
229 std::function<Expr(Expr &&)> eq{[&result](Expr &&right) {
230 return Expr{Expr::EQ(std::move(result).value(), std::move(right))};
231 }};
232 std::function<Expr(Expr &&)> ne{[&result](Expr &&right) {
233 return Expr{Expr::NE(std::move(result).value(), std::move(right))};
234 }};
235 std::function<Expr(Expr &&)> ge{[&result](Expr &&right) {
236 return Expr{Expr::GE(std::move(result).value(), std::move(right))};
237 }};
238 std::function<Expr(Expr &&)> gt{[&result](Expr &&right) {
239 return Expr{Expr::GT(std::move(result).value(), std::move(right))};
240 }};
241 auto more{attempt(
242 sourced((".LT."_tok || "<"_tok) >> applyLambda(lt, level3Expr) ||
243 (".LE."_tok || "<="_tok) >> applyLambda(le, level3Expr) ||
244 (".EQ."_tok || "=="_tok) >> applyLambda(eq, level3Expr) ||
245 (".NE."_tok || "/="_tok ||
246 extension<LanguageFeature::AlternativeNE>(
247 "<>"_tok /* PGI/Cray extension; Cray also has .LG. */)) >>
248 applyLambda(ne, level3Expr) ||
249 (".GE."_tok || ">="_tok) >> applyLambda(ge, level3Expr) ||
250 (".GT."_tok || ">"_tok) >> applyLambda(gt, level3Expr)))};
251 if (std::optional<Expr> next{more.Parse(state)}) {
252 next->source.ExtendToCover(source);
253 return next;
254 }
255 }
256 return result;
257 }
258 };
259 constexpr Level4Expr level4Expr;
260
261 // R1014 and-operand -> [not-op] level-4-expr
262 // R1018 not-op -> .NOT.
263 // N.B. Fortran's .NOT. binds less tightly than its comparison operators do.
264 // PGI/Intel extension: accept multiple .NOT. operators
265 struct AndOperand {
266 using resultType = Expr;
AndOperandFortran::parser::AndOperand267 constexpr AndOperand() {}
268 static inline std::optional<Expr> Parse(ParseState &);
269 };
270 constexpr AndOperand andOperand;
271
272 // Match a logical operator or, optionally, its abbreviation.
logicalOp(const char * op,const char * abbrev)273 inline constexpr auto logicalOp(const char *op, const char *abbrev) {
274 return TokenStringMatch{op} ||
275 extension<LanguageFeature::LogicalAbbreviations>(
276 TokenStringMatch{abbrev});
277 }
278
Parse(ParseState & state)279 inline std::optional<Expr> AndOperand::Parse(ParseState &state) {
280 static constexpr auto notOp{attempt(logicalOp(".NOT.", ".N.") >> andOperand)};
281 if (std::optional<Expr> negation{notOp.Parse(state)}) {
282 return Expr{Expr::NOT{std::move(*negation)}};
283 } else {
284 return level4Expr.Parse(state);
285 }
286 }
287
288 // R1015 or-operand -> [or-operand and-op] and-operand
289 // R1019 and-op -> .AND.
290 // .AND. is left-associative
291 struct OrOperand {
292 using resultType = Expr;
OrOperandFortran::parser::OrOperand293 constexpr OrOperand() {}
ParseFortran::parser::OrOperand294 static inline std::optional<Expr> Parse(ParseState &state) {
295 static constexpr auto operand{sourced(andOperand)};
296 std::optional<Expr> result{operand.Parse(state)};
297 if (result) {
298 auto source{result->source};
299 std::function<Expr(Expr &&)> logicalAnd{[&result](Expr &&right) {
300 return Expr{Expr::AND(std::move(result).value(), std::move(right))};
301 }};
302 auto more{attempt(sourced(
303 logicalOp(".AND.", ".A.") >> applyLambda(logicalAnd, andOperand)))};
304 while (std::optional<Expr> next{more.Parse(state)}) {
305 result = std::move(next);
306 result->source.ExtendToCover(source);
307 }
308 }
309 return result;
310 }
311 };
312 constexpr OrOperand orOperand;
313
314 // R1016 equiv-operand -> [equiv-operand or-op] or-operand
315 // R1020 or-op -> .OR.
