1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32 //===----------------------------------------------------------------------===//
33 // Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
35
36 namespace {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38 CodeGenFunction &CGF;
39 CGBuilderTy &Builder;
40 AggValueSlot Dest;
41 bool IsResultUnused;
42
EnsureSlot(QualType T)43 AggValueSlot EnsureSlot(QualType T) {
44 if (!Dest.isIgnored()) return Dest;
45 return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46 }
EnsureDest(QualType T)47 void EnsureDest(QualType T) {
48 if (!Dest.isIgnored()) return;
49 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50 }
51
52 // Calls `Fn` with a valid return value slot, potentially creating a temporary
53 // to do so. If a temporary is created, an appropriate copy into `Dest` will
54 // be emitted, as will lifetime markers.
55 //
56 // The given function should take a ReturnValueSlot, and return an RValue that
57 // points to said slot.
58 void withReturnValueSlot(const Expr *E,
59 llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60
61 public:
AggExprEmitter(CodeGenFunction & cgf,AggValueSlot Dest,bool IsResultUnused)62 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64 IsResultUnused(IsResultUnused) { }
65
66 //===--------------------------------------------------------------------===//
67 // Utilities
68 //===--------------------------------------------------------------------===//
69
70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71 /// represents a value lvalue, this method emits the address of the lvalue,
72 /// then loads the result into DestPtr.
73 void EmitAggLoadOfLValue(const Expr *E);
74
75 enum ExprValueKind {
76 EVK_RValue,
77 EVK_NonRValue
78 };
79
80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81 /// SrcIsRValue is true if source comes from an RValue.
82 void EmitFinalDestCopy(QualType type, const LValue &src,
83 ExprValueKind SrcValueKind = EVK_NonRValue);
84 void EmitFinalDestCopy(QualType type, RValue src);
85 void EmitCopy(QualType type, const AggValueSlot &dest,
86 const AggValueSlot &src);
87
88 void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89
90 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
91 QualType ArrayQTy, InitListExpr *E);
92
needsGC(QualType T)93 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
94 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
95 return AggValueSlot::NeedsGCBarriers;
96 return AggValueSlot::DoesNotNeedGCBarriers;
97 }
98
99 bool TypeRequiresGCollection(QualType T);
100
101 //===--------------------------------------------------------------------===//
102 // Visitor Methods
103 //===--------------------------------------------------------------------===//
104
Visit(Expr * E)105 void Visit(Expr *E) {
106 ApplyDebugLocation DL(CGF, E);
107 StmtVisitor<AggExprEmitter>::Visit(E);
108 }
109
VisitStmt(Stmt * S)110 void VisitStmt(Stmt *S) {
111 CGF.ErrorUnsupported(S, "aggregate expression");
112 }
VisitParenExpr(ParenExpr * PE)113 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)114 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
115 Visit(GE->getResultExpr());
116 }
VisitCoawaitExpr(CoawaitExpr * E)117 void VisitCoawaitExpr(CoawaitExpr *E) {
118 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
119 }
VisitCoyieldExpr(CoyieldExpr * E)120 void VisitCoyieldExpr(CoyieldExpr *E) {
121 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
122 }
VisitUnaryCoawait(UnaryOperator * E)123 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitUnaryExtension(UnaryOperator * E)124 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)125 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
126 return Visit(E->getReplacement());
127 }
128
VisitConstantExpr(ConstantExpr * E)129 void VisitConstantExpr(ConstantExpr *E) {
130 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
131 CGF.EmitAggregateStore(Result, Dest.getAddress(),
132 E->getType().isVolatileQualified());
133 return;
134 }
135 return Visit(E->getSubExpr());
136 }
137
138 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)139 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
VisitMemberExpr(MemberExpr * ME)140 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
VisitUnaryDeref(UnaryOperator * E)141 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
VisitStringLiteral(StringLiteral * E)142 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
143 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
VisitArraySubscriptExpr(ArraySubscriptExpr * E)144 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
145 EmitAggLoadOfLValue(E);
146 }
VisitPredefinedExpr(const PredefinedExpr * E)147 void VisitPredefinedExpr(const PredefinedExpr *E) {
148 EmitAggLoadOfLValue(E);
149 }
150
151 // Operators.
152 void VisitCastExpr(CastExpr *E);
153 void VisitCallExpr(const CallExpr *E);
154 void VisitStmtExpr(const StmtExpr *E);
155 void VisitBinaryOperator(const BinaryOperator *BO);
156 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
157 void VisitBinAssign(const BinaryOperator *E);
158 void VisitBinComma(const BinaryOperator *E);
159 void VisitBinCmp(const BinaryOperator *E);
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)160 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
161 Visit(E->getSemanticForm());
162 }
163
164 void VisitObjCMessageExpr(ObjCMessageExpr *E);
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)165 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
166 EmitAggLoadOfLValue(E);
167 }
168
169 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
170 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
171 void VisitChooseExpr(const ChooseExpr *CE);
172 void VisitInitListExpr(InitListExpr *E);
173 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
174 llvm::Value *outerBegin = nullptr);
175 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
VisitNoInitExpr(NoInitExpr * E)176 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)177 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
178 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
179 Visit(DAE->getExpr());
180 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)181 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
182 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
183 Visit(DIE->getExpr());
184 }
185 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
186 void VisitCXXConstructExpr(const CXXConstructExpr *E);
187 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
188 void VisitLambdaExpr(LambdaExpr *E);
189 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
190 void VisitExprWithCleanups(ExprWithCleanups *E);
191 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
VisitCXXTypeidExpr(CXXTypeidExpr * E)192 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
193 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
194 void VisitOpaqueValueExpr(OpaqueValueExpr *E);
195
VisitPseudoObjectExpr(PseudoObjectExpr * E)196 void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
197 if (E->isGLValue()) {
198 LValue LV = CGF.EmitPseudoObjectLValue(E);
199 return EmitFinalDestCopy(E->getType(), LV);
200 }
201
202 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
203 }
204
205 void VisitVAArgExpr(VAArgExpr *E);
206
207 void EmitInitializationToLValue(Expr *E, LValue Address);
208 void EmitNullInitializationToLValue(LValue Address);
209 // case Expr::ChooseExprClass:
VisitCXXThrowExpr(const CXXThrowExpr * E)210 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
VisitAtomicExpr(AtomicExpr * E)211 void VisitAtomicExpr(AtomicExpr *E) {
212 RValue Res = CGF.EmitAtomicExpr(E);
213 EmitFinalDestCopy(E->getType(), Res);
214 }
215 };
216 } // end anonymous namespace.
217
218 //===----------------------------------------------------------------------===//
219 // Utilities
220 //===----------------------------------------------------------------------===//
221
222 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
223 /// represents a value lvalue, this method emits the address of the lvalue,
224 /// then loads the result into DestPtr.
EmitAggLoadOfLValue(const Expr * E)225 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
226 LValue LV = CGF.EmitLValue(E);
227
228 // If the type of the l-value is atomic, then do an atomic load.
229 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
230 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
231 return;
232 }
233
234 EmitFinalDestCopy(E->getType(), LV);
235 }
236
237 /// True if the given aggregate type requires special GC API calls.
TypeRequiresGCollection(QualType T)238 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
239 // Only record types have members that might require garbage collection.
240 const RecordType *RecordTy = T->getAs<RecordType>();
241 if (!RecordTy) return false;
242
243 // Don't mess with non-trivial C++ types.
244 RecordDecl *Record = RecordTy->getDecl();
245 if (isa<CXXRecordDecl>(Record) &&
246 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
247 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
248 return false;
249
250 // Check whether the type has an object member.
251 return Record->hasObjectMember();
252 }
253
withReturnValueSlot(const Expr * E,llvm::function_ref<RValue (ReturnValueSlot)> EmitCall)254 void AggExprEmitter::withReturnValueSlot(
255 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
256 QualType RetTy = E->getType();
257 bool RequiresDestruction =
258 !Dest.isExternallyDestructed() &&
259 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
260
261 // If it makes no observable difference, save a memcpy + temporary.
262 //
263 // We need to always provide our own temporary if destruction is required.
264 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
265 // its lifetime before we have the chance to emit a proper destructor call.
266 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
267 (RequiresDestruction && !Dest.getAddress().isValid());
268
269 Address RetAddr = Address::invalid();
270 Address RetAllocaAddr = Address::invalid();
271
272 EHScopeStack::stable_iterator LifetimeEndBlock;
273 llvm::Value *LifetimeSizePtr = nullptr;
274 llvm::IntrinsicInst *LifetimeStartInst = nullptr;
275 if (!UseTemp) {
276 RetAddr = Dest.getAddress();
277 } else {
278 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
279 llvm::TypeSize Size =
280 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
281 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
282 if (LifetimeSizePtr) {
283 LifetimeStartInst =
284 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
285 assert(LifetimeStartInst->getIntrinsicID() ==
286 llvm::Intrinsic::lifetime_start &&
287 "Last insertion wasn't a lifetime.start?");
288
289 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
290 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
291 LifetimeEndBlock = CGF.EHStack.stable_begin();
292 }
293 }
294
295 RValue Src =
296 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
297 Dest.isExternallyDestructed()));
298
299 if (!UseTemp)
300 return;
301
302 assert(Dest.getPointer() != Src.getAggregatePointer());
303 EmitFinalDestCopy(E->getType(), Src);
304
305 if (!RequiresDestruction && LifetimeStartInst) {
306 // If there's no dtor to run, the copy was the last use of our temporary.
