1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/ScopeExit.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PassManager.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <iterator>
35 #include <string>
36 #include <tuple>
37 #include <utility>
38
39 using namespace llvm;
40
41 #define DEBUG_TYPE "lcg"
42
insertEdgeInternal(Node & TargetN,Edge::Kind EK)43 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
44 Edge::Kind EK) {
45 EdgeIndexMap.insert({&TargetN, Edges.size()});
46 Edges.emplace_back(TargetN, EK);
47 }
48
setEdgeKind(Node & TargetN,Edge::Kind EK)49 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
50 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
51 }
52
removeEdgeInternal(Node & TargetN)53 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
54 auto IndexMapI = EdgeIndexMap.find(&TargetN);
55 if (IndexMapI == EdgeIndexMap.end())
56 return false;
57
58 Edges[IndexMapI->second] = Edge();
59 EdgeIndexMap.erase(IndexMapI);
60 return true;
61 }
62
addEdge(SmallVectorImpl<LazyCallGraph::Edge> & Edges,DenseMap<LazyCallGraph::Node *,int> & EdgeIndexMap,LazyCallGraph::Node & N,LazyCallGraph::Edge::Kind EK)63 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
64 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
65 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
66 if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
67 return;
68
69 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
70 Edges.emplace_back(LazyCallGraph::Edge(N, EK));
71 }
72
populateSlow()73 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
74 assert(!Edges && "Must not have already populated the edges for this node!");
75
76 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
77 << "' to the graph.\n");
78
79 Edges = EdgeSequence();
80
81 SmallVector<Constant *, 16> Worklist;
82 SmallPtrSet<Function *, 4> Callees;
83 SmallPtrSet<Constant *, 16> Visited;
84
85 // Find all the potential call graph edges in this function. We track both
86 // actual call edges and indirect references to functions. The direct calls
87 // are trivially added, but to accumulate the latter we walk the instructions
88 // and add every operand which is a constant to the worklist to process
89 // afterward.
90 //
91 // Note that we consider *any* function with a definition to be a viable
92 // edge. Even if the function's definition is subject to replacement by
93 // some other module (say, a weak definition) there may still be
94 // optimizations which essentially speculate based on the definition and
95 // a way to check that the specific definition is in fact the one being
96 // used. For example, this could be done by moving the weak definition to
97 // a strong (internal) definition and making the weak definition be an
98 // alias. Then a test of the address of the weak function against the new
99 // strong definition's address would be an effective way to determine the
100 // safety of optimizing a direct call edge.
101 for (BasicBlock &BB : *F)
102 for (Instruction &I : BB) {
103 if (auto *CB = dyn_cast<CallBase>(&I))
104 if (Function *Callee = CB->getCalledFunction())
105 if (!Callee->isDeclaration())
106 if (Callees.insert(Callee).second) {
107 Visited.insert(Callee);
108 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
109 LazyCallGraph::Edge::Call);
110 }
111
112 for (Value *Op : I.operand_values())
113 if (Constant *C = dyn_cast<Constant>(Op))
114 if (Visited.insert(C).second)
115 Worklist.push_back(C);
116 }
117
118 // We've collected all the constant (and thus potentially function or
119 // function containing) operands to all of the instructions in the function.
120 // Process them (recursively) collecting every function found.
121 visitReferences(Worklist, Visited, [&](Function &F) {
122 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
123 LazyCallGraph::Edge::Ref);
124 });
125
126 // Add implicit reference edges to any defined libcall functions (if we
127 // haven't found an explicit edge).
128 for (auto *F : G->LibFunctions)
129 if (!Visited.count(F))
130 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
131 LazyCallGraph::Edge::Ref);
132
133 return *Edges;
134 }
135
replaceFunction(Function & NewF)136 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
137 assert(F != &NewF && "Must not replace a function with itself!");
138 F = &NewF;
139 }
140
141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const142 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
143 dbgs() << *this << '\n';
144 }
145 #endif
146
isKnownLibFunction(Function & F,TargetLibraryInfo & TLI)147 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
148 LibFunc LF;
149
150 // Either this is a normal library function or a "vectorizable"
151 // function. Not using the VFDatabase here because this query
152 // is related only to libraries handled via the TLI.
153 return TLI.getLibFunc(F, LF) ||
154 TLI.isKnownVectorFunctionInLibrary(F.getName());
155 }
156
LazyCallGraph(Module & M,function_ref<TargetLibraryInfo & (Function &)> GetTLI)157 LazyCallGraph::LazyCallGraph(
158 Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
159 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
160 << "\n");
161 for (Function &F : M) {
162 if (F.isDeclaration())
163 continue;
164 // If this function is a known lib function to LLVM then we want to
165 // synthesize reference edges to it to model the fact that LLVM can turn
166 // arbitrary code into a library function call.
167 if (isKnownLibFunction(F, GetTLI(F)))
168 LibFunctions.insert(&F);
169
170 if (F.hasLocalLinkage())
171 continue;
172
173 // External linkage defined functions have edges to them from other
174 // modules.
175 LLVM_DEBUG(dbgs() << " Adding '" << F.getName()
176 << "' to entry set of the graph.\n");
177 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
178 }
179
180 // Externally visible aliases of internal functions are also viable entry
181 // edges to the module.
182 for (auto &A : M.aliases()) {
183 if (A.hasLocalLinkage())
184 continue;
185 if (Function* F = dyn_cast<Function>(A.getAliasee())) {
186 LLVM_DEBUG(dbgs() << " Adding '" << F->getName()
187 << "' with alias '" << A.getName()
188 << "' to entry set of the graph.\n");
189 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
190 }
191 }
192
193 // Now add entry nodes for functions reachable via initializers to globals.
194 SmallVector<Constant *, 16> Worklist;
195 SmallPtrSet<Constant *, 16> Visited;
196 for (GlobalVariable &GV : M.globals())
197 if (GV.hasInitializer())
198 if (Visited.insert(GV.getInitializer()).second)
199 Worklist.push_back(GV.getInitializer());
200
201 LLVM_DEBUG(
202 dbgs() << " Adding functions referenced by global initializers to the "
203 "entry set.\n");
204 visitReferences(Worklist, Visited, [&](Function &F) {
205 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
206 LazyCallGraph::Edge::Ref);
207 });
208 }
209
LazyCallGraph(LazyCallGraph && G)210 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
211 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
212 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
213 SCCMap(std::move(G.SCCMap)),
214 LibFunctions(std::move(G.LibFunctions)) {
215 updateGraphPtrs();
216 }
217
invalidate(Module &,const PreservedAnalyses & PA,ModuleAnalysisManager::Invalidator &)218 bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA,
219 ModuleAnalysisManager::Invalidator &) {
220 // Check whether the analysis, all analyses on functions, or the function's
221 // CFG have been preserved.
222 auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>();
223 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>() ||
224 PAC.preservedSet<CFGAnalyses>());
225 }
226
operator =(LazyCallGraph && G)227 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
228 BPA = std::move(G.BPA);
229 NodeMap = std::move(G.NodeMap);
230 EntryEdges = std::move(G.EntryEdges);
231 SCCBPA = std::move(G.SCCBPA);
232 SCCMap = std::move(G.SCCMap);
233 LibFunctions = std::move(G.LibFunctions);
234 updateGraphPtrs();
235 return *this;
236 }
237
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const239 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
240 dbgs() << *this << '\n';
241 }
242 #endif
243
244 #ifndef NDEBUG
verify()245 void LazyCallGraph::SCC::verify() {
246 assert(OuterRefSCC && "Can't have a null RefSCC!");
247 assert(!Nodes.empty() && "Can't have an empty SCC!");
248
249 for (Node *N : Nodes) {
250 assert(N && "Can't have a null node!");
251 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
252 "Node does not map to this SCC!");
253 assert(N->DFSNumber == -1 &&
254 "Must set DFS numbers to -1 when adding a node to an SCC!");
255 assert(N->LowLink == -1 &&
256 "Must set low link to -1 when adding a node to an SCC!");
257 for (Edge &E : **N)
258 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
259
260 #ifdef EXPENSIVE_CHECKS
261 // Verify that all nodes in this SCC can reach all other nodes.
262 SmallVector<Node *, 4> Worklist;
263 SmallPtrSet<Node *, 4> Visited;
264 Worklist.push_back(N);
265 while (!Worklist.empty()) {
266 Node *VisitingNode = Worklist.pop_back_val();
267 if (!Visited.insert(VisitingNode).second)
268 continue;
269 for (Edge &E : (*VisitingNode)->calls())
270 Worklist.push_back(&E.getNode());
271 }
272 for (Node *NodeToVisit : Nodes) {
273 assert(Visited.contains(NodeToVisit) &&
274 "Cannot reach all nodes within SCC");
275 }
276 #endif
277 }
278 }
279 #endif
280
isParentOf(const SCC & C) const281 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
282 if (this == &C)
283 return false;
284
285 for (Node &N : *this)
286 for (Edge &E : N->calls())
287 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
288 return true;
289
290 // No edges found.
291 return false;
292 }
293
isAncestorOf(const SCC & TargetC) const294 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
295 if (this == &TargetC)
296 return false;
297
298 LazyCallGraph &G = *OuterRefSCC->G;
299
300 // Start with this SCC.