316 // .OR. is left-associative
317 struct EquivOperand {
318 using resultType = Expr;
EquivOperandFortran::parser::EquivOperand319 constexpr EquivOperand() {}
ParseFortran::parser::EquivOperand320 static inline std::optional<Expr> Parse(ParseState &state) {
321 std::optional<Expr> result{orOperand.Parse(state)};
322 if (result) {
323 auto source{result->source};
324 std::function<Expr(Expr &&)> logicalOr{[&result](Expr &&right) {
325 return Expr{Expr::OR(std::move(result).value(), std::move(right))};
326 }};
327 auto more{attempt(sourced(
328 logicalOp(".OR.", ".O.") >> applyLambda(logicalOr, orOperand)))};
329 while (std::optional<Expr> next{more.Parse(state)}) {
330 result = std::move(next);
331 result->source.ExtendToCover(source);
332 }
333 }
334 return result;
335 }
336 };
337 constexpr EquivOperand equivOperand;
338
339 // R1017 level-5-expr -> [level-5-expr equiv-op] equiv-operand
340 // R1021 equiv-op -> .EQV. | .NEQV.
341 // Logical equivalence is left-associative.
342 // Extension: .XOR. as synonym for .NEQV.
343 struct Level5Expr {
344 using resultType = Expr;
Level5ExprFortran::parser::Level5Expr345 constexpr Level5Expr() {}
ParseFortran::parser::Level5Expr346 static inline std::optional<Expr> Parse(ParseState &state) {
347 std::optional<Expr> result{equivOperand.Parse(state)};
348 if (result) {
349 auto source{result->source};
350 std::function<Expr(Expr &&)> eqv{[&result](Expr &&right) {
351 return Expr{Expr::EQV(std::move(result).value(), std::move(right))};
352 }};
353 std::function<Expr(Expr &&)> neqv{[&result](Expr &&right) {
354 return Expr{Expr::NEQV(std::move(result).value(), std::move(right))};
355 }};
356 auto more{attempt(sourced(".EQV." >> applyLambda(eqv, equivOperand) ||
357 (".NEQV."_tok ||
358 extension<LanguageFeature::XOROperator>(
359 logicalOp(".XOR.", ".X."))) >>
360 applyLambda(neqv, equivOperand)))};
361 while (std::optional<Expr> next{more.Parse(state)}) {
362 result = std::move(next);
363 result->source.ExtendToCover(source);
364 }
365 }
366 return result;
367 }
368 };
369 constexpr Level5Expr level5Expr;
370
371 // R1022 expr -> [expr defined-binary-op] level-5-expr
372 // Defined binary operators associate leftwards.
Parse(ParseState & state)373 template <> std::optional<Expr> Parser<Expr>::Parse(ParseState &state) {
374 std::optional<Expr> result{level5Expr.Parse(state)};
375 if (result) {
376 auto source{result->source};
377 std::function<Expr(DefinedOpName &&, Expr &&)> defBinOp{
378 [&result](DefinedOpName &&op, Expr &&right) {
379 return Expr{Expr::DefinedBinary(
380 std::move(op), std::move(result).value(), std::move(right))};
381 }};
382 auto more{attempt(
383 sourced(applyLambda<Expr>(defBinOp, definedOpName, level5Expr)))};
384 while (std::optional<Expr> next{more.Parse(state)}) {
385 result = std::move(next);
386 result->source.ExtendToCover(source);
387 }
388 }
389 return result;
390 }
391
392 // R1003 defined-unary-op -> . letter [letter]... .
393 // R1023 defined-binary-op -> . letter [letter]... .
