1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24
25 #define DEBUG_TYPE "instcombine"
26
27 /// Check to see if the specified operand of the specified instruction is a
28 /// constant integer. If so, check to see if there are any bits set in the
29 /// constant that are not demanded. If so, shrink the constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,const APInt & Demanded)30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
31 const APInt &Demanded) {
32 assert(I && "No instruction?");
33 assert(OpNo < I->getNumOperands() && "Operand index too large");
34
35 // The operand must be a constant integer or splat integer.
36 Value *Op = I->getOperand(OpNo);
37 const APInt *C;
38 if (!match(Op, m_APInt(C)))
39 return false;
40
41 // If there are no bits set that aren't demanded, nothing to do.
42 if (C->isSubsetOf(Demanded))
43 return false;
44
45 // This instruction is producing bits that are not demanded. Shrink the RHS.
46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
47
48 return true;
49 }
50
51
52
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57 KnownBits Known(BitWidth);
58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
59
60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
61 0, &Inst);
62 if (!V) return false;
63 if (V == &Inst) return true;
64 replaceInstUsesWith(Inst, V);
65 return true;
66 }
67
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
SimplifyDemandedBits(Instruction * I,unsigned OpNo,const APInt & DemandedMask,KnownBits & Known,unsigned Depth)71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72 const APInt &DemandedMask,
73 KnownBits &Known, unsigned Depth) {
74 Use &U = I->getOperandUse(OpNo);
75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76 Depth, I);
77 if (!NewVal) return false;
78 if (Instruction* OpInst = dyn_cast<Instruction>(U))
79 salvageDebugInfo(*OpInst);
80
81 replaceUse(U, NewVal);
82 return true;
83 }
84
85 /// This function attempts to replace V with a simpler value based on the
86 /// demanded bits. When this function is called, it is known that only the bits
87 /// set in DemandedMask of the result of V are ever used downstream.
88 /// Consequently, depending on the mask and V, it may be possible to replace V
89 /// with a constant or one of its operands. In such cases, this function does
90 /// the replacement and returns true. In all other cases, it returns false after
91 /// analyzing the expression and setting KnownOne and known to be one in the
92 /// expression. Known.Zero contains all the bits that are known to be zero in
93 /// the expression. These are provided to potentially allow the caller (which
94 /// might recursively be SimplifyDemandedBits itself) to simplify the
95 /// expression.
96 /// Known.One and Known.Zero always follow the invariant that:
97 /// Known.One & Known.Zero == 0.
98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
101 /// be the same.
102 ///
103 /// This returns null if it did not change anything and it permits no
104 /// simplification. This returns V itself if it did some simplification of V's
105 /// operands based on the information about what bits are demanded. This returns
106 /// some other non-null value if it found out that V is equal to another value
107 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Value * V,APInt DemandedMask,KnownBits & Known,unsigned Depth,Instruction * CxtI)108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
109 KnownBits &Known,
110 unsigned Depth,
111 Instruction *CxtI) {
112 assert(V != nullptr && "Null pointer of Value???");
113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
114 uint32_t BitWidth = DemandedMask.getBitWidth();
115 Type *VTy = V->getType();
116 assert(
117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
118 Known.getBitWidth() == BitWidth &&
119 "Value *V, DemandedMask and Known must have same BitWidth");
120
121 if (isa<Constant>(V)) {
122 computeKnownBits(V, Known, Depth, CxtI);
123 return nullptr;
124 }
125
126 Known.resetAll();
127 if (DemandedMask.isNullValue()) // Not demanding any bits from V.
128 return UndefValue::get(VTy);
129
130 if (Depth == MaxAnalysisRecursionDepth)
131 return nullptr;
132
133 if (isa<ScalableVectorType>(VTy))
134 return nullptr;
135
136 Instruction *I = dyn_cast<Instruction>(V);
137 if (!I) {
138 computeKnownBits(V, Known, Depth, CxtI);
139 return nullptr; // Only analyze instructions.
140 }
141
142 // If there are multiple uses of this value and we aren't at the root, then
143 // we can't do any simplifications of the operands, because DemandedMask
144 // only reflects the bits demanded by *one* of the users.
145 if (Depth != 0 && !I->hasOneUse())
146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
147
148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
149
150 // If this is the root being simplified, allow it to have multiple uses,
151 // just set the DemandedMask to all bits so that we can try to simplify the
152 // operands. This allows visitTruncInst (for example) to simplify the
153 // operand of a trunc without duplicating all the logic below.
154 if (Depth == 0 && !V->hasOneUse())
155 DemandedMask.setAllBits();
156
157 switch (I->getOpcode()) {
158 default:
159 computeKnownBits(I, Known, Depth, CxtI);
160 break;
161 case Instruction::And: {
162 // If either the LHS or the RHS are Zero, the result is zero.
163 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
164 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
165 Depth + 1))
166 return I;
167 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
168 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
169
170 Known = LHSKnown & RHSKnown;
171
172 // If the client is only demanding bits that we know, return the known
173 // constant.
174 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
175 return Constant::getIntegerValue(VTy, Known.One);
176
177 // If all of the demanded bits are known 1 on one side, return the other.
178 // These bits cannot contribute to the result of the 'and'.
179 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
180 return I->getOperand(0);
181 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
182 return I->getOperand(1);
183
184 // If the RHS is a constant, see if we can simplify it.
185 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
186 return I;
187
188 break;
189 }
190 case Instruction::Or: {
191 // If either the LHS or the RHS are One, the result is One.
192 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
193 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
194 Depth + 1))
195 return I;
196 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
197 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
198
199 Known = LHSKnown | RHSKnown;
200
201 // If the client is only demanding bits that we know, return the known
202 // constant.
203 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
204 return Constant::getIntegerValue(VTy, Known.One);
205
206 // If all of the demanded bits are known zero on one side, return the other.
207 // These bits cannot contribute to the result of the 'or'.
208 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
209 return I->getOperand(0);
210 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
211 return I->getOperand(1);
212
213 // If the RHS is a constant, see if we can simplify it.
214 if (ShrinkDemandedConstant(I, 1, DemandedMask))
215 return I;
216
217 break;
218 }
219 case Instruction::Xor: {
220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
221 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
222 return I;
223 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
224 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
225
226 Known = LHSKnown ^ RHSKnown;
227
228 // If the client is only demanding bits that we know, return the known
229 // constant.