307 // Since we're not guaranteed to be in an ExprWithCleanups, clean up
308 // eagerly.
309 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
310 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
311 }
312 }
313
314 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,RValue src)315 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
316 assert(src.isAggregate() && "value must be aggregate value!");
317 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
318 EmitFinalDestCopy(type, srcLV, EVK_RValue);
319 }
320
321 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,const LValue & src,ExprValueKind SrcValueKind)322 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
323 ExprValueKind SrcValueKind) {
324 // If Dest is ignored, then we're evaluating an aggregate expression
325 // in a context that doesn't care about the result. Note that loads
326 // from volatile l-values force the existence of a non-ignored
327 // destination.
328 if (Dest.isIgnored())
329 return;
330
331 // Copy non-trivial C structs here.
332 LValue DstLV = CGF.MakeAddrLValue(
333 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
334
335 if (SrcValueKind == EVK_RValue) {
336 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
337 if (Dest.isPotentiallyAliased())
338 CGF.callCStructMoveAssignmentOperator(DstLV, src);
339 else
340 CGF.callCStructMoveConstructor(DstLV, src);
341 return;
342 }
343 } else {
344 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
345 if (Dest.isPotentiallyAliased())
346 CGF.callCStructCopyAssignmentOperator(DstLV, src);
347 else
348 CGF.callCStructCopyConstructor(DstLV, src);
349 return;
350 }
351 }
352
353 AggValueSlot srcAgg = AggValueSlot::forLValue(
354 src, CGF, AggValueSlot::IsDestructed, needsGC(type),
355 AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
356 EmitCopy(type, Dest, srcAgg);
357 }
358
359 /// Perform a copy from the source into the destination.
360 ///
361 /// \param type - the type of the aggregate being copied; qualifiers are
362 /// ignored
EmitCopy(QualType type,const AggValueSlot & dest,const AggValueSlot & src)363 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
364 const AggValueSlot &src) {
365 if (dest.requiresGCollection()) {
366 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
367 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
368 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
369 dest.getAddress(),
370 src.getAddress(),
371 size);
372 return;
373 }
374
375 // If the result of the assignment is used, copy the LHS there also.
376 // It's volatile if either side is. Use the minimum alignment of
377 // the two sides.
378 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
379 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
380 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
381 dest.isVolatile() || src.isVolatile());
382 }
383
384 /// Emit the initializer for a std::initializer_list initialized with a
385 /// real initializer list.
386 void
VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)387 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
388 // Emit an array containing the elements. The array is externally destructed
389 // if the std::initializer_list object is.
390 ASTContext &Ctx = CGF.getContext();
391 LValue Array = CGF.EmitLValue(E->getSubExpr());
392 assert(Array.isSimple() && "initializer_list array not a simple lvalue");
393 Address ArrayPtr = Array.getAddress(CGF);
394
395 const ConstantArrayType *ArrayType =
396 Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
397 assert(ArrayType && "std::initializer_list constructed from non-array");
398
399 // FIXME: Perform the checks on the field types in SemaInit.
400 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
401 RecordDecl::field_iterator Field = Record->field_begin();
402 if (Field == Record->field_end()) {
403 CGF.ErrorUnsupported(E, "weird std::initializer_list");
404 return;
405 }
406
407 // Start pointer.
408 if (!Field->getType()->isPointerType() ||
409 !Ctx.hasSameType(Field->getType()->getPointeeType(),
410 ArrayType->getElementType())) {
411 CGF.ErrorUnsupported(E, "weird std::initializer_list");
412 return;
413 }
414
415 AggValueSlot Dest = EnsureSlot(E->getType());
416 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
417 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
418 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
419 llvm::Value *IdxStart[] = { Zero, Zero };
420 llvm::Value *ArrayStart = Builder.CreateInBoundsGEP(
421 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxStart, "arraystart");
422 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
423 ++Field;
424
425 if (Field == Record->field_end()) {
426 CGF.ErrorUnsupported(E, "weird std::initializer_list");
427 return;
428 }
429
430 llvm::Value *Size = Builder.getInt(ArrayType->getSize());
431 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
432 if (Field->getType()->isPointerType() &&
433 Ctx.hasSameType(Field->getType()->getPointeeType(),
434 ArrayType->getElementType())) {
435 // End pointer.
436 llvm::Value *IdxEnd[] = { Zero, Size };
437 llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP(
438 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxEnd, "arrayend");
439 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
440 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
441 // Length.
442 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
443 } else {
444 CGF.ErrorUnsupported(E, "weird std::initializer_list");
445 return;
446 }
447 }
448
449 /// Determine if E is a trivial array filler, that is, one that is
450 /// equivalent to zero-initialization.
isTrivialFiller(Expr * E)451 static bool isTrivialFiller(Expr *E) {
452 if (!E)
453 return true;
454
455 if (isa<ImplicitValueInitExpr>(E))
456 return true;
457
458 if (auto *ILE = dyn_cast<InitListExpr>(E)) {
459 if (ILE->getNumInits())
460 return false;
461 return isTrivialFiller(ILE->getArrayFiller());
462 }
463
464 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
465 return Cons->getConstructor()->isDefaultConstructor() &&
466 Cons->getConstructor()->isTrivial();
467
468 // FIXME: Are there other cases where we can avoid emitting an initializer?
469 return false;
470 }
471
472 /// Emit initialization of an array from an initializer list.
EmitArrayInit(Address DestPtr,llvm::ArrayType * AType,QualType ArrayQTy,InitListExpr * E)473 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
474 QualType ArrayQTy, InitListExpr *E) {
475 uint64_t NumInitElements = E->getNumInits();
476
477 uint64_t NumArrayElements = AType->getNumElements();
478 assert(NumInitElements <= NumArrayElements);
479
480 QualType elementType =
481 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
482
483 // DestPtr is an array*. Construct an elementType* by drilling
484 // down a level.
485 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
486 llvm::Value *indices[] = { zero, zero };
487 llvm::Value *begin = Builder.CreateInBoundsGEP(
488 DestPtr.getElementType(), DestPtr.getPointer(), indices,
489 "arrayinit.begin");
490
491 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
492 CharUnits elementAlign =
493 DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
494 llvm::Type *llvmElementType = begin->getType()->getPointerElementType();
495
496 // Consider initializing the array by copying from a global. For this to be
497 // more efficient than per-element initialization, the size of the elements
498 // with explicit initializers should be large enough.
499 if (NumInitElements * elementSize.getQuantity() > 16 &&
500 elementType.isTriviallyCopyableType(CGF.getContext())) {
501 CodeGen::CodeGenModule &CGM = CGF.CGM;
502 ConstantEmitter Emitter(CGF);
503 LangAS AS = ArrayQTy.getAddressSpace();
504 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
505 auto GV = new llvm::GlobalVariable(
506 CGM.getModule(), C->getType(),
507 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
508 llvm::GlobalValue::PrivateLinkage, C, "constinit",
509 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
510 CGM.getContext().getTargetAddressSpace(AS));
511 Emitter.finalize(GV);
512 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
513 GV->setAlignment(Align.getAsAlign());
514 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
515 return;
516 }
517 }
518
519 // Exception safety requires us to destroy all the
520 // already-constructed members if an initializer throws.
521 // For that, we'll need an EH cleanup.
522 QualType::DestructionKind dtorKind = elementType.isDestructedType();
523 Address endOfInit = Address::invalid();
524 EHScopeStack::stable_iterator cleanup;
525 llvm::Instruction *cleanupDominator = nullptr;
526 if (CGF.needsEHCleanup(dtorKind)) {
527 // In principle we could tell the cleanup where we are more
528 // directly, but the control flow can get so varied here that it
529 // would actually be quite complex. Therefore we go through an
530 // alloca.
531 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
532 "arrayinit.endOfInit");
533 cleanupDominator = Builder.CreateStore(begin, endOfInit);
534 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
535 elementAlign,
536 CGF.getDestroyer(dtorKind));
537 cleanup = CGF.EHStack.stable_begin();
538
539 // Otherwise, remember that we didn't need a cleanup.
540 } else {
541 dtorKind = QualType::DK_none;
542 }
543
544 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
545
546 // The 'current element to initialize'. The invariants on this
547 // variable are complicated. Essentially, after each iteration of
548 // the loop, it points to the last initialized element, except
549 // that it points to the beginning of the array before any
550 // elements have been initialized.
551 llvm::Value *element = begin;
552
553 // Emit the explicit initializers.
554 for (uint64_t i = 0; i != NumInitElements; ++i) {
555 // Advance to the next element.
