1; This test contains extremely tricky call graph structures for the inliner to
2; handle correctly. They form cycles where the inliner introduces code that is
3; immediately or can eventually be transformed back into the original code. And
4; each step changes the call graph and so will trigger iteration. This requires
5; some out-of-band way to prevent infinitely re-inlining and re-transforming the
6; code.
7;
8; RUN: opt < %s -passes='cgscc(inline,function(sroa,instcombine))' -inline-threshold=50 -S | FileCheck %s
9
10
11; The `test1_*` collection of functions form a directly cycling pattern.
12
13define void @test1_a(i8** %ptr) {
14; CHECK-LABEL: define void @test1_a(
15entry:
16  call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 0)
17; Inlining and simplifying this call will reliably produce the exact same call,
18; over and over again. However, each inlining increments the count, and so we
19; expect this test case to stop after one round of inlining with a final
20; argument of '1'.
21; CHECK-NOT:     call
22; CHECK:         call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 1)
23; CHECK-NOT:     call
24
25  ret void
26}
27
28define void @test1_b(i8* %arg, i1 %flag, i32 %inline_count) {
29; CHECK-LABEL: define void @test1_b(
30entry:
31  %a = alloca i8*
32  store i8* %arg, i8** %a
33; This alloca and store should remain through any optimization.
34; CHECK:         %[[A:.*]] = alloca
35; CHECK:         store i8* %arg, i8** %[[A]]
36
37  br i1 %flag, label %bb1, label %bb2
38
39bb1:
40  call void @test1_a(i8** %a) noinline
41  br label %bb2
42
43bb2:
44  %cast = bitcast i8** %a to void (i8*, i1, i32)**
45  %p = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %cast
46  %inline_count_inc = add i32 %inline_count, 1
47  call void %p(i8* %arg, i1 %flag, i32 %inline_count_inc)
48; And we should continue to load and call indirectly through optimization.
49; CHECK:         %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i1, i32)**
50; CHECK:         %[[P:.*]] = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %[[CAST]]
51; CHECK:         call void %[[P]](
52
53  ret void
54}
55
56define void @test2_a(i8** %ptr) {
57; CHECK-LABEL: define void @test2_a(
58entry:
59  call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 0)
60; Inlining and simplifying this call will reliably produce the exact same call,
61; but only after doing two rounds if inlining, first from @test2_b then
62; @test2_c. We check the exact number of inlining rounds before we cut off to
63; break the cycle by inspecting the last paramater that gets incremented with
64; each inlined function body.
65; CHECK-NOT:     call
66; CHECK:         call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 2)
67; CHECK-NOT:     call
68  ret void
69}
70
71define void @test2_b(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) {
72; CHECK-LABEL: define void @test2_b(
73entry:
74  %a = alloca i8*
75  store i8* %arg2, i8** %a
76; This alloca and store should remain through any optimization.
77; CHECK:         %[[A:.*]] = alloca
78; CHECK:         store i8* %arg2, i8** %[[A]]
79
80  br i1 %flag, label %bb1, label %bb2
81
82bb1:
83  call void @test2_a(i8** %a) noinline
84  br label %bb2
85
86bb2:
87  %p = load i8*, i8** %a
88  %cast = bitcast i8* %p to void (i8*, i8*, i1, i32)*
89  %inline_count_inc = add i32 %inline_count, 1
90  call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc)
91; And we should continue to load and call indirectly through optimization.
92; CHECK:         %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)**
93; CHECK:         %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]]
94; CHECK:         call void %[[P]](
95
96  ret void
97}
98
99define void @test2_c(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) {
100; CHECK-LABEL: define void @test2_c(
101entry:
102  %a = alloca i8*
103  store i8* %arg1, i8** %a
104; This alloca and store should remain through any optimization.
105; CHECK:         %[[A:.*]] = alloca
106; CHECK:         store i8* %arg1, i8** %[[A]]
107
108  br i1 %flag, label %bb1, label %bb2
109
110bb1:
111  call void @test2_a(i8** %a) noinline
112  br label %bb2
113
114bb2:
115  %p = load i8*, i8** %a
116  %cast = bitcast i8* %p to void (i8*, i8*, i1, i32)*
117  %inline_count_inc = add i32 %inline_count, 1
118  call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc)
119; And we should continue to load and call indirectly through optimization.
