1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
getNarrowTypeBreakDown(LLT OrigTy,LLT NarrowTy,LLT & LeftoverTy)47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(
64         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
65   } else {
66     LeftoverTy = LLT::scalar(LeftoverSize);
67   }
68 
69   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
70   return std::make_pair(NumParts, NumLeftover);
71 }
72 
getFloatTypeForLLT(LLVMContext & Ctx,LLT Ty)73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
74 
75   if (!Ty.isScalar())
76     return nullptr;
77 
78   switch (Ty.getSizeInBits()) {
79   case 16:
80     return Type::getHalfTy(Ctx);
81   case 32:
82     return Type::getFloatTy(Ctx);
83   case 64:
84     return Type::getDoubleTy(Ctx);
85   case 80:
86     return Type::getX86_FP80Ty(Ctx);
87   case 128:
88     return Type::getFP128Ty(Ctx);
89   default:
90     return nullptr;
91   }
92 }
93 
LegalizerHelper(MachineFunction & MF,GISelChangeObserver & Observer,MachineIRBuilder & Builder)94 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &Builder)
97     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
98       LI(*MF.getSubtarget().getLegalizerInfo()),
99       TLI(*MF.getSubtarget().getTargetLowering()) { }
100 
LegalizerHelper(MachineFunction & MF,const LegalizerInfo & LI,GISelChangeObserver & Observer,MachineIRBuilder & B)101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
102                                  GISelChangeObserver &Observer,
103                                  MachineIRBuilder &B)
104   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
105     TLI(*MF.getSubtarget().getTargetLowering()) { }
106 
107 LegalizerHelper::LegalizeResult
legalizeInstrStep(MachineInstr & MI,LostDebugLocObserver & LocObserver)108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
109                                    LostDebugLocObserver &LocObserver) {
110   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
111 
112   MIRBuilder.setInstrAndDebugLoc(MI);
113 
114   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
115       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
116     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
117   auto Step = LI.getAction(MI, MRI);
118   switch (Step.Action) {
119   case Legal:
120     LLVM_DEBUG(dbgs() << ".. Already legal\n");
121     return AlreadyLegal;
122   case Libcall:
123     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
124     return libcall(MI, LocObserver);
125   case NarrowScalar:
126     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
127     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
128   case WidenScalar:
129     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
130     return widenScalar(MI, Step.TypeIdx, Step.NewType);
131   case Bitcast:
132     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
133     return bitcast(MI, Step.TypeIdx, Step.NewType);
134   case Lower:
135     LLVM_DEBUG(dbgs() << ".. Lower\n");
136     return lower(MI, Step.TypeIdx, Step.NewType);
137   case FewerElements:
138     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
139     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case MoreElements:
141     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
142     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
143   case Custom:
144     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
145     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
146   default:
147     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
148     return UnableToLegalize;
149   }
150 }
151 
extractParts(Register Reg,LLT Ty,int NumParts,SmallVectorImpl<Register> & VRegs)152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
153                                    SmallVectorImpl<Register> &VRegs) {
154   for (int i = 0; i < NumParts; ++i)
155     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
156   MIRBuilder.buildUnmerge(VRegs, Reg);
157 }
158 
extractParts(Register Reg,LLT RegTy,LLT MainTy,LLT & LeftoverTy,SmallVectorImpl<Register> & VRegs,SmallVectorImpl<Register> & LeftoverRegs)159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
160                                    LLT MainTy, LLT &LeftoverTy,
161                                    SmallVectorImpl<Register> &VRegs,
162                                    SmallVectorImpl<Register> &LeftoverRegs) {
163   assert(!LeftoverTy.isValid() && "this is an out argument");
164 
165   unsigned RegSize = RegTy.getSizeInBits();
166   unsigned MainSize = MainTy.getSizeInBits();
167   unsigned NumParts = RegSize / MainSize;
168   unsigned LeftoverSize = RegSize - NumParts * MainSize;
169 
170   // Use an unmerge when possible.
171   if (LeftoverSize == 0) {
172     for (unsigned I = 0; I < NumParts; ++I)
173       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
174     MIRBuilder.buildUnmerge(VRegs, Reg);
175     return true;
176   }
177 
178   if (MainTy.isVector()) {
179     unsigned EltSize = MainTy.getScalarSizeInBits();
180     if (LeftoverSize % EltSize != 0)
181       return false;
182     LeftoverTy = LLT::scalarOrVector(
183         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
184   } else {
185     LeftoverTy = LLT::scalar(LeftoverSize);
186   }
187 
188   // For irregular sizes, extract the individual parts.