301 SmallPtrSet<const SCC *, 16> Visited = {this};
302 SmallVector<const SCC *, 16> Worklist = {this};
303
304 // Walk down the graph until we run out of edges or find a path to TargetC.
305 do {
306 const SCC &C = *Worklist.pop_back_val();
307 for (Node &N : C)
308 for (Edge &E : N->calls()) {
309 SCC *CalleeC = G.lookupSCC(E.getNode());
310 if (!CalleeC)
311 continue;
312
313 // If the callee's SCC is the TargetC, we're done.
314 if (CalleeC == &TargetC)
315 return true;
316
317 // If this is the first time we've reached this SCC, put it on the
318 // worklist to recurse through.
319 if (Visited.insert(CalleeC).second)
320 Worklist.push_back(CalleeC);
321 }
322 } while (!Worklist.empty());
323
324 // No paths found.
325 return false;
326 }
327
RefSCC(LazyCallGraph & G)328 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
329
330 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const331 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
332 dbgs() << *this << '\n';
333 }
334 #endif
335
336 #ifndef NDEBUG
verify()337 void LazyCallGraph::RefSCC::verify() {
338 assert(G && "Can't have a null graph!");
339 assert(!SCCs.empty() && "Can't have an empty SCC!");
340
341 // Verify basic properties of the SCCs.
342 SmallPtrSet<SCC *, 4> SCCSet;
343 for (SCC *C : SCCs) {
344 assert(C && "Can't have a null SCC!");
345 C->verify();
346 assert(&C->getOuterRefSCC() == this &&
347 "SCC doesn't think it is inside this RefSCC!");
348 bool Inserted = SCCSet.insert(C).second;
349 assert(Inserted && "Found a duplicate SCC!");
350 auto IndexIt = SCCIndices.find(C);
351 assert(IndexIt != SCCIndices.end() &&
352 "Found an SCC that doesn't have an index!");
353 }
354
355 // Check that our indices map correctly.
356 for (auto &SCCIndexPair : SCCIndices) {
357 SCC *C = SCCIndexPair.first;
358 int i = SCCIndexPair.second;
359 assert(C && "Can't have a null SCC in the indices!");
360 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
361 assert(SCCs[i] == C && "Index doesn't point to SCC!");
362 }
363
364 // Check that the SCCs are in fact in post-order.
365 for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
366 SCC &SourceSCC = *SCCs[i];
367 for (Node &N : SourceSCC)
368 for (Edge &E : *N) {
369 if (!E.isCall())
370 continue;
371 SCC &TargetSCC = *G->lookupSCC(E.getNode());
372 if (&TargetSCC.getOuterRefSCC() == this) {
373 assert(SCCIndices.find(&TargetSCC)->second <= i &&
374 "Edge between SCCs violates post-order relationship.");
375 continue;
376 }
377 }
378 }
379
380 #ifdef EXPENSIVE_CHECKS
381 // Verify that all nodes in this RefSCC can reach all other nodes.
382 SmallVector<Node *> Nodes;
383 for (SCC *C : SCCs) {
384 for (Node &N : *C)
385 Nodes.push_back(&N);
386 }
387 for (Node *N : Nodes) {
388 SmallVector<Node *, 4> Worklist;
389 SmallPtrSet<Node *, 4> Visited;
390 Worklist.push_back(N);
391 while (!Worklist.empty()) {
392 Node *VisitingNode = Worklist.pop_back_val();
393 if (!Visited.insert(VisitingNode).second)
394 continue;
395 for (Edge &E : **VisitingNode)
396 Worklist.push_back(&E.getNode());
397 }
398 for (Node *NodeToVisit : Nodes) {
399 assert(Visited.contains(NodeToVisit) &&
400 "Cannot reach all nodes within RefSCC");
401 }
402 }
403 #endif
404 }
405 #endif
406
isParentOf(const RefSCC & RC) const407 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
408 if (&RC == this)
409 return false;
410
411 // Search all edges to see if this is a parent.
412 for (SCC &C : *this)
413 for (Node &N : C)
414 for (Edge &E : *N)
415 if (G->lookupRefSCC(E.getNode()) == &RC)
416 return true;
417
418 return false;
419 }
420
isAncestorOf(const RefSCC & RC) const421 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
422 if (&RC == this)
423 return false;
424
425 // For each descendant of this RefSCC, see if one of its children is the
426 // argument. If not, add that descendant to the worklist and continue
427 // searching.
428 SmallVector<const RefSCC *, 4> Worklist;
429 SmallPtrSet<const RefSCC *, 4> Visited;
430 Worklist.push_back(this);
431 Visited.insert(this);
432 do {
433 const RefSCC &DescendantRC = *Worklist.pop_back_val();
434 for (SCC &C : DescendantRC)
435 for (Node &N : C)
436 for (Edge &E : *N) {
437 auto *ChildRC = G->lookupRefSCC(E.getNode());
438 if (ChildRC == &RC)
439 return true;
440 if (!ChildRC || !Visited.insert(ChildRC).second)
441 continue;
442 Worklist.push_back(ChildRC);
443 }
444 } while (!Worklist.empty());
445
446 return false;
447 }
448
449 /// Generic helper that updates a postorder sequence of SCCs for a potentially
450 /// cycle-introducing edge insertion.
451 ///
452 /// A postorder sequence of SCCs of a directed graph has one fundamental
453 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
454 /// all edges in the SCC DAG point to prior SCCs in the sequence.
455 ///
456 /// This routine both updates a postorder sequence and uses that sequence to
457 /// compute the set of SCCs connected into a cycle. It should only be called to
458 /// insert a "downward" edge which will require changing the sequence to
459 /// restore it to a postorder.
460 ///
461 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
462 /// sequence, all of the SCCs which may be impacted are in the closed range of
463 /// those two within the postorder sequence. The algorithm used here to restore
464 /// the state is as follows:
465 ///
466 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
467 /// source SCC consisting of just the source SCC. Then scan toward the
468 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
469 /// in the set, add it to the set. Otherwise, the source SCC is not
470 /// a successor, move it in the postorder sequence to immediately before
471 /// the source SCC, shifting the source SCC and all SCCs in the set one
472 /// position toward the target SCC. Stop scanning after processing the
473 /// target SCC.
474 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
475 /// and thus the new edge will flow toward the start, we are done.
476 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
477 /// SCC between the source and the target, and add them to the set of
478 /// connected SCCs, then recurse through them. Once a complete set of the
479 /// SCCs the target connects to is known, hoist the remaining SCCs between
480 /// the source and the target to be above the target. Note that there is no
481 /// need to process the source SCC, it is already known to connect.
482 /// 4) At this point, all of the SCCs in the closed range between the source
483 /// SCC and the target SCC in the postorder sequence are connected,
484 /// including the target SCC and the source SCC. Inserting the edge from
485 /// the source SCC to the target SCC will form a cycle out of precisely
486 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
487 /// a single SCC.
488 ///
489 /// This process has various important properties:
490 /// - Only mutates the SCCs when adding the edge actually changes the SCC
491 /// structure.
492 /// - Never mutates SCCs which are unaffected by the change.
493 /// - Updates the postorder sequence to correctly satisfy the postorder
494 /// constraint after the edge is inserted.
495 /// - Only reorders SCCs in the closed postorder sequence from the source to
496 /// the target, so easy to bound how much has changed even in the ordering.
497 /// - Big-O is the number of edges in the closed postorder range of SCCs from
498 /// source to target.
499 ///
500 /// This helper routine, in addition to updating the postorder sequence itself
501 /// will also update a map from SCCs to indices within that sequence.
502 ///
503 /// The sequence and the map must operate on pointers to the SCC type.
504 ///
505 /// Two callbacks must be provided. The first computes the subset of SCCs in
506 /// the postorder closed range from the source to the target which connect to
507 /// the source SCC via some (transitive) set of edges. The second computes the
508 /// subset of the same range which the target SCC connects to via some
509 /// (transitive) set of edges. Both callbacks should populate the set argument
510 /// provided.
511 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
512 typename ComputeSourceConnectedSetCallableT,
513 typename ComputeTargetConnectedSetCallableT>
514 static iterator_range<typename PostorderSequenceT::iterator>
updatePostorderSequenceForEdgeInsertion(SCCT & SourceSCC,SCCT & TargetSCC,PostorderSequenceT & SCCs,SCCIndexMapT & SCCIndices,ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet)515 updatePostorderSequenceForEdgeInsertion(
516 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
517 SCCIndexMapT &SCCIndices,
518 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
519 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
520 int SourceIdx = SCCIndices[&SourceSCC];
521 int TargetIdx = SCCIndices[&TargetSCC];
522 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
523
524 SmallPtrSet<SCCT *, 4> ConnectedSet;
525
526 // Compute the SCCs which (transitively) reach the source.
527 ComputeSourceConnectedSet(ConnectedSet);
528
529 // Partition the SCCs in this part of the port-order sequence so only SCCs
530 // connecting to the source remain between it and the target. This is
531 // a benign partition as it preserves postorder.
532 auto SourceI = std::stable_partition(
533 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
534 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
535 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
536 SCCIndices.find(SCCs[i])->second = i;
537
538 // If the target doesn't connect to the source, then we've corrected the
539 // post-order and there are no cycles formed.