230 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
231 return Constant::getIntegerValue(VTy, Known.One);
232
233 // If all of the demanded bits are known zero on one side, return the other.
234 // These bits cannot contribute to the result of the 'xor'.
235 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
236 return I->getOperand(0);
237 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
238 return I->getOperand(1);
239
240 // If all of the demanded bits are known to be zero on one side or the
241 // other, turn this into an *inclusive* or.
242 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
243 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
244 Instruction *Or =
245 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
246 I->getName());
247 return InsertNewInstWith(Or, *I);
248 }
249
250 // If all of the demanded bits on one side are known, and all of the set
251 // bits on that side are also known to be set on the other side, turn this
252 // into an AND, as we know the bits will be cleared.
253 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
254 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
255 RHSKnown.One.isSubsetOf(LHSKnown.One)) {
256 Constant *AndC = Constant::getIntegerValue(VTy,
257 ~RHSKnown.One & DemandedMask);
258 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
259 return InsertNewInstWith(And, *I);
260 }
261
262 // If the RHS is a constant, see if we can change it. Don't alter a -1
263 // constant because that's a canonical 'not' op, and that is better for
264 // combining, SCEV, and codegen.
265 const APInt *C;
266 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnesValue()) {
267 if ((*C | ~DemandedMask).isAllOnesValue()) {
268 // Force bits to 1 to create a 'not' op.
269 I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
270 return I;
271 }
272 // If we can't turn this into a 'not', try to shrink the constant.
273 if (ShrinkDemandedConstant(I, 1, DemandedMask))
274 return I;
275 }
276
277 // If our LHS is an 'and' and if it has one use, and if any of the bits we
278 // are flipping are known to be set, then the xor is just resetting those
279 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
280 // simplifying both of them.
281 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
282 ConstantInt *AndRHS, *XorRHS;
283 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
284 match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
285 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
286 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
288
289 Constant *AndC =
290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
292 InsertNewInstWith(NewAnd, *I);
293
294 Constant *XorC =
295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
297 return InsertNewInstWith(NewXor, *I);
298 }
299 }
300 break;
301 }
302 case Instruction::Select: {
303 Value *LHS, *RHS;
304 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
305 if (SPF == SPF_UMAX) {
306 // UMax(A, C) == A if ...
307 // The lowest non-zero bit of DemandMask is higher than the highest
308 // non-zero bit of C.
309 const APInt *C;
310 unsigned CTZ = DemandedMask.countTrailingZeros();
311 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
312 return LHS;
313 } else if (SPF == SPF_UMIN) {
314 // UMin(A, C) == A if ...
315 // The lowest non-zero bit of DemandMask is higher than the highest
316 // non-one bit of C.
317 // This comes from using DeMorgans on the above umax example.
318 const APInt *C;
319 unsigned CTZ = DemandedMask.countTrailingZeros();
320 if (match(RHS, m_APInt(C)) &&
321 CTZ >= C->getBitWidth() - C->countLeadingOnes())
322 return LHS;
323 }
324
325 // If this is a select as part of any other min/max pattern, don't simplify
326 // any further in case we break the structure.
327 if (SPF != SPF_UNKNOWN)
328 return nullptr;
329
330 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
331 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
332 return I;
333 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
334 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
335
336 // If the operands are constants, see if we can simplify them.
337 // This is similar to ShrinkDemandedConstant, but for a select we want to
338 // try to keep the selected constants the same as icmp value constants, if
339 // we can. This helps not break apart (or helps put back together)
340 // canonical patterns like min and max.
341 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
342 const APInt &DemandedMask) {
343 const APInt *SelC;
344 if (!match(I->getOperand(OpNo), m_APInt(SelC)))
345 return false;
346
347 // Get the constant out of the ICmp, if there is one.
348 // Only try this when exactly 1 operand is a constant (if both operands
349 // are constant, the icmp should eventually simplify). Otherwise, we may
350 // invert the transform that reduces set bits and infinite-loop.
351 Value *X;
352 const APInt *CmpC;
353 ICmpInst::Predicate Pred;
354 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
355 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
356 return ShrinkDemandedConstant(I, OpNo, DemandedMask);
357
358 // If the constant is already the same as the ICmp, leave it as-is.
359 if (*CmpC == *SelC)
360 return false;
361 // If the constants are not already the same, but can be with the demand
362 // mask, use the constant value from the ICmp.
363 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
364 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
365 return true;
366 }
367 return ShrinkDemandedConstant(I, OpNo, DemandedMask);
368 };
369 if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
370 CanonicalizeSelectConstant(I, 2, DemandedMask))
371 return I;
372
373 // Only known if known in both the LHS and RHS.
374 Known = KnownBits::commonBits(LHSKnown, RHSKnown);
375 break;
376 }
377 case Instruction::ZExt:
378 case Instruction::Trunc: {
379 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
380
381 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
382 KnownBits InputKnown(SrcBitWidth);
383 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
384 return I;
385 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
386 Known = InputKnown.zextOrTrunc(BitWidth);
387 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
388 break;
389 }
390 case Instruction::BitCast:
391 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
392 return nullptr; // vector->int or fp->int?
393
394 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
395 if (VectorType *SrcVTy =
396 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
397 if (cast<FixedVectorType>(DstVTy)->getNumElements() !=
398 cast<FixedVectorType>(SrcVTy)->getNumElements())
399 // Don't touch a bitcast between vectors of different element counts.
400 return nullptr;
401 } else
402 // Don't touch a scalar-to-vector bitcast.
403 return nullptr;
404 } else if (I->getOperand(0)->getType()->isVectorTy())
405 // Don't touch a vector-to-scalar bitcast.
406 return nullptr;
407
408 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
409 return I;
410 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
411 break;
412 case Instruction::SExt: {
413 // Compute the bits in the result that are not present in the input.
414 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
415
416 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
417
418 // If any of the sign extended bits are demanded, we know that the sign
419 // bit is demanded.
420 if (DemandedMask.getActiveBits() > SrcBitWidth)
421 InputDemandedBits.setBit(SrcBitWidth-1);
422
423 KnownBits InputKnown(SrcBitWidth);
424 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
425 return I;
426
427 // If the input sign bit is known zero, or if the NewBits are not demanded
428 // convert this into a zero extension.
