1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.  Each
20 /// byte of application memory is backed by two bytes of shadow memory which
21 /// hold the label.  On Linux/x86_64, memory is laid out as follows:
22 ///
23 /// +--------------------+ 0x800000000000 (top of memory)
24 /// | application memory |
25 /// +--------------------+ 0x700000008000 (kAppAddr)
26 /// |                    |
27 /// |       unused       |
28 /// |                    |
29 /// +--------------------+ 0x200200000000 (kUnusedAddr)
30 /// |    union table     |
31 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
32 /// |   shadow memory    |
33 /// +--------------------+ 0x000000010000 (kShadowAddr)
34 /// | reserved by kernel |
35 /// +--------------------+ 0x000000000000
36 ///
37 /// To derive a shadow memory address from an application memory address,
38 /// bits 44-46 are cleared to bring the address into the range
39 /// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
40 /// account for the double byte representation of shadow labels and move the
41 /// address into the shadow memory range.  See the function
42 /// DataFlowSanitizer::getShadowAddress below.
43 ///
44 /// For more information, please refer to the design document:
45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46 //
47 //===----------------------------------------------------------------------===//
48 
49 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/DenseSet.h"
52 #include "llvm/ADT/DepthFirstIterator.h"
53 #include "llvm/ADT/None.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/Triple.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/Argument.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalValue.h"
71 #include "llvm/IR/GlobalVariable.h"
72 #include "llvm/IR/IRBuilder.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstVisitor.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/MDBuilder.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/InitializePasses.h"
87 #include "llvm/Pass.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/ErrorHandling.h"
91 #include "llvm/Support/SpecialCaseList.h"
92 #include "llvm/Support/VirtualFileSystem.h"
93 #include "llvm/Transforms/Instrumentation.h"
94 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
95 #include "llvm/Transforms/Utils/Local.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstddef>
99 #include <cstdint>
100 #include <iterator>
101 #include <memory>
102 #include <set>
103 #include <string>
104 #include <utility>
105 #include <vector>
106 
107 using namespace llvm;
108 
109 // This must be consistent with ShadowWidthBits.
110 static const Align kShadowTLSAlignment = Align(2);
111 
112 // The size of TLS variables. These constants must be kept in sync with the ones
113 // in dfsan.cpp.
114 static const unsigned kArgTLSSize = 800;
115 static const unsigned kRetvalTLSSize = 800;
116 
117 // External symbol to be used when generating the shadow address for
118 // architectures with multiple VMAs. Instead of using a constant integer
119 // the runtime will set the external mask based on the VMA range.
120 const char kDFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask";
121 
122 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
123 // alignment requirements provided by the input IR are correct.  For example,
124 // if the input IR contains a load with alignment 8, this flag will cause
125 // the shadow load to have alignment 16.  This flag is disabled by default as
126 // we have unfortunately encountered too much code (including Clang itself;
127 // see PR14291) which performs misaligned access.
128 static cl::opt<bool> ClPreserveAlignment(
129     "dfsan-preserve-alignment",
130     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
131     cl::init(false));
132 
133 // The ABI list files control how shadow parameters are passed. The pass treats
134 // every function labelled "uninstrumented" in the ABI list file as conforming
135 // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
136 // additional annotations for those functions, a call to one of those functions
137 // will produce a warning message, as the labelling behaviour of the function is
138 // unknown.  The other supported annotations are "functional" and "discard",
139 // which are described below under DataFlowSanitizer::WrapperKind.
140 static cl::list<std::string> ClABIListFiles(
141     "dfsan-abilist",
142     cl::desc("File listing native ABI functions and how the pass treats them"),
143     cl::Hidden);
144 
145 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
146 // functions (see DataFlowSanitizer::InstrumentedABI below).
147 static cl::opt<bool> ClArgsABI(
148     "dfsan-args-abi",
149     cl::desc("Use the argument ABI rather than the TLS ABI"),
150     cl::Hidden);
151 
152 // Controls whether the pass includes or ignores the labels of pointers in load
153 // instructions.
154 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
155     "dfsan-combine-pointer-labels-on-load",
156     cl::desc("Combine the label of the pointer with the label of the data when "
157              "loading from memory."),
158     cl::Hidden, cl::init(true));
159 
160 // Controls whether the pass includes or ignores the labels of pointers in
161 // stores instructions.
162 static cl::opt<bool> ClCombinePointerLabelsOnStore(
163     "dfsan-combine-pointer-labels-on-store",
164     cl::desc("Combine the label of the pointer with the label of the data when "
165              "storing in memory."),
166     cl::Hidden, cl::init(false));
167 
168 static cl::opt<bool> ClDebugNonzeroLabels(
169     "dfsan-debug-nonzero-labels",
170     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
171              "load or return with a nonzero label"),
172     cl::Hidden);
173 
174 // Experimental feature that inserts callbacks for certain data events.
175 // Currently callbacks are only inserted for loads, stores, memory transfers
176 // (i.e. memcpy and memmove), and comparisons.
177 //
178 // If this flag is set to true, the user must provide definitions for the
179 // following callback functions:
180 //   void __dfsan_load_callback(dfsan_label Label, void* addr);
181 //   void __dfsan_store_callback(dfsan_label Label, void* addr);
182 //   void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
183 //   void __dfsan_cmp_callback(dfsan_label CombinedLabel);
184 static cl::opt<bool> ClEventCallbacks(
185     "dfsan-event-callbacks",
186     cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
187     cl::Hidden, cl::init(false));
188 
189 // Use a distinct bit for each base label, enabling faster unions with less
190 // instrumentation.  Limits the max number of base labels to 16.
191 static cl::opt<bool> ClFast16Labels(
192     "dfsan-fast-16-labels",
193     cl::desc("Use more efficient instrumentation, limiting the number of "
194              "labels to 16."),
195     cl::Hidden, cl::init(false));
196 
197 // Controls whether the pass tracks the control flow of select instructions.
198 static cl::opt<bool> ClTrackSelectControlFlow(
199     "dfsan-track-select-control-flow",
200     cl::desc("Propagate labels from condition values of select instructions "
201              "to results."),
202     cl::Hidden, cl::init(true));
203 
GetGlobalTypeString(const GlobalValue & G)204 static StringRef GetGlobalTypeString(const GlobalValue &G) {
205   // Types of GlobalVariables are always pointer types.
206   Type *GType = G.getValueType();
207   // For now we support excluding struct types only.
208   if (StructType *SGType = dyn_cast<StructType>(GType)) {
209     if (!SGType->isLiteral())
210       return SGType->getName();
211   }
212   return "<unknown type>";
213 }
214 
215 namespace {
216 
217 class DFSanABIList {
218   std::unique_ptr<SpecialCaseList> SCL;
219 
220  public:
221   DFSanABIList() = default;
222 
set(std::unique_ptr<SpecialCaseList> List)223   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
224 
225   /// Returns whether either this function or its source file are listed in the
226   /// given category.
isIn(const Function & F,StringRef Category) const227   bool isIn(const Function &F, StringRef Category) const {
228     return isIn(*F.getParent(), Category) ||
229            SCL->inSection("dataflow", "fun", F.getName(), Category);
230   }
231 
232   /// Returns whether this global alias is listed in the given category.
233   ///
234   /// If GA aliases a function, the alias's name is matched as a function name
235   /// would be.  Similarly, aliases of globals are matched like globals.
isIn(const GlobalAlias & GA,StringRef Category) const236   bool isIn(const GlobalAlias &GA, StringRef Category) const {
237     if (isIn(*GA.getParent(), Category))
238       return true;
239 
240     if (isa<FunctionType>(GA.getValueType()))
241       return SCL->inSection("dataflow", "fun", GA.getName(), Category);
242 
243     return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
244            SCL->inSection("dataflow", "type", GetGlobalTypeString(GA),
245                           Category);
246   }
247 
248   /// Returns whether this module is listed in the given category.
isIn(const Module & M,StringRef Category) const249   bool isIn(const Module &M, StringRef Category) const {
250     return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
251   }
252 };
253 
254 /// TransformedFunction is used to express the result of transforming one
255 /// function type into another.  This struct is immutable.  It holds metadata
256 /// useful for updating calls of the old function to the new type.
257 struct TransformedFunction {
TransformedFunction__anonb31262e80111::TransformedFunction258   TransformedFunction(FunctionType* OriginalType,
259                       FunctionType* TransformedType,
260                       std::vector<unsigned> ArgumentIndexMapping)
261       : OriginalType(OriginalType),
262         TransformedType(TransformedType),
263         ArgumentIndexMapping(ArgumentIndexMapping) {}
264 
265   // Disallow copies.
266   TransformedFunction(const TransformedFunction&) = delete;
267   TransformedFunction& operator=(const TransformedFunction&) = delete;
268 
269   // Allow moves.
270   TransformedFunction(TransformedFunction&&) = default;
271   TransformedFunction& operator=(TransformedFunction&&) = default;
272 
273   /// Type of the function before the transformation.
274   FunctionType *OriginalType;
275 
276   /// Type of the function after the transformation.
277   FunctionType *TransformedType;
278 
279   /// Transforming a function may change the position of arguments.  This
280   /// member records the mapping from each argument's old position to its new
281   /// position.  Argument positions are zero-indexed.  If the transformation
282   /// from F to F' made the first argument of F into the third argument of F',
283   /// then ArgumentIndexMapping[0] will equal 2.
284   std::vector<unsigned> ArgumentIndexMapping;
285 };
286 
287 /// Given function attributes from a call site for the original function,
288 /// return function attributes appropriate for a call to the transformed
289 /// function.
TransformFunctionAttributes(const TransformedFunction & TransformedFunction,LLVMContext & Ctx,AttributeList CallSiteAttrs)290 AttributeList TransformFunctionAttributes(
291     const TransformedFunction& TransformedFunction,
292     LLVMContext& Ctx, AttributeList CallSiteAttrs) {
293 
294   // Construct a vector of AttributeSet for each function argument.