556 if (i > 0) {
557 element = Builder.CreateInBoundsGEP(
558 llvmElementType, element, one, "arrayinit.element");
559
560 // Tell the cleanup that it needs to destroy up to this
561 // element. TODO: some of these stores can be trivially
562 // observed to be unnecessary.
563 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
564 }
565
566 LValue elementLV =
567 CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
568 EmitInitializationToLValue(E->getInit(i), elementLV);
569 }
570
571 // Check whether there's a non-trivial array-fill expression.
572 Expr *filler = E->getArrayFiller();
573 bool hasTrivialFiller = isTrivialFiller(filler);
574
575 // Any remaining elements need to be zero-initialized, possibly
576 // using the filler expression. We can skip this if the we're
577 // emitting to zeroed memory.
578 if (NumInitElements != NumArrayElements &&
579 !(Dest.isZeroed() && hasTrivialFiller &&
580 CGF.getTypes().isZeroInitializable(elementType))) {
581
582 // Use an actual loop. This is basically
583 // do { *array++ = filler; } while (array != end);
584
585 // Advance to the start of the rest of the array.
586 if (NumInitElements) {
587 element = Builder.CreateInBoundsGEP(
588 llvmElementType, element, one, "arrayinit.start");
589 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
590 }
591
592 // Compute the end of the array.
593 llvm::Value *end = Builder.CreateInBoundsGEP(
594 llvmElementType, begin,
595 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end");
596
597 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
598 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
599
600 // Jump into the body.
601 CGF.EmitBlock(bodyBB);
602 llvm::PHINode *currentElement =
603 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
604 currentElement->addIncoming(element, entryBB);
605
606 // Emit the actual filler expression.
607 {
608 // C++1z [class.temporary]p5:
609 // when a default constructor is called to initialize an element of
610 // an array with no corresponding initializer [...] the destruction of
611 // every temporary created in a default argument is sequenced before
612 // the construction of the next array element, if any
613 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
614 LValue elementLV =
615 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
616 if (filler)
617 EmitInitializationToLValue(filler, elementLV);
618 else
619 EmitNullInitializationToLValue(elementLV);
620 }
621
622 // Move on to the next element.
623 llvm::Value *nextElement = Builder.CreateInBoundsGEP(
624 llvmElementType, currentElement, one, "arrayinit.next");
625
626 // Tell the EH cleanup that we finished with the last element.
627 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
628
629 // Leave the loop if we're done.
630 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
631 "arrayinit.done");
632 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
633 Builder.CreateCondBr(done, endBB, bodyBB);
634 currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
635
636 CGF.EmitBlock(endBB);
637 }
638
639 // Leave the partial-array cleanup if we entered one.
640 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
641 }
642
643 //===----------------------------------------------------------------------===//
644 // Visitor Methods
645 //===----------------------------------------------------------------------===//
646
VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)647 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
648 Visit(E->getSubExpr());
649 }
650
VisitOpaqueValueExpr(OpaqueValueExpr * e)651 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
652 // If this is a unique OVE, just visit its source expression.
653 if (e->isUnique())
654 Visit(e->getSourceExpr());
655 else
656 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
657 }
658
659 void
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)660 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
661 if (Dest.isPotentiallyAliased() &&
662 E->getType().isPODType(CGF.getContext())) {
663 // For a POD type, just emit a load of the lvalue + a copy, because our
664 // compound literal might alias the destination.
665 EmitAggLoadOfLValue(E);
666 return;
667 }
668
669 AggValueSlot Slot = EnsureSlot(E->getType());
670
671 // Block-scope compound literals are destroyed at the end of the enclosing
672 // scope in C.
673 bool Destruct =
674 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
675 if (Destruct)
676 Slot.setExternallyDestructed();
677
678 CGF.EmitAggExpr(E->getInitializer(), Slot);
679
680 if (Destruct)
681 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
682 CGF.pushLifetimeExtendedDestroy(
683 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
684 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
685 }
686
687 /// Attempt to look through various unimportant expressions to find a
688 /// cast of the given kind.
findPeephole(Expr * op,CastKind kind,const ASTContext & ctx)689 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
690 op = op->IgnoreParenNoopCasts(ctx);
691 if (auto castE = dyn_cast<CastExpr>(op)) {
692 if (castE->getCastKind() == kind)
693 return castE->getSubExpr();
694 }
695 return nullptr;
696 }
697
VisitCastExpr(CastExpr * E)698 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
699 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
700 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
701 switch (E->getCastKind()) {
702 case CK_Dynamic: {
703 // FIXME: Can this actually happen? We have no test coverage for it.
704 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
705 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
706 CodeGenFunction::TCK_Load);
707 // FIXME: Do we also need to handle property references here?
708 if (LV.isSimple())
709 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
710 else
711 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
712
713 if (!Dest.isIgnored())
714 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
715 break;
716 }
717
718 case CK_ToUnion: {
719 // Evaluate even if the destination is ignored.
720 if (Dest.isIgnored()) {
721 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
722 /*ignoreResult=*/true);
723 break;
724 }
725
726 // GCC union extension
727 QualType Ty = E->getSubExpr()->getType();
728 Address CastPtr =
729 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
730 EmitInitializationToLValue(E->getSubExpr(),
731 CGF.MakeAddrLValue(CastPtr, Ty));
732 break;
733 }
734
735 case CK_LValueToRValueBitCast: {
736 if (Dest.isIgnored()) {
737 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
738 /*ignoreResult=*/true);
739 break;
740 }
741
742 LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
743 Address SourceAddress =
744 Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
745 Address DestAddress =
746 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
747 llvm::Value *SizeVal = llvm::ConstantInt::get(
748 CGF.SizeTy,
749 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
750 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
751 break;
752 }
753
754 case CK_DerivedToBase:
755 case CK_BaseToDerived:
756 case CK_UncheckedDerivedToBase: {
757 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
758 "should have been unpacked before we got here");
759 }
760
761 case CK_NonAtomicToAtomic:
762 case CK_AtomicToNonAtomic: {
763 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
764
765 // Determine the atomic and value types.
766 QualType atomicType = E->getSubExpr()->getType();
767 QualType valueType = E->getType();
768 if (isToAtomic) std::swap(atomicType, valueType);
769
770 assert(atomicType->isAtomicType());
771 assert(CGF.getContext().hasSameUnqualifiedType(valueType,
772 atomicType->castAs<AtomicType>()->getValueType()));
773
774 // Just recurse normally if we're ignoring the result or the
775 // atomic type doesn't change representation.
776 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
777 return Visit(E->getSubExpr());
778 }
779
780 CastKind peepholeTarget =
781 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
782
783 // These two cases are reverses of each other; try to peephole them.
784 if (Expr *op =
785 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
786 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
787 E->getType()) &&
788 "peephole significantly changed types?");
789 return Visit(op);
790 }
791
792 // If we're converting an r-value of non-atomic type to an r-value
793 // of atomic type, just emit directly into the relevant sub-object.
794 if (isToAtomic) {
795 AggValueSlot valueDest = Dest;
796 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
797 // Zero-initialize. (Strictly speaking, we only need to initialize
798 // the padding at the end, but this is simpler.)
799 if (!Dest.isZeroed())
800 CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
801
802 // Build a GEP to refer to the subobject.
803 Address valueAddr =
804 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
805 valueDest = AggValueSlot::forAddr(valueAddr,
806 valueDest.getQualifiers(),
807 valueDest.isExternallyDestructed(),
808 valueDest.requiresGCollection(),
809 valueDest.isPotentiallyAliased(),
810 AggValueSlot::DoesNotOverlap,
811 AggValueSlot::IsZeroed);
812 }
813
814 CGF.EmitAggExpr(E->getSubExpr(), valueDest);
815 return;
816 }
817
818 // Otherwise, we're converting an atomic type to a non-atomic type.
819 // Make an atomic temporary, emit into that, and then copy the value out.
820 AggValueSlot atomicSlot =
821 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
822 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
823
824 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
825 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
826 return EmitFinalDestCopy(valueType, rvalue);
827 }
828 case CK_AddressSpaceConversion:
829 return Visit(E->getSubExpr());
830
831 case CK_LValueToRValue:
832 // If we're loading from a volatile type, force the destination
833 // into existence.