429 if (InputKnown.isNonNegative() ||
430 DemandedMask.getActiveBits() <= SrcBitWidth) {
431 // Convert to ZExt cast.
432 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
433 return InsertNewInstWith(NewCast, *I);
434 }
435
436 // If the sign bit of the input is known set or clear, then we know the
437 // top bits of the result.
438 Known = InputKnown.sext(BitWidth);
439 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
440 break;
441 }
442 case Instruction::Add:
443 if ((DemandedMask & 1) == 0) {
444 // If we do not need the low bit, try to convert bool math to logic:
445 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
446 Value *X, *Y;
447 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
448 m_OneUse(m_SExt(m_Value(Y))))) &&
449 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
450 // Truth table for inputs and output signbits:
451 // X:0 | X:1
452 // ----------
453 // Y:0 | 0 | 0 |
454 // Y:1 | -1 | 0 |
455 // ----------
456 IRBuilderBase::InsertPointGuard Guard(Builder);
457 Builder.SetInsertPoint(I);
458 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
459 return Builder.CreateSExt(AndNot, VTy);
460 }
461
462 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
463 // TODO: Relax the one-use checks because we are removing an instruction?
464 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
465 m_OneUse(m_SExt(m_Value(Y))))) &&
466 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
467 // Truth table for inputs and output signbits:
468 // X:0 | X:1
469 // -----------
470 // Y:0 | -1 | -1 |
471 // Y:1 | -1 | 0 |
472 // -----------
473 IRBuilderBase::InsertPointGuard Guard(Builder);
474 Builder.SetInsertPoint(I);
475 Value *Or = Builder.CreateOr(X, Y);
476 return Builder.CreateSExt(Or, VTy);
477 }
478 }
479 LLVM_FALLTHROUGH;
480 case Instruction::Sub: {
481 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
482 /// about the high bits of the operands.
483 unsigned NLZ = DemandedMask.countLeadingZeros();
484 // Right fill the mask of bits for this ADD/SUB to demand the most
485 // significant bit and all those below it.
486 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
487 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
488 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
489 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
490 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
491 if (NLZ > 0) {
492 // Disable the nsw and nuw flags here: We can no longer guarantee that
493 // we won't wrap after simplification. Removing the nsw/nuw flags is
494 // legal here because the top bit is not demanded.
495 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
496 BinOP.setHasNoSignedWrap(false);
497 BinOP.setHasNoUnsignedWrap(false);
498 }
499 return I;
500 }
501
502 // If we are known to be adding/subtracting zeros to every bit below
503 // the highest demanded bit, we just return the other side.
504 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
505 return I->getOperand(0);
506 // We can't do this with the LHS for subtraction, unless we are only
507 // demanding the LSB.
508 if ((I->getOpcode() == Instruction::Add ||
509 DemandedFromOps.isOneValue()) &&
510 DemandedFromOps.isSubsetOf(LHSKnown.Zero))
511 return I->getOperand(1);
512
513 // Otherwise just compute the known bits of the result.
514 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
515 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
516 NSW, LHSKnown, RHSKnown);
517 break;
518 }
519 case Instruction::Shl: {
520 const APInt *SA;
521 if (match(I->getOperand(1), m_APInt(SA))) {
522 const APInt *ShrAmt;
523 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
524 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
525 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
526 DemandedMask, Known))
527 return R;
528
529 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
530 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
531
532 // If the shift is NUW/NSW, then it does demand the high bits.
533 ShlOperator *IOp = cast<ShlOperator>(I);
534 if (IOp->hasNoSignedWrap())
535 DemandedMaskIn.setHighBits(ShiftAmt+1);
536 else if (IOp->hasNoUnsignedWrap())
537 DemandedMaskIn.setHighBits(ShiftAmt);
538
539 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
540 return I;
541 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
542
543 bool SignBitZero = Known.Zero.isSignBitSet();
544 bool SignBitOne = Known.One.isSignBitSet();
545 Known.Zero <<= ShiftAmt;
546 Known.One <<= ShiftAmt;
547 // low bits known zero.
548 if (ShiftAmt)
549 Known.Zero.setLowBits(ShiftAmt);
550
551 // If this shift has "nsw" keyword, then the result is either a poison
552 // value or has the same sign bit as the first operand.
553 if (IOp->hasNoSignedWrap()) {
554 if (SignBitZero)
555 Known.Zero.setSignBit();
556 else if (SignBitOne)
557 Known.One.setSignBit();
558 if (Known.hasConflict())
559 return UndefValue::get(I->getType());
560 }
561 } else {
562 computeKnownBits(I, Known, Depth, CxtI);
563 }
564 break;
565 }
566 case Instruction::LShr: {
567 const APInt *SA;
568 if (match(I->getOperand(1), m_APInt(SA))) {
569 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
570
571 // Unsigned shift right.
572 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
573
574 // If the shift is exact, then it does demand the low bits (and knows that
575 // they are zero).
576 if (cast<LShrOperator>(I)->isExact())
577 DemandedMaskIn.setLowBits(ShiftAmt);
578
579 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
580 return I;
581 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
582 Known.Zero.lshrInPlace(ShiftAmt);
583 Known.One.lshrInPlace(ShiftAmt);
584 if (ShiftAmt)
585 Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
586 } else {
587 computeKnownBits(I, Known, Depth, CxtI);
588 }
589 break;
590 }
591 case Instruction::AShr: {
592 // If this is an arithmetic shift right and only the low-bit is set, we can
593 // always convert this into a logical shr, even if the shift amount is
594 // variable. The low bit of the shift cannot be an input sign bit unless
595 // the shift amount is >= the size of the datatype, which is undefined.
596 if (DemandedMask.isOneValue()) {
597 // Perform the logical shift right.
598 Instruction *NewVal = BinaryOperator::CreateLShr(
599 I->getOperand(0), I->getOperand(1), I->getName());
600 return InsertNewInstWith(NewVal, *I);
601 }
602
603 // If the sign bit is the only bit demanded by this ashr, then there is no
604 // need to do it, the shift doesn't change the high bit.