189   for (unsigned I = 0; I != NumParts; ++I) {
190     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
191     VRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
193   }
194 
195   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
196        Offset += LeftoverSize) {
197     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
198     LeftoverRegs.push_back(NewReg);
199     MIRBuilder.buildExtract(NewReg, Reg, Offset);
200   }
201 
202   return true;
203 }
204 
insertParts(Register DstReg,LLT ResultTy,LLT PartTy,ArrayRef<Register> PartRegs,LLT LeftoverTy,ArrayRef<Register> LeftoverRegs)205 void LegalizerHelper::insertParts(Register DstReg,
206                                   LLT ResultTy, LLT PartTy,
207                                   ArrayRef<Register> PartRegs,
208                                   LLT LeftoverTy,
209                                   ArrayRef<Register> LeftoverRegs) {
210   if (!LeftoverTy.isValid()) {
211     assert(LeftoverRegs.empty());
212 
213     if (!ResultTy.isVector()) {
214       MIRBuilder.buildMerge(DstReg, PartRegs);
215       return;
216     }
217 
218     if (PartTy.isVector())
219       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
220     else
221       MIRBuilder.buildBuildVector(DstReg, PartRegs);
222     return;
223   }
224 
225   SmallVector<Register> GCDRegs;
226   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
227   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
228     extractGCDType(GCDRegs, GCDTy, PartReg);
229   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
230   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
231 }
232 
233 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
getUnmergeResults(SmallVectorImpl<Register> & Regs,const MachineInstr & MI)234 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
235                               const MachineInstr &MI) {
236   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
237 
238   const int StartIdx = Regs.size();
239   const int NumResults = MI.getNumOperands() - 1;
240   Regs.resize(Regs.size() + NumResults);
241   for (int I = 0; I != NumResults; ++I)
242     Regs[StartIdx + I] = MI.getOperand(I).getReg();
243 }
244 
extractGCDType(SmallVectorImpl<Register> & Parts,LLT GCDTy,Register SrcReg)245 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
246                                      LLT GCDTy, Register SrcReg) {
247   LLT SrcTy = MRI.getType(SrcReg);
248   if (SrcTy == GCDTy) {
249     // If the source already evenly divides the result type, we don't need to do
250     // anything.
251     Parts.push_back(SrcReg);
252   } else {
253     // Need to split into common type sized pieces.
254     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
255     getUnmergeResults(Parts, *Unmerge);
256   }
257 }
258 
extractGCDType(SmallVectorImpl<Register> & Parts,LLT DstTy,LLT NarrowTy,Register SrcReg)259 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
260                                     LLT NarrowTy, Register SrcReg) {
261   LLT SrcTy = MRI.getType(SrcReg);
262   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
263   extractGCDType(Parts, GCDTy, SrcReg);
264   return GCDTy;
265 }
266 
buildLCMMergePieces(LLT DstTy,LLT NarrowTy,LLT GCDTy,SmallVectorImpl<Register> & VRegs,unsigned PadStrategy)267 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
268                                          SmallVectorImpl<Register> &VRegs,
269                                          unsigned PadStrategy) {
270   LLT LCMTy = getLCMType(DstTy, NarrowTy);
271 
272   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
273   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
274   int NumOrigSrc = VRegs.size();
275 
276   Register PadReg;
277 
278   // Get a value we can use to pad the source value if the sources won't evenly
279   // cover the result type.
280   if (NumOrigSrc < NumParts * NumSubParts) {
281     if (PadStrategy == TargetOpcode::G_ZEXT)
282       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
283     else if (PadStrategy == TargetOpcode::G_ANYEXT)
284       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
285     else {
286       assert(PadStrategy == TargetOpcode::G_SEXT);
287 
288       // Shift the sign bit of the low register through the high register.
289       auto ShiftAmt =
290         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
291       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
292     }
293   }
294 
295   // Registers for the final merge to be produced.
296   SmallVector<Register, 4> Remerge(NumParts);
297 
298   // Registers needed for intermediate merges, which will be merged into a
299   // source for Remerge.
300   SmallVector<Register, 4> SubMerge(NumSubParts);
301 
302   // Once we've fully read off the end of the original source bits, we can reuse
303   // the same high bits for remaining padding elements.
304   Register AllPadReg;
305 
306   // Build merges to the LCM type to cover the original result type.
307   for (int I = 0; I != NumParts; ++I) {
308     bool AllMergePartsArePadding = true;
309 
310     // Build the requested merges to the requested type.
311     for (int J = 0; J != NumSubParts; ++J) {
312       int Idx = I * NumSubParts + J;
313       if (Idx >= NumOrigSrc) {
314         SubMerge[J] = PadReg;
315         continue;
316       }
317 
318       SubMerge[J] = VRegs[Idx];
319 
320       // There are meaningful bits here we can't reuse later.
321       AllMergePartsArePadding = false;
322     }
323 
324     // If we've filled up a complete piece with padding bits, we can directly
325     // emit the natural sized constant if applicable, rather than a merge of
326     // smaller constants.
327     if (AllMergePartsArePadding && !AllPadReg) {
328       if (PadStrategy == TargetOpcode::G_ANYEXT)
329         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
330       else if (PadStrategy == TargetOpcode::G_ZEXT)
331         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
332 
333       // If this is a sign extension, we can't materialize a trivial constant
334       // with the right type and have to produce a merge.
335     }
336 
337     if (AllPadReg) {
338       // Avoid creating additional instructions if we're just adding additional
339       // copies of padding bits.
340       Remerge[I] = AllPadReg;
341       continue;
342     }
343 
344     if (NumSubParts == 1)
345       Remerge[I] = SubMerge[0];
346     else
347       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
348 
349     // In the sign extend padding case, re-use the first all-signbit merge.
