1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "legalizedag"
57
58 namespace {
59
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63 EVT FloatVT;
64 SDValue Chain;
65 SDValue FloatPtr;
66 SDValue IntPtr;
67 MachinePointerInfo IntPointerInfo;
68 MachinePointerInfo FloatPointerInfo;
69 SDValue IntValue;
70 APInt SignMask;
71 uint8_t SignBit;
72 };
73
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it. This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing. For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86 const TargetMachine &TM;
87 const TargetLowering &TLI;
88 SelectionDAG &DAG;
89
90 /// The set of nodes which have already been legalized. We hold a
91 /// reference to it in order to update as necessary on node deletion.
92 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93
94 /// A set of all the nodes updated during legalization.
95 SmallSetVector<SDNode *, 16> *UpdatedNodes;
96
getSetCCResultType(EVT VT) const97 EVT getSetCCResultType(EVT VT) const {
98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99 }
100
101 // Libcall insertion helpers.
102
103 public:
SelectionDAGLegalize(SelectionDAG & DAG,SmallPtrSetImpl<SDNode * > & LegalizedNodes,SmallSetVector<SDNode *,16> * UpdatedNodes=nullptr)104 SelectionDAGLegalize(SelectionDAG &DAG,
105 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109
110 /// Legalizes the given operation.
111 void LegalizeOp(SDNode *Node);
112
113 private:
114 SDValue OptimizeFloatStore(StoreSDNode *ST);
115
116 void LegalizeLoadOps(SDNode *Node);
117 void LegalizeStoreOps(SDNode *Node);
118
119 /// Some targets cannot handle a variable
120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
121 /// is necessary to spill the vector being inserted into to memory, perform
122 /// the insert there, and then read the result back.
123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124 const SDLoc &dl);
125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126 const SDLoc &dl);
127
128 /// Return a vector shuffle operation which
129 /// performs the same shuffe in terms of order or result bytes, but on a type
130 /// whose vector element type is narrower than the original shuffle type.
131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133 SDValue N1, SDValue N2,
134 ArrayRef<int> Mask) const;
135
136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain,
138 bool IsSignaling = false);
139
140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
141
142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144 RTLIB::Libcall Call_F128,
145 RTLIB::Libcall Call_PPCF128,
146 SmallVectorImpl<SDValue> &Results);
147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
148 RTLIB::Libcall Call_I8,
149 RTLIB::Libcall Call_I16,
150 RTLIB::Libcall Call_I32,
151 RTLIB::Libcall Call_I64,
152 RTLIB::Libcall Call_I128);
153 void ExpandArgFPLibCall(SDNode *Node,
154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
156 RTLIB::Libcall Call_PPCF128,
157 SmallVectorImpl<SDValue> &Results);
158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
160
161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162 const SDLoc &dl);
163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
164 const SDLoc &dl, SDValue ChainIn);
165 SDValue ExpandBUILD_VECTOR(SDNode *Node);
166 SDValue ExpandSPLAT_VECTOR(SDNode *Node);
167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
169 SmallVectorImpl<SDValue> &Results);
170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
171 SDValue Value) const;
172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
173 SDValue NewIntValue) const;
174 SDValue ExpandFCOPYSIGN(SDNode *Node) const;
175 SDValue ExpandFABS(SDNode *Node) const;
176 SDValue ExpandFNEG(SDNode *Node) const;
177 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
178 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
179 SmallVectorImpl<SDValue> &Results);
180 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
181 SmallVectorImpl<SDValue> &Results);
182 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl);
183
184 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
185 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
186 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl);
187
188 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
189 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
190 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
191
192 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
193 SDValue ExpandConstant(ConstantSDNode *CP);
194
195 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
196 bool ExpandNode(SDNode *Node);
197 void ConvertNodeToLibcall(SDNode *Node);
198 void PromoteNode(SDNode *Node);
199
200 public:
201 // Node replacement helpers
202
ReplacedNode(SDNode * N)203 void ReplacedNode(SDNode *N) {
204 LegalizedNodes.erase(N);
205 if (UpdatedNodes)
206 UpdatedNodes->insert(N);
207 }
208
ReplaceNode(SDNode * Old,SDNode * New)209 void ReplaceNode(SDNode *Old, SDNode *New) {
210 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
211 dbgs() << " with: "; New->dump(&DAG));
212
213 assert(Old->getNumValues() == New->getNumValues() &&
214 "Replacing one node with another that produces a different number "
215 "of values!");
216 DAG.ReplaceAllUsesWith(Old, New);
217 if (UpdatedNodes)
218 UpdatedNodes->insert(New);
219 ReplacedNode(Old);
220 }
221
ReplaceNode(SDValue Old,SDValue New)222 void ReplaceNode(SDValue Old, SDValue New) {
223 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
224 dbgs() << " with: "; New->dump(&DAG));
225
226 DAG.ReplaceAllUsesWith(Old, New);
227 if (UpdatedNodes)
228 UpdatedNodes->insert(New.getNode());
229 ReplacedNode(Old.getNode());
230 }
231
ReplaceNode(SDNode * Old,const SDValue * New)232 void ReplaceNode(SDNode *Old, const SDValue *New) {
233 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
234
235 DAG.ReplaceAllUsesWith(Old, New);
236 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
237 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: ");
238 New[i]->dump(&DAG));
239 if (UpdatedNodes)
240 UpdatedNodes->insert(New[i].getNode());
241 }
242 ReplacedNode(Old);
243 }
244
ReplaceNodeWithValue(SDValue Old,SDValue New)245 void ReplaceNodeWithValue(SDValue Old, SDValue New) {
246 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
247 dbgs() << " with: "; New->dump(&DAG));
248
249 DAG.ReplaceAllUsesOfValueWith(Old, New);
250 if (UpdatedNodes)
251 UpdatedNodes->insert(New.getNode());
252 ReplacedNode(Old.getNode());
253 }
254 };
255
256 } // end anonymous namespace
257
258 /// Return a vector shuffle operation which
259 /// performs the same shuffle in terms of order or result bytes, but on a type
260 /// whose vector element type is narrower than the original shuffle type.
261 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
ShuffleWithNarrowerEltType(EVT NVT,EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask) const262 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
263 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
264 ArrayRef<int> Mask) const {
265 unsigned NumMaskElts = VT.getVectorNumElements();
266 unsigned NumDestElts = NVT.getVectorNumElements();
267 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
268
269 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
270
271 if (NumEltsGrowth == 1)
272 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
273
274 SmallVector<int, 8> NewMask;
275 for (unsigned i = 0; i != NumMaskElts; ++i) {
276 int Idx = Mask[i];
277 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
278 if (Idx < 0)
279 NewMask.push_back(-1);
280 else
281 NewMask.push_back(Idx * NumEltsGrowth + j);
282 }
283 }
284 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
285 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
286 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
287 }
288
289 /// Expands the ConstantFP node to an integer constant or
290 /// a load from the constant pool.
291 SDValue
ExpandConstantFP(ConstantFPSDNode * CFP,bool UseCP)292 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
293 bool Extend = false;
294 SDLoc dl(CFP);
295
296 // If a FP immediate is precise when represented as a float and if the
297 // target can do an extending load from float to double, we put it into
298 // the constant pool as a float, even if it's is statically typed as a
299 // double. This shrinks FP constants and canonicalizes them for targets where
300 // an FP extending load is the same cost as a normal load (such as on the x87
301 // fp stack or PPC FP unit).
302 EVT VT = CFP->getValueType(0);
303 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
304 if (!UseCP) {
305 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
306 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
307 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
308 }
309
310 APFloat APF = CFP->getValueAPF();
311 EVT OrigVT = VT;
312 EVT SVT = VT;
313
314 // We don't want to shrink SNaNs. Converting the SNaN back to its real type
315 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
316 if (!APF.isSignaling()) {
317 while (SVT != MVT::f32 && SVT != MVT::f16) {
318 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
319 if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
320 // Only do this if the target has a native EXTLOAD instruction from
321 // smaller type.
322 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
323 TLI.ShouldShrinkFPConstant(OrigVT)) {
324 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
325 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
326 VT = SVT;
327 Extend = true;
328 }
329 }
330 }
331
332 SDValue CPIdx =
333 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
334 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
335 if (Extend) {
336 SDValue Result = DAG.getExtLoad(
337 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
338 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
339 Alignment);
340 return Result;
341 }
342 SDValue Result = DAG.getLoad(
343 OrigVT, dl, DAG.getEntryNode(), CPIdx,
344 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
345 return Result;
346 }
347
348 /// Expands the Constant node to a load from the constant pool.
ExpandConstant(ConstantSDNode * CP)349 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
350 SDLoc dl(CP);
351 EVT VT = CP->getValueType(0);
352 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
353 TLI.getPointerTy(DAG.getDataLayout()));
354 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
355 SDValue Result = DAG.getLoad(
356 VT, dl, DAG.getEntryNode(), CPIdx,
357 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
358 return Result;
359 }
360
361 /// Some target cannot handle a variable insertion index for the
362 /// INSERT_VECTOR_ELT instruction. In this case, it
363 /// is necessary to spill the vector being inserted into to memory, perform
364 /// the insert there, and then read the result back.
PerformInsertVectorEltInMemory(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)365 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
366 SDValue Val,
367 SDValue Idx,
368 const SDLoc &dl) {
369 SDValue Tmp1 = Vec;
370 SDValue Tmp2 = Val;
371 SDValue Tmp3 = Idx;
372
373 // If the target doesn't support this, we have to spill the input vector
374 // to a temporary stack slot, update the element, then reload it. This is
375 // badness. We could also load the value into a vector register (either
376 // with a "move to register" or "extload into register" instruction, then
377 // permute it into place, if the idx is a constant and if the idx is
378 // supported by the target.
379 EVT VT = Tmp1.getValueType();
380 EVT EltVT = VT.getVectorElementType();
381 SDValue StackPtr = DAG.CreateStackTemporary(VT);
382
383 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
384
385 // Store the vector.
386 SDValue Ch = DAG.getStore(
387 DAG.getEntryNode(), dl, Tmp1, StackPtr,
388 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
389
390 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
391
392 // Store the scalar value.
393 Ch = DAG.getTruncStore(
394 Ch, dl, Tmp2, StackPtr2,
395 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
396 // Load the updated vector.
397 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
398 DAG.getMachineFunction(), SPFI));
399 }
400
ExpandINSERT_VECTOR_ELT(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)401 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
402 SDValue Idx,
403 const SDLoc &dl) {
404 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
405 // SCALAR_TO_VECTOR requires that the type of the value being inserted
406 // match the element type of the vector being created, except for
407 // integers in which case the inserted value can be over width.
408 EVT EltVT = Vec.getValueType().getVectorElementType();
409 if (Val.getValueType() == EltVT ||
410 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
411 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
412 Vec.getValueType(), Val);
413
414 unsigned NumElts = Vec.getValueType().getVectorNumElements();
415 // We generate a shuffle of InVec and ScVec, so the shuffle mask
416 // should be 0,1,2,3,4,5... with the appropriate element replaced with
417 // elt 0 of the RHS.
418 SmallVector<int, 8> ShufOps;
419 for (unsigned i = 0; i != NumElts; ++i)
420 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
421
422 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
423 }
424 }
425 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
426 }
427
OptimizeFloatStore(StoreSDNode * ST)428 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
429 if (!ISD::isNormalStore(ST))
430 return SDValue();
431
432 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
433 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
434 // FIXME: move this to the DAG Combiner! Note that we can't regress due
435 // to phase ordering between legalized code and the dag combiner. This
436 // probably means that we need to integrate dag combiner and legalizer
437 // together.
438 // We generally can't do this one for long doubles.
439 SDValue Chain = ST->getChain();
440 SDValue Ptr = ST->getBasePtr();
441 SDValue Value = ST->getValue();
442 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
443 AAMDNodes AAInfo = ST->getAAInfo();
444 SDLoc dl(ST);
445
446 // Don't optimise TargetConstantFP
447 if (Value.getOpcode() == ISD::TargetConstantFP)
448 return SDValue();
449
450 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
451 if (CFP->getValueType(0) == MVT::f32 &&
452 TLI.isTypeLegal(MVT::i32)) {
453 SDValue Con = DAG.getConstant(CFP->getValueAPF().
454 bitcastToAPInt().zextOrTrunc(32),
455 SDLoc(CFP), MVT::i32);
456 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
457 ST->getOriginalAlign(), MMOFlags, AAInfo);
458 }
459
460 if (CFP->getValueType(0) == MVT::f64) {
461 // If this target supports 64-bit registers, do a single 64-bit store.
462 if (TLI.isTypeLegal(MVT::i64)) {
463 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
464 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
465 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
466 ST->getOriginalAlign(), MMOFlags, AAInfo);
467 }
468
469 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
470 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
471 // stores. If the target supports neither 32- nor 64-bits, this
472 // xform is certainly not worth it.
473 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
474 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
475 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
476 if (DAG.getDataLayout().isBigEndian())
477 std::swap(Lo, Hi);
478
479 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
480 ST->getOriginalAlign(), MMOFlags, AAInfo);
481 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl);
482 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
483 ST->getPointerInfo().getWithOffset(4),
484 ST->getOriginalAlign(), MMOFlags, AAInfo);
485
486 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
487 }
488 }
489 }
490 return SDValue();
491 }
492
LegalizeStoreOps(SDNode * Node)493 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
494 StoreSDNode *ST = cast<StoreSDNode>(Node);
495 SDValue Chain = ST->getChain();
496 SDValue Ptr = ST->getBasePtr();
497 SDLoc dl(Node);
498
499 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
500 AAMDNodes AAInfo = ST->getAAInfo();
501
502 if (!ST->isTruncatingStore()) {
503 LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
504 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
505 ReplaceNode(ST, OptStore);
506 return;
507 }
508
509 SDValue Value = ST->getValue();
510 MVT VT = Value.getSimpleValueType();
511 switch (TLI.getOperationAction(ISD::STORE, VT)) {
512 default: llvm_unreachable("This action is not supported yet!");
513 case TargetLowering::Legal: {
514 // If this is an unaligned store and the target doesn't support it,
515 // expand it.
516 EVT MemVT = ST->getMemoryVT();
517 const DataLayout &DL = DAG.getDataLayout();
518 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
519 *ST->getMemOperand())) {
520 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
521 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
522 ReplaceNode(SDValue(ST, 0), Result);
523 } else
524 LLVM_DEBUG(dbgs() << "Legal store\n");
525 break;
526 }
527 case TargetLowering::Custom: {
528 LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
529 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
530 if (Res && Res != SDValue(Node, 0))
531 ReplaceNode(SDValue(Node, 0), Res);
532 return;
533 }
534 case TargetLowering::Promote: {
535 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
536 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
537 "Can only promote stores to same size type");
538 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
539 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
540 ST->getOriginalAlign(), MMOFlags, AAInfo);
541 ReplaceNode(SDValue(Node, 0), Result);
542 break;
543 }
544 }
545 return;
546 }
547
548 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
549 SDValue Value = ST->getValue();
550 EVT StVT = ST->getMemoryVT();
551 TypeSize StWidth = StVT.getSizeInBits();
552 TypeSize StSize = StVT.getStoreSizeInBits();
553 auto &DL = DAG.getDataLayout();
554
555 if (StWidth != StSize) {
556 // Promote to a byte-sized store with upper bits zero if not
557 // storing an integral number of bytes. For example, promote
558 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
559 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize());
560 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
561 SDValue Result =
562 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
563 ST->getOriginalAlign(), MMOFlags, AAInfo);
564 ReplaceNode(SDValue(Node, 0), Result);
565 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) {
566 // If not storing a power-of-2 number of bits, expand as two stores.
567 assert(!StVT.isVector() && "Unsupported truncstore!");
568 unsigned StWidthBits = StWidth.getFixedSize();
569 unsigned LogStWidth = Log2_32(StWidthBits);
570 assert(LogStWidth < 32);
571 unsigned RoundWidth = 1 << LogStWidth;
572 assert(RoundWidth < StWidthBits);
573 unsigned ExtraWidth = StWidthBits - RoundWidth;
574 assert(ExtraWidth < RoundWidth);
575 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
576 "Store size not an integral number of bytes!");
577 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
578 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
579 SDValue Lo, Hi;
580 unsigned IncrementSize;
581
582 if (DL.isLittleEndian()) {
583 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
584 // Store the bottom RoundWidth bits.
585 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
586 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
587
588 // Store the remaining ExtraWidth bits.
589 IncrementSize = RoundWidth / 8;
590 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
591 Hi = DAG.getNode(
592 ISD::SRL, dl, Value.getValueType(), Value,
593 DAG.getConstant(RoundWidth, dl,
594 TLI.getShiftAmountTy(Value.getValueType(), DL)));
595 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
596 ST->getPointerInfo().getWithOffset(IncrementSize),
597 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
598 } else {
599 // Big endian - avoid unaligned stores.
600 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
601 // Store the top RoundWidth bits.
602 Hi = DAG.getNode(
603 ISD::SRL, dl, Value.getValueType(), Value,
604 DAG.getConstant(ExtraWidth, dl,
605 TLI.getShiftAmountTy(Value.getValueType(), DL)));
606 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
607 ST->getOriginalAlign(), MMOFlags, AAInfo);
608
609 // Store the remaining ExtraWidth bits.
610 IncrementSize = RoundWidth / 8;
611 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
612 DAG.getConstant(IncrementSize, dl,
613 Ptr.getValueType()));
614 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
615 ST->getPointerInfo().getWithOffset(IncrementSize),
616 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
617 }
618
619 // The order of the stores doesn't matter.
620 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
621 ReplaceNode(SDValue(Node, 0), Result);
622 } else {
623 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
624 default: llvm_unreachable("This action is not supported yet!");
625 case TargetLowering::Legal: {
626 EVT MemVT = ST->getMemoryVT();
627 // If this is an unaligned store and the target doesn't support it,
628 // expand it.
629 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
630 *ST->getMemOperand())) {
631 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
632 ReplaceNode(SDValue(ST, 0), Result);
633 }
634 break;
635 }
636 case TargetLowering::Custom: {
637 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
638 if (Res && Res != SDValue(Node, 0))
639 ReplaceNode(SDValue(Node, 0), Res);
640 return;
641 }
642 case TargetLowering::Expand:
643 assert(!StVT.isVector() &&
644 "Vector Stores are handled in LegalizeVectorOps");
645
646 SDValue Result;
647
648 // TRUNCSTORE:i16 i32 -> STORE i16
649 if (TLI.isTypeLegal(StVT)) {
650 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
651 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
652 ST->getOriginalAlign(), MMOFlags, AAInfo);
653 } else {
654 // The in-memory type isn't legal. Truncate to the type it would promote
655 // to, and then do a truncstore.
656 Value = DAG.getNode(ISD::TRUNCATE, dl,
657 TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
658 Value);
659 Result =
660 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
661 ST->getOriginalAlign(), MMOFlags, AAInfo);
662 }
663
664 ReplaceNode(SDValue(Node, 0), Result);
665 break;
666 }
667 }
668 }
669
LegalizeLoadOps(SDNode * Node)670 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
671 LoadSDNode *LD = cast<LoadSDNode>(Node);
672 SDValue Chain = LD->getChain(); // The chain.
673 SDValue Ptr = LD->getBasePtr(); // The base pointer.
674 SDValue Value; // The value returned by the load op.
675 SDLoc dl(Node);
676
677 ISD::LoadExtType ExtType = LD->getExtensionType();
678 if (ExtType == ISD::NON_EXTLOAD) {
679 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
680 MVT VT = Node->getSimpleValueType(0);
681 SDValue RVal = SDValue(Node, 0);
682 SDValue RChain = SDValue(Node, 1);
683
684 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
685 default: llvm_unreachable("This action is not supported yet!");
686 case TargetLowering::Legal: {
687 EVT MemVT = LD->getMemoryVT();
688 const DataLayout &DL = DAG.getDataLayout();
689 // If this is an unaligned load and the target doesn't support it,
690 // expand it.
691 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
692 *LD->getMemOperand())) {
693 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
694 }
695 break;
696 }
697 case TargetLowering::Custom:
698 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
699 RVal = Res;
700 RChain = Res.getValue(1);
701 }
702 break;
703
704 case TargetLowering::Promote: {
705 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
706 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
707 "Can only promote loads to same size type");
708
709 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
710 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
711 RChain = Res.getValue(1);
712 break;
713 }
714 }
715 if (RChain.getNode() != Node) {
716 assert(RVal.getNode() != Node && "Load must be completely replaced");
717 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
718 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
719 if (UpdatedNodes) {
720 UpdatedNodes->insert(RVal.getNode());
721 UpdatedNodes->insert(RChain.getNode());
722 }
723 ReplacedNode(Node);
724 }
725 return;
726 }
727
728 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
729 EVT SrcVT = LD->getMemoryVT();
730 TypeSize SrcWidth = SrcVT.getSizeInBits();
731 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
732 AAMDNodes AAInfo = LD->getAAInfo();
733
734 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
735 // Some targets pretend to have an i1 loading operation, and actually
736 // load an i8. This trick is correct for ZEXTLOAD because the top 7
737 // bits are guaranteed to be zero; it helps the optimizers understand
738 // that these bits are zero. It is also useful for EXTLOAD, since it
739 // tells the optimizers that those bits are undefined. It would be
740 // nice to have an effective generic way of getting these benefits...