605 if (DemandedMask.isSignMask())
606 return I->getOperand(0);
607
608 const APInt *SA;
609 if (match(I->getOperand(1), m_APInt(SA))) {
610 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
611
612 // Signed shift right.
613 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
614 // If any of the high bits are demanded, we should set the sign bit as
615 // demanded.
616 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
617 DemandedMaskIn.setSignBit();
618
619 // If the shift is exact, then it does demand the low bits (and knows that
620 // they are zero).
621 if (cast<AShrOperator>(I)->isExact())
622 DemandedMaskIn.setLowBits(ShiftAmt);
623
624 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
625 return I;
626
627 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
628
629 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
630 // Compute the new bits that are at the top now plus sign bits.
631 APInt HighBits(APInt::getHighBitsSet(
632 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
633 Known.Zero.lshrInPlace(ShiftAmt);
634 Known.One.lshrInPlace(ShiftAmt);
635
636 // If the input sign bit is known to be zero, or if none of the top bits
637 // are demanded, turn this into an unsigned shift right.
638 assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
639 if (Known.Zero[BitWidth-ShiftAmt-1] ||
640 !DemandedMask.intersects(HighBits)) {
641 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
642 I->getOperand(1));
643 LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
644 return InsertNewInstWith(LShr, *I);
645 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
646 Known.One |= HighBits;
647 }
648 } else {
649 computeKnownBits(I, Known, Depth, CxtI);
650 }
651 break;
652 }
653 case Instruction::UDiv: {
654 // UDiv doesn't demand low bits that are zero in the divisor.
655 const APInt *SA;
656 if (match(I->getOperand(1), m_APInt(SA))) {
657 // If the shift is exact, then it does demand the low bits.
658 if (cast<UDivOperator>(I)->isExact())
659 break;
660
661 // FIXME: Take the demanded mask of the result into account.
662 unsigned RHSTrailingZeros = SA->countTrailingZeros();
663 APInt DemandedMaskIn =
664 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
665 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
666 return I;
667
668 // Propagate zero bits from the input.
669 Known.Zero.setHighBits(std::min(
670 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
671 } else {
672 computeKnownBits(I, Known, Depth, CxtI);
673 }
674 break;
675 }
676 case Instruction::SRem: {
677 ConstantInt *Rem;
678 if (match(I->getOperand(1), m_ConstantInt(Rem))) {
679 // X % -1 demands all the bits because we don't want to introduce
680 // INT_MIN % -1 (== undef) by accident.
681 if (Rem->isMinusOne())
682 break;
683 APInt RA = Rem->getValue().abs();
684 if (RA.isPowerOf2()) {
685 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
686 return I->getOperand(0);
687
688 APInt LowBits = RA - 1;
689 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
690 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
691 return I;
692
693 // The low bits of LHS are unchanged by the srem.
694 Known.Zero = LHSKnown.Zero & LowBits;
695 Known.One = LHSKnown.One & LowBits;
696
697 // If LHS is non-negative or has all low bits zero, then the upper bits
698 // are all zero.
699 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
700 Known.Zero |= ~LowBits;
701
702 // If LHS is negative and not all low bits are zero, then the upper bits
703 // are all one.
704 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
705 Known.One |= ~LowBits;
706
707 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
708 break;
709 }
710 }
711
712 // The sign bit is the LHS's sign bit, except when the result of the
713 // remainder is zero.
714 if (DemandedMask.isSignBitSet()) {
715 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
716 // If it's known zero, our sign bit is also zero.
717 if (LHSKnown.isNonNegative())
718 Known.makeNonNegative();
719 }
720 break;
721 }
722 case Instruction::URem: {
723 KnownBits Known2(BitWidth);
724 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
725 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
726 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
727 return I;
728
729 unsigned Leaders = Known2.countMinLeadingZeros();
730 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
731 break;
732 }
733 case Instruction::Call: {
734 bool KnownBitsComputed = false;
735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
736 switch (II->getIntrinsicID()) {
737 case Intrinsic::bswap: {
738 // If the only bits demanded come from one byte of the bswap result,
739 // just shift the input byte into position to eliminate the bswap.
740 unsigned NLZ = DemandedMask.countLeadingZeros();
741 unsigned NTZ = DemandedMask.countTrailingZeros();
742
743 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
744 // we need all the bits down to bit 8. Likewise, round NLZ. If we
745 // have 14 leading zeros, round to 8.
746 NLZ &= ~7;
747 NTZ &= ~7;
748 // If we need exactly one byte, we can do this transformation.
749 if (BitWidth-NLZ-NTZ == 8) {
750 unsigned ResultBit = NTZ;
751 unsigned InputBit = BitWidth-NTZ-8;
752
753 // Replace this with either a left or right shift to get the byte into
754 // the right place.
755 Instruction *NewVal;
756 if (InputBit > ResultBit)
757 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
758 ConstantInt::get(I->getType(), InputBit-ResultBit));
759 else
760 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
761 ConstantInt::get(I->getType(), ResultBit-InputBit));
762 NewVal->takeName(I);
763 return InsertNewInstWith(NewVal, *I);
764 }
765 break;
766 }
767 case Intrinsic::fshr:
768 case Intrinsic::fshl: {
769 const APInt *SA;
770 if (!match(I->getOperand(2), m_APInt(SA)))
771 break;
772
773 // Normalize to funnel shift left. APInt shifts of BitWidth are well-
774 // defined, so no need to special-case zero shifts here.
775 uint64_t ShiftAmt = SA->urem(BitWidth);
776 if (II->getIntrinsicID() == Intrinsic::fshr)
777 ShiftAmt = BitWidth - ShiftAmt;
778
779 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
780 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
781 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
782 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
783 return I;
784
785 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
786 RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
787 Known.One = LHSKnown.One.shl(ShiftAmt) |
788 RHSKnown.One.lshr(BitWidth - ShiftAmt);
789 KnownBitsComputed = true;
790 break;
791 }
792 default: {
793 // Handle target specific intrinsics
794 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
795 *II, DemandedMask, Known, KnownBitsComputed);
796 if (V.hasValue())
797 return V.getValue();
798 break;
799 }
800 }
801 }
802
803 if (!KnownBitsComputed)
804 computeKnownBits(V, Known, Depth, CxtI);
805 break;
806 }
807 }
808
809 // If the client is only demanding bits that we know, return the known
810 // constant.