540 if (!ConnectedSet.count(&TargetSCC)) {
541 assert(SourceI > (SCCs.begin() + SourceIdx) &&
542 "Must have moved the source to fix the post-order.");
543 assert(*std::prev(SourceI) == &TargetSCC &&
544 "Last SCC to move should have bene the target.");
545
546 // Return an empty range at the target SCC indicating there is nothing to
547 // merge.
548 return make_range(std::prev(SourceI), std::prev(SourceI));
549 }
550
551 assert(SCCs[TargetIdx] == &TargetSCC &&
552 "Should not have moved target if connected!");
553 SourceIdx = SourceI - SCCs.begin();
554 assert(SCCs[SourceIdx] == &SourceSCC &&
555 "Bad updated index computation for the source SCC!");
556
557
558 // See whether there are any remaining intervening SCCs between the source
559 // and target. If so we need to make sure they all are reachable form the
560 // target.
561 if (SourceIdx + 1 < TargetIdx) {
562 ConnectedSet.clear();
563 ComputeTargetConnectedSet(ConnectedSet);
564
565 // Partition SCCs so that only SCCs reached from the target remain between
566 // the source and the target. This preserves postorder.
567 auto TargetI = std::stable_partition(
568 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
569 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
570 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
571 SCCIndices.find(SCCs[i])->second = i;
572 TargetIdx = std::prev(TargetI) - SCCs.begin();
573 assert(SCCs[TargetIdx] == &TargetSCC &&
574 "Should always end with the target!");
575 }
576
577 // At this point, we know that connecting source to target forms a cycle
578 // because target connects back to source, and we know that all of the SCCs
579 // between the source and target in the postorder sequence participate in that
580 // cycle.
581 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
582 }
583
584 bool
switchInternalEdgeToCall(Node & SourceN,Node & TargetN,function_ref<void (ArrayRef<SCC * > MergeSCCs)> MergeCB)585 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
586 Node &SourceN, Node &TargetN,
587 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
588 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
589 SmallVector<SCC *, 1> DeletedSCCs;
590
591 #ifndef NDEBUG
592 // In a debug build, verify the RefSCC is valid to start with and when this
593 // routine finishes.
594 verify();
595 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
596 #endif
597
598 SCC &SourceSCC = *G->lookupSCC(SourceN);
599 SCC &TargetSCC = *G->lookupSCC(TargetN);
600
601 // If the two nodes are already part of the same SCC, we're also done as
602 // we've just added more connectivity.
603 if (&SourceSCC == &TargetSCC) {
604 SourceN->setEdgeKind(TargetN, Edge::Call);
605 return false; // No new cycle.
606 }
607
608 // At this point we leverage the postorder list of SCCs to detect when the
609 // insertion of an edge changes the SCC structure in any way.
610 //
611 // First and foremost, we can eliminate the need for any changes when the
612 // edge is toward the beginning of the postorder sequence because all edges
613 // flow in that direction already. Thus adding a new one cannot form a cycle.
614 int SourceIdx = SCCIndices[&SourceSCC];
615 int TargetIdx = SCCIndices[&TargetSCC];
616 if (TargetIdx < SourceIdx) {
617 SourceN->setEdgeKind(TargetN, Edge::Call);
618 return false; // No new cycle.
619 }
620
621 // Compute the SCCs which (transitively) reach the source.
622 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
623 #ifndef NDEBUG
624 // Check that the RefSCC is still valid before computing this as the
625 // results will be nonsensical of we've broken its invariants.
626 verify();
627 #endif
628 ConnectedSet.insert(&SourceSCC);
629 auto IsConnected = [&](SCC &C) {
630 for (Node &N : C)
631 for (Edge &E : N->calls())
632 if (ConnectedSet.count(G->lookupSCC(E.getNode())))
633 return true;
634
635 return false;
636 };
637
638 for (SCC *C :
639 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
640 if (IsConnected(*C))
641 ConnectedSet.insert(C);
642 };
643
644 // Use a normal worklist to find which SCCs the target connects to. We still
645 // bound the search based on the range in the postorder list we care about,
646 // but because this is forward connectivity we just "recurse" through the
647 // edges.
648 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
649 #ifndef NDEBUG
650 // Check that the RefSCC is still valid before computing this as the
651 // results will be nonsensical of we've broken its invariants.
652 verify();
653 #endif
654 ConnectedSet.insert(&TargetSCC);
655 SmallVector<SCC *, 4> Worklist;
656 Worklist.push_back(&TargetSCC);
657 do {
658 SCC &C = *Worklist.pop_back_val();
659 for (Node &N : C)
660 for (Edge &E : *N) {
661 if (!E.isCall())
662 continue;
663 SCC &EdgeC = *G->lookupSCC(E.getNode());
664 if (&EdgeC.getOuterRefSCC() != this)
665 // Not in this RefSCC...
666 continue;
667 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
668 // Not in the postorder sequence between source and target.
669 continue;
670
671 if (ConnectedSet.insert(&EdgeC).second)
672 Worklist.push_back(&EdgeC);
673 }
674 } while (!Worklist.empty());
675 };
676
677 // Use a generic helper to update the postorder sequence of SCCs and return
678 // a range of any SCCs connected into a cycle by inserting this edge. This
679 // routine will also take care of updating the indices into the postorder
680 // sequence.
681 auto MergeRange = updatePostorderSequenceForEdgeInsertion(
682 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
683 ComputeTargetConnectedSet);
684
685 // Run the user's callback on the merged SCCs before we actually merge them.
686 if (MergeCB)
687 MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
688
689 // If the merge range is empty, then adding the edge didn't actually form any
690 // new cycles. We're done.
691 if (MergeRange.empty()) {
692 // Now that the SCC structure is finalized, flip the kind to call.
693 SourceN->setEdgeKind(TargetN, Edge::Call);
694 return false; // No new cycle.
695 }
696
697 #ifndef NDEBUG
698 // Before merging, check that the RefSCC remains valid after all the
699 // postorder updates.
700 verify();
701 #endif
702
703 // Otherwise we need to merge all of the SCCs in the cycle into a single
704 // result SCC.
705 //
706 // NB: We merge into the target because all of these functions were already
707 // reachable from the target, meaning any SCC-wide properties deduced about it
708 // other than the set of functions within it will not have changed.
709 for (SCC *C : MergeRange) {
710 assert(C != &TargetSCC &&
711 "We merge *into* the target and shouldn't process it here!");
712 SCCIndices.erase(C);
713 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
714 for (Node *N : C->Nodes)
715 G->SCCMap[N] = &TargetSCC;
716 C->clear();
717 DeletedSCCs.push_back(C);
718 }
719
720 // Erase the merged SCCs from the list and update the indices of the
721 // remaining SCCs.
722 int IndexOffset = MergeRange.end() - MergeRange.begin();
723 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
724 for (SCC *C : make_range(EraseEnd, SCCs.end()))
725 SCCIndices[C] -= IndexOffset;
726
727 // Now that the SCC structure is finalized, flip the kind to call.
728 SourceN->setEdgeKind(TargetN, Edge::Call);
729
730 // And we're done, but we did form a new cycle.
731 return true;
732 }
733
switchTrivialInternalEdgeToRef(Node & SourceN,Node & TargetN)734 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
735 Node &TargetN) {
736 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
737
738 #ifndef NDEBUG
739 // In a debug build, verify the RefSCC is valid to start with and when this
740 // routine finishes.
741 verify();
742 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
743 #endif
744
745 assert(G->lookupRefSCC(SourceN) == this &&
746 "Source must be in this RefSCC.");
747 assert(G->lookupRefSCC(TargetN) == this &&
748 "Target must be in this RefSCC.");
749 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
750 "Source and Target must be in separate SCCs for this to be trivial!");
751
752 // Set the edge kind.
753 SourceN->setEdgeKind(TargetN, Edge::Ref);
754 }
755
756 iterator_range<LazyCallGraph::RefSCC::iterator>
switchInternalEdgeToRef(Node & SourceN,Node & TargetN)757 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
758 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
759
760 #ifndef NDEBUG
761 // In a debug build, verify the RefSCC is valid to start with and when this
762 // routine finishes.
763 verify();
764 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
765 #endif
766
767 assert(G->lookupRefSCC(SourceN) == this &&
768 "Source must be in this RefSCC.");
769 assert(G->lookupRefSCC(TargetN) == this &&
770 "Target must be in this RefSCC.");
771
772 SCC &TargetSCC = *G->lookupSCC(TargetN);
773 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
774 "the same SCC to require the "
775 "full CG update.");
776
777 // Set the edge kind.
778 SourceN->setEdgeKind(TargetN, Edge::Ref);
779
780 // Otherwise we are removing a call edge from a single SCC. This may break
781 // the cycle. In order to compute the new set of SCCs, we need to do a small
782 // DFS over the nodes within the SCC to form any sub-cycles that remain as
783 // distinct SCCs and compute a postorder over the resulting SCCs.
784 //
785 // However, we specially handle the target node. The target node is known to
786 // reach all other nodes in the original SCC by definition. This means that
787 // we want the old SCC to be replaced with an SCC containing that node as it
788 // will be the root of whatever SCC DAG results from the DFS. Assumptions
789 // about an SCC such as the set of functions called will continue to hold,
790 // etc.