350     if (AllMergePartsArePadding && !AllPadReg)
351       AllPadReg = Remerge[I];
352   }
353 
354   VRegs = std::move(Remerge);
355   return LCMTy;
356 }
357 
buildWidenedRemergeToDst(Register DstReg,LLT LCMTy,ArrayRef<Register> RemergeRegs)358 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
359                                                ArrayRef<Register> RemergeRegs) {
360   LLT DstTy = MRI.getType(DstReg);
361 
362   // Create the merge to the widened source, and extract the relevant bits into
363   // the result.
364 
365   if (DstTy == LCMTy) {
366     MIRBuilder.buildMerge(DstReg, RemergeRegs);
367     return;
368   }
369 
370   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
371   if (DstTy.isScalar() && LCMTy.isScalar()) {
372     MIRBuilder.buildTrunc(DstReg, Remerge);
373     return;
374   }
375 
376   if (LCMTy.isVector()) {
377     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
378     SmallVector<Register, 8> UnmergeDefs(NumDefs);
379     UnmergeDefs[0] = DstReg;
380     for (unsigned I = 1; I != NumDefs; ++I)
381       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
382 
383     MIRBuilder.buildUnmerge(UnmergeDefs,
384                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
385     return;
386   }
387 
388   llvm_unreachable("unhandled case");
389 }
390 
getRTLibDesc(unsigned Opcode,unsigned Size)391 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
392 #define RTLIBCASE_INT(LibcallPrefix)                                           \
393   do {                                                                         \
394     switch (Size) {                                                            \
395     case 32:                                                                   \
396       return RTLIB::LibcallPrefix##32;                                         \
397     case 64:                                                                   \
398       return RTLIB::LibcallPrefix##64;                                         \
399     case 128:                                                                  \
400       return RTLIB::LibcallPrefix##128;                                        \
401     default:                                                                   \
402       llvm_unreachable("unexpected size");                                     \
403     }                                                                          \
404   } while (0)
405 
406 #define RTLIBCASE(LibcallPrefix)                                               \
407   do {                                                                         \
408     switch (Size) {                                                            \
409     case 32:                                                                   \
410       return RTLIB::LibcallPrefix##32;                                         \
411     case 64:                                                                   \
412       return RTLIB::LibcallPrefix##64;                                         \
413     case 80:                                                                   \
414       return RTLIB::LibcallPrefix##80;                                         \
415     case 128:                                                                  \
416       return RTLIB::LibcallPrefix##128;                                        \
417     default:                                                                   \
418       llvm_unreachable("unexpected size");                                     \
419     }                                                                          \
420   } while (0)
421 
422   switch (Opcode) {
423   case TargetOpcode::G_SDIV:
424     RTLIBCASE_INT(SDIV_I);
425   case TargetOpcode::G_UDIV:
426     RTLIBCASE_INT(UDIV_I);
427   case TargetOpcode::G_SREM:
428     RTLIBCASE_INT(SREM_I);
429   case TargetOpcode::G_UREM:
430     RTLIBCASE_INT(UREM_I);
431   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
432     RTLIBCASE_INT(CTLZ_I);
433   case TargetOpcode::G_FADD:
434     RTLIBCASE(ADD_F);
435   case TargetOpcode::G_FSUB:
436     RTLIBCASE(SUB_F);
437   case TargetOpcode::G_FMUL:
438     RTLIBCASE(MUL_F);
439   case TargetOpcode::G_FDIV:
440     RTLIBCASE(DIV_F);
441   case TargetOpcode::G_FEXP:
442     RTLIBCASE(EXP_F);
443   case TargetOpcode::G_FEXP2:
444     RTLIBCASE(EXP2_F);
445   case TargetOpcode::G_FREM:
446     RTLIBCASE(REM_F);
447   case TargetOpcode::G_FPOW:
448     RTLIBCASE(POW_F);
449   case TargetOpcode::G_FMA:
450     RTLIBCASE(FMA_F);
451   case TargetOpcode::G_FSIN:
452     RTLIBCASE(SIN_F);
453   case TargetOpcode::G_FCOS:
454     RTLIBCASE(COS_F);
455   case TargetOpcode::G_FLOG10:
456     RTLIBCASE(LOG10_F);
457   case TargetOpcode::G_FLOG:
458     RTLIBCASE(LOG_F);
459   case TargetOpcode::G_FLOG2:
460     RTLIBCASE(LOG2_F);
461   case TargetOpcode::G_FCEIL:
462     RTLIBCASE(CEIL_F);
463   case TargetOpcode::G_FFLOOR:
464     RTLIBCASE(FLOOR_F);
465   case TargetOpcode::G_FMINNUM:
466     RTLIBCASE(FMIN_F);
467   case TargetOpcode::G_FMAXNUM:
468     RTLIBCASE(FMAX_F);
469   case TargetOpcode::G_FSQRT:
470     RTLIBCASE(SQRT_F);
471   case TargetOpcode::G_FRINT:
472     RTLIBCASE(RINT_F);
473   case TargetOpcode::G_FNEARBYINT:
474     RTLIBCASE(NEARBYINT_F);
475   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
476     RTLIBCASE(ROUNDEVEN_F);
477   }
478   llvm_unreachable("Unknown libcall function");
479 }
480 
481 /// True if an instruction is in tail position in its caller. Intended for
482 /// legalizing libcalls as tail calls when possible.