811 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
812 return Constant::getIntegerValue(VTy, Known.One);
813 return nullptr;
814 }
815
816 /// Helper routine of SimplifyDemandedUseBits. It computes Known
817 /// bits. It also tries to handle simplifications that can be done based on
818 /// DemandedMask, but without modifying the Instruction.
SimplifyMultipleUseDemandedBits(Instruction * I,const APInt & DemandedMask,KnownBits & Known,unsigned Depth,Instruction * CxtI)819 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
820 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
821 Instruction *CxtI) {
822 unsigned BitWidth = DemandedMask.getBitWidth();
823 Type *ITy = I->getType();
824
825 KnownBits LHSKnown(BitWidth);
826 KnownBits RHSKnown(BitWidth);
827
828 // Despite the fact that we can't simplify this instruction in all User's
829 // context, we can at least compute the known bits, and we can
830 // do simplifications that apply to *just* the one user if we know that
831 // this instruction has a simpler value in that context.
832 switch (I->getOpcode()) {
833 case Instruction::And: {
834 // If either the LHS or the RHS are Zero, the result is zero.
835 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
836 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
837 CxtI);
838
839 Known = LHSKnown & RHSKnown;
840
841 // If the client is only demanding bits that we know, return the known
842 // constant.
843 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
844 return Constant::getIntegerValue(ITy, Known.One);
845
846 // If all of the demanded bits are known 1 on one side, return the other.
847 // These bits cannot contribute to the result of the 'and' in this
848 // context.
849 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
850 return I->getOperand(0);
851 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
852 return I->getOperand(1);
853
854 break;
855 }
856 case Instruction::Or: {
857 // We can simplify (X|Y) -> X or Y in the user's context if we know that
858 // only bits from X or Y are demanded.
859
860 // If either the LHS or the RHS are One, the result is One.
861 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
862 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
863 CxtI);
864
865 Known = LHSKnown | RHSKnown;
866
867 // If the client is only demanding bits that we know, return the known
868 // constant.
869 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
870 return Constant::getIntegerValue(ITy, Known.One);
871
872 // If all of the demanded bits are known zero on one side, return the
873 // other. These bits cannot contribute to the result of the 'or' in this
874 // context.
875 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
876 return I->getOperand(0);
877 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
878 return I->getOperand(1);
879
880 break;
881 }
882 case Instruction::Xor: {
883 // We can simplify (X^Y) -> X or Y in the user's context if we know that
884 // only bits from X or Y are demanded.
885
886 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
887 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
888 CxtI);
889
890 Known = LHSKnown ^ RHSKnown;
891
892 // If the client is only demanding bits that we know, return the known
893 // constant.
894 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
895 return Constant::getIntegerValue(ITy, Known.One);
896
897 // If all of the demanded bits are known zero on one side, return the
898 // other.
899 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
900 return I->getOperand(0);
901 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
902 return I->getOperand(1);
903
904 break;
905 }
906 case Instruction::AShr: {
907 // Compute the Known bits to simplify things downstream.
908 computeKnownBits(I, Known, Depth, CxtI);
909
910 // If this user is only demanding bits that we know, return the known
911 // constant.
912 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
913 return Constant::getIntegerValue(ITy, Known.One);
914
915 // If the right shift operand 0 is a result of a left shift by the same
916 // amount, this is probably a zero/sign extension, which may be unnecessary,
917 // if we do not demand any of the new sign bits. So, return the original
918 // operand instead.
919 const APInt *ShiftRC;
920 const APInt *ShiftLC;
921 Value *X;
922 unsigned BitWidth = DemandedMask.getBitWidth();
923 if (match(I,
924 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
925 ShiftLC == ShiftRC &&
926 DemandedMask.isSubsetOf(APInt::getLowBitsSet(
927 BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
928 return X;
929 }
930
931 break;
932 }
933 default:
934 // Compute the Known bits to simplify things downstream.
935 computeKnownBits(I, Known, Depth, CxtI);
936
937 // If this user is only demanding bits that we know, return the known
938 // constant.
939 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
940 return Constant::getIntegerValue(ITy, Known.One);
941
942 break;
943 }
944
945 return nullptr;
946 }
947
948 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
949 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
950 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
951 /// of "C2-C1".
952 ///
953 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
954 /// ..., bn}, without considering the specific value X is holding.
955 /// This transformation is legal iff one of following conditions is hold:
956 /// 1) All the bit in S are 0, in this case E1 == E2.
957 /// 2) We don't care those bits in S, per the input DemandedMask.
958 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
959 /// rest bits.
960 ///
961 /// Currently we only test condition 2).
962 ///
963 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
964 /// not successful.
simplifyShrShlDemandedBits(Instruction * Shr,const APInt & ShrOp1,Instruction * Shl,const APInt & ShlOp1,const APInt & DemandedMask,KnownBits & Known)965 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
966 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
967 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
968 if (!ShlOp1 || !ShrOp1)
969 return nullptr; // No-op.
970
971 Value *VarX = Shr->getOperand(0);
972 Type *Ty = VarX->getType();
973 unsigned BitWidth = Ty->getScalarSizeInBits();
974 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
975 return nullptr; // Undef.
976
977 unsigned ShlAmt = ShlOp1.getZExtValue();
978 unsigned ShrAmt = ShrOp1.getZExtValue();
979
980 Known.One.clearAllBits();
981 Known.Zero.setLowBits(ShlAmt - 1);
982 Known.Zero &= DemandedMask;
983
984 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
985 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
986
987 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
988 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
989 (BitMask1.ashr(ShrAmt) << ShlAmt);
990
991 if (ShrAmt <= ShlAmt) {
992 BitMask2 <<= (ShlAmt - ShrAmt);
993 } else {
994 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
995 BitMask2.ashr(ShrAmt - ShlAmt);
996 }
997
998 // Check if condition-2 (see the comment to this function) is satified.
