1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation. Each
20 /// byte of application memory is backed by two bytes of shadow memory which
21 /// hold the label. On Linux/x86_64, memory is laid out as follows:
22 ///
23 /// +--------------------+ 0x800000000000 (top of memory)
24 /// | application memory |
25 /// +--------------------+ 0x700000008000 (kAppAddr)
26 /// | |
27 /// | unused |
28 /// | |
29 /// +--------------------+ 0x200200000000 (kUnusedAddr)
30 /// | union table |
31 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
32 /// | shadow memory |
33 /// +--------------------+ 0x000000010000 (kShadowAddr)
34 /// | reserved by kernel |
35 /// +--------------------+ 0x000000000000
36 ///
37 /// To derive a shadow memory address from an application memory address,
38 /// bits 44-46 are cleared to bring the address into the range
39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
40 /// account for the double byte representation of shadow labels and move the
41 /// address into the shadow memory range. See the function
42 /// DataFlowSanitizer::getShadowAddress below.
43 ///
44 /// For more information, please refer to the design document:
45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46 //
47 //===----------------------------------------------------------------------===//
48
49 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/DenseSet.h"
52 #include "llvm/ADT/DepthFirstIterator.h"
53 #include "llvm/ADT/None.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/Triple.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/Argument.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalValue.h"
71 #include "llvm/IR/GlobalVariable.h"
72 #include "llvm/IR/IRBuilder.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstVisitor.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/MDBuilder.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/InitializePasses.h"
87 #include "llvm/Pass.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/ErrorHandling.h"
91 #include "llvm/Support/SpecialCaseList.h"
92 #include "llvm/Support/VirtualFileSystem.h"
93 #include "llvm/Transforms/Instrumentation.h"
94 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
95 #include "llvm/Transforms/Utils/Local.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstddef>
99 #include <cstdint>
100 #include <iterator>
101 #include <memory>
102 #include <set>
103 #include <string>
104 #include <utility>
105 #include <vector>
106
107 using namespace llvm;
108
109 // This must be consistent with ShadowWidthBits.
110 static const Align kShadowTLSAlignment = Align(2);
111
112 // The size of TLS variables. These constants must be kept in sync with the ones
113 // in dfsan.cpp.
114 static const unsigned kArgTLSSize = 800;
115 static const unsigned kRetvalTLSSize = 800;
116
117 // External symbol to be used when generating the shadow address for
118 // architectures with multiple VMAs. Instead of using a constant integer
119 // the runtime will set the external mask based on the VMA range.
120 const char kDFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask";
121
122 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
123 // alignment requirements provided by the input IR are correct. For example,
124 // if the input IR contains a load with alignment 8, this flag will cause
125 // the shadow load to have alignment 16. This flag is disabled by default as
126 // we have unfortunately encountered too much code (including Clang itself;
127 // see PR14291) which performs misaligned access.
128 static cl::opt<bool> ClPreserveAlignment(
129 "dfsan-preserve-alignment",
130 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
131 cl::init(false));
132
133 // The ABI list files control how shadow parameters are passed. The pass treats
134 // every function labelled "uninstrumented" in the ABI list file as conforming
135 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
136 // additional annotations for those functions, a call to one of those functions
137 // will produce a warning message, as the labelling behaviour of the function is
138 // unknown. The other supported annotations are "functional" and "discard",
139 // which are described below under DataFlowSanitizer::WrapperKind.
140 static cl::list<std::string> ClABIListFiles(
141 "dfsan-abilist",
142 cl::desc("File listing native ABI functions and how the pass treats them"),
143 cl::Hidden);
144
145 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
146 // functions (see DataFlowSanitizer::InstrumentedABI below).
147 static cl::opt<bool> ClArgsABI(
148 "dfsan-args-abi",
149 cl::desc("Use the argument ABI rather than the TLS ABI"),
150 cl::Hidden);
151
152 // Controls whether the pass includes or ignores the labels of pointers in load
153 // instructions.
154 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
155 "dfsan-combine-pointer-labels-on-load",
156 cl::desc("Combine the label of the pointer with the label of the data when "
157 "loading from memory."),
158 cl::Hidden, cl::init(true));
159
160 // Controls whether the pass includes or ignores the labels of pointers in
161 // stores instructions.
162 static cl::opt<bool> ClCombinePointerLabelsOnStore(
163 "dfsan-combine-pointer-labels-on-store",
164 cl::desc("Combine the label of the pointer with the label of the data when "
165 "storing in memory."),
166 cl::Hidden, cl::init(false));
167
168 static cl::opt<bool> ClDebugNonzeroLabels(
169 "dfsan-debug-nonzero-labels",
170 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
171 "load or return with a nonzero label"),
172 cl::Hidden);
173
174 // Experimental feature that inserts callbacks for certain data events.
175 // Currently callbacks are only inserted for loads, stores, memory transfers
176 // (i.e. memcpy and memmove), and comparisons.
177 //
178 // If this flag is set to true, the user must provide definitions for the
179 // following callback functions:
180 // void __dfsan_load_callback(dfsan_label Label, void* addr);
181 // void __dfsan_store_callback(dfsan_label Label, void* addr);
182 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
183 // void __dfsan_cmp_callback(dfsan_label CombinedLabel);
184 static cl::opt<bool> ClEventCallbacks(
185 "dfsan-event-callbacks",
186 cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
187 cl::Hidden, cl::init(false));
188
189 // Use a distinct bit for each base label, enabling faster unions with less
190 // instrumentation. Limits the max number of base labels to 16.
191 static cl::opt<bool> ClFast16Labels(
192 "dfsan-fast-16-labels",
193 cl::desc("Use more efficient instrumentation, limiting the number of "
194 "labels to 16."),
195 cl::Hidden, cl::init(false));
196
197 // Controls whether the pass tracks the control flow of select instructions.
198 static cl::opt<bool> ClTrackSelectControlFlow(
199 "dfsan-track-select-control-flow",
200 cl::desc("Propagate labels from condition values of select instructions "
201 "to results."),
202 cl::Hidden, cl::init(true));
203
GetGlobalTypeString(const GlobalValue & G)204 static StringRef GetGlobalTypeString(const GlobalValue &G) {
205 // Types of GlobalVariables are always pointer types.
206 Type *GType = G.getValueType();
207 // For now we support excluding struct types only.
208 if (StructType *SGType = dyn_cast<StructType>(GType)) {
209 if (!SGType->isLiteral())
210 return SGType->getName();
211 }
212 return "<unknown type>";
213 }
214
215 namespace {
216
217 class DFSanABIList {
218 std::unique_ptr<SpecialCaseList> SCL;
219
220 public:
221 DFSanABIList() = default;
222
set(std::unique_ptr<SpecialCaseList> List)223 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
224
225 /// Returns whether either this function or its source file are listed in the
226 /// given category.
isIn(const Function & F,StringRef Category) const227 bool isIn(const Function &F, StringRef Category) const {
228 return isIn(*F.getParent(), Category) ||
229 SCL->inSection("dataflow", "fun", F.getName(), Category);
230 }
231
232 /// Returns whether this global alias is listed in the given category.
233 ///
234 /// If GA aliases a function, the alias's name is matched as a function name
235 /// would be. Similarly, aliases of globals are matched like globals.
isIn(const GlobalAlias & GA,StringRef Category) const236 bool isIn(const GlobalAlias &GA, StringRef Category) const {
237 if (isIn(*GA.getParent(), Category))
238 return true;
239
240 if (isa<FunctionType>(GA.getValueType()))
241 return SCL->inSection("dataflow", "fun", GA.getName(), Category);
242
243 return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
244 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA),
245 Category);
246 }
247
248 /// Returns whether this module is listed in the given category.
isIn(const Module & M,StringRef Category) const249 bool isIn(const Module &M, StringRef Category) const {
250 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
251 }
252 };
253
254 /// TransformedFunction is used to express the result of transforming one
255 /// function type into another. This struct is immutable. It holds metadata
256 /// useful for updating calls of the old function to the new type.
257 struct TransformedFunction {
TransformedFunction__anonb31262e80111::TransformedFunction258 TransformedFunction(FunctionType* OriginalType,
259 FunctionType* TransformedType,
260 std::vector<unsigned> ArgumentIndexMapping)
261 : OriginalType(OriginalType),
262 TransformedType(TransformedType),
263 ArgumentIndexMapping(ArgumentIndexMapping) {}
264
265 // Disallow copies.
266 TransformedFunction(const TransformedFunction&) = delete;
267 TransformedFunction& operator=(const TransformedFunction&) = delete;
268
269 // Allow moves.
270 TransformedFunction(TransformedFunction&&) = default;
271 TransformedFunction& operator=(TransformedFunction&&) = default;
272
273 /// Type of the function before the transformation.
274 FunctionType *OriginalType;
275
276 /// Type of the function after the transformation.
277 FunctionType *TransformedType;
278
279 /// Transforming a function may change the position of arguments. This
280 /// member records the mapping from each argument's old position to its new
281 /// position. Argument positions are zero-indexed. If the transformation
282 /// from F to F' made the first argument of F into the third argument of F',
283 /// then ArgumentIndexMapping[0] will equal 2.
284 std::vector<unsigned> ArgumentIndexMapping;
285 };
286
287 /// Given function attributes from a call site for the original function,
288 /// return function attributes appropriate for a call to the transformed
289 /// function.
TransformFunctionAttributes(const TransformedFunction & TransformedFunction,LLVMContext & Ctx,AttributeList CallSiteAttrs)290 AttributeList TransformFunctionAttributes(
291 const TransformedFunction& TransformedFunction,
292 LLVMContext& Ctx, AttributeList CallSiteAttrs) {
293
294 // Construct a vector of AttributeSet for each function argument.