isLibCallInTailPosition(MachineInstr & MI,const TargetInstrInfo & TII,MachineRegisterInfo & MRI)483 static bool isLibCallInTailPosition(MachineInstr &MI,
484                                     const TargetInstrInfo &TII,
485                                     MachineRegisterInfo &MRI) {
486   MachineBasicBlock &MBB = *MI.getParent();
487   const Function &F = MBB.getParent()->getFunction();
488 
489   // Conservatively require the attributes of the call to match those of
490   // the return. Ignore NoAlias and NonNull because they don't affect the
491   // call sequence.
492   AttributeList CallerAttrs = F.getAttributes();
493   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
494           .removeAttribute(Attribute::NoAlias)
495           .removeAttribute(Attribute::NonNull)
496           .hasAttributes())
497     return false;
498 
499   // It's not safe to eliminate the sign / zero extension of the return value.
500   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
501       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
502     return false;
503 
504   // Only tail call if the following instruction is a standard return or if we
505   // have a `thisreturn` callee, and a sequence like:
506   //
507   //   G_MEMCPY %0, %1, %2
508   //   $x0 = COPY %0
509   //   RET_ReallyLR implicit $x0
510   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
511   if (Next != MBB.instr_end() && Next->isCopy()) {
512     switch (MI.getOpcode()) {
513     default:
514       llvm_unreachable("unsupported opcode");
515     case TargetOpcode::G_BZERO:
516       return false;
517     case TargetOpcode::G_MEMCPY:
518     case TargetOpcode::G_MEMMOVE:
519     case TargetOpcode::G_MEMSET:
520       break;
521     }
522 
523     Register VReg = MI.getOperand(0).getReg();
524     if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
525       return false;
526 
527     Register PReg = Next->getOperand(0).getReg();
528     if (!PReg.isPhysical())
529       return false;
530 
531     auto Ret = next_nodbg(Next, MBB.instr_end());
532     if (Ret == MBB.instr_end() || !Ret->isReturn())
533       return false;
534 
535     if (Ret->getNumImplicitOperands() != 1)
536       return false;
537 
538     if (PReg != Ret->getOperand(0).getReg())
539       return false;
540 
541     // Skip over the COPY that we just validated.
542     Next = Ret;
543   }
544 
545   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
546     return false;
547 
548   return true;
549 }
550 
551 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,const char * Name,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args,const CallingConv::ID CC)552 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
553                     const CallLowering::ArgInfo &Result,
554                     ArrayRef<CallLowering::ArgInfo> Args,
555                     const CallingConv::ID CC) {
556   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
557 
558   CallLowering::CallLoweringInfo Info;
559   Info.CallConv = CC;
560   Info.Callee = MachineOperand::CreateES(Name);
561   Info.OrigRet = Result;
562   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
563   if (!CLI.lowerCall(MIRBuilder, Info))
564     return LegalizerHelper::UnableToLegalize;
565 
566   return LegalizerHelper::Legalized;
567 }
568 
569 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,RTLIB::Libcall Libcall,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args)570 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
571                     const CallLowering::ArgInfo &Result,
572                     ArrayRef<CallLowering::ArgInfo> Args) {
573   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
574   const char *Name = TLI.getLibcallName(Libcall);
575   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
576   return createLibcall(MIRBuilder, Name, Result, Args, CC);
577 }
578 
579 // Useful for libcalls where all operands have the same type.
580 static LegalizerHelper::LegalizeResult
simpleLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,unsigned Size,Type * OpType)581 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
582               Type *OpType) {
583   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
584 
585   // FIXME: What does the original arg index mean here?
586   SmallVector<CallLowering::ArgInfo, 3> Args;
587   for (unsigned i = 1; i < MI.getNumOperands(); i++)
588     Args.push_back({MI.getOperand(i).getReg(), OpType, 0});
589   return createLibcall(MIRBuilder, Libcall,
590                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
591 }
592 
593 LegalizerHelper::LegalizeResult
createMemLibcall(MachineIRBuilder & MIRBuilder,MachineRegisterInfo & MRI,MachineInstr & MI,LostDebugLocObserver & LocObserver)594 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
595                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
596   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
597 
598   SmallVector<CallLowering::ArgInfo, 3> Args;
599   // Add all the args, except for the last which is an imm denoting 'tail'.
600   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
601     Register Reg = MI.getOperand(i).getReg();
602 
603     // Need derive an IR type for call lowering.