791
792 SCC &OldSCC = TargetSCC;
793 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
794 SmallVector<Node *, 16> PendingSCCStack;
795 SmallVector<SCC *, 4> NewSCCs;
796
797 // Prepare the nodes for a fresh DFS.
798 SmallVector<Node *, 16> Worklist;
799 Worklist.swap(OldSCC.Nodes);
800 for (Node *N : Worklist) {
801 N->DFSNumber = N->LowLink = 0;
802 G->SCCMap.erase(N);
803 }
804
805 // Force the target node to be in the old SCC. This also enables us to take
806 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
807 // below: whenever we build an edge that reaches the target node, we know
808 // that the target node eventually connects back to all other nodes in our
809 // walk. As a consequence, we can detect and handle participants in that
810 // cycle without walking all the edges that form this connection, and instead
811 // by relying on the fundamental guarantee coming into this operation (all
812 // nodes are reachable from the target due to previously forming an SCC).
813 TargetN.DFSNumber = TargetN.LowLink = -1;
814 OldSCC.Nodes.push_back(&TargetN);
815 G->SCCMap[&TargetN] = &OldSCC;
816
817 // Scan down the stack and DFS across the call edges.
818 for (Node *RootN : Worklist) {
819 assert(DFSStack.empty() &&
820 "Cannot begin a new root with a non-empty DFS stack!");
821 assert(PendingSCCStack.empty() &&
822 "Cannot begin a new root with pending nodes for an SCC!");
823
824 // Skip any nodes we've already reached in the DFS.
825 if (RootN->DFSNumber != 0) {
826 assert(RootN->DFSNumber == -1 &&
827 "Shouldn't have any mid-DFS root nodes!");
828 continue;
829 }
830
831 RootN->DFSNumber = RootN->LowLink = 1;
832 int NextDFSNumber = 2;
833
834 DFSStack.push_back({RootN, (*RootN)->call_begin()});
835 do {
836 Node *N;
837 EdgeSequence::call_iterator I;
838 std::tie(N, I) = DFSStack.pop_back_val();
839 auto E = (*N)->call_end();
840 while (I != E) {
841 Node &ChildN = I->getNode();
842 if (ChildN.DFSNumber == 0) {
843 // We haven't yet visited this child, so descend, pushing the current
844 // node onto the stack.
845 DFSStack.push_back({N, I});
846
847 assert(!G->SCCMap.count(&ChildN) &&
848 "Found a node with 0 DFS number but already in an SCC!");
849 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
850 N = &ChildN;
851 I = (*N)->call_begin();
852 E = (*N)->call_end();
853 continue;
854 }
855
856 // Check for the child already being part of some component.
857 if (ChildN.DFSNumber == -1) {
858 if (G->lookupSCC(ChildN) == &OldSCC) {
859 // If the child is part of the old SCC, we know that it can reach
860 // every other node, so we have formed a cycle. Pull the entire DFS
861 // and pending stacks into it. See the comment above about setting
862 // up the old SCC for why we do this.
863 int OldSize = OldSCC.size();
864 OldSCC.Nodes.push_back(N);
865 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
866 PendingSCCStack.clear();
867 while (!DFSStack.empty())
868 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
869 for (Node &N : drop_begin(OldSCC, OldSize)) {
870 N.DFSNumber = N.LowLink = -1;
871 G->SCCMap[&N] = &OldSCC;
872 }
873 N = nullptr;
874 break;
875 }
876
877 // If the child has already been added to some child component, it
878 // couldn't impact the low-link of this parent because it isn't
879 // connected, and thus its low-link isn't relevant so skip it.
880 ++I;
881 continue;
882 }
883
884 // Track the lowest linked child as the lowest link for this node.
885 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
886 if (ChildN.LowLink < N->LowLink)
887 N->LowLink = ChildN.LowLink;
888
889 // Move to the next edge.
890 ++I;
891 }
892 if (!N)
893 // Cleared the DFS early, start another round.
894 break;
895
896 // We've finished processing N and its descendants, put it on our pending
897 // SCC stack to eventually get merged into an SCC of nodes.
898 PendingSCCStack.push_back(N);
899
900 // If this node is linked to some lower entry, continue walking up the
901 // stack.
902 if (N->LowLink != N->DFSNumber)
903 continue;
904
905 // Otherwise, we've completed an SCC. Append it to our post order list of
906 // SCCs.
907 int RootDFSNumber = N->DFSNumber;
908 // Find the range of the node stack by walking down until we pass the
909 // root DFS number.
910 auto SCCNodes = make_range(
911 PendingSCCStack.rbegin(),
912 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
913 return N->DFSNumber < RootDFSNumber;
914 }));
915
916 // Form a new SCC out of these nodes and then clear them off our pending
917 // stack.
918 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
919 for (Node &N : *NewSCCs.back()) {
920 N.DFSNumber = N.LowLink = -1;
921 G->SCCMap[&N] = NewSCCs.back();
922 }
923 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
924 } while (!DFSStack.empty());
925 }
926
927 // Insert the remaining SCCs before the old one. The old SCC can reach all
928 // other SCCs we form because it contains the target node of the removed edge
929 // of the old SCC. This means that we will have edges into all of the new
930 // SCCs, which means the old one must come last for postorder.
931 int OldIdx = SCCIndices[&OldSCC];
932 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
933
934 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
935 // old SCC from the mapping.
936 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
937 SCCIndices[SCCs[Idx]] = Idx;
938
939 return make_range(SCCs.begin() + OldIdx,
940 SCCs.begin() + OldIdx + NewSCCs.size());
941 }
942
switchOutgoingEdgeToCall(Node & SourceN,Node & TargetN)943 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
944 Node &TargetN) {
945 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
946
947 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
948 assert(G->lookupRefSCC(TargetN) != this &&
949 "Target must not be in this RefSCC.");
950 #ifdef EXPENSIVE_CHECKS
951 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
952 "Target must be a descendant of the Source.");
953 #endif
954
955 // Edges between RefSCCs are the same regardless of call or ref, so we can
956 // just flip the edge here.
957 SourceN->setEdgeKind(TargetN, Edge::Call);
958
959 #ifndef NDEBUG
960 // Check that the RefSCC is still valid.
961 verify();
962 #endif
963 }
964
switchOutgoingEdgeToRef(Node & SourceN,Node & TargetN)965 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
966 Node &TargetN) {
967 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
968
969 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
970 assert(G->lookupRefSCC(TargetN) != this &&
971 "Target must not be in this RefSCC.");
972 #ifdef EXPENSIVE_CHECKS
973 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
974 "Target must be a descendant of the Source.");
975 #endif
976
977 // Edges between RefSCCs are the same regardless of call or ref, so we can
978 // just flip the edge here.
979 SourceN->setEdgeKind(TargetN, Edge::Ref);
980
981 #ifndef NDEBUG
982 // Check that the RefSCC is still valid.
983 verify();
984 #endif
985 }
986
insertInternalRefEdge(Node & SourceN,Node & TargetN)987 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
988 Node &TargetN) {
989 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
990 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
991
992 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
993
994 #ifndef NDEBUG
995 // Check that the RefSCC is still valid.
996 verify();
997 #endif
998 }
999
insertOutgoingEdge(Node & SourceN,Node & TargetN,Edge::Kind EK)1000 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
1001 Edge::Kind EK) {
1002 // First insert it into the caller.
1003 SourceN->insertEdgeInternal(TargetN, EK);
1004
1005 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1006
1007 assert(G->lookupRefSCC(TargetN) != this &&
1008 "Target must not be in this RefSCC.");
1009 #ifdef EXPENSIVE_CHECKS
1010 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
1011 "Target must be a descendant of the Source.");
1012 #endif
1013
1014 #ifndef NDEBUG
1015 // Check that the RefSCC is still valid.
1016 verify();
1017 #endif
1018 }
1019
1020 SmallVector<LazyCallGraph::RefSCC *, 1>
insertIncomingRefEdge(Node & SourceN,Node & TargetN)1021 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
1022 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
1023 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
1024 assert(&SourceC != this && "Source must not be in this RefSCC.");
1025 #ifdef EXPENSIVE_CHECKS
1026 assert(SourceC.isDescendantOf(*this) &&
1027 "Source must be a descendant of the Target.");
1028 #endif
1029
1030 SmallVector<RefSCC *, 1> DeletedRefSCCs;
1031
1032 #ifndef NDEBUG
1033 // In a debug build, verify the RefSCC is valid to start with and when this
1034 // routine finishes.
1035 verify();
1036 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1037 #endif
1038
1039 int SourceIdx = G->RefSCCIndices[&SourceC];
1040 int TargetIdx = G->RefSCCIndices[this];
1041 assert(SourceIdx < TargetIdx &&
1042 "Postorder list doesn't see edge as incoming!");
1043
1044 // Compute the RefSCCs which (transitively) reach the source. We do this by
1045 // working backwards from the source using the parent set in each RefSCC,
1046 // skipping any RefSCCs that don't fall in the postorder range. This has the
1047 // advantage of walking the sparser parent edge (in high fan-out graphs) but
1048 // more importantly this removes examining all forward edges in all RefSCCs
1049 // within the postorder range which aren't in fact connected. Only connected
1050 // RefSCCs (and their edges) are visited here.