394 // R1414 local-defined-operator -> defined-unary-op | defined-binary-op
395 // R1415 use-defined-operator -> defined-unary-op | defined-binary-op
396 // C1003 A defined operator must be distinct from logical literal constants
397 // and intrinsic operator names; this is handled by attempting their parses
398 // first, and by name resolution on their definitions, for best errors.
399 // N.B. The name of the operator is captured with the dots around it.
400 constexpr auto definedOpNameChar{
401 letter || extension<LanguageFeature::PunctuationInNames>("$@"_ch)};
402 TYPE_PARSER(
403 space >> construct<DefinedOpName>(sourced("."_ch >>
404 some(definedOpNameChar) >> construct<Name>() / "."_ch)))
405
406 // R1028 specification-expr -> scalar-int-expr
407 TYPE_PARSER(construct<SpecificationExpr>(scalarIntExpr))
408
409 // R1032 assignment-stmt -> variable = expr
410 TYPE_CONTEXT_PARSER("assignment statement"_en_US,
411 construct<AssignmentStmt>(variable / "=", expr))
412
413 // R1033 pointer-assignment-stmt ->
414 // data-pointer-object [( bounds-spec-list )] => data-target |
415 // data-pointer-object ( bounds-remapping-list ) => data-target |
416 // proc-pointer-object => proc-target
417 // R1034 data-pointer-object ->
418 // variable-name | scalar-variable % data-pointer-component-name
419 // C1022 a scalar-variable shall be a data-ref
420 // C1024 a data-pointer-object shall not be a coindexed object
421 // R1038 proc-pointer-object -> proc-pointer-name | proc-component-ref
422 //
423 // A distinction can't be made at the time of the initial parse between
424 // data-pointer-object and proc-pointer-object, or between data-target
425 // and proc-target.
426 TYPE_CONTEXT_PARSER("pointer assignment statement"_en_US,
427 construct<PointerAssignmentStmt>(dataRef,
428 parenthesized(nonemptyList(Parser<BoundsRemapping>{})), "=>" >> expr) ||
429 construct<PointerAssignmentStmt>(dataRef,
430 defaulted(parenthesized(nonemptyList(Parser<BoundsSpec>{}))),
431 "=>" >> expr))
432
433 // R1035 bounds-spec -> lower-bound-expr :
434 TYPE_PARSER(construct<BoundsSpec>(boundExpr / ":"))
435
436 // R1036 bounds-remapping -> lower-bound-expr : upper-bound-expr
437 TYPE_PARSER(construct<BoundsRemapping>(boundExpr / ":", boundExpr))
438
439 // R1039 proc-component-ref -> scalar-variable % procedure-component-name
440 // C1027 the scalar-variable must be a data-ref without coindices.
441 TYPE_PARSER(construct<ProcComponentRef>(structureComponent))
442
443 // R1041 where-stmt -> WHERE ( mask-expr ) where-assignment-stmt
444 // R1045 where-assignment-stmt -> assignment-stmt
445 // R1046 mask-expr -> logical-expr
446 TYPE_CONTEXT_PARSER("WHERE statement"_en_US,
447 construct<WhereStmt>("WHERE" >> parenthesized(logicalExpr), assignmentStmt))
448
449 // R1042 where-construct ->
450 // where-construct-stmt [where-body-construct]...
451 // [masked-elsewhere-stmt [where-body-construct]...]...
