1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass abstracted struct/union member accesses in order to support
10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11 // which can run on different kernels. In particular, if bpf program tries to
12 // access a particular kernel data structure member, the details of the
13 // intermediate member access will be remembered so bpf loader can do
14 // necessary adjustment right before program loading.
15 //
16 // For example,
17 //
18 //   struct s {
19 //     int a;
20 //     int b;
21 //   };
22 //   struct t {
23 //     struct s c;
24 //     int d;
25 //   };
26 //   struct t e;
27 //
28 // For the member access e.c.b, the compiler will generate code
29 //   &e + 4
30 //
31 // The compile-once run-everywhere instead generates the following code
32 //   r = 4
33 //   &e + r
34 // The "4" in "r = 4" can be changed based on a particular kernel version.
35 // For example, on a particular kernel version, if struct s is changed to
36 //
37 //   struct s {
38 //     int new_field;
39 //     int a;
40 //     int b;
41 //   }
42 //
43 // By repeating the member access on the host, the bpf loader can
44 // adjust "r = 4" as "r = 8".
45 //
46 // This feature relies on the following three intrinsic calls:
47 //   addr = preserve_array_access_index(base, dimension, index)
48 //   addr = preserve_union_access_index(base, di_index)
49 //          !llvm.preserve.access.index <union_ditype>
50 //   addr = preserve_struct_access_index(base, gep_index, di_index)
51 //          !llvm.preserve.access.index <struct_ditype>
52 //
53 // Bitfield member access needs special attention. User cannot take the
54 // address of a bitfield acceess. To facilitate kernel verifier
55 // for easy bitfield code optimization, a new clang intrinsic is introduced:
56 //   uint32_t __builtin_preserve_field_info(member_access, info_kind)
57 // In IR, a chain with two (or more) intrinsic calls will be generated:
58 //   ...
59 //   addr = preserve_struct_access_index(base, 1, 1) !struct s
60 //   uint32_t result = bpf_preserve_field_info(addr, info_kind)
61 //
62 // Suppose the info_kind is FIELD_SIGNEDNESS,
63 // The above two IR intrinsics will be replaced with
64 // a relocatable insn:
65 //   signness = /* signness of member_access */
66 // and signness can be changed by bpf loader based on the
67 // types on the host.
68 //
69 // User can also test whether a field exists or not with
70 //   uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
71 // The field will be always available (result = 1) during initial
72 // compilation, but bpf loader can patch with the correct value
73 // on the target host where the member_access may or may not be available
74 //
75 //===----------------------------------------------------------------------===//
76 
77 #include "BPF.h"
78 #include "BPFCORE.h"
79 #include "BPFTargetMachine.h"
80 #include "llvm/IR/DebugInfoMetadata.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicsBPF.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/PassManager.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include <stack>
93 
94 #define DEBUG_TYPE "bpf-abstract-member-access"
95 
96 namespace llvm {
97 constexpr StringRef BPFCoreSharedInfo::AmaAttr;
98 uint32_t BPFCoreSharedInfo::SeqNum;
99 
insertPassThrough(Module * M,BasicBlock * BB,Instruction * Input,Instruction * Before)100 Instruction *BPFCoreSharedInfo::insertPassThrough(Module *M, BasicBlock *BB,
101                                                   Instruction *Input,
102                                                   Instruction *Before) {
103   Function *Fn = Intrinsic::getDeclaration(
104       M, Intrinsic::bpf_passthrough, {Input->getType(), Input->getType()});
105   Constant *SeqNumVal = ConstantInt::get(Type::getInt32Ty(BB->getContext()),
106                                          BPFCoreSharedInfo::SeqNum++);
107 
108   auto *NewInst = CallInst::Create(Fn, {SeqNumVal, Input});
109   BB->getInstList().insert(Before->getIterator(), NewInst);
110   return NewInst;
111 }
112 } // namespace llvm
113 
114 using namespace llvm;
115 
116 namespace {
117 class BPFAbstractMemberAccess final {
118 public:
BPFAbstractMemberAccess(BPFTargetMachine * TM)119   BPFAbstractMemberAccess(BPFTargetMachine *TM) : TM(TM) {}
120 
121   bool run(Function &F);
122 
123   struct CallInfo {
124     uint32_t Kind;
125     uint32_t AccessIndex;
126     Align RecordAlignment;
127     MDNode *Metadata;
128     Value *Base;
129   };
130   typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
131 
132 private:
133   enum : uint32_t {
134     BPFPreserveArrayAI = 1,
135     BPFPreserveUnionAI = 2,
136     BPFPreserveStructAI = 3,
137     BPFPreserveFieldInfoAI = 4,
138   };
139 
140   TargetMachine *TM;
141   const DataLayout *DL = nullptr;
142   Module *M = nullptr;
143 
144   static std::map<std::string, GlobalVariable *> GEPGlobals;
145   // A map to link preserve_*_access_index instrinsic calls.
146   std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
147   // A map to hold all the base preserve_*_access_index instrinsic calls.
148   // The base call is not an input of any other preserve_*
149   // intrinsics.