999 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1000 if (ShrAmt == ShlAmt)
1001 return VarX;
1002
1003 if (!Shr->hasOneUse())
1004 return nullptr;
1005
1006 BinaryOperator *New;
1007 if (ShrAmt < ShlAmt) {
1008 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1009 New = BinaryOperator::CreateShl(VarX, Amt);
1010 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1011 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1012 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1013 } else {
1014 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1015 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1016 BinaryOperator::CreateAShr(VarX, Amt);
1017 if (cast<BinaryOperator>(Shr)->isExact())
1018 New->setIsExact(true);
1019 }
1020
1021 return InsertNewInstWith(New, *Shl);
1022 }
1023
1024 return nullptr;
1025 }
1026
1027 /// The specified value produces a vector with any number of elements.
1028 /// This method analyzes which elements of the operand are undef or poison and
1029 /// returns that information in UndefElts.
1030 ///
1031 /// DemandedElts contains the set of elements that are actually used by the
1032 /// caller, and by default (AllowMultipleUsers equals false) the value is
1033 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1034 /// to true, DemandedElts refers to the union of sets of elements that are
1035 /// used by all callers.
1036 ///
1037 /// If the information about demanded elements can be used to simplify the
1038 /// operation, the operation is simplified, then the resultant value is
1039 /// returned. This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & UndefElts,unsigned Depth,bool AllowMultipleUsers)1040 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1041 APInt DemandedElts,
1042 APInt &UndefElts,
1043 unsigned Depth,
1044 bool AllowMultipleUsers) {
1045 // Cannot analyze scalable type. The number of vector elements is not a
1046 // compile-time constant.
1047 if (isa<ScalableVectorType>(V->getType()))
1048 return nullptr;
1049
1050 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1051 APInt EltMask(APInt::getAllOnesValue(VWidth));
1052 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1053
1054 if (isa<UndefValue>(V)) {
1055 // If the entire vector is undef or poison, just return this info.
1056 UndefElts = EltMask;
1057 return nullptr;
1058 }
1059
1060 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide poison.
1061 UndefElts = EltMask;
1062 return PoisonValue::get(V->getType());
1063 }
1064
1065 UndefElts = 0;
1066
1067 if (auto *C = dyn_cast<Constant>(V)) {
1068 // Check if this is identity. If so, return 0 since we are not simplifying
1069 // anything.
1070 if (DemandedElts.isAllOnesValue())
1071 return nullptr;
1072
1073 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1074 Constant *Poison = PoisonValue::get(EltTy);
1075 SmallVector<Constant*, 16> Elts;
1076 for (unsigned i = 0; i != VWidth; ++i) {
1077 if (!DemandedElts[i]) { // If not demanded, set to poison.
1078 Elts.push_back(Poison);
1079 UndefElts.setBit(i);
1080 continue;
1081 }
1082
1083 Constant *Elt = C->getAggregateElement(i);
1084 if (!Elt) return nullptr;
1085
1086 Elts.push_back(Elt);
1087 if (isa<UndefValue>(Elt)) // Already undef or poison.
1088 UndefElts.setBit(i);
1089 }
1090
1091 // If we changed the constant, return it.
1092 Constant *NewCV = ConstantVector::get(Elts);
1093 return NewCV != C ? NewCV : nullptr;
1094 }
1095
1096 // Limit search depth.
1097 if (Depth == 10)
1098 return nullptr;
1099
1100 if (!AllowMultipleUsers) {
1101 // If multiple users are using the root value, proceed with
1102 // simplification conservatively assuming that all elements
1103 // are needed.
1104 if (!V->hasOneUse()) {
1105 // Quit if we find multiple users of a non-root value though.
1106 // They'll be handled when it's their turn to be visited by
1107 // the main instcombine process.
1108 if (Depth != 0)
1109 // TODO: Just compute the UndefElts information recursively.
1110 return nullptr;
1111
1112 // Conservatively assume that all elements are needed.
1113 DemandedElts = EltMask;
1114 }
1115 }
1116
1117 Instruction *I = dyn_cast<Instruction>(V);
1118 if (!I) return nullptr; // Only analyze instructions.
1119
1120 bool MadeChange = false;
1121 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1122 APInt Demanded, APInt &Undef) {
1123 auto *II = dyn_cast<IntrinsicInst>(Inst);
1124 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1125 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1126 replaceOperand(*Inst, OpNum, V);
1127 MadeChange = true;
1128 }
1129 };
1130
1131 APInt UndefElts2(VWidth, 0);
1132 APInt UndefElts3(VWidth, 0);
1133 switch (I->getOpcode()) {
1134 default: break;
1135
1136 case Instruction::GetElementPtr: {
1137 // The LangRef requires that struct geps have all constant indices. As
1138 // such, we can't convert any operand to partial undef.
1139 auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1140 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1141 I != E; I++)
1142 if (I.isStruct())
1143 return true;;
1144 return false;
1145 };
1146 if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1147 break;
1148
1149 // Conservatively track the demanded elements back through any vector
1150 // operands we may have. We know there must be at least one, or we
1151 // wouldn't have a vector result to get here. Note that we intentionally
1152 // merge the undef bits here since gepping with either an undef base or
1153 // index results in undef.
1154 for (unsigned i = 0; i < I->getNumOperands(); i++) {
1155 if (isa<UndefValue>(I->getOperand(i))) {
1156 // If the entire vector is undefined, just return this info.
1157 UndefElts = EltMask;
1158 return nullptr;
1159 }
1160 if (I->getOperand(i)->getType()->isVectorTy()) {
1161 APInt UndefEltsOp(VWidth, 0);
1162 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1163 UndefElts |= UndefEltsOp;
1164 }
1165 }
1166
1167 break;
1168 }
1169 case Instruction::InsertElement: {
1170 // If this is a variable index, we don't know which element it overwrites.
1171 // demand exactly the same input as we produce.
1172 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1173 if (!Idx) {
1174 // Note that we can't propagate undef elt info, because we don't know
1175 // which elt is getting updated.
1176 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1177 break;
1178 }
1179
1180 // The element inserted overwrites whatever was there, so the input demanded
1181 // set is simpler than the output set.
1182 unsigned IdxNo = Idx->getZExtValue();
1183 APInt PreInsertDemandedElts = DemandedElts;
1184 if (IdxNo < VWidth)
1185 PreInsertDemandedElts.clearBit(IdxNo);
1186
1187 // If we only demand the element that is being inserted and that element
1188 // was extracted from the same index in another vector with the same type,
1189 // replace this insert with that other vector.