452 // [elsewhere-stmt [where-body-construct]...] end-where-stmt
453 TYPE_CONTEXT_PARSER("WHERE construct"_en_US,
454 construct<WhereConstruct>(statement(Parser<WhereConstructStmt>{}),
455 many(whereBodyConstruct),
456 many(construct<WhereConstruct::MaskedElsewhere>(
457 statement(Parser<MaskedElsewhereStmt>{}),
458 many(whereBodyConstruct))),
459 maybe(construct<WhereConstruct::Elsewhere>(
460 statement(Parser<ElsewhereStmt>{}), many(whereBodyConstruct))),
461 statement(Parser<EndWhereStmt>{})))
462
463 // R1043 where-construct-stmt -> [where-construct-name :] WHERE ( mask-expr )
464 TYPE_CONTEXT_PARSER("WHERE construct statement"_en_US,
465 construct<WhereConstructStmt>(
466 maybe(name / ":"), "WHERE" >> parenthesized(logicalExpr)))
467
468 // R1044 where-body-construct ->
469 // where-assignment-stmt | where-stmt | where-construct
470 TYPE_PARSER(construct<WhereBodyConstruct>(statement(assignmentStmt)) ||
471 construct<WhereBodyConstruct>(statement(whereStmt)) ||
472 construct<WhereBodyConstruct>(indirect(whereConstruct)))
473
474 // R1047 masked-elsewhere-stmt ->
475 // ELSEWHERE ( mask-expr ) [where-construct-name]
476 TYPE_CONTEXT_PARSER("masked ELSEWHERE statement"_en_US,
477 construct<MaskedElsewhereStmt>(
478 "ELSE WHERE" >> parenthesized(logicalExpr), maybe(name)))
479
480 // R1048 elsewhere-stmt -> ELSEWHERE [where-construct-name]
481 TYPE_CONTEXT_PARSER("ELSEWHERE statement"_en_US,
482 construct<ElsewhereStmt>("ELSE WHERE" >> maybe(name)))
483
484 // R1049 end-where-stmt -> ENDWHERE [where-construct-name]
485 TYPE_CONTEXT_PARSER("END WHERE statement"_en_US,
486 construct<EndWhereStmt>(
487 recovery("END WHERE" >> maybe(name), endStmtErrorRecovery)))
488
489 // R1050 forall-construct ->
490 // forall-construct-stmt [forall-body-construct]... end-forall-stmt
491 TYPE_CONTEXT_PARSER("FORALL construct"_en_US,
492 construct<ForallConstruct>(statement(Parser<ForallConstructStmt>{}),
493 many(Parser<ForallBodyConstruct>{}),
494 statement(Parser<EndForallStmt>{})))
495
496 // R1051 forall-construct-stmt ->
497 // [forall-construct-name :] FORALL concurrent-header
498 TYPE_CONTEXT_PARSER("FORALL construct statement"_en_US,
499 construct<ForallConstructStmt>(
500 maybe(name / ":"), "FORALL" >> indirect(concurrentHeader)))
501
502 // R1052 forall-body-construct ->
503 // forall-assignment-stmt | where-stmt | where-construct |
504 // forall-construct | forall-stmt
505 TYPE_PARSER(construct<ForallBodyConstruct>(statement(forallAssignmentStmt)) ||
506 construct<ForallBodyConstruct>(statement(whereStmt)) ||
507 construct<ForallBodyConstruct>(whereConstruct) ||
508 construct<ForallBodyConstruct>(indirect(forallConstruct)) ||
509 construct<ForallBodyConstruct>(statement(forallStmt)))
510
511 // R1053 forall-assignment-stmt -> assignment-stmt | pointer-assignment-stmt
512 TYPE_PARSER(construct<ForallAssignmentStmt>(assignmentStmt) ||
513 construct<ForallAssignmentStmt>(pointerAssignmentStmt))
514
515 // R1054 end-forall-stmt -> END FORALL [forall-construct-name]
516 TYPE_CONTEXT_PARSER("END FORALL statement"_en_US,
517 construct<EndForallStmt>(
518 recovery("END FORALL" >> maybe(name), endStmtErrorRecovery)))
519
520 // R1055 forall-stmt -> FORALL concurrent-header forall-assignment-stmt
521 TYPE_CONTEXT_PARSER("FORALL statement"_en_US,
522 construct<ForallStmt>("FORALL" >> indirect(concurrentHeader),
523 unlabeledStatement(forallAssignmentStmt)))
524 } // namespace Fortran::parser
525