604     LLT OpLLT = MRI.getType(Reg);
605     Type *OpTy = nullptr;
606     if (OpLLT.isPointer())
607       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
608     else
609       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
610     Args.push_back({Reg, OpTy, 0});
611   }
612 
613   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
614   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
615   RTLIB::Libcall RTLibcall;
616   unsigned Opc = MI.getOpcode();
617   switch (Opc) {
618   case TargetOpcode::G_BZERO:
619     RTLibcall = RTLIB::BZERO;
620     break;
621   case TargetOpcode::G_MEMCPY:
622     RTLibcall = RTLIB::MEMCPY;
623     Args[0].Flags[0].setReturned();
624     break;
625   case TargetOpcode::G_MEMMOVE:
626     RTLibcall = RTLIB::MEMMOVE;
627     Args[0].Flags[0].setReturned();
628     break;
629   case TargetOpcode::G_MEMSET:
630     RTLibcall = RTLIB::MEMSET;
631     Args[0].Flags[0].setReturned();
632     break;
633   default:
634     llvm_unreachable("unsupported opcode");
635   }
636   const char *Name = TLI.getLibcallName(RTLibcall);
637 
638   // Unsupported libcall on the target.
639   if (!Name) {
640     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
641                       << MIRBuilder.getTII().getName(Opc) << "\n");
642     return LegalizerHelper::UnableToLegalize;
643   }
644 
645   CallLowering::CallLoweringInfo Info;
646   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
647   Info.Callee = MachineOperand::CreateES(Name);
648   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
649   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
650                     isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
651 
652   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
653   if (!CLI.lowerCall(MIRBuilder, Info))
654     return LegalizerHelper::UnableToLegalize;
655 
656   if (Info.LoweredTailCall) {
657     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
658 
659     // Check debug locations before removing the return.
660     LocObserver.checkpoint(true);
661 
662     // We must have a return following the call (or debug insts) to get past
663     // isLibCallInTailPosition.
664     do {
665       MachineInstr *Next = MI.getNextNode();
666       assert(Next &&
667              (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
668              "Expected instr following MI to be return or debug inst?");
669       // We lowered a tail call, so the call is now the return from the block.
670       // Delete the old return.
671       Next->eraseFromParent();
672     } while (MI.getNextNode());
673 
674     // We expect to lose the debug location from the return.
675     LocObserver.checkpoint(false);
676   }
677 
678   return LegalizerHelper::Legalized;
679 }
680 
getConvRTLibDesc(unsigned Opcode,Type * ToType,Type * FromType)681 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
682                                        Type *FromType) {
683   auto ToMVT = MVT::getVT(ToType);
684   auto FromMVT = MVT::getVT(FromType);
685 
686   switch (Opcode) {
687   case TargetOpcode::G_FPEXT:
688     return RTLIB::getFPEXT(FromMVT, ToMVT);
689   case TargetOpcode::G_FPTRUNC:
690     return RTLIB::getFPROUND(FromMVT, ToMVT);
691   case TargetOpcode::G_FPTOSI:
692     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
693   case TargetOpcode::G_FPTOUI:
694     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
695   case TargetOpcode::G_SITOFP:
696     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
697   case TargetOpcode::G_UITOFP:
698     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
699   }
700   llvm_unreachable("Unsupported libcall function");
701 }
702 
703 static LegalizerHelper::LegalizeResult
conversionLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,Type * ToType,Type * FromType)704 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
705                   Type *FromType) {
706   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
707   return createLibcall(MIRBuilder, Libcall,
708                        {MI.getOperand(0).getReg(), ToType, 0},
709                        {{MI.getOperand(1).getReg(), FromType, 0}});
710 }
711 
712 LegalizerHelper::LegalizeResult
libcall(MachineInstr & MI,LostDebugLocObserver & LocObserver)713 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
714   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
715   unsigned Size = LLTy.getSizeInBits();
716   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
717 
718   switch (MI.getOpcode()) {
719   default:
720     return UnableToLegalize;
721   case TargetOpcode::G_SDIV:
722   case TargetOpcode::G_UDIV:
723   case TargetOpcode::G_SREM:
724   case TargetOpcode::G_UREM:
725   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
726     Type *HLTy = IntegerType::get(Ctx, Size);
727     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
728     if (Status != Legalized)
729       return Status;
730     break;
731   }
732   case TargetOpcode::G_FADD:
733   case TargetOpcode::G_FSUB:
734   case TargetOpcode::G_FMUL:
735   case TargetOpcode::G_FDIV:
736   case TargetOpcode::G_FMA:
737   case TargetOpcode::G_FPOW:
738   case TargetOpcode::G_FREM:
739   case TargetOpcode::G_FCOS:
740   case TargetOpcode::G_FSIN:
741   case TargetOpcode::G_FLOG10:
742   case TargetOpcode::G_FLOG:
743   case TargetOpcode::G_FLOG2:
744   case TargetOpcode::G_FEXP:
745   case TargetOpcode::G_FEXP2:
746   case TargetOpcode::G_FCEIL:
747   case TargetOpcode::G_FFLOOR:
748   case TargetOpcode::G_FMINNUM:
749   case TargetOpcode::G_FMAXNUM:
750   case TargetOpcode::G_FSQRT:
751   case TargetOpcode::G_FRINT:
752   case TargetOpcode::G_FNEARBYINT:
753   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
754     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
755     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
756       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
757       return UnableToLegalize;
758     }
759     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
760     if (Status != Legalized)
761       return Status;
762     break;
763   }
764   case TargetOpcode::G_FPEXT:
765   case TargetOpcode::G_FPTRUNC: {
766     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
767     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
768     if (!FromTy || !ToTy)
769       return UnableToLegalize;
770     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
771     if (Status != Legalized)
772       return Status;
773     break;
774   }
775   case TargetOpcode::G_FPTOSI:
776   case TargetOpcode::G_FPTOUI: {
777     // FIXME: Support other types
778     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
779     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
780     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
781       return UnableToLegalize;
782     LegalizeResult Status = conversionLibcall(
783         MI, MIRBuilder,
784         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