741 // Until such a way is found, don't insist on promoting i1 here.
742 (SrcVT != MVT::i1 ||
743 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
744 TargetLowering::Promote)) {
745 // Promote to a byte-sized load if not loading an integral number of
746 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
747 unsigned NewWidth = SrcVT.getStoreSizeInBits();
748 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
749 SDValue Ch;
750
751 // The extra bits are guaranteed to be zero, since we stored them that
752 // way. A zext load from NVT thus automatically gives zext from SrcVT.
753
754 ISD::LoadExtType NewExtType =
755 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
756
757 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
758 Chain, Ptr, LD->getPointerInfo(), NVT,
759 LD->getOriginalAlign(), MMOFlags, AAInfo);
760
761 Ch = Result.getValue(1); // The chain.
762
763 if (ExtType == ISD::SEXTLOAD)
764 // Having the top bits zero doesn't help when sign extending.
765 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
766 Result.getValueType(),
767 Result, DAG.getValueType(SrcVT));
768 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
769 // All the top bits are guaranteed to be zero - inform the optimizers.
770 Result = DAG.getNode(ISD::AssertZext, dl,
771 Result.getValueType(), Result,
772 DAG.getValueType(SrcVT));
773
774 Value = Result;
775 Chain = Ch;
776 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) {
777 // If not loading a power-of-2 number of bits, expand as two loads.
778 assert(!SrcVT.isVector() && "Unsupported extload!");
779 unsigned SrcWidthBits = SrcWidth.getFixedSize();
780 unsigned LogSrcWidth = Log2_32(SrcWidthBits);
781 assert(LogSrcWidth < 32);
782 unsigned RoundWidth = 1 << LogSrcWidth;
783 assert(RoundWidth < SrcWidthBits);
784 unsigned ExtraWidth = SrcWidthBits - RoundWidth;
785 assert(ExtraWidth < RoundWidth);
786 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
787 "Load size not an integral number of bytes!");
788 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
789 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
790 SDValue Lo, Hi, Ch;
791 unsigned IncrementSize;
792 auto &DL = DAG.getDataLayout();
793
794 if (DL.isLittleEndian()) {
795 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
796 // Load the bottom RoundWidth bits.
797 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
798 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
799 MMOFlags, AAInfo);
800
801 // Load the remaining ExtraWidth bits.
802 IncrementSize = RoundWidth / 8;
803 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
804 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
805 LD->getPointerInfo().getWithOffset(IncrementSize),
806 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
807
808 // Build a factor node to remember that this load is independent of
809 // the other one.
810 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
811 Hi.getValue(1));
812
813 // Move the top bits to the right place.
814 Hi = DAG.getNode(
815 ISD::SHL, dl, Hi.getValueType(), Hi,
816 DAG.getConstant(RoundWidth, dl,
817 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
818
819 // Join the hi and lo parts.
820 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
821 } else {
822 // Big endian - avoid unaligned loads.
823 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
824 // Load the top RoundWidth bits.
825 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
826 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
827 MMOFlags, AAInfo);
828
829 // Load the remaining ExtraWidth bits.
830 IncrementSize = RoundWidth / 8;
831 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
832 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
833 LD->getPointerInfo().getWithOffset(IncrementSize),
834 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
835
836 // Build a factor node to remember that this load is independent of
837 // the other one.
838 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
839 Hi.getValue(1));
840
841 // Move the top bits to the right place.
842 Hi = DAG.getNode(
843 ISD::SHL, dl, Hi.getValueType(), Hi,
844 DAG.getConstant(ExtraWidth, dl,
845 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
846
847 // Join the hi and lo parts.
848 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
849 }
850
851 Chain = Ch;
852 } else {
853 bool isCustom = false;
854 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
855 SrcVT.getSimpleVT())) {
856 default: llvm_unreachable("This action is not supported yet!");
857 case TargetLowering::Custom:
858 isCustom = true;
859 LLVM_FALLTHROUGH;
860 case TargetLowering::Legal:
861 Value = SDValue(Node, 0);
862 Chain = SDValue(Node, 1);
863
864 if (isCustom) {
865 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
866 Value = Res;
867 Chain = Res.getValue(1);
868 }
869 } else {
870 // If this is an unaligned load and the target doesn't support it,
871 // expand it.
872 EVT MemVT = LD->getMemoryVT();
873 const DataLayout &DL = DAG.getDataLayout();
874 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
875 *LD->getMemOperand())) {
876 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
877 }
878 }
879 break;
880
881 case TargetLowering::Expand: {
882 EVT DestVT = Node->getValueType(0);
883 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
884 // If the source type is not legal, see if there is a legal extload to
885 // an intermediate type that we can then extend further.
886 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
887 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
888 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
889 // If we are loading a legal type, this is a non-extload followed by a
890 // full extend.
891 ISD::LoadExtType MidExtType =
892 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
893
894 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
895 SrcVT, LD->getMemOperand());
896 unsigned ExtendOp =
897 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
898 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
899 Chain = Load.getValue(1);
900 break;
901 }
902
903 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
904 // normal undefined upper bits behavior to allow using an in-reg extend
905 // with the illegal FP type, so load as an integer and do the
906 // from-integer conversion.
907 if (SrcVT.getScalarType() == MVT::f16) {
908 EVT ISrcVT = SrcVT.changeTypeToInteger();
909 EVT IDestVT = DestVT.changeTypeToInteger();
910 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
911
912 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
913 Ptr, ISrcVT, LD->getMemOperand());
914 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
915 Chain = Result.getValue(1);
916 break;
917 }
918 }
919
920 assert(!SrcVT.isVector() &&
921 "Vector Loads are handled in LegalizeVectorOps");
922
923 // FIXME: This does not work for vectors on most targets. Sign-
924 // and zero-extend operations are currently folded into extending
925 // loads, whether they are legal or not, and then we end up here
926 // without any support for legalizing them.
927 assert(ExtType != ISD::EXTLOAD &&
928 "EXTLOAD should always be supported!");
929 // Turn the unsupported load into an EXTLOAD followed by an
930 // explicit zero/sign extend inreg.
931 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
932 Node->getValueType(0),
933 Chain, Ptr, SrcVT,
934 LD->getMemOperand());
935 SDValue ValRes;
936 if (ExtType == ISD::SEXTLOAD)
937 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
938 Result.getValueType(),
939 Result, DAG.getValueType(SrcVT));
940 else
941 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
942 Value = ValRes;
943 Chain = Result.getValue(1);
944 break;
945 }
946 }
947 }
948
949 // Since loads produce two values, make sure to remember that we legalized
950 // both of them.
951 if (Chain.getNode() != Node) {
952 assert(Value.getNode() != Node && "Load must be completely replaced");
953 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
954 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
955 if (UpdatedNodes) {
956 UpdatedNodes->insert(Value.getNode());
957 UpdatedNodes->insert(Chain.getNode());
958 }
959 ReplacedNode(Node);
960 }
961 }
962
963 /// Return a legal replacement for the given operation, with all legal operands.
LegalizeOp(SDNode * Node)964 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
965 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
966
967 // Allow illegal target nodes and illegal registers.
968 if (Node->getOpcode() == ISD::TargetConstant ||
969 Node->getOpcode() == ISD::Register)
970 return;
971
972 #ifndef NDEBUG
973 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
974 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
975 TargetLowering::TypeLegal &&
976 "Unexpected illegal type!");
977
978 for (const SDValue &Op : Node->op_values())
979 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
980 TargetLowering::TypeLegal ||
981 Op.getOpcode() == ISD::TargetConstant ||
982 Op.getOpcode() == ISD::Register) &&
983 "Unexpected illegal type!");
984 #endif
985
986 // Figure out the correct action; the way to query this varies by opcode
987 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
988 bool SimpleFinishLegalizing = true;
989 switch (Node->getOpcode()) {
990 case ISD::INTRINSIC_W_CHAIN:
991 case ISD::INTRINSIC_WO_CHAIN:
992 case ISD::INTRINSIC_VOID:
993 case ISD::STACKSAVE:
994 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
995 break;
996 case ISD::GET_DYNAMIC_AREA_OFFSET:
997 Action = TLI.getOperationAction(Node->getOpcode(),
998 Node->getValueType(0));
999 break;
1000 case ISD::VAARG:
1001 Action = TLI.getOperationAction(Node->getOpcode(),
1002 Node->getValueType(0));
1003 if (Action != TargetLowering::Promote)
1004 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1005 break;
1006 case ISD::FP_TO_FP16:
1007 case ISD::SINT_TO_FP:
1008 case ISD::UINT_TO_FP:
1009 case ISD::EXTRACT_VECTOR_ELT:
1010 case ISD::LROUND:
1011 case ISD::LLROUND:
1012 case ISD::LRINT:
1013 case ISD::LLRINT:
1014 Action = TLI.getOperationAction(Node->getOpcode(),
1015 Node->getOperand(0).getValueType());
1016 break;
1017 case ISD::STRICT_FP_TO_FP16:
1018 case ISD::STRICT_SINT_TO_FP:
1019 case ISD::STRICT_UINT_TO_FP:
1020 case ISD::STRICT_LRINT:
1021 case ISD::STRICT_LLRINT:
1022 case ISD::STRICT_LROUND:
1023 case ISD::STRICT_LLROUND:
1024 // These pseudo-ops are the same as the other STRICT_ ops except
1025 // they are registered with setOperationAction() using the input type
1026 // instead of the output type.
1027 Action = TLI.getOperationAction(Node->getOpcode(),
1028 Node->getOperand(1).getValueType());
1029 break;
1030 case ISD::SIGN_EXTEND_INREG: {
1031 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1032 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1033 break;
1034 }
1035 case ISD::ATOMIC_STORE:
1036 Action = TLI.getOperationAction(Node->getOpcode(),
1037 Node->getOperand(2).getValueType());
1038 break;
1039 case ISD::SELECT_CC:
1040 case ISD::STRICT_FSETCC:
1041 case ISD::STRICT_FSETCCS:
1042 case ISD::SETCC:
1043 case ISD::BR_CC: {
1044 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1045 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1046 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1047 Node->getOpcode() == ISD::SETCC ? 2 : 1;
1048 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1049 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1050 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1051 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1052 ISD::CondCode CCCode =
1053 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1054 Action = TLI.getCondCodeAction(CCCode, OpVT);
1055 if (Action == TargetLowering::Legal) {
1056 if (Node->getOpcode() == ISD::SELECT_CC)
1057 Action = TLI.getOperationAction(Node->getOpcode(),
1058 Node->getValueType(0));
1059 else
1060 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1061 }
1062 break;
1063 }
1064 case ISD::LOAD:
1065 case ISD::STORE:
1066 // FIXME: Model these properly. LOAD and STORE are complicated, and
1067 // STORE expects the unlegalized operand in some cases.
1068 SimpleFinishLegalizing = false;
1069 break;
1070 case ISD::CALLSEQ_START:
1071 case ISD::CALLSEQ_END:
1072 // FIXME: This shouldn't be necessary. These nodes have special properties
1073 // dealing with the recursive nature of legalization. Removing this
1074 // special case should be done as part of making LegalizeDAG non-recursive.
1075 SimpleFinishLegalizing = false;
1076 break;
1077 case ISD::EXTRACT_ELEMENT:
1078 case ISD::FLT_ROUNDS_:
1079 case ISD::MERGE_VALUES:
1080 case ISD::EH_RETURN:
1081 case ISD::FRAME_TO_ARGS_OFFSET:
1082 case ISD::EH_DWARF_CFA:
1083 case ISD::EH_SJLJ_SETJMP:
1084 case ISD::EH_SJLJ_LONGJMP:
1085 case ISD::EH_SJLJ_SETUP_DISPATCH:
1086 // These operations lie about being legal: when they claim to be legal,
1087 // they should actually be expanded.
1088 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1089 if (Action == TargetLowering::Legal)
1090 Action = TargetLowering::Expand;
1091 break;
1092 case ISD::INIT_TRAMPOLINE:
1093 case ISD::ADJUST_TRAMPOLINE:
1094 case ISD::FRAMEADDR:
1095 case ISD::RETURNADDR:
1096 case ISD::ADDROFRETURNADDR:
1097 case ISD::SPONENTRY:
1098 // These operations lie about being legal: when they claim to be legal,
1099 // they should actually be custom-lowered.
1100 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1101 if (Action == TargetLowering::Legal)
1102 Action = TargetLowering::Custom;
1103 break;
1104 case ISD::READCYCLECOUNTER:
1105 // READCYCLECOUNTER returns an i64, even if type legalization might have
1106 // expanded that to several smaller types.
1107 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1108 break;
1109 case ISD::READ_REGISTER:
1110 case ISD::WRITE_REGISTER:
1111 // Named register is legal in the DAG, but blocked by register name
1112 // selection if not implemented by target (to chose the correct register)
1113 // They'll be converted to Copy(To/From)Reg.
1114 Action = TargetLowering::Legal;
1115 break;
1116 case ISD::UBSANTRAP:
1117 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1118 if (Action == TargetLowering::Expand) {
1119 // replace ISD::UBSANTRAP with ISD::TRAP
1120 SDValue NewVal;
1121 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1122 Node->getOperand(0));
1123 ReplaceNode(Node, NewVal.getNode());
1124 LegalizeOp(NewVal.getNode());
1125 return;
1126 }
1127 break;
1128 case ISD::DEBUGTRAP:
1129 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1130 if (Action == TargetLowering::Expand) {
1131 // replace ISD::DEBUGTRAP with ISD::TRAP
1132 SDValue NewVal;
1133 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1134 Node->getOperand(0));
1135 ReplaceNode(Node, NewVal.getNode());
1136 LegalizeOp(NewVal.getNode());
1137 return;
1138 }
1139 break;
1140 case ISD::SADDSAT:
1141 case ISD::UADDSAT:
1142 case ISD::SSUBSAT:
1143 case ISD::USUBSAT:
1144 case ISD::SSHLSAT:
1145 case ISD::USHLSAT:
1146 case ISD::FP_TO_SINT_SAT:
1147 case ISD::FP_TO_UINT_SAT:
1148 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1149 break;
1150 case ISD::SMULFIX:
1151 case ISD::SMULFIXSAT:
1152 case ISD::UMULFIX:
1153 case ISD::UMULFIXSAT:
1154 case ISD::SDIVFIX:
1155 case ISD::SDIVFIXSAT:
1156 case ISD::UDIVFIX:
1157 case ISD::UDIVFIXSAT: {
1158 unsigned Scale = Node->getConstantOperandVal(2);
1159 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1160 Node->getValueType(0), Scale);
1161 break;
1162 }
1163 case ISD::MSCATTER:
1164 Action = TLI.getOperationAction(Node->getOpcode(),
1165 cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1166 break;
1167 case ISD::MSTORE:
1168 Action = TLI.getOperationAction(Node->getOpcode(),
1169 cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1170 break;
1171 case ISD::VECREDUCE_FADD:
1172 case ISD::VECREDUCE_FMUL:
1173 case ISD::VECREDUCE_ADD:
1174 case ISD::VECREDUCE_MUL:
1175 case ISD::VECREDUCE_AND:
1176 case ISD::VECREDUCE_OR:
1177 case ISD::VECREDUCE_XOR:
1178 case ISD::VECREDUCE_SMAX:
1179 case ISD::VECREDUCE_SMIN:
1180 case ISD::VECREDUCE_UMAX:
1181 case ISD::VECREDUCE_UMIN:
1182 case ISD::VECREDUCE_FMAX:
1183 case ISD::VECREDUCE_FMIN:
1184 Action = TLI.getOperationAction(
1185 Node->getOpcode(), Node->getOperand(0).getValueType());
1186 break;
1187 case ISD::VECREDUCE_SEQ_FADD:
1188 Action = TLI.getOperationAction(
1189 Node->getOpcode(), Node->getOperand(1).getValueType());
1190 break;
1191 default:
1192 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1193 Action = TargetLowering::Legal;
1194 } else {
1195 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1196 }
1197 break;
1198 }
1199
1200 if (SimpleFinishLegalizing) {
1201 SDNode *NewNode = Node;
1202 switch (Node->getOpcode()) {
1203 default: break;
1204 case ISD::SHL:
1205 case ISD::SRL:
1206 case ISD::SRA:
1207 case ISD::ROTL:
1208 case ISD::ROTR: {
1209 // Legalizing shifts/rotates requires adjusting the shift amount
1210 // to the appropriate width.
1211 SDValue Op0 = Node->getOperand(0);
1212 SDValue Op1 = Node->getOperand(1);
1213 if (!Op1.getValueType().isVector()) {
1214 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1215 // The getShiftAmountOperand() may create a new operand node or
1216 // return the existing one. If new operand is created we need
1217 // to update the parent node.
1218 // Do not try to legalize SAO here! It will be automatically legalized
1219 // in the next round.
1220 if (SAO != Op1)
1221 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1222 }
1223 }
1224 break;
1225 case ISD::FSHL:
1226 case ISD::FSHR:
1227 case ISD::SRL_PARTS:
1228 case ISD::SRA_PARTS:
1229 case ISD::SHL_PARTS: {
1230 // Legalizing shifts/rotates requires adjusting the shift amount
1231 // to the appropriate width.
1232 SDValue Op0 = Node->getOperand(0);
1233 SDValue Op1 = Node->getOperand(1);
1234 SDValue Op2 = Node->getOperand(2);
1235 if (!Op2.getValueType().isVector()) {
1236 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1237 // The getShiftAmountOperand() may create a new operand node or
1238 // return the existing one. If new operand is created we need
1239 // to update the parent node.
1240 if (SAO != Op2)
1241 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1242 }
1243 break;
1244 }
1245 }
1246
1247 if (NewNode != Node) {
1248 ReplaceNode(Node, NewNode);
1249 Node = NewNode;
1250 }
1251 switch (Action) {
1252 case TargetLowering::Legal:
1253 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1254 return;
1255 case TargetLowering::Custom:
1256 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1257 // FIXME: The handling for custom lowering with multiple results is
1258 // a complete mess.
1259 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1260 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1261 return;
1262
1263 if (Node->getNumValues() == 1) {
1264 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1265 // We can just directly replace this node with the lowered value.
1266 ReplaceNode(SDValue(Node, 0), Res);
1267 return;
1268 }
1269
1270 SmallVector<SDValue, 8> ResultVals;
1271 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1272 ResultVals.push_back(Res.getValue(i));
1273 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1274 ReplaceNode(Node, ResultVals.data());
1275 return;
1276 }
1277 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1278 LLVM_FALLTHROUGH;
1279 case TargetLowering::Expand:
1280 if (ExpandNode(Node))
1281 return;
1282 LLVM_FALLTHROUGH;
1283 case TargetLowering::LibCall:
1284 ConvertNodeToLibcall(Node);
1285 return;
1286 case TargetLowering::Promote:
1287 PromoteNode(Node);
1288 return;
1289 }
1290 }
1291
1292 switch (Node->getOpcode()) {
1293 default:
1294 #ifndef NDEBUG
1295 dbgs() << "NODE: ";
1296 Node->dump( &DAG);
1297 dbgs() << "\n";
1298 #endif
1299 llvm_unreachable("Do not know how to legalize this operator!");
1300
1301 case ISD::CALLSEQ_START:
1302 case ISD::CALLSEQ_END:
1303 break;
1304 case ISD::LOAD:
1305 return LegalizeLoadOps(Node);
1306 case ISD::STORE:
1307 return LegalizeStoreOps(Node);
1308 }
1309 }
1310
ExpandExtractFromVectorThroughStack(SDValue Op)1311 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1312 SDValue Vec = Op.getOperand(0);
1313 SDValue Idx = Op.getOperand(1);
1314 SDLoc dl(Op);
1315
1316 // Before we generate a new store to a temporary stack slot, see if there is
1317 // already one that we can use. There often is because when we scalarize
1318 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1319 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1320 // the vector. If all are expanded here, we don't want one store per vector
1321 // element.
1322
1323 // Caches for hasPredecessorHelper
1324 SmallPtrSet<const SDNode *, 32> Visited;
1325 SmallVector<const SDNode *, 16> Worklist;
1326 Visited.insert(Op.getNode());
1327 Worklist.push_back(Idx.getNode());
1328 SDValue StackPtr, Ch;
1329 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1330 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1331 SDNode *User = *UI;
1332 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1333 if (ST->isIndexed() || ST->isTruncatingStore() ||
1334 ST->getValue() != Vec)
1335 continue;
1336
1337 // Make sure that nothing else could have stored into the destination of
1338 // this store.
1339 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1340 continue;
1341
1342 // If the index is dependent on the store we will introduce a cycle when
1343 // creating the load (the load uses the index, and by replacing the chain
1344 // we will make the index dependent on the load). Also, the store might be
1345 // dependent on the extractelement and introduce a cycle when creating
1346 // the load.