834 if (E->getSubExpr()->getType().isVolatileQualified()) {
835 bool Destruct =
836 !Dest.isExternallyDestructed() &&
837 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
838 if (Destruct)
839 Dest.setExternallyDestructed();
840 EnsureDest(E->getType());
841 Visit(E->getSubExpr());
842
843 if (Destruct)
844 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
845 E->getType());
846
847 return;
848 }
849
850 LLVM_FALLTHROUGH;
851
852
853 case CK_NoOp:
854 case CK_UserDefinedConversion:
855 case CK_ConstructorConversion:
856 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
857 E->getType()) &&
858 "Implicit cast types must be compatible");
859 Visit(E->getSubExpr());
860 break;
861
862 case CK_LValueBitCast:
863 llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
864
865 case CK_Dependent:
866 case CK_BitCast:
867 case CK_ArrayToPointerDecay:
868 case CK_FunctionToPointerDecay:
869 case CK_NullToPointer:
870 case CK_NullToMemberPointer:
871 case CK_BaseToDerivedMemberPointer:
872 case CK_DerivedToBaseMemberPointer:
873 case CK_MemberPointerToBoolean:
874 case CK_ReinterpretMemberPointer:
875 case CK_IntegralToPointer:
876 case CK_PointerToIntegral:
877 case CK_PointerToBoolean:
878 case CK_ToVoid:
879 case CK_VectorSplat:
880 case CK_IntegralCast:
881 case CK_BooleanToSignedIntegral:
882 case CK_IntegralToBoolean:
883 case CK_IntegralToFloating:
884 case CK_FloatingToIntegral:
885 case CK_FloatingToBoolean:
886 case CK_FloatingCast:
887 case CK_CPointerToObjCPointerCast:
888 case CK_BlockPointerToObjCPointerCast:
889 case CK_AnyPointerToBlockPointerCast:
890 case CK_ObjCObjectLValueCast:
891 case CK_FloatingRealToComplex:
892 case CK_FloatingComplexToReal:
893 case CK_FloatingComplexToBoolean:
894 case CK_FloatingComplexCast:
895 case CK_FloatingComplexToIntegralComplex:
896 case CK_IntegralRealToComplex:
897 case CK_IntegralComplexToReal:
898 case CK_IntegralComplexToBoolean:
899 case CK_IntegralComplexCast:
900 case CK_IntegralComplexToFloatingComplex:
901 case CK_ARCProduceObject:
902 case CK_ARCConsumeObject:
903 case CK_ARCReclaimReturnedObject:
904 case CK_ARCExtendBlockObject:
905 case CK_CopyAndAutoreleaseBlockObject:
906 case CK_BuiltinFnToFnPtr:
907 case CK_ZeroToOCLOpaqueType:
908 case CK_MatrixCast:
909
910 case CK_IntToOCLSampler:
911 case CK_FloatingToFixedPoint:
912 case CK_FixedPointToFloating:
913 case CK_FixedPointCast:
914 case CK_FixedPointToBoolean:
915 case CK_FixedPointToIntegral:
916 case CK_IntegralToFixedPoint:
917 llvm_unreachable("cast kind invalid for aggregate types");
918 }
919 }
920
VisitCallExpr(const CallExpr * E)921 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
922 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
923 EmitAggLoadOfLValue(E);
924 return;
925 }
926
927 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
928 return CGF.EmitCallExpr(E, Slot);
929 });
930 }
931
VisitObjCMessageExpr(ObjCMessageExpr * E)932 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
933 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
934 return CGF.EmitObjCMessageExpr(E, Slot);
935 });
936 }
937
VisitBinComma(const BinaryOperator * E)938 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
939 CGF.EmitIgnoredExpr(E->getLHS());
940 Visit(E->getRHS());
941 }
942
VisitStmtExpr(const StmtExpr * E)943 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
944 CodeGenFunction::StmtExprEvaluation eval(CGF);
945 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
946 }
947
948 enum CompareKind {
949 CK_Less,
950 CK_Greater,
951 CK_Equal,
952 };
953
EmitCompare(CGBuilderTy & Builder,CodeGenFunction & CGF,const BinaryOperator * E,llvm::Value * LHS,llvm::Value * RHS,CompareKind Kind,const char * NameSuffix="")954 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
955 const BinaryOperator *E, llvm::Value *LHS,
956 llvm::Value *RHS, CompareKind Kind,
957 const char *NameSuffix = "") {
958 QualType ArgTy = E->getLHS()->getType();
959 if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
960 ArgTy = CT->getElementType();
961
962 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
963 assert(Kind == CK_Equal &&
964 "member pointers may only be compared for equality");
965 return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
966 CGF, LHS, RHS, MPT, /*IsInequality*/ false);
967 }
968
969 // Compute the comparison instructions for the specified comparison kind.
970 struct CmpInstInfo {
971 const char *Name;
972 llvm::CmpInst::Predicate FCmp;
973 llvm::CmpInst::Predicate SCmp;
974 llvm::CmpInst::Predicate UCmp;
975 };
976 CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
977 using FI = llvm::FCmpInst;
978 using II = llvm::ICmpInst;
979 switch (Kind) {
980 case CK_Less:
981 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
982 case CK_Greater:
983 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
984 case CK_Equal:
985 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
986 }
987 llvm_unreachable("Unrecognised CompareKind enum");
988 }();
989
990 if (ArgTy->hasFloatingRepresentation())
991 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
992 llvm::Twine(InstInfo.Name) + NameSuffix);
993 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
994 auto Inst =
995 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
996 return Builder.CreateICmp(Inst, LHS, RHS,
997 llvm::Twine(InstInfo.Name) + NameSuffix);
998 }
999
1000 llvm_unreachable("unsupported aggregate binary expression should have "
1001 "already been handled");
1002 }
1003
VisitBinCmp(const BinaryOperator * E)1004 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1005 using llvm::BasicBlock;
1006 using llvm::PHINode;
1007 using llvm::Value;
1008 assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1009 E->getRHS()->getType()));
1010 const ComparisonCategoryInfo &CmpInfo =
1011 CGF.getContext().CompCategories.getInfoForType(E->getType());
1012 assert(CmpInfo.Record->isTriviallyCopyable() &&
1013 "cannot copy non-trivially copyable aggregate");
1014
1015 QualType ArgTy = E->getLHS()->getType();
1016
1017 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1018 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1019 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1020 return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1021 }
1022 bool IsComplex = ArgTy->isAnyComplexType();
1023
1024 // Evaluate the operands to the expression and extract their values.
1025 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1026 RValue RV = CGF.EmitAnyExpr(E);
1027 if (RV.isScalar())
1028 return {RV.getScalarVal(), nullptr};
1029 if (RV.isAggregate())
1030 return {RV.getAggregatePointer(), nullptr};
1031 assert(RV.isComplex());
1032 return RV.getComplexVal();
1033 };
1034 auto LHSValues = EmitOperand(E->getLHS()),
1035 RHSValues = EmitOperand(E->getRHS());
1036
1037 auto EmitCmp = [&](CompareKind K) {
1038 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1039 K, IsComplex ? ".r" : "");
1040 if (!IsComplex)
1041 return Cmp;
1042 assert(K == CompareKind::CK_Equal);
1043 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1044 RHSValues.second, K, ".i");
1045 return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1046 };
1047 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1048 return Builder.getInt(VInfo->getIntValue());
1049 };
1050
1051 Value *Select;
1052 if (ArgTy->isNullPtrType()) {
1053 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1054 } else if (!CmpInfo.isPartial()) {
1055 Value *SelectOne =
1056 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1057 EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1058 Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1059 EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1060 SelectOne, "sel.eq");
1061 } else {
1062 Value *SelectEq = Builder.CreateSelect(
1063 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1064 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1065 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1066 EmitCmpRes(CmpInfo.getGreater()),
1067 SelectEq, "sel.gt");
1068 Select = Builder.CreateSelect(
1069 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1070 }
1071 // Create the return value in the destination slot.
1072 EnsureDest(E->getType());
1073 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1074
1075 // Emit the address of the first (and only) field in the comparison category
1076 // type, and initialize it from the constant integer value selected above.
1077 LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1078 DestLV, *CmpInfo.Record->field_begin());
1079 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1080
1081 // All done! The result is in the Dest slot.
1082 }
1083
VisitBinaryOperator(const BinaryOperator * E)1084 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1085 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1086 VisitPointerToDataMemberBinaryOperator(E);
1087 else
1088 CGF.ErrorUnsupported(E, "aggregate binary expression");
1089 }
1090
VisitPointerToDataMemberBinaryOperator(const BinaryOperator * E)1091 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1092 const BinaryOperator *E) {
1093 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1094 EmitFinalDestCopy(E->getType(), LV);
1095 }
1096
1097 /// Is the value of the given expression possibly a reference to or
1098 /// into a __block variable?
isBlockVarRef(const Expr * E)1099 static bool isBlockVarRef(const Expr *E) {
1100 // Make sure we look through parens.
1101 E = E->IgnoreParens();
1102
1103 // Check for a direct reference to a __block variable.
1104 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1105 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1106 return (var && var->hasAttr<BlocksAttr>());
1107 }
1108
1109 // More complicated stuff.
1110
1111 // Binary operators.
1112 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1113 // For an assignment or pointer-to-member operation, just care
1114 // about the LHS.
1115 if (op->isAssignmentOp() || op->isPtrMemOp())
1116 return isBlockVarRef(op->getLHS());
1117
1118 // For a comma, just care about the RHS.
1119 if (op->getOpcode() == BO_Comma)
1120 return isBlockVarRef(op->getRHS());
1121
1122 // FIXME: pointer arithmetic?
1123 return false;
1124
1125 // Check both sides of a conditional operator.
1126 } else if (const AbstractConditionalOperator *op
1127 = dyn_cast<AbstractConditionalOperator>(E)) {
1128 return isBlockVarRef(op->getTrueExpr())
1129 || isBlockVarRef(op->getFalseExpr());
1130
1131 // OVEs are required to support BinaryConditionalOperators.