785         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
786     if (Status != Legalized)
787       return Status;
788     break;
789   }
790   case TargetOpcode::G_SITOFP:
791   case TargetOpcode::G_UITOFP: {
792     // FIXME: Support other types
793     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
794     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
795     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
796       return UnableToLegalize;
797     LegalizeResult Status = conversionLibcall(
798         MI, MIRBuilder,
799         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
800         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
801     if (Status != Legalized)
802       return Status;
803     break;
804   }
805   case TargetOpcode::G_BZERO:
806   case TargetOpcode::G_MEMCPY:
807   case TargetOpcode::G_MEMMOVE:
808   case TargetOpcode::G_MEMSET: {
809     LegalizeResult Result =
810         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
811     if (Result != Legalized)
812       return Result;
813     MI.eraseFromParent();
814     return Result;
815   }
816   }
817 
818   MI.eraseFromParent();
819   return Legalized;
820 }
821 
narrowScalar(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)822 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
823                                                               unsigned TypeIdx,
824                                                               LLT NarrowTy) {
825   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
826   uint64_t NarrowSize = NarrowTy.getSizeInBits();
827 
828   switch (MI.getOpcode()) {
829   default:
830     return UnableToLegalize;
831   case TargetOpcode::G_IMPLICIT_DEF: {
832     Register DstReg = MI.getOperand(0).getReg();
833     LLT DstTy = MRI.getType(DstReg);
834 
835     // If SizeOp0 is not an exact multiple of NarrowSize, emit
836     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
837     // FIXME: Although this would also be legal for the general case, it causes
838     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
839     //  combines not being hit). This seems to be a problem related to the
840     //  artifact combiner.
841     if (SizeOp0 % NarrowSize != 0) {
842       LLT ImplicitTy = NarrowTy;
843       if (DstTy.isVector())
844         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
845 
846       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
847       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
848 
849       MI.eraseFromParent();
850       return Legalized;
851     }
852 
853     int NumParts = SizeOp0 / NarrowSize;
854 
855     SmallVector<Register, 2> DstRegs;
856     for (int i = 0; i < NumParts; ++i)
857       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
858 
859     if (DstTy.isVector())
860       MIRBuilder.buildBuildVector(DstReg, DstRegs);
861     else
862       MIRBuilder.buildMerge(DstReg, DstRegs);
863     MI.eraseFromParent();
864     return Legalized;
865   }
866   case TargetOpcode::G_CONSTANT: {
867     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
868     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
869     unsigned TotalSize = Ty.getSizeInBits();
870     unsigned NarrowSize = NarrowTy.getSizeInBits();
871     int NumParts = TotalSize / NarrowSize;
872 
873     SmallVector<Register, 4> PartRegs;
874     for (int I = 0; I != NumParts; ++I) {
875       unsigned Offset = I * NarrowSize;
876       auto K = MIRBuilder.buildConstant(NarrowTy,
877                                         Val.lshr(Offset).trunc(NarrowSize));
878       PartRegs.push_back(K.getReg(0));
879     }
880 
881     LLT LeftoverTy;
882     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
883     SmallVector<Register, 1> LeftoverRegs;
884     if (LeftoverBits != 0) {
885       LeftoverTy = LLT::scalar(LeftoverBits);
886       auto K = MIRBuilder.buildConstant(
887         LeftoverTy,
888         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
889       LeftoverRegs.push_back(K.getReg(0));
890     }
891 
892     insertParts(MI.getOperand(0).getReg(),
893                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
894 
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_SEXT:
899   case TargetOpcode::G_ZEXT:
900   case TargetOpcode::G_ANYEXT:
901     return narrowScalarExt(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_TRUNC: {
903     if (TypeIdx != 1)
904       return UnableToLegalize;
905 
906     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
907     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
908       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
909       return UnableToLegalize;
910     }
911 
912     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
913     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
914     MI.eraseFromParent();
915     return Legalized;
916   }
917 
918   case TargetOpcode::G_FREEZE:
919     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
920   case TargetOpcode::G_ADD:
921   case TargetOpcode::G_SUB:
922   case TargetOpcode::G_SADDO:
923   case TargetOpcode::G_SSUBO:
924   case TargetOpcode::G_SADDE:
925   case TargetOpcode::G_SSUBE:
926   case TargetOpcode::G_UADDO:
927   case TargetOpcode::G_USUBO:
928   case TargetOpcode::G_UADDE:
929   case TargetOpcode::G_USUBE:
930     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
931   case TargetOpcode::G_MUL:
932   case TargetOpcode::G_UMULH:
933     return narrowScalarMul(MI, NarrowTy);
934   case TargetOpcode::G_EXTRACT:
935     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
936   case TargetOpcode::G_INSERT:
937     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
938   case TargetOpcode::G_LOAD: {
939     auto &LoadMI = cast<GLoad>(MI);
940     Register DstReg = LoadMI.getDstReg();
941     LLT DstTy = MRI.getType(DstReg);
942     if (DstTy.isVector())
943       return UnableToLegalize;
944 
945     if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
946       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
947       MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
948       MIRBuilder.buildAnyExt(DstReg, TmpReg);
949       LoadMI.eraseFromParent();
950       return Legalized;
951     }
952 
953     return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
954   }
955   case TargetOpcode::G_ZEXTLOAD:
956   case TargetOpcode::G_SEXTLOAD: {
957     auto &LoadMI = cast<GExtLoad>(MI);
958     Register DstReg = LoadMI.getDstReg();
959     Register PtrReg = LoadMI.getPointerReg();
960 
961     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
962     auto &MMO = LoadMI.getMMO();
963     unsigned MemSize = MMO.getSizeInBits();
964 
965     if (MemSize == NarrowSize) {
966       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
967     } else if (MemSize < NarrowSize) {
968       MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
969     } else if (MemSize > NarrowSize) {
970       // FIXME: Need to split the load.