1347 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1348 ST->hasPredecessor(Op.getNode()))
1349 continue;
1350
1351 StackPtr = ST->getBasePtr();
1352 Ch = SDValue(ST, 0);
1353 break;
1354 }
1355 }
1356
1357 EVT VecVT = Vec.getValueType();
1358
1359 if (!Ch.getNode()) {
1360 // Store the value to a temporary stack slot, then LOAD the returned part.
1361 StackPtr = DAG.CreateStackTemporary(VecVT);
1362 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1363 MachinePointerInfo());
1364 }
1365
1366 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1367
1368 SDValue NewLoad;
1369
1370 if (Op.getValueType().isVector())
1371 NewLoad =
1372 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1373 else
1374 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1375 MachinePointerInfo(),
1376 VecVT.getVectorElementType());
1377
1378 // Replace the chain going out of the store, by the one out of the load.
1379 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1380
1381 // We introduced a cycle though, so update the loads operands, making sure
1382 // to use the original store's chain as an incoming chain.
1383 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1384 NewLoad->op_end());
1385 NewLoadOperands[0] = Ch;
1386 NewLoad =
1387 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1388 return NewLoad;
1389 }
1390
ExpandInsertToVectorThroughStack(SDValue Op)1391 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1392 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1393
1394 SDValue Vec = Op.getOperand(0);
1395 SDValue Part = Op.getOperand(1);
1396 SDValue Idx = Op.getOperand(2);
1397 SDLoc dl(Op);
1398
1399 // Store the value to a temporary stack slot, then LOAD the returned part.
1400 EVT VecVT = Vec.getValueType();
1401 SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1402 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1403 MachinePointerInfo PtrInfo =
1404 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1405
1406 // First store the whole vector.
1407 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1408
1409 // Then store the inserted part.
1410 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1411
1412 // Store the subvector.
1413 Ch = DAG.getStore(
1414 Ch, dl, Part, SubStackPtr,
1415 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1416
1417 // Finally, load the updated vector.
1418 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1419 }
1420
ExpandVectorBuildThroughStack(SDNode * Node)1421 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1422 assert((Node->getOpcode() == ISD::BUILD_VECTOR ||
1423 Node->getOpcode() == ISD::CONCAT_VECTORS) &&
1424 "Unexpected opcode!");
1425
1426 // We can't handle this case efficiently. Allocate a sufficiently
1427 // aligned object on the stack, store each operand into it, then load
1428 // the result as a vector.
1429 // Create the stack frame object.
1430 EVT VT = Node->getValueType(0);
1431 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType()
1432 : Node->getOperand(0).getValueType();
1433 SDLoc dl(Node);
1434 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1435 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1436 MachinePointerInfo PtrInfo =
1437 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1438
1439 // Emit a store of each element to the stack slot.
1440 SmallVector<SDValue, 8> Stores;
1441 unsigned TypeByteSize = MemVT.getSizeInBits() / 8;
1442 assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1443
1444 // If the destination vector element type of a BUILD_VECTOR is narrower than
1445 // the source element type, only store the bits necessary.
1446 bool Truncate = isa<BuildVectorSDNode>(Node) &&
1447 MemVT.bitsLT(Node->getOperand(0).getValueType());
1448
1449 // Store (in the right endianness) the elements to memory.
1450 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1451 // Ignore undef elements.
1452 if (Node->getOperand(i).isUndef()) continue;
1453
1454 unsigned Offset = TypeByteSize*i;
1455
1456 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl);
1457
1458 if (Truncate)
1459 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1460 Node->getOperand(i), Idx,
1461 PtrInfo.getWithOffset(Offset), MemVT));
1462 else
1463 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1464 Idx, PtrInfo.getWithOffset(Offset)));
1465 }
1466
1467 SDValue StoreChain;
1468 if (!Stores.empty()) // Not all undef elements?
1469 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1470 else
1471 StoreChain = DAG.getEntryNode();
1472
1473 // Result is a load from the stack slot.
1474 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1475 }
1476
1477 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1478 /// containing the sign bit if the target has no integer value capable of
1479 /// holding all bits of the floating-point value.
getSignAsIntValue(FloatSignAsInt & State,const SDLoc & DL,SDValue Value) const1480 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1481 const SDLoc &DL,
1482 SDValue Value) const {
1483 EVT FloatVT = Value.getValueType();
1484 unsigned NumBits = FloatVT.getScalarSizeInBits();
1485 State.FloatVT = FloatVT;
1486 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1487 // Convert to an integer of the same size.
1488 if (TLI.isTypeLegal(IVT)) {
1489 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1490 State.SignMask = APInt::getSignMask(NumBits);
1491 State.SignBit = NumBits - 1;
1492 return;
1493 }
1494
1495 auto &DataLayout = DAG.getDataLayout();
1496 // Store the float to memory, then load the sign part out as an integer.
1497 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1498 // First create a temporary that is aligned for both the load and store.
1499 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1500 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1501 // Then store the float to it.
1502 State.FloatPtr = StackPtr;
1503 MachineFunction &MF = DAG.getMachineFunction();
1504 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1505 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1506 State.FloatPointerInfo);
1507
1508 SDValue IntPtr;
1509 if (DataLayout.isBigEndian()) {
1510 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1511 // Load out a legal integer with the same sign bit as the float.
1512 IntPtr = StackPtr;
1513 State.IntPointerInfo = State.FloatPointerInfo;
1514 } else {
1515 // Advance the pointer so that the loaded byte will contain the sign bit.
1516 unsigned ByteOffset = (NumBits / 8) - 1;
1517 IntPtr =
1518 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL);
1519 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1520 ByteOffset);
1521 }
1522
1523 State.IntPtr = IntPtr;
1524 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1525 State.IntPointerInfo, MVT::i8);
1526 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7);
1527 State.SignBit = 7;
1528 }
1529
1530 /// Replace the integer value produced by getSignAsIntValue() with a new value
1531 /// and cast the result back to a floating-point type.
modifySignAsInt(const FloatSignAsInt & State,const SDLoc & DL,SDValue NewIntValue) const1532 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1533 const SDLoc &DL,
1534 SDValue NewIntValue) const {
1535 if (!State.Chain)
1536 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1537
1538 // Override the part containing the sign bit in the value stored on the stack.
1539 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1540 State.IntPointerInfo, MVT::i8);
1541 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1542 State.FloatPointerInfo);
1543 }
1544
ExpandFCOPYSIGN(SDNode * Node) const1545 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1546 SDLoc DL(Node);
1547 SDValue Mag = Node->getOperand(0);
1548 SDValue Sign = Node->getOperand(1);
1549
1550 // Get sign bit into an integer value.
1551 FloatSignAsInt SignAsInt;
1552 getSignAsIntValue(SignAsInt, DL, Sign);
1553
1554 EVT IntVT = SignAsInt.IntValue.getValueType();
1555 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1556 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1557 SignMask);
1558
1559 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1560 EVT FloatVT = Mag.getValueType();
1561 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1562 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1563 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1564 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1565 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1566 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1567 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1568 }
1569
1570 // Transform Mag value to integer, and clear the sign bit.
1571 FloatSignAsInt MagAsInt;
1572 getSignAsIntValue(MagAsInt, DL, Mag);
1573 EVT MagVT = MagAsInt.IntValue.getValueType();
1574 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1575 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1576 ClearSignMask);
1577
1578 // Get the signbit at the right position for MagAsInt.
1579 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1580 EVT ShiftVT = IntVT;
1581 if (SignBit.getScalarValueSizeInBits() <
1582 ClearedSign.getScalarValueSizeInBits()) {
1583 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1584 ShiftVT = MagVT;
1585 }
1586 if (ShiftAmount > 0) {
1587 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1588 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1589 } else if (ShiftAmount < 0) {
1590 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1591 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1592 }
1593 if (SignBit.getScalarValueSizeInBits() >
1594 ClearedSign.getScalarValueSizeInBits()) {
1595 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1596 }
1597
1598 // Store the part with the modified sign and convert back to float.
1599 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1600 return modifySignAsInt(MagAsInt, DL, CopiedSign);
1601 }
1602
ExpandFNEG(SDNode * Node) const1603 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const {
1604 // Get the sign bit as an integer.
1605 SDLoc DL(Node);
1606 FloatSignAsInt SignAsInt;
1607 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0));
1608 EVT IntVT = SignAsInt.IntValue.getValueType();
1609
1610 // Flip the sign.
1611 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1612 SDValue SignFlip =
1613 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask);
1614
1615 // Convert back to float.
1616 return modifySignAsInt(SignAsInt, DL, SignFlip);
1617 }
1618
ExpandFABS(SDNode * Node) const1619 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1620 SDLoc DL(Node);
1621 SDValue Value = Node->getOperand(0);
1622
1623 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1624 EVT FloatVT = Value.getValueType();
1625 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1626 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1627 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1628 }
1629
1630 // Transform value to integer, clear the sign bit and transform back.
1631 FloatSignAsInt ValueAsInt;
1632 getSignAsIntValue(ValueAsInt, DL, Value);
1633 EVT IntVT = ValueAsInt.IntValue.getValueType();
1634 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1635 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1636 ClearSignMask);
1637 return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1638 }
1639
ExpandDYNAMIC_STACKALLOC(SDNode * Node,SmallVectorImpl<SDValue> & Results)1640 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1641 SmallVectorImpl<SDValue> &Results) {
1642 Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
1643 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1644 " not tell us which reg is the stack pointer!");
1645 SDLoc dl(Node);
1646 EVT VT = Node->getValueType(0);
1647 SDValue Tmp1 = SDValue(Node, 0);
1648 SDValue Tmp2 = SDValue(Node, 1);
1649 SDValue Tmp3 = Node->getOperand(2);
1650 SDValue Chain = Tmp1.getOperand(0);
1651
1652 // Chain the dynamic stack allocation so that it doesn't modify the stack
1653 // pointer when other instructions are using the stack.
1654 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1655
1656 SDValue Size = Tmp2.getOperand(1);
1657 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1658 Chain = SP.getValue(1);
1659 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue();
1660 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering();
1661 unsigned Opc =
1662 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
1663 ISD::ADD : ISD::SUB;
1664
1665 Align StackAlign = TFL->getStackAlign();
1666 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value
1667 if (Alignment > StackAlign)
1668 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1669 DAG.getConstant(-Alignment.value(), dl, VT));
1670 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1671
1672 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1673 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1674
1675 Results.push_back(Tmp1);
1676 Results.push_back(Tmp2);
1677 }
1678
1679 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1680 /// target.
1681 ///
1682 /// If the SETCC has been legalized using AND / OR, then the legalized node
1683 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1684 /// will be set to false.
1685 ///
1686 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1687 /// then the values of LHS and RHS will be swapped, CC will be set to the
1688 /// new condition, and NeedInvert will be set to false.
1689 ///
1690 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1691 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1692 /// will be set to true. The caller must invert the result of the SETCC with
1693 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1694 /// of a true/false result.
1695 ///
1696 /// \returns true if the SetCC has been legalized, false if it hasn't.
LegalizeSetCCCondCode(EVT VT,SDValue & LHS,SDValue & RHS,SDValue & CC,bool & NeedInvert,const SDLoc & dl,SDValue & Chain,bool IsSignaling)1697 bool SelectionDAGLegalize::LegalizeSetCCCondCode(
1698 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert,
1699 const SDLoc &dl, SDValue &Chain, bool IsSignaling) {
1700 MVT OpVT = LHS.getSimpleValueType();
1701 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1702 NeedInvert = false;
1703 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1704 default: llvm_unreachable("Unknown condition code action!");
1705 case TargetLowering::Legal:
1706 // Nothing to do.
1707 break;
1708 case TargetLowering::Expand: {
1709 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1710 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1711 std::swap(LHS, RHS);
1712 CC = DAG.getCondCode(InvCC);
1713 return true;
1714 }
1715 // Swapping operands didn't work. Try inverting the condition.
1716 bool NeedSwap = false;
1717 InvCC = getSetCCInverse(CCCode, OpVT);
1718 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1719 // If inverting the condition is not enough, try swapping operands
1720 // on top of it.
1721 InvCC = ISD::getSetCCSwappedOperands(InvCC);
1722 NeedSwap = true;
1723 }
1724 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1725 CC = DAG.getCondCode(InvCC);
1726 NeedInvert = true;
1727 if (NeedSwap)
1728 std::swap(LHS, RHS);
1729 return true;
1730 }
1731
1732 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1733 unsigned Opc = 0;
1734 switch (CCCode) {
1735 default: llvm_unreachable("Don't know how to expand this condition!");
1736 case ISD::SETUO:
1737 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
1738 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;
1739 break;
1740 }
1741 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
1742 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
1743 NeedInvert = true;
1744 LLVM_FALLTHROUGH;
1745 case ISD::SETO:
1746 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1747 && "If SETO is expanded, SETOEQ must be legal!");
1748 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1749 case ISD::SETONE:
1750 case ISD::SETUEQ:
1751 // If the SETUO or SETO CC isn't legal, we might be able to use
1752 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
1753 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
1754 // the operands.
1755 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1756 if (!TLI.isCondCodeLegal(CC2, OpVT) &&
1757 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
1758 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
1759 CC1 = ISD::SETOGT;
1760 CC2 = ISD::SETOLT;
1761 Opc = ISD::OR;
1762 NeedInvert = ((unsigned)CCCode & 0x8U);
1763 break;
1764 }
1765 LLVM_FALLTHROUGH;
1766 case ISD::SETOEQ:
1767 case ISD::SETOGT:
1768 case ISD::SETOGE:
1769 case ISD::SETOLT:
1770 case ISD::SETOLE:
1771 case ISD::SETUNE:
1772 case ISD::SETUGT:
1773 case ISD::SETUGE:
1774 case ISD::SETULT:
1775 case ISD::SETULE:
1776 // If we are floating point, assign and break, otherwise fall through.
1777 if (!OpVT.isInteger()) {
1778 // We can use the 4th bit to tell if we are the unordered
1779 // or ordered version of the opcode.
1780 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1781 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1782 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1783 break;
1784 }
1785 // Fallthrough if we are unsigned integer.
1786 LLVM_FALLTHROUGH;
1787 case ISD::SETLE:
1788 case ISD::SETGT:
1789 case ISD::SETGE:
1790 case ISD::SETLT:
1791 case ISD::SETNE:
1792 case ISD::SETEQ:
1793 // If all combinations of inverting the condition and swapping operands
1794 // didn't work then we have no means to expand the condition.
1795 llvm_unreachable("Don't know how to expand this condition!");
1796 }
1797
1798 SDValue SetCC1, SetCC2;
1799 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1800 // If we aren't the ordered or unorder operation,
1801 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1802 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain,
1803 IsSignaling);
1804 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain,
1805 IsSignaling);
1806 } else {
1807 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1808 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain,
1809 IsSignaling);
1810 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain,
1811 IsSignaling);
1812 }
1813 if (Chain)
1814 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
1815 SetCC2.getValue(1));
1816 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1817 RHS = SDValue();
1818 CC = SDValue();
1819 return true;
1820 }
1821 }
1822 return false;
1823 }
1824
1825 /// Emit a store/load combination to the stack. This stores
1826 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1827 /// a load from the stack slot to DestVT, extending it if needed.
1828 /// The resultant code need not be legal.
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,const SDLoc & dl)1829 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1830 EVT DestVT, const SDLoc &dl) {
1831 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1832 }
1833
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,const SDLoc & dl,SDValue Chain)1834 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1835 EVT DestVT, const SDLoc &dl,
1836 SDValue Chain) {
1837 unsigned SrcSize = SrcOp.getValueSizeInBits();
1838 unsigned SlotSize = SlotVT.getSizeInBits();
1839 unsigned DestSize = DestVT.getSizeInBits();
1840 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1841 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType);
1842
1843 // Don't convert with stack if the load/store is expensive.
1844 if ((SrcSize > SlotSize &&
1845 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) ||
1846 (SlotSize < DestSize &&
1847 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT)))
1848 return SDValue();
1849
1850 // Create the stack frame object.
1851 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign(
1852 SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1853 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign);
1854
1855 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1856 int SPFI = StackPtrFI->getIndex();
1857 MachinePointerInfo PtrInfo =
1858 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1859
1860 // Emit a store to the stack slot. Use a truncstore if the input value is
1861 // later than DestVT.
1862 SDValue Store;
1863
1864 if (SrcSize > SlotSize)
1865 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1866 SlotVT, SrcAlign);
1867 else {
1868 assert(SrcSize == SlotSize && "Invalid store");
1869 Store =
1870 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1871 }
1872
1873 // Result is a load from the stack slot.
1874 if (SlotSize == DestSize)
1875 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1876
1877 assert(SlotSize < DestSize && "Unknown extension!");
1878 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1879 DestAlign);
1880 }
1881
ExpandSCALAR_TO_VECTOR(SDNode * Node)1882 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1883 SDLoc dl(Node);
1884 // Create a vector sized/aligned stack slot, store the value to element #0,
1885 // then load the whole vector back out.
1886 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1887
1888 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1889 int SPFI = StackPtrFI->getIndex();
1890
1891 SDValue Ch = DAG.getTruncStore(
1892 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1893 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1894 Node->getValueType(0).getVectorElementType());
1895 return DAG.getLoad(
1896 Node->getValueType(0), dl, Ch, StackPtr,
1897 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1898 }
1899
1900 static bool
ExpandBVWithShuffles(SDNode * Node,SelectionDAG & DAG,const TargetLowering & TLI,SDValue & Res)1901 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1902 const TargetLowering &TLI, SDValue &Res) {
1903 unsigned NumElems = Node->getNumOperands();
1904 SDLoc dl(Node);
1905 EVT VT = Node->getValueType(0);
1906
1907 // Try to group the scalars into pairs, shuffle the pairs together, then
1908 // shuffle the pairs of pairs together, etc. until the vector has
1909 // been built. This will work only if all of the necessary shuffle masks
1910 // are legal.
1911
1912 // We do this in two phases; first to check the legality of the shuffles,
1913 // and next, assuming that all shuffles are legal, to create the new nodes.
1914 for (int Phase = 0; Phase < 2; ++Phase) {
1915 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1916 NewIntermedVals;
1917 for (unsigned i = 0; i < NumElems; ++i) {
1918 SDValue V = Node->getOperand(i);
1919 if (V.isUndef())
1920 continue;
1921
1922 SDValue Vec;
1923 if (Phase)
1924 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1925 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1926 }
1927
1928 while (IntermedVals.size() > 2) {
1929 NewIntermedVals.clear();
1930 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1931 // This vector and the next vector are shuffled together (simply to
1932 // append the one to the other).
1933 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1934
1935 SmallVector<int, 16> FinalIndices;
1936 FinalIndices.reserve(IntermedVals[i].second.size() +
1937 IntermedVals[i+1].second.size());
1938
1939 int k = 0;
1940 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1941 ++j, ++k) {
1942 ShuffleVec[k] = j;
1943 FinalIndices.push_back(IntermedVals[i].second[j]);
1944 }
1945 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1946 ++j, ++k) {
1947 ShuffleVec[k] = NumElems + j;
1948 FinalIndices.push_back(IntermedVals[i+1].second[j]);
1949 }
1950
1951 SDValue Shuffle;
1952 if (Phase)
1953 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1954 IntermedVals[i+1].first,
1955 ShuffleVec);
1956 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1957 return false;
1958 NewIntermedVals.push_back(
1959 std::make_pair(Shuffle, std::move(FinalIndices)));
1960 }
1961
1962 // If we had an odd number of defined values, then append the last
1963 // element to the array of new vectors.
1964 if ((IntermedVals.size() & 1) != 0)
1965 NewIntermedVals.push_back(IntermedVals.back());
1966
1967 IntermedVals.swap(NewIntermedVals);
1968 }
1969
1970 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1971 "Invalid number of intermediate vectors");
1972 SDValue Vec1 = IntermedVals[0].first;
1973 SDValue Vec2;
1974 if (IntermedVals.size() > 1)
1975 Vec2 = IntermedVals[1].first;
1976 else if (Phase)
1977 Vec2 = DAG.getUNDEF(VT);
1978
1979 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1980 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1981 ShuffleVec[IntermedVals[0].second[i]] = i;
1982 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1983 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1984
1985 if (Phase)
1986 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1987 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1988 return false;
1989 }
1990
1991 return true;
1992 }
1993
1994 /// Expand a BUILD_VECTOR node on targets that don't
1995 /// support the operation, but do support the resultant vector type.