150   std::map<CallInst *, CallInfo> BaseAICalls;
151 
152   bool doTransformation(Function &F);
153 
154   void traceAICall(CallInst *Call, CallInfo &ParentInfo);
155   void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
156                     CallInfo &ParentInfo);
157   void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
158                 CallInfo &ParentInfo);
159   void collectAICallChains(Function &F);
160 
161   bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
162   bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
163                       const MDNode *ChildMeta);
164   bool removePreserveAccessIndexIntrinsic(Function &F);
165   void replaceWithGEP(std::vector<CallInst *> &CallList,
166                       uint32_t NumOfZerosIndex, uint32_t DIIndex);
167   bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
168   void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment,
169                           uint32_t &StartBitOffset, uint32_t &EndBitOffset);
170   uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
171                         uint32_t AccessIndex, uint32_t PatchImm,
172                         Align RecordAlignment);
173 
174   Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
175                                  std::string &AccessKey, MDNode *&BaseMeta);
176   MDNode *computeAccessKey(CallInst *Call, CallInfo &CInfo,
177                            std::string &AccessKey, bool &IsInt32Ret);
178   uint64_t getConstant(const Value *IndexValue);
179   bool transformGEPChain(CallInst *Call, CallInfo &CInfo);
180 };
181 
182 std::map<std::string, GlobalVariable *> BPFAbstractMemberAccess::GEPGlobals;
183 
184 class BPFAbstractMemberAccessLegacyPass final : public FunctionPass {
185   BPFTargetMachine *TM;
186 
runOnFunction(Function & F)187   bool runOnFunction(Function &F) override {
188     return BPFAbstractMemberAccess(TM).run(F);
189   }
190 
191 public:
192   static char ID;
193 
194   // Add optional BPFTargetMachine parameter so that BPF backend can add the
195   // phase with target machine to find out the endianness. The default
196   // constructor (without parameters) is used by the pass manager for managing
197   // purposes.
BPFAbstractMemberAccessLegacyPass(BPFTargetMachine * TM=nullptr)198   BPFAbstractMemberAccessLegacyPass(BPFTargetMachine *TM = nullptr)
199       : FunctionPass(ID), TM(TM) {}
200 };
201 
202 } // End anonymous namespace
203 
204 char BPFAbstractMemberAccessLegacyPass::ID = 0;
205 INITIALIZE_PASS(BPFAbstractMemberAccessLegacyPass, DEBUG_TYPE,
206                 "BPF Abstract Member Access", false, false)
207 
createBPFAbstractMemberAccess(BPFTargetMachine * TM)208 FunctionPass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) {
209   return new BPFAbstractMemberAccessLegacyPass(TM);
210 }
211 
run(Function & F)212 bool BPFAbstractMemberAccess::run(Function &F) {
213   LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
214 
215   M = F.getParent();
216   if (!M)
217     return false;
218 
219   // Bail out if no debug info.
220   if (M->debug_compile_units().empty())
221     return false;
222 
223   DL = &M->getDataLayout();
224   return doTransformation(F);
225 }
226 
SkipDIDerivedTag(unsigned Tag,bool skipTypedef)227 static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) {
228   if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
229       Tag != dwarf::DW_TAG_volatile_type &&
230       Tag != dwarf::DW_TAG_restrict_type &&
231       Tag != dwarf::DW_TAG_member)
232     return false;
233   if (Tag == dwarf::DW_TAG_typedef && !skipTypedef)
234     return false;
235   return true;
236 }
237 
stripQualifiers(DIType * Ty,bool skipTypedef=true)238 static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) {
239   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
240     if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef))
241       break;
242     Ty = DTy->getBaseType();
243   }
244   return Ty;
245 }
246 
stripQualifiers(const DIType * Ty)247 static const DIType * stripQualifiers(const DIType *Ty) {
248   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
249     if (!SkipDIDerivedTag(DTy->getTag(), true))
250       break;
251     Ty = DTy->getBaseType();
252   }
253   return Ty;
254 }
255 
calcArraySize(const DICompositeType * CTy,uint32_t StartDim)256 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
257   DINodeArray Elements = CTy->getElements();
258   uint32_t DimSize = 1;
259   for (uint32_t I = StartDim; I < Elements.size(); ++I) {
260     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
261       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
262         const DISubrange *SR = cast<DISubrange>(Element);
263         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
264         DimSize *= CI->getSExtValue();
265       }
266   }
267 
268   return DimSize;
269 }
270 
271 /// Check whether a call is a preserve_*_access_index intrinsic call or not.