1132 } else if (const OpaqueValueExpr *op
1133 = dyn_cast<OpaqueValueExpr>(E)) {
1134 if (const Expr *src = op->getSourceExpr())
1135 return isBlockVarRef(src);
1136
1137 // Casts are necessary to get things like (*(int*)&var) = foo().
1138 // We don't really care about the kind of cast here, except
1139 // we don't want to look through l2r casts, because it's okay
1140 // to get the *value* in a __block variable.
1141 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1142 if (cast->getCastKind() == CK_LValueToRValue)
1143 return false;
1144 return isBlockVarRef(cast->getSubExpr());
1145
1146 // Handle unary operators. Again, just aggressively look through
1147 // it, ignoring the operation.
1148 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1149 return isBlockVarRef(uop->getSubExpr());
1150
1151 // Look into the base of a field access.
1152 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1153 return isBlockVarRef(mem->getBase());
1154
1155 // Look into the base of a subscript.
1156 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1157 return isBlockVarRef(sub->getBase());
1158 }
1159
1160 return false;
1161 }
1162
VisitBinAssign(const BinaryOperator * E)1163 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1164 // For an assignment to work, the value on the right has
1165 // to be compatible with the value on the left.
1166 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1167 E->getRHS()->getType())
1168 && "Invalid assignment");
1169
1170 // If the LHS might be a __block variable, and the RHS can
1171 // potentially cause a block copy, we need to evaluate the RHS first
1172 // so that the assignment goes the right place.
1173 // This is pretty semantically fragile.
1174 if (isBlockVarRef(E->getLHS()) &&
1175 E->getRHS()->HasSideEffects(CGF.getContext())) {
1176 // Ensure that we have a destination, and evaluate the RHS into that.
1177 EnsureDest(E->getRHS()->getType());
1178 Visit(E->getRHS());
1179
1180 // Now emit the LHS and copy into it.
1181 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1182
1183 // That copy is an atomic copy if the LHS is atomic.
1184 if (LHS.getType()->isAtomicType() ||
1185 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1186 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1187 return;
1188 }
1189
1190 EmitCopy(E->getLHS()->getType(),
1191 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1192 needsGC(E->getLHS()->getType()),
1193 AggValueSlot::IsAliased,
1194 AggValueSlot::MayOverlap),
1195 Dest);
1196 return;
1197 }
1198
1199 LValue LHS = CGF.EmitLValue(E->getLHS());
1200
1201 // If we have an atomic type, evaluate into the destination and then
1202 // do an atomic copy.
1203 if (LHS.getType()->isAtomicType() ||
1204 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1205 EnsureDest(E->getRHS()->getType());
1206 Visit(E->getRHS());
1207 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1208 return;
1209 }
1210
1211 // Codegen the RHS so that it stores directly into the LHS.
1212 AggValueSlot LHSSlot = AggValueSlot::forLValue(
1213 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1214 AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1215 // A non-volatile aggregate destination might have volatile member.
1216 if (!LHSSlot.isVolatile() &&
1217 CGF.hasVolatileMember(E->getLHS()->getType()))
1218 LHSSlot.setVolatile(true);
1219
1220 CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1221
1222 // Copy into the destination if the assignment isn't ignored.
1223 EmitFinalDestCopy(E->getType(), LHS);
1224
1225 if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1226 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1227 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1228 E->getType());
1229 }
1230
1231 void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)1232 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1233 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1234 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1235 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1236
1237 // Bind the common expression if necessary.
1238 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1239
1240 CodeGenFunction::ConditionalEvaluation eval(CGF);
1241 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1242 CGF.getProfileCount(E));
1243
1244 // Save whether the destination's lifetime is externally managed.
1245 bool isExternallyDestructed = Dest.isExternallyDestructed();
1246 bool destructNonTrivialCStruct =
1247 !isExternallyDestructed &&
1248 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1249 isExternallyDestructed |= destructNonTrivialCStruct;
1250 Dest.setExternallyDestructed(isExternallyDestructed);
1251
1252 eval.begin(CGF);
1253 CGF.EmitBlock(LHSBlock);
1254 CGF.incrementProfileCounter(E);
1255 Visit(E->getTrueExpr());
1256 eval.end(CGF);
1257
1258 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1259 CGF.Builder.CreateBr(ContBlock);
1260
1261 // If the result of an agg expression is unused, then the emission
1262 // of the LHS might need to create a destination slot. That's fine
1263 // with us, and we can safely emit the RHS into the same slot, but
1264 // we shouldn't claim that it's already being destructed.
1265 Dest.setExternallyDestructed(isExternallyDestructed);
1266
1267 eval.begin(CGF);
1268 CGF.EmitBlock(RHSBlock);
1269 Visit(E->getFalseExpr());
1270 eval.end(CGF);
1271
1272 if (destructNonTrivialCStruct)
1273 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1274 E->getType());
1275
1276 CGF.EmitBlock(ContBlock);
1277 }
1278
VisitChooseExpr(const ChooseExpr * CE)1279 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1280 Visit(CE->getChosenSubExpr());
1281 }
1282
VisitVAArgExpr(VAArgExpr * VE)1283 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1284 Address ArgValue = Address::invalid();
1285 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1286
1287 // If EmitVAArg fails, emit an error.
1288 if (!ArgPtr.isValid()) {
1289 CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1290 return;
1291 }
1292
1293 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1294 }
1295
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)1296 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1297 // Ensure that we have a slot, but if we already do, remember
1298 // whether it was externally destructed.
1299 bool wasExternallyDestructed = Dest.isExternallyDestructed();
1300 EnsureDest(E->getType());
1301
1302 // We're going to push a destructor if there isn't already one.
1303 Dest.setExternallyDestructed();
1304
1305 Visit(E->getSubExpr());
1306
1307 // Push that destructor we promised.
1308 if (!wasExternallyDestructed)
1309 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1310 }
1311
1312 void
VisitCXXConstructExpr(const CXXConstructExpr * E)1313 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1314 AggValueSlot Slot = EnsureSlot(E->getType());
1315 CGF.EmitCXXConstructExpr(E, Slot);
1316 }
1317
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)1318 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1319 const CXXInheritedCtorInitExpr *E) {
1320 AggValueSlot Slot = EnsureSlot(E->getType());
1321 CGF.EmitInheritedCXXConstructorCall(
1322 E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1323 E->inheritedFromVBase(), E);
1324 }
1325
1326 void
VisitLambdaExpr(LambdaExpr * E)1327 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1328 AggValueSlot Slot = EnsureSlot(E->getType());
1329 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1330
1331 // We'll need to enter cleanup scopes in case any of the element
1332 // initializers throws an exception.
1333 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1334 llvm::Instruction *CleanupDominator = nullptr;
1335
1336 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1337 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1338 e = E->capture_init_end();
1339 i != e; ++i, ++CurField) {
1340 // Emit initialization
1341 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1342 if (CurField->hasCapturedVLAType()) {
1343 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1344 continue;
1345 }
1346
1347 EmitInitializationToLValue(*i, LV);
1348
1349 // Push a destructor if necessary.
1350 if (QualType::DestructionKind DtorKind =
1351 CurField->getType().isDestructedType()) {
1352 assert(LV.isSimple());
1353 if (CGF.needsEHCleanup(DtorKind)) {
1354 if (!CleanupDominator)
1355 CleanupDominator = CGF.Builder.CreateAlignedLoad(
1356 CGF.Int8Ty,
1357 llvm::Constant::getNullValue(CGF.Int8PtrTy),
1358 CharUnits::One()); // placeholder
1359
1360 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1361 CGF.getDestroyer(DtorKind), false);
1362 Cleanups.push_back(CGF.EHStack.stable_begin());
1363 }
1364 }
1365 }
1366
1367 // Deactivate all the partial cleanups in reverse order, which
1368 // generally means popping them.
1369 for (unsigned i = Cleanups.size(); i != 0; --i)
1370 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1371
1372 // Destroy the placeholder if we made one.
1373 if (CleanupDominator)
1374 CleanupDominator->eraseFromParent();
1375 }
1376
VisitExprWithCleanups(ExprWithCleanups * E)1377 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1378 CodeGenFunction::RunCleanupsScope cleanups(CGF);
1379 Visit(E->getSubExpr());
1380 }
1381
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)1382 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1383 QualType T = E->getType();
1384 AggValueSlot Slot = EnsureSlot(T);
1385 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1386 }
1387
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)1388 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1389 QualType T = E->getType();
1390 AggValueSlot Slot = EnsureSlot(T);
1391 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1392 }
1393
1394 /// Determine whether the given cast kind is known to always convert values
1395 /// with all zero bits in their value representation to values with all zero
1396 /// bits in their value representation.
castPreservesZero(const CastExpr * CE)1397 static bool castPreservesZero(const CastExpr *CE) {
1398 switch (CE->getCastKind()) {
1399 // No-ops.