295 std::vector<llvm::AttributeSet> ArgumentAttributes(
296 TransformedFunction.TransformedType->getNumParams());
297
298 // Copy attributes from the parameter of the original function to the
299 // transformed version. 'ArgumentIndexMapping' holds the mapping from
300 // old argument position to new.
301 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size();
302 i < ie; ++i) {
303 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i];
304 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i);
305 }
306
307 // Copy annotations on varargs arguments.
308 for (unsigned i = TransformedFunction.OriginalType->getNumParams(),
309 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) {
310 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i));
311 }
312
313 return AttributeList::get(
314 Ctx,
315 CallSiteAttrs.getFnAttributes(),
316 CallSiteAttrs.getRetAttributes(),
317 llvm::makeArrayRef(ArgumentAttributes));
318 }
319
320 class DataFlowSanitizer {
321 friend struct DFSanFunction;
322 friend class DFSanVisitor;
323
324 enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 };
325
326 /// Which ABI should be used for instrumented functions?
327 enum InstrumentedABI {
328 /// Argument and return value labels are passed through additional
329 /// arguments and by modifying the return type.
330 IA_Args,
331
332 /// Argument and return value labels are passed through TLS variables
333 /// __dfsan_arg_tls and __dfsan_retval_tls.
334 IA_TLS
335 };
336
337 /// How should calls to uninstrumented functions be handled?
338 enum WrapperKind {
339 /// This function is present in an uninstrumented form but we don't know
340 /// how it should be handled. Print a warning and call the function anyway.
341 /// Don't label the return value.
342 WK_Warning,
343
344 /// This function does not write to (user-accessible) memory, and its return
345 /// value is unlabelled.
346 WK_Discard,
347
348 /// This function does not write to (user-accessible) memory, and the label
349 /// of its return value is the union of the label of its arguments.
350 WK_Functional,
351
352 /// Instead of calling the function, a custom wrapper __dfsw_F is called,
353 /// where F is the name of the function. This function may wrap the
354 /// original function or provide its own implementation. This is similar to
355 /// the IA_Args ABI, except that IA_Args uses a struct return type to
356 /// pass the return value shadow in a register, while WK_Custom uses an
357 /// extra pointer argument to return the shadow. This allows the wrapped
358 /// form of the function type to be expressed in C.
359 WK_Custom
360 };
361
362 Module *Mod;
363 LLVMContext *Ctx;
364 Type *Int8Ptr;
365 /// The shadow type for all primitive types and vector types.
366 IntegerType *PrimitiveShadowTy;
367 PointerType *PrimitiveShadowPtrTy;
368 IntegerType *IntptrTy;
369 ConstantInt *ZeroPrimitiveShadow;
370 ConstantInt *ShadowPtrMask;
371 ConstantInt *ShadowPtrMul;
372 Constant *ArgTLS;
373 Constant *RetvalTLS;
374 Constant *ExternalShadowMask;
375 FunctionType *DFSanUnionFnTy;
376 FunctionType *DFSanUnionLoadFnTy;
377 FunctionType *DFSanUnimplementedFnTy;
378 FunctionType *DFSanSetLabelFnTy;
379 FunctionType *DFSanNonzeroLabelFnTy;
380 FunctionType *DFSanVarargWrapperFnTy;
381 FunctionType *DFSanCmpCallbackFnTy;
382 FunctionType *DFSanLoadStoreCallbackFnTy;
383 FunctionType *DFSanMemTransferCallbackFnTy;
384 FunctionCallee DFSanUnionFn;
385 FunctionCallee DFSanCheckedUnionFn;
386 FunctionCallee DFSanUnionLoadFn;
387 FunctionCallee DFSanUnionLoadFast16LabelsFn;
388 FunctionCallee DFSanUnimplementedFn;
389 FunctionCallee DFSanSetLabelFn;
390 FunctionCallee DFSanNonzeroLabelFn;
391 FunctionCallee DFSanVarargWrapperFn;
392 FunctionCallee DFSanLoadCallbackFn;
393 FunctionCallee DFSanStoreCallbackFn;
394 FunctionCallee DFSanMemTransferCallbackFn;
395 FunctionCallee DFSanCmpCallbackFn;
396 MDNode *ColdCallWeights;
397 DFSanABIList ABIList;
398 DenseMap<Value *, Function *> UnwrappedFnMap;
399 AttrBuilder ReadOnlyNoneAttrs;
400 bool DFSanRuntimeShadowMask = false;
401
402 Value *getShadowAddress(Value *Addr, Instruction *Pos);
403 bool isInstrumented(const Function *F);
404 bool isInstrumented(const GlobalAlias *GA);
405 FunctionType *getArgsFunctionType(FunctionType *T);
406 FunctionType *getTrampolineFunctionType(FunctionType *T);
407 TransformedFunction getCustomFunctionType(FunctionType *T);
408 InstrumentedABI getInstrumentedABI();
409 WrapperKind getWrapperKind(Function *F);
410 void addGlobalNamePrefix(GlobalValue *GV);
411 Function *buildWrapperFunction(Function *F, StringRef NewFName,
412 GlobalValue::LinkageTypes NewFLink,
413 FunctionType *NewFT);
414 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
415 void initializeCallbackFunctions(Module &M);
416 void initializeRuntimeFunctions(Module &M);
417
418 bool init(Module &M);
419
420 /// Returns whether the pass tracks labels for struct fields and array
421 /// indices. Support only fast16 mode in TLS ABI mode.
422 bool shouldTrackFieldsAndIndices();
423
424 /// Returns a zero constant with the shadow type of OrigTy.
425 ///
426 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
427 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
428 /// getZeroShadow(other type) = i16(0)
429 ///
430 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices
431 /// returns false.
432 Constant *getZeroShadow(Type *OrigTy);
433 /// Returns a zero constant with the shadow type of V's type.
434 Constant *getZeroShadow(Value *V);
435
436 /// Checks if V is a zero shadow.
437 bool isZeroShadow(Value *V);
438
439 /// Returns the shadow type of OrigTy.
440 ///
441 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
442 /// getShadowTy([n x T]) = [n x getShadowTy(T)]
443 /// getShadowTy(other type) = i16
444 ///
445 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices
446 /// returns false.
447 Type *getShadowTy(Type *OrigTy);
448 /// Returns the shadow type of of V's type.
449 Type *getShadowTy(Value *V);
450
451 public:
452 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
453
454 bool runImpl(Module &M);
455 };
456
457 struct DFSanFunction {
458 DataFlowSanitizer &DFS;
459 Function *F;
460 DominatorTree DT;
461 DataFlowSanitizer::InstrumentedABI IA;
462 bool IsNativeABI;
463 AllocaInst *LabelReturnAlloca = nullptr;
464 DenseMap<Value *, Value *> ValShadowMap;
465 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
466 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups;
467 DenseSet<Instruction *> SkipInsts;
468 std::vector<Value *> NonZeroChecks;
469 bool AvoidNewBlocks;
470
471 struct CachedShadow {
472 BasicBlock *Block; // The block where Shadow is defined.
473 Value *Shadow;
474 };
475 /// Maps a value to its latest shadow value in terms of domination tree.
476 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
477 /// Maps a value to its latest collapsed shadow value it was converted to in
478 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
479 /// used at a post process where CFG blocks are split. So it does not cache
480 /// BasicBlock like CachedShadows, but uses domination between values.
481 DenseMap<Value *, Value *> CachedCollapsedShadows;
482 DenseMap<Value *, std::set<Value *>> ShadowElements;
483
DFSanFunction__anonb31262e80111::DFSanFunction484 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
485 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
486 DT.recalculate(*F);
487 // FIXME: Need to track down the register allocator issue which causes poor
488 // performance in pathological cases with large numbers of basic blocks.
489 AvoidNewBlocks = F->size() > 1000;
490 }
491
492 /// Computes the shadow address for a given function argument.
493 ///
494 /// Shadow = ArgTLS+ArgOffset.
495 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
496
497 /// Computes the shadow address for a retval.
498 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
499
500 Value *getShadow(Value *V);
501 void setShadow(Instruction *I, Value *Shadow);
502 /// Generates IR to compute the union of the two given shadows, inserting it
503 /// before Pos. The combined value is with primitive type.
504 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
505 /// Combines the shadow values of V1 and V2, then converts the combined value
506 /// with primitive type into a shadow value with the original type T.
507 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
508 Instruction *Pos);
509 Value *combineOperandShadows(Instruction *Inst);
510 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
511 Instruction *Pos);
512 void storePrimitiveShadow(Value *Addr, uint64_t Size, Align Alignment,
513 Value *PrimitiveShadow, Instruction *Pos);
514 /// Applies PrimitiveShadow to all primitive subtypes of T, returning
515 /// the expanded shadow value.
516 ///
517 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
518 /// EFP([n x T], PS) = [n x EFP(T,PS)]
519 /// EFP(other types, PS) = PS
520 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
521 Instruction *Pos);
522 /// Collapses Shadow into a single primitive shadow value, unioning all
523 /// primitive shadow values in the process. Returns the final primitive
524 /// shadow value.
525 ///
526 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
527 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
528 /// CTP(other types, PS) = PS
529 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
530
531 private:
532 /// Collapses the shadow with aggregate type into a single primitive shadow
533 /// value.
534 template <class AggregateType>
535 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
536 IRBuilder<> &IRB);
537
538 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
539
540 /// Returns the shadow value of an argument A.