971       return UnableToLegalize;
972     }
973 
974     if (isa<GZExtLoad>(LoadMI))
975       MIRBuilder.buildZExt(DstReg, TmpReg);
976     else
977       MIRBuilder.buildSExt(DstReg, TmpReg);
978 
979     LoadMI.eraseFromParent();
980     return Legalized;
981   }
982   case TargetOpcode::G_STORE: {
983     auto &StoreMI = cast<GStore>(MI);
984 
985     Register SrcReg = StoreMI.getValueReg();
986     LLT SrcTy = MRI.getType(SrcReg);
987     if (SrcTy.isVector())
988       return UnableToLegalize;
989 
990     int NumParts = SizeOp0 / NarrowSize;
991     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
992     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
993     if (SrcTy.isVector() && LeftoverBits != 0)
994       return UnableToLegalize;
995 
996     if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
997       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
998       MIRBuilder.buildTrunc(TmpReg, SrcReg);
999       MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1000       StoreMI.eraseFromParent();
1001       return Legalized;
1002     }
1003 
1004     return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1005   }
1006   case TargetOpcode::G_SELECT:
1007     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_AND:
1009   case TargetOpcode::G_OR:
1010   case TargetOpcode::G_XOR: {
1011     // Legalize bitwise operation:
1012     // A = BinOp<Ty> B, C
1013     // into:
1014     // B1, ..., BN = G_UNMERGE_VALUES B
1015     // C1, ..., CN = G_UNMERGE_VALUES C
1016     // A1 = BinOp<Ty/N> B1, C2
1017     // ...
1018     // AN = BinOp<Ty/N> BN, CN
1019     // A = G_MERGE_VALUES A1, ..., AN
1020     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1021   }
1022   case TargetOpcode::G_SHL:
1023   case TargetOpcode::G_LSHR:
1024   case TargetOpcode::G_ASHR:
1025     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_CTLZ:
1027   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTTZ:
1029   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1030   case TargetOpcode::G_CTPOP:
1031     if (TypeIdx == 1)
1032       switch (MI.getOpcode()) {
1033       case TargetOpcode::G_CTLZ:
1034       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1035         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1036       case TargetOpcode::G_CTTZ:
1037       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1038         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTPOP:
1040         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1041       default:
1042         return UnableToLegalize;
1043       }
1044 
1045     Observer.changingInstr(MI);
1046     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   case TargetOpcode::G_INTTOPTR:
1050     if (TypeIdx != 1)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     narrowScalarSrc(MI, NarrowTy, 1);
1055     Observer.changedInstr(MI);
1056     return Legalized;
1057   case TargetOpcode::G_PTRTOINT:
1058     if (TypeIdx != 0)
1059       return UnableToLegalize;
1060 
1061     Observer.changingInstr(MI);
1062     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   case TargetOpcode::G_PHI: {
1066     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1067     // NarrowSize.
1068     if (SizeOp0 % NarrowSize != 0)
1069       return UnableToLegalize;
1070 
1071     unsigned NumParts = SizeOp0 / NarrowSize;
1072     SmallVector<Register, 2> DstRegs(NumParts);
1073     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1074     Observer.changingInstr(MI);
1075     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1076       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1077       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1078       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1079                    SrcRegs[i / 2]);
1080     }
1081     MachineBasicBlock &MBB = *MI.getParent();
1082     MIRBuilder.setInsertPt(MBB, MI);
1083     for (unsigned i = 0; i < NumParts; ++i) {
1084       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1085       MachineInstrBuilder MIB =
1086           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1087       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1088         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1089     }
1090     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1091     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1092     Observer.changedInstr(MI);
1093     MI.eraseFromParent();
1094     return Legalized;
1095   }
1096   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1097   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1098     if (TypeIdx != 2)
1099       return UnableToLegalize;
1100 
1101     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1102     Observer.changingInstr(MI);
1103     narrowScalarSrc(MI, NarrowTy, OpIdx);
1104     Observer.changedInstr(MI);
1105     return Legalized;
1106   }
1107   case TargetOpcode::G_ICMP: {
1108     Register LHS = MI.getOperand(2).getReg();
1109     LLT SrcTy = MRI.getType(LHS);
1110     uint64_t SrcSize = SrcTy.getSizeInBits();
1111     CmpInst::Predicate Pred =
1112         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1113 
1114     // TODO: Handle the non-equality case for weird sizes.