295   std::vector<llvm::AttributeSet> ArgumentAttributes(
296       TransformedFunction.TransformedType->getNumParams());
297 
298   // Copy attributes from the parameter of the original function to the
299   // transformed version.  'ArgumentIndexMapping' holds the mapping from
300   // old argument position to new.
301   for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size();
302        i < ie; ++i) {
303     unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i];
304     ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i);
305   }
306 
307   // Copy annotations on varargs arguments.
308   for (unsigned i = TransformedFunction.OriginalType->getNumParams(),
309        ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) {
310     ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i));
311   }
312 
313   return AttributeList::get(
314       Ctx,
315       CallSiteAttrs.getFnAttributes(),
316       CallSiteAttrs.getRetAttributes(),
317       llvm::makeArrayRef(ArgumentAttributes));
318 }
319 
320 class DataFlowSanitizer {
321   friend struct DFSanFunction;
322   friend class DFSanVisitor;
323 
324   enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 };
325 
326   /// Which ABI should be used for instrumented functions?
327   enum InstrumentedABI {
328     /// Argument and return value labels are passed through additional
329     /// arguments and by modifying the return type.
330     IA_Args,
331 
332     /// Argument and return value labels are passed through TLS variables
333     /// __dfsan_arg_tls and __dfsan_retval_tls.
334     IA_TLS
335   };
336 
337   /// How should calls to uninstrumented functions be handled?
338   enum WrapperKind {
339     /// This function is present in an uninstrumented form but we don't know
340     /// how it should be handled.  Print a warning and call the function anyway.
341     /// Don't label the return value.
342     WK_Warning,
343 
344     /// This function does not write to (user-accessible) memory, and its return
345     /// value is unlabelled.
346     WK_Discard,
347 
348     /// This function does not write to (user-accessible) memory, and the label
349     /// of its return value is the union of the label of its arguments.
350     WK_Functional,
351 
352     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
353     /// where F is the name of the function.  This function may wrap the
354     /// original function or provide its own implementation.  This is similar to
355     /// the IA_Args ABI, except that IA_Args uses a struct return type to
356     /// pass the return value shadow in a register, while WK_Custom uses an
357     /// extra pointer argument to return the shadow.  This allows the wrapped
358     /// form of the function type to be expressed in C.
359     WK_Custom
360   };
361 
362   Module *Mod;
363   LLVMContext *Ctx;
364   Type *Int8Ptr;
365   /// The shadow type for all primitive types and vector types.
366   IntegerType *PrimitiveShadowTy;
367   PointerType *PrimitiveShadowPtrTy;
368   IntegerType *IntptrTy;
369   ConstantInt *ZeroPrimitiveShadow;
370   ConstantInt *ShadowPtrMask;
371   ConstantInt *ShadowPtrMul;
372   Constant *ArgTLS;
373   Constant *RetvalTLS;
374   Constant *ExternalShadowMask;
375   FunctionType *DFSanUnionFnTy;
376   FunctionType *DFSanUnionLoadFnTy;
377   FunctionType *DFSanUnimplementedFnTy;
378   FunctionType *DFSanSetLabelFnTy;
379   FunctionType *DFSanNonzeroLabelFnTy;
380   FunctionType *DFSanVarargWrapperFnTy;
381   FunctionType *DFSanCmpCallbackFnTy;
382   FunctionType *DFSanLoadStoreCallbackFnTy;
383   FunctionType *DFSanMemTransferCallbackFnTy;
384   FunctionCallee DFSanUnionFn;
385   FunctionCallee DFSanCheckedUnionFn;
386   FunctionCallee DFSanUnionLoadFn;
387   FunctionCallee DFSanUnionLoadFast16LabelsFn;
388   FunctionCallee DFSanUnimplementedFn;
389   FunctionCallee DFSanSetLabelFn;
390   FunctionCallee DFSanNonzeroLabelFn;
391   FunctionCallee DFSanVarargWrapperFn;
392   FunctionCallee DFSanLoadCallbackFn;
393   FunctionCallee DFSanStoreCallbackFn;
394   FunctionCallee DFSanMemTransferCallbackFn;
395   FunctionCallee DFSanCmpCallbackFn;
396   MDNode *ColdCallWeights;
397   DFSanABIList ABIList;
398   DenseMap<Value *, Function *> UnwrappedFnMap;
399   AttrBuilder ReadOnlyNoneAttrs;
400   bool DFSanRuntimeShadowMask = false;
401 
402   Value *getShadowAddress(Value *Addr, Instruction *Pos);
403   bool isInstrumented(const Function *F);
404   bool isInstrumented(const GlobalAlias *GA);
405   FunctionType *getArgsFunctionType(FunctionType *T);
406   FunctionType *getTrampolineFunctionType(FunctionType *T);
407   TransformedFunction getCustomFunctionType(FunctionType *T);
408   InstrumentedABI getInstrumentedABI();
409   WrapperKind getWrapperKind(Function *F);
410   void addGlobalNamePrefix(GlobalValue *GV);
411   Function *buildWrapperFunction(Function *F, StringRef NewFName,
412                                  GlobalValue::LinkageTypes NewFLink,
413                                  FunctionType *NewFT);
414   Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
415   void initializeCallbackFunctions(Module &M);
416   void initializeRuntimeFunctions(Module &M);
417 
418   bool init(Module &M);
419 
420   /// Returns whether the pass tracks labels for struct fields and array
421   /// indices. Support only fast16 mode in TLS ABI mode.
422   bool shouldTrackFieldsAndIndices();
423 
424   /// Returns a zero constant with the shadow type of OrigTy.
425   ///
426   /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
427   /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
428   /// getZeroShadow(other type) = i16(0)
429   ///
430   /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices
431   /// returns false.
432   Constant *getZeroShadow(Type *OrigTy);
433   /// Returns a zero constant with the shadow type of V's type.
434   Constant *getZeroShadow(Value *V);
435 
436   /// Checks if V is a zero shadow.
437   bool isZeroShadow(Value *V);
438 
439   /// Returns the shadow type of OrigTy.
440   ///
441   /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
442   /// getShadowTy([n x T]) = [n x getShadowTy(T)]
443   /// getShadowTy(other type) = i16
444   ///
445   /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices
446   /// returns false.
447   Type *getShadowTy(Type *OrigTy);
448   /// Returns the shadow type of of V's type.
449   Type *getShadowTy(Value *V);
450 
451 public:
452   DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
453 
454   bool runImpl(Module &M);
455 };
456 
457 struct DFSanFunction {
458   DataFlowSanitizer &DFS;
459   Function *F;
460   DominatorTree DT;
461   DataFlowSanitizer::InstrumentedABI IA;
462   bool IsNativeABI;
463   AllocaInst *LabelReturnAlloca = nullptr;
464   DenseMap<Value *, Value *> ValShadowMap;
465   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
466   std::vector<std::pair<PHINode *, PHINode *>> PHIFixups;
467   DenseSet<Instruction *> SkipInsts;
468   std::vector<Value *> NonZeroChecks;
469   bool AvoidNewBlocks;
470 
471   struct CachedShadow {
472     BasicBlock *Block; // The block where Shadow is defined.
473     Value *Shadow;
474   };
475   /// Maps a value to its latest shadow value in terms of domination tree.
476   DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
477   /// Maps a value to its latest collapsed shadow value it was converted to in
478   /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
479   /// used at a post process where CFG blocks are split. So it does not cache
480   /// BasicBlock like CachedShadows, but uses domination between values.
481   DenseMap<Value *, Value *> CachedCollapsedShadows;
482   DenseMap<Value *, std::set<Value *>> ShadowElements;
483 
DFSanFunction__anonb31262e80111::DFSanFunction484   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
485       : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
486     DT.recalculate(*F);
487     // FIXME: Need to track down the register allocator issue which causes poor
488     // performance in pathological cases with large numbers of basic blocks.
489     AvoidNewBlocks = F->size() > 1000;
490   }
491 
492   /// Computes the shadow address for a given function argument.
493   ///
494   /// Shadow = ArgTLS+ArgOffset.
495   Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
496 
497   /// Computes the shadow address for a retval.
498   Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
499 
500   Value *getShadow(Value *V);
501   void setShadow(Instruction *I, Value *Shadow);
502   /// Generates IR to compute the union of the two given shadows, inserting it
503   /// before Pos. The combined value is with primitive type.
504   Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
505   /// Combines the shadow values of V1 and V2, then converts the combined value
506   /// with primitive type into a shadow value with the original type T.
507   Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
508                                    Instruction *Pos);
509   Value *combineOperandShadows(Instruction *Inst);
510   Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
511                     Instruction *Pos);
512   void storePrimitiveShadow(Value *Addr, uint64_t Size, Align Alignment,
513                             Value *PrimitiveShadow, Instruction *Pos);
514   /// Applies PrimitiveShadow to all primitive subtypes of T, returning
515   /// the expanded shadow value.
516   ///
517   /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
518   /// EFP([n x T], PS) = [n x EFP(T,PS)]
519   /// EFP(other types, PS) = PS
520   Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
521                                    Instruction *Pos);
522   /// Collapses Shadow into a single primitive shadow value, unioning all
523   /// primitive shadow values in the process. Returns the final primitive
524   /// shadow value.
525   ///
526   /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
527   /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
528   /// CTP(other types, PS) = PS
529   Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
530 
531 private:
532   /// Collapses the shadow with aggregate type into a single primitive shadow
533   /// value.
534   template <class AggregateType>
535   Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
536                                  IRBuilder<> &IRB);
537 
538   Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
539 
540   /// Returns the shadow value of an argument A.