541 Value *getShadowForTLSArgument(Argument *A);
542 };
543
544 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
545 public:
546 DFSanFunction &DFSF;
547
DFSanVisitor(DFSanFunction & DFSF)548 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
549
getDataLayout() const550 const DataLayout &getDataLayout() const {
551 return DFSF.F->getParent()->getDataLayout();
552 }
553
554 // Combines shadow values for all of I's operands. Returns the combined shadow
555 // value.
556 Value *visitOperandShadowInst(Instruction &I);
557
558 void visitUnaryOperator(UnaryOperator &UO);
559 void visitBinaryOperator(BinaryOperator &BO);
560 void visitCastInst(CastInst &CI);
561 void visitCmpInst(CmpInst &CI);
562 void visitGetElementPtrInst(GetElementPtrInst &GEPI);
563 void visitLoadInst(LoadInst &LI);
564 void visitStoreInst(StoreInst &SI);
565 void visitReturnInst(ReturnInst &RI);
566 void visitCallBase(CallBase &CB);
567 void visitPHINode(PHINode &PN);
568 void visitExtractElementInst(ExtractElementInst &I);
569 void visitInsertElementInst(InsertElementInst &I);
570 void visitShuffleVectorInst(ShuffleVectorInst &I);
571 void visitExtractValueInst(ExtractValueInst &I);
572 void visitInsertValueInst(InsertValueInst &I);
573 void visitAllocaInst(AllocaInst &I);
574 void visitSelectInst(SelectInst &I);
575 void visitMemSetInst(MemSetInst &I);
576 void visitMemTransferInst(MemTransferInst &I);
577 };
578
579 } // end anonymous namespace
580
DataFlowSanitizer(const std::vector<std::string> & ABIListFiles)581 DataFlowSanitizer::DataFlowSanitizer(
582 const std::vector<std::string> &ABIListFiles) {
583 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
584 llvm::append_range(AllABIListFiles, ClABIListFiles);
585 // FIXME: should we propagate vfs::FileSystem to this constructor?
586 ABIList.set(
587 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
588 }
589
getArgsFunctionType(FunctionType * T)590 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
591 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
592 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
593 if (T->isVarArg())
594 ArgTypes.push_back(PrimitiveShadowPtrTy);
595 Type *RetType = T->getReturnType();
596 if (!RetType->isVoidTy())
597 RetType = StructType::get(RetType, PrimitiveShadowTy);
598 return FunctionType::get(RetType, ArgTypes, T->isVarArg());
599 }
600
getTrampolineFunctionType(FunctionType * T)601 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
602 assert(!T->isVarArg());
603 SmallVector<Type *, 4> ArgTypes;
604 ArgTypes.push_back(T->getPointerTo());
605 ArgTypes.append(T->param_begin(), T->param_end());
606 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
607 Type *RetType = T->getReturnType();
608 if (!RetType->isVoidTy())
609 ArgTypes.push_back(PrimitiveShadowPtrTy);
610 return FunctionType::get(T->getReturnType(), ArgTypes, false);
611 }
612
getCustomFunctionType(FunctionType * T)613 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
614 SmallVector<Type *, 4> ArgTypes;
615
616 // Some parameters of the custom function being constructed are
617 // parameters of T. Record the mapping from parameters of T to
618 // parameters of the custom function, so that parameter attributes
619 // at call sites can be updated.
620 std::vector<unsigned> ArgumentIndexMapping;
621 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) {
622 Type* param_type = T->getParamType(i);
623 FunctionType *FT;
624 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>(
625 cast<PointerType>(param_type)->getElementType()))) {
626 ArgumentIndexMapping.push_back(ArgTypes.size());
627 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
628 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
629 } else {
630 ArgumentIndexMapping.push_back(ArgTypes.size());
631 ArgTypes.push_back(param_type);
632 }
633 }
634 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
635 ArgTypes.push_back(PrimitiveShadowTy);
636 if (T->isVarArg())
637 ArgTypes.push_back(PrimitiveShadowPtrTy);
638 Type *RetType = T->getReturnType();
639 if (!RetType->isVoidTy())
640 ArgTypes.push_back(PrimitiveShadowPtrTy);
641 return TransformedFunction(
642 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
643 ArgumentIndexMapping);
644 }
645
isZeroShadow(Value * V)646 bool DataFlowSanitizer::isZeroShadow(Value *V) {
647 if (!shouldTrackFieldsAndIndices())
648 return ZeroPrimitiveShadow == V;
649
650 Type *T = V->getType();
651 if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
652 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
653 return CI->isZero();
654 return false;
655 }
656
657 return isa<ConstantAggregateZero>(V);
658 }
659
shouldTrackFieldsAndIndices()660 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() {
661 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS && ClFast16Labels;
662 }
663
getZeroShadow(Type * OrigTy)664 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
665 if (!shouldTrackFieldsAndIndices())
666 return ZeroPrimitiveShadow;
667
668 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
669 return ZeroPrimitiveShadow;
670 Type *ShadowTy = getShadowTy(OrigTy);
671 return ConstantAggregateZero::get(ShadowTy);
672 }
673
getZeroShadow(Value * V)674 Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
675 return getZeroShadow(V->getType());
676 }
677
expandFromPrimitiveShadowRecursive(Value * Shadow,SmallVector<unsigned,4> & Indices,Type * SubShadowTy,Value * PrimitiveShadow,IRBuilder<> & IRB)678 static Value *expandFromPrimitiveShadowRecursive(
679 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
680 Value *PrimitiveShadow, IRBuilder<> &IRB) {
681 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
682 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
683
684 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
685 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
686 Indices.push_back(Idx);
687 Shadow = expandFromPrimitiveShadowRecursive(
688 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
689 Indices.pop_back();
690 }
691 return Shadow;
692 }
693
694 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
695 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
696 Indices.push_back(Idx);
697 Shadow = expandFromPrimitiveShadowRecursive(
698 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
699 Indices.pop_back();
700 }
701 return Shadow;
702 }
703 llvm_unreachable("Unexpected shadow type");
704 }
705
expandFromPrimitiveShadow(Type * T,Value * PrimitiveShadow,Instruction * Pos)706 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
707 Instruction *Pos) {
708 Type *ShadowTy = DFS.getShadowTy(T);
709
710 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
711 return PrimitiveShadow;
712
713 if (DFS.isZeroShadow(PrimitiveShadow))
714 return DFS.getZeroShadow(ShadowTy);
715
716 IRBuilder<> IRB(Pos);
717 SmallVector<unsigned, 4> Indices;
718 Value *Shadow = UndefValue::get(ShadowTy);
719 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
720 PrimitiveShadow, IRB);
721
722 // Caches the primitive shadow value that built the shadow value.
723 CachedCollapsedShadows[Shadow] = PrimitiveShadow;
724 return Shadow;
725 }
726
727 template <class AggregateType>
collapseAggregateShadow(AggregateType * AT,Value * Shadow,IRBuilder<> & IRB)728 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
729 IRBuilder<> &IRB) {
730 if (!AT->getNumElements())
731 return DFS.ZeroPrimitiveShadow;
732
733 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
734 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
735
736 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
737 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
738 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
739 Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
740 }
741 return Aggregator;
742 }
743
collapseToPrimitiveShadow(Value * Shadow,IRBuilder<> & IRB)744 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
745 IRBuilder<> &IRB) {
746 Type *ShadowTy = Shadow->getType();
747 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
748 return Shadow;
749 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
750 return collapseAggregateShadow<>(AT, Shadow, IRB);
751 if (StructType *ST = dyn_cast<StructType>(ShadowTy))
752 return collapseAggregateShadow<>(ST, Shadow, IRB);
753 llvm_unreachable("Unexpected shadow type");
754 }
755
collapseToPrimitiveShadow(Value * Shadow,Instruction * Pos)756 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
757 Instruction *Pos) {
758 Type *ShadowTy = Shadow->getType();
759 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
760 return Shadow;
761
762 assert(DFS.shouldTrackFieldsAndIndices());
763
764 // Checks if the cached collapsed shadow value dominates Pos.
765 Value *&CS = CachedCollapsedShadows[Shadow];
766 if (CS && DT.dominates(CS, Pos))
767 return CS;
768
769 IRBuilder<> IRB(Pos);
770 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
771 // Caches the converted primitive shadow value.