ExpandBUILD_VECTOR(SDNode * Node)1996 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1997 unsigned NumElems = Node->getNumOperands();
1998 SDValue Value1, Value2;
1999 SDLoc dl(Node);
2000 EVT VT = Node->getValueType(0);
2001 EVT OpVT = Node->getOperand(0).getValueType();
2002 EVT EltVT = VT.getVectorElementType();
2003
2004 // If the only non-undef value is the low element, turn this into a
2005 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
2006 bool isOnlyLowElement = true;
2007 bool MoreThanTwoValues = false;
2008 bool isConstant = true;
2009 for (unsigned i = 0; i < NumElems; ++i) {
2010 SDValue V = Node->getOperand(i);
2011 if (V.isUndef())
2012 continue;
2013 if (i > 0)
2014 isOnlyLowElement = false;
2015 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
2016 isConstant = false;
2017
2018 if (!Value1.getNode()) {
2019 Value1 = V;
2020 } else if (!Value2.getNode()) {
2021 if (V != Value1)
2022 Value2 = V;
2023 } else if (V != Value1 && V != Value2) {
2024 MoreThanTwoValues = true;
2025 }
2026 }
2027
2028 if (!Value1.getNode())
2029 return DAG.getUNDEF(VT);
2030
2031 if (isOnlyLowElement)
2032 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
2033
2034 // If all elements are constants, create a load from the constant pool.
2035 if (isConstant) {
2036 SmallVector<Constant*, 16> CV;
2037 for (unsigned i = 0, e = NumElems; i != e; ++i) {
2038 if (ConstantFPSDNode *V =
2039 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
2040 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
2041 } else if (ConstantSDNode *V =
2042 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
2043 if (OpVT==EltVT)
2044 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
2045 else {
2046 // If OpVT and EltVT don't match, EltVT is not legal and the
2047 // element values have been promoted/truncated earlier. Undo this;
2048 // we don't want a v16i8 to become a v16i32 for example.
2049 const ConstantInt *CI = V->getConstantIntValue();
2050 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
2051 CI->getZExtValue()));
2052 }
2053 } else {
2054 assert(Node->getOperand(i).isUndef());
2055 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
2056 CV.push_back(UndefValue::get(OpNTy));
2057 }
2058 }
2059 Constant *CP = ConstantVector::get(CV);
2060 SDValue CPIdx =
2061 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
2062 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
2063 return DAG.getLoad(
2064 VT, dl, DAG.getEntryNode(), CPIdx,
2065 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2066 Alignment);
2067 }
2068
2069 SmallSet<SDValue, 16> DefinedValues;
2070 for (unsigned i = 0; i < NumElems; ++i) {
2071 if (Node->getOperand(i).isUndef())
2072 continue;
2073 DefinedValues.insert(Node->getOperand(i));
2074 }
2075
2076 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
2077 if (!MoreThanTwoValues) {
2078 SmallVector<int, 8> ShuffleVec(NumElems, -1);
2079 for (unsigned i = 0; i < NumElems; ++i) {
2080 SDValue V = Node->getOperand(i);
2081 if (V.isUndef())
2082 continue;
2083 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2084 }
2085 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2086 // Get the splatted value into the low element of a vector register.
2087 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2088 SDValue Vec2;
2089 if (Value2.getNode())
2090 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2091 else
2092 Vec2 = DAG.getUNDEF(VT);
2093
2094 // Return shuffle(LowValVec, undef, <0,0,0,0>)
2095 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
2096 }
2097 } else {
2098 SDValue Res;
2099 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2100 return Res;
2101 }
2102 }
2103
2104 // Otherwise, we can't handle this case efficiently.
2105 return ExpandVectorBuildThroughStack(Node);
2106 }
2107
ExpandSPLAT_VECTOR(SDNode * Node)2108 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2109 SDLoc DL(Node);
2110 EVT VT = Node->getValueType(0);
2111 SDValue SplatVal = Node->getOperand(0);
2112
2113 return DAG.getSplatBuildVector(VT, DL, SplatVal);
2114 }
2115
2116 // Expand a node into a call to a libcall. If the result value
2117 // does not fit into a register, return the lo part and set the hi part to the
2118 // by-reg argument. If it does fit into a single register, return the result
2119 // and leave the Hi part unset.
ExpandLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)2120 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2121 bool isSigned) {
2122 TargetLowering::ArgListTy Args;
2123 TargetLowering::ArgListEntry Entry;
2124 for (const SDValue &Op : Node->op_values()) {
2125 EVT ArgVT = Op.getValueType();
2126 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2127 Entry.Node = Op;
2128 Entry.Ty = ArgTy;
2129 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2130 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2131 Args.push_back(Entry);
2132 }
2133 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2134 TLI.getPointerTy(DAG.getDataLayout()));
2135
2136 EVT RetVT = Node->getValueType(0);
2137 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2138
2139 // By default, the input chain to this libcall is the entry node of the
2140 // function. If the libcall is going to be emitted as a tail call then
2141 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2142 // node which is being folded has a non-entry input chain.
2143 SDValue InChain = DAG.getEntryNode();
2144
2145 // isTailCall may be true since the callee does not reference caller stack
2146 // frame. Check if it's in the right position and that the return types match.
2147 SDValue TCChain = InChain;
2148 const Function &F = DAG.getMachineFunction().getFunction();
2149 bool isTailCall =
2150 TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2151 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2152 if (isTailCall)
2153 InChain = TCChain;
2154
2155 TargetLowering::CallLoweringInfo CLI(DAG);
2156 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2157 CLI.setDebugLoc(SDLoc(Node))
2158 .setChain(InChain)
2159 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2160 std::move(Args))
2161 .setTailCall(isTailCall)
2162 .setSExtResult(signExtend)
2163 .setZExtResult(!signExtend)
2164 .setIsPostTypeLegalization(true);
2165
2166 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2167
2168 if (!CallInfo.second.getNode()) {
2169 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2170 // It's a tailcall, return the chain (which is the DAG root).
2171 return DAG.getRoot();
2172 }
2173
2174 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2175 return CallInfo.first;
2176 }
2177
ExpandFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128,SmallVectorImpl<SDValue> & Results)2178 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2179 RTLIB::Libcall Call_F32,
2180 RTLIB::Libcall Call_F64,
2181 RTLIB::Libcall Call_F80,
2182 RTLIB::Libcall Call_F128,
2183 RTLIB::Libcall Call_PPCF128,
2184 SmallVectorImpl<SDValue> &Results) {
2185 RTLIB::Libcall LC;
2186 switch (Node->getSimpleValueType(0).SimpleTy) {
2187 default: llvm_unreachable("Unexpected request for libcall!");
2188 case MVT::f32: LC = Call_F32; break;
2189 case MVT::f64: LC = Call_F64; break;
2190 case MVT::f80: LC = Call_F80; break;
2191 case MVT::f128: LC = Call_F128; break;
2192 case MVT::ppcf128: LC = Call_PPCF128; break;
2193 }
2194
2195 if (Node->isStrictFPOpcode()) {
2196 EVT RetVT = Node->getValueType(0);
2197 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops()));
2198 TargetLowering::MakeLibCallOptions CallOptions;
2199 // FIXME: This doesn't support tail calls.
2200 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2201 Ops, CallOptions,
2202 SDLoc(Node),
2203 Node->getOperand(0));
2204 Results.push_back(Tmp.first);
2205 Results.push_back(Tmp.second);
2206 } else {
2207 SDValue Tmp = ExpandLibCall(LC, Node, false);
2208 Results.push_back(Tmp);
2209 }
2210 }
2211
ExpandIntLibCall(SDNode * Node,bool isSigned,RTLIB::Libcall Call_I8,RTLIB::Libcall Call_I16,RTLIB::Libcall Call_I32,RTLIB::Libcall Call_I64,RTLIB::Libcall Call_I128)2212 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2213 RTLIB::Libcall Call_I8,
2214 RTLIB::Libcall Call_I16,
2215 RTLIB::Libcall Call_I32,
2216 RTLIB::Libcall Call_I64,
2217 RTLIB::Libcall Call_I128) {
2218 RTLIB::Libcall LC;
2219 switch (Node->getSimpleValueType(0).SimpleTy) {
2220 default: llvm_unreachable("Unexpected request for libcall!");
2221 case MVT::i8: LC = Call_I8; break;
2222 case MVT::i16: LC = Call_I16; break;
2223 case MVT::i32: LC = Call_I32; break;
2224 case MVT::i64: LC = Call_I64; break;
2225 case MVT::i128: LC = Call_I128; break;
2226 }
2227 return ExpandLibCall(LC, Node, isSigned);
2228 }
2229
2230 /// Expand the node to a libcall based on first argument type (for instance
2231 /// lround and its variant).
ExpandArgFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128,SmallVectorImpl<SDValue> & Results)2232 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2233 RTLIB::Libcall Call_F32,
2234 RTLIB::Libcall Call_F64,
2235 RTLIB::Libcall Call_F80,
2236 RTLIB::Libcall Call_F128,
2237 RTLIB::Libcall Call_PPCF128,
2238 SmallVectorImpl<SDValue> &Results) {
2239 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2240
2241 RTLIB::Libcall LC;
2242 switch (InVT.getSimpleVT().SimpleTy) {
2243 default: llvm_unreachable("Unexpected request for libcall!");
2244 case MVT::f32: LC = Call_F32; break;
2245 case MVT::f64: LC = Call_F64; break;
2246 case MVT::f80: LC = Call_F80; break;
2247 case MVT::f128: LC = Call_F128; break;
2248 case MVT::ppcf128: LC = Call_PPCF128; break;
2249 }
2250
2251 if (Node->isStrictFPOpcode()) {
2252 EVT RetVT = Node->getValueType(0);
2253 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2254 TargetLowering::MakeLibCallOptions CallOptions;
2255 // FIXME: This doesn't support tail calls.
2256 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2257 Ops, CallOptions,
2258 SDLoc(Node),
2259 Node->getOperand(0));
2260 Results.push_back(Tmp.first);
2261 Results.push_back(Tmp.second);
2262 } else {
2263 SDValue Tmp = ExpandLibCall(LC, Node, false);
2264 Results.push_back(Tmp);
2265 }
2266 }
2267
2268 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2269 void
ExpandDivRemLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2270 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2271 SmallVectorImpl<SDValue> &Results) {
2272 unsigned Opcode = Node->getOpcode();
2273 bool isSigned = Opcode == ISD::SDIVREM;
2274
2275 RTLIB::Libcall LC;
2276 switch (Node->getSimpleValueType(0).SimpleTy) {
2277 default: llvm_unreachable("Unexpected request for libcall!");
2278 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2279 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2280 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2281 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2282 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2283 }
2284
2285 // The input chain to this libcall is the entry node of the function.
2286 // Legalizing the call will automatically add the previous call to the
2287 // dependence.
2288 SDValue InChain = DAG.getEntryNode();
2289
2290 EVT RetVT = Node->getValueType(0);
2291 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2292
2293 TargetLowering::ArgListTy Args;
2294 TargetLowering::ArgListEntry Entry;
2295 for (const SDValue &Op : Node->op_values()) {
2296 EVT ArgVT = Op.getValueType();
2297 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2298 Entry.Node = Op;
2299 Entry.Ty = ArgTy;
2300 Entry.IsSExt = isSigned;
2301 Entry.IsZExt = !isSigned;
2302 Args.push_back(Entry);
2303 }
2304
2305 // Also pass the return address of the remainder.
2306 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2307 Entry.Node = FIPtr;
2308 Entry.Ty = RetTy->getPointerTo();
2309 Entry.IsSExt = isSigned;
2310 Entry.IsZExt = !isSigned;
2311 Args.push_back(Entry);
2312
2313 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2314 TLI.getPointerTy(DAG.getDataLayout()));
2315
2316 SDLoc dl(Node);
2317 TargetLowering::CallLoweringInfo CLI(DAG);
2318 CLI.setDebugLoc(dl)
2319 .setChain(InChain)
2320 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2321 std::move(Args))
2322 .setSExtResult(isSigned)
2323 .setZExtResult(!isSigned);
2324
2325 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2326
2327 // Remainder is loaded back from the stack frame.
2328 SDValue Rem =
2329 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2330 Results.push_back(CallInfo.first);
2331 Results.push_back(Rem);
2332 }
2333
2334 /// Return true if sincos libcall is available.
isSinCosLibcallAvailable(SDNode * Node,const TargetLowering & TLI)2335 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2336 RTLIB::Libcall LC;
2337 switch (Node->getSimpleValueType(0).SimpleTy) {
2338 default: llvm_unreachable("Unexpected request for libcall!");
2339 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2340 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2341 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2342 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2343 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2344 }
2345 return TLI.getLibcallName(LC) != nullptr;
2346 }
2347
2348 /// Only issue sincos libcall if both sin and cos are needed.
useSinCos(SDNode * Node)2349 static bool useSinCos(SDNode *Node) {
2350 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2351 ? ISD::FCOS : ISD::FSIN;
2352
2353 SDValue Op0 = Node->getOperand(0);
2354 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2355 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2356 SDNode *User = *UI;
2357 if (User == Node)
2358 continue;
2359 // The other user might have been turned into sincos already.
2360 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2361 return true;
2362 }
2363 return false;
2364 }
2365
2366 /// Issue libcalls to sincos to compute sin / cos pairs.
2367 void
ExpandSinCosLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2368 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2369 SmallVectorImpl<SDValue> &Results) {
2370 RTLIB::Libcall LC;
2371 switch (Node->getSimpleValueType(0).SimpleTy) {
2372 default: llvm_unreachable("Unexpected request for libcall!");
2373 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2374 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2375 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2376 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2377 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2378 }
2379
2380 // The input chain to this libcall is the entry node of the function.
2381 // Legalizing the call will automatically add the previous call to the
2382 // dependence.
2383 SDValue InChain = DAG.getEntryNode();
2384
2385 EVT RetVT = Node->getValueType(0);
2386 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2387
2388 TargetLowering::ArgListTy Args;
2389 TargetLowering::ArgListEntry Entry;
2390
2391 // Pass the argument.
2392 Entry.Node = Node->getOperand(0);
2393 Entry.Ty = RetTy;
2394 Entry.IsSExt = false;
2395 Entry.IsZExt = false;
2396 Args.push_back(Entry);
2397
2398 // Pass the return address of sin.
2399 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2400 Entry.Node = SinPtr;
2401 Entry.Ty = RetTy->getPointerTo();
2402 Entry.IsSExt = false;
2403 Entry.IsZExt = false;
2404 Args.push_back(Entry);
2405
2406 // Also pass the return address of the cos.
2407 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2408 Entry.Node = CosPtr;
2409 Entry.Ty = RetTy->getPointerTo();
2410 Entry.IsSExt = false;
2411 Entry.IsZExt = false;
2412 Args.push_back(Entry);
2413
2414 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2415 TLI.getPointerTy(DAG.getDataLayout()));
2416
2417 SDLoc dl(Node);
2418 TargetLowering::CallLoweringInfo CLI(DAG);
2419 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2420 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2421 std::move(Args));
2422
2423 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2424
2425 Results.push_back(
2426 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2427 Results.push_back(
2428 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2429 }
2430
2431 /// This function is responsible for legalizing a
2432 /// INT_TO_FP operation of the specified operand when the target requests that
2433 /// we expand it. At this point, we know that the result and operand types are
2434 /// legal for the target.
ExpandLegalINT_TO_FP(SDNode * Node,SDValue & Chain)2435 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2436 SDValue &Chain) {
2437 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2438 Node->getOpcode() == ISD::SINT_TO_FP);
2439 EVT DestVT = Node->getValueType(0);
2440 SDLoc dl(Node);
2441 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2442 SDValue Op0 = Node->getOperand(OpNo);
2443 EVT SrcVT = Op0.getValueType();
2444
2445 // TODO: Should any fast-math-flags be set for the created nodes?
2446 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2447 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) &&
2448 (DestVT.bitsLE(MVT::f64) ||
2449 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND
2450 : ISD::FP_EXTEND,
2451 DestVT))) {
2452 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2453 "expansion\n");
2454
2455 // Get the stack frame index of a 8 byte buffer.
2456 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2457
2458 SDValue Lo = Op0;
2459 // if signed map to unsigned space
2460 if (isSigned) {
2461 // Invert sign bit (signed to unsigned mapping).
2462 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo,
2463 DAG.getConstant(0x80000000u, dl, MVT::i32));
2464 }
2465 // Initial hi portion of constructed double.
2466 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2467
2468 // If this a big endian target, swap the lo and high data.
2469 if (DAG.getDataLayout().isBigEndian())
2470 std::swap(Lo, Hi);
2471
2472 SDValue MemChain = DAG.getEntryNode();
2473
2474 // Store the lo of the constructed double.
2475 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot,
2476 MachinePointerInfo());
2477 // Store the hi of the constructed double.
2478 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl);
2479 SDValue Store2 =
2480 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo());
2481 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
2482
2483 // load the constructed double
2484 SDValue Load =
2485 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
2486 // FP constant to bias correct the final result
2487 SDValue Bias = DAG.getConstantFP(isSigned ?
2488 BitsToDouble(0x4330000080000000ULL) :
2489 BitsToDouble(0x4330000000000000ULL),
2490 dl, MVT::f64);
2491 // Subtract the bias and get the final result.
2492 SDValue Sub;
2493 SDValue Result;
2494 if (Node->isStrictFPOpcode()) {
2495 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2496 {Node->getOperand(0), Load, Bias});
2497 Chain = Sub.getValue(1);
2498 if (DestVT != Sub.getValueType()) {
2499 std::pair<SDValue, SDValue> ResultPair;
2500 ResultPair =
2501 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2502 Result = ResultPair.first;
2503 Chain = ResultPair.second;
2504 }
2505 else
2506 Result = Sub;
2507 } else {
2508 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2509 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2510 }
2511 return Result;
2512 }
2513
2514 if (isSigned)
2515 return SDValue();
2516
2517 // TODO: Generalize this for use with other types.
2518 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) ||
2519 (SrcVT == MVT::i64 && DestVT == MVT::f64)) {
2520 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n");
2521 // For unsigned conversions, convert them to signed conversions using the
2522 // algorithm from the x86_64 __floatundisf in compiler_rt. That method
2523 // should be valid for i32->f32 as well.
2524
2525 // More generally this transform should be valid if there are 3 more bits
2526 // in the integer type than the significand. Rounding uses the first bit
2527 // after the width of the significand and the OR of all bits after that. So
2528 // we need to be able to OR the shifted out bit into one of the bits that
2529 // participate in the OR.
2530
2531 // TODO: This really should be implemented using a branch rather than a
2532 // select. We happen to get lucky and machinesink does the right
2533 // thing most of the time. This would be a good candidate for a
2534 // pseudo-op, or, even better, for whole-function isel.
2535 EVT SetCCVT = getSetCCResultType(SrcVT);
2536
2537 SDValue SignBitTest = DAG.getSetCC(
2538 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2539
2540 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
2541 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
2542 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
2543 SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
2544 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
2545 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
2546
2547 SDValue Slow, Fast;
2548 if (Node->isStrictFPOpcode()) {
2549 // In strict mode, we must avoid spurious exceptions, and therefore
2550 // must make sure to only emit a single STRICT_SINT_TO_FP.
2551 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
2552 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2553 { Node->getOperand(0), InCvt });
2554 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2555 { Fast.getValue(1), Fast, Fast });
2556 Chain = Slow.getValue(1);
2557 // The STRICT_SINT_TO_FP inherits the exception mode from the
2558 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
2559 // never raise any exception.
2560 SDNodeFlags Flags;
2561 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
2562 Fast->setFlags(Flags);
2563 Flags.setNoFPExcept(true);
2564 Slow->setFlags(Flags);
2565 } else {
2566 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
2567 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
2568 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2569 }
2570
2571 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
2572 }
2573
2574 // Don't expand it if there isn't cheap fadd.
2575 if (!TLI.isOperationLegalOrCustom(
2576 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT))
2577 return SDValue();
2578
2579 // The following optimization is valid only if every value in SrcVT (when
2580 // treated as signed) is representable in DestVT. Check that the mantissa
2581 // size of DestVT is >= than the number of bits in SrcVT -1.
2582 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
2583 SrcVT.getSizeInBits() - 1 &&
2584 "Cannot perform lossless SINT_TO_FP!");
2585
2586 SDValue Tmp1;
2587 if (Node->isStrictFPOpcode()) {
2588 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2589 { Node->getOperand(0), Op0 });
2590 } else
2591 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2592
2593 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2594 DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2595 SDValue Zero = DAG.getIntPtrConstant(0, dl),
2596 Four = DAG.getIntPtrConstant(4, dl);
2597 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2598 SignSet, Four, Zero);
2599
2600 // If the sign bit of the integer is set, the large number will be treated
2601 // as a negative number. To counteract this, the dynamic code adds an
2602 // offset depending on the data type.
2603 uint64_t FF;
2604 switch (SrcVT.getSimpleVT().SimpleTy) {
2605 default:
2606 return SDValue();
2607 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2608 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2609 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2610 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2611 }
2612 if (DAG.getDataLayout().isLittleEndian())
2613 FF <<= 32;
2614 Constant *FudgeFactor = ConstantInt::get(
2615 Type::getInt64Ty(*DAG.getContext()), FF);
2616
2617 SDValue CPIdx =
2618 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2619 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
2620 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2621 Alignment = commonAlignment(Alignment, 4);
2622 SDValue FudgeInReg;
2623 if (DestVT == MVT::f32)
2624 FudgeInReg = DAG.getLoad(
2625 MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2626 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2627 Alignment);
2628 else {
2629 SDValue Load = DAG.getExtLoad(
2630 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2631 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2632 Alignment);
2633 HandleSDNode Handle(Load);
2634 LegalizeOp(Load.getNode());
2635 FudgeInReg = Handle.getValue();
2636 }
2637
2638 if (Node->isStrictFPOpcode()) {
2639 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2640 { Tmp1.getValue(1), Tmp1, FudgeInReg });
2641 Chain = Result.getValue(1);
2642 return Result;
2643 }
2644
2645 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2646 }
2647
2648 /// This function is responsible for legalizing a
2649 /// *INT_TO_FP operation of the specified operand when the target requests that
2650 /// we promote it. At this point, we know that the result and operand types are
2651 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2652 /// operation that takes a larger input.
