1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Hexagon specific subclass of TargetSubtarget.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "HexagonSubtarget.h"
14 #include "Hexagon.h"
15 #include "HexagonInstrInfo.h"
16 #include "HexagonRegisterInfo.h"
17 #include "MCTargetDesc/HexagonMCTargetDesc.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineScheduler.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <map>
33
34 using namespace llvm;
35
36 #define DEBUG_TYPE "hexagon-subtarget"
37
38 #define GET_SUBTARGETINFO_CTOR
39 #define GET_SUBTARGETINFO_TARGET_DESC
40 #include "HexagonGenSubtargetInfo.inc"
41
42 static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
43 cl::Hidden, cl::ZeroOrMore, cl::init(true));
44
45 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
46 cl::Hidden, cl::ZeroOrMore, cl::init(false));
47
48 static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
49 cl::Hidden, cl::ZeroOrMore, cl::init(true),
50 cl::desc("Enable the scheduler to generate .cur"));
51
52 static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
53 cl::Hidden, cl::ZeroOrMore, cl::init(false),
54 cl::desc("Disable Hexagon MI Scheduling"));
55
56 static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
57 cl::Hidden, cl::ZeroOrMore, cl::init(true),
58 cl::desc("Enable subregister liveness tracking for Hexagon"));
59
60 static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
61 cl::Hidden, cl::ZeroOrMore, cl::init(false),
62 cl::desc("If present, forces/disables the use of long calls"));
63
64 static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls",
65 cl::Hidden, cl::ZeroOrMore, cl::init(false),
66 cl::desc("Consider calls to be predicable"));
67
68 static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
69 cl::Hidden, cl::ZeroOrMore, cl::init(true));
70
71 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
72 cl::Hidden, cl::ZeroOrMore, cl::init(true));
73
74 static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict",
75 cl::Hidden, cl::ZeroOrMore, cl::init(true),
76 cl::desc("Enable checking for cache bank conflicts"));
77
HexagonSubtarget(const Triple & TT,StringRef CPU,StringRef FS,const TargetMachine & TM)78 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
79 StringRef FS, const TargetMachine &TM)
80 : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
81 OptLevel(TM.getOptLevel()),
82 CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))),
83 TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
84 RegInfo(getHwMode()), TLInfo(TM, *this),
85 InstrItins(getInstrItineraryForCPU(CPUString)) {
86 Hexagon_MC::addArchSubtarget(this, FS);
87 // Beware of the default constructor of InstrItineraryData: it will
88 // reset all members to 0.
89 assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
90 }
91
92 HexagonSubtarget &
initializeSubtargetDependencies(StringRef CPU,StringRef FS)93 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
94 Optional<Hexagon::ArchEnum> ArchVer =
95 Hexagon::GetCpu(Hexagon::CpuTable, CPUString);
96 if (ArchVer)
97 HexagonArchVersion = *ArchVer;
98 else
99 llvm_unreachable("Unrecognized Hexagon processor version");
100
101 UseHVX128BOps = false;
102 UseHVX64BOps = false;
103 UseAudioOps = false;
104 UseLongCalls = false;
105
106 UseBSBScheduling = hasV60Ops() && EnableBSBSched;
107
108 ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FS);
109
110 if (OverrideLongCalls.getPosition())
111 UseLongCalls = OverrideLongCalls;
112
113 if (isTinyCore()) {
114 // Tiny core has a single thread, so back-to-back scheduling is enabled by
115 // default.
116 if (!EnableBSBSched.getPosition())
117 UseBSBScheduling = false;
118 }
119
120 FeatureBitset Features = getFeatureBits();
121 if (HexagonDisableDuplex)
122 setFeatureBits(Features.reset(Hexagon::FeatureDuplex));
123 setFeatureBits(Hexagon_MC::completeHVXFeatures(Features));
124
125 return *this;
126 }
127
isHVXElementType(MVT Ty,bool IncludeBool) const128 bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const {
129 if (!useHVXOps())
130 return false;
131 if (Ty.isVector())
132 Ty = Ty.getVectorElementType();
133 if (IncludeBool && Ty == MVT::i1)
134 return true;
135 ArrayRef<MVT> ElemTypes = getHVXElementTypes();
136 return llvm::is_contained(ElemTypes, Ty);
137 }
138
isHVXVectorType(MVT VecTy,bool IncludeBool) const139 bool HexagonSubtarget::isHVXVectorType(MVT VecTy, bool IncludeBool) const {
140 if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector())
141 return false;
142 MVT ElemTy = VecTy.getVectorElementType();
143 if (!IncludeBool && ElemTy == MVT::i1)
144 return false;
145
146 unsigned HwLen = getVectorLength();
147 unsigned NumElems = VecTy.getVectorNumElements();
148 ArrayRef<MVT> ElemTypes = getHVXElementTypes();
149
150 if (IncludeBool && ElemTy == MVT::i1) {
151 // Boolean HVX vector types are formed from regular HVX vector types
152 // by replacing the element type with i1.