772 CS = PrimitiveShadow;
773 return PrimitiveShadow;
774 }
775
getShadowTy(Type * OrigTy)776 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
777 if (!shouldTrackFieldsAndIndices())
778 return PrimitiveShadowTy;
779
780 if (!OrigTy->isSized())
781 return PrimitiveShadowTy;
782 if (isa<IntegerType>(OrigTy))
783 return PrimitiveShadowTy;
784 if (isa<VectorType>(OrigTy))
785 return PrimitiveShadowTy;
786 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
787 return ArrayType::get(getShadowTy(AT->getElementType()),
788 AT->getNumElements());
789 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
790 SmallVector<Type *, 4> Elements;
791 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
792 Elements.push_back(getShadowTy(ST->getElementType(I)));
793 return StructType::get(*Ctx, Elements);
794 }
795 return PrimitiveShadowTy;
796 }
797
getShadowTy(Value * V)798 Type *DataFlowSanitizer::getShadowTy(Value *V) {
799 return getShadowTy(V->getType());
800 }
801
init(Module & M)802 bool DataFlowSanitizer::init(Module &M) {
803 Triple TargetTriple(M.getTargetTriple());
804 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
805 bool IsMIPS64 = TargetTriple.isMIPS64();
806 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
807 TargetTriple.getArch() == Triple::aarch64_be;
808
809 const DataLayout &DL = M.getDataLayout();
810
811 Mod = &M;
812 Ctx = &M.getContext();
813 Int8Ptr = Type::getInt8PtrTy(*Ctx);
814 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
815 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
816 IntptrTy = DL.getIntPtrType(*Ctx);
817 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
818 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes);
819 if (IsX86_64)
820 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
821 else if (IsMIPS64)
822 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
823 // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
824 else if (IsAArch64)
825 DFSanRuntimeShadowMask = true;
826 else
827 report_fatal_error("unsupported triple");
828
829 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy};
830 DFSanUnionFnTy =
831 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false);
832 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
833 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
834 /*isVarArg=*/false);
835 DFSanUnimplementedFnTy = FunctionType::get(
836 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
837 Type *DFSanSetLabelArgs[3] = {PrimitiveShadowTy, Type::getInt8PtrTy(*Ctx),
838 IntptrTy};
839 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
840 DFSanSetLabelArgs, /*isVarArg=*/false);
841 DFSanNonzeroLabelFnTy =
842 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
843 DFSanVarargWrapperFnTy = FunctionType::get(
844 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
845 DFSanCmpCallbackFnTy =
846 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
847 /*isVarArg=*/false);
848 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
849 DFSanLoadStoreCallbackFnTy =
850 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
851 /*isVarArg=*/false);
852 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
853 DFSanMemTransferCallbackFnTy =
854 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
855 /*isVarArg=*/false);
856
857 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
858 return true;
859 }
860
isInstrumented(const Function * F)861 bool DataFlowSanitizer::isInstrumented(const Function *F) {
862 return !ABIList.isIn(*F, "uninstrumented");
863 }
864
isInstrumented(const GlobalAlias * GA)865 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
866 return !ABIList.isIn(*GA, "uninstrumented");
867 }
868
getInstrumentedABI()869 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
870 return ClArgsABI ? IA_Args : IA_TLS;
871 }
872
getWrapperKind(Function * F)873 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
874 if (ABIList.isIn(*F, "functional"))
875 return WK_Functional;
876 if (ABIList.isIn(*F, "discard"))
877 return WK_Discard;
878 if (ABIList.isIn(*F, "custom"))
879 return WK_Custom;
880
881 return WK_Warning;
882 }
883
addGlobalNamePrefix(GlobalValue * GV)884 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
885 std::string GVName = std::string(GV->getName()), Prefix = "dfs$";
886 GV->setName(Prefix + GVName);
887
888 // Try to change the name of the function in module inline asm. We only do
889 // this for specific asm directives, currently only ".symver", to try to avoid
890 // corrupting asm which happens to contain the symbol name as a substring.
891 // Note that the substitution for .symver assumes that the versioned symbol
892 // also has an instrumented name.
893 std::string Asm = GV->getParent()->getModuleInlineAsm();
894 std::string SearchStr = ".symver " + GVName + ",";
895 size_t Pos = Asm.find(SearchStr);
896 if (Pos != std::string::npos) {
897 Asm.replace(Pos, SearchStr.size(),
898 ".symver " + Prefix + GVName + "," + Prefix);
899 GV->getParent()->setModuleInlineAsm(Asm);
900 }
901 }
902
903 Function *
buildWrapperFunction(Function * F,StringRef NewFName,GlobalValue::LinkageTypes NewFLink,FunctionType * NewFT)904 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
905 GlobalValue::LinkageTypes NewFLink,
906 FunctionType *NewFT) {
907 FunctionType *FT = F->getFunctionType();
908 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
909 NewFName, F->getParent());
910 NewF->copyAttributesFrom(F);
911 NewF->removeAttributes(
912 AttributeList::ReturnIndex,
913 AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
914
915 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
916 if (F->isVarArg()) {
917 NewF->removeAttributes(AttributeList::FunctionIndex,
918 AttrBuilder().addAttribute("split-stack"));
919 CallInst::Create(DFSanVarargWrapperFn,
920 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
921 BB);
922 new UnreachableInst(*Ctx, BB);
923 } else {
924 std::vector<Value *> Args;
925 unsigned n = FT->getNumParams();
926 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
927 Args.push_back(&*ai);
928 CallInst *CI = CallInst::Create(F, Args, "", BB);
929 if (FT->getReturnType()->isVoidTy())
930 ReturnInst::Create(*Ctx, BB);
931 else
932 ReturnInst::Create(*Ctx, CI, BB);
933 }
934
935 return NewF;
936 }
937
getOrBuildTrampolineFunction(FunctionType * FT,StringRef FName)938 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
939 StringRef FName) {
940 FunctionType *FTT = getTrampolineFunctionType(FT);
941 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT);
942 Function *F = dyn_cast<Function>(C.getCallee());
943 if (F && F->isDeclaration()) {
944 F->setLinkage(GlobalValue::LinkOnceODRLinkage);
945 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
946 std::vector<Value *> Args;
947 Function::arg_iterator AI = F->arg_begin(); ++AI;
948 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
949 Args.push_back(&*AI);
950 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB);
951 ReturnInst *RI;
952 if (FT->getReturnType()->isVoidTy())
953 RI = ReturnInst::Create(*Ctx, BB);
954 else
955 RI = ReturnInst::Create(*Ctx, CI, BB);
956
957 // F is called by a wrapped custom function with primitive shadows. So
958 // its arguments and return value need conversion.
959 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
960 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
961 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) {
962 Value *Shadow =
963 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI);
964 DFSF.ValShadowMap[&*ValAI] = Shadow;
965 }
966 DFSanVisitor(DFSF).visitCallInst(*CI);
967 if (!FT->getReturnType()->isVoidTy()) {
968 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(
969 DFSF.getShadow(RI->getReturnValue()), RI);
970 new StoreInst(PrimitiveShadow, &*std::prev(F->arg_end()), RI);
971 }
972 }
973
974 return cast<Constant>(C.getCallee());
975 }
976
977 // Initialize DataFlowSanitizer runtime functions and declare them in the module
initializeRuntimeFunctions(Module & M)978 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
979 {
980 AttributeList AL;
981 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
982 Attribute::NoUnwind);
983 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
984 Attribute::ReadNone);
985 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
986 Attribute::ZExt);
987 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
988 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
989 DFSanUnionFn =
990 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL);
991 }
992 {
993 AttributeList AL;
994 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
995 Attribute::NoUnwind);
996 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
997 Attribute::ReadNone);
998 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
999 Attribute::ZExt);
1000 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1001 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1002 DFSanCheckedUnionFn =
1003 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL);
1004 }
1005 {
1006 AttributeList AL;
1007 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1008 Attribute::NoUnwind);
1009 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1010 Attribute::ReadOnly);
1011 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1012 Attribute::ZExt);
1013 DFSanUnionLoadFn =
1014 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
1015 }
1016 {
1017 AttributeList AL;
1018 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1019 Attribute::NoUnwind);
1020 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1021 Attribute::ReadOnly);
1022 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1023 Attribute::ZExt);
1024 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction(
1025 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL);
1026 }
1027 DFSanUnimplementedFn =
1028 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
1029 {
1030 AttributeList AL;
1031 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1032 DFSanSetLabelFn =
1033 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
1034 }
1035 DFSanNonzeroLabelFn =
1036 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
1037 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
1038 DFSanVarargWrapperFnTy);
1039 }
1040
1041 // Initializes event callback functions and declare them in the module
initializeCallbackFunctions(Module & M)1042 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
1043 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback",
1044 DFSanLoadStoreCallbackFnTy);
1045 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback",
1046 DFSanLoadStoreCallbackFnTy);
1047 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
1048 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
1049 DFSanCmpCallbackFn =
1050 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy);
1051 }
1052
runImpl(Module & M)1053 bool DataFlowSanitizer::runImpl(Module &M) {
1054 init(M);
1055
1056 if (ABIList.isIn(M, "skip"))
1057 return false;
1058
1059 const unsigned InitialGlobalSize = M.global_size();
1060 const unsigned InitialModuleSize = M.size();
1061
1062 bool Changed = false;
1063
1064 Type *ArgTLSTy = ArrayType::get(Type::getInt64Ty(*Ctx), kArgTLSSize / 8);
1065 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
1066 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) {
1067 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1068 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1069 }
1070 Type *RetvalTLSTy =
1071 ArrayType::get(Type::getInt64Ty(*Ctx), kRetvalTLSSize / 8);
1072 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", RetvalTLSTy);
1073 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) {
1074 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1075 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1076 }
1077
1078 ExternalShadowMask =
1079 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
1080
1081 initializeCallbackFunctions(M);
1082 initializeRuntimeFunctions(M);
1083
1084 std::vector<Function *> FnsToInstrument;
1085 SmallPtrSet<Function *, 2> FnsWithNativeABI;
1086 for (Function &i : M) {
1087 if (!i.isIntrinsic() &&
1088 &i != DFSanUnionFn.getCallee()->stripPointerCasts() &&
1089 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() &&
1090 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() &&
1091 &i != DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts() &&
1092 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() &&
1093 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() &&
1094 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() &&
1095 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() &&
1096 &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() &&
1097 &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() &&
1098 &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() &&
1099 &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts())
1100 FnsToInstrument.push_back(&i);
1101 }
1102
1103 // Give function aliases prefixes when necessary, and build wrappers where the
1104 // instrumentedness is inconsistent.
1105 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
1106 GlobalAlias *GA = &*i;
1107 ++i;
1108 // Don't stop on weak. We assume people aren't playing games with the
1109 // instrumentedness of overridden weak aliases.