PromoteLegalINT_TO_FP(SDNode * N,const SDLoc & dl,SmallVectorImpl<SDValue> & Results)2653 void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2654 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2655 bool IsStrict = N->isStrictFPOpcode();
2656 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2657 N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2658 EVT DestVT = N->getValueType(0);
2659 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2660 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2661 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2662
2663 // First step, figure out the appropriate *INT_TO_FP operation to use.
2664 EVT NewInTy = LegalOp.getValueType();
2665
2666 unsigned OpToUse = 0;
2667
2668 // Scan for the appropriate larger type to use.
2669 while (true) {
2670 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2671 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2672
2673 // If the target supports SINT_TO_FP of this type, use it.
2674 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2675 OpToUse = SIntOp;
2676 break;
2677 }
2678 if (IsSigned)
2679 continue;
2680
2681 // If the target supports UINT_TO_FP of this type, use it.
2682 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2683 OpToUse = UIntOp;
2684 break;
2685 }
2686
2687 // Otherwise, try a larger type.
2688 }
2689
2690 // Okay, we found the operation and type to use. Zero extend our input to the
2691 // desired type then run the operation on it.
2692 if (IsStrict) {
2693 SDValue Res =
2694 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2695 {N->getOperand(0),
2696 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2697 dl, NewInTy, LegalOp)});
2698 Results.push_back(Res);
2699 Results.push_back(Res.getValue(1));
2700 return;
2701 }
2702
2703 Results.push_back(
2704 DAG.getNode(OpToUse, dl, DestVT,
2705 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2706 dl, NewInTy, LegalOp)));
2707 }
2708
2709 /// This function is responsible for legalizing a
2710 /// FP_TO_*INT operation of the specified operand when the target requests that
2711 /// we promote it. At this point, we know that the result and operand types are
2712 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2713 /// operation that returns a larger result.
PromoteLegalFP_TO_INT(SDNode * N,const SDLoc & dl,SmallVectorImpl<SDValue> & Results)2714 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2715 SmallVectorImpl<SDValue> &Results) {
2716 bool IsStrict = N->isStrictFPOpcode();
2717 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2718 N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2719 EVT DestVT = N->getValueType(0);
2720 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2721 // First step, figure out the appropriate FP_TO*INT operation to use.
2722 EVT NewOutTy = DestVT;
2723
2724 unsigned OpToUse = 0;
2725
2726 // Scan for the appropriate larger type to use.
2727 while (true) {
2728 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2729 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2730
2731 // A larger signed type can hold all unsigned values of the requested type,
2732 // so using FP_TO_SINT is valid
2733 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2734 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2735 break;
2736
2737 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2738 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2739 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2740 break;
2741
2742 // Otherwise, try a larger type.
2743 }
2744
2745 // Okay, we found the operation and type to use.
2746 SDValue Operation;
2747 if (IsStrict) {
2748 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2749 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2750 } else
2751 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2752
2753 // Truncate the result of the extended FP_TO_*INT operation to the desired
2754 // size.
2755 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2756 Results.push_back(Trunc);
2757 if (IsStrict)
2758 Results.push_back(Operation.getValue(1));
2759 }
2760
2761 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point
2762 /// the result and operand types are legal and there must be a legal
2763 /// FP_TO_*INT_SAT operation for a larger result type.
PromoteLegalFP_TO_INT_SAT(SDNode * Node,const SDLoc & dl)2764 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node,
2765 const SDLoc &dl) {
2766 unsigned Opcode = Node->getOpcode();
2767
2768 // Scan for the appropriate larger type to use.
2769 EVT NewOutTy = Node->getValueType(0);
2770 while (true) {
2771 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1);
2772 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2773
2774 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy))
2775 break;
2776 }
2777
2778 // Saturation width is determined by second operand, so we don't have to
2779 // perform any fixup and can directly truncate the result.
2780 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0),
2781 Node->getOperand(1));
2782 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result);
2783 }
2784
2785 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
ExpandBITREVERSE(SDValue Op,const SDLoc & dl)2786 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2787 EVT VT = Op.getValueType();
2788 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2789 unsigned Sz = VT.getScalarSizeInBits();
2790
2791 SDValue Tmp, Tmp2, Tmp3;
2792
2793 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2794 // and finally the i1 pairs.
2795 // TODO: We can easily support i4/i2 legal types if any target ever does.
2796 if (Sz >= 8 && isPowerOf2_32(Sz)) {
2797 // Create the masks - repeating the pattern every byte.
2798 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2799 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2800 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2801 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2802 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2803 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2804
2805 // BSWAP if the type is wider than a single byte.
2806 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2807
2808 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2809 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2810 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2811 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2812 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2813 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2814
2815 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2816 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2817 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2818 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2819 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2820 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2821
2822 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2823 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2824 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2825 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2826 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2827 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2828 return Tmp;
2829 }
2830
2831 Tmp = DAG.getConstant(0, dl, VT);
2832 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2833 if (I < J)
2834 Tmp2 =
2835 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2836 else
2837 Tmp2 =
2838 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2839
2840 APInt Shift(Sz, 1);
2841 Shift <<= J;
2842 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2843 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2844 }
2845
2846 return Tmp;
2847 }
2848
2849 /// Open code the operations for BSWAP of the specified operation.
ExpandBSWAP(SDValue Op,const SDLoc & dl)2850 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2851 EVT VT = Op.getValueType();
2852 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2853 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2854 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2855 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2856 case MVT::i16:
2857 // Use a rotate by 8. This can be further expanded if necessary.
2858 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2859 case MVT::i32:
2860 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2861 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2862 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2863 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2864 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2865 DAG.getConstant(0xFF0000, dl, VT));
2866 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2867 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2868 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2869 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2870 case MVT::i64:
2871 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2872 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2873 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2874 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2875 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2876 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2877 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2878 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2879 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2880 DAG.getConstant(255ULL<<48, dl, VT));
2881 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2882 DAG.getConstant(255ULL<<40, dl, VT));
2883 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2884 DAG.getConstant(255ULL<<32, dl, VT));
2885 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2886 DAG.getConstant(255ULL<<24, dl, VT));
2887 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2888 DAG.getConstant(255ULL<<16, dl, VT));
2889 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2890 DAG.getConstant(255ULL<<8 , dl, VT));
2891 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2892 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2893 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2894 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2895 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2896 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2897 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2898 }
2899 }
2900
2901 /// Open code the operations for PARITY of the specified operation.
ExpandPARITY(SDValue Op,const SDLoc & dl)2902 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) {
2903 EVT VT = Op.getValueType();
2904 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2905 unsigned Sz = VT.getScalarSizeInBits();
2906
2907 // If CTPOP is legal, use it. Otherwise use shifts and xor.
2908 SDValue Result;
2909 if (TLI.isOperationLegal(ISD::CTPOP, VT)) {
2910 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
2911 } else {
2912 Result = Op;
2913 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) {
2914 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result,
2915 DAG.getConstant(1ULL << (--i), dl, ShVT));
2916 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift);
2917 }
2918 }
2919
2920 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT));
2921 }
2922
ExpandNode(SDNode * Node)2923 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2924 LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2925 SmallVector<SDValue, 8> Results;
2926 SDLoc dl(Node);
2927 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2928 bool NeedInvert;
2929 switch (Node->getOpcode()) {
2930 case ISD::ABS:
2931 if (TLI.expandABS(Node, Tmp1, DAG))
2932 Results.push_back(Tmp1);
2933 break;
2934 case ISD::CTPOP:
2935 if (TLI.expandCTPOP(Node, Tmp1, DAG))
2936 Results.push_back(Tmp1);
2937 break;
2938 case ISD::CTLZ:
2939 case ISD::CTLZ_ZERO_UNDEF:
2940 if (TLI.expandCTLZ(Node, Tmp1, DAG))
2941 Results.push_back(Tmp1);
2942 break;
2943 case ISD::CTTZ:
2944 case ISD::CTTZ_ZERO_UNDEF:
2945 if (TLI.expandCTTZ(Node, Tmp1, DAG))
2946 Results.push_back(Tmp1);
2947 break;
2948 case ISD::BITREVERSE:
2949 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2950 break;
2951 case ISD::BSWAP:
2952 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2953 break;
2954 case ISD::PARITY:
2955 Results.push_back(ExpandPARITY(Node->getOperand(0), dl));
2956 break;
2957 case ISD::FRAMEADDR:
2958 case ISD::RETURNADDR:
2959 case ISD::FRAME_TO_ARGS_OFFSET:
2960 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2961 break;
2962 case ISD::EH_DWARF_CFA: {
2963 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2964 TLI.getPointerTy(DAG.getDataLayout()));
2965 SDValue Offset = DAG.getNode(ISD::ADD, dl,
2966 CfaArg.getValueType(),
2967 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2968 CfaArg.getValueType()),
2969 CfaArg);
2970 SDValue FA = DAG.getNode(
2971 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2972 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2973 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2974 FA, Offset));
2975 break;
2976 }
2977 case ISD::FLT_ROUNDS_:
2978 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2979 Results.push_back(Node->getOperand(0));
2980 break;
2981 case ISD::EH_RETURN:
2982 case ISD::EH_LABEL:
2983 case ISD::PREFETCH:
2984 case ISD::VAEND:
2985 case ISD::EH_SJLJ_LONGJMP:
2986 // If the target didn't expand these, there's nothing to do, so just
2987 // preserve the chain and be done.
2988 Results.push_back(Node->getOperand(0));
2989 break;
2990 case ISD::READCYCLECOUNTER:
2991 // If the target didn't expand this, just return 'zero' and preserve the
2992 // chain.
2993 Results.append(Node->getNumValues() - 1,
2994 DAG.getConstant(0, dl, Node->getValueType(0)));
2995 Results.push_back(Node->getOperand(0));
2996 break;
2997 case ISD::EH_SJLJ_SETJMP:
2998 // If the target didn't expand this, just return 'zero' and preserve the
2999 // chain.
3000 Results.push_back(DAG.getConstant(0, dl, MVT::i32));
3001 Results.push_back(Node->getOperand(0));
3002 break;
3003 case ISD::ATOMIC_LOAD: {
3004 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
3005 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
3006 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
3007 SDValue Swap = DAG.getAtomicCmpSwap(
3008 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
3009 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
3010 cast<AtomicSDNode>(Node)->getMemOperand());
3011 Results.push_back(Swap.getValue(0));
3012 Results.push_back(Swap.getValue(1));
3013 break;
3014 }
3015 case ISD::ATOMIC_STORE: {
3016 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
3017 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
3018 cast<AtomicSDNode>(Node)->getMemoryVT(),
3019 Node->getOperand(0),
3020 Node->getOperand(1), Node->getOperand(2),
3021 cast<AtomicSDNode>(Node)->getMemOperand());
3022 Results.push_back(Swap.getValue(1));
3023 break;
3024 }
3025 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
3026 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
3027 // splits out the success value as a comparison. Expanding the resulting
3028 // ATOMIC_CMP_SWAP will produce a libcall.
3029 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
3030 SDValue Res = DAG.getAtomicCmpSwap(
3031 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
3032 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
3033 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
3034
3035 SDValue ExtRes = Res;
3036 SDValue LHS = Res;
3037 SDValue RHS = Node->getOperand(1);
3038
3039 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
3040 EVT OuterType = Node->getValueType(0);
3041 switch (TLI.getExtendForAtomicOps()) {
3042 case ISD::SIGN_EXTEND:
3043 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
3044 DAG.getValueType(AtomicType));
3045 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
3046 Node->getOperand(2), DAG.getValueType(AtomicType));
3047 ExtRes = LHS;
3048 break;
3049 case ISD::ZERO_EXTEND:
3050 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
3051 DAG.getValueType(AtomicType));
3052 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
3053 ExtRes = LHS;
3054 break;
3055 case ISD::ANY_EXTEND:
3056 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
3057 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
3058 break;
3059 default:
3060 llvm_unreachable("Invalid atomic op extension");
3061 }
3062
3063 SDValue Success =
3064 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
3065
3066 Results.push_back(ExtRes.getValue(0));
3067 Results.push_back(Success);
3068 Results.push_back(Res.getValue(1));
3069 break;
3070 }
3071 case ISD::DYNAMIC_STACKALLOC:
3072 ExpandDYNAMIC_STACKALLOC(Node, Results);
3073 break;
3074 case ISD::MERGE_VALUES:
3075 for (unsigned i = 0; i < Node->getNumValues(); i++)
3076 Results.push_back(Node->getOperand(i));
3077 break;
3078 case ISD::UNDEF: {
3079 EVT VT = Node->getValueType(0);
3080 if (VT.isInteger())
3081 Results.push_back(DAG.getConstant(0, dl, VT));
3082 else {
3083 assert(VT.isFloatingPoint() && "Unknown value type!");
3084 Results.push_back(DAG.getConstantFP(0, dl, VT));
3085 }
3086 break;
3087 }
3088 case ISD::STRICT_FP_ROUND:
3089 // When strict mode is enforced we can't do expansion because it
3090 // does not honor the "strict" properties. Only libcall is allowed.
3091 if (TLI.isStrictFPEnabled())
3092 break;
3093 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
3094 // since this operation is more efficient than stack operation.
3095 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3096 Node->getValueType(0))
3097 == TargetLowering::Legal)
3098 break;
3099 // We fall back to use stack operation when the FP_ROUND operation
3100 // isn't available.
3101 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0),
3102 Node->getValueType(0), dl,
3103 Node->getOperand(0)))) {
3104 ReplaceNode(Node, Tmp1.getNode());
3105 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
3106 return true;
3107 }
3108 break;
3109 case ISD::FP_ROUND:
3110 case ISD::BITCAST:
3111 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3112 Node->getValueType(0), dl)))
3113 Results.push_back(Tmp1);
3114 break;
3115 case ISD::STRICT_FP_EXTEND:
3116 // When strict mode is enforced we can't do expansion because it
3117 // does not honor the "strict" properties. Only libcall is allowed.
3118 if (TLI.isStrictFPEnabled())
3119 break;
3120 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
3121 // since this operation is more efficient than stack operation.
3122 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3123 Node->getValueType(0))
3124 == TargetLowering::Legal)
3125 break;
3126 // We fall back to use stack operation when the FP_EXTEND operation
3127 // isn't available.
3128 if ((Tmp1 = EmitStackConvert(
3129 Node->getOperand(1), Node->getOperand(1).getValueType(),
3130 Node->getValueType(0), dl, Node->getOperand(0)))) {
3131 ReplaceNode(Node, Tmp1.getNode());
3132 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
3133 return true;
3134 }
3135 break;
3136 case ISD::FP_EXTEND:
3137 if ((Tmp1 = EmitStackConvert(Node->getOperand(0),
3138 Node->getOperand(0).getValueType(),
3139 Node->getValueType(0), dl)))
3140 Results.push_back(Tmp1);
3141 break;
3142 case ISD::SIGN_EXTEND_INREG: {
3143 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3144 EVT VT = Node->getValueType(0);
3145
3146 // An in-register sign-extend of a boolean is a negation:
3147 // 'true' (1) sign-extended is -1.
3148 // 'false' (0) sign-extended is 0.
3149 // However, we must mask the high bits of the source operand because the
3150 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
3151
3152 // TODO: Do this for vectors too?
3153 if (ExtraVT.getSizeInBits() == 1) {
3154 SDValue One = DAG.getConstant(1, dl, VT);
3155 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
3156 SDValue Zero = DAG.getConstant(0, dl, VT);
3157 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
3158 Results.push_back(Neg);
3159 break;
3160 }
3161
3162 // NOTE: we could fall back on load/store here too for targets without
3163 // SRA. However, it is doubtful that any exist.
3164 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3165 unsigned BitsDiff = VT.getScalarSizeInBits() -
3166 ExtraVT.getScalarSizeInBits();
3167 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
3168 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3169 Node->getOperand(0), ShiftCst);
3170 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3171 Results.push_back(Tmp1);
3172 break;
3173 }
3174 case ISD::UINT_TO_FP:
3175 case ISD::STRICT_UINT_TO_FP:
3176 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
3177 Results.push_back(Tmp1);
3178 if (Node->isStrictFPOpcode())
3179 Results.push_back(Tmp2);
3180 break;
3181 }
3182 LLVM_FALLTHROUGH;
3183 case ISD::SINT_TO_FP:
3184 case ISD::STRICT_SINT_TO_FP:
3185 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) {
3186 Results.push_back(Tmp1);
3187 if (Node->isStrictFPOpcode())
3188 Results.push_back(Tmp2);
3189 }
3190 break;
3191 case ISD::FP_TO_SINT:
3192 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3193 Results.push_back(Tmp1);
3194 break;
3195 case ISD::STRICT_FP_TO_SINT:
3196 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
3197 ReplaceNode(Node, Tmp1.getNode());
3198 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
3199 return true;
3200 }
3201 break;
3202 case ISD::FP_TO_UINT:
3203 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
3204 Results.push_back(Tmp1);
3205 break;
3206 case ISD::STRICT_FP_TO_UINT:
3207 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
3208 // Relink the chain.
3209 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
3210 // Replace the new UINT result.
3211 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
3212 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
3213 return true;
3214 }
3215 break;
3216 case ISD::FP_TO_SINT_SAT:
3217 case ISD::FP_TO_UINT_SAT:
3218 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG));
3219 break;
3220 case ISD::VAARG:
3221 Results.push_back(DAG.expandVAArg(Node));
3222 Results.push_back(Results[0].getValue(1));
3223 break;
3224 case ISD::VACOPY:
3225 Results.push_back(DAG.expandVACopy(Node));
3226 break;
3227 case ISD::EXTRACT_VECTOR_ELT:
3228 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3229 // This must be an access of the only element. Return it.
3230 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3231 Node->getOperand(0));
3232 else
3233 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3234 Results.push_back(Tmp1);
3235 break;
3236 case ISD::EXTRACT_SUBVECTOR:
3237 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3238 break;
3239 case ISD::INSERT_SUBVECTOR:
3240 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3241 break;
3242 case ISD::CONCAT_VECTORS:
3243 Results.push_back(ExpandVectorBuildThroughStack(Node));
3244 break;
3245 case ISD::SCALAR_TO_VECTOR:
3246 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3247 break;
3248 case ISD::INSERT_VECTOR_ELT:
3249 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3250 Node->getOperand(1),
3251 Node->getOperand(2), dl));
3252 break;
3253 case ISD::VECTOR_SHUFFLE: {
3254 SmallVector<int, 32> NewMask;
3255 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3256
3257 EVT VT = Node->getValueType(0);
3258 EVT EltVT = VT.getVectorElementType();
3259 SDValue Op0 = Node->getOperand(0);
3260 SDValue Op1 = Node->getOperand(1);
3261 if (!TLI.isTypeLegal(EltVT)) {
3262 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3263
3264 // BUILD_VECTOR operands are allowed to be wider than the element type.
3265 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3266 // it.
3267 if (NewEltVT.bitsLT(EltVT)) {
3268 // Convert shuffle node.
3269 // If original node was v4i64 and the new EltVT is i32,
3270 // cast operands to v8i32 and re-build the mask.
3271
3272 // Calculate new VT, the size of the new VT should be equal to original.
3273 EVT NewVT =
3274 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3275 VT.getSizeInBits() / NewEltVT.getSizeInBits());
3276 assert(NewVT.bitsEq(VT));
3277
3278 // cast operands to new VT
3279 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3280 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3281
3282 // Convert the shuffle mask
3283 unsigned int factor =
3284 NewVT.getVectorNumElements()/VT.getVectorNumElements();
3285
3286 // EltVT gets smaller
3287 assert(factor > 0);
3288
3289 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3290 if (Mask[i] < 0) {
3291 for (unsigned fi = 0; fi < factor; ++fi)
3292 NewMask.push_back(Mask[i]);
3293 }
3294 else {
3295 for (unsigned fi = 0; fi < factor; ++fi)
3296 NewMask.push_back(Mask[i]*factor+fi);
3297 }
3298 }
3299 Mask = NewMask;
3300 VT = NewVT;
3301 }
3302 EltVT = NewEltVT;
3303 }
3304 unsigned NumElems = VT.getVectorNumElements();
3305 SmallVector<SDValue, 16> Ops;
3306 for (unsigned i = 0; i != NumElems; ++i) {
3307 if (Mask[i] < 0) {
3308 Ops.push_back(DAG.getUNDEF(EltVT));
3309 continue;
3310 }
3311 unsigned Idx = Mask[i];
3312 if (Idx < NumElems)
3313 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3314 DAG.getVectorIdxConstant(Idx, dl)));
3315 else
3316 Ops.push_back(
3317 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3318 DAG.getVectorIdxConstant(Idx - NumElems, dl)));
3319 }
3320
3321 Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3322 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3323 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3324 Results.push_back(Tmp1);
3325 break;
3326 }
3327 case ISD::EXTRACT_ELEMENT: {
3328 EVT OpTy = Node->getOperand(0).getValueType();
3329 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3330 // 1 -> Hi
3331 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3332 DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3333 TLI.getShiftAmountTy(
3334 Node->getOperand(0).getValueType(),
3335 DAG.getDataLayout())));
3336 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3337 } else {
3338 // 0 -> Lo
3339 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3340 Node->getOperand(0));
3341 }
3342 Results.push_back(Tmp1);
3343 break;
3344 }
3345 case ISD::STACKSAVE:
3346 // Expand to CopyFromReg if the target set
3347 // StackPointerRegisterToSaveRestore.