1190 // Note: This is attempted before the call to simplifyAndSetOp because that
1191 // may change UndefElts to a value that does not match with Vec.
1192 Value *Vec;
1193 if (PreInsertDemandedElts == 0 &&
1194 match(I->getOperand(1),
1195 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1196 Vec->getType() == I->getType()) {
1197 return Vec;
1198 }
1199
1200 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1201
1202 // If this is inserting an element that isn't demanded, remove this
1203 // insertelement.
1204 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1205 Worklist.push(I);
1206 return I->getOperand(0);
1207 }
1208
1209 // The inserted element is defined.
1210 UndefElts.clearBit(IdxNo);
1211 break;
1212 }
1213 case Instruction::ShuffleVector: {
1214 auto *Shuffle = cast<ShuffleVectorInst>(I);
1215 assert(Shuffle->getOperand(0)->getType() ==
1216 Shuffle->getOperand(1)->getType() &&
1217 "Expected shuffle operands to have same type");
1218 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1219 ->getNumElements();
1220 // Handle trivial case of a splat. Only check the first element of LHS
1221 // operand.
1222 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1223 DemandedElts.isAllOnesValue()) {
1224 if (!isa<UndefValue>(I->getOperand(1))) {
1225 I->setOperand(1, UndefValue::get(I->getOperand(1)->getType()));
1226 MadeChange = true;
1227 }
1228 APInt LeftDemanded(OpWidth, 1);
1229 APInt LHSUndefElts(OpWidth, 0);
1230 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1231 if (LHSUndefElts[0])
1232 UndefElts = EltMask;
1233 else
1234 UndefElts.clearAllBits();
1235 break;
1236 }
1237
1238 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1239 for (unsigned i = 0; i < VWidth; i++) {
1240 if (DemandedElts[i]) {
1241 unsigned MaskVal = Shuffle->getMaskValue(i);
1242 if (MaskVal != -1u) {
1243 assert(MaskVal < OpWidth * 2 &&
1244 "shufflevector mask index out of range!");
1245 if (MaskVal < OpWidth)
1246 LeftDemanded.setBit(MaskVal);
1247 else
1248 RightDemanded.setBit(MaskVal - OpWidth);
1249 }
1250 }
1251 }
1252
1253 APInt LHSUndefElts(OpWidth, 0);
1254 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1255
1256 APInt RHSUndefElts(OpWidth, 0);
1257 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1258
1259 // If this shuffle does not change the vector length and the elements
1260 // demanded by this shuffle are an identity mask, then this shuffle is
1261 // unnecessary.
1262 //
1263 // We are assuming canonical form for the mask, so the source vector is
1264 // operand 0 and operand 1 is not used.
1265 //
1266 // Note that if an element is demanded and this shuffle mask is undefined
1267 // for that element, then the shuffle is not considered an identity
1268 // operation. The shuffle prevents poison from the operand vector from
1269 // leaking to the result by replacing poison with an undefined value.
1270 if (VWidth == OpWidth) {
1271 bool IsIdentityShuffle = true;
1272 for (unsigned i = 0; i < VWidth; i++) {
1273 unsigned MaskVal = Shuffle->getMaskValue(i);
1274 if (DemandedElts[i] && i != MaskVal) {
1275 IsIdentityShuffle = false;
1276 break;
1277 }
1278 }
1279 if (IsIdentityShuffle)
1280 return Shuffle->getOperand(0);
1281 }
1282
1283 bool NewUndefElts = false;
1284 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1285 unsigned RHSIdx = -1u, RHSValIdx = -1u;
1286 bool LHSUniform = true;
1287 bool RHSUniform = true;
1288 for (unsigned i = 0; i < VWidth; i++) {
1289 unsigned MaskVal = Shuffle->getMaskValue(i);
1290 if (MaskVal == -1u) {
1291 UndefElts.setBit(i);
1292 } else if (!DemandedElts[i]) {
1293 NewUndefElts = true;
1294 UndefElts.setBit(i);
1295 } else if (MaskVal < OpWidth) {
1296 if (LHSUndefElts[MaskVal]) {
1297 NewUndefElts = true;
1298 UndefElts.setBit(i);
1299 } else {
1300 LHSIdx = LHSIdx == -1u ? i : OpWidth;
1301 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1302 LHSUniform = LHSUniform && (MaskVal == i);
1303 }
1304 } else {
1305 if (RHSUndefElts[MaskVal - OpWidth]) {
1306 NewUndefElts = true;
1307 UndefElts.setBit(i);
1308 } else {
1309 RHSIdx = RHSIdx == -1u ? i : OpWidth;
1310 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1311 RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1312 }
1313 }
1314 }
1315
1316 // Try to transform shuffle with constant vector and single element from
1317 // this constant vector to single insertelement instruction.
1318 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1319 // insertelement V, C[ci], ci-n
1320 if (OpWidth ==
1321 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1322 Value *Op = nullptr;
1323 Constant *Value = nullptr;
1324 unsigned Idx = -1u;
1325
1326 // Find constant vector with the single element in shuffle (LHS or RHS).
1327 if (LHSIdx < OpWidth && RHSUniform) {
1328 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1329 Op = Shuffle->getOperand(1);
1330 Value = CV->getOperand(LHSValIdx);
1331 Idx = LHSIdx;
1332 }
1333 }
1334 if (RHSIdx < OpWidth && LHSUniform) {
1335 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1336 Op = Shuffle->getOperand(0);
1337 Value = CV->getOperand(RHSValIdx);
1338 Idx = RHSIdx;
1339 }
1340 }
1341 // Found constant vector with single element - convert to insertelement.
1342 if (Op && Value) {
1343 Instruction *New = InsertElementInst::Create(
1344 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1345 Shuffle->getName());
1346 InsertNewInstWith(New, *Shuffle);
1347 return New;
1348 }
1349 }
1350 if (NewUndefElts) {
1351 // Add additional discovered undefs.
1352 SmallVector<int, 16> Elts;
1353 for (unsigned i = 0; i < VWidth; ++i) {
1354 if (UndefElts[i])
1355 Elts.push_back(UndefMaskElem);
1356 else
1357 Elts.push_back(Shuffle->getMaskValue(i));
1358 }
1359 Shuffle->setShuffleMask(Elts);
1360 MadeChange = true;
1361 }
1362 break;
1363 }
1364 case Instruction::Select: {
1365 // If this is a vector select, try to transform the select condition based
1366 // on the current demanded elements.