153 for (MVT T : ElemTypes)
154 if (NumElems * T.getSizeInBits() == 8 * HwLen)
155 return true;
156 return false;
157 }
158
159 unsigned VecWidth = VecTy.getSizeInBits();
160 if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen)
161 return false;
162 return llvm::is_contained(ElemTypes, ElemTy);
163 }
164
isTypeForHVX(Type * VecTy,bool IncludeBool) const165 bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const {
166 if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy))
167 return false;
168 // Avoid types like <2 x i32*>.
169 if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
170 return false;
171 // The given type may be something like <17 x i32>, which is not MVT,
172 // but can be represented as (non-simple) EVT.
173 EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false);
174 if (Ty.getSizeInBits() <= 64 || !Ty.getVectorElementType().isSimple())
175 return false;
176
177 auto isHvxTy = [this, IncludeBool](MVT SimpleTy) {
178 if (isHVXVectorType(SimpleTy, IncludeBool))
179 return true;
180 auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy);
181 return Action == TargetLoweringBase::TypeWidenVector;
182 };
183
184 // Round up EVT to have power-of-2 elements, and keep checking if it
185 // qualifies for HVX, dividing it in half after each step.
186 MVT ElemTy = Ty.getVectorElementType().getSimpleVT();
187 unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements());
188 while (ElemTy.getSizeInBits() * VecLen > 64) {
189 MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen);
190 if (SimpleTy.isValid() && isHvxTy(SimpleTy))
191 return true;
192 VecLen /= 2;
193 }
194
195 return false;
196 }
197
apply(ScheduleDAGInstrs * DAG)198 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
199 for (SUnit &SU : DAG->SUnits) {
200 if (!SU.isInstr())
201 continue;
202 SmallVector<SDep, 4> Erase;
203 for (auto &D : SU.Preds)
204 if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
205 Erase.push_back(D);
206 for (auto &E : Erase)
207 SU.removePred(E);
208 }
209 }
210
apply(ScheduleDAGInstrs * DAG)211 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
212 for (SUnit &SU : DAG->SUnits) {
213 // Update the latency of chain edges between v60 vector load or store
214 // instructions to be 1. These instruction cannot be scheduled in the
215 // same packet.
216 MachineInstr &MI1 = *SU.getInstr();
217 auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
218 bool IsStoreMI1 = MI1.mayStore();
219 bool IsLoadMI1 = MI1.mayLoad();
220 if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
221 continue;
222 for (SDep &SI : SU.Succs) {
223 if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
224 continue;
225 MachineInstr &MI2 = *SI.getSUnit()->getInstr();
226 if (!QII->isHVXVec(MI2))
227 continue;
228 if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
229 SI.setLatency(1);
230 SU.setHeightDirty();
231 // Change the dependence in the opposite direction too.
232 for (SDep &PI : SI.getSUnit()->Preds) {
233 if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
234 continue;
235 PI.setLatency(1);
236 SI.getSUnit()->setDepthDirty();
237 }
238 }
239 }
240 }
241 }
242
243 // Check if a call and subsequent A2_tfrpi instructions should maintain
244 // scheduling affinity. We are looking for the TFRI to be consumed in
245 // the next instruction. This should help reduce the instances of
246 // double register pairs being allocated and scheduled before a call
247 // when not used until after the call. This situation is exacerbated
248 // by the fact that we allocate the pair from the callee saves list,
249 // leading to excess spills and restores.
shouldTFRICallBind(const HexagonInstrInfo & HII,const SUnit & Inst1,const SUnit & Inst2) const250 bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
251 const HexagonInstrInfo &HII, const SUnit &Inst1,
252 const SUnit &Inst2) const {
253 if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
254 return false;
255
256 // TypeXTYPE are 64 bit operations.
257 unsigned Type = HII.getType(*Inst2.getInstr());
258 return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
259 Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
260 }
261
apply(ScheduleDAGInstrs * DAGInstrs)262 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
263 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
264 SUnit* LastSequentialCall = nullptr;
265 // Map from virtual register to physical register from the copy.
266 DenseMap<unsigned, unsigned> VRegHoldingReg;
267 // Map from the physical register to the instruction that uses virtual
268 // register. This is used to create the barrier edge.