3348 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) {
3349 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3350 Node->getValueType(0)));
3351 Results.push_back(Results[0].getValue(1));
3352 } else {
3353 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3354 Results.push_back(Node->getOperand(0));
3355 }
3356 break;
3357 case ISD::STACKRESTORE:
3358 // Expand to CopyToReg if the target set
3359 // StackPointerRegisterToSaveRestore.
3360 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) {
3361 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3362 Node->getOperand(1)));
3363 } else {
3364 Results.push_back(Node->getOperand(0));
3365 }
3366 break;
3367 case ISD::GET_DYNAMIC_AREA_OFFSET:
3368 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3369 Results.push_back(Results[0].getValue(0));
3370 break;
3371 case ISD::FCOPYSIGN:
3372 Results.push_back(ExpandFCOPYSIGN(Node));
3373 break;
3374 case ISD::FNEG:
3375 Results.push_back(ExpandFNEG(Node));
3376 break;
3377 case ISD::FABS:
3378 Results.push_back(ExpandFABS(Node));
3379 break;
3380 case ISD::SMIN:
3381 case ISD::SMAX:
3382 case ISD::UMIN:
3383 case ISD::UMAX: {
3384 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3385 ISD::CondCode Pred;
3386 switch (Node->getOpcode()) {
3387 default: llvm_unreachable("How did we get here?");
3388 case ISD::SMAX: Pred = ISD::SETGT; break;
3389 case ISD::SMIN: Pred = ISD::SETLT; break;
3390 case ISD::UMAX: Pred = ISD::SETUGT; break;
3391 case ISD::UMIN: Pred = ISD::SETULT; break;
3392 }
3393 Tmp1 = Node->getOperand(0);
3394 Tmp2 = Node->getOperand(1);
3395 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3396 Results.push_back(Tmp1);
3397 break;
3398 }
3399 case ISD::FMINNUM:
3400 case ISD::FMAXNUM: {
3401 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3402 Results.push_back(Expanded);
3403 break;
3404 }
3405 case ISD::FSIN:
3406 case ISD::FCOS: {
3407 EVT VT = Node->getValueType(0);
3408 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3409 // fcos which share the same operand and both are used.
3410 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3411 isSinCosLibcallAvailable(Node, TLI))
3412 && useSinCos(Node)) {
3413 SDVTList VTs = DAG.getVTList(VT, VT);
3414 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3415 if (Node->getOpcode() == ISD::FCOS)
3416 Tmp1 = Tmp1.getValue(1);
3417 Results.push_back(Tmp1);
3418 }
3419 break;
3420 }
3421 case ISD::FMAD:
3422 llvm_unreachable("Illegal fmad should never be formed");
3423
3424 case ISD::FP16_TO_FP:
3425 if (Node->getValueType(0) != MVT::f32) {
3426 // We can extend to types bigger than f32 in two steps without changing
3427 // the result. Since "f16 -> f32" is much more commonly available, give
3428 // CodeGen the option of emitting that before resorting to a libcall.
3429 SDValue Res =
3430 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3431 Results.push_back(
3432 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3433 }
3434 break;
3435 case ISD::STRICT_FP16_TO_FP:
3436 if (Node->getValueType(0) != MVT::f32) {
3437 // We can extend to types bigger than f32 in two steps without changing
3438 // the result. Since "f16 -> f32" is much more commonly available, give
3439 // CodeGen the option of emitting that before resorting to a libcall.
3440 SDValue Res =
3441 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
3442 {Node->getOperand(0), Node->getOperand(1)});
3443 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
3444 {Node->getValueType(0), MVT::Other},
3445 {Res.getValue(1), Res});
3446 Results.push_back(Res);
3447 Results.push_back(Res.getValue(1));
3448 }
3449 break;
3450 case ISD::FP_TO_FP16:
3451 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3452 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3453 SDValue Op = Node->getOperand(0);
3454 MVT SVT = Op.getSimpleValueType();
3455 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3456 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3457 // Under fastmath, we can expand this node into a fround followed by
3458 // a float-half conversion.
3459 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3460 DAG.getIntPtrConstant(0, dl));
3461 Results.push_back(
3462 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3463 }
3464 }
3465 break;
3466 case ISD::ConstantFP: {
3467 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3468 // Check to see if this FP immediate is already legal.
3469 // If this is a legal constant, turn it into a TargetConstantFP node.
3470 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3471 DAG.shouldOptForSize()))
3472 Results.push_back(ExpandConstantFP(CFP, true));
3473 break;
3474 }
3475 case ISD::Constant: {
3476 ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3477 Results.push_back(ExpandConstant(CP));
3478 break;
3479 }
3480 case ISD::FSUB: {
3481 EVT VT = Node->getValueType(0);
3482 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3483 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3484 const SDNodeFlags Flags = Node->getFlags();
3485 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3486 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3487 Results.push_back(Tmp1);
3488 }
3489 break;
3490 }
3491 case ISD::SUB: {
3492 EVT VT = Node->getValueType(0);
3493 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3494 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3495 "Don't know how to expand this subtraction!");
3496 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3497 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3498 VT));
3499 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3500 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3501 break;
3502 }
3503 case ISD::UREM:
3504 case ISD::SREM:
3505 if (TLI.expandREM(Node, Tmp1, DAG))
3506 Results.push_back(Tmp1);
3507 break;
3508 case ISD::UDIV:
3509 case ISD::SDIV: {
3510 bool isSigned = Node->getOpcode() == ISD::SDIV;
3511 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3512 EVT VT = Node->getValueType(0);
3513 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3514 SDVTList VTs = DAG.getVTList(VT, VT);
3515 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3516 Node->getOperand(1));
3517 Results.push_back(Tmp1);
3518 }
3519 break;
3520 }
3521 case ISD::MULHU:
3522 case ISD::MULHS: {
3523 unsigned ExpandOpcode =
3524 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3525 EVT VT = Node->getValueType(0);
3526 SDVTList VTs = DAG.getVTList(VT, VT);
3527
3528 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3529 Node->getOperand(1));
3530 Results.push_back(Tmp1.getValue(1));
3531 break;
3532 }
3533 case ISD::UMUL_LOHI:
3534 case ISD::SMUL_LOHI: {
3535 SDValue LHS = Node->getOperand(0);
3536 SDValue RHS = Node->getOperand(1);
3537 MVT VT = LHS.getSimpleValueType();
3538 unsigned MULHOpcode =
3539 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3540
3541 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3542 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3543 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3544 break;
3545 }
3546
3547 SmallVector<SDValue, 4> Halves;
3548 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3549 assert(TLI.isTypeLegal(HalfType));
3550 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves,
3551 HalfType, DAG,
3552 TargetLowering::MulExpansionKind::Always)) {
3553 for (unsigned i = 0; i < 2; ++i) {
3554 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3555 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3556 SDValue Shift = DAG.getConstant(
3557 HalfType.getScalarSizeInBits(), dl,
3558 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3559 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3560 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3561 }
3562 break;
3563 }
3564 break;
3565 }
3566 case ISD::MUL: {
3567 EVT VT = Node->getValueType(0);
3568 SDVTList VTs = DAG.getVTList(VT, VT);
3569 // See if multiply or divide can be lowered using two-result operations.
3570 // We just need the low half of the multiply; try both the signed
3571 // and unsigned forms. If the target supports both SMUL_LOHI and
3572 // UMUL_LOHI, form a preference by checking which forms of plain
3573 // MULH it supports.
3574 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3575 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3576 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3577 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3578 unsigned OpToUse = 0;
3579 if (HasSMUL_LOHI && !HasMULHS) {
3580 OpToUse = ISD::SMUL_LOHI;
3581 } else if (HasUMUL_LOHI && !HasMULHU) {
3582 OpToUse = ISD::UMUL_LOHI;
3583 } else if (HasSMUL_LOHI) {
3584 OpToUse = ISD::SMUL_LOHI;
3585 } else if (HasUMUL_LOHI) {
3586 OpToUse = ISD::UMUL_LOHI;
3587 }
3588 if (OpToUse) {
3589 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3590 Node->getOperand(1)));
3591 break;
3592 }
3593
3594 SDValue Lo, Hi;
3595 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3596 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3597 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3598 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3599 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3600 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3601 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3602 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3603 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3604 SDValue Shift =
3605 DAG.getConstant(HalfType.getSizeInBits(), dl,
3606 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3607 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3608 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3609 }
3610 break;
3611 }
3612 case ISD::FSHL:
3613 case ISD::FSHR:
3614 if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3615 Results.push_back(Tmp1);
3616 break;
3617 case ISD::ROTL:
3618 case ISD::ROTR:
3619 if (TLI.expandROT(Node, true /*AllowVectorOps*/, Tmp1, DAG))
3620 Results.push_back(Tmp1);
3621 break;
3622 case ISD::SADDSAT:
3623 case ISD::UADDSAT:
3624 case ISD::SSUBSAT:
3625 case ISD::USUBSAT:
3626 Results.push_back(TLI.expandAddSubSat(Node, DAG));
3627 break;
3628 case ISD::SSHLSAT:
3629 case ISD::USHLSAT:
3630 Results.push_back(TLI.expandShlSat(Node, DAG));
3631 break;
3632 case ISD::SMULFIX:
3633 case ISD::SMULFIXSAT:
3634 case ISD::UMULFIX:
3635 case ISD::UMULFIXSAT:
3636 Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3637 break;
3638 case ISD::SDIVFIX:
3639 case ISD::SDIVFIXSAT:
3640 case ISD::UDIVFIX:
3641 case ISD::UDIVFIXSAT:
3642 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3643 Node->getOperand(0),
3644 Node->getOperand(1),
3645 Node->getConstantOperandVal(2),
3646 DAG)) {
3647 Results.push_back(V);
3648 break;
3649 }
3650 // FIXME: We might want to retry here with a wider type if we fail, if that
3651 // type is legal.
3652 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3653 // <= 128 (which is the case for all of the default Embedded-C types),
3654 // we will only get here with types and scales that we could always expand
3655 // if we were allowed to generate libcalls to division functions of illegal
3656 // type. But we cannot do that.
3657 llvm_unreachable("Cannot expand DIVFIX!");
3658 case ISD::ADDCARRY:
3659 case ISD::SUBCARRY: {
3660 SDValue LHS = Node->getOperand(0);
3661 SDValue RHS = Node->getOperand(1);
3662 SDValue Carry = Node->getOperand(2);
3663
3664 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3665
3666 // Initial add of the 2 operands.
3667 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3668 EVT VT = LHS.getValueType();
3669 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3670
3671 // Initial check for overflow.
3672 EVT CarryType = Node->getValueType(1);
3673 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3674 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3675 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3676
3677 // Add of the sum and the carry.
3678 SDValue One = DAG.getConstant(1, dl, VT);
3679 SDValue CarryExt =
3680 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
3681 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3682
3683 // Second check for overflow. If we are adding, we can only overflow if the
3684 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3685 // If we are subtracting, we can only overflow if the initial sum is 0 and
3686 // the carry is set, resulting in a new sum of all 1s.
3687 SDValue Zero = DAG.getConstant(0, dl, VT);
3688 SDValue Overflow2 =
3689 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3690 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3691 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3692 DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3693
3694 SDValue ResultCarry =
3695 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3696
3697 Results.push_back(Sum2);
3698 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3699 break;
3700 }
3701 case ISD::SADDO:
3702 case ISD::SSUBO: {
3703 SDValue Result, Overflow;
3704 TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3705 Results.push_back(Result);
3706 Results.push_back(Overflow);
3707 break;
3708 }
3709 case ISD::UADDO:
3710 case ISD::USUBO: {
3711 SDValue Result, Overflow;
3712 TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3713 Results.push_back(Result);
3714 Results.push_back(Overflow);
3715 break;
3716 }
3717 case ISD::UMULO:
3718 case ISD::SMULO: {
3719 SDValue Result, Overflow;
3720 if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3721 Results.push_back(Result);
3722 Results.push_back(Overflow);
3723 }
3724 break;
3725 }
3726 case ISD::BUILD_PAIR: {
3727 EVT PairTy = Node->getValueType(0);
3728 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3729 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3730 Tmp2 = DAG.getNode(
3731 ISD::SHL, dl, PairTy, Tmp2,
3732 DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3733 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3734 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3735 break;
3736 }
3737 case ISD::SELECT:
3738 Tmp1 = Node->getOperand(0);
3739 Tmp2 = Node->getOperand(1);
3740 Tmp3 = Node->getOperand(2);
3741 if (Tmp1.getOpcode() == ISD::SETCC) {
3742 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3743 Tmp2, Tmp3,
3744 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3745 } else {
3746 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3747 DAG.getConstant(0, dl, Tmp1.getValueType()),
3748 Tmp2, Tmp3, ISD::SETNE);
3749 }
3750 Tmp1->setFlags(Node->getFlags());
3751 Results.push_back(Tmp1);
3752 break;
3753 case ISD::BR_JT: {
3754 SDValue Chain = Node->getOperand(0);
3755 SDValue Table = Node->getOperand(1);
3756 SDValue Index = Node->getOperand(2);
3757
3758 const DataLayout &TD = DAG.getDataLayout();
3759 EVT PTy = TLI.getPointerTy(TD);
3760
3761 unsigned EntrySize =
3762 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3763
3764 // For power-of-two jumptable entry sizes convert multiplication to a shift.
3765 // This transformation needs to be done here since otherwise the MIPS
3766 // backend will end up emitting a three instruction multiply sequence
3767 // instead of a single shift and MSP430 will call a runtime function.
3768 if (llvm::isPowerOf2_32(EntrySize))
3769 Index = DAG.getNode(
3770 ISD::SHL, dl, Index.getValueType(), Index,
3771 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3772 else
3773 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3774 DAG.getConstant(EntrySize, dl, Index.getValueType()));
3775 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3776 Index, Table);
3777
3778 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3779 SDValue LD = DAG.getExtLoad(
3780 ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3781 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3782 Addr = LD;
3783 if (TLI.isJumpTableRelative()) {
3784 // For PIC, the sequence is:
3785 // BRIND(load(Jumptable + index) + RelocBase)
3786 // RelocBase can be JumpTable, GOT or some sort of global base.
3787 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3788 TLI.getPICJumpTableRelocBase(Table, DAG));
3789 }
3790
3791 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3792 Results.push_back(Tmp1);
3793 break;
3794 }
3795 case ISD::BRCOND:
3796 // Expand brcond's setcc into its constituent parts and create a BR_CC
3797 // Node.
3798 Tmp1 = Node->getOperand(0);
3799 Tmp2 = Node->getOperand(1);
3800 if (Tmp2.getOpcode() == ISD::SETCC) {
3801 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3802 Tmp1, Tmp2.getOperand(2),
3803 Tmp2.getOperand(0), Tmp2.getOperand(1),
3804 Node->getOperand(2));
3805 } else {
3806 // We test only the i1 bit. Skip the AND if UNDEF or another AND.
3807 if (Tmp2.isUndef() ||
3808 (Tmp2.getOpcode() == ISD::AND &&
3809 isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3810 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3811 Tmp3 = Tmp2;
3812 else
3813 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3814 DAG.getConstant(1, dl, Tmp2.getValueType()));
3815 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3816 DAG.getCondCode(ISD::SETNE), Tmp3,
3817 DAG.getConstant(0, dl, Tmp3.getValueType()),
3818 Node->getOperand(2));
3819 }
3820 Results.push_back(Tmp1);
3821 break;
3822 case ISD::SETCC:
3823 case ISD::STRICT_FSETCC:
3824 case ISD::STRICT_FSETCCS: {
3825 bool IsStrict = Node->getOpcode() != ISD::SETCC;
3826 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3827 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3828 unsigned Offset = IsStrict ? 1 : 0;
3829 Tmp1 = Node->getOperand(0 + Offset);
3830 Tmp2 = Node->getOperand(1 + Offset);
3831 Tmp3 = Node->getOperand(2 + Offset);
3832 bool Legalized =
3833 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3834 NeedInvert, dl, Chain, IsSignaling);
3835
3836 if (Legalized) {
3837 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3838 // condition code, create a new SETCC node.
3839 if (Tmp3.getNode())
3840 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3841 Tmp1, Tmp2, Tmp3, Node->getFlags());
3842
3843 // If we expanded the SETCC by inverting the condition code, then wrap
3844 // the existing SETCC in a NOT to restore the intended condition.
3845 if (NeedInvert)
3846 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3847
3848 Results.push_back(Tmp1);
3849 if (IsStrict)
3850 Results.push_back(Chain);
3851
3852 break;
3853 }
3854
3855 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3856 // understand if this code is useful for strict nodes.
3857 assert(!IsStrict && "Don't know how to expand for strict nodes.");
3858
3859 // Otherwise, SETCC for the given comparison type must be completely
3860 // illegal; expand it into a SELECT_CC.
3861 EVT VT = Node->getValueType(0);
3862 int TrueValue;
3863 switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3864 case TargetLowering::ZeroOrOneBooleanContent:
3865 case TargetLowering::UndefinedBooleanContent:
3866 TrueValue = 1;
3867 break;
3868 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3869 TrueValue = -1;
3870 break;
3871 }
3872 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3873 DAG.getConstant(TrueValue, dl, VT),
3874 DAG.getConstant(0, dl, VT),
3875 Tmp3);
3876 Tmp1->setFlags(Node->getFlags());
3877 Results.push_back(Tmp1);
3878 break;
3879 }
3880 case ISD::SELECT_CC: {
3881 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3882 Tmp1 = Node->getOperand(0); // LHS
3883 Tmp2 = Node->getOperand(1); // RHS
3884 Tmp3 = Node->getOperand(2); // True
3885 Tmp4 = Node->getOperand(3); // False
3886 EVT VT = Node->getValueType(0);
3887 SDValue Chain;
3888 SDValue CC = Node->getOperand(4);
3889 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3890
3891 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3892 // If the condition code is legal, then we need to expand this
3893 // node using SETCC and SELECT.
3894 EVT CmpVT = Tmp1.getValueType();
3895 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3896 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3897 "expanded.");
3898 EVT CCVT = getSetCCResultType(CmpVT);
3899 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3900 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3901 break;
3902 }
3903
3904 // SELECT_CC is legal, so the condition code must not be.
3905 bool Legalized = false;
3906 // Try to legalize by inverting the condition. This is for targets that
3907 // might support an ordered version of a condition, but not the unordered
3908 // version (or vice versa).
3909 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3910 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3911 // Use the new condition code and swap true and false
3912 Legalized = true;
3913 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3914 Tmp1->setFlags(Node->getFlags());
3915 } else {
3916 // If The inverse is not legal, then try to swap the arguments using
3917 // the inverse condition code.
3918 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3919 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3920 // The swapped inverse condition is legal, so swap true and false,
3921 // lhs and rhs.
3922 Legalized = true;
3923 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3924 Tmp1->setFlags(Node->getFlags());
3925 }
3926 }
3927
3928 if (!Legalized) {
3929 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
3930 Tmp1, Tmp2, CC, NeedInvert, dl, Chain);
3931
3932 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3933
3934 // If we expanded the SETCC by inverting the condition code, then swap
3935 // the True/False operands to match.
3936 if (NeedInvert)
3937 std::swap(Tmp3, Tmp4);
3938
3939 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3940 // condition code, create a new SELECT_CC node.
3941 if (CC.getNode()) {
3942 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3943 Tmp1, Tmp2, Tmp3, Tmp4, CC);
3944 } else {
3945 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3946 CC = DAG.getCondCode(ISD::SETNE);
3947 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3948 Tmp2, Tmp3, Tmp4, CC);
3949 }
3950 Tmp1->setFlags(Node->getFlags());
3951 }
3952 Results.push_back(Tmp1);
3953 break;
3954 }
3955 case ISD::BR_CC: {
3956 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3957 SDValue Chain;
3958 Tmp1 = Node->getOperand(0); // Chain
3959 Tmp2 = Node->getOperand(2); // LHS
3960 Tmp3 = Node->getOperand(3); // RHS
3961 Tmp4 = Node->getOperand(1); // CC
3962
3963 bool Legalized =
3964 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2,
3965 Tmp3, Tmp4, NeedInvert, dl, Chain);
3966 (void)Legalized;
3967 assert(Legalized && "Can't legalize BR_CC with legal condition!");
3968
3969 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3970 // node.