541   Value *getShadowForTLSArgument(Argument *A);
542 };
543 
544 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
545 public:
546   DFSanFunction &DFSF;
547 
DFSanVisitor(DFSanFunction & DFSF)548   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
549 
getDataLayout() const550   const DataLayout &getDataLayout() const {
551     return DFSF.F->getParent()->getDataLayout();
552   }
553 
554   // Combines shadow values for all of I's operands. Returns the combined shadow
555   // value.
556   Value *visitOperandShadowInst(Instruction &I);
557 
558   void visitUnaryOperator(UnaryOperator &UO);
559   void visitBinaryOperator(BinaryOperator &BO);
560   void visitCastInst(CastInst &CI);
561   void visitCmpInst(CmpInst &CI);
562   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
563   void visitLoadInst(LoadInst &LI);
564   void visitStoreInst(StoreInst &SI);
565   void visitReturnInst(ReturnInst &RI);
566   void visitCallBase(CallBase &CB);
567   void visitPHINode(PHINode &PN);
568   void visitExtractElementInst(ExtractElementInst &I);
569   void visitInsertElementInst(InsertElementInst &I);
570   void visitShuffleVectorInst(ShuffleVectorInst &I);
571   void visitExtractValueInst(ExtractValueInst &I);
572   void visitInsertValueInst(InsertValueInst &I);
573   void visitAllocaInst(AllocaInst &I);
574   void visitSelectInst(SelectInst &I);
575   void visitMemSetInst(MemSetInst &I);
576   void visitMemTransferInst(MemTransferInst &I);
577 };
578 
579 } // end anonymous namespace
580 
DataFlowSanitizer(const std::vector<std::string> & ABIListFiles)581 DataFlowSanitizer::DataFlowSanitizer(
582     const std::vector<std::string> &ABIListFiles) {
583   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
584   llvm::append_range(AllABIListFiles, ClABIListFiles);
585   // FIXME: should we propagate vfs::FileSystem to this constructor?
586   ABIList.set(
587       SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
588 }
589 
getArgsFunctionType(FunctionType * T)590 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
591   SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
592   ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
593   if (T->isVarArg())
594     ArgTypes.push_back(PrimitiveShadowPtrTy);
595   Type *RetType = T->getReturnType();
596   if (!RetType->isVoidTy())
597     RetType = StructType::get(RetType, PrimitiveShadowTy);
598   return FunctionType::get(RetType, ArgTypes, T->isVarArg());
599 }
600 
getTrampolineFunctionType(FunctionType * T)601 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
602   assert(!T->isVarArg());
603   SmallVector<Type *, 4> ArgTypes;
604   ArgTypes.push_back(T->getPointerTo());
605   ArgTypes.append(T->param_begin(), T->param_end());
606   ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
607   Type *RetType = T->getReturnType();
608   if (!RetType->isVoidTy())
609     ArgTypes.push_back(PrimitiveShadowPtrTy);
610   return FunctionType::get(T->getReturnType(), ArgTypes, false);
611 }
612 
getCustomFunctionType(FunctionType * T)613 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
614   SmallVector<Type *, 4> ArgTypes;
615 
616   // Some parameters of the custom function being constructed are
617   // parameters of T.  Record the mapping from parameters of T to
618   // parameters of the custom function, so that parameter attributes
619   // at call sites can be updated.
620   std::vector<unsigned> ArgumentIndexMapping;
621   for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) {
622     Type* param_type = T->getParamType(i);
623     FunctionType *FT;
624     if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>(
625             cast<PointerType>(param_type)->getElementType()))) {
626       ArgumentIndexMapping.push_back(ArgTypes.size());
627       ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
628       ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
629     } else {
630       ArgumentIndexMapping.push_back(ArgTypes.size());
631       ArgTypes.push_back(param_type);
632     }
633   }
634   for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
635     ArgTypes.push_back(PrimitiveShadowTy);
636   if (T->isVarArg())
637     ArgTypes.push_back(PrimitiveShadowPtrTy);
638   Type *RetType = T->getReturnType();
639   if (!RetType->isVoidTy())
640     ArgTypes.push_back(PrimitiveShadowPtrTy);
641   return TransformedFunction(
642       T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
643       ArgumentIndexMapping);
644 }
645 
isZeroShadow(Value * V)646 bool DataFlowSanitizer::isZeroShadow(Value *V) {
647   if (!shouldTrackFieldsAndIndices())
648     return ZeroPrimitiveShadow == V;
649 
650   Type *T = V->getType();
651   if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
652     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
653       return CI->isZero();
654     return false;
655   }
656 
657   return isa<ConstantAggregateZero>(V);
658 }
659 
shouldTrackFieldsAndIndices()660 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() {
661   return getInstrumentedABI() == DataFlowSanitizer::IA_TLS && ClFast16Labels;
662 }
663 
getZeroShadow(Type * OrigTy)664 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
665   if (!shouldTrackFieldsAndIndices())
666     return ZeroPrimitiveShadow;
667 
668   if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
669     return ZeroPrimitiveShadow;
670   Type *ShadowTy = getShadowTy(OrigTy);
671   return ConstantAggregateZero::get(ShadowTy);
672 }
673 
getZeroShadow(Value * V)674 Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
675   return getZeroShadow(V->getType());
676 }
677 
expandFromPrimitiveShadowRecursive(Value * Shadow,SmallVector<unsigned,4> & Indices,Type * SubShadowTy,Value * PrimitiveShadow,IRBuilder<> & IRB)678 static Value *expandFromPrimitiveShadowRecursive(
679     Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
680     Value *PrimitiveShadow, IRBuilder<> &IRB) {
681   if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
682     return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
683 
684   if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
685     for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
686       Indices.push_back(Idx);
687       Shadow = expandFromPrimitiveShadowRecursive(
688           Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
689       Indices.pop_back();
690     }
691     return Shadow;
692   }
693 
694   if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
695     for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
696       Indices.push_back(Idx);
697       Shadow = expandFromPrimitiveShadowRecursive(
698           Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
699       Indices.pop_back();
700     }
701     return Shadow;
702   }
703   llvm_unreachable("Unexpected shadow type");
704 }
705 
expandFromPrimitiveShadow(Type * T,Value * PrimitiveShadow,Instruction * Pos)706 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
707                                                 Instruction *Pos) {
708   Type *ShadowTy = DFS.getShadowTy(T);
709 
710   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
711     return PrimitiveShadow;
712 
713   if (DFS.isZeroShadow(PrimitiveShadow))
714     return DFS.getZeroShadow(ShadowTy);
715 
716   IRBuilder<> IRB(Pos);
717   SmallVector<unsigned, 4> Indices;
718   Value *Shadow = UndefValue::get(ShadowTy);
719   Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
720                                               PrimitiveShadow, IRB);
721 
722   // Caches the primitive shadow value that built the shadow value.
723   CachedCollapsedShadows[Shadow] = PrimitiveShadow;
724   return Shadow;
725 }
726 
727 template <class AggregateType>
collapseAggregateShadow(AggregateType * AT,Value * Shadow,IRBuilder<> & IRB)728 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
729                                               IRBuilder<> &IRB) {
730   if (!AT->getNumElements())
731     return DFS.ZeroPrimitiveShadow;
732 
733   Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
734   Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
735 
736   for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
737     Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
738     Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
739     Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
740   }
741   return Aggregator;
742 }
743 
collapseToPrimitiveShadow(Value * Shadow,IRBuilder<> & IRB)744 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
745                                                 IRBuilder<> &IRB) {
746   Type *ShadowTy = Shadow->getType();
747   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
748     return Shadow;
749   if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
750     return collapseAggregateShadow<>(AT, Shadow, IRB);
751   if (StructType *ST = dyn_cast<StructType>(ShadowTy))
752     return collapseAggregateShadow<>(ST, Shadow, IRB);
753   llvm_unreachable("Unexpected shadow type");
754 }
755 
collapseToPrimitiveShadow(Value * Shadow,Instruction * Pos)756 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
757                                                 Instruction *Pos) {
758   Type *ShadowTy = Shadow->getType();
759   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
760     return Shadow;
761 
762   assert(DFS.shouldTrackFieldsAndIndices());
763 
764   // Checks if the cached collapsed shadow value dominates Pos.
765   Value *&CS = CachedCollapsedShadows[Shadow];
766   if (CS && DT.dominates(CS, Pos))
767     return CS;
768 
769   IRBuilder<> IRB(Pos);
770   Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
771   // Caches the converted primitive shadow value.