1400 case CK_NoOp:
1401 case CK_UserDefinedConversion:
1402 case CK_ConstructorConversion:
1403 case CK_BitCast:
1404 case CK_ToUnion:
1405 case CK_ToVoid:
1406 // Conversions between (possibly-complex) integral, (possibly-complex)
1407 // floating-point, and bool.
1408 case CK_BooleanToSignedIntegral:
1409 case CK_FloatingCast:
1410 case CK_FloatingComplexCast:
1411 case CK_FloatingComplexToBoolean:
1412 case CK_FloatingComplexToIntegralComplex:
1413 case CK_FloatingComplexToReal:
1414 case CK_FloatingRealToComplex:
1415 case CK_FloatingToBoolean:
1416 case CK_FloatingToIntegral:
1417 case CK_IntegralCast:
1418 case CK_IntegralComplexCast:
1419 case CK_IntegralComplexToBoolean:
1420 case CK_IntegralComplexToFloatingComplex:
1421 case CK_IntegralComplexToReal:
1422 case CK_IntegralRealToComplex:
1423 case CK_IntegralToBoolean:
1424 case CK_IntegralToFloating:
1425 // Reinterpreting integers as pointers and vice versa.
1426 case CK_IntegralToPointer:
1427 case CK_PointerToIntegral:
1428 // Language extensions.
1429 case CK_VectorSplat:
1430 case CK_MatrixCast:
1431 case CK_NonAtomicToAtomic:
1432 case CK_AtomicToNonAtomic:
1433 return true;
1434
1435 case CK_BaseToDerivedMemberPointer:
1436 case CK_DerivedToBaseMemberPointer:
1437 case CK_MemberPointerToBoolean:
1438 case CK_NullToMemberPointer:
1439 case CK_ReinterpretMemberPointer:
1440 // FIXME: ABI-dependent.
1441 return false;
1442
1443 case CK_AnyPointerToBlockPointerCast:
1444 case CK_BlockPointerToObjCPointerCast:
1445 case CK_CPointerToObjCPointerCast:
1446 case CK_ObjCObjectLValueCast:
1447 case CK_IntToOCLSampler:
1448 case CK_ZeroToOCLOpaqueType:
1449 // FIXME: Check these.
1450 return false;
1451
1452 case CK_FixedPointCast:
1453 case CK_FixedPointToBoolean:
1454 case CK_FixedPointToFloating:
1455 case CK_FixedPointToIntegral:
1456 case CK_FloatingToFixedPoint:
1457 case CK_IntegralToFixedPoint:
1458 // FIXME: Do all fixed-point types represent zero as all 0 bits?
1459 return false;
1460
1461 case CK_AddressSpaceConversion:
1462 case CK_BaseToDerived:
1463 case CK_DerivedToBase:
1464 case CK_Dynamic:
1465 case CK_NullToPointer:
1466 case CK_PointerToBoolean:
1467 // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1468 // same representation in all involved address spaces.
1469 return false;
1470
1471 case CK_ARCConsumeObject:
1472 case CK_ARCExtendBlockObject:
1473 case CK_ARCProduceObject:
1474 case CK_ARCReclaimReturnedObject:
1475 case CK_CopyAndAutoreleaseBlockObject:
1476 case CK_ArrayToPointerDecay:
1477 case CK_FunctionToPointerDecay:
1478 case CK_BuiltinFnToFnPtr:
1479 case CK_Dependent:
1480 case CK_LValueBitCast:
1481 case CK_LValueToRValue:
1482 case CK_LValueToRValueBitCast:
1483 case CK_UncheckedDerivedToBase:
1484 return false;
1485 }
1486 llvm_unreachable("Unhandled clang::CastKind enum");
1487 }
1488
1489 /// isSimpleZero - If emitting this value will obviously just cause a store of
1490 /// zero to memory, return true. This can return false if uncertain, so it just
1491 /// handles simple cases.
isSimpleZero(const Expr * E,CodeGenFunction & CGF)1492 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1493 E = E->IgnoreParens();
1494 while (auto *CE = dyn_cast<CastExpr>(E)) {
1495 if (!castPreservesZero(CE))
1496 break;
1497 E = CE->getSubExpr()->IgnoreParens();
1498 }
1499
1500 // 0
1501 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1502 return IL->getValue() == 0;
1503 // +0.0
1504 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1505 return FL->getValue().isPosZero();
1506 // int()
1507 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1508 CGF.getTypes().isZeroInitializable(E->getType()))
1509 return true;
1510 // (int*)0 - Null pointer expressions.
1511 if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1512 return ICE->getCastKind() == CK_NullToPointer &&
1513 CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1514 !E->HasSideEffects(CGF.getContext());
1515 // '\0'
1516 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1517 return CL->getValue() == 0;
1518
1519 // Otherwise, hard case: conservatively return false.
1520 return false;
1521 }
1522
1523
1524 void
EmitInitializationToLValue(Expr * E,LValue LV)1525 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1526 QualType type = LV.getType();
1527 // FIXME: Ignore result?
1528 // FIXME: Are initializers affected by volatile?
1529 if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1530 // Storing "i32 0" to a zero'd memory location is a noop.
1531 return;
1532 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1533 return EmitNullInitializationToLValue(LV);
1534 } else if (isa<NoInitExpr>(E)) {
1535 // Do nothing.
1536 return;
1537 } else if (type->isReferenceType()) {
1538 RValue RV = CGF.EmitReferenceBindingToExpr(E);
1539 return CGF.EmitStoreThroughLValue(RV, LV);
1540 }
1541
1542 switch (CGF.getEvaluationKind(type)) {
1543 case TEK_Complex:
1544 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1545 return;
1546 case TEK_Aggregate:
1547 CGF.EmitAggExpr(
1548 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1549 AggValueSlot::DoesNotNeedGCBarriers,
1550 AggValueSlot::IsNotAliased,
1551 AggValueSlot::MayOverlap, Dest.isZeroed()));
1552 return;
1553 case TEK_Scalar:
1554 if (LV.isSimple()) {
1555 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1556 } else {
1557 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1558 }
1559 return;
1560 }
1561 llvm_unreachable("bad evaluation kind");
1562 }
1563
EmitNullInitializationToLValue(LValue lv)1564 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1565 QualType type = lv.getType();
1566
1567 // If the destination slot is already zeroed out before the aggregate is
1568 // copied into it, we don't have to emit any zeros here.
1569 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1570 return;
1571
1572 if (CGF.hasScalarEvaluationKind(type)) {
1573 // For non-aggregates, we can store the appropriate null constant.
1574 llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1575 // Note that the following is not equivalent to
1576 // EmitStoreThroughBitfieldLValue for ARC types.
1577 if (lv.isBitField()) {
1578 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1579 } else {
1580 assert(lv.isSimple());
1581 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1582 }
1583 } else {
1584 // There's a potential optimization opportunity in combining
1585 // memsets; that would be easy for arrays, but relatively
1586 // difficult for structures with the current code.
1587 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1588 }
1589 }
1590
VisitInitListExpr(InitListExpr * E)1591 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1592 #if 0
1593 // FIXME: Assess perf here? Figure out what cases are worth optimizing here
1594 // (Length of globals? Chunks of zeroed-out space?).
1595 //
1596 // If we can, prefer a copy from a global; this is a lot less code for long
1597 // globals, and it's easier for the current optimizers to analyze.
1598 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1599 llvm::GlobalVariable* GV =
1600 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1601 llvm::GlobalValue::InternalLinkage, C, "");
1602 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1603 return;
1604 }
1605 #endif
1606 if (E->hadArrayRangeDesignator())
1607 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1608
1609 if (E->isTransparent())
1610 return Visit(E->getInit(0));
1611
1612 AggValueSlot Dest = EnsureSlot(E->getType());
1613
1614 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1615
1616 // Handle initialization of an array.
1617 if (E->getType()->isArrayType()) {
1618 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1619 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1620 return;
1621 }
1622
1623 assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1624
1625 // Do struct initialization; this code just sets each individual member
1626 // to the approprate value. This makes bitfield support automatic;
1627 // the disadvantage is that the generated code is more difficult for
1628 // the optimizer, especially with bitfields.
1629 unsigned NumInitElements = E->getNumInits();
1630 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1631
1632 // We'll need to enter cleanup scopes in case any of the element
1633 // initializers throws an exception.
1634 SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1635 llvm::Instruction *cleanupDominator = nullptr;
1636 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1637 cleanups.push_back(cleanup);
1638 if (!cleanupDominator) // create placeholder once needed
1639 cleanupDominator = CGF.Builder.CreateAlignedLoad(
1640 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1641 CharUnits::One());
1642 };
1643
1644 unsigned curInitIndex = 0;
1645
1646 // Emit initialization of base classes.