IsPreserveDIAccessIndexCall(const CallInst * Call,CallInfo & CInfo)272 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
273                                                           CallInfo &CInfo) {
274   if (!Call)
275     return false;
276 
277   const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand());
278   if (!GV)
279     return false;
280   if (GV->getName().startswith("llvm.preserve.array.access.index")) {
281     CInfo.Kind = BPFPreserveArrayAI;
282     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
283     if (!CInfo.Metadata)
284       report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
285     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
286     CInfo.Base = Call->getArgOperand(0);
287     CInfo.RecordAlignment =
288         DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType());
289     return true;
290   }
291   if (GV->getName().startswith("llvm.preserve.union.access.index")) {
292     CInfo.Kind = BPFPreserveUnionAI;
293     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
294     if (!CInfo.Metadata)
295       report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
296     CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
297     CInfo.Base = Call->getArgOperand(0);
298     CInfo.RecordAlignment =
299         DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType());
300     return true;
301   }
302   if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
303     CInfo.Kind = BPFPreserveStructAI;
304     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
305     if (!CInfo.Metadata)
306       report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
307     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
308     CInfo.Base = Call->getArgOperand(0);
309     CInfo.RecordAlignment =
310         DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType());
311     return true;
312   }
313   if (GV->getName().startswith("llvm.bpf.preserve.field.info")) {
314     CInfo.Kind = BPFPreserveFieldInfoAI;
315     CInfo.Metadata = nullptr;
316     // Check validity of info_kind as clang did not check this.
317     uint64_t InfoKind = getConstant(Call->getArgOperand(1));
318     if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND)
319       report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
320     CInfo.AccessIndex = InfoKind;
321     return true;
322   }
323   if (GV->getName().startswith("llvm.bpf.preserve.type.info")) {
324     CInfo.Kind = BPFPreserveFieldInfoAI;
325     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
326     if (!CInfo.Metadata)
327       report_fatal_error("Missing metadata for llvm.preserve.type.info intrinsic");
328     uint64_t Flag = getConstant(Call->getArgOperand(1));
329     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_TYPE_INFO_FLAG)
330       report_fatal_error("Incorrect flag for llvm.bpf.preserve.type.info intrinsic");
331     if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_EXISTENCE)
332       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_EXISTENCE;
333     else
334       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_SIZE;
335     return true;
336   }
337   if (GV->getName().startswith("llvm.bpf.preserve.enum.value")) {
338     CInfo.Kind = BPFPreserveFieldInfoAI;
339     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
340     if (!CInfo.Metadata)
341       report_fatal_error("Missing metadata for llvm.preserve.enum.value intrinsic");
342     uint64_t Flag = getConstant(Call->getArgOperand(2));
343     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_ENUM_VALUE_FLAG)
344       report_fatal_error("Incorrect flag for llvm.bpf.preserve.enum.value intrinsic");
345     if (Flag == BPFCoreSharedInfo::PRESERVE_ENUM_VALUE_EXISTENCE)
346       CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE;
347     else
348       CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE;
349     return true;
350   }
351 
352   return false;
353 }
354 
replaceWithGEP(std::vector<CallInst * > & CallList,uint32_t DimensionIndex,uint32_t GEPIndex)355 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
356                                              uint32_t DimensionIndex,
357                                              uint32_t GEPIndex) {
358   for (auto Call : CallList) {
359     uint32_t Dimension = 1;
360     if (DimensionIndex > 0)
361       Dimension = getConstant(Call->getArgOperand(DimensionIndex));
362 
363     Constant *Zero =
364         ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
365     SmallVector<Value *, 4> IdxList;
366     for (unsigned I = 0; I < Dimension; ++I)
367       IdxList.push_back(Zero);
368     IdxList.push_back(Call->getArgOperand(GEPIndex));
369 
370     auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0),
371                                                   IdxList, "", Call);
372     Call->replaceAllUsesWith(GEP);
373     Call->eraseFromParent();
374   }
375 }
376 
removePreserveAccessIndexIntrinsic(Function & F)377 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Function &F) {
378   std::vector<CallInst *> PreserveArrayIndexCalls;
379   std::vector<CallInst *> PreserveUnionIndexCalls;
380   std::vector<CallInst *> PreserveStructIndexCalls;
381   bool Found = false;
382 
383   for (auto &BB : F)
384     for (auto &I : BB) {
385       auto *Call = dyn_cast<CallInst>(&I);
386       CallInfo CInfo;
387       if (!IsPreserveDIAccessIndexCall(Call, CInfo))
388         continue;
389 
390       Found = true;
391       if (CInfo.Kind == BPFPreserveArrayAI)
392         PreserveArrayIndexCalls.push_back(Call);
393       else if (CInfo.Kind == BPFPreserveUnionAI)
394         PreserveUnionIndexCalls.push_back(Call);
395       else
396         PreserveStructIndexCalls.push_back(Call);
397     }
398 
399   // do the following transformation:
400   // . addr = preserve_array_access_index(base, dimension, index)
401   //   is transformed to
402   //     addr = GEP(base, dimenion's zero's, index)
403   // . addr = preserve_union_access_index(base, di_index)
404   //   is transformed to
405   //     addr = base, i.e., all usages of "addr" are replaced by "base".
406   // . addr = preserve_struct_access_index(base, gep_index, di_index)
407   //   is transformed to
408   //     addr = GEP(base, 0, gep_index)
409   replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
410   replaceWithGEP(PreserveStructIndexCalls, 0, 1);
411   for (auto Call : PreserveUnionIndexCalls) {
412     Call->replaceAllUsesWith(Call->getArgOperand(0));
413     Call->eraseFromParent();
414   }
415 
416   return Found;
417 }
418 
419 /// Check whether the access index chain is valid. We check
420 /// here because there may be type casts between two
421 /// access indexes. We want to ensure memory access still valid.