772   CS = PrimitiveShadow;
773   return PrimitiveShadow;
774 }
775 
getShadowTy(Type * OrigTy)776 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
777   if (!shouldTrackFieldsAndIndices())
778     return PrimitiveShadowTy;
779 
780   if (!OrigTy->isSized())
781     return PrimitiveShadowTy;
782   if (isa<IntegerType>(OrigTy))
783     return PrimitiveShadowTy;
784   if (isa<VectorType>(OrigTy))
785     return PrimitiveShadowTy;
786   if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
787     return ArrayType::get(getShadowTy(AT->getElementType()),
788                           AT->getNumElements());
789   if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
790     SmallVector<Type *, 4> Elements;
791     for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
792       Elements.push_back(getShadowTy(ST->getElementType(I)));
793     return StructType::get(*Ctx, Elements);
794   }
795   return PrimitiveShadowTy;
796 }
797 
getShadowTy(Value * V)798 Type *DataFlowSanitizer::getShadowTy(Value *V) {
799   return getShadowTy(V->getType());
800 }
801 
init(Module & M)802 bool DataFlowSanitizer::init(Module &M) {
803   Triple TargetTriple(M.getTargetTriple());
804   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
805   bool IsMIPS64 = TargetTriple.isMIPS64();
806   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
807                    TargetTriple.getArch() == Triple::aarch64_be;
808 
809   const DataLayout &DL = M.getDataLayout();
810 
811   Mod = &M;
812   Ctx = &M.getContext();
813   Int8Ptr = Type::getInt8PtrTy(*Ctx);
814   PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
815   PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
816   IntptrTy = DL.getIntPtrType(*Ctx);
817   ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
818   ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes);
819   if (IsX86_64)
820     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
821   else if (IsMIPS64)
822     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
823   // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
824   else if (IsAArch64)
825     DFSanRuntimeShadowMask = true;
826   else
827     report_fatal_error("unsupported triple");
828 
829   Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy};
830   DFSanUnionFnTy =
831       FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false);
832   Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
833   DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
834                                          /*isVarArg=*/false);
835   DFSanUnimplementedFnTy = FunctionType::get(
836       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
837   Type *DFSanSetLabelArgs[3] = {PrimitiveShadowTy, Type::getInt8PtrTy(*Ctx),
838                                 IntptrTy};
839   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
840                                         DFSanSetLabelArgs, /*isVarArg=*/false);
841   DFSanNonzeroLabelFnTy =
842       FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
843   DFSanVarargWrapperFnTy = FunctionType::get(
844       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
845   DFSanCmpCallbackFnTy =
846       FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
847                         /*isVarArg=*/false);
848   Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
849   DFSanLoadStoreCallbackFnTy =
850       FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
851                         /*isVarArg=*/false);
852   Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
853   DFSanMemTransferCallbackFnTy =
854       FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
855                         /*isVarArg=*/false);
856 
857   ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
858   return true;
859 }
860 
isInstrumented(const Function * F)861 bool DataFlowSanitizer::isInstrumented(const Function *F) {
862   return !ABIList.isIn(*F, "uninstrumented");
863 }
864 
isInstrumented(const GlobalAlias * GA)865 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
866   return !ABIList.isIn(*GA, "uninstrumented");
867 }
868 
getInstrumentedABI()869 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
870   return ClArgsABI ? IA_Args : IA_TLS;
871 }
872 
getWrapperKind(Function * F)873 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
874   if (ABIList.isIn(*F, "functional"))
875     return WK_Functional;
876   if (ABIList.isIn(*F, "discard"))
877     return WK_Discard;
878   if (ABIList.isIn(*F, "custom"))
879     return WK_Custom;
880 
881   return WK_Warning;
882 }
883 
addGlobalNamePrefix(GlobalValue * GV)884 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
885   std::string GVName = std::string(GV->getName()), Prefix = "dfs$";
886   GV->setName(Prefix + GVName);
887 
888   // Try to change the name of the function in module inline asm.  We only do
889   // this for specific asm directives, currently only ".symver", to try to avoid
890   // corrupting asm which happens to contain the symbol name as a substring.
891   // Note that the substitution for .symver assumes that the versioned symbol
892   // also has an instrumented name.
893   std::string Asm = GV->getParent()->getModuleInlineAsm();
894   std::string SearchStr = ".symver " + GVName + ",";
895   size_t Pos = Asm.find(SearchStr);
896   if (Pos != std::string::npos) {
897     Asm.replace(Pos, SearchStr.size(),
898                 ".symver " + Prefix + GVName + "," + Prefix);
899     GV->getParent()->setModuleInlineAsm(Asm);
900   }
901 }
902 
903 Function *
buildWrapperFunction(Function * F,StringRef NewFName,GlobalValue::LinkageTypes NewFLink,FunctionType * NewFT)904 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
905                                         GlobalValue::LinkageTypes NewFLink,
906                                         FunctionType *NewFT) {
907   FunctionType *FT = F->getFunctionType();
908   Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
909                                     NewFName, F->getParent());
910   NewF->copyAttributesFrom(F);
911   NewF->removeAttributes(
912       AttributeList::ReturnIndex,
913       AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
914 
915   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
916   if (F->isVarArg()) {
917     NewF->removeAttributes(AttributeList::FunctionIndex,
918                            AttrBuilder().addAttribute("split-stack"));
919     CallInst::Create(DFSanVarargWrapperFn,
920                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
921                      BB);
922     new UnreachableInst(*Ctx, BB);
923   } else {
924     std::vector<Value *> Args;
925     unsigned n = FT->getNumParams();
926     for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
927       Args.push_back(&*ai);
928     CallInst *CI = CallInst::Create(F, Args, "", BB);
929     if (FT->getReturnType()->isVoidTy())
930       ReturnInst::Create(*Ctx, BB);
931     else
932       ReturnInst::Create(*Ctx, CI, BB);
933   }
934 
935   return NewF;
936 }
937 
getOrBuildTrampolineFunction(FunctionType * FT,StringRef FName)938 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
939                                                           StringRef FName) {
940   FunctionType *FTT = getTrampolineFunctionType(FT);
941   FunctionCallee C = Mod->getOrInsertFunction(FName, FTT);
942   Function *F = dyn_cast<Function>(C.getCallee());
943   if (F && F->isDeclaration()) {
944     F->setLinkage(GlobalValue::LinkOnceODRLinkage);
945     BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
946     std::vector<Value *> Args;
947     Function::arg_iterator AI = F->arg_begin(); ++AI;
948     for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
949       Args.push_back(&*AI);
950     CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB);
951     ReturnInst *RI;
952     if (FT->getReturnType()->isVoidTy())
953       RI = ReturnInst::Create(*Ctx, BB);
954     else
955       RI = ReturnInst::Create(*Ctx, CI, BB);
956 
957     // F is called by a wrapped custom function with primitive shadows. So
958     // its arguments and return value need conversion.
959     DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
960     Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
961     for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) {
962       Value *Shadow =
963           DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI);
964       DFSF.ValShadowMap[&*ValAI] = Shadow;
965     }
966     DFSanVisitor(DFSF).visitCallInst(*CI);
967     if (!FT->getReturnType()->isVoidTy()) {
968       Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(
969           DFSF.getShadow(RI->getReturnValue()), RI);
970       new StoreInst(PrimitiveShadow, &*std::prev(F->arg_end()), RI);
971     }
972   }
973 
974   return cast<Constant>(C.getCallee());
975 }
976 
977 // Initialize DataFlowSanitizer runtime functions and declare them in the module
initializeRuntimeFunctions(Module & M)978 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
979   {
980     AttributeList AL;
981     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
982                          Attribute::NoUnwind);
983     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
984                          Attribute::ReadNone);
985     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
986                          Attribute::ZExt);
987     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
988     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
989     DFSanUnionFn =
990         Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL);
991   }
992   {
993     AttributeList AL;
994     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
995                          Attribute::NoUnwind);
996     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
997                          Attribute::ReadNone);
998     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
999                          Attribute::ZExt);
1000     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1001     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1002     DFSanCheckedUnionFn =
1003         Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL);
1004   }
1005   {
1006     AttributeList AL;
1007     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1008                          Attribute::NoUnwind);
1009     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1010                          Attribute::ReadOnly);
1011     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1012                          Attribute::ZExt);
1013     DFSanUnionLoadFn =
1014         Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
1015   }
1016   {
1017     AttributeList AL;
1018     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1019                          Attribute::NoUnwind);
1020     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1021                          Attribute::ReadOnly);
1022     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1023                          Attribute::ZExt);
1024     DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction(
1025         "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL);
1026   }
1027   DFSanUnimplementedFn =
1028       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
1029   {
1030     AttributeList AL;
1031     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1032     DFSanSetLabelFn =
1033         Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
1034   }
1035   DFSanNonzeroLabelFn =
1036       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
1037   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
1038                                                   DFSanVarargWrapperFnTy);
1039 }
1040 
1041 // Initializes event callback functions and declare them in the module
initializeCallbackFunctions(Module & M)1042 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
1043   DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback",
1044                                                  DFSanLoadStoreCallbackFnTy);
1045   DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback",
1046                                                   DFSanLoadStoreCallbackFnTy);
1047   DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
1048       "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
1049   DFSanCmpCallbackFn =
1050       Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy);
1051 }
1052 
runImpl(Module & M)1053 bool DataFlowSanitizer::runImpl(Module &M) {
1054   init(M);
1055 
1056   if (ABIList.isIn(M, "skip"))
1057     return false;
1058 
1059   const unsigned InitialGlobalSize = M.global_size();
1060   const unsigned InitialModuleSize = M.size();
1061 
1062   bool Changed = false;
1063 
1064   Type *ArgTLSTy = ArrayType::get(Type::getInt64Ty(*Ctx), kArgTLSSize / 8);
1065   ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
1066   if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) {
1067     Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1068     G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1069   }
1070   Type *RetvalTLSTy =
1071       ArrayType::get(Type::getInt64Ty(*Ctx), kRetvalTLSSize / 8);
1072   RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", RetvalTLSTy);
1073   if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) {
1074     Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1075     G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1076   }
1077 
1078   ExternalShadowMask =
1079       Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
1080 
1081   initializeCallbackFunctions(M);
1082   initializeRuntimeFunctions(M);
1083 
1084   std::vector<Function *> FnsToInstrument;
1085   SmallPtrSet<Function *, 2> FnsWithNativeABI;
1086   for (Function &i : M) {
1087     if (!i.isIntrinsic() &&
1088         &i != DFSanUnionFn.getCallee()->stripPointerCasts() &&
1089         &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() &&
1090         &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() &&
1091         &i != DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts() &&
1092         &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() &&
1093         &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() &&
1094         &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() &&
1095         &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() &&
1096         &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() &&
1097         &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() &&
1098         &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() &&
1099         &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts())
1100       FnsToInstrument.push_back(&i);
1101   }
1102 
1103   // Give function aliases prefixes when necessary, and build wrappers where the
1104   // instrumentedness is inconsistent.
1105   for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
1106     GlobalAlias *GA = &*i;
1107     ++i;
1108     // Don't stop on weak.  We assume people aren't playing games with the
1109     // instrumentedness of overridden weak aliases.