1110 if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
1111 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
1112 if (GAInst && FInst) {
1113 addGlobalNamePrefix(GA);
1114 } else if (GAInst != FInst) {
1115 // Non-instrumented alias of an instrumented function, or vice versa.
1116 // Replace the alias with a native-ABI wrapper of the aliasee. The pass
1117 // below will take care of instrumenting it.
1118 Function *NewF =
1119 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
1120 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
1121 NewF->takeName(GA);
1122 GA->eraseFromParent();
1123 FnsToInstrument.push_back(NewF);
1124 }
1125 }
1126 }
1127
1128 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
1129 .addAttribute(Attribute::ReadNone);
1130
1131 // First, change the ABI of every function in the module. ABI-listed
1132 // functions keep their original ABI and get a wrapper function.
1133 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
1134 e = FnsToInstrument.end();
1135 i != e; ++i) {
1136 Function &F = **i;
1137 FunctionType *FT = F.getFunctionType();
1138
1139 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
1140 FT->getReturnType()->isVoidTy());
1141
1142 if (isInstrumented(&F)) {
1143 // Instrumented functions get a 'dfs$' prefix. This allows us to more
1144 // easily identify cases of mismatching ABIs.
1145 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
1146 FunctionType *NewFT = getArgsFunctionType(FT);
1147 Function *NewF = Function::Create(NewFT, F.getLinkage(),
1148 F.getAddressSpace(), "", &M);
1149 NewF->copyAttributesFrom(&F);
1150 NewF->removeAttributes(
1151 AttributeList::ReturnIndex,
1152 AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1153 for (Function::arg_iterator FArg = F.arg_begin(),
1154 NewFArg = NewF->arg_begin(),
1155 FArgEnd = F.arg_end();
1156 FArg != FArgEnd; ++FArg, ++NewFArg) {
1157 FArg->replaceAllUsesWith(&*NewFArg);
1158 }
1159 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
1160
1161 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
1162 UI != UE;) {
1163 BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
1164 ++UI;
1165 if (BA) {
1166 BA->replaceAllUsesWith(
1167 BlockAddress::get(NewF, BA->getBasicBlock()));
1168 delete BA;
1169 }
1170 }
1171 F.replaceAllUsesWith(
1172 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
1173 NewF->takeName(&F);
1174 F.eraseFromParent();
1175 *i = NewF;
1176 addGlobalNamePrefix(NewF);
1177 } else {
1178 addGlobalNamePrefix(&F);
1179 }
1180 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
1181 // Build a wrapper function for F. The wrapper simply calls F, and is
1182 // added to FnsToInstrument so that any instrumentation according to its
1183 // WrapperKind is done in the second pass below.
1184 FunctionType *NewFT = getInstrumentedABI() == IA_Args
1185 ? getArgsFunctionType(FT)
1186 : FT;
1187
1188 // If the function being wrapped has local linkage, then preserve the
1189 // function's linkage in the wrapper function.
1190 GlobalValue::LinkageTypes wrapperLinkage =
1191 F.hasLocalLinkage()
1192 ? F.getLinkage()
1193 : GlobalValue::LinkOnceODRLinkage;
1194
1195 Function *NewF = buildWrapperFunction(
1196 &F, std::string("dfsw$") + std::string(F.getName()),
1197 wrapperLinkage, NewFT);
1198 if (getInstrumentedABI() == IA_TLS)
1199 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
1200
1201 Value *WrappedFnCst =
1202 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
1203 F.replaceAllUsesWith(WrappedFnCst);
1204
1205 UnwrappedFnMap[WrappedFnCst] = &F;
1206 *i = NewF;
1207
1208 if (!F.isDeclaration()) {
1209 // This function is probably defining an interposition of an
1210 // uninstrumented function and hence needs to keep the original ABI.
1211 // But any functions it may call need to use the instrumented ABI, so
1212 // we instrument it in a mode which preserves the original ABI.
1213 FnsWithNativeABI.insert(&F);
1214
1215 // This code needs to rebuild the iterators, as they may be invalidated
1216 // by the push_back, taking care that the new range does not include
1217 // any functions added by this code.
1218 size_t N = i - FnsToInstrument.begin(),
1219 Count = e - FnsToInstrument.begin();
1220 FnsToInstrument.push_back(&F);
1221 i = FnsToInstrument.begin() + N;
1222 e = FnsToInstrument.begin() + Count;
1223 }
1224 // Hopefully, nobody will try to indirectly call a vararg
1225 // function... yet.
1226 } else if (FT->isVarArg()) {
1227 UnwrappedFnMap[&F] = &F;
1228 *i = nullptr;
1229 }
1230 }
1231
1232 for (Function *i : FnsToInstrument) {
1233 if (!i || i->isDeclaration())
1234 continue;
1235
1236 removeUnreachableBlocks(*i);
1237
1238 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
1239
1240 // DFSanVisitor may create new basic blocks, which confuses df_iterator.
1241 // Build a copy of the list before iterating over it.
1242 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
1243
1244 for (BasicBlock *i : BBList) {
1245 Instruction *Inst = &i->front();
1246 while (true) {
1247 // DFSanVisitor may split the current basic block, changing the current
1248 // instruction's next pointer and moving the next instruction to the
1249 // tail block from which we should continue.
1250 Instruction *Next = Inst->getNextNode();
1251 // DFSanVisitor may delete Inst, so keep track of whether it was a
1252 // terminator.
1253 bool IsTerminator = Inst->isTerminator();
1254 if (!DFSF.SkipInsts.count(Inst))
1255 DFSanVisitor(DFSF).visit(Inst);
1256 if (IsTerminator)
1257 break;
1258 Inst = Next;
1259 }
1260 }
1261
1262 // We will not necessarily be able to compute the shadow for every phi node
1263 // until we have visited every block. Therefore, the code that handles phi
1264 // nodes adds them to the PHIFixups list so that they can be properly
1265 // handled here.
1266 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator
1267 i = DFSF.PHIFixups.begin(),
1268 e = DFSF.PHIFixups.end();
1269 i != e; ++i) {
1270 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
1271 ++val) {
1272 i->second->setIncomingValue(
1273 val, DFSF.getShadow(i->first->getIncomingValue(val)));
1274 }
1275 }
1276
1277 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1278 // places (i.e. instructions in basic blocks we haven't even begun visiting
1279 // yet). To make our life easier, do this work in a pass after the main
1280 // instrumentation.
1281 if (ClDebugNonzeroLabels) {
1282 for (Value *V : DFSF.NonZeroChecks) {
1283 Instruction *Pos;
1284 if (Instruction *I = dyn_cast<Instruction>(V))
1285 Pos = I->getNextNode();
1286 else
1287 Pos = &DFSF.F->getEntryBlock().front();
1288 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1289 Pos = Pos->getNextNode();
1290 IRBuilder<> IRB(Pos);
1291 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
1292 Value *Ne =
1293 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
1294 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1295 Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1296 IRBuilder<> ThenIRB(BI);
1297 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1298 }
1299 }
1300 }
1301
1302 return Changed || !FnsToInstrument.empty() ||
1303 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1304 }
1305
getArgTLS(Type * T,unsigned ArgOffset,IRBuilder<> & IRB)1306 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
1307 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
1308 if (ArgOffset)
1309 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
1310 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
1311 "_dfsarg");
1312 }
1313
getRetvalTLS(Type * T,IRBuilder<> & IRB)1314 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
1315 return IRB.CreatePointerCast(
1316 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
1317 }
1318
getShadowForTLSArgument(Argument * A)1319 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
1320 unsigned ArgOffset = 0;
1321 const DataLayout &DL = F->getParent()->getDataLayout();
1322 for (auto &FArg : F->args()) {
1323 if (!FArg.getType()->isSized()) {
1324 if (A == &FArg)
1325 break;
1326 continue;
1327 }
1328
1329 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
1330 if (A != &FArg) {
1331 ArgOffset += alignTo(Size, kShadowTLSAlignment);
1332 if (ArgOffset > kArgTLSSize)
1333 break; // ArgTLS overflows, uses a zero shadow.
1334 continue;
1335 }
1336
1337 if (ArgOffset + Size > kArgTLSSize)
1338 break; // ArgTLS overflows, uses a zero shadow.