1647 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1648 assert(E->getNumInits() >= CXXRD->getNumBases() &&
1649 "missing initializer for base class");
1650 for (auto &Base : CXXRD->bases()) {
1651 assert(!Base.isVirtual() && "should not see vbases here");
1652 auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1653 Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1654 Dest.getAddress(), CXXRD, BaseRD,
1655 /*isBaseVirtual*/ false);
1656 AggValueSlot AggSlot = AggValueSlot::forAddr(
1657 V, Qualifiers(),
1658 AggValueSlot::IsDestructed,
1659 AggValueSlot::DoesNotNeedGCBarriers,
1660 AggValueSlot::IsNotAliased,
1661 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1662 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1663
1664 if (QualType::DestructionKind dtorKind =
1665 Base.getType().isDestructedType()) {
1666 CGF.pushDestroy(dtorKind, V, Base.getType());
1667 addCleanup(CGF.EHStack.stable_begin());
1668 }
1669 }
1670 }
1671
1672 // Prepare a 'this' for CXXDefaultInitExprs.
1673 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1674
1675 if (record->isUnion()) {
1676 // Only initialize one field of a union. The field itself is
1677 // specified by the initializer list.
1678 if (!E->getInitializedFieldInUnion()) {
1679 // Empty union; we have nothing to do.
1680
1681 #ifndef NDEBUG
1682 // Make sure that it's really an empty and not a failure of
1683 // semantic analysis.
1684 for (const auto *Field : record->fields())
1685 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1686 #endif
1687 return;
1688 }
1689
1690 // FIXME: volatility
1691 FieldDecl *Field = E->getInitializedFieldInUnion();
1692
1693 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1694 if (NumInitElements) {
1695 // Store the initializer into the field
1696 EmitInitializationToLValue(E->getInit(0), FieldLoc);
1697 } else {
1698 // Default-initialize to null.
1699 EmitNullInitializationToLValue(FieldLoc);
1700 }
1701
1702 return;
1703 }
1704
1705 // Here we iterate over the fields; this makes it simpler to both
1706 // default-initialize fields and skip over unnamed fields.
1707 for (const auto *field : record->fields()) {
1708 // We're done once we hit the flexible array member.
1709 if (field->getType()->isIncompleteArrayType())
1710 break;
1711
1712 // Always skip anonymous bitfields.
1713 if (field->isUnnamedBitfield())
1714 continue;
1715
1716 // We're done if we reach the end of the explicit initializers, we
1717 // have a zeroed object, and the rest of the fields are
1718 // zero-initializable.
1719 if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1720 CGF.getTypes().isZeroInitializable(E->getType()))
1721 break;
1722
1723
1724 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1725 // We never generate write-barries for initialized fields.
1726 LV.setNonGC(true);
1727
1728 if (curInitIndex < NumInitElements) {
1729 // Store the initializer into the field.
1730 EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1731 } else {
1732 // We're out of initializers; default-initialize to null
1733 EmitNullInitializationToLValue(LV);
1734 }
1735
1736 // Push a destructor if necessary.
1737 // FIXME: if we have an array of structures, all explicitly
1738 // initialized, we can end up pushing a linear number of cleanups.
1739 bool pushedCleanup = false;
1740 if (QualType::DestructionKind dtorKind
1741 = field->getType().isDestructedType()) {
1742 assert(LV.isSimple());
1743 if (CGF.needsEHCleanup(dtorKind)) {
1744 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1745 CGF.getDestroyer(dtorKind), false);
1746 addCleanup(CGF.EHStack.stable_begin());
1747 pushedCleanup = true;
1748 }
1749 }
1750
1751 // If the GEP didn't get used because of a dead zero init or something
1752 // else, clean it up for -O0 builds and general tidiness.
1753 if (!pushedCleanup && LV.isSimple())
1754 if (llvm::GetElementPtrInst *GEP =
1755 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1756 if (GEP->use_empty())
1757 GEP->eraseFromParent();
1758 }
1759
1760 // Deactivate all the partial cleanups in reverse order, which
1761 // generally means popping them.
1762 assert((cleanupDominator || cleanups.empty()) &&
1763 "Missing cleanupDominator before deactivating cleanup blocks");
1764 for (unsigned i = cleanups.size(); i != 0; --i)
1765 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1766
1767 // Destroy the placeholder if we made one.
1768 if (cleanupDominator)
1769 cleanupDominator->eraseFromParent();
1770 }
1771
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E,llvm::Value * outerBegin)1772 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1773 llvm::Value *outerBegin) {
1774 // Emit the common subexpression.
1775 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1776
1777 Address destPtr = EnsureSlot(E->getType()).getAddress();
1778 uint64_t numElements = E->getArraySize().getZExtValue();
1779
1780 if (!numElements)
1781 return;
1782
1783 // destPtr is an array*. Construct an elementType* by drilling down a level.
1784 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1785 llvm::Value *indices[] = {zero, zero};
1786 llvm::Value *begin = Builder.CreateInBoundsGEP(
1787 destPtr.getElementType(), destPtr.getPointer(), indices,
1788 "arrayinit.begin");
1789
1790 // Prepare to special-case multidimensional array initialization: we avoid
1791 // emitting multiple destructor loops in that case.
1792 if (!outerBegin)
1793 outerBegin = begin;
1794 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1795
1796 QualType elementType =
1797 CGF.getContext().getAsArrayType(E->getType())->getElementType();
1798 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1799 CharUnits elementAlign =
1800 destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1801
1802 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1803 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1804
1805 // Jump into the body.
1806 CGF.EmitBlock(bodyBB);
1807 llvm::PHINode *index =
1808 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1809 index->addIncoming(zero, entryBB);
1810 llvm::Value *element = Builder.CreateInBoundsGEP(
1811 begin->getType()->getPointerElementType(), begin, index);
1812
1813 // Prepare for a cleanup.
1814 QualType::DestructionKind dtorKind = elementType.isDestructedType();
1815 EHScopeStack::stable_iterator cleanup;
1816 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1817 if (outerBegin->getType() != element->getType())
1818 outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1819 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1820 elementAlign,
1821 CGF.getDestroyer(dtorKind));
1822 cleanup = CGF.EHStack.stable_begin();
1823 } else {
1824 dtorKind = QualType::DK_none;
1825 }
1826
1827 // Emit the actual filler expression.
1828 {
1829 // Temporaries created in an array initialization loop are destroyed
1830 // at the end of each iteration.
1831 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1832 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1833 LValue elementLV =
1834 CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1835
1836 if (InnerLoop) {
1837 // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1838 auto elementSlot = AggValueSlot::forLValue(
1839 elementLV, CGF, AggValueSlot::IsDestructed,
1840 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1841 AggValueSlot::DoesNotOverlap);
1842 AggExprEmitter(CGF, elementSlot, false)
1843 .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1844 } else
1845 EmitInitializationToLValue(E->getSubExpr(), elementLV);
1846 }
1847
1848 // Move on to the next element.
1849 llvm::Value *nextIndex = Builder.CreateNUWAdd(
1850 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1851 index->addIncoming(nextIndex, Builder.GetInsertBlock());
1852
1853 // Leave the loop if we're done.
1854 llvm::Value *done = Builder.CreateICmpEQ(
1855 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1856 "arrayinit.done");
1857 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1858 Builder.CreateCondBr(done, endBB, bodyBB);
1859
1860 CGF.EmitBlock(endBB);
1861
1862 // Leave the partial-array cleanup if we entered one.
1863 if (dtorKind)
1864 CGF.DeactivateCleanupBlock(cleanup, index);
1865 }
1866
VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)1867 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1868 AggValueSlot Dest = EnsureSlot(E->getType());
1869
1870 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1871 EmitInitializationToLValue(E->getBase(), DestLV);
1872 VisitInitListExpr(E->getUpdater());
1873 }
1874
1875 //===----------------------------------------------------------------------===//
1876 // Entry Points into this File
1877 //===----------------------------------------------------------------------===//
1878
1879 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1880 /// non-zero bytes that will be stored when outputting the initializer for the
1881 /// specified initializer expression.
GetNumNonZeroBytesInInit(const Expr * E,CodeGenFunction & CGF)1882 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1883 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1884 E = MTE->getSubExpr();
1885 E = E->IgnoreParenNoopCasts(CGF.getContext());
1886
1887 // 0 and 0.0 won't require any non-zero stores!
1888 if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1889
1890 // If this is an initlist expr, sum up the size of sizes of the (present)
1891 // elements. If this is something weird, assume the whole thing is non-zero.
1892 const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1893 while (ILE && ILE->isTransparent())
1894 ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1895 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1896 return CGF.getContext().getTypeSizeInChars(E->getType());
1897
1898 // InitListExprs for structs have to be handled carefully. If there are
1899 // reference members, we need to consider the size of the reference, not the
1900 // referencee. InitListExprs for unions and arrays can't have references.
1901 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1902 if (!RT->isUnionType()) {
1903 RecordDecl *SD = RT->getDecl();
1904 CharUnits NumNonZeroBytes = CharUnits::Zero();
1905
1906 unsigned ILEElement = 0;
1907 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1908 while (ILEElement != CXXRD->getNumBases())
1909 NumNonZeroBytes +=
1910 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1911 for (const auto *Field : SD->fields()) {
1912 // We're done once we hit the flexible array member or run out of
1913 // InitListExpr elements.