1110     if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
1111       bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
1112       if (GAInst && FInst) {
1113         addGlobalNamePrefix(GA);
1114       } else if (GAInst != FInst) {
1115         // Non-instrumented alias of an instrumented function, or vice versa.
1116         // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
1117         // below will take care of instrumenting it.
1118         Function *NewF =
1119             buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
1120         GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
1121         NewF->takeName(GA);
1122         GA->eraseFromParent();
1123         FnsToInstrument.push_back(NewF);
1124       }
1125     }
1126   }
1127 
1128   ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
1129       .addAttribute(Attribute::ReadNone);
1130 
1131   // First, change the ABI of every function in the module.  ABI-listed
1132   // functions keep their original ABI and get a wrapper function.
1133   for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
1134                                          e = FnsToInstrument.end();
1135        i != e; ++i) {
1136     Function &F = **i;
1137     FunctionType *FT = F.getFunctionType();
1138 
1139     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
1140                               FT->getReturnType()->isVoidTy());
1141 
1142     if (isInstrumented(&F)) {
1143       // Instrumented functions get a 'dfs$' prefix.  This allows us to more
1144       // easily identify cases of mismatching ABIs.
1145       if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
1146         FunctionType *NewFT = getArgsFunctionType(FT);
1147         Function *NewF = Function::Create(NewFT, F.getLinkage(),
1148                                           F.getAddressSpace(), "", &M);
1149         NewF->copyAttributesFrom(&F);
1150         NewF->removeAttributes(
1151             AttributeList::ReturnIndex,
1152             AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1153         for (Function::arg_iterator FArg = F.arg_begin(),
1154                                     NewFArg = NewF->arg_begin(),
1155                                     FArgEnd = F.arg_end();
1156              FArg != FArgEnd; ++FArg, ++NewFArg) {
1157           FArg->replaceAllUsesWith(&*NewFArg);
1158         }
1159         NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
1160 
1161         for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
1162              UI != UE;) {
1163           BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
1164           ++UI;
1165           if (BA) {
1166             BA->replaceAllUsesWith(
1167                 BlockAddress::get(NewF, BA->getBasicBlock()));
1168             delete BA;
1169           }
1170         }
1171         F.replaceAllUsesWith(
1172             ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
1173         NewF->takeName(&F);
1174         F.eraseFromParent();
1175         *i = NewF;
1176         addGlobalNamePrefix(NewF);
1177       } else {
1178         addGlobalNamePrefix(&F);
1179       }
1180     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
1181       // Build a wrapper function for F.  The wrapper simply calls F, and is
1182       // added to FnsToInstrument so that any instrumentation according to its
1183       // WrapperKind is done in the second pass below.
1184       FunctionType *NewFT = getInstrumentedABI() == IA_Args
1185                                 ? getArgsFunctionType(FT)
1186                                 : FT;
1187 
1188       // If the function being wrapped has local linkage, then preserve the
1189       // function's linkage in the wrapper function.
1190       GlobalValue::LinkageTypes wrapperLinkage =
1191           F.hasLocalLinkage()
1192               ? F.getLinkage()
1193               : GlobalValue::LinkOnceODRLinkage;
1194 
1195       Function *NewF = buildWrapperFunction(
1196           &F, std::string("dfsw$") + std::string(F.getName()),
1197           wrapperLinkage, NewFT);
1198       if (getInstrumentedABI() == IA_TLS)
1199         NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
1200 
1201       Value *WrappedFnCst =
1202           ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
1203       F.replaceAllUsesWith(WrappedFnCst);
1204 
1205       UnwrappedFnMap[WrappedFnCst] = &F;
1206       *i = NewF;
1207 
1208       if (!F.isDeclaration()) {
1209         // This function is probably defining an interposition of an
1210         // uninstrumented function and hence needs to keep the original ABI.
1211         // But any functions it may call need to use the instrumented ABI, so
1212         // we instrument it in a mode which preserves the original ABI.
1213         FnsWithNativeABI.insert(&F);
1214 
1215         // This code needs to rebuild the iterators, as they may be invalidated
1216         // by the push_back, taking care that the new range does not include
1217         // any functions added by this code.
1218         size_t N = i - FnsToInstrument.begin(),
1219                Count = e - FnsToInstrument.begin();
1220         FnsToInstrument.push_back(&F);
1221         i = FnsToInstrument.begin() + N;
1222         e = FnsToInstrument.begin() + Count;
1223       }
1224                // Hopefully, nobody will try to indirectly call a vararg
1225                // function... yet.
1226     } else if (FT->isVarArg()) {
1227       UnwrappedFnMap[&F] = &F;
1228       *i = nullptr;
1229     }
1230   }
1231 
1232   for (Function *i : FnsToInstrument) {
1233     if (!i || i->isDeclaration())
1234       continue;
1235 
1236     removeUnreachableBlocks(*i);
1237 
1238     DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
1239 
1240     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
1241     // Build a copy of the list before iterating over it.
1242     SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
1243 
1244     for (BasicBlock *i : BBList) {
1245       Instruction *Inst = &i->front();
1246       while (true) {
1247         // DFSanVisitor may split the current basic block, changing the current
1248         // instruction's next pointer and moving the next instruction to the
1249         // tail block from which we should continue.
1250         Instruction *Next = Inst->getNextNode();
1251         // DFSanVisitor may delete Inst, so keep track of whether it was a
1252         // terminator.
1253         bool IsTerminator = Inst->isTerminator();
1254         if (!DFSF.SkipInsts.count(Inst))
1255           DFSanVisitor(DFSF).visit(Inst);
1256         if (IsTerminator)
1257           break;
1258         Inst = Next;
1259       }
1260     }
1261 
1262     // We will not necessarily be able to compute the shadow for every phi node
1263     // until we have visited every block.  Therefore, the code that handles phi
1264     // nodes adds them to the PHIFixups list so that they can be properly
1265     // handled here.
1266     for (std::vector<std::pair<PHINode *, PHINode *>>::iterator
1267              i = DFSF.PHIFixups.begin(),
1268              e = DFSF.PHIFixups.end();
1269          i != e; ++i) {
1270       for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
1271            ++val) {
1272         i->second->setIncomingValue(
1273             val, DFSF.getShadow(i->first->getIncomingValue(val)));
1274       }
1275     }
1276 
1277     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1278     // places (i.e. instructions in basic blocks we haven't even begun visiting
1279     // yet).  To make our life easier, do this work in a pass after the main
1280     // instrumentation.
1281     if (ClDebugNonzeroLabels) {
1282       for (Value *V : DFSF.NonZeroChecks) {
1283         Instruction *Pos;
1284         if (Instruction *I = dyn_cast<Instruction>(V))
1285           Pos = I->getNextNode();
1286         else
1287           Pos = &DFSF.F->getEntryBlock().front();
1288         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1289           Pos = Pos->getNextNode();
1290         IRBuilder<> IRB(Pos);
1291         Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
1292         Value *Ne =
1293             IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
1294         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1295             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1296         IRBuilder<> ThenIRB(BI);
1297         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1298       }
1299     }
1300   }
1301 
1302   return Changed || !FnsToInstrument.empty() ||
1303          M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1304 }
1305 
getArgTLS(Type * T,unsigned ArgOffset,IRBuilder<> & IRB)1306 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
1307   Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
1308   if (ArgOffset)
1309     Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
1310   return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
1311                             "_dfsarg");
1312 }
1313 
getRetvalTLS(Type * T,IRBuilder<> & IRB)1314 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
1315   return IRB.CreatePointerCast(
1316       DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
1317 }
1318 
getShadowForTLSArgument(Argument * A)1319 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
1320   unsigned ArgOffset = 0;
1321   const DataLayout &DL = F->getParent()->getDataLayout();
1322   for (auto &FArg : F->args()) {
1323     if (!FArg.getType()->isSized()) {
1324       if (A == &FArg)
1325         break;
1326       continue;
1327     }
1328 
1329     unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
1330     if (A != &FArg) {
1331       ArgOffset += alignTo(Size, kShadowTLSAlignment);
1332       if (ArgOffset > kArgTLSSize)
1333         break; // ArgTLS overflows, uses a zero shadow.
1334       continue;
1335     }
1336 
1337     if (ArgOffset + Size > kArgTLSSize)
1338       break; // ArgTLS overflows, uses a zero shadow.
1339 
1340     Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
1341     IRBuilder<> IRB(ArgTLSPos);
1342     Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
1343     return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
1344                                  kShadowTLSAlignment);
1345   }
1346 
1347   return DFS.getZeroShadow(A);
1348 }
1349 
getShadow(Value * V)1350 Value *DFSanFunction::getShadow(Value *V) {
1351   if (!isa<Argument>(V) && !isa<Instruction>(V))
1352     return DFS.getZeroShadow(V);
1353   Value *&Shadow = ValShadowMap[V];
1354   if (!Shadow) {
1355     if (Argument *A = dyn_cast<Argument>(V)) {
1356       if (IsNativeABI)
1357         return DFS.getZeroShadow(V);
1358       switch (IA) {
1359       case DataFlowSanitizer::IA_TLS: {
1360         Shadow = getShadowForTLSArgument(A);
1361         break;
1362       }
1363       case DataFlowSanitizer::IA_Args: {
1364         unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
1365         Function::arg_iterator i = F->arg_begin();
1366         while (ArgIdx--)
1367           ++i;
1368         Shadow = &*i;
1369         assert(Shadow->getType() == DFS.PrimitiveShadowTy);
1370         break;
1371       }
1372       }
1373       NonZeroChecks.push_back(Shadow);
1374     } else {
1375       Shadow = DFS.getZeroShadow(V);
1376     }
1377   }
1378   return Shadow;
1379 }
1380 
setShadow(Instruction * I,Value * Shadow)1381 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1382   assert(!ValShadowMap.count(I));
1383   assert(DFS.shouldTrackFieldsAndIndices() ||
1384          Shadow->getType() == DFS.PrimitiveShadowTy);
1385   ValShadowMap[I] = Shadow;
1386 }
1387 
getShadowAddress(Value * Addr,Instruction * Pos)1388 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1389   assert(Addr != RetvalTLS && "Reinstrumenting?");
1390   IRBuilder<> IRB(Pos);
1391   Value *ShadowPtrMaskValue;
1392   if (DFSanRuntimeShadowMask)
1393     ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
1394   else
1395     ShadowPtrMaskValue = ShadowPtrMask;
1396   return IRB.CreateIntToPtr(
1397       IRB.CreateMul(
1398           IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
1399                         IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
1400           ShadowPtrMul),
1401       PrimitiveShadowPtrTy);
1402 }
1403 
combineShadowsThenConvert(Type * T,Value * V1,Value * V2,Instruction * Pos)1404 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
1405                                                 Instruction *Pos) {
1406   Value *PrimitiveValue = combineShadows(V1, V2, Pos);
1407   return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
1408 }
1409 
1410 // Generates IR to compute the union of the two given shadows, inserting it
1411 // before Pos. The combined value is with primitive type.