1339
1340 Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
1341 IRBuilder<> IRB(ArgTLSPos);
1342 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
1343 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
1344 kShadowTLSAlignment);
1345 }
1346
1347 return DFS.getZeroShadow(A);
1348 }
1349
getShadow(Value * V)1350 Value *DFSanFunction::getShadow(Value *V) {
1351 if (!isa<Argument>(V) && !isa<Instruction>(V))
1352 return DFS.getZeroShadow(V);
1353 Value *&Shadow = ValShadowMap[V];
1354 if (!Shadow) {
1355 if (Argument *A = dyn_cast<Argument>(V)) {
1356 if (IsNativeABI)
1357 return DFS.getZeroShadow(V);
1358 switch (IA) {
1359 case DataFlowSanitizer::IA_TLS: {
1360 Shadow = getShadowForTLSArgument(A);
1361 break;
1362 }
1363 case DataFlowSanitizer::IA_Args: {
1364 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
1365 Function::arg_iterator i = F->arg_begin();
1366 while (ArgIdx--)
1367 ++i;
1368 Shadow = &*i;
1369 assert(Shadow->getType() == DFS.PrimitiveShadowTy);
1370 break;
1371 }
1372 }
1373 NonZeroChecks.push_back(Shadow);
1374 } else {
1375 Shadow = DFS.getZeroShadow(V);
1376 }
1377 }
1378 return Shadow;
1379 }
1380
setShadow(Instruction * I,Value * Shadow)1381 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1382 assert(!ValShadowMap.count(I));
1383 assert(DFS.shouldTrackFieldsAndIndices() ||
1384 Shadow->getType() == DFS.PrimitiveShadowTy);
1385 ValShadowMap[I] = Shadow;
1386 }
1387
getShadowAddress(Value * Addr,Instruction * Pos)1388 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1389 assert(Addr != RetvalTLS && "Reinstrumenting?");
1390 IRBuilder<> IRB(Pos);
1391 Value *ShadowPtrMaskValue;
1392 if (DFSanRuntimeShadowMask)
1393 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
1394 else
1395 ShadowPtrMaskValue = ShadowPtrMask;
1396 return IRB.CreateIntToPtr(
1397 IRB.CreateMul(
1398 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
1399 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
1400 ShadowPtrMul),
1401 PrimitiveShadowPtrTy);
1402 }
1403
combineShadowsThenConvert(Type * T,Value * V1,Value * V2,Instruction * Pos)1404 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
1405 Instruction *Pos) {
1406 Value *PrimitiveValue = combineShadows(V1, V2, Pos);
1407 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
1408 }
1409
1410 // Generates IR to compute the union of the two given shadows, inserting it
1411 // before Pos. The combined value is with primitive type.
combineShadows(Value * V1,Value * V2,Instruction * Pos)1412 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1413 if (DFS.isZeroShadow(V1))
1414 return collapseToPrimitiveShadow(V2, Pos);
1415 if (DFS.isZeroShadow(V2))
1416 return collapseToPrimitiveShadow(V1, Pos);
1417 if (V1 == V2)
1418 return collapseToPrimitiveShadow(V1, Pos);
1419
1420 auto V1Elems = ShadowElements.find(V1);
1421 auto V2Elems = ShadowElements.find(V2);
1422 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1423 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1424 V2Elems->second.begin(), V2Elems->second.end())) {
1425 return collapseToPrimitiveShadow(V1, Pos);
1426 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1427 V1Elems->second.begin(), V1Elems->second.end())) {
1428 return collapseToPrimitiveShadow(V2, Pos);
1429 }
1430 } else if (V1Elems != ShadowElements.end()) {
1431 if (V1Elems->second.count(V2))
1432 return collapseToPrimitiveShadow(V1, Pos);
1433 } else if (V2Elems != ShadowElements.end()) {
1434 if (V2Elems->second.count(V1))
1435 return collapseToPrimitiveShadow(V2, Pos);
1436 }
1437
1438 auto Key = std::make_pair(V1, V2);
1439 if (V1 > V2)
1440 std::swap(Key.first, Key.second);
1441 CachedShadow &CCS = CachedShadows[Key];
1442 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1443 return CCS.Shadow;
1444
1445 // Converts inputs shadows to shadows with primitive types.
1446 Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
1447 Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
1448
1449 IRBuilder<> IRB(Pos);
1450 if (ClFast16Labels) {
1451 CCS.Block = Pos->getParent();
1452 CCS.Shadow = IRB.CreateOr(PV1, PV2);
1453 } else if (AvoidNewBlocks) {
1454 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2});
1455 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1456 Call->addParamAttr(0, Attribute::ZExt);
1457 Call->addParamAttr(1, Attribute::ZExt);
1458
1459 CCS.Block = Pos->getParent();
1460 CCS.Shadow = Call;
1461 } else {
1462 BasicBlock *Head = Pos->getParent();
1463 Value *Ne = IRB.CreateICmpNE(PV1, PV2);
1464 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1465 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
1466 IRBuilder<> ThenIRB(BI);
1467 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2});
1468 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1469 Call->addParamAttr(0, Attribute::ZExt);
1470 Call->addParamAttr(1, Attribute::ZExt);
1471
1472 BasicBlock *Tail = BI->getSuccessor(0);
1473 PHINode *Phi =
1474 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front());
1475 Phi->addIncoming(Call, Call->getParent());
1476 Phi->addIncoming(PV1, Head);
1477
1478 CCS.Block = Tail;
1479 CCS.Shadow = Phi;
1480 }
1481
1482 std::set<Value *> UnionElems;
1483 if (V1Elems != ShadowElements.end()) {
1484 UnionElems = V1Elems->second;
1485 } else {
1486 UnionElems.insert(V1);
1487 }
1488 if (V2Elems != ShadowElements.end()) {
1489 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1490 } else {
1491 UnionElems.insert(V2);
1492 }
1493 ShadowElements[CCS.Shadow] = std::move(UnionElems);
1494
1495 return CCS.Shadow;
1496 }
1497
1498 // A convenience function which folds the shadows of each of the operands
1499 // of the provided instruction Inst, inserting the IR before Inst. Returns
1500 // the computed union Value.
combineOperandShadows(Instruction * Inst)1501 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1502 if (Inst->getNumOperands() == 0)
1503 return DFS.getZeroShadow(Inst);
1504
1505 Value *Shadow = getShadow(Inst->getOperand(0));
1506 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
1507 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
1508 }
1509 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
1510 }
1511
visitOperandShadowInst(Instruction & I)1512 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) {
1513 Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1514 DFSF.setShadow(&I, CombinedShadow);
1515 return CombinedShadow;
1516 }
1517
1518 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
1519 // Addr has alignment Align, and take the union of each of those shadows. The
1520 // returned shadow always has primitive type.
loadShadow(Value * Addr,uint64_t Size,uint64_t Align,Instruction * Pos)1521 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
1522 Instruction *Pos) {
1523 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1524 const auto i = AllocaShadowMap.find(AI);
1525 if (i != AllocaShadowMap.end()) {
1526 IRBuilder<> IRB(Pos);
1527 return IRB.CreateLoad(DFS.PrimitiveShadowTy, i->second);
1528 }
1529 }
1530
1531 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes);
1532 SmallVector<const Value *, 2> Objs;
1533 getUnderlyingObjects(Addr, Objs);
1534 bool AllConstants = true;
1535 for (const Value *Obj : Objs) {
1536 if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
1537 continue;
1538 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
1539 continue;
1540
1541 AllConstants = false;
1542 break;
1543 }
1544 if (AllConstants)
1545 return DFS.ZeroPrimitiveShadow;
1546
1547 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1548 switch (Size) {
1549 case 0:
1550 return DFS.ZeroPrimitiveShadow;
1551 case 1: {
1552 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
1553 LI->setAlignment(ShadowAlign);
1554 return LI;
1555 }
1556 case 2: {
1557 IRBuilder<> IRB(Pos);
1558 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
1559 ConstantInt::get(DFS.IntptrTy, 1));
1560 return combineShadows(
1561 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign),
1562 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign),
1563 Pos);
1564 }
1565 }
1566
1567 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) {
1568 // First OR all the WideShadows, then OR individual shadows within the
1569 // combined WideShadow. This is fewer instructions than ORing shadows
1570 // individually.
1571 IRBuilder<> IRB(Pos);
1572 Value *WideAddr =
1573 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1574 Value *CombinedWideShadow =
1575 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
1576 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size;
1577 Ofs += 64 / DFS.ShadowWidthBits) {
1578 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1579 ConstantInt::get(DFS.IntptrTy, 1));
1580 Value *NextWideShadow =
1581 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
1582 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
1583 }
1584 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) {
1585 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
1586 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
1587 }
1588 return IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy);
1589 }
1590 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) {
1591 // Fast path for the common case where each byte has identical shadow: load
1592 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
1593 // shadow is non-equal.
1594 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
1595 IRBuilder<> FallbackIRB(FallbackBB);
1596 CallInst *FallbackCall = FallbackIRB.CreateCall(
1597 DFS.DFSanUnionLoadFn,
1598 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1599 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1600
1601 // Compare each of the shadows stored in the loaded 64 bits to each other,
1602 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow.
1603 IRBuilder<> IRB(Pos);
1604 Value *WideAddr =
1605 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1606 Value *WideShadow =
1607 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
1608 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy);
1609 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits);
1610 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits);
1611 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
1612 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
1613
1614 BasicBlock *Head = Pos->getParent();
1615 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
1616
1617 if (DomTreeNode *OldNode = DT.getNode(Head)) {
1618 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1619
1620 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
1621 for (auto Child : Children)
1622 DT.changeImmediateDominator(Child, NewNode);
1623 }
1624
1625 // In the following code LastBr will refer to the previous basic block's
1626 // conditional branch instruction, whose true successor is fixed up to point
1627 // to the next block during the loop below or to the tail after the final
1628 // iteration.