269 DenseMap<unsigned, SUnit *> LastVRegUse;
270 auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
271 auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
272
273 // Currently we only catch the situation when compare gets scheduled
274 // before preceding call.
275 for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
276 // Remember the call.
277 if (DAG->SUnits[su].getInstr()->isCall())
278 LastSequentialCall = &DAG->SUnits[su];
279 // Look for a compare that defines a predicate.
280 else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
281 DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
282 // Look for call and tfri* instructions.
283 else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
284 shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
285 DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
286 // Prevent redundant register copies due to reads and writes of physical
287 // registers. The original motivation for this was the code generated
288 // between two calls, which are caused both the return value and the
289 // argument for the next call being in %r0.
290 // Example:
291 // 1: <call1>
292 // 2: %vreg = COPY %r0
293 // 3: <use of %vreg>
294 // 4: %r0 = ...
295 // 5: <call2>
296 // The scheduler would often swap 3 and 4, so an additional register is
297 // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
298 // this.
299 // The code below checks for all the physical registers, not just R0/D0/V0.
300 else if (SchedRetvalOptimization) {
301 const MachineInstr *MI = DAG->SUnits[su].getInstr();
302 if (MI->isCopy() &&
303 Register::isPhysicalRegister(MI->getOperand(1).getReg())) {
304 // %vregX = COPY %r0
305 VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
306 LastVRegUse.erase(MI->getOperand(1).getReg());
307 } else {
308 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
309 const MachineOperand &MO = MI->getOperand(i);
310 if (!MO.isReg())
311 continue;
312 if (MO.isUse() && !MI->isCopy() &&
313 VRegHoldingReg.count(MO.getReg())) {
314 // <use of %vregX>
315 LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
316 } else if (MO.isDef() && Register::isPhysicalRegister(MO.getReg())) {
317 for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
318 ++AI) {
319 if (LastVRegUse.count(*AI) &&
320 LastVRegUse[*AI] != &DAG->SUnits[su])
321 // %r0 = ...
322 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
323 LastVRegUse.erase(*AI);
324 }
325 }
326 }
327 }
328 }
329 }
330 }
331
apply(ScheduleDAGInstrs * DAG)332 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
333 if (!EnableCheckBankConflict)
334 return;
335
336 const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
337
338 // Create artificial edges between loads that could likely cause a bank
339 // conflict. Since such loads would normally not have any dependency
340 // between them, we cannot rely on existing edges.
341 for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
342 SUnit &S0 = DAG->SUnits[i];
343 MachineInstr &L0 = *S0.getInstr();
344 if (!L0.mayLoad() || L0.mayStore() ||
345 HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
346 continue;
347 int64_t Offset0;
348 unsigned Size0;
349 MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
350 // Is the access size is longer than the L1 cache line, skip the check.
351 if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
352 continue;
353 // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
354 for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
355 SUnit &S1 = DAG->SUnits[j];
356 MachineInstr &L1 = *S1.getInstr();
357 if (!L1.mayLoad() || L1.mayStore() ||
358 HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
359 continue;
360 int64_t Offset1;
361 unsigned Size1;
362 MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
363 if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
364 BaseOp0->getReg() != BaseOp1->getReg())
365 continue;
366 // Check bits 3 and 4 of the offset: if they differ, a bank conflict
367 // is unlikely.
368 if (((Offset0 ^ Offset1) & 0x18) != 0)
369 continue;
370 // Bits 3 and 4 are the same, add an artificial edge and set extra
371 // latency.
372 SDep A(&S0, SDep::Artificial);
373 A.setLatency(1);
374 S1.addPred(A, true);
375 }
376 }
377 }
378
379 /// Enable use of alias analysis during code generation (during MI
380 /// scheduling, DAGCombine, etc.).
useAA() const381 bool HexagonSubtarget::useAA() const {
382 if (OptLevel != CodeGenOpt::None)
383 return true;
384 return false;
385 }
386
387 /// Perform target specific adjustments to the latency of a schedule
388 /// dependency.
adjustSchedDependency(SUnit * Src,int SrcOpIdx,SUnit * Dst,int DstOpIdx,SDep & Dep) const389 void HexagonSubtarget::adjustSchedDependency(SUnit *Src, int SrcOpIdx,
390 SUnit *Dst, int DstOpIdx,
391 SDep &Dep) const {
392 if (!Src->isInstr() || !Dst->isInstr())
393 return;
394
395 MachineInstr *SrcInst = Src->getInstr();
396 MachineInstr *DstInst = Dst->getInstr();
397 const HexagonInstrInfo *QII = getInstrInfo();
398
399 // Instructions with .new operands have zero latency.