combineShadows(Value * V1,Value * V2,Instruction * Pos)1412 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1413   if (DFS.isZeroShadow(V1))
1414     return collapseToPrimitiveShadow(V2, Pos);
1415   if (DFS.isZeroShadow(V2))
1416     return collapseToPrimitiveShadow(V1, Pos);
1417   if (V1 == V2)
1418     return collapseToPrimitiveShadow(V1, Pos);
1419 
1420   auto V1Elems = ShadowElements.find(V1);
1421   auto V2Elems = ShadowElements.find(V2);
1422   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1423     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1424                       V2Elems->second.begin(), V2Elems->second.end())) {
1425       return collapseToPrimitiveShadow(V1, Pos);
1426     } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1427                              V1Elems->second.begin(), V1Elems->second.end())) {
1428       return collapseToPrimitiveShadow(V2, Pos);
1429     }
1430   } else if (V1Elems != ShadowElements.end()) {
1431     if (V1Elems->second.count(V2))
1432       return collapseToPrimitiveShadow(V1, Pos);
1433   } else if (V2Elems != ShadowElements.end()) {
1434     if (V2Elems->second.count(V1))
1435       return collapseToPrimitiveShadow(V2, Pos);
1436   }
1437 
1438   auto Key = std::make_pair(V1, V2);
1439   if (V1 > V2)
1440     std::swap(Key.first, Key.second);
1441   CachedShadow &CCS = CachedShadows[Key];
1442   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1443     return CCS.Shadow;
1444 
1445   // Converts inputs shadows to shadows with primitive types.
1446   Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
1447   Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
1448 
1449   IRBuilder<> IRB(Pos);
1450   if (ClFast16Labels) {
1451     CCS.Block = Pos->getParent();
1452     CCS.Shadow = IRB.CreateOr(PV1, PV2);
1453   } else if (AvoidNewBlocks) {
1454     CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2});
1455     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1456     Call->addParamAttr(0, Attribute::ZExt);
1457     Call->addParamAttr(1, Attribute::ZExt);
1458 
1459     CCS.Block = Pos->getParent();
1460     CCS.Shadow = Call;
1461   } else {
1462     BasicBlock *Head = Pos->getParent();
1463     Value *Ne = IRB.CreateICmpNE(PV1, PV2);
1464     BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1465         Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
1466     IRBuilder<> ThenIRB(BI);
1467     CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2});
1468     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1469     Call->addParamAttr(0, Attribute::ZExt);
1470     Call->addParamAttr(1, Attribute::ZExt);
1471 
1472     BasicBlock *Tail = BI->getSuccessor(0);
1473     PHINode *Phi =
1474         PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front());
1475     Phi->addIncoming(Call, Call->getParent());
1476     Phi->addIncoming(PV1, Head);
1477 
1478     CCS.Block = Tail;
1479     CCS.Shadow = Phi;
1480   }
1481 
1482   std::set<Value *> UnionElems;
1483   if (V1Elems != ShadowElements.end()) {
1484     UnionElems = V1Elems->second;
1485   } else {
1486     UnionElems.insert(V1);
1487   }
1488   if (V2Elems != ShadowElements.end()) {
1489     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1490   } else {
1491     UnionElems.insert(V2);
1492   }
1493   ShadowElements[CCS.Shadow] = std::move(UnionElems);
1494 
1495   return CCS.Shadow;
1496 }
1497 
1498 // A convenience function which folds the shadows of each of the operands
1499 // of the provided instruction Inst, inserting the IR before Inst.  Returns
1500 // the computed union Value.
combineOperandShadows(Instruction * Inst)1501 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1502   if (Inst->getNumOperands() == 0)
1503     return DFS.getZeroShadow(Inst);
1504 
1505   Value *Shadow = getShadow(Inst->getOperand(0));
1506   for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
1507     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
1508   }
1509   return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
1510 }
1511 
visitOperandShadowInst(Instruction & I)1512 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) {
1513   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1514   DFSF.setShadow(&I, CombinedShadow);
1515   return CombinedShadow;
1516 }
1517 
1518 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
1519 // Addr has alignment Align, and take the union of each of those shadows. The
1520 // returned shadow always has primitive type.
loadShadow(Value * Addr,uint64_t Size,uint64_t Align,Instruction * Pos)1521 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
1522                                  Instruction *Pos) {
1523   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1524     const auto i = AllocaShadowMap.find(AI);
1525     if (i != AllocaShadowMap.end()) {
1526       IRBuilder<> IRB(Pos);
1527       return IRB.CreateLoad(DFS.PrimitiveShadowTy, i->second);
1528     }
1529   }
1530 
1531   const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes);
1532   SmallVector<const Value *, 2> Objs;
1533   getUnderlyingObjects(Addr, Objs);
1534   bool AllConstants = true;
1535   for (const Value *Obj : Objs) {
1536     if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
1537       continue;
1538     if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
1539       continue;
1540 
1541     AllConstants = false;
1542     break;
1543   }
1544   if (AllConstants)
1545     return DFS.ZeroPrimitiveShadow;
1546 
1547   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1548   switch (Size) {
1549   case 0:
1550     return DFS.ZeroPrimitiveShadow;
1551   case 1: {
1552     LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
1553     LI->setAlignment(ShadowAlign);
1554     return LI;
1555   }
1556   case 2: {
1557     IRBuilder<> IRB(Pos);
1558     Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
1559                                        ConstantInt::get(DFS.IntptrTy, 1));
1560     return combineShadows(
1561         IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign),
1562         IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign),
1563         Pos);
1564   }
1565   }
1566 
1567   if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) {
1568     // First OR all the WideShadows, then OR individual shadows within the
1569     // combined WideShadow.  This is fewer instructions than ORing shadows
1570     // individually.
1571     IRBuilder<> IRB(Pos);
1572     Value *WideAddr =
1573         IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1574     Value *CombinedWideShadow =
1575         IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
1576     for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size;
1577          Ofs += 64 / DFS.ShadowWidthBits) {
1578       WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1579                                ConstantInt::get(DFS.IntptrTy, 1));
1580       Value *NextWideShadow =
1581           IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
1582       CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
1583     }
1584     for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) {
1585       Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
1586       CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
1587     }
1588     return IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy);
1589   }
1590   if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) {
1591     // Fast path for the common case where each byte has identical shadow: load
1592     // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
1593     // shadow is non-equal.
1594     BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
1595     IRBuilder<> FallbackIRB(FallbackBB);
1596     CallInst *FallbackCall = FallbackIRB.CreateCall(
1597         DFS.DFSanUnionLoadFn,
1598         {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1599     FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1600 
1601     // Compare each of the shadows stored in the loaded 64 bits to each other,
1602     // by computing (WideShadow rotl ShadowWidthBits) == WideShadow.
1603     IRBuilder<> IRB(Pos);
1604     Value *WideAddr =
1605         IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1606     Value *WideShadow =
1607         IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
1608     Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy);
1609     Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits);
1610     Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits);
1611     Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
1612     Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
1613 
1614     BasicBlock *Head = Pos->getParent();
1615     BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
1616 
1617     if (DomTreeNode *OldNode = DT.getNode(Head)) {
1618       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1619 
1620       DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
1621       for (auto Child : Children)
1622         DT.changeImmediateDominator(Child, NewNode);
1623     }
1624 
1625     // In the following code LastBr will refer to the previous basic block's
1626     // conditional branch instruction, whose true successor is fixed up to point
1627     // to the next block during the loop below or to the tail after the final
1628     // iteration.