1629 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
1630 ReplaceInstWithInst(Head->getTerminator(), LastBr);
1631 DT.addNewBlock(FallbackBB, Head);
1632
1633 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size;
1634 Ofs += 64 / DFS.ShadowWidthBits) {
1635 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1636 DT.addNewBlock(NextBB, LastBr->getParent());
1637 IRBuilder<> NextIRB(NextBB);
1638 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1639 ConstantInt::get(DFS.IntptrTy, 1));
1640 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(),
1641 WideAddr, ShadowAlign);
1642 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1643 LastBr->setSuccessor(0, NextBB);
1644 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1645 }
1646
1647 LastBr->setSuccessor(0, Tail);
1648 FallbackIRB.CreateBr(Tail);
1649 PHINode *Shadow =
1650 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front());
1651 Shadow->addIncoming(FallbackCall, FallbackBB);
1652 Shadow->addIncoming(TruncShadow, LastBr->getParent());
1653 return Shadow;
1654 }
1655
1656 IRBuilder<> IRB(Pos);
1657 FunctionCallee &UnionLoadFn =
1658 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn;
1659 CallInst *FallbackCall = IRB.CreateCall(
1660 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1661 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1662 return FallbackCall;
1663 }
1664
visitLoadInst(LoadInst & LI)1665 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1666 auto &DL = LI.getModule()->getDataLayout();
1667 uint64_t Size = DL.getTypeStoreSize(LI.getType());
1668 if (Size == 0) {
1669 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
1670 return;
1671 }
1672
1673 Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1);
1674 Value *PrimitiveShadow =
1675 DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI);
1676 if (ClCombinePointerLabelsOnLoad) {
1677 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1678 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, &LI);
1679 }
1680 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
1681 DFSF.NonZeroChecks.push_back(PrimitiveShadow);
1682
1683 Value *Shadow =
1684 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, &LI);
1685 DFSF.setShadow(&LI, Shadow);
1686 if (ClEventCallbacks) {
1687 IRBuilder<> IRB(&LI);
1688 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
1689 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
1690 }
1691 }
1692
storePrimitiveShadow(Value * Addr,uint64_t Size,Align Alignment,Value * PrimitiveShadow,Instruction * Pos)1693 void DFSanFunction::storePrimitiveShadow(Value *Addr, uint64_t Size,
1694 Align Alignment,
1695 Value *PrimitiveShadow,
1696 Instruction *Pos) {
1697 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1698 const auto i = AllocaShadowMap.find(AI);
1699 if (i != AllocaShadowMap.end()) {
1700 IRBuilder<> IRB(Pos);
1701 IRB.CreateStore(PrimitiveShadow, i->second);
1702 return;
1703 }
1704 }
1705
1706 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes);
1707 IRBuilder<> IRB(Pos);
1708 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1709 if (DFS.isZeroShadow(PrimitiveShadow)) {
1710 IntegerType *ShadowTy =
1711 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
1712 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1713 Value *ExtShadowAddr =
1714 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1715 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1716 return;
1717 }
1718
1719 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits;
1720 uint64_t Offset = 0;
1721 if (Size >= ShadowVecSize) {
1722 auto *ShadowVecTy =
1723 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
1724 Value *ShadowVec = UndefValue::get(ShadowVecTy);
1725 for (unsigned i = 0; i != ShadowVecSize; ++i) {
1726 ShadowVec = IRB.CreateInsertElement(
1727 ShadowVec, PrimitiveShadow,
1728 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1729 }
1730 Value *ShadowVecAddr =
1731 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1732 do {
1733 Value *CurShadowVecAddr =
1734 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
1735 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1736 Size -= ShadowVecSize;
1737 ++Offset;
1738 } while (Size >= ShadowVecSize);
1739 Offset *= ShadowVecSize;
1740 }
1741 while (Size > 0) {
1742 Value *CurShadowAddr =
1743 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
1744 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
1745 --Size;
1746 ++Offset;
1747 }
1748 }
1749
visitStoreInst(StoreInst & SI)1750 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1751 auto &DL = SI.getModule()->getDataLayout();
1752 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
1753 if (Size == 0)
1754 return;
1755
1756 const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1);
1757
1758 Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1759 Value *PrimitiveShadow;
1760 if (ClCombinePointerLabelsOnStore) {
1761 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1762 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
1763 } else {
1764 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
1765 }
1766 DFSF.storePrimitiveShadow(SI.getPointerOperand(), Size, Alignment,
1767 PrimitiveShadow, &SI);
1768 if (ClEventCallbacks) {
1769 IRBuilder<> IRB(&SI);
1770 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
1771 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
1772 }
1773 }
1774
visitUnaryOperator(UnaryOperator & UO)1775 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
1776 visitOperandShadowInst(UO);
1777 }
1778
visitBinaryOperator(BinaryOperator & BO)1779 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1780 visitOperandShadowInst(BO);
1781 }
1782
visitCastInst(CastInst & CI)1783 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1784
visitCmpInst(CmpInst & CI)1785 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
1786 Value *CombinedShadow = visitOperandShadowInst(CI);
1787 if (ClEventCallbacks) {
1788 IRBuilder<> IRB(&CI);
1789 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
1790 }
1791 }
1792
visitGetElementPtrInst(GetElementPtrInst & GEPI)1793 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1794 visitOperandShadowInst(GEPI);
1795 }
1796
visitExtractElementInst(ExtractElementInst & I)1797 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1798 visitOperandShadowInst(I);
1799 }
1800
visitInsertElementInst(InsertElementInst & I)1801 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1802 visitOperandShadowInst(I);
1803 }
1804
visitShuffleVectorInst(ShuffleVectorInst & I)1805 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1806 visitOperandShadowInst(I);
1807 }
1808
visitExtractValueInst(ExtractValueInst & I)1809 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1810 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) {
1811 visitOperandShadowInst(I);
1812 return;
1813 }
1814
1815 IRBuilder<> IRB(&I);
1816 Value *Agg = I.getAggregateOperand();
1817 Value *AggShadow = DFSF.getShadow(Agg);
1818 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
1819 DFSF.setShadow(&I, ResShadow);
1820 }
1821
visitInsertValueInst(InsertValueInst & I)1822 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1823 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) {
1824 visitOperandShadowInst(I);
1825 return;
1826 }
1827
1828 IRBuilder<> IRB(&I);
1829 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
1830 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
1831 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
1832 DFSF.setShadow(&I, Res);
1833 }
1834
visitAllocaInst(AllocaInst & I)1835 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1836 bool AllLoadsStores = true;
1837 for (User *U : I.users()) {
1838 if (isa<LoadInst>(U))
1839 continue;
1840
1841 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1842 if (SI->getPointerOperand() == &I)
1843 continue;
1844 }
1845
1846 AllLoadsStores = false;
1847 break;
1848 }
1849 if (AllLoadsStores) {
1850 IRBuilder<> IRB(&I);
1851 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
1852 }
1853 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
1854 }
1855
visitSelectInst(SelectInst & I)1856 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1857 Value *CondShadow = DFSF.getShadow(I.getCondition());
1858 Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1859 Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1860 Value *ShadowSel = nullptr;
1861
1862 if (isa<VectorType>(I.getCondition()->getType())) {
1863 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
1864 FalseShadow, &I);
1865 } else {
1866 if (TrueShadow == FalseShadow) {
1867 ShadowSel = TrueShadow;
1868 } else {
1869 ShadowSel =
1870 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1871 }
1872 }
1873 DFSF.setShadow(&I, ClTrackSelectControlFlow
1874 ? DFSF.combineShadowsThenConvert(
1875 I.getType(), CondShadow, ShadowSel, &I)
1876 : ShadowSel);
1877 }
1878
visitMemSetInst(MemSetInst & I)1879 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1880 IRBuilder<> IRB(&I);
1881 Value *ValShadow = DFSF.getShadow(I.getValue());
1882 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
1883 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
1884 *DFSF.DFS.Ctx)),
1885 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
1886 }
1887
visitMemTransferInst(MemTransferInst & I)1888 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1889 IRBuilder<> IRB(&I);
1890 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1891 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1892 Value *LenShadow =
1893 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
1894 DFSF.DFS.ShadowWidthBytes));
1895 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1896 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
1897 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1898 auto *MTI = cast<MemTransferInst>(
1899 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
1900 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
1901 if (ClPreserveAlignment) {
1902 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes);
1903 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes);
1904 } else {
1905 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes));
1906 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes));
1907 }
1908 if (ClEventCallbacks) {
1909 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
1910 {RawDestShadow, I.getLength()});
1911 }
1912 }
1913
visitReturnInst(ReturnInst & RI)1914 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1915 if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1916 switch (DFSF.IA) {
1917 case DataFlowSanitizer::IA_TLS: {
1918 Value *S = DFSF.getShadow(RI.getReturnValue());
1919 IRBuilder<> IRB(&RI);
1920 Type *RT = DFSF.F->getFunctionType()->getReturnType();
1921 unsigned Size =
1922 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
1923 if (Size <= kRetvalTLSSize) {
1924 // If the size overflows, stores nothing. At callsite, oversized return
1925 // shadows are set to zero.
1926 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB),
1927 kShadowTLSAlignment);
1928 }
1929 break;
1930 }
1931 case DataFlowSanitizer::IA_Args: {
1932 IRBuilder<> IRB(&RI);
1933 Type *RT = DFSF.F->getFunctionType()->getReturnType();
1934 Value *InsVal =
1935 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1936 Value *InsShadow =
1937 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1938 RI.setOperand(0, InsShadow);
1939 break;
1940 }
1941 }
1942 }
1943 }
1944
visitCallBase(CallBase & CB)1945 void DFSanVisitor::visitCallBase(CallBase &CB) {
1946 Function *F = CB.getCalledFunction();
1947 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
1948 visitOperandShadowInst(CB);
1949 return;
1950 }
1951
1952 // Calls to this function are synthesized in wrappers, and we shouldn't
1953 // instrument them.
1954 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
1955 return;
1956
1957 IRBuilder<> IRB(&CB);
1958
1959 DenseMap<Value *, Function *>::iterator i =
1960 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
1961 if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1962 Function *F = i->second;
1963 switch (DFSF.DFS.getWrapperKind(F)) {
1964 case DataFlowSanitizer::WK_Warning:
1965 CB.setCalledFunction(F);
1966 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1967 IRB.CreateGlobalStringPtr(F->getName()));
1968 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
1969 return;
1970 case DataFlowSanitizer::WK_Discard:
1971 CB.setCalledFunction(F);
1972 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
1973 return;
1974 case DataFlowSanitizer::WK_Functional:
1975 CB.setCalledFunction(F);
1976 visitOperandShadowInst(CB);
1977 return;
1978 case DataFlowSanitizer::WK_Custom:
1979 // Don't try to handle invokes of custom functions, it's too complicated.