1367 SelectInst *Sel = cast<SelectInst>(I);
1368 if (Sel->getCondition()->getType()->isVectorTy()) {
1369 // TODO: We are not doing anything with UndefElts based on this call.
1370 // It is overwritten below based on the other select operands. If an
1371 // element of the select condition is known undef, then we are free to
1372 // choose the output value from either arm of the select. If we know that
1373 // one of those values is undef, then the output can be undef.
1374 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1375 }
1376
1377 // Next, see if we can transform the arms of the select.
1378 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1379 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1380 for (unsigned i = 0; i < VWidth; i++) {
1381 // isNullValue() always returns false when called on a ConstantExpr.
1382 // Skip constant expressions to avoid propagating incorrect information.
1383 Constant *CElt = CV->getAggregateElement(i);
1384 if (isa<ConstantExpr>(CElt))
1385 continue;
1386 // TODO: If a select condition element is undef, we can demand from
1387 // either side. If one side is known undef, choosing that side would
1388 // propagate undef.
1389 if (CElt->isNullValue())
1390 DemandedLHS.clearBit(i);
1391 else
1392 DemandedRHS.clearBit(i);
1393 }
1394 }
1395
1396 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1397 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1398
1399 // Output elements are undefined if the element from each arm is undefined.
1400 // TODO: This can be improved. See comment in select condition handling.
1401 UndefElts = UndefElts2 & UndefElts3;
1402 break;
1403 }
1404 case Instruction::BitCast: {
1405 // Vector->vector casts only.
1406 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1407 if (!VTy) break;
1408 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1409 APInt InputDemandedElts(InVWidth, 0);
1410 UndefElts2 = APInt(InVWidth, 0);
1411 unsigned Ratio;
1412
1413 if (VWidth == InVWidth) {
1414 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1415 // elements as are demanded of us.
1416 Ratio = 1;
1417 InputDemandedElts = DemandedElts;
1418 } else if ((VWidth % InVWidth) == 0) {
1419 // If the number of elements in the output is a multiple of the number of
1420 // elements in the input then an input element is live if any of the
1421 // corresponding output elements are live.
1422 Ratio = VWidth / InVWidth;
1423 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1424 if (DemandedElts[OutIdx])
1425 InputDemandedElts.setBit(OutIdx / Ratio);
1426 } else if ((InVWidth % VWidth) == 0) {
1427 // If the number of elements in the input is a multiple of the number of
1428 // elements in the output then an input element is live if the
1429 // corresponding output element is live.
1430 Ratio = InVWidth / VWidth;
1431 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1432 if (DemandedElts[InIdx / Ratio])
1433 InputDemandedElts.setBit(InIdx);
1434 } else {
1435 // Unsupported so far.
1436 break;
1437 }
1438
1439 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1440
1441 if (VWidth == InVWidth) {
1442 UndefElts = UndefElts2;
1443 } else if ((VWidth % InVWidth) == 0) {
1444 // If the number of elements in the output is a multiple of the number of
1445 // elements in the input then an output element is undef if the
1446 // corresponding input element is undef.
1447 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1448 if (UndefElts2[OutIdx / Ratio])
1449 UndefElts.setBit(OutIdx);
1450 } else if ((InVWidth % VWidth) == 0) {
1451 // If the number of elements in the input is a multiple of the number of
1452 // elements in the output then an output element is undef if all of the
1453 // corresponding input elements are undef.
1454 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1455 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1456 if (SubUndef.countPopulation() == Ratio)
1457 UndefElts.setBit(OutIdx);
1458 }
1459 } else {
1460 llvm_unreachable("Unimp");
1461 }
1462 break;
1463 }
1464 case Instruction::FPTrunc:
1465 case Instruction::FPExt:
1466 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1467 break;
1468
1469 case Instruction::Call: {
1470 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1471 if (!II) break;
1472 switch (II->getIntrinsicID()) {
1473 case Intrinsic::masked_gather: // fallthrough
1474 case Intrinsic::masked_load: {
1475 // Subtlety: If we load from a pointer, the pointer must be valid
1476 // regardless of whether the element is demanded. Doing otherwise risks
1477 // segfaults which didn't exist in the original program.
1478 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
1479 DemandedPassThrough(DemandedElts);
1480 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1481 for (unsigned i = 0; i < VWidth; i++) {
1482 Constant *CElt = CV->getAggregateElement(i);
1483 if (CElt->isNullValue())
1484 DemandedPtrs.clearBit(i);
1485 else if (CElt->isAllOnesValue())
1486 DemandedPassThrough.clearBit(i);
1487 }
1488 if (II->getIntrinsicID() == Intrinsic::masked_gather)
1489 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1490 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1491
1492 // Output elements are undefined if the element from both sources are.
1493 // TODO: can strengthen via mask as well.
1494 UndefElts = UndefElts2 & UndefElts3;
1495 break;
1496 }
1497 default: {
1498 // Handle target specific intrinsics
1499 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1500 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1501 simplifyAndSetOp);
1502 if (V.hasValue())
1503 return V.getValue();
1504 break;
1505 }
1506 } // switch on IntrinsicID
1507 break;
1508 } // case Call
1509 } // switch on Opcode
1510
1511 // TODO: We bail completely on integer div/rem and shifts because they have
1512 // UB/poison potential, but that should be refined.
1513 BinaryOperator *BO;
1514 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1515 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1516 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1517
1518 // Any change to an instruction with potential poison must clear those flags
1519 // because we can not guarantee those constraints now. Other analysis may
1520 // determine that it is safe to re-apply the flags.
1521 if (MadeChange)
1522 BO->dropPoisonGeneratingFlags();
1523
1524 // Output elements are undefined if both are undefined. Consider things
1525 // like undef & 0. The result is known zero, not undef.
1526 UndefElts &= UndefElts2;
1527 }
1528
1529 // If we've proven all of the lanes undef, return an undef value.
1530 // TODO: Intersect w/demanded lanes
1531 if (UndefElts.isAllOnesValue())
1532 return UndefValue::get(I->getType());;
1533
1534 return MadeChange ? I : nullptr;
1535 }
1536