400 SmallSet<SUnit *, 4> ExclSrc;
401 SmallSet<SUnit *, 4> ExclDst;
402 if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
403 isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
404 Dep.setLatency(0);
405 return;
406 }
407
408 if (!hasV60Ops())
409 return;
410
411 // Set the latency for a copy to zero since we hope that is will get removed.
412 if (DstInst->isCopy())
413 Dep.setLatency(0);
414
415 // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
416 // the correct latency.
417 if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) {
418 Register DReg = DstInst->getOperand(0).getReg();
419 MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr();
420 unsigned UseIdx = -1;
421 for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
422 const MachineOperand &MO = DDst->getOperand(OpNum);
423 if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
424 UseIdx = OpNum;
425 break;
426 }
427 }
428 int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst,
429 0, *DDst, UseIdx));
430 DLatency = std::max(DLatency, 0);
431 Dep.setLatency((unsigned)DLatency);
432 }
433
434 // Try to schedule uses near definitions to generate .cur.
435 ExclSrc.clear();
436 ExclDst.clear();
437 if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
438 isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
439 Dep.setLatency(0);
440 return;
441 }
442
443 updateLatency(*SrcInst, *DstInst, Dep);
444 }
445
getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> & Mutations) const446 void HexagonSubtarget::getPostRAMutations(
447 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
448 Mutations.push_back(std::make_unique<UsrOverflowMutation>());
449 Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
450 Mutations.push_back(std::make_unique<BankConflictMutation>());
451 }
452
getSMSMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> & Mutations) const453 void HexagonSubtarget::getSMSMutations(
454 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
455 Mutations.push_back(std::make_unique<UsrOverflowMutation>());
456 Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
457 }
458
459 // Pin the vtable to this file.
anchor()460 void HexagonSubtarget::anchor() {}
461
enableMachineScheduler() const462 bool HexagonSubtarget::enableMachineScheduler() const {
463 if (DisableHexagonMISched.getNumOccurrences())
464 return !DisableHexagonMISched;
465 return true;
466 }
467
usePredicatedCalls() const468 bool HexagonSubtarget::usePredicatedCalls() const {
469 return EnablePredicatedCalls;
470 }
471
updateLatency(MachineInstr & SrcInst,MachineInstr & DstInst,SDep & Dep) const472 void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
473 MachineInstr &DstInst, SDep &Dep) const {
474 if (Dep.isArtificial()) {
475 Dep.setLatency(1);
476 return;
477 }
478
479 if (!hasV60Ops())
480 return;
481
482 auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());
483
484 // BSB scheduling.
485 if (QII.isHVXVec(SrcInst) || useBSBScheduling())
486 Dep.setLatency((Dep.getLatency() + 1) >> 1);
487 }
488
restoreLatency(SUnit * Src,SUnit * Dst) const489 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
490 MachineInstr *SrcI = Src->getInstr();
491 for (auto &I : Src->Succs) {
492 if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
493 continue;
494 Register DepR = I.getReg();
495 int DefIdx = -1;
496 for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
497 const MachineOperand &MO = SrcI->getOperand(OpNum);
498 bool IsSameOrSubReg = false;
499 if (MO.isReg()) {
500 Register MOReg = MO.getReg();
501 if (DepR.isVirtual()) {
502 IsSameOrSubReg = (MOReg == DepR);
503 } else {
504 IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg);
505 }
506 if (MO.isDef() && IsSameOrSubReg)
507 DefIdx = OpNum;
508 }
509 }
510 assert(DefIdx >= 0 && "Def Reg not found in Src MI");
511 MachineInstr *DstI = Dst->getInstr();
512 SDep T = I;
513 for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
514 const MachineOperand &MO = DstI->getOperand(OpNum);
515 if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
516 int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
517 DefIdx, *DstI, OpNum));
518
519 // For some instructions (ex: COPY), we might end up with < 0 latency
520 // as they don't have any Itinerary class associated with them.
521 Latency = std::max(Latency, 0);
522
523 I.setLatency(Latency);
524 updateLatency(*SrcI, *DstI, I);
525 }
526 }
527
528 // Update the latency of opposite edge too.
529 T.setSUnit(Src);
530 auto F = find(Dst->Preds, T);
531 assert(F != Dst->Preds.end());
532 F->setLatency(I.getLatency());
533 }
534 }
535
536 /// Change the latency between the two SUnits.
changeLatency(SUnit * Src,SUnit * Dst,unsigned Lat) const537 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
538 const {
539 for (auto &I : Src->Succs) {
540 if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
541 continue;
542 SDep T = I;
543 I.setLatency(Lat);
544
545 // Update the latency of opposite edge too.