1914 if (Field->getType()->isIncompleteArrayType() ||
1915 ILEElement == ILE->getNumInits())
1916 break;
1917 if (Field->isUnnamedBitfield())
1918 continue;
1919
1920 const Expr *E = ILE->getInit(ILEElement++);
1921
1922 // Reference values are always non-null and have the width of a pointer.
1923 if (Field->getType()->isReferenceType())
1924 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1925 CGF.getTarget().getPointerWidth(0));
1926 else
1927 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1928 }
1929
1930 return NumNonZeroBytes;
1931 }
1932 }
1933
1934 // FIXME: This overestimates the number of non-zero bytes for bit-fields.
1935 CharUnits NumNonZeroBytes = CharUnits::Zero();
1936 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1937 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1938 return NumNonZeroBytes;
1939 }
1940
1941 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1942 /// zeros in it, emit a memset and avoid storing the individual zeros.
1943 ///
CheckAggExprForMemSetUse(AggValueSlot & Slot,const Expr * E,CodeGenFunction & CGF)1944 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1945 CodeGenFunction &CGF) {
1946 // If the slot is already known to be zeroed, nothing to do. Don't mess with
1947 // volatile stores.
1948 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1949 return;
1950
1951 // C++ objects with a user-declared constructor don't need zero'ing.
1952 if (CGF.getLangOpts().CPlusPlus)
1953 if (const RecordType *RT = CGF.getContext()
1954 .getBaseElementType(E->getType())->getAs<RecordType>()) {
1955 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1956 if (RD->hasUserDeclaredConstructor())
1957 return;
1958 }
1959
1960 // If the type is 16-bytes or smaller, prefer individual stores over memset.
1961 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1962 if (Size <= CharUnits::fromQuantity(16))
1963 return;
1964
1965 // Check to see if over 3/4 of the initializer are known to be zero. If so,
1966 // we prefer to emit memset + individual stores for the rest.
1967 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1968 if (NumNonZeroBytes*4 > Size)
1969 return;
1970
1971 // Okay, it seems like a good idea to use an initial memset, emit the call.
1972 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1973
1974 Address Loc = Slot.getAddress();
1975 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1976 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1977
1978 // Tell the AggExprEmitter that the slot is known zero.
1979 Slot.setZeroed();
1980 }
1981
1982
1983
1984
1985 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1986 /// type. The result is computed into DestPtr. Note that if DestPtr is null,
1987 /// the value of the aggregate expression is not needed. If VolatileDest is
1988 /// true, DestPtr cannot be 0.
EmitAggExpr(const Expr * E,AggValueSlot Slot)1989 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1990 assert(E && hasAggregateEvaluationKind(E->getType()) &&
1991 "Invalid aggregate expression to emit");
1992 assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1993 "slot has bits but no address");
1994
1995 // Optimize the slot if possible.
1996 CheckAggExprForMemSetUse(Slot, E, *this);
1997
1998 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1999 }
2000
EmitAggExprToLValue(const Expr * E)2001 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
2002 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
2003 Address Temp = CreateMemTemp(E->getType());
2004 LValue LV = MakeAddrLValue(Temp, E->getType());
2005 EmitAggExpr(E, AggValueSlot::forLValue(
2006 LV, *this, AggValueSlot::IsNotDestructed,
2007 AggValueSlot::DoesNotNeedGCBarriers,
2008 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
2009 return LV;
2010 }
2011
2012 AggValueSlot::Overlap_t
getOverlapForFieldInit(const FieldDecl * FD)2013 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2014 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2015 return AggValueSlot::DoesNotOverlap;
2016
2017 // If the field lies entirely within the enclosing class's nvsize, its tail
2018 // padding cannot overlap any already-initialized object. (The only subobjects
2019 // with greater addresses that might already be initialized are vbases.)
2020 const RecordDecl *ClassRD = FD->getParent();
2021 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2022 if (Layout.getFieldOffset(FD->getFieldIndex()) +
2023 getContext().getTypeSize(FD->getType()) <=
2024 (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2025 return AggValueSlot::DoesNotOverlap;
2026
2027 // The tail padding may contain values we need to preserve.
2028 return AggValueSlot::MayOverlap;
2029 }
2030
getOverlapForBaseInit(const CXXRecordDecl * RD,const CXXRecordDecl * BaseRD,bool IsVirtual)2031 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2032 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2033 // If the most-derived object is a field declared with [[no_unique_address]],
2034 // the tail padding of any virtual base could be reused for other subobjects
2035 // of that field's class.
2036 if (IsVirtual)
2037 return AggValueSlot::MayOverlap;
2038
2039 // If the base class is laid out entirely within the nvsize of the derived
2040 // class, its tail padding cannot yet be initialized, so we can issue
2041 // stores at the full width of the base class.
2042 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2043 if (Layout.getBaseClassOffset(BaseRD) +
2044 getContext().getASTRecordLayout(BaseRD).getSize() <=
2045 Layout.getNonVirtualSize())
2046 return AggValueSlot::DoesNotOverlap;
2047
2048 // The tail padding may contain values we need to preserve.
2049 return AggValueSlot::MayOverlap;
2050 }
2051
EmitAggregateCopy(LValue Dest,LValue Src,QualType Ty,AggValueSlot::Overlap_t MayOverlap,bool isVolatile)2052 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2053 AggValueSlot::Overlap_t MayOverlap,
2054 bool isVolatile) {
2055 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2056
2057 Address DestPtr = Dest.getAddress(*this);
2058 Address SrcPtr = Src.getAddress(*this);
2059
2060 if (getLangOpts().CPlusPlus) {
2061 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2062 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2063 assert((Record->hasTrivialCopyConstructor() ||
2064 Record->hasTrivialCopyAssignment() ||
2065 Record->hasTrivialMoveConstructor() ||
2066 Record->hasTrivialMoveAssignment() ||
2067 Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2068 "Trying to aggregate-copy a type without a trivial copy/move "
2069 "constructor or assignment operator");
2070 // Ignore empty classes in C++.
2071 if (Record->isEmpty())
2072 return;
2073 }
2074 }
2075
2076 if (getLangOpts().CUDAIsDevice) {
2077 if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2078 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2079 Src))
2080 return;
2081 } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2082 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2083 Src))
2084 return;
2085 }
2086 }
2087
2088 // Aggregate assignment turns into llvm.memcpy. This is almost valid per
2089 // C99 6.5.16.1p3, which states "If the value being stored in an object is
2090 // read from another object that overlaps in anyway the storage of the first
2091 // object, then the overlap shall be exact and the two objects shall have
2092 // qualified or unqualified versions of a compatible type."
2093 //
2094 // memcpy is not defined if the source and destination pointers are exactly
2095 // equal, but other compilers do this optimization, and almost every memcpy
2096 // implementation handles this case safely. If there is a libc that does not
2097 // safely handle this, we can add a target hook.
2098
2099 // Get data size info for this aggregate. Don't copy the tail padding if this
2100 // might be a potentially-overlapping subobject, since the tail padding might
2101 // be occupied by a different object. Otherwise, copying it is fine.
2102 TypeInfoChars TypeInfo;
2103 if (MayOverlap)
2104 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2105 else
2106 TypeInfo = getContext().getTypeInfoInChars(Ty);
2107
2108 llvm::Value *SizeVal = nullptr;
2109 if (TypeInfo.Width.isZero()) {
2110 // But note that getTypeInfo returns 0 for a VLA.
2111 if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2112 getContext().getAsArrayType(Ty))) {
2113 QualType BaseEltTy;
2114 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2115 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2116 assert(!TypeInfo.Width.isZero());
2117 SizeVal = Builder.CreateNUWMul(
2118 SizeVal,
2119 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2120 }
2121 }
2122 if (!SizeVal) {
2123 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2124 }
2125
2126 // FIXME: If we have a volatile struct, the optimizer can remove what might
2127 // appear to be `extra' memory ops:
2128 //
2129 // volatile struct { int i; } a, b;
2130 //
2131 // int main() {
2132 // a = b;
2133 // a = b;
2134 // }
2135 //
2136 // we need to use a different call here. We use isVolatile to indicate when
2137 // either the source or the destination is volatile.
2138
2139 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2140 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2141
2142 // Don't do any of the memmove_collectable tests if GC isn't set.
2143 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2144 // fall through
2145 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2146 RecordDecl *Record = RecordTy->getDecl();
2147 if (Record->hasObjectMember()) {
2148 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2149 SizeVal);
2150 return;
2151 }
2152 } else if (Ty->isArrayType()) {
2153 QualType BaseType = getContext().getBaseElementType(Ty);
2154 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2155 if (RecordTy->getDecl()->hasObjectMember()) {
2156 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2157 SizeVal);
2158 return;
2159 }
2160 }
2161 }
2162
2163 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2164
2165 // Determine the metadata to describe the position of any padding in this
2166 // memcpy, as well as the TBAA tags for the members of the struct, in case
2167 // the optimizer wishes to expand it in to scalar memory operations.
2168 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2169 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2170
2171 if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2172 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2173 Dest.getTBAAInfo(), Src.getTBAAInfo());
2174 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2175 }
2176 }
2177