1051 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1052 Set.insert(&SourceC);
1053 auto IsConnected = [&](RefSCC &RC) {
1054 for (SCC &C : RC)
1055 for (Node &N : C)
1056 for (Edge &E : *N)
1057 if (Set.count(G->lookupRefSCC(E.getNode())))
1058 return true;
1059
1060 return false;
1061 };
1062
1063 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1064 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1065 if (IsConnected(*C))
1066 Set.insert(C);
1067 };
1068
1069 // Use a normal worklist to find which SCCs the target connects to. We still
1070 // bound the search based on the range in the postorder list we care about,
1071 // but because this is forward connectivity we just "recurse" through the
1072 // edges.
1073 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1074 Set.insert(this);
1075 SmallVector<RefSCC *, 4> Worklist;
1076 Worklist.push_back(this);
1077 do {
1078 RefSCC &RC = *Worklist.pop_back_val();
1079 for (SCC &C : RC)
1080 for (Node &N : C)
1081 for (Edge &E : *N) {
1082 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1083 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1084 // Not in the postorder sequence between source and target.
1085 continue;
1086
1087 if (Set.insert(&EdgeRC).second)
1088 Worklist.push_back(&EdgeRC);
1089 }
1090 } while (!Worklist.empty());
1091 };
1092
1093 // Use a generic helper to update the postorder sequence of RefSCCs and return
1094 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1095 // routine will also take care of updating the indices into the postorder
1096 // sequence.
1097 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1098 updatePostorderSequenceForEdgeInsertion(
1099 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1100 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1101
1102 // Build a set so we can do fast tests for whether a RefSCC will end up as
1103 // part of the merged RefSCC.
1104 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1105
1106 // This RefSCC will always be part of that set, so just insert it here.
1107 MergeSet.insert(this);
1108
1109 // Now that we have identified all of the SCCs which need to be merged into
1110 // a connected set with the inserted edge, merge all of them into this SCC.
1111 SmallVector<SCC *, 16> MergedSCCs;
1112 int SCCIndex = 0;
1113 for (RefSCC *RC : MergeRange) {
1114 assert(RC != this && "We're merging into the target RefSCC, so it "
1115 "shouldn't be in the range.");
1116
1117 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1118 // update any parent sets.
1119 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1120 // walk by updating the parent sets in some other manner.
1121 for (SCC &InnerC : *RC) {
1122 InnerC.OuterRefSCC = this;
1123 SCCIndices[&InnerC] = SCCIndex++;
1124 for (Node &N : InnerC)
1125 G->SCCMap[&N] = &InnerC;
1126 }
1127
1128 // Now merge in the SCCs. We can actually move here so try to reuse storage
1129 // the first time through.
1130 if (MergedSCCs.empty())
1131 MergedSCCs = std::move(RC->SCCs);
1132 else
1133 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1134 RC->SCCs.clear();
1135 DeletedRefSCCs.push_back(RC);
1136 }
1137
1138 // Append our original SCCs to the merged list and move it into place.
1139 for (SCC &InnerC : *this)
1140 SCCIndices[&InnerC] = SCCIndex++;
1141 MergedSCCs.append(SCCs.begin(), SCCs.end());
1142 SCCs = std::move(MergedSCCs);
1143
1144 // Remove the merged away RefSCCs from the post order sequence.
1145 for (RefSCC *RC : MergeRange)
1146 G->RefSCCIndices.erase(RC);
1147 int IndexOffset = MergeRange.end() - MergeRange.begin();
1148 auto EraseEnd =
1149 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1150 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1151 G->RefSCCIndices[RC] -= IndexOffset;
1152
1153 // At this point we have a merged RefSCC with a post-order SCCs list, just
1154 // connect the nodes to form the new edge.
1155 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1156
1157 // We return the list of SCCs which were merged so that callers can
1158 // invalidate any data they have associated with those SCCs. Note that these
1159 // SCCs are no longer in an interesting state (they are totally empty) but
1160 // the pointers will remain stable for the life of the graph itself.
1161 return DeletedRefSCCs;
1162 }
1163
removeOutgoingEdge(Node & SourceN,Node & TargetN)1164 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1165 assert(G->lookupRefSCC(SourceN) == this &&
1166 "The source must be a member of this RefSCC.");
1167 assert(G->lookupRefSCC(TargetN) != this &&
1168 "The target must not be a member of this RefSCC");
1169
1170 #ifndef NDEBUG
1171 // In a debug build, verify the RefSCC is valid to start with and when this
1172 // routine finishes.
1173 verify();
1174 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1175 #endif
1176
1177 // First remove it from the node.
1178 bool Removed = SourceN->removeEdgeInternal(TargetN);
1179 (void)Removed;
1180 assert(Removed && "Target not in the edge set for this caller?");
1181 }
1182
1183 SmallVector<LazyCallGraph::RefSCC *, 1>
removeInternalRefEdge(Node & SourceN,ArrayRef<Node * > TargetNs)1184 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1185 ArrayRef<Node *> TargetNs) {
1186 // We return a list of the resulting *new* RefSCCs in post-order.
1187 SmallVector<RefSCC *, 1> Result;
1188
1189 #ifndef NDEBUG
1190 // In a debug build, verify the RefSCC is valid to start with and that either
1191 // we return an empty list of result RefSCCs and this RefSCC remains valid,
1192 // or we return new RefSCCs and this RefSCC is dead.
1193 verify();
1194 auto VerifyOnExit = make_scope_exit([&]() {
1195 // If we didn't replace our RefSCC with new ones, check that this one
1196 // remains valid.
1197 if (G)
1198 verify();
1199 });
1200 #endif
1201
1202 // First remove the actual edges.
1203 for (Node *TargetN : TargetNs) {
1204 assert(!(*SourceN)[*TargetN].isCall() &&
1205 "Cannot remove a call edge, it must first be made a ref edge");
1206
1207 bool Removed = SourceN->removeEdgeInternal(*TargetN);
1208 (void)Removed;
1209 assert(Removed && "Target not in the edge set for this caller?");
1210 }
1211
1212 // Direct self references don't impact the ref graph at all.
1213 if (llvm::all_of(TargetNs,
1214 [&](Node *TargetN) { return &SourceN == TargetN; }))
1215 return Result;
1216
1217 // If all targets are in the same SCC as the source, because no call edges
1218 // were removed there is no RefSCC structure change.
1219 SCC &SourceC = *G->lookupSCC(SourceN);
1220 if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1221 return G->lookupSCC(*TargetN) == &SourceC;
1222 }))
1223 return Result;
1224
1225 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1226 // for each inner SCC. We store these inside the low-link field of the nodes
1227 // rather than associated with SCCs because this saves a round-trip through
1228 // the node->SCC map and in the common case, SCCs are small. We will verify
1229 // that we always give the same number to every node in the SCC such that
1230 // these are equivalent.
1231 int PostOrderNumber = 0;
1232
1233 // Reset all the other nodes to prepare for a DFS over them, and add them to
1234 // our worklist.
1235 SmallVector<Node *, 8> Worklist;
1236 for (SCC *C : SCCs) {
1237 for (Node &N : *C)
1238 N.DFSNumber = N.LowLink = 0;
1239
1240 Worklist.append(C->Nodes.begin(), C->Nodes.end());
1241 }
1242
1243 // Track the number of nodes in this RefSCC so that we can quickly recognize
1244 // an important special case of the edge removal not breaking the cycle of
1245 // this RefSCC.
1246 const int NumRefSCCNodes = Worklist.size();
1247
1248 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1249 SmallVector<Node *, 4> PendingRefSCCStack;
1250 do {
1251 assert(DFSStack.empty() &&
1252 "Cannot begin a new root with a non-empty DFS stack!");
1253 assert(PendingRefSCCStack.empty() &&
1254 "Cannot begin a new root with pending nodes for an SCC!");
1255
1256 Node *RootN = Worklist.pop_back_val();
1257 // Skip any nodes we've already reached in the DFS.
1258 if (RootN->DFSNumber != 0) {
1259 assert(RootN->DFSNumber == -1 &&
1260 "Shouldn't have any mid-DFS root nodes!");
1261 continue;
1262 }
1263
1264 RootN->DFSNumber = RootN->LowLink = 1;
1265 int NextDFSNumber = 2;
1266
1267 DFSStack.push_back({RootN, (*RootN)->begin()});
1268 do {
1269 Node *N;
1270 EdgeSequence::iterator I;
1271 std::tie(N, I) = DFSStack.pop_back_val();
1272 auto E = (*N)->end();
1273
1274 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1275 "before processing a node.");
1276
1277 while (I != E) {
1278 Node &ChildN = I->getNode();
1279 if (ChildN.DFSNumber == 0) {
1280 // Mark that we should start at this child when next this node is the
1281 // top of the stack. We don't start at the next child to ensure this
1282 // child's lowlink is reflected.
1283 DFSStack.push_back({N, I});
1284
1285 // Continue, resetting to the child node.
1286 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1287 N = &ChildN;
1288 I = ChildN->begin();
1289 E = ChildN->end();
1290 continue;
1291 }
1292 if (ChildN.DFSNumber == -1) {
1293 // If this child isn't currently in this RefSCC, no need to process
1294 // it.
1295 ++I;
1296 continue;
1297 }
1298
1299 // Track the lowest link of the children, if any are still in the stack.
1300 // Any child not on the stack will have a LowLink of -1.