3971 if (Tmp4.getNode()) {
3972 assert(!NeedInvert && "Don't know how to invert BR_CC!");
3973
3974 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3975 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3976 } else {
3977 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3978 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE);
3979 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3980 Tmp2, Tmp3, Node->getOperand(4));
3981 }
3982 Results.push_back(Tmp1);
3983 break;
3984 }
3985 case ISD::BUILD_VECTOR:
3986 Results.push_back(ExpandBUILD_VECTOR(Node));
3987 break;
3988 case ISD::SPLAT_VECTOR:
3989 Results.push_back(ExpandSPLAT_VECTOR(Node));
3990 break;
3991 case ISD::SRA:
3992 case ISD::SRL:
3993 case ISD::SHL: {
3994 // Scalarize vector SRA/SRL/SHL.
3995 EVT VT = Node->getValueType(0);
3996 assert(VT.isVector() && "Unable to legalize non-vector shift");
3997 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3998 unsigned NumElem = VT.getVectorNumElements();
3999
4000 SmallVector<SDValue, 8> Scalars;
4001 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
4002 SDValue Ex =
4003 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
4004 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
4005 SDValue Sh =
4006 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
4007 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
4008 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
4009 VT.getScalarType(), Ex, Sh));
4010 }
4011
4012 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
4013 Results.push_back(Result);
4014 break;
4015 }
4016 case ISD::VECREDUCE_FADD:
4017 case ISD::VECREDUCE_FMUL:
4018 case ISD::VECREDUCE_ADD:
4019 case ISD::VECREDUCE_MUL:
4020 case ISD::VECREDUCE_AND:
4021 case ISD::VECREDUCE_OR:
4022 case ISD::VECREDUCE_XOR:
4023 case ISD::VECREDUCE_SMAX:
4024 case ISD::VECREDUCE_SMIN:
4025 case ISD::VECREDUCE_UMAX:
4026 case ISD::VECREDUCE_UMIN:
4027 case ISD::VECREDUCE_FMAX:
4028 case ISD::VECREDUCE_FMIN:
4029 Results.push_back(TLI.expandVecReduce(Node, DAG));
4030 break;
4031 case ISD::GLOBAL_OFFSET_TABLE:
4032 case ISD::GlobalAddress:
4033 case ISD::GlobalTLSAddress:
4034 case ISD::ExternalSymbol:
4035 case ISD::ConstantPool:
4036 case ISD::JumpTable:
4037 case ISD::INTRINSIC_W_CHAIN:
4038 case ISD::INTRINSIC_WO_CHAIN:
4039 case ISD::INTRINSIC_VOID:
4040 // FIXME: Custom lowering for these operations shouldn't return null!
4041 // Return true so that we don't call ConvertNodeToLibcall which also won't
4042 // do anything.
4043 return true;
4044 }
4045
4046 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
4047 // FIXME: We were asked to expand a strict floating-point operation,
4048 // but there is currently no expansion implemented that would preserve
4049 // the "strict" properties. For now, we just fall back to the non-strict
4050 // version if that is legal on the target. The actual mutation of the
4051 // operation will happen in SelectionDAGISel::DoInstructionSelection.
4052 switch (Node->getOpcode()) {
4053 default:
4054 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
4055 Node->getValueType(0))
4056 == TargetLowering::Legal)
4057 return true;
4058 break;
4059 case ISD::STRICT_FSUB: {
4060 if (TLI.getStrictFPOperationAction(
4061 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal)
4062 return true;
4063 if (TLI.getStrictFPOperationAction(
4064 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal)
4065 break;
4066
4067 EVT VT = Node->getValueType(0);
4068 const SDNodeFlags Flags = Node->getFlags();
4069 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags);
4070 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(),
4071 {Node->getOperand(0), Node->getOperand(1), Neg},
4072 Flags);
4073
4074 Results.push_back(Fadd);
4075 Results.push_back(Fadd.getValue(1));
4076 break;
4077 }
4078 case ISD::STRICT_SINT_TO_FP:
4079 case ISD::STRICT_UINT_TO_FP:
4080 case ISD::STRICT_LRINT:
4081 case ISD::STRICT_LLRINT:
4082 case ISD::STRICT_LROUND:
4083 case ISD::STRICT_LLROUND:
4084 // These are registered by the operand type instead of the value
4085 // type. Reflect that here.
4086 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
4087 Node->getOperand(1).getValueType())
4088 == TargetLowering::Legal)
4089 return true;
4090 break;
4091 }
4092 }
4093
4094 // Replace the original node with the legalized result.
4095 if (Results.empty()) {
4096 LLVM_DEBUG(dbgs() << "Cannot expand node\n");
4097 return false;
4098 }
4099
4100 LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
4101 ReplaceNode(Node, Results.data());
4102 return true;
4103 }
4104
ConvertNodeToLibcall(SDNode * Node)4105 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
4106 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
4107 SmallVector<SDValue, 8> Results;
4108 SDLoc dl(Node);
4109 // FIXME: Check flags on the node to see if we can use a finite call.
4110 unsigned Opc = Node->getOpcode();
4111 switch (Opc) {
4112 case ISD::ATOMIC_FENCE: {
4113 // If the target didn't lower this, lower it to '__sync_synchronize()' call
4114 // FIXME: handle "fence singlethread" more efficiently.
4115 TargetLowering::ArgListTy Args;
4116
4117 TargetLowering::CallLoweringInfo CLI(DAG);
4118 CLI.setDebugLoc(dl)
4119 .setChain(Node->getOperand(0))
4120 .setLibCallee(
4121 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
4122 DAG.getExternalSymbol("__sync_synchronize",
4123 TLI.getPointerTy(DAG.getDataLayout())),
4124 std::move(Args));
4125
4126 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4127
4128 Results.push_back(CallResult.second);
4129 break;
4130 }
4131 // By default, atomic intrinsics are marked Legal and lowered. Targets
4132 // which don't support them directly, however, may want libcalls, in which
4133 // case they mark them Expand, and we get here.
4134 case ISD::ATOMIC_SWAP:
4135 case ISD::ATOMIC_LOAD_ADD:
4136 case ISD::ATOMIC_LOAD_SUB:
4137 case ISD::ATOMIC_LOAD_AND:
4138 case ISD::ATOMIC_LOAD_CLR:
4139 case ISD::ATOMIC_LOAD_OR:
4140 case ISD::ATOMIC_LOAD_XOR:
4141 case ISD::ATOMIC_LOAD_NAND:
4142 case ISD::ATOMIC_LOAD_MIN:
4143 case ISD::ATOMIC_LOAD_MAX:
4144 case ISD::ATOMIC_LOAD_UMIN:
4145 case ISD::ATOMIC_LOAD_UMAX:
4146 case ISD::ATOMIC_CMP_SWAP: {
4147 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
4148 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getOrdering();
4149 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT);
4150 EVT RetVT = Node->getValueType(0);
4151 TargetLowering::MakeLibCallOptions CallOptions;
4152 SmallVector<SDValue, 4> Ops;
4153 if (TLI.getLibcallName(LC)) {
4154 // If outline atomic available, prepare its arguments and expand.
4155 Ops.append(Node->op_begin() + 2, Node->op_end());
4156 Ops.push_back(Node->getOperand(1));
4157
4158 } else {
4159 LC = RTLIB::getSYNC(Opc, VT);
4160 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
4161 "Unexpected atomic op or value type!");
4162 // Arguments for expansion to sync libcall
4163 Ops.append(Node->op_begin() + 1, Node->op_end());
4164 }
4165 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
4166 Ops, CallOptions,
4167 SDLoc(Node),
4168 Node->getOperand(0));
4169 Results.push_back(Tmp.first);
4170 Results.push_back(Tmp.second);
4171 break;
4172 }
4173 case ISD::TRAP: {
4174 // If this operation is not supported, lower it to 'abort()' call
4175 TargetLowering::ArgListTy Args;
4176 TargetLowering::CallLoweringInfo CLI(DAG);
4177 CLI.setDebugLoc(dl)
4178 .setChain(Node->getOperand(0))
4179 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
4180 DAG.getExternalSymbol(
4181 "abort", TLI.getPointerTy(DAG.getDataLayout())),
4182 std::move(Args));
4183 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4184
4185 Results.push_back(CallResult.second);
4186 break;
4187 }
4188 case ISD::FMINNUM:
4189 case ISD::STRICT_FMINNUM:
4190 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
4191 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
4192 RTLIB::FMIN_PPCF128, Results);
4193 break;
4194 case ISD::FMAXNUM:
4195 case ISD::STRICT_FMAXNUM:
4196 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
4197 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
4198 RTLIB::FMAX_PPCF128, Results);
4199 break;
4200 case ISD::FSQRT:
4201 case ISD::STRICT_FSQRT:
4202 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
4203 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
4204 RTLIB::SQRT_PPCF128, Results);
4205 break;
4206 case ISD::FCBRT:
4207 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
4208 RTLIB::CBRT_F80, RTLIB::CBRT_F128,
4209 RTLIB::CBRT_PPCF128, Results);
4210 break;
4211 case ISD::FSIN:
4212 case ISD::STRICT_FSIN:
4213 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
4214 RTLIB::SIN_F80, RTLIB::SIN_F128,
4215 RTLIB::SIN_PPCF128, Results);
4216 break;
4217 case ISD::FCOS:
4218 case ISD::STRICT_FCOS:
4219 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4220 RTLIB::COS_F80, RTLIB::COS_F128,
4221 RTLIB::COS_PPCF128, Results);
4222 break;
4223 case ISD::FSINCOS:
4224 // Expand into sincos libcall.
4225 ExpandSinCosLibCall(Node, Results);
4226 break;
4227 case ISD::FLOG:
4228 case ISD::STRICT_FLOG:
4229 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
4230 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
4231 break;
4232 case ISD::FLOG2:
4233 case ISD::STRICT_FLOG2:
4234 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
4235 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
4236 break;
4237 case ISD::FLOG10:
4238 case ISD::STRICT_FLOG10:
4239 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
4240 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
4241 break;
4242 case ISD::FEXP:
4243 case ISD::STRICT_FEXP:
4244 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
4245 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
4246 break;
4247 case ISD::FEXP2:
4248 case ISD::STRICT_FEXP2:
4249 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
4250 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
4251 break;
4252 case ISD::FTRUNC:
4253 case ISD::STRICT_FTRUNC:
4254 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4255 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4256 RTLIB::TRUNC_PPCF128, Results);
4257 break;
4258 case ISD::FFLOOR:
4259 case ISD::STRICT_FFLOOR:
4260 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4261 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4262 RTLIB::FLOOR_PPCF128, Results);
4263 break;
4264 case ISD::FCEIL:
4265 case ISD::STRICT_FCEIL:
4266 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4267 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4268 RTLIB::CEIL_PPCF128, Results);
4269 break;
4270 case ISD::FRINT:
4271 case ISD::STRICT_FRINT:
4272 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4273 RTLIB::RINT_F80, RTLIB::RINT_F128,
4274 RTLIB::RINT_PPCF128, Results);
4275 break;
4276 case ISD::FNEARBYINT:
4277 case ISD::STRICT_FNEARBYINT:
4278 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4279 RTLIB::NEARBYINT_F64,
4280 RTLIB::NEARBYINT_F80,
4281 RTLIB::NEARBYINT_F128,
4282 RTLIB::NEARBYINT_PPCF128, Results);
4283 break;
4284 case ISD::FROUND:
4285 case ISD::STRICT_FROUND:
4286 ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4287 RTLIB::ROUND_F64,
4288 RTLIB::ROUND_F80,
4289 RTLIB::ROUND_F128,
4290 RTLIB::ROUND_PPCF128, Results);
4291 break;
4292 case ISD::FROUNDEVEN:
4293 case ISD::STRICT_FROUNDEVEN:
4294 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
4295 RTLIB::ROUNDEVEN_F64,
4296 RTLIB::ROUNDEVEN_F80,
4297 RTLIB::ROUNDEVEN_F128,
4298 RTLIB::ROUNDEVEN_PPCF128, Results);
4299 break;
4300 case ISD::FPOWI:
4301 case ISD::STRICT_FPOWI: {
4302 RTLIB::Libcall LC;
4303 switch (Node->getSimpleValueType(0).SimpleTy) {
4304 default: llvm_unreachable("Unexpected request for libcall!");
4305 case MVT::f32: LC = RTLIB::POWI_F32; break;
4306 case MVT::f64: LC = RTLIB::POWI_F64; break;
4307 case MVT::f80: LC = RTLIB::POWI_F80; break;
4308 case MVT::f128: LC = RTLIB::POWI_F128; break;
4309 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break;
4310 }
4311 if (!TLI.getLibcallName(LC)) {
4312 // Some targets don't have a powi libcall; use pow instead.
4313 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4314 Node->getValueType(0),
4315 Node->getOperand(1));
4316 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4317 Node->getValueType(0), Node->getOperand(0),
4318 Exponent));
4319 break;
4320 }
4321 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4322 RTLIB::POWI_F80, RTLIB::POWI_F128,
4323 RTLIB::POWI_PPCF128, Results);
4324 break;
4325 }
4326 case ISD::FPOW:
4327 case ISD::STRICT_FPOW:
4328 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4329 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4330 break;
4331 case ISD::LROUND:
4332 case ISD::STRICT_LROUND:
4333 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4334 RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4335 RTLIB::LROUND_F128,
4336 RTLIB::LROUND_PPCF128, Results);
4337 break;
4338 case ISD::LLROUND:
4339 case ISD::STRICT_LLROUND:
4340 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4341 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4342 RTLIB::LLROUND_F128,
4343 RTLIB::LLROUND_PPCF128, Results);
4344 break;
4345 case ISD::LRINT:
4346 case ISD::STRICT_LRINT:
4347 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4348 RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4349 RTLIB::LRINT_F128,
4350 RTLIB::LRINT_PPCF128, Results);
4351 break;
4352 case ISD::LLRINT:
4353 case ISD::STRICT_LLRINT:
4354 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4355 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4356 RTLIB::LLRINT_F128,
4357 RTLIB::LLRINT_PPCF128, Results);
4358 break;
4359 case ISD::FDIV:
4360 case ISD::STRICT_FDIV:
4361 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4362 RTLIB::DIV_F80, RTLIB::DIV_F128,
4363 RTLIB::DIV_PPCF128, Results);
4364 break;
4365 case ISD::FREM:
4366 case ISD::STRICT_FREM:
4367 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4368 RTLIB::REM_F80, RTLIB::REM_F128,
4369 RTLIB::REM_PPCF128, Results);
4370 break;
4371 case ISD::FMA:
4372 case ISD::STRICT_FMA:
4373 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4374 RTLIB::FMA_F80, RTLIB::FMA_F128,
4375 RTLIB::FMA_PPCF128, Results);
4376 break;
4377 case ISD::FADD:
4378 case ISD::STRICT_FADD:
4379 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4380 RTLIB::ADD_F80, RTLIB::ADD_F128,
4381 RTLIB::ADD_PPCF128, Results);
4382 break;
4383 case ISD::FMUL:
4384 case ISD::STRICT_FMUL:
4385 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4386 RTLIB::MUL_F80, RTLIB::MUL_F128,
4387 RTLIB::MUL_PPCF128, Results);
4388 break;
4389 case ISD::FP16_TO_FP:
4390 if (Node->getValueType(0) == MVT::f32) {
4391 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4392 }
4393 break;
4394 case ISD::STRICT_FP16_TO_FP: {
4395 if (Node->getValueType(0) == MVT::f32) {
4396 TargetLowering::MakeLibCallOptions CallOptions;
4397 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
4398 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
4399 SDLoc(Node), Node->getOperand(0));
4400 Results.push_back(Tmp.first);
4401 Results.push_back(Tmp.second);
4402 }
4403 break;
4404 }
4405 case ISD::FP_TO_FP16: {
4406 RTLIB::Libcall LC =
4407 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4408 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4409 Results.push_back(ExpandLibCall(LC, Node, false));
4410 break;
4411 }
4412 case ISD::STRICT_SINT_TO_FP:
4413 case ISD::STRICT_UINT_TO_FP:
4414 case ISD::SINT_TO_FP:
4415 case ISD::UINT_TO_FP: {
4416 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP
4417 bool IsStrict = Node->isStrictFPOpcode();
4418 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP ||
4419 Node->getOpcode() == ISD::STRICT_SINT_TO_FP;
4420 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType();
4421 EVT RVT = Node->getValueType(0);
4422 EVT NVT = EVT();
4423 SDLoc dl(Node);
4424
4425 // Even if the input is legal, no libcall may exactly match, eg. we don't
4426 // have i1 -> fp conversions. So, it needs to be promoted to a larger type,
4427 // eg: i13 -> fp. Then, look for an appropriate libcall.
4428 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
4429 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE;
4430 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
4431 ++t) {
4432 NVT = (MVT::SimpleValueType)t;
4433 // The source needs to big enough to hold the operand.
4434 if (NVT.bitsGE(SVT))
4435 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT)
4436 : RTLIB::getUINTTOFP(NVT, RVT);
4437 }
4438 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4439
4440 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4441 // Sign/zero extend the argument if the libcall takes a larger type.
4442 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl,
4443 NVT, Node->getOperand(IsStrict ? 1 : 0));
4444 TargetLowering::MakeLibCallOptions CallOptions;
4445 CallOptions.setSExt(Signed);
4446 std::pair<SDValue, SDValue> Tmp =
4447 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain);
4448 Results.push_back(Tmp.first);
4449 if (IsStrict)
4450 Results.push_back(Tmp.second);
4451 break;
4452 }
4453 case ISD::FP_TO_SINT:
4454 case ISD::FP_TO_UINT:
4455 case ISD::STRICT_FP_TO_SINT:
4456 case ISD::STRICT_FP_TO_UINT: {
4457 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT.
4458 bool IsStrict = Node->isStrictFPOpcode();
4459 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT ||
4460 Node->getOpcode() == ISD::STRICT_FP_TO_SINT;
4461
4462 SDValue Op = Node->getOperand(IsStrict ? 1 : 0);
4463 EVT SVT = Op.getValueType();
4464 EVT RVT = Node->getValueType(0);
4465 EVT NVT = EVT();
4466 SDLoc dl(Node);
4467
4468 // Even if the result is legal, no libcall may exactly match, eg. we don't
4469 // have fp -> i1 conversions. So, it needs to be promoted to a larger type,
4470 // eg: fp -> i32. Then, look for an appropriate libcall.
4471 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
4472 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
4473 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
4474 ++IntVT) {
4475 NVT = (MVT::SimpleValueType)IntVT;
4476 // The type needs to big enough to hold the result.
4477 if (NVT.bitsGE(RVT))
4478 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT)
4479 : RTLIB::getFPTOUINT(SVT, NVT);
4480 }
4481 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4482
4483 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4484 TargetLowering::MakeLibCallOptions CallOptions;
4485 std::pair<SDValue, SDValue> Tmp =
4486 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain);
4487
4488 // Truncate the result if the libcall returns a larger type.
4489 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first));
4490 if (IsStrict)
4491 Results.push_back(Tmp.second);
4492 break;
4493 }
4494
4495 case ISD::FP_ROUND:
4496 case ISD::STRICT_FP_ROUND: {
4497 // X = FP_ROUND(Y, TRUNC)
4498 // TRUNC is a flag, which is always an integer that is zero or one.
4499 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND
4500 // is known to not change the value of Y.
4501 // We can only expand it into libcall if the TRUNC is 0.