546 T.setSUnit(Src);
547 auto F = find(Dst->Preds, T);
548 assert(F != Dst->Preds.end());
549 F->setLatency(Lat);
550 }
551 }
552
553 /// If the SUnit has a zero latency edge, return the other SUnit.
getZeroLatency(SUnit * N,SmallVector<SDep,4> & Deps)554 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
555 for (auto &I : Deps)
556 if (I.isAssignedRegDep() && I.getLatency() == 0 &&
557 !I.getSUnit()->getInstr()->isPseudo())
558 return I.getSUnit();
559 return nullptr;
560 }
561
562 // Return true if these are the best two instructions to schedule
563 // together with a zero latency. Only one dependence should have a zero
564 // latency. If there are multiple choices, choose the best, and change
565 // the others, if needed.
isBestZeroLatency(SUnit * Src,SUnit * Dst,const HexagonInstrInfo * TII,SmallSet<SUnit *,4> & ExclSrc,SmallSet<SUnit *,4> & ExclDst) const566 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
567 const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
568 SmallSet<SUnit*, 4> &ExclDst) const {
569 MachineInstr &SrcInst = *Src->getInstr();
570 MachineInstr &DstInst = *Dst->getInstr();
571
572 // Ignore Boundary SU nodes as these have null instructions.
573 if (Dst->isBoundaryNode())
574 return false;
575
576 if (SrcInst.isPHI() || DstInst.isPHI())
577 return false;
578
579 if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
580 !TII->canExecuteInBundle(SrcInst, DstInst))
581 return false;
582
583 // The architecture doesn't allow three dependent instructions in the same
584 // packet. So, if the destination has a zero latency successor, then it's
585 // not a candidate for a zero latency predecessor.
586 if (getZeroLatency(Dst, Dst->Succs) != nullptr)
587 return false;
588
589 // Check if the Dst instruction is the best candidate first.
590 SUnit *Best = nullptr;
591 SUnit *DstBest = nullptr;
592 SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
593 if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
594 // Check that Src doesn't have a better candidate.
595 DstBest = getZeroLatency(Src, Src->Succs);
596 if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
597 Best = Dst;
598 }
599 if (Best != Dst)
600 return false;
601
602 // The caller frequently adds the same dependence twice. If so, then
603 // return true for this case too.
604 if ((Src == SrcBest && Dst == DstBest ) ||
605 (SrcBest == nullptr && Dst == DstBest) ||
606 (Src == SrcBest && Dst == nullptr))
607 return true;
608
609 // Reassign the latency for the previous bests, which requires setting
610 // the dependence edge in both directions.
611 if (SrcBest != nullptr) {
612 if (!hasV60Ops())
613 changeLatency(SrcBest, Dst, 1);
614 else
615 restoreLatency(SrcBest, Dst);
616 }
617 if (DstBest != nullptr) {
618 if (!hasV60Ops())
619 changeLatency(Src, DstBest, 1);
620 else
621 restoreLatency(Src, DstBest);
622 }
623
624 // Attempt to find another opprotunity for zero latency in a different
625 // dependence.
626 if (SrcBest && DstBest)
627 // If there is an edge from SrcBest to DstBst, then try to change that
628 // to 0 now.
629 changeLatency(SrcBest, DstBest, 0);
630 else if (DstBest) {
631 // Check if the previous best destination instruction has a new zero
632 // latency dependence opportunity.
633 ExclSrc.insert(Src);
634 for (auto &I : DstBest->Preds)
635 if (ExclSrc.count(I.getSUnit()) == 0 &&
636 isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
637 changeLatency(I.getSUnit(), DstBest, 0);
638 } else if (SrcBest) {
639 // Check if previous best source instruction has a new zero latency
640 // dependence opportunity.
641 ExclDst.insert(Dst);
642 for (auto &I : SrcBest->Succs)
643 if (ExclDst.count(I.getSUnit()) == 0 &&
644 isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
645 changeLatency(SrcBest, I.getSUnit(), 0);
646 }
647
648 return true;
649 }
650
getL1CacheLineSize() const651 unsigned HexagonSubtarget::getL1CacheLineSize() const {
652 return 32;
653 }
654
getL1PrefetchDistance() const655 unsigned HexagonSubtarget::getL1PrefetchDistance() const {
656 return 32;
657 }
658
enableSubRegLiveness() const659 bool HexagonSubtarget::enableSubRegLiveness() const {
660 return EnableSubregLiveness;
661 }
662