1301 assert(ChildN.LowLink != 0 &&
1302 "Low-link must not be zero with a non-zero DFS number.");
1303 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1304 N->LowLink = ChildN.LowLink;
1305 ++I;
1306 }
1307
1308 // We've finished processing N and its descendants, put it on our pending
1309 // stack to eventually get merged into a RefSCC.
1310 PendingRefSCCStack.push_back(N);
1311
1312 // If this node is linked to some lower entry, continue walking up the
1313 // stack.
1314 if (N->LowLink != N->DFSNumber) {
1315 assert(!DFSStack.empty() &&
1316 "We never found a viable root for a RefSCC to pop off!");
1317 continue;
1318 }
1319
1320 // Otherwise, form a new RefSCC from the top of the pending node stack.
1321 int RefSCCNumber = PostOrderNumber++;
1322 int RootDFSNumber = N->DFSNumber;
1323
1324 // Find the range of the node stack by walking down until we pass the
1325 // root DFS number. Update the DFS numbers and low link numbers in the
1326 // process to avoid re-walking this list where possible.
1327 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1328 if (N->DFSNumber < RootDFSNumber)
1329 // We've found the bottom.
1330 return true;
1331
1332 // Update this node and keep scanning.
1333 N->DFSNumber = -1;
1334 // Save the post-order number in the lowlink field so that we can use
1335 // it to map SCCs into new RefSCCs after we finish the DFS.
1336 N->LowLink = RefSCCNumber;
1337 return false;
1338 });
1339 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1340
1341 // If we find a cycle containing all nodes originally in this RefSCC then
1342 // the removal hasn't changed the structure at all. This is an important
1343 // special case and we can directly exit the entire routine more
1344 // efficiently as soon as we discover it.
1345 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1346 // Clear out the low link field as we won't need it.
1347 for (Node *N : RefSCCNodes)
1348 N->LowLink = -1;
1349 // Return the empty result immediately.
1350 return Result;
1351 }
1352
1353 // We've already marked the nodes internally with the RefSCC number so
1354 // just clear them off the stack and continue.
1355 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1356 } while (!DFSStack.empty());
1357
1358 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1359 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1360 } while (!Worklist.empty());
1361
1362 assert(PostOrderNumber > 1 &&
1363 "Should never finish the DFS when the existing RefSCC remains valid!");
1364
1365 // Otherwise we create a collection of new RefSCC nodes and build
1366 // a radix-sort style map from postorder number to these new RefSCCs. We then
1367 // append SCCs to each of these RefSCCs in the order they occurred in the
1368 // original SCCs container.
1369 for (int i = 0; i < PostOrderNumber; ++i)
1370 Result.push_back(G->createRefSCC(*G));
1371
1372 // Insert the resulting postorder sequence into the global graph postorder
1373 // sequence before the current RefSCC in that sequence, and then remove the
1374 // current one.
1375 //
1376 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1377 // range over the global postorder sequence and generally use that sequence
1378 // rather than building a separate result vector here.
1379 int Idx = G->getRefSCCIndex(*this);
1380 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1381 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1382 Result.end());
1383 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1384 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1385
1386 for (SCC *C : SCCs) {
1387 // We store the SCC number in the node's low-link field above.
1388 int SCCNumber = C->begin()->LowLink;
1389 // Clear out all of the SCC's node's low-link fields now that we're done
1390 // using them as side-storage.
1391 for (Node &N : *C) {
1392 assert(N.LowLink == SCCNumber &&
1393 "Cannot have different numbers for nodes in the same SCC!");
1394 N.LowLink = -1;
1395 }
1396
1397 RefSCC &RC = *Result[SCCNumber];
1398 int SCCIndex = RC.SCCs.size();
1399 RC.SCCs.push_back(C);
1400 RC.SCCIndices[C] = SCCIndex;
1401 C->OuterRefSCC = &RC;
1402 }
1403
1404 // Now that we've moved things into the new RefSCCs, clear out our current
1405 // one.
1406 G = nullptr;
1407 SCCs.clear();
1408 SCCIndices.clear();
1409
1410 #ifndef NDEBUG
1411 // Verify the new RefSCCs we've built.
1412 for (RefSCC *RC : Result)
1413 RC->verify();
1414 #endif
1415
1416 // Return the new list of SCCs.
1417 return Result;
1418 }
1419
insertTrivialCallEdge(Node & SourceN,Node & TargetN)1420 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1421 Node &TargetN) {
1422 #ifndef NDEBUG
1423 // Check that the RefSCC is still valid when we finish.
1424 auto ExitVerifier = make_scope_exit([this] { verify(); });
1425
1426 #ifdef EXPENSIVE_CHECKS
1427 // Check that we aren't breaking some invariants of the SCC graph. Note that
1428 // this is quadratic in the number of edges in the call graph!
1429 SCC &SourceC = *G->lookupSCC(SourceN);
1430 SCC &TargetC = *G->lookupSCC(TargetN);
1431 if (&SourceC != &TargetC)
1432 assert(SourceC.isAncestorOf(TargetC) &&
1433 "Call edge is not trivial in the SCC graph!");
1434 #endif // EXPENSIVE_CHECKS
1435 #endif // NDEBUG
1436
1437 // First insert it into the source or find the existing edge.
1438 auto InsertResult =
1439 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1440 if (!InsertResult.second) {
1441 // Already an edge, just update it.
1442 Edge &E = SourceN->Edges[InsertResult.first->second];
1443 if (E.isCall())
1444 return; // Nothing to do!
1445 E.setKind(Edge::Call);
1446 } else {
1447 // Create the new edge.
1448 SourceN->Edges.emplace_back(TargetN, Edge::Call);
1449 }
1450 }
1451
insertTrivialRefEdge(Node & SourceN,Node & TargetN)1452 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1453 #ifndef NDEBUG
1454 // Check that the RefSCC is still valid when we finish.
1455 auto ExitVerifier = make_scope_exit([this] { verify(); });
1456
1457 #ifdef EXPENSIVE_CHECKS
1458 // Check that we aren't breaking some invariants of the RefSCC graph.
1459 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1460 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1461 if (&SourceRC != &TargetRC)
1462 assert(SourceRC.isAncestorOf(TargetRC) &&
1463 "Ref edge is not trivial in the RefSCC graph!");
1464 #endif // EXPENSIVE_CHECKS
1465 #endif // NDEBUG
1466
1467 // First insert it into the source or find the existing edge.
1468 auto InsertResult =
1469 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1470 if (!InsertResult.second)
1471 // Already an edge, we're done.
1472 return;
1473
1474 // Create the new edge.
1475 SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1476 }
1477
replaceNodeFunction(Node & N,Function & NewF)1478 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1479 Function &OldF = N.getFunction();
1480
1481 #ifndef NDEBUG
1482 // Check that the RefSCC is still valid when we finish.
1483 auto ExitVerifier = make_scope_exit([this] { verify(); });
1484
1485 assert(G->lookupRefSCC(N) == this &&
1486 "Cannot replace the function of a node outside this RefSCC.");
1487
1488 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1489 "Must not have already walked the new function!'");
1490
1491 // It is important that this replacement not introduce graph changes so we
1492 // insist that the caller has already removed every use of the original
1493 // function and that all uses of the new function correspond to existing
1494 // edges in the graph. The common and expected way to use this is when
1495 // replacing the function itself in the IR without changing the call graph
1496 // shape and just updating the analysis based on that.
1497 assert(&OldF != &NewF && "Cannot replace a function with itself!");
1498 assert(OldF.use_empty() &&
1499 "Must have moved all uses from the old function to the new!");
1500 #endif
1501
1502 N.replaceFunction(NewF);
1503
1504 // Update various call graph maps.
1505 G->NodeMap.erase(&OldF);
1506 G->NodeMap[&NewF] = &N;
1507 }
1508
insertEdge(Node & SourceN,Node & TargetN,Edge::Kind EK)1509 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1510 assert(SCCMap.empty() &&
1511 "This method cannot be called after SCCs have been formed!");
1512
1513 return SourceN->insertEdgeInternal(TargetN, EK);
1514 }
1515
removeEdge(Node & SourceN,Node & TargetN)1516 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1517 assert(SCCMap.empty() &&
1518 "This method cannot be called after SCCs have been formed!");
1519
1520 bool Removed = SourceN->removeEdgeInternal(TargetN);
1521 (void)Removed;
1522 assert(Removed && "Target not in the edge set for this caller?");
1523 }
1524
removeDeadFunction(Function & F)1525 void LazyCallGraph::removeDeadFunction(Function &F) {
1526 // FIXME: This is unnecessarily restrictive. We should be able to remove
1527 // functions which recursively call themselves.
1528 assert(F.use_empty() &&
1529 "This routine should only be called on trivially dead functions!");
1530
1531 // We shouldn't remove library functions as they are never really dead while
1532 // the call graph is in use -- every function definition refers to them.
1533 assert(!isLibFunction(F) &&
1534 "Must not remove lib functions from the call graph!");
1535
1536 auto NI = NodeMap.find(&F);
1537 if (NI == NodeMap.end())
1538 // Not in the graph at all!
1539 return;
1540
1541 Node &N = *NI->second;
1542 NodeMap.erase(NI);
1543
1544 // Remove this from the entry edges if present.