4502 bool IsStrict = Node->isStrictFPOpcode();
4503 SDValue Op = Node->getOperand(IsStrict ? 1 : 0);
4504 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4505 EVT VT = Node->getValueType(0);
4506 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))
4507 ->isNullValue() &&
4508 "Unable to expand as libcall if it is not normal rounding");
4509
4510 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT);
4511 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4512
4513 TargetLowering::MakeLibCallOptions CallOptions;
4514 std::pair<SDValue, SDValue> Tmp =
4515 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain);
4516 Results.push_back(Tmp.first);
4517 if (IsStrict)
4518 Results.push_back(Tmp.second);
4519 break;
4520 }
4521 case ISD::FP_EXTEND: {
4522 Results.push_back(
4523 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(),
4524 Node->getValueType(0)),
4525 Node, false));
4526 break;
4527 }
4528 case ISD::STRICT_FP_EXTEND:
4529 case ISD::STRICT_FP_TO_FP16: {
4530 RTLIB::Libcall LC =
4531 Node->getOpcode() == ISD::STRICT_FP_TO_FP16
4532 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16)
4533 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(),
4534 Node->getValueType(0));
4535 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4536
4537 TargetLowering::MakeLibCallOptions CallOptions;
4538 std::pair<SDValue, SDValue> Tmp =
4539 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
4540 CallOptions, SDLoc(Node), Node->getOperand(0));
4541 Results.push_back(Tmp.first);
4542 Results.push_back(Tmp.second);
4543 break;
4544 }
4545 case ISD::FSUB:
4546 case ISD::STRICT_FSUB:
4547 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4548 RTLIB::SUB_F80, RTLIB::SUB_F128,
4549 RTLIB::SUB_PPCF128, Results);
4550 break;
4551 case ISD::SREM:
4552 Results.push_back(ExpandIntLibCall(Node, true,
4553 RTLIB::SREM_I8,
4554 RTLIB::SREM_I16, RTLIB::SREM_I32,
4555 RTLIB::SREM_I64, RTLIB::SREM_I128));
4556 break;
4557 case ISD::UREM:
4558 Results.push_back(ExpandIntLibCall(Node, false,
4559 RTLIB::UREM_I8,
4560 RTLIB::UREM_I16, RTLIB::UREM_I32,
4561 RTLIB::UREM_I64, RTLIB::UREM_I128));
4562 break;
4563 case ISD::SDIV:
4564 Results.push_back(ExpandIntLibCall(Node, true,
4565 RTLIB::SDIV_I8,
4566 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4567 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4568 break;
4569 case ISD::UDIV:
4570 Results.push_back(ExpandIntLibCall(Node, false,
4571 RTLIB::UDIV_I8,
4572 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4573 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4574 break;
4575 case ISD::SDIVREM:
4576 case ISD::UDIVREM:
4577 // Expand into divrem libcall
4578 ExpandDivRemLibCall(Node, Results);
4579 break;
4580 case ISD::MUL:
4581 Results.push_back(ExpandIntLibCall(Node, false,
4582 RTLIB::MUL_I8,
4583 RTLIB::MUL_I16, RTLIB::MUL_I32,
4584 RTLIB::MUL_I64, RTLIB::MUL_I128));
4585 break;
4586 case ISD::CTLZ_ZERO_UNDEF:
4587 switch (Node->getSimpleValueType(0).SimpleTy) {
4588 default:
4589 llvm_unreachable("LibCall explicitly requested, but not available");
4590 case MVT::i32:
4591 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4592 break;
4593 case MVT::i64:
4594 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4595 break;
4596 case MVT::i128:
4597 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4598 break;
4599 }
4600 break;
4601 }
4602
4603 // Replace the original node with the legalized result.
4604 if (!Results.empty()) {
4605 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4606 ReplaceNode(Node, Results.data());
4607 } else
4608 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4609 }
4610
4611 // Determine the vector type to use in place of an original scalar element when
4612 // promoting equally sized vectors.
getPromotedVectorElementType(const TargetLowering & TLI,MVT EltVT,MVT NewEltVT)4613 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4614 MVT EltVT, MVT NewEltVT) {
4615 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4616 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4617 assert(TLI.isTypeLegal(MidVT) && "unexpected");
4618 return MidVT;
4619 }
4620
PromoteNode(SDNode * Node)4621 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4622 LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4623 SmallVector<SDValue, 8> Results;
4624 MVT OVT = Node->getSimpleValueType(0);
4625 if (Node->getOpcode() == ISD::UINT_TO_FP ||
4626 Node->getOpcode() == ISD::SINT_TO_FP ||
4627 Node->getOpcode() == ISD::SETCC ||
4628 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4629 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4630 OVT = Node->getOperand(0).getSimpleValueType();
4631 }
4632 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4633 Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
4634 Node->getOpcode() == ISD::STRICT_FSETCC ||
4635 Node->getOpcode() == ISD::STRICT_FSETCCS)
4636 OVT = Node->getOperand(1).getSimpleValueType();
4637 if (Node->getOpcode() == ISD::BR_CC)
4638 OVT = Node->getOperand(2).getSimpleValueType();
4639 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4640 SDLoc dl(Node);
4641 SDValue Tmp1, Tmp2, Tmp3;
4642 switch (Node->getOpcode()) {
4643 case ISD::CTTZ:
4644 case ISD::CTTZ_ZERO_UNDEF:
4645 case ISD::CTLZ:
4646 case ISD::CTLZ_ZERO_UNDEF:
4647 case ISD::CTPOP:
4648 // Zero extend the argument unless its cttz, then use any_extend.
4649 if (Node->getOpcode() == ISD::CTTZ ||
4650 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
4651 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4652 else
4653 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4654
4655 if (Node->getOpcode() == ISD::CTTZ) {
4656 // The count is the same in the promoted type except if the original
4657 // value was zero. This can be handled by setting the bit just off
4658 // the top of the original type.
4659 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4660 OVT.getSizeInBits());
4661 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4662 DAG.getConstant(TopBit, dl, NVT));
4663 }
4664 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4665 // already the correct result.
4666 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4667 if (Node->getOpcode() == ISD::CTLZ ||
4668 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4669 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4670 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4671 DAG.getConstant(NVT.getSizeInBits() -
4672 OVT.getSizeInBits(), dl, NVT));
4673 }
4674 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4675 break;
4676 case ISD::BITREVERSE:
4677 case ISD::BSWAP: {
4678 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4679 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4680 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4681 Tmp1 = DAG.getNode(
4682 ISD::SRL, dl, NVT, Tmp1,
4683 DAG.getConstant(DiffBits, dl,
4684 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4685
4686 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4687 break;
4688 }
4689 case ISD::FP_TO_UINT:
4690 case ISD::STRICT_FP_TO_UINT:
4691 case ISD::FP_TO_SINT:
4692 case ISD::STRICT_FP_TO_SINT:
4693 PromoteLegalFP_TO_INT(Node, dl, Results);
4694 break;
4695 case ISD::FP_TO_UINT_SAT:
4696 case ISD::FP_TO_SINT_SAT:
4697 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl));
4698 break;
4699 case ISD::UINT_TO_FP:
4700 case ISD::STRICT_UINT_TO_FP:
4701 case ISD::SINT_TO_FP:
4702 case ISD::STRICT_SINT_TO_FP:
4703 PromoteLegalINT_TO_FP(Node, dl, Results);
4704 break;
4705 case ISD::VAARG: {
4706 SDValue Chain = Node->getOperand(0); // Get the chain.
4707 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4708
4709 unsigned TruncOp;
4710 if (OVT.isVector()) {
4711 TruncOp = ISD::BITCAST;
4712 } else {
4713 assert(OVT.isInteger()
4714 && "VAARG promotion is supported only for vectors or integer types");
4715 TruncOp = ISD::TRUNCATE;
4716 }
4717
4718 // Perform the larger operation, then convert back
4719 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4720 Node->getConstantOperandVal(3));
4721 Chain = Tmp1.getValue(1);
4722
4723 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4724
4725 // Modified the chain result - switch anything that used the old chain to
4726 // use the new one.
4727 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4728 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4729 if (UpdatedNodes) {
4730 UpdatedNodes->insert(Tmp2.getNode());
4731 UpdatedNodes->insert(Chain.getNode());
4732 }
4733 ReplacedNode(Node);
4734 break;
4735 }
4736 case ISD::MUL:
4737 case ISD::SDIV:
4738 case ISD::SREM:
4739 case ISD::UDIV:
4740 case ISD::UREM:
4741 case ISD::AND:
4742 case ISD::OR:
4743 case ISD::XOR: {
4744 unsigned ExtOp, TruncOp;
4745 if (OVT.isVector()) {
4746 ExtOp = ISD::BITCAST;
4747 TruncOp = ISD::BITCAST;
4748 } else {
4749 assert(OVT.isInteger() && "Cannot promote logic operation");
4750
4751 switch (Node->getOpcode()) {
4752 default:
4753 ExtOp = ISD::ANY_EXTEND;
4754 break;
4755 case ISD::SDIV:
4756 case ISD::SREM:
4757 ExtOp = ISD::SIGN_EXTEND;
4758 break;
4759 case ISD::UDIV:
4760 case ISD::UREM:
4761 ExtOp = ISD::ZERO_EXTEND;
4762 break;
4763 }
4764 TruncOp = ISD::TRUNCATE;
4765 }
4766 // Promote each of the values to the new type.
4767 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4768 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4769 // Perform the larger operation, then convert back
4770 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4771 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4772 break;
4773 }
4774 case ISD::UMUL_LOHI:
4775 case ISD::SMUL_LOHI: {
4776 // Promote to a multiply in a wider integer type.
4777 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4778 : ISD::SIGN_EXTEND;
4779 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4780 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4781 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4782
4783 auto &DL = DAG.getDataLayout();
4784 unsigned OriginalSize = OVT.getScalarSizeInBits();
4785 Tmp2 = DAG.getNode(
4786 ISD::SRL, dl, NVT, Tmp1,
4787 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4788 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4789 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4790 break;
4791 }
4792 case ISD::SELECT: {
4793 unsigned ExtOp, TruncOp;
4794 if (Node->getValueType(0).isVector() ||
4795 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4796 ExtOp = ISD::BITCAST;
4797 TruncOp = ISD::BITCAST;
4798 } else if (Node->getValueType(0).isInteger()) {
4799 ExtOp = ISD::ANY_EXTEND;
4800 TruncOp = ISD::TRUNCATE;
4801 } else {
4802 ExtOp = ISD::FP_EXTEND;
4803 TruncOp = ISD::FP_ROUND;
4804 }
4805 Tmp1 = Node->getOperand(0);
4806 // Promote each of the values to the new type.
4807 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4808 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4809 // Perform the larger operation, then round down.
4810 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4811 Tmp1->setFlags(Node->getFlags());
4812 if (TruncOp != ISD::FP_ROUND)
4813 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4814 else
4815 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4816 DAG.getIntPtrConstant(0, dl));
4817 Results.push_back(Tmp1);
4818 break;
4819 }
4820 case ISD::VECTOR_SHUFFLE: {
4821 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4822
4823 // Cast the two input vectors.
4824 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4825 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4826
4827 // Convert the shuffle mask to the right # elements.
4828 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4829 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4830 Results.push_back(Tmp1);
4831 break;
4832 }
4833 case ISD::SETCC:
4834 case ISD::STRICT_FSETCC:
4835 case ISD::STRICT_FSETCCS: {
4836 unsigned ExtOp = ISD::FP_EXTEND;
4837 if (NVT.isInteger()) {
4838 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
4839 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4840 }
4841 if (Node->isStrictFPOpcode()) {
4842 SDValue InChain = Node->getOperand(0);
4843 std::tie(Tmp1, std::ignore) =
4844 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT);
4845 std::tie(Tmp2, std::ignore) =
4846 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT);
4847 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)};
4848 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains);
4849 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
4850 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs,
4851 {OutChain, Tmp1, Tmp2, Node->getOperand(3)},
4852 Node->getFlags()));
4853 Results.push_back(Results.back().getValue(1));
4854 break;
4855 }
4856 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4857 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4858 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4859 Tmp2, Node->getOperand(2), Node->getFlags()));
4860 break;
4861 }
4862 case ISD::BR_CC: {
4863 unsigned ExtOp = ISD::FP_EXTEND;
4864 if (NVT.isInteger()) {
4865 ISD::CondCode CCCode =
4866 cast<CondCodeSDNode>(Node->getOperand(1))->get();
4867 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4868 }
4869 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4870 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4871 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4872 Node->getOperand(0), Node->getOperand(1),
4873 Tmp1, Tmp2, Node->getOperand(4)));
4874 break;
4875 }
4876 case ISD::FADD:
4877 case ISD::FSUB:
4878 case ISD::FMUL:
4879 case ISD::FDIV:
4880 case ISD::FREM:
4881 case ISD::FMINNUM:
4882 case ISD::FMAXNUM:
4883 case ISD::FPOW:
4884 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4885 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4886 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4887 Node->getFlags());
4888 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4889 Tmp3, DAG.getIntPtrConstant(0, dl)));
4890 break;
4891 case ISD::STRICT_FREM:
4892 case ISD::STRICT_FPOW:
4893 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4894 {Node->getOperand(0), Node->getOperand(1)});
4895 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4896 {Node->getOperand(0), Node->getOperand(2)});
4897 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4898 Tmp2.getValue(1));
4899 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4900 {Tmp3, Tmp1, Tmp2});
4901 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4902 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4903 Results.push_back(Tmp1);
4904 Results.push_back(Tmp1.getValue(1));
4905 break;
4906 case ISD::FMA:
4907 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4908 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4909 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4910 Results.push_back(
4911 DAG.getNode(ISD::FP_ROUND, dl, OVT,
4912 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4913 DAG.getIntPtrConstant(0, dl)));
4914 break;
4915 case ISD::FCOPYSIGN:
4916 case ISD::FPOWI: {
4917 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4918 Tmp2 = Node->getOperand(1);
4919 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4920
4921 // fcopysign doesn't change anything but the sign bit, so
4922 // (fp_round (fcopysign (fpext a), b))
4923 // is as precise as
4924 // (fp_round (fpext a))
4925 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4926 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4927 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4928 Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4929 break;
4930 }
4931 case ISD::FFLOOR:
4932 case ISD::FCEIL:
4933 case ISD::FRINT:
4934 case ISD::FNEARBYINT:
4935 case ISD::FROUND:
4936 case ISD::FROUNDEVEN:
4937 case ISD::FTRUNC:
4938 case ISD::FNEG:
4939 case ISD::FSQRT:
4940 case ISD::FSIN:
4941 case ISD::FCOS:
4942 case ISD::FLOG:
4943 case ISD::FLOG2:
4944 case ISD::FLOG10:
4945 case ISD::FABS:
4946 case ISD::FEXP:
4947 case ISD::FEXP2:
4948 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4949 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4950 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4951 Tmp2, DAG.getIntPtrConstant(0, dl)));
4952 break;
4953 case ISD::STRICT_FFLOOR:
4954 case ISD::STRICT_FCEIL:
4955 case ISD::STRICT_FSIN:
4956 case ISD::STRICT_FCOS:
4957 case ISD::STRICT_FLOG:
4958 case ISD::STRICT_FLOG10:
4959 case ISD::STRICT_FEXP:
4960 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4961 {Node->getOperand(0), Node->getOperand(1)});
4962 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4963 {Tmp1.getValue(1), Tmp1});
4964 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4965 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4966 Results.push_back(Tmp3);
4967 Results.push_back(Tmp3.getValue(1));
4968 break;
4969 case ISD::BUILD_VECTOR: {
4970 MVT EltVT = OVT.getVectorElementType();
4971 MVT NewEltVT = NVT.getVectorElementType();
4972
4973 // Handle bitcasts to a different vector type with the same total bit size
4974 //
4975 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4976 // =>
4977 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4978
4979 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4980 "Invalid promote type for build_vector");
4981 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4982
4983 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4984
4985 SmallVector<SDValue, 8> NewOps;
4986 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4987 SDValue Op = Node->getOperand(I);
4988 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4989 }
4990
4991 SDLoc SL(Node);
4992 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4993 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4994 Results.push_back(CvtVec);
4995 break;
4996 }
4997 case ISD::EXTRACT_VECTOR_ELT: {
4998 MVT EltVT = OVT.getVectorElementType();
4999 MVT NewEltVT = NVT.getVectorElementType();
5000
5001 // Handle bitcasts to a different vector type with the same total bit size.
5002 //
5003 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
5004 // =>
5005 // v4i32:castx = bitcast x:v2i64
5006 //
5007 // i64 = bitcast
5008 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
5009 // (i32 (extract_vector_elt castx, (2 * y + 1)))
5010 //
5011
5012 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
5013 "Invalid promote type for extract_vector_elt");
5014 assert(NewEltVT.bitsLT(EltVT) && "not handled");
5015
5016 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
5017 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
5018
5019 SDValue Idx = Node->getOperand(1);
5020 EVT IdxVT = Idx.getValueType();
5021 SDLoc SL(Node);
5022 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
5023 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
5024
5025 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
5026
5027 SmallVector<SDValue, 8> NewOps;
5028 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
5029 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
5030 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
5031
5032 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
5033 CastVec, TmpIdx);
5034 NewOps.push_back(Elt);
5035 }
5036
5037 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
5038 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
5039 break;
5040 }
5041 case ISD::INSERT_VECTOR_ELT: {
5042 MVT EltVT = OVT.getVectorElementType();
5043 MVT NewEltVT = NVT.getVectorElementType();
5044
5045 // Handle bitcasts to a different vector type with the same total bit size
5046 //
5047 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
5048 // =>
5049 // v4i32:castx = bitcast x:v2i64
5050 // v2i32:casty = bitcast y:i64
5051 //
5052 // v2i64 = bitcast
5053 // (v4i32 insert_vector_elt
5054 // (v4i32 insert_vector_elt v4i32:castx,
5055 // (extract_vector_elt casty, 0), 2 * z),
5056 // (extract_vector_elt casty, 1), (2 * z + 1))
5057
5058 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
5059 "Invalid promote type for insert_vector_elt");
5060 assert(NewEltVT.bitsLT(EltVT) && "not handled");
5061
5062 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
5063 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
5064
5065 SDValue Val = Node->getOperand(1);
5066 SDValue Idx = Node->getOperand(2);
5067 EVT IdxVT = Idx.getValueType();
5068 SDLoc SL(Node);
5069
5070 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
5071 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
5072
5073 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
5074 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
5075
5076 SDValue NewVec = CastVec;
5077 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
5078 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
5079 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
5080
5081 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
5082 CastVal, IdxOffset);
5083
5084 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
5085 NewVec, Elt, InEltIdx);
5086 }
5087
5088 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
5089 break;
5090 }
5091 case ISD::SCALAR_TO_VECTOR: {
5092 MVT EltVT = OVT.getVectorElementType();
5093 MVT NewEltVT = NVT.getVectorElementType();
5094
5095 // Handle bitcasts to different vector type with the same total bit size.
5096 //
5097 // e.g. v2i64 = scalar_to_vector x:i64
5098 // =>
5099 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
5100 //
5101
5102 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
5103 SDValue Val = Node->getOperand(0);
5104 SDLoc SL(Node);
5105
5106 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
5107 SDValue Undef = DAG.getUNDEF(MidVT);
5108
5109 SmallVector<SDValue, 8> NewElts;
5110 NewElts.push_back(CastVal);
5111 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
5112 NewElts.push_back(Undef);
5113
5114 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
5115 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
5116 Results.push_back(CvtVec);
5117 break;
5118 }
5119 case ISD::ATOMIC_SWAP: {
5120 AtomicSDNode *AM = cast<AtomicSDNode>(Node);
5121 SDLoc SL(Node);
5122 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
5123 assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
5124 "unexpected promotion type");
5125 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
5126 "unexpected atomic_swap with illegal type");
5127
5128 SDValue NewAtomic
5129 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
5130 DAG.getVTList(NVT, MVT::Other),
5131 { AM->getChain(), AM->getBasePtr(), CastVal },
5132 AM->getMemOperand());
5133 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
5134 Results.push_back(NewAtomic.getValue(1));
5135 break;
5136 }
5137 }
5138
5139 // Replace the original node with the legalized result.
5140 if (!Results.empty()) {
5141 LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
5142 ReplaceNode(Node, Results.data());
5143 } else
5144 LLVM_DEBUG(dbgs() << "Could not promote node\n");
5145 }
5146
5147 /// This is the entry point for the file.
Legalize()5148 void SelectionDAG::Legalize() {
5149 AssignTopologicalOrder();
5150
5151 SmallPtrSet<SDNode *, 16> LegalizedNodes;
5152 // Use a delete listener to remove nodes which were deleted during
5153 // legalization from LegalizeNodes. This is needed to handle the situation
5154 // where a new node is allocated by the object pool to the same address of a
5155 // previously deleted node.
5156 DAGNodeDeletedListener DeleteListener(
5157 *this,
5158 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
5159
5160 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
5161
5162 // Visit all the nodes. We start in topological order, so that we see
5163 // nodes with their original operands intact. Legalization can produce
5164 // new nodes which may themselves need to be legalized. Iterate until all
5165 // nodes have been legalized.
5166 while (true) {
5167 bool AnyLegalized = false;
5168 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
5169 --NI;
5170
5171 SDNode *N = &*NI;
5172 if (N->use_empty() && N != getRoot().getNode()) {
5173 ++NI;
5174 DeleteNode(N);
5175 continue;
5176 }
5177
5178 if (LegalizedNodes.insert(N).second) {
5179 AnyLegalized = true;
5180 Legalizer.LegalizeOp(N);
5181
5182 if (N->use_empty() && N != getRoot().getNode()) {
5183 ++NI;
5184 DeleteNode(N);
5185 }
5186 }
5187 }
5188 if (!AnyLegalized)
5189 break;
5190
5191 }
5192
5193 // Remove dead nodes now.
5194 RemoveDeadNodes();
5195 }
5196
LegalizeOp(SDNode * N,SmallSetVector<SDNode *,16> & UpdatedNodes)5197 bool SelectionDAG::LegalizeOp(SDNode *N,
5198 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
5199 SmallPtrSet<SDNode *, 16> LegalizedNodes;
5200 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
5201
5202 // Directly insert the node in question, and legalize it. This will recurse
5203 // as needed through operands.
5204 LegalizedNodes.insert(N);
5205 Legalizer.LegalizeOp(N);
5206
5207 return LegalizedNodes.count(N);
5208 }
5209