IsValidAIChain(const MDNode * ParentType,uint32_t ParentAI,const MDNode * ChildType)422 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
423                                              uint32_t ParentAI,
424                                              const MDNode *ChildType) {
425   if (!ChildType)
426     return true; // preserve_field_info, no type comparison needed.
427 
428   const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
429   const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
430 
431   // Child is a derived/pointer type, which is due to type casting.
432   // Pointer type cannot be in the middle of chain.
433   if (isa<DIDerivedType>(CType))
434     return false;
435 
436   // Parent is a pointer type.
437   if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
438     if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
439       return false;
440     return stripQualifiers(PtrTy->getBaseType()) == CType;
441   }
442 
443   // Otherwise, struct/union/array types
444   const auto *PTy = dyn_cast<DICompositeType>(PType);
445   const auto *CTy = dyn_cast<DICompositeType>(CType);
446   assert(PTy && CTy && "ParentType or ChildType is null or not composite");
447 
448   uint32_t PTyTag = PTy->getTag();
449   assert(PTyTag == dwarf::DW_TAG_array_type ||
450          PTyTag == dwarf::DW_TAG_structure_type ||
451          PTyTag == dwarf::DW_TAG_union_type);
452 
453   uint32_t CTyTag = CTy->getTag();
454   assert(CTyTag == dwarf::DW_TAG_array_type ||
455          CTyTag == dwarf::DW_TAG_structure_type ||
456          CTyTag == dwarf::DW_TAG_union_type);
457 
458   // Multi dimensional arrays, base element should be the same
459   if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
460     return PTy->getBaseType() == CTy->getBaseType();
461 
462   DIType *Ty;
463   if (PTyTag == dwarf::DW_TAG_array_type)
464     Ty = PTy->getBaseType();
465   else
466     Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
467 
468   return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
469 }
470 
traceAICall(CallInst * Call,CallInfo & ParentInfo)471 void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
472                                           CallInfo &ParentInfo) {
473   for (User *U : Call->users()) {
474     Instruction *Inst = dyn_cast<Instruction>(U);
475     if (!Inst)
476       continue;
477 
478     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
479       traceBitCast(BI, Call, ParentInfo);
480     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
481       CallInfo ChildInfo;
482 
483       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
484           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
485                          ChildInfo.Metadata)) {
486         AIChain[CI] = std::make_pair(Call, ParentInfo);
487         traceAICall(CI, ChildInfo);
488       } else {
489         BaseAICalls[Call] = ParentInfo;
490       }
491     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
492       if (GI->hasAllZeroIndices())
493         traceGEP(GI, Call, ParentInfo);
494       else
495         BaseAICalls[Call] = ParentInfo;
496     } else {
497       BaseAICalls[Call] = ParentInfo;
498     }
499   }
500 }
501 
traceBitCast(BitCastInst * BitCast,CallInst * Parent,CallInfo & ParentInfo)502 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
503                                            CallInst *Parent,
504                                            CallInfo &ParentInfo) {
505   for (User *U : BitCast->users()) {
506     Instruction *Inst = dyn_cast<Instruction>(U);
507     if (!Inst)
508       continue;
509 
510     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
511       traceBitCast(BI, Parent, ParentInfo);
512     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
513       CallInfo ChildInfo;
514       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
515           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
516                          ChildInfo.Metadata)) {
517         AIChain[CI] = std::make_pair(Parent, ParentInfo);
518         traceAICall(CI, ChildInfo);
519       } else {
520         BaseAICalls[Parent] = ParentInfo;
521       }
522     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
523       if (GI->hasAllZeroIndices())
524         traceGEP(GI, Parent, ParentInfo);
525       else
526         BaseAICalls[Parent] = ParentInfo;
527     } else {
528       BaseAICalls[Parent] = ParentInfo;
529     }
530   }
531 }
532 
traceGEP(GetElementPtrInst * GEP,CallInst * Parent,CallInfo & ParentInfo)533 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
534                                        CallInfo &ParentInfo) {
535   for (User *U : GEP->users()) {
536     Instruction *Inst = dyn_cast<Instruction>(U);
537     if (!Inst)
538       continue;
539 
540     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
541       traceBitCast(BI, Parent, ParentInfo);
542     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
543       CallInfo ChildInfo;
544       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
545           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
546                          ChildInfo.Metadata)) {
547         AIChain[CI] = std::make_pair(Parent, ParentInfo);
548         traceAICall(CI, ChildInfo);
549       } else {
550         BaseAICalls[Parent] = ParentInfo;
551       }
552     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
553       if (GI->hasAllZeroIndices())
554         traceGEP(GI, Parent, ParentInfo);
555       else
556         BaseAICalls[Parent] = ParentInfo;
557     } else {
558       BaseAICalls[Parent] = ParentInfo;
559     }
560   }
561 }
562 
collectAICallChains(Function & F)563 void BPFAbstractMemberAccess::collectAICallChains(Function &F) {
564   AIChain.clear();
565   BaseAICalls.clear();
566 
567   for (auto &BB : F)
568     for (auto &I : BB) {
569       CallInfo CInfo;
570       auto *Call = dyn_cast<CallInst>(&I);
571       if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
572           AIChain.find(Call) != AIChain.end())
573         continue;
574 
575       traceAICall(Call, CInfo);
576     }
577 }
578 
getConstant(const Value * IndexValue)579 uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) {
580   const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
581   assert(CV);
582   return CV->getValue().getZExtValue();
583 }
584 
585 /// Get the start and the end of storage offset for \p MemberTy.