1629     BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
1630     ReplaceInstWithInst(Head->getTerminator(), LastBr);
1631     DT.addNewBlock(FallbackBB, Head);
1632 
1633     for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size;
1634          Ofs += 64 / DFS.ShadowWidthBits) {
1635       BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1636       DT.addNewBlock(NextBB, LastBr->getParent());
1637       IRBuilder<> NextIRB(NextBB);
1638       WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1639                                    ConstantInt::get(DFS.IntptrTy, 1));
1640       Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(),
1641                                                         WideAddr, ShadowAlign);
1642       ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1643       LastBr->setSuccessor(0, NextBB);
1644       LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1645     }
1646 
1647     LastBr->setSuccessor(0, Tail);
1648     FallbackIRB.CreateBr(Tail);
1649     PHINode *Shadow =
1650         PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front());
1651     Shadow->addIncoming(FallbackCall, FallbackBB);
1652     Shadow->addIncoming(TruncShadow, LastBr->getParent());
1653     return Shadow;
1654   }
1655 
1656   IRBuilder<> IRB(Pos);
1657   FunctionCallee &UnionLoadFn =
1658       ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn;
1659   CallInst *FallbackCall = IRB.CreateCall(
1660       UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1661   FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1662   return FallbackCall;
1663 }
1664 
visitLoadInst(LoadInst & LI)1665 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1666   auto &DL = LI.getModule()->getDataLayout();
1667   uint64_t Size = DL.getTypeStoreSize(LI.getType());
1668   if (Size == 0) {
1669     DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
1670     return;
1671   }
1672 
1673   Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1);
1674   Value *PrimitiveShadow =
1675       DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI);
1676   if (ClCombinePointerLabelsOnLoad) {
1677     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1678     PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, &LI);
1679   }
1680   if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
1681     DFSF.NonZeroChecks.push_back(PrimitiveShadow);
1682 
1683   Value *Shadow =
1684       DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, &LI);
1685   DFSF.setShadow(&LI, Shadow);
1686   if (ClEventCallbacks) {
1687     IRBuilder<> IRB(&LI);
1688     Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
1689     IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
1690   }
1691 }
1692 
storePrimitiveShadow(Value * Addr,uint64_t Size,Align Alignment,Value * PrimitiveShadow,Instruction * Pos)1693 void DFSanFunction::storePrimitiveShadow(Value *Addr, uint64_t Size,
1694                                          Align Alignment,
1695                                          Value *PrimitiveShadow,
1696                                          Instruction *Pos) {
1697   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1698     const auto i = AllocaShadowMap.find(AI);
1699     if (i != AllocaShadowMap.end()) {
1700       IRBuilder<> IRB(Pos);
1701       IRB.CreateStore(PrimitiveShadow, i->second);
1702       return;
1703     }
1704   }
1705 
1706   const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes);
1707   IRBuilder<> IRB(Pos);
1708   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1709   if (DFS.isZeroShadow(PrimitiveShadow)) {
1710     IntegerType *ShadowTy =
1711         IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
1712     Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1713     Value *ExtShadowAddr =
1714         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1715     IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1716     return;
1717   }
1718 
1719   const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits;
1720   uint64_t Offset = 0;
1721   if (Size >= ShadowVecSize) {
1722     auto *ShadowVecTy =
1723         FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
1724     Value *ShadowVec = UndefValue::get(ShadowVecTy);
1725     for (unsigned i = 0; i != ShadowVecSize; ++i) {
1726       ShadowVec = IRB.CreateInsertElement(
1727           ShadowVec, PrimitiveShadow,
1728           ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1729     }
1730     Value *ShadowVecAddr =
1731         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1732     do {
1733       Value *CurShadowVecAddr =
1734           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
1735       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1736       Size -= ShadowVecSize;
1737       ++Offset;
1738     } while (Size >= ShadowVecSize);
1739     Offset *= ShadowVecSize;
1740   }
1741   while (Size > 0) {
1742     Value *CurShadowAddr =
1743         IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
1744     IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
1745     --Size;
1746     ++Offset;
1747   }
1748 }
1749 
visitStoreInst(StoreInst & SI)1750 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1751   auto &DL = SI.getModule()->getDataLayout();
1752   uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
1753   if (Size == 0)
1754     return;
1755 
1756   const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1);
1757 
1758   Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1759   Value *PrimitiveShadow;
1760   if (ClCombinePointerLabelsOnStore) {
1761     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1762     PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
1763   } else {
1764     PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
1765   }
1766   DFSF.storePrimitiveShadow(SI.getPointerOperand(), Size, Alignment,
1767                             PrimitiveShadow, &SI);
1768   if (ClEventCallbacks) {
1769     IRBuilder<> IRB(&SI);
1770     Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
1771     IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
1772   }
1773 }
1774 
visitUnaryOperator(UnaryOperator & UO)1775 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
1776   visitOperandShadowInst(UO);
1777 }
1778 
visitBinaryOperator(BinaryOperator & BO)1779 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1780   visitOperandShadowInst(BO);
1781 }
1782 
visitCastInst(CastInst & CI)1783 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1784 
visitCmpInst(CmpInst & CI)1785 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
1786   Value *CombinedShadow = visitOperandShadowInst(CI);
1787   if (ClEventCallbacks) {
1788     IRBuilder<> IRB(&CI);
1789     IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
1790   }
1791 }
1792 
visitGetElementPtrInst(GetElementPtrInst & GEPI)1793 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1794   visitOperandShadowInst(GEPI);
1795 }
1796 
visitExtractElementInst(ExtractElementInst & I)1797 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1798   visitOperandShadowInst(I);
1799 }
1800 
visitInsertElementInst(InsertElementInst & I)1801 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1802   visitOperandShadowInst(I);
1803 }
1804 
visitShuffleVectorInst(ShuffleVectorInst & I)1805 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1806   visitOperandShadowInst(I);
1807 }
1808 
visitExtractValueInst(ExtractValueInst & I)1809 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1810   if (!DFSF.DFS.shouldTrackFieldsAndIndices()) {
1811     visitOperandShadowInst(I);
1812     return;
1813   }
1814 
1815   IRBuilder<> IRB(&I);
1816   Value *Agg = I.getAggregateOperand();
1817   Value *AggShadow = DFSF.getShadow(Agg);
1818   Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
1819   DFSF.setShadow(&I, ResShadow);
1820 }
1821 
visitInsertValueInst(InsertValueInst & I)1822 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1823   if (!DFSF.DFS.shouldTrackFieldsAndIndices()) {
1824     visitOperandShadowInst(I);
1825     return;
1826   }
1827 
1828   IRBuilder<> IRB(&I);
1829   Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
1830   Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
1831   Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
1832   DFSF.setShadow(&I, Res);
1833 }
1834 
visitAllocaInst(AllocaInst & I)1835 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1836   bool AllLoadsStores = true;
1837   for (User *U : I.users()) {
1838     if (isa<LoadInst>(U))
1839       continue;
1840 
1841     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1842       if (SI->getPointerOperand() == &I)
1843         continue;
1844     }
1845 
1846     AllLoadsStores = false;
1847     break;
1848   }
1849   if (AllLoadsStores) {
1850     IRBuilder<> IRB(&I);
1851     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
1852   }
1853   DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
1854 }
1855 
visitSelectInst(SelectInst & I)1856 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1857   Value *CondShadow = DFSF.getShadow(I.getCondition());
1858   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1859   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1860   Value *ShadowSel = nullptr;
1861 
1862   if (isa<VectorType>(I.getCondition()->getType())) {
1863     ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
1864                                                FalseShadow, &I);
1865   } else {
1866     if (TrueShadow == FalseShadow) {
1867       ShadowSel = TrueShadow;
1868     } else {
1869       ShadowSel =
1870           SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1871     }
1872   }
1873   DFSF.setShadow(&I, ClTrackSelectControlFlow
1874                          ? DFSF.combineShadowsThenConvert(
1875                                I.getType(), CondShadow, ShadowSel, &I)
1876                          : ShadowSel);
1877 }
1878 
visitMemSetInst(MemSetInst & I)1879 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1880   IRBuilder<> IRB(&I);
1881   Value *ValShadow = DFSF.getShadow(I.getValue());
1882   IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
1883                  {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
1884                                                                 *DFSF.DFS.Ctx)),
1885                   IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
1886 }
1887 
visitMemTransferInst(MemTransferInst & I)1888 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1889   IRBuilder<> IRB(&I);
1890   Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1891   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1892   Value *LenShadow =
1893       IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
1894                                                     DFSF.DFS.ShadowWidthBytes));
1895   Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1896   Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
1897   SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1898   auto *MTI = cast<MemTransferInst>(
1899       IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
1900                      {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
1901   if (ClPreserveAlignment) {
1902     MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes);
1903     MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes);
1904   } else {
1905     MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes));
1906     MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes));
1907   }
1908   if (ClEventCallbacks) {
1909     IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
1910                    {RawDestShadow, I.getLength()});
1911   }
1912 }
1913 
visitReturnInst(ReturnInst & RI)1914 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1915   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1916     switch (DFSF.IA) {
1917     case DataFlowSanitizer::IA_TLS: {
1918       Value *S = DFSF.getShadow(RI.getReturnValue());
1919       IRBuilder<> IRB(&RI);
1920       Type *RT = DFSF.F->getFunctionType()->getReturnType();
1921       unsigned Size =
1922           getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
1923       if (Size <= kRetvalTLSSize) {
1924         // If the size overflows, stores nothing. At callsite, oversized return
1925         // shadows are set to zero.
1926         IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB),
1927                                kShadowTLSAlignment);
1928       }
1929       break;
1930     }
1931     case DataFlowSanitizer::IA_Args: {
1932       IRBuilder<> IRB(&RI);
1933       Type *RT = DFSF.F->getFunctionType()->getReturnType();
1934       Value *InsVal =
1935           IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1936       Value *InsShadow =
1937           IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1938       RI.setOperand(0, InsShadow);
1939       break;
1940     }
1941     }
1942   }
1943 }
1944 
visitCallBase(CallBase & CB)1945 void DFSanVisitor::visitCallBase(CallBase &CB) {
1946   Function *F = CB.getCalledFunction();
1947   if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
1948     visitOperandShadowInst(CB);
1949     return;
1950   }
1951 
1952   // Calls to this function are synthesized in wrappers, and we shouldn't
1953   // instrument them.
1954   if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
1955     return;
1956 
1957   IRBuilder<> IRB(&CB);
1958 
1959   DenseMap<Value *, Function *>::iterator i =
1960       DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
1961   if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1962     Function *F = i->second;
1963     switch (DFSF.DFS.getWrapperKind(F)) {
1964     case DataFlowSanitizer::WK_Warning:
1965       CB.setCalledFunction(F);
1966       IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1967                      IRB.CreateGlobalStringPtr(F->getName()));
1968       DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
1969       return;
1970     case DataFlowSanitizer::WK_Discard:
1971       CB.setCalledFunction(F);
1972       DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
1973       return;
1974     case DataFlowSanitizer::WK_Functional:
1975       CB.setCalledFunction(F);
1976       visitOperandShadowInst(CB);
1977       return;
1978     case DataFlowSanitizer::WK_Custom:
1979       // Don't try to handle invokes of custom functions, it's too complicated.