1545 EntryEdges.removeEdgeInternal(N);
1546
1547 if (SCCMap.empty()) {
1548 // No SCCs have been formed, so removing this is fine and there is nothing
1549 // else necessary at this point but clearing out the node.
1550 N.clear();
1551 return;
1552 }
1553
1554 // Cannot remove a function which has yet to be visited in the DFS walk, so
1555 // if we have a node at all then we must have an SCC and RefSCC.
1556 auto CI = SCCMap.find(&N);
1557 assert(CI != SCCMap.end() &&
1558 "Tried to remove a node without an SCC after DFS walk started!");
1559 SCC &C = *CI->second;
1560 SCCMap.erase(CI);
1561 RefSCC &RC = C.getOuterRefSCC();
1562
1563 // This node must be the only member of its SCC as it has no callers, and
1564 // that SCC must be the only member of a RefSCC as it has no references.
1565 // Validate these properties first.
1566 assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1567 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1568
1569 auto RCIndexI = RefSCCIndices.find(&RC);
1570 int RCIndex = RCIndexI->second;
1571 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1572 RefSCCIndices.erase(RCIndexI);
1573 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1574 RefSCCIndices[PostOrderRefSCCs[i]] = i;
1575
1576 // Finally clear out all the data structures from the node down through the
1577 // components.
1578 N.clear();
1579 N.G = nullptr;
1580 N.F = nullptr;
1581 C.clear();
1582 RC.clear();
1583 RC.G = nullptr;
1584
1585 // Nothing to delete as all the objects are allocated in stable bump pointer
1586 // allocators.
1587 }
1588
1589 // Gets the Edge::Kind from one function to another by looking at the function's
1590 // instructions. Asserts if there is no edge.
1591 // Useful for determining what type of edge should exist between functions when
1592 // the edge hasn't been created yet.
getEdgeKind(Function & OriginalFunction,Function & NewFunction)1593 static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction,
1594 Function &NewFunction) {
1595 // In release builds, assume that if there are no direct calls to the new
1596 // function, then there is a ref edge. In debug builds, keep track of
1597 // references to assert that there is actually a ref edge if there is no call
1598 // edge.
1599 #ifndef NDEBUG
1600 SmallVector<Constant *, 16> Worklist;
1601 SmallPtrSet<Constant *, 16> Visited;
1602 #endif
1603
1604 for (Instruction &I : instructions(OriginalFunction)) {
1605 if (auto *CB = dyn_cast<CallBase>(&I)) {
1606 if (Function *Callee = CB->getCalledFunction()) {
1607 if (Callee == &NewFunction)
1608 return LazyCallGraph::Edge::Kind::Call;
1609 }
1610 }
1611 #ifndef NDEBUG
1612 for (Value *Op : I.operand_values()) {
1613 if (Constant *C = dyn_cast<Constant>(Op)) {
1614 if (Visited.insert(C).second)
1615 Worklist.push_back(C);
1616 }
1617 }
1618 #endif
1619 }
1620
1621 #ifndef NDEBUG
1622 bool FoundNewFunction = false;
1623 LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) {
1624 if (&F == &NewFunction)
1625 FoundNewFunction = true;
1626 });
1627 assert(FoundNewFunction && "No edge from original function to new function");
1628 #endif
1629
1630 return LazyCallGraph::Edge::Kind::Ref;
1631 }
1632
addSplitFunction(Function & OriginalFunction,Function & NewFunction)1633 void LazyCallGraph::addSplitFunction(Function &OriginalFunction,
1634 Function &NewFunction) {
1635 assert(lookup(OriginalFunction) &&
1636 "Original function's node should already exist");
1637 Node &OriginalN = get(OriginalFunction);
1638 SCC *OriginalC = lookupSCC(OriginalN);
1639 RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1640
1641 #ifndef NDEBUG
1642 OriginalRC->verify();
1643 auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); });
1644 #endif
1645
1646 assert(!lookup(NewFunction) &&
1647 "New function's node should not already exist");
1648 Node &NewN = initNode(NewFunction);
1649
1650 Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction);
1651
1652 SCC *NewC = nullptr;
1653 for (Edge &E : *NewN) {
1654 Node &EN = E.getNode();
1655 if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) {
1656 // If the edge to the new function is a call edge and there is a call edge
1657 // from the new function to any function in the original function's SCC,
1658 // it is in the same SCC (and RefSCC) as the original function.
1659 NewC = OriginalC;
1660 NewC->Nodes.push_back(&NewN);
1661 break;
1662 }
1663 }
1664
1665 if (!NewC) {
1666 for (Edge &E : *NewN) {
1667 Node &EN = E.getNode();
1668 if (lookupRefSCC(EN) == OriginalRC) {
1669 // If there is any edge from the new function to any function in the
1670 // original function's RefSCC, it is in the same RefSCC as the original
1671 // function but a new SCC.
1672 RefSCC *NewRC = OriginalRC;
1673 NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1674
1675 // The new function's SCC is not the same as the original function's
1676 // SCC, since that case was handled earlier. If the edge from the
1677 // original function to the new function was a call edge, then we need
1678 // to insert the newly created function's SCC before the original
1679 // function's SCC. Otherwise either the new SCC comes after the original
1680 // function's SCC, or it doesn't matter, and in both cases we can add it
1681 // to the very end.
1682 int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC]
1683 : NewRC->SCCIndices.size();
1684 NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC);
1685 for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I)
1686 NewRC->SCCIndices[NewRC->SCCs[I]] = I;
1687
1688 break;
1689 }
1690 }
1691 }
1692
1693 if (!NewC) {
1694 // We didn't find any edges back to the original function's RefSCC, so the
1695 // new function belongs in a new RefSCC. The new RefSCC goes before the
1696 // original function's RefSCC.
1697 RefSCC *NewRC = createRefSCC(*this);
1698 NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1699 NewRC->SCCIndices[NewC] = 0;
1700 NewRC->SCCs.push_back(NewC);
1701 auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1702 PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1703 for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1704 RefSCCIndices[PostOrderRefSCCs[I]] = I;
1705 }
1706
1707 SCCMap[&NewN] = NewC;
1708
1709 OriginalN->insertEdgeInternal(NewN, EK);
1710 }
1711
addSplitRefRecursiveFunctions(Function & OriginalFunction,ArrayRef<Function * > NewFunctions)1712 void LazyCallGraph::addSplitRefRecursiveFunctions(
1713 Function &OriginalFunction, ArrayRef<Function *> NewFunctions) {
1714 assert(!NewFunctions.empty() && "Can't add zero functions");
1715 assert(lookup(OriginalFunction) &&
1716 "Original function's node should already exist");
1717 Node &OriginalN = get(OriginalFunction);
1718 RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1719
1720 #ifndef NDEBUG
1721 OriginalRC->verify();
1722 auto VerifyOnExit = make_scope_exit([&]() {
1723 OriginalRC->verify();
1724 #ifdef EXPENSIVE_CHECKS
1725 for (Function *NewFunction : NewFunctions)
1726 lookupRefSCC(get(*NewFunction))->verify();
1727 #endif
1728 });
1729 #endif
1730
1731 bool ExistsRefToOriginalRefSCC = false;
1732
1733 for (Function *NewFunction : NewFunctions) {
1734 Node &NewN = initNode(*NewFunction);
1735
1736 OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref);
1737
1738 // Check if there is any edge from any new function back to any function in
1739 // the original function's RefSCC.
1740 for (Edge &E : *NewN) {
1741 if (lookupRefSCC(E.getNode()) == OriginalRC) {
1742 ExistsRefToOriginalRefSCC = true;
1743 break;
1744 }
1745 }
1746 }
1747
1748 RefSCC *NewRC;
1749 if (ExistsRefToOriginalRefSCC) {
1750 // If there is any edge from any new function to any function in the
1751 // original function's RefSCC, all new functions will be in the same RefSCC
1752 // as the original function.
1753 NewRC = OriginalRC;
1754 } else {
1755 // Otherwise the new functions are in their own RefSCC.
1756 NewRC = createRefSCC(*this);
1757 // The new RefSCC goes before the original function's RefSCC in postorder
1758 // since there are only edges from the original function's RefSCC to the new
1759 // RefSCC.
1760 auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1761 PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1762 for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1763 RefSCCIndices[PostOrderRefSCCs[I]] = I;
1764 }
1765
1766 for (Function *NewFunction : NewFunctions) {
1767 Node &NewN = get(*NewFunction);
1768 // Each new function is in its own new SCC. The original function can only
1769 // have a ref edge to new functions, and no other existing functions can
1770 // have references to new functions. Each new function only has a ref edge
1771 // to the other new functions.
1772 SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1773 // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1774 // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1775 // SCC list.
1776 auto Index = NewRC->SCCIndices.size();
1777 NewRC->SCCIndices[NewC] = Index;
1778 NewRC->SCCs.push_back(NewC);
1779 SCCMap[&NewN] = NewC;
1780 }
1781
1782 #ifndef NDEBUG
1783 for (Function *F1 : NewFunctions) {
1784 assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref &&
1785 "Expected ref edges from original function to every new function");
1786 Node &N1 = get(*F1);
1787 for (Function *F2 : NewFunctions) {
1788 if (F1 == F2)
1789 continue;
1790 Node &N2 = get(*F2);
1791 assert(!N1->lookup(N2)->isCall() &&
1792 "Edges between new functions must be ref edges");
1793 }
1794 }
1795 #endif
1796 }
1797
insertInto(Function & F,Node * & MappedN)1798 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1799 return *new (MappedN = BPA.Allocate()) Node(*this, F);
1800 }
1801
updateGraphPtrs()1802 void LazyCallGraph::updateGraphPtrs() {
1803 // Walk the node map to update their graph pointers. While this iterates in
1804 // an unstable order, the order has no effect so it remains correct.