GetStorageBitRange(DIDerivedType * MemberTy,Align RecordAlignment,uint32_t & StartBitOffset,uint32_t & EndBitOffset)586 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy,
587                                                  Align RecordAlignment,
588                                                  uint32_t &StartBitOffset,
589                                                  uint32_t &EndBitOffset) {
590   uint32_t MemberBitSize = MemberTy->getSizeInBits();
591   uint32_t MemberBitOffset = MemberTy->getOffsetInBits();
592   uint32_t AlignBits = RecordAlignment.value() * 8;
593   if (RecordAlignment > 8 || MemberBitSize > AlignBits)
594     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
595                        "requiring too big alignment");
596 
597   StartBitOffset = MemberBitOffset & ~(AlignBits - 1);
598   if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize))
599     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
600                        "cross alignment boundary");
601   EndBitOffset = StartBitOffset + AlignBits;
602 }
603 
GetFieldInfo(uint32_t InfoKind,DICompositeType * CTy,uint32_t AccessIndex,uint32_t PatchImm,Align RecordAlignment)604 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
605                                                DICompositeType *CTy,
606                                                uint32_t AccessIndex,
607                                                uint32_t PatchImm,
608                                                Align RecordAlignment) {
609   if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
610       return 1;
611 
612   uint32_t Tag = CTy->getTag();
613   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) {
614     if (Tag == dwarf::DW_TAG_array_type) {
615       auto *EltTy = stripQualifiers(CTy->getBaseType());
616       PatchImm += AccessIndex * calcArraySize(CTy, 1) *
617                   (EltTy->getSizeInBits() >> 3);
618     } else if (Tag == dwarf::DW_TAG_structure_type) {
619       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
620       if (!MemberTy->isBitField()) {
621         PatchImm += MemberTy->getOffsetInBits() >> 3;
622       } else {
623         unsigned SBitOffset, NextSBitOffset;
624         GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset,
625                            NextSBitOffset);
626         PatchImm += SBitOffset >> 3;
627       }
628     }
629     return PatchImm;
630   }
631 
632   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) {
633     if (Tag == dwarf::DW_TAG_array_type) {
634       auto *EltTy = stripQualifiers(CTy->getBaseType());
635       return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
636     } else {
637       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
638       uint32_t SizeInBits = MemberTy->getSizeInBits();
639       if (!MemberTy->isBitField())
640         return SizeInBits >> 3;
641 
642       unsigned SBitOffset, NextSBitOffset;
643       GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
644       SizeInBits = NextSBitOffset - SBitOffset;
645       if (SizeInBits & (SizeInBits - 1))
646         report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
647       return SizeInBits >> 3;
648     }
649   }
650 
651   if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) {
652     const DIType *BaseTy;
653     if (Tag == dwarf::DW_TAG_array_type) {
654       // Signedness only checked when final array elements are accessed.
655       if (CTy->getElements().size() != 1)
656         report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
657       BaseTy = stripQualifiers(CTy->getBaseType());
658     } else {
659       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
660       BaseTy = stripQualifiers(MemberTy->getBaseType());
661     }
662 
663     // Only basic types and enum types have signedness.
664     const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
665     while (!BTy) {
666       const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
667       // Report an error if the field expression does not have signedness.
668       if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
669         report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
670       BaseTy = stripQualifiers(CompTy->getBaseType());
671       BTy = dyn_cast<DIBasicType>(BaseTy);
672     }
673     uint32_t Encoding = BTy->getEncoding();
674     return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
675   }
676 
677   if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) {
678     // The value is loaded into a value with FIELD_BYTE_SIZE size,
679     // and then zero or sign extended to U64.
680     // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
681     // to extract the original value.