120; CHECK:         %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)**
121; CHECK:         %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]]
122; CHECK:         call void %[[P]](
123
124  ret void
125}
126
127; Another infinite inlining case. The initial callgraph is like following:
128;
129;         test3_a <---> test3_b
130;             |         ^
131;             v         |
132;         test3_c <---> test3_d
133;
134; For all the call edges in the call graph, only test3_c and test3_d can be
135; inlined into test3_a, and no other call edge can be inlined.
136;
137; After test3_c is inlined into test3_a, the original call edge test3_a->test3_c
138; will be removed, a new call edge will be added and the call graph becomes:
139;
140;            test3_a <---> test3_b
141;                  \      ^
142;                   v    /
143;     test3_c <---> test3_d
144; But test3_a, test3_b, test3_c and test3_d still belong to the same SCC.
145;
146; Then after test3_a->test3_d is inlined, when test3_a->test3_d is converted to
147; a ref edge, the original SCC will be split into two: {test3_c, test3_d} and
148; {test3_a, test3_b}, immediately after the newly added ref edge
149; test3_a->test3_c will be converted to a call edge, and the two SCCs will be
150; merged into the original one again. During this cycle, the original SCC will
151; be added into UR.CWorklist again and this creates an infinite loop.
152
153@a = global i64 0
154@b = global i64 0
155
156; Check test3_c is inlined into test3_a once and only once.
157; CHECK-LABEL: @test3_a(
158; CHECK: tail call void @test3_b()
159; CHECK-NEXT: tail call void @test3_d(i32 5)
160; CHECK-NEXT: %[[LD1:.*]] = load i64, i64* @a
161; CHECK-NEXT: %[[ADD1:.*]] = add nsw i64 %[[LD1]], 1
162; CHECK-NEXT: store i64 %[[ADD1]], i64* @a
163; CHECK-NEXT: %[[LD2:.*]] = load i64, i64* @b
164; CHECK-NEXT: %[[ADD2:.*]] = add nsw i64 %[[LD2]], 5
165; CHECK-NEXT: store i64 %[[ADD2]], i64* @b
166; CHECK-NEXT: ret void
167
168; Function Attrs: noinline
169define void @test3_a() #0 {
170entry:
171  tail call void @test3_b()
172  tail call void @test3_c(i32 5)
173  %t0 = load i64, i64* @b
174  %add = add nsw i64 %t0, 5
175  store i64 %add, i64* @b
176  ret void
177}
178
179; Function Attrs: noinline
180define void @test3_b() #0 {
181entry:
182  tail call void @test3_a()
183  %t0 = load i64, i64* @a
184  %add = add nsw i64 %t0, 2
185  store i64 %add, i64* @a
186  ret void
187}
188
189define void @test3_d(i32 %i) {
190entry:
191  %cmp = icmp eq i32 %i, 5
192  br i1 %cmp, label %if.end, label %if.then
193
194if.then:                                          ; preds = %entry
195  %call = tail call i64 @random()
196  %t0 = load i64, i64* @a
197  %add = add nsw i64 %t0, %call
198  store i64 %add, i64* @a
199  br label %if.end
200
201if.end:                                           ; preds = %entry, %if.then
202  tail call void @test3_c(i32 %i)
203  tail call void @test3_b()
204  %t6 = load i64, i64* @a
205  %add79 = add nsw i64 %t6, 3
206  store i64 %add79, i64* @a
207  ret void
208}
209
210define void @test3_c(i32 %i) {
211entry:
212  %cmp = icmp eq i32 %i, 5
213  br i1 %cmp, label %if.end, label %if.then
214
215if.then:                                          ; preds = %entry
216  %call = tail call i64 @random()
217  %t0 = load i64, i64* @a
218  %add = add nsw i64 %t0, %call
219  store i64 %add, i64* @a
220  br label %if.end
221
222if.end:                                           ; preds = %entry, %if.then
223  tail call void @test3_d(i32 %i)
224  %t6 = load i64, i64* @a
225  %add85 = add nsw i64 %t6, 1
226  store i64 %add85, i64* @a
227  ret void
228}
229
230declare i64 @random()
231
232attributes #0 = { noinline }
233