1805 for (auto &FunctionNodePair : NodeMap)
1806 FunctionNodePair.second->G = this;
1807
1808 for (auto *RC : PostOrderRefSCCs)
1809 RC->G = this;
1810 }
1811
initNode(Function & F)1812 LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) {
1813 Node &N = get(F);
1814 N.DFSNumber = N.LowLink = -1;
1815 N.populate();
1816 NodeMap[&F] = &N;
1817 return N;
1818 }
1819
1820 template <typename RootsT, typename GetBeginT, typename GetEndT,
1821 typename GetNodeT, typename FormSCCCallbackT>
buildGenericSCCs(RootsT && Roots,GetBeginT && GetBegin,GetEndT && GetEnd,GetNodeT && GetNode,FormSCCCallbackT && FormSCC)1822 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1823 GetEndT &&GetEnd, GetNodeT &&GetNode,
1824 FormSCCCallbackT &&FormSCC) {
1825 using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1826
1827 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1828 SmallVector<Node *, 16> PendingSCCStack;
1829
1830 // Scan down the stack and DFS across the call edges.
1831 for (Node *RootN : Roots) {
1832 assert(DFSStack.empty() &&
1833 "Cannot begin a new root with a non-empty DFS stack!");
1834 assert(PendingSCCStack.empty() &&
1835 "Cannot begin a new root with pending nodes for an SCC!");
1836
1837 // Skip any nodes we've already reached in the DFS.
1838 if (RootN->DFSNumber != 0) {
1839 assert(RootN->DFSNumber == -1 &&
1840 "Shouldn't have any mid-DFS root nodes!");
1841 continue;
1842 }
1843
1844 RootN->DFSNumber = RootN->LowLink = 1;
1845 int NextDFSNumber = 2;
1846
1847 DFSStack.push_back({RootN, GetBegin(*RootN)});
1848 do {
1849 Node *N;
1850 EdgeItT I;
1851 std::tie(N, I) = DFSStack.pop_back_val();
1852 auto E = GetEnd(*N);
1853 while (I != E) {
1854 Node &ChildN = GetNode(I);
1855 if (ChildN.DFSNumber == 0) {
1856 // We haven't yet visited this child, so descend, pushing the current
1857 // node onto the stack.
1858 DFSStack.push_back({N, I});
1859
1860 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1861 N = &ChildN;
1862 I = GetBegin(*N);
1863 E = GetEnd(*N);
1864 continue;
1865 }
1866
1867 // If the child has already been added to some child component, it
1868 // couldn't impact the low-link of this parent because it isn't
1869 // connected, and thus its low-link isn't relevant so skip it.
1870 if (ChildN.DFSNumber == -1) {
1871 ++I;
1872 continue;
1873 }
1874
1875 // Track the lowest linked child as the lowest link for this node.
1876 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1877 if (ChildN.LowLink < N->LowLink)
1878 N->LowLink = ChildN.LowLink;
1879
1880 // Move to the next edge.
1881 ++I;
1882 }
1883
1884 // We've finished processing N and its descendants, put it on our pending
1885 // SCC stack to eventually get merged into an SCC of nodes.
1886 PendingSCCStack.push_back(N);
1887
1888 // If this node is linked to some lower entry, continue walking up the
1889 // stack.
1890 if (N->LowLink != N->DFSNumber)
1891 continue;
1892
1893 // Otherwise, we've completed an SCC. Append it to our post order list of
1894 // SCCs.
1895 int RootDFSNumber = N->DFSNumber;
1896 // Find the range of the node stack by walking down until we pass the
1897 // root DFS number.
1898 auto SCCNodes = make_range(
1899 PendingSCCStack.rbegin(),
1900 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1901 return N->DFSNumber < RootDFSNumber;
1902 }));
1903 // Form a new SCC out of these nodes and then clear them off our pending
1904 // stack.
1905 FormSCC(SCCNodes);
1906 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1907 } while (!DFSStack.empty());
1908 }
1909 }
1910
1911 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1912 ///
1913 /// Appends the SCCs to the provided vector and updates the map with their
1914 /// indices. Both the vector and map must be empty when passed into this
1915 /// routine.
buildSCCs(RefSCC & RC,node_stack_range Nodes)1916 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1917 assert(RC.SCCs.empty() && "Already built SCCs!");
1918 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1919
1920 for (Node *N : Nodes) {
1921 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1922 "We cannot have a low link in an SCC lower than its root on the "
1923 "stack!");
1924
1925 // This node will go into the next RefSCC, clear out its DFS and low link
1926 // as we scan.
1927 N->DFSNumber = N->LowLink = 0;
1928 }
1929
1930 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1931 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1932 // internal storage as we won't need it for the outer graph's DFS any longer.
1933 buildGenericSCCs(
1934 Nodes, [](Node &N) { return N->call_begin(); },
1935 [](Node &N) { return N->call_end(); },
1936 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1937 [this, &RC](node_stack_range Nodes) {
1938 RC.SCCs.push_back(createSCC(RC, Nodes));
1939 for (Node &N : *RC.SCCs.back()) {
1940 N.DFSNumber = N.LowLink = -1;
1941 SCCMap[&N] = RC.SCCs.back();
1942 }
1943 });
1944
1945 // Wire up the SCC indices.
1946 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1947 RC.SCCIndices[RC.SCCs[i]] = i;
1948 }
1949
buildRefSCCs()1950 void LazyCallGraph::buildRefSCCs() {
1951 if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1952 // RefSCCs are either non-existent or already built!
1953 return;
1954
1955 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1956
1957 SmallVector<Node *, 16> Roots;
1958 for (Edge &E : *this)
1959 Roots.push_back(&E.getNode());
1960
1961 // The roots will be iterated in order.
1962 buildGenericSCCs(
1963 Roots,
1964 [](Node &N) {
1965 // We need to populate each node as we begin to walk its edges.
1966 N.populate();
1967 return N->begin();
1968 },
1969 [](Node &N) { return N->end(); },
1970 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1971 [this](node_stack_range Nodes) {
1972 RefSCC *NewRC = createRefSCC(*this);
1973 buildSCCs(*NewRC, Nodes);
1974
1975 // Push the new node into the postorder list and remember its position
1976 // in the index map.
1977 bool Inserted =
1978 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1979 (void)Inserted;
1980 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1981 PostOrderRefSCCs.push_back(NewRC);
1982 #ifndef NDEBUG
1983 NewRC->verify();
1984 #endif
1985 });
1986 }
1987
1988 AnalysisKey LazyCallGraphAnalysis::Key;
1989
LazyCallGraphPrinterPass(raw_ostream & OS)1990 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1991
printNode(raw_ostream & OS,LazyCallGraph::Node & N)1992 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1993 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1994 for (LazyCallGraph::Edge &E : N.populate())
1995 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1996 << E.getFunction().getName() << "\n";
1997
1998 OS << "\n";
1999 }
2000
printSCC(raw_ostream & OS,LazyCallGraph::SCC & C)2001 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
2002 OS << " SCC with " << C.size() << " functions:\n";
2003
2004 for (LazyCallGraph::Node &N : C)
2005 OS << " " << N.getFunction().getName() << "\n";
2006 }
2007
printRefSCC(raw_ostream & OS,LazyCallGraph::RefSCC & C)2008 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
2009 OS << " RefSCC with " << C.size() << " call SCCs:\n";
2010
2011 for (LazyCallGraph::SCC &InnerC : C)
2012 printSCC(OS, InnerC);
2013
2014 OS << "\n";
2015 }
2016
run(Module & M,ModuleAnalysisManager & AM)2017 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
2018 ModuleAnalysisManager &AM) {
2019 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2020
2021 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
2022 << "\n\n";
2023
2024 for (Function &F : M)
2025 printNode(OS, G.get(F));
2026
2027 G.buildRefSCCs();
2028 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
2029 printRefSCC(OS, C);
2030
2031 return PreservedAnalyses::all();
2032 }
2033
LazyCallGraphDOTPrinterPass(raw_ostream & OS)2034 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
2035 : OS(OS) {}
2036
printNodeDOT(raw_ostream & OS,LazyCallGraph::Node & N)2037 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
2038 std::string Name =
2039 "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
2040
2041 for (LazyCallGraph::Edge &E : N.populate()) {
2042 OS << " " << Name << " -> \""
2043 << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
2044 if (!E.isCall()) // It is a ref edge.
2045 OS << " [style=dashed,label=\"ref\"]";
2046 OS << ";\n";
2047 }
2048
2049 OS << "\n";
2050 }
2051
run(Module & M,ModuleAnalysisManager & AM)2052 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
2053 ModuleAnalysisManager &AM) {
2054 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2055
2056 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
2057
2058 for (Function &F : M)
2059 printNodeDOT(OS, G.get(F));
2060
2061 OS << "}\n";
2062
2063 return PreservedAnalyses::all();
2064 }
2065