682     const Triple &Triple = TM->getTargetTriple();
683     DIDerivedType *MemberTy = nullptr;
684     bool IsBitField = false;
685     uint32_t SizeInBits;
686 
687     if (Tag == dwarf::DW_TAG_array_type) {
688       auto *EltTy = stripQualifiers(CTy->getBaseType());
689       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
690     } else {
691       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
692       SizeInBits = MemberTy->getSizeInBits();
693       IsBitField = MemberTy->isBitField();
694     }
695 
696     if (!IsBitField) {
697       if (SizeInBits > 64)
698         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
699       return 64 - SizeInBits;
700     }
701 
702     unsigned SBitOffset, NextSBitOffset;
703     GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
704     if (NextSBitOffset - SBitOffset > 64)
705       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
706 
707     unsigned OffsetInBits = MemberTy->getOffsetInBits();
708     if (Triple.getArch() == Triple::bpfel)
709       return SBitOffset + 64 - OffsetInBits - SizeInBits;
710     else
711       return OffsetInBits + 64 - NextSBitOffset;
712   }
713 
714   if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) {
715     DIDerivedType *MemberTy = nullptr;
716     bool IsBitField = false;
717     uint32_t SizeInBits;
718     if (Tag == dwarf::DW_TAG_array_type) {
719       auto *EltTy = stripQualifiers(CTy->getBaseType());
720       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
721     } else {
722       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
723       SizeInBits = MemberTy->getSizeInBits();
724       IsBitField = MemberTy->isBitField();
725     }
726 
727     if (!IsBitField) {
728       if (SizeInBits > 64)
729         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
730       return 64 - SizeInBits;
731     }
732 
733     unsigned SBitOffset, NextSBitOffset;
734     GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
735     if (NextSBitOffset - SBitOffset > 64)
736       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
737 
738     return 64 - SizeInBits;
739   }
740 
741   llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
742 }
743 
HasPreserveFieldInfoCall(CallInfoStack & CallStack)744 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
745   // This is called in error return path, no need to maintain CallStack.
746   while (CallStack.size()) {
747     auto StackElem = CallStack.top();
748     if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
749       return true;
750     CallStack.pop();
751   }
752   return false;
753 }
754 
755 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
756 /// pointer of the first preserve_*_access_index call, and construct the access
757 /// string, which will be the name of a global variable.
computeBaseAndAccessKey(CallInst * Call,CallInfo & CInfo,std::string & AccessKey,MDNode * & TypeMeta)758 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
759                                                         CallInfo &CInfo,
760                                                         std::string &AccessKey,
761                                                         MDNode *&TypeMeta) {
762   Value *Base = nullptr;
763   std::string TypeName;
764   CallInfoStack CallStack;
765 
766   // Put the access chain into a stack with the top as the head of the chain.
767   while (Call) {
768     CallStack.push(std::make_pair(Call, CInfo));
769     CInfo = AIChain[Call].second;
770     Call = AIChain[Call].first;
771   }
772 
773   // The access offset from the base of the head of chain is also
774   // calculated here as all debuginfo types are available.
775 
776   // Get type name and calculate the first index.
777   // We only want to get type name from typedef, structure or union.
778   // If user wants a relocation like
779   //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
780   // or
781   //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
782   // we will skip them.
783   uint32_t FirstIndex = 0;
784   uint32_t PatchImm = 0; // AccessOffset or the requested field info
785   uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET;
786   while (CallStack.size()) {
787     auto StackElem = CallStack.top();
788     Call = StackElem.first;
789     CInfo = StackElem.second;
790 
791     if (!Base)
792       Base = CInfo.Base;
793 
794     DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata),
795                                               false);
796     DIType *Ty = stripQualifiers(PossibleTypeDef);
797     if (CInfo.Kind == BPFPreserveUnionAI ||
798         CInfo.Kind == BPFPreserveStructAI) {
799       // struct or union type. If the typedef is in the metadata, always
800       // use the typedef.
801       TypeName = std::string(PossibleTypeDef->getName());
802       TypeMeta = PossibleTypeDef;
803       PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
804       break;
805     }
806 
807     assert(CInfo.Kind == BPFPreserveArrayAI);
808 
809     // Array entries will always be consumed for accumulative initial index.
810     CallStack.pop();
811 
812     // BPFPreserveArrayAI
813     uint64_t AccessIndex = CInfo.AccessIndex;
814 
815     DIType *BaseTy = nullptr;
816     bool CheckElemType = false;
817     if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
818       // array type
819       assert(CTy->getTag() == dwarf::DW_TAG_array_type);
820 
821 
822       FirstIndex += AccessIndex * calcArraySize(CTy, 1);
823       BaseTy = stripQualifiers(CTy->getBaseType());
824       CheckElemType = CTy->getElements().size() == 1;
825     } else {
826       // pointer type
827       auto *DTy = cast<DIDerivedType>(Ty);
828       assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
829 
830       BaseTy = stripQualifiers(DTy->getBaseType());
831       CTy = dyn_cast<DICompositeType>(BaseTy);
832       if (!CTy) {
833         CheckElemType = true;
834       } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
835         FirstIndex += AccessIndex;
836         CheckElemType = true;
837       } else {
838         FirstIndex += AccessIndex * calcArraySize(CTy, 0);
839       }
840     }
841 
842     if (CheckElemType) {
843       auto *CTy = dyn_cast<DICompositeType>(BaseTy);
844       if (!CTy) {
845         if (HasPreserveFieldInfoCall(CallStack))
846           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
847         return nullptr;
848       }
849 
850       unsigned CTag = CTy->getTag();
851       if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
852         TypeName = std::string(CTy->getName());
853       } else {
854         if (HasPreserveFieldInfoCall(CallStack))
855           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
856         return nullptr;
857       }
858       TypeMeta = CTy;
859       PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
860       break;
861     }
862   }
863   assert(TypeName.size());
864   AccessKey += std::to_string(FirstIndex);
865 
866   // Traverse the rest of access chain to complete offset calculation
867   // and access key construction.