1980 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1981 // wrapper.
1982 if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1983 FunctionType *FT = F->getFunctionType();
1984 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
1985 std::string CustomFName = "__dfsw_";
1986 CustomFName += F->getName();
1987 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
1988 CustomFName, CustomFn.TransformedType);
1989 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
1990 CustomFn->copyAttributesFrom(F);
1991
1992 // Custom functions returning non-void will write to the return label.
1993 if (!FT->getReturnType()->isVoidTy()) {
1994 CustomFn->removeAttributes(AttributeList::FunctionIndex,
1995 DFSF.DFS.ReadOnlyNoneAttrs);
1996 }
1997 }
1998
1999 std::vector<Value *> Args;
2000
2001 auto i = CB.arg_begin();
2002 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
2003 Type *T = (*i)->getType();
2004 FunctionType *ParamFT;
2005 if (isa<PointerType>(T) &&
2006 (ParamFT = dyn_cast<FunctionType>(
2007 cast<PointerType>(T)->getElementType()))) {
2008 std::string TName = "dfst";
2009 TName += utostr(FT->getNumParams() - n);
2010 TName += "$";
2011 TName += F->getName();
2012 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
2013 Args.push_back(T);
2014 Args.push_back(
2015 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
2016 } else {
2017 Args.push_back(*i);
2018 }
2019 }
2020
2021 i = CB.arg_begin();
2022 const unsigned ShadowArgStart = Args.size();
2023 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
2024 Args.push_back(
2025 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*i), &CB));
2026
2027 if (FT->isVarArg()) {
2028 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
2029 CB.arg_size() - FT->getNumParams());
2030 auto *LabelVAAlloca = new AllocaInst(
2031 LabelVATy, getDataLayout().getAllocaAddrSpace(),
2032 "labelva", &DFSF.F->getEntryBlock().front());
2033
2034 for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) {
2035 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
2036 IRB.CreateStore(
2037 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*i), &CB),
2038 LabelVAPtr);
2039 }
2040
2041 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
2042 }
2043
2044 if (!FT->getReturnType()->isVoidTy()) {
2045 if (!DFSF.LabelReturnAlloca) {
2046 DFSF.LabelReturnAlloca =
2047 new AllocaInst(DFSF.DFS.PrimitiveShadowTy,
2048 getDataLayout().getAllocaAddrSpace(),
2049 "labelreturn", &DFSF.F->getEntryBlock().front());
2050 }
2051 Args.push_back(DFSF.LabelReturnAlloca);
2052 }
2053
2054 for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i)
2055 Args.push_back(*i);
2056
2057 CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
2058 CustomCI->setCallingConv(CI->getCallingConv());
2059 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn,
2060 CI->getContext(), CI->getAttributes()));
2061
2062 // Update the parameter attributes of the custom call instruction to
2063 // zero extend the shadow parameters. This is required for targets
2064 // which consider PrimitiveShadowTy an illegal type.
2065 for (unsigned n = 0; n < FT->getNumParams(); n++) {
2066 const unsigned ArgNo = ShadowArgStart + n;
2067 if (CustomCI->getArgOperand(ArgNo)->getType() ==
2068 DFSF.DFS.PrimitiveShadowTy)
2069 CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
2070 }
2071
2072 if (!FT->getReturnType()->isVoidTy()) {
2073 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy,
2074 DFSF.LabelReturnAlloca);
2075 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
2076 FT->getReturnType(), LabelLoad, &CB));
2077 }
2078
2079 CI->replaceAllUsesWith(CustomCI);
2080 CI->eraseFromParent();
2081 return;
2082 }
2083 break;
2084 }
2085 }
2086
2087 FunctionType *FT = CB.getFunctionType();
2088 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
2089 unsigned ArgOffset = 0;
2090 const DataLayout &DL = getDataLayout();
2091 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
2092 unsigned Size =
2093 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
2094 // Stop storing if arguments' size overflows. Inside a function, arguments
2095 // after overflow have zero shadow values.
2096 if (ArgOffset + Size > kArgTLSSize)
2097 break;
2098 IRB.CreateAlignedStore(
2099 DFSF.getShadow(CB.getArgOperand(I)),
2100 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
2101 kShadowTLSAlignment);
2102 ArgOffset += alignTo(Size, kShadowTLSAlignment);
2103 }
2104 }
2105
2106 Instruction *Next = nullptr;
2107 if (!CB.getType()->isVoidTy()) {
2108 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2109 if (II->getNormalDest()->getSinglePredecessor()) {
2110 Next = &II->getNormalDest()->front();
2111 } else {
2112 BasicBlock *NewBB =
2113 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
2114 Next = &NewBB->front();
2115 }
2116 } else {
2117 assert(CB.getIterator() != CB.getParent()->end());
2118 Next = CB.getNextNode();
2119 }
2120
2121 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
2122 IRBuilder<> NextIRB(Next);
2123 const DataLayout &DL = getDataLayout();
2124 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
2125 if (Size > kRetvalTLSSize) {
2126 // Set overflowed return shadow to be zero.
2127 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
2128 } else {
2129 LoadInst *LI = NextIRB.CreateAlignedLoad(
2130 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
2131 kShadowTLSAlignment, "_dfsret");
2132 DFSF.SkipInsts.insert(LI);
2133 DFSF.setShadow(&CB, LI);
2134 DFSF.NonZeroChecks.push_back(LI);
2135 }
2136 }
2137 }
2138
2139 // Do all instrumentation for IA_Args down here to defer tampering with the
2140 // CFG in a way that SplitEdge may be able to detect.
2141 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
2142 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
2143 Value *Func =
2144 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT));
2145 std::vector<Value *> Args;
2146
2147 auto i = CB.arg_begin(), E = CB.arg_end();
2148 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
2149 Args.push_back(*i);
2150
2151 i = CB.arg_begin();
2152 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
2153 Args.push_back(DFSF.getShadow(*i));
2154
2155 if (FT->isVarArg()) {
2156 unsigned VarArgSize = CB.arg_size() - FT->getNumParams();
2157 ArrayType *VarArgArrayTy =
2158 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize);
2159 AllocaInst *VarArgShadow =
2160 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
2161 "", &DFSF.F->getEntryBlock().front());
2162 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
2163 for (unsigned n = 0; i != E; ++i, ++n) {
2164 IRB.CreateStore(
2165 DFSF.getShadow(*i),
2166 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
2167 Args.push_back(*i);
2168 }
2169 }
2170
2171 CallBase *NewCB;
2172 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2173 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(),
2174 II->getUnwindDest(), Args);
2175 } else {
2176 NewCB = IRB.CreateCall(NewFT, Func, Args);
2177 }
2178 NewCB->setCallingConv(CB.getCallingConv());
2179 NewCB->setAttributes(CB.getAttributes().removeAttributes(
2180 *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
2181 AttributeFuncs::typeIncompatible(NewCB->getType())));
2182
2183 if (Next) {
2184 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next);
2185 DFSF.SkipInsts.insert(ExVal);
2186 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next);
2187 DFSF.SkipInsts.insert(ExShadow);
2188 DFSF.setShadow(ExVal, ExShadow);
2189 DFSF.NonZeroChecks.push_back(ExShadow);
2190
2191 CB.replaceAllUsesWith(ExVal);
2192 }
2193
2194 CB.eraseFromParent();
2195 }
2196 }
2197
visitPHINode(PHINode & PN)2198 void DFSanVisitor::visitPHINode(PHINode &PN) {
2199 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
2200 PHINode *ShadowPN =
2201 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
2202
2203 // Give the shadow phi node valid predecessors to fool SplitEdge into working.
2204 Value *UndefShadow = UndefValue::get(ShadowTy);
2205 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
2206 ++i) {
2207 ShadowPN->addIncoming(UndefShadow, *i);
2208 }
2209
2210 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
2211 DFSF.setShadow(&PN, ShadowPN);
2212 }
2213
2214 namespace {
2215 class DataFlowSanitizerLegacyPass : public ModulePass {
2216 private:
2217 std::vector<std::string> ABIListFiles;
2218
2219 public:
2220 static char ID;
2221
DataFlowSanitizerLegacyPass(const std::vector<std::string> & ABIListFiles=std::vector<std::string> ())2222 DataFlowSanitizerLegacyPass(
2223 const std::vector<std::string> &ABIListFiles = std::vector<std::string>())
2224 : ModulePass(ID), ABIListFiles(ABIListFiles) {}
2225
runOnModule(Module & M)2226 bool runOnModule(Module &M) override {
2227 return DataFlowSanitizer(ABIListFiles).runImpl(M);
2228 }
2229 };
2230 } // namespace
2231
2232 char DataFlowSanitizerLegacyPass::ID;
2233
2234 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan",
2235 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
2236
createDataFlowSanitizerLegacyPassPass(const std::vector<std::string> & ABIListFiles)2237 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass(
2238 const std::vector<std::string> &ABIListFiles) {
2239 return new DataFlowSanitizerLegacyPass(ABIListFiles);
2240 }
2241
run(Module & M,ModuleAnalysisManager & AM)2242 PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
2243 ModuleAnalysisManager &AM) {
2244 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) {
2245 return PreservedAnalyses::none();
2246 }
2247 return PreservedAnalyses::all();
2248 }
2249