1980       // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1981       // wrapper.
1982       if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1983         FunctionType *FT = F->getFunctionType();
1984         TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
1985         std::string CustomFName = "__dfsw_";
1986         CustomFName += F->getName();
1987         FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
1988             CustomFName, CustomFn.TransformedType);
1989         if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
1990           CustomFn->copyAttributesFrom(F);
1991 
1992           // Custom functions returning non-void will write to the return label.
1993           if (!FT->getReturnType()->isVoidTy()) {
1994             CustomFn->removeAttributes(AttributeList::FunctionIndex,
1995                                        DFSF.DFS.ReadOnlyNoneAttrs);
1996           }
1997         }
1998 
1999         std::vector<Value *> Args;
2000 
2001         auto i = CB.arg_begin();
2002         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
2003           Type *T = (*i)->getType();
2004           FunctionType *ParamFT;
2005           if (isa<PointerType>(T) &&
2006               (ParamFT = dyn_cast<FunctionType>(
2007                    cast<PointerType>(T)->getElementType()))) {
2008             std::string TName = "dfst";
2009             TName += utostr(FT->getNumParams() - n);
2010             TName += "$";
2011             TName += F->getName();
2012             Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
2013             Args.push_back(T);
2014             Args.push_back(
2015                 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
2016           } else {
2017             Args.push_back(*i);
2018           }
2019         }
2020 
2021         i = CB.arg_begin();
2022         const unsigned ShadowArgStart = Args.size();
2023         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
2024           Args.push_back(
2025               DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*i), &CB));
2026 
2027         if (FT->isVarArg()) {
2028           auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
2029                                            CB.arg_size() - FT->getNumParams());
2030           auto *LabelVAAlloca = new AllocaInst(
2031               LabelVATy, getDataLayout().getAllocaAddrSpace(),
2032               "labelva", &DFSF.F->getEntryBlock().front());
2033 
2034           for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) {
2035             auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
2036             IRB.CreateStore(
2037                 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*i), &CB),
2038                 LabelVAPtr);
2039           }
2040 
2041           Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
2042         }
2043 
2044         if (!FT->getReturnType()->isVoidTy()) {
2045           if (!DFSF.LabelReturnAlloca) {
2046             DFSF.LabelReturnAlloca =
2047                 new AllocaInst(DFSF.DFS.PrimitiveShadowTy,
2048                                getDataLayout().getAllocaAddrSpace(),
2049                                "labelreturn", &DFSF.F->getEntryBlock().front());
2050           }
2051           Args.push_back(DFSF.LabelReturnAlloca);
2052         }
2053 
2054         for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i)
2055           Args.push_back(*i);
2056 
2057         CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
2058         CustomCI->setCallingConv(CI->getCallingConv());
2059         CustomCI->setAttributes(TransformFunctionAttributes(CustomFn,
2060             CI->getContext(), CI->getAttributes()));
2061 
2062         // Update the parameter attributes of the custom call instruction to
2063         // zero extend the shadow parameters. This is required for targets
2064         // which consider PrimitiveShadowTy an illegal type.
2065         for (unsigned n = 0; n < FT->getNumParams(); n++) {
2066           const unsigned ArgNo = ShadowArgStart + n;
2067           if (CustomCI->getArgOperand(ArgNo)->getType() ==
2068               DFSF.DFS.PrimitiveShadowTy)
2069             CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
2070         }
2071 
2072         if (!FT->getReturnType()->isVoidTy()) {
2073           LoadInst *LabelLoad = IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy,
2074                                                DFSF.LabelReturnAlloca);
2075           DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
2076                                        FT->getReturnType(), LabelLoad, &CB));
2077         }
2078 
2079         CI->replaceAllUsesWith(CustomCI);
2080         CI->eraseFromParent();
2081         return;
2082       }
2083       break;
2084     }
2085   }
2086 
2087   FunctionType *FT = CB.getFunctionType();
2088   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
2089     unsigned ArgOffset = 0;
2090     const DataLayout &DL = getDataLayout();
2091     for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
2092       unsigned Size =
2093           DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
2094       // Stop storing if arguments' size overflows. Inside a function, arguments
2095       // after overflow have zero shadow values.
2096       if (ArgOffset + Size > kArgTLSSize)
2097         break;
2098       IRB.CreateAlignedStore(
2099           DFSF.getShadow(CB.getArgOperand(I)),
2100           DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
2101           kShadowTLSAlignment);
2102       ArgOffset += alignTo(Size, kShadowTLSAlignment);
2103     }
2104   }
2105 
2106   Instruction *Next = nullptr;
2107   if (!CB.getType()->isVoidTy()) {
2108     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2109       if (II->getNormalDest()->getSinglePredecessor()) {
2110         Next = &II->getNormalDest()->front();
2111       } else {
2112         BasicBlock *NewBB =
2113             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
2114         Next = &NewBB->front();
2115       }
2116     } else {
2117       assert(CB.getIterator() != CB.getParent()->end());
2118       Next = CB.getNextNode();
2119     }
2120 
2121     if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
2122       IRBuilder<> NextIRB(Next);
2123       const DataLayout &DL = getDataLayout();
2124       unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
2125       if (Size > kRetvalTLSSize) {
2126         // Set overflowed return shadow to be zero.
2127         DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
2128       } else {
2129         LoadInst *LI = NextIRB.CreateAlignedLoad(
2130             DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
2131             kShadowTLSAlignment, "_dfsret");
2132         DFSF.SkipInsts.insert(LI);
2133         DFSF.setShadow(&CB, LI);
2134         DFSF.NonZeroChecks.push_back(LI);
2135       }
2136     }
2137   }
2138 
2139   // Do all instrumentation for IA_Args down here to defer tampering with the
2140   // CFG in a way that SplitEdge may be able to detect.
2141   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
2142     FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
2143     Value *Func =
2144         IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT));
2145     std::vector<Value *> Args;
2146 
2147     auto i = CB.arg_begin(), E = CB.arg_end();
2148     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
2149       Args.push_back(*i);
2150 
2151     i = CB.arg_begin();
2152     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
2153       Args.push_back(DFSF.getShadow(*i));
2154 
2155     if (FT->isVarArg()) {
2156       unsigned VarArgSize = CB.arg_size() - FT->getNumParams();
2157       ArrayType *VarArgArrayTy =
2158           ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize);
2159       AllocaInst *VarArgShadow =
2160         new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
2161                        "", &DFSF.F->getEntryBlock().front());
2162       Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
2163       for (unsigned n = 0; i != E; ++i, ++n) {
2164         IRB.CreateStore(
2165             DFSF.getShadow(*i),
2166             IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
2167         Args.push_back(*i);
2168       }
2169     }
2170 
2171     CallBase *NewCB;
2172     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2173       NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(),
2174                                II->getUnwindDest(), Args);
2175     } else {
2176       NewCB = IRB.CreateCall(NewFT, Func, Args);
2177     }
2178     NewCB->setCallingConv(CB.getCallingConv());
2179     NewCB->setAttributes(CB.getAttributes().removeAttributes(
2180         *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
2181         AttributeFuncs::typeIncompatible(NewCB->getType())));
2182 
2183     if (Next) {
2184       ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next);
2185       DFSF.SkipInsts.insert(ExVal);
2186       ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next);
2187       DFSF.SkipInsts.insert(ExShadow);
2188       DFSF.setShadow(ExVal, ExShadow);
2189       DFSF.NonZeroChecks.push_back(ExShadow);
2190 
2191       CB.replaceAllUsesWith(ExVal);
2192     }
2193 
2194     CB.eraseFromParent();
2195   }
2196 }
2197 
visitPHINode(PHINode & PN)2198 void DFSanVisitor::visitPHINode(PHINode &PN) {
2199   Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
2200   PHINode *ShadowPN =
2201       PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
2202 
2203   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
2204   Value *UndefShadow = UndefValue::get(ShadowTy);
2205   for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
2206        ++i) {
2207     ShadowPN->addIncoming(UndefShadow, *i);
2208   }
2209 
2210   DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
2211   DFSF.setShadow(&PN, ShadowPN);
2212 }
2213 
2214 namespace {
2215 class DataFlowSanitizerLegacyPass : public ModulePass {
2216 private:
2217   std::vector<std::string> ABIListFiles;
2218 
2219 public:
2220   static char ID;
2221 
DataFlowSanitizerLegacyPass(const std::vector<std::string> & ABIListFiles=std::vector<std::string> ())2222   DataFlowSanitizerLegacyPass(
2223       const std::vector<std::string> &ABIListFiles = std::vector<std::string>())
2224       : ModulePass(ID), ABIListFiles(ABIListFiles) {}
2225 
runOnModule(Module & M)2226   bool runOnModule(Module &M) override {
2227     return DataFlowSanitizer(ABIListFiles).runImpl(M);
2228   }
2229 };
2230 } // namespace
2231 
2232 char DataFlowSanitizerLegacyPass::ID;
2233 
2234 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan",
2235                 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
2236 
createDataFlowSanitizerLegacyPassPass(const std::vector<std::string> & ABIListFiles)2237 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass(
2238     const std::vector<std::string> &ABIListFiles) {
2239   return new DataFlowSanitizerLegacyPass(ABIListFiles);
2240 }
2241 
run(Module & M,ModuleAnalysisManager & AM)2242 PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
2243                                              ModuleAnalysisManager &AM) {
2244   if (DataFlowSanitizer(ABIListFiles).runImpl(M)) {
2245     return PreservedAnalyses::none();
2246   }
2247   return PreservedAnalyses::all();
2248 }
2249