868   while (CallStack.size()) {
869     auto StackElem = CallStack.top();
870     CInfo = StackElem.second;
871     CallStack.pop();
872 
873     if (CInfo.Kind == BPFPreserveFieldInfoAI) {
874       InfoKind = CInfo.AccessIndex;
875       break;
876     }
877 
878     // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
879     // the action will be extracting field info.
880     if (CallStack.size()) {
881       auto StackElem2 = CallStack.top();
882       CallInfo CInfo2 = StackElem2.second;
883       if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
884         InfoKind = CInfo2.AccessIndex;
885         assert(CallStack.size() == 1);
886       }
887     }
888 
889     // Access Index
890     uint64_t AccessIndex = CInfo.AccessIndex;
891     AccessKey += ":" + std::to_string(AccessIndex);
892 
893     MDNode *MDN = CInfo.Metadata;
894     // At this stage, it cannot be pointer type.
895     auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
896     PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm,
897                             CInfo.RecordAlignment);
898   }
899 
900   // Access key is the
901   //   "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" +
902   //   access string,
903   // uniquely identifying one relocation.
904   // The prefix "llvm." indicates this is a temporary global, which should
905   // not be emitted to ELF file.
906   AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" +
907               std::to_string(PatchImm) + "$" + AccessKey;
908 
909   return Base;
910 }
911 
computeAccessKey(CallInst * Call,CallInfo & CInfo,std::string & AccessKey,bool & IsInt32Ret)912 MDNode *BPFAbstractMemberAccess::computeAccessKey(CallInst *Call,
913                                                   CallInfo &CInfo,
914                                                   std::string &AccessKey,
915                                                   bool &IsInt32Ret) {
916   DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata), false);
917   assert(!Ty->getName().empty());
918 
919   int64_t PatchImm;
920   std::string AccessStr("0");
921   if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_EXISTENCE) {
922     PatchImm = 1;
923   } else if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_SIZE) {
924     // typedef debuginfo type has size 0, get the eventual base type.
925     DIType *BaseTy = stripQualifiers(Ty, true);
926     PatchImm = BaseTy->getSizeInBits() / 8;
927   } else {
928     // ENUM_VALUE_EXISTENCE and ENUM_VALUE
929     IsInt32Ret = false;
930 
931     const auto *CE = cast<ConstantExpr>(Call->getArgOperand(1));
932     const GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
933     assert(GV->hasInitializer());
934     const ConstantDataArray *DA = cast<ConstantDataArray>(GV->getInitializer());
935     assert(DA->isString());
936     StringRef ValueStr = DA->getAsString();
937 
938     // ValueStr format: <EnumeratorStr>:<Value>
939     size_t Separator = ValueStr.find_first_of(':');
940     StringRef EnumeratorStr = ValueStr.substr(0, Separator);
941 
942     // Find enumerator index in the debuginfo
943     DIType *BaseTy = stripQualifiers(Ty, true);
944     const auto *CTy = cast<DICompositeType>(BaseTy);
945     assert(CTy->getTag() == dwarf::DW_TAG_enumeration_type);
946     int EnumIndex = 0;
947     for (const auto Element : CTy->getElements()) {
948       const auto *Enum = cast<DIEnumerator>(Element);
949       if (Enum->getName() == EnumeratorStr) {
950         AccessStr = std::to_string(EnumIndex);
951         break;
952       }
953       EnumIndex++;
954     }
955 
956     if (CInfo.AccessIndex == BPFCoreSharedInfo::ENUM_VALUE) {
957       StringRef EValueStr = ValueStr.substr(Separator + 1);
958       PatchImm = std::stoll(std::string(EValueStr));
959     } else {
960       PatchImm = 1;
961     }
962   }
963 
964   AccessKey = "llvm." + Ty->getName().str() + ":" +
965               std::to_string(CInfo.AccessIndex) + std::string(":") +
966               std::to_string(PatchImm) + std::string("$") + AccessStr;
967 
968   return Ty;
969 }
970 
971 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do
972 /// transformation to a chain of relocable GEPs.
transformGEPChain(CallInst * Call,CallInfo & CInfo)973 bool BPFAbstractMemberAccess::transformGEPChain(CallInst *Call,
974                                                 CallInfo &CInfo) {
975   std::string AccessKey;
976   MDNode *TypeMeta;
977   Value *Base = nullptr;
978   bool IsInt32Ret;
979 
980   IsInt32Ret = CInfo.Kind == BPFPreserveFieldInfoAI;
981   if (CInfo.Kind == BPFPreserveFieldInfoAI && CInfo.Metadata) {
982     TypeMeta = computeAccessKey(Call, CInfo, AccessKey, IsInt32Ret);
983   } else {
984     Base = computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
985     if (!Base)
986       return false;
987   }
988 
989   BasicBlock *BB = Call->getParent();
990   GlobalVariable *GV;
991 
992   if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
993     IntegerType *VarType;
994     if (IsInt32Ret)
995       VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
996     else
997       VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr or enum value
998 
999     GV = new GlobalVariable(*M, VarType, false, GlobalVariable::ExternalLinkage,
1000                             NULL, AccessKey);
1001     GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
1002     GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
1003     GEPGlobals[AccessKey] = GV;
1004   } else {
1005     GV = GEPGlobals[AccessKey];
1006   }
1007 
1008   if (CInfo.Kind == BPFPreserveFieldInfoAI) {
1009     // Load the global variable which represents the returned field info.
1010     LoadInst *LDInst;
1011     if (IsInt32Ret)
1012       LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "", Call);
1013     else
1014       LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1015 
1016     Instruction *PassThroughInst =
1017         BPFCoreSharedInfo::insertPassThrough(M, BB, LDInst, Call);
1018     Call->replaceAllUsesWith(PassThroughInst);
1019     Call->eraseFromParent();
1020     return true;
1021   }
1022 
1023   // For any original GEP Call and Base %2 like
1024   //   %4 = bitcast %struct.net_device** %dev1 to i64*
1025   // it is transformed to:
1026   //   %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1027   //   %7 = bitcast %struct.sk_buff* %2 to i8*
1028   //   %8 = getelementptr i8, i8* %7, %6
1029   //   %9 = bitcast i8* %8 to i64*
1030   //   using %9 instead of %4
1031   // The original Call inst is removed.
1032 
1033   // Load the global variable.
1034   auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1035 
1036   // Generate a BitCast
1037   auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
1038   BB->getInstList().insert(Call->getIterator(), BCInst);
1039 
1040   // Generate a GetElementPtr
1041   auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
1042                                         BCInst, LDInst);
1043   BB->getInstList().insert(Call->getIterator(), GEP);
1044 
1045   // Generate a BitCast
1046   auto *BCInst2 = new BitCastInst(GEP, Call->getType());
1047   BB->getInstList().insert(Call->getIterator(), BCInst2);
1048 
1049   // For the following code,
1050   //    Block0:
1051   //      ...
1052   //      if (...) goto Block1 else ...
1053   //    Block1:
1054   //      %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1055   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1056   //      %8 = getelementptr i8, i8* %7, %6
1057   //      ...
1058   //      goto CommonExit
1059   //    Block2:
1060   //      ...
1061   //      if (...) goto Block3 else ...
1062   //    Block3:
1063   //      %6 = load llvm.bpf_map:0:40$0:0:0:2:0
1064   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1065   //      %8 = getelementptr i8, i8* %7, %6
1066   //      ...
1067   //      goto CommonExit
1068   //    CommonExit
1069   // SimplifyCFG may generate:
1070   //    Block0:
1071   //      ...
1072   //      if (...) goto Block_Common else ...
1073   //     Block2:
1074   //       ...
1075   //      if (...) goto Block_Common else ...
1076   //    Block_Common:
1077   //      PHI = [llvm.sk_buff:0:50$0:0:0:2:0, llvm.bpf_map:0:40$0:0:0:2:0]
1078   //      %6 = load PHI
1079   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1080   //      %8 = getelementptr i8, i8* %7, %6
1081   //      ...
1082   //      goto CommonExit
1083   //  For the above code, we cannot perform proper relocation since
1084   //  "load PHI" has two possible relocations.
1085   //
1086   // To prevent above tail merging, we use __builtin_bpf_passthrough()
1087   // where one of its parameters is a seq_num. Since two
1088   // __builtin_bpf_passthrough() funcs will always have different seq_num,
1089   // tail merging cannot happen. The __builtin_bpf_passthrough() will be
1090   // removed in the beginning of Target IR passes.
1091   //
1092   // This approach is also used in other places when global var
1093   // representing a relocation is used.
1094   Instruction *PassThroughInst =
1095       BPFCoreSharedInfo::insertPassThrough(M, BB, BCInst2, Call);
1096   Call->replaceAllUsesWith(PassThroughInst);
1097   Call->eraseFromParent();
1098 
1099   return true;
1100 }
1101 
doTransformation(Function & F)1102 bool BPFAbstractMemberAccess::doTransformation(Function &F) {
1103   bool Transformed = false;
1104 
1105   // Collect PreserveDIAccessIndex Intrinsic call chains.
1106   // The call chains will be used to generate the access
1107   // patterns similar to GEP.
1108   collectAICallChains(F);
1109 
1110   for (auto &C : BaseAICalls)
1111     Transformed = transformGEPChain(C.first, C.second) || Transformed;
1112 
1113   return removePreserveAccessIndexIntrinsic(F) || Transformed;
1114 }
1115 
1116 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)1117 BPFAbstractMemberAccessPass::run(Function &F, FunctionAnalysisManager &AM) {
1118   return BPFAbstractMemberAccess(TM).run(F) ? PreservedAnalyses::none()
1119                                             : PreservedAnalyses::all();
1120 }
1121