1115     if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1116       return UnableToLegalize;
1117 
1118     LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1119     SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1120     if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1121                       LHSLeftoverRegs))
1122       return UnableToLegalize;
1123 
1124     LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1125     SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1126     if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1127                       RHSPartRegs, RHSLeftoverRegs))
1128       return UnableToLegalize;
1129 
1130     // We now have the LHS and RHS of the compare split into narrow-type
1131     // registers, plus potentially some leftover type.
1132     Register Dst = MI.getOperand(0).getReg();
1133     LLT ResTy = MRI.getType(Dst);
1134     if (ICmpInst::isEquality(Pred)) {
1135       // For each part on the LHS and RHS, keep track of the result of XOR-ing
1136       // them together. For each equal part, the result should be all 0s. For
1137       // each non-equal part, we'll get at least one 1.
1138       auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1139       SmallVector<Register, 4> Xors;
1140       for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1141         auto LHS = std::get<0>(LHSAndRHS);
1142         auto RHS = std::get<1>(LHSAndRHS);
1143         auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1144         Xors.push_back(Xor);
1145       }
1146 
1147       // Build a G_XOR for each leftover register. Each G_XOR must be widened
1148       // to the desired narrow type so that we can OR them together later.
1149       SmallVector<Register, 4> WidenedXors;
1150       for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1151         auto LHS = std::get<0>(LHSAndRHS);
1152         auto RHS = std::get<1>(LHSAndRHS);
1153         auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1154         LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1155         buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1156                             /* PadStrategy = */ TargetOpcode::G_ZEXT);
1157         Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1158       }
1159 
1160       // Now, for each part we broke up, we know if they are equal/not equal
1161       // based off the G_XOR. We can OR these all together and compare against
1162       // 0 to get the result.
1163       assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1164       auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1165       for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1166         Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1167       MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1168     } else {
1169       // TODO: Handle non-power-of-two types.
1170       assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1171       assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1172       Register LHSL = LHSPartRegs[0];
1173       Register LHSH = LHSPartRegs[1];
1174       Register RHSL = RHSPartRegs[0];
1175       Register RHSH = RHSPartRegs[1];
1176       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1177       MachineInstrBuilder CmpHEQ =
1178           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1179       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1180           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1181       MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1182     }
1183     MI.eraseFromParent();
1184     return Legalized;
1185   }
1186   case TargetOpcode::G_SEXT_INREG: {
1187     if (TypeIdx != 0)
1188       return UnableToLegalize;
1189 
1190     int64_t SizeInBits = MI.getOperand(2).getImm();
1191 
1192     // So long as the new type has more bits than the bits we're extending we
1193     // don't need to break it apart.
1194     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1195       Observer.changingInstr(MI);
1196       // We don't lose any non-extension bits by truncating the src and
1197       // sign-extending the dst.
1198       MachineOperand &MO1 = MI.getOperand(1);
1199       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1200       MO1.setReg(TruncMIB.getReg(0));
1201 
1202       MachineOperand &MO2 = MI.getOperand(0);
1203       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1204       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1205       MIRBuilder.buildSExt(MO2, DstExt);
1206       MO2.setReg(DstExt);
1207       Observer.changedInstr(MI);
1208       return Legalized;
1209     }
1210 
1211     // Break it apart. Components below the extension point are unmodified. The
1212     // component containing the extension point becomes a narrower SEXT_INREG.
1213     // Components above it are ashr'd from the component containing the
1214     // extension point.
1215     if (SizeOp0 % NarrowSize != 0)
1216       return UnableToLegalize;
1217     int NumParts = SizeOp0 / NarrowSize;
1218 
1219     // List the registers where the destination will be scattered.
1220     SmallVector<Register, 2> DstRegs;
1221     // List the registers where the source will be split.
1222     SmallVector<Register, 2> SrcRegs;
1223 
1224     // Create all the temporary registers.
1225     for (int i = 0; i < NumParts; ++i) {
1226       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1227 
1228       SrcRegs.push_back(SrcReg);
1229     }
1230 
1231     // Explode the big arguments into smaller chunks.
1232     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1233 
1234     Register AshrCstReg =
1235         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1236             .getReg(0);
1237     Register FullExtensionReg = 0;
1238     Register PartialExtensionReg = 0;
1239 
1240     // Do the operation on each small part.
1241     for (int i = 0; i < NumParts; ++i) {
1242       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1243         DstRegs.push_back(SrcRegs[i]);
1244       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1245         assert(PartialExtensionReg &&
1246                "Expected to visit partial extension before full");
1247         if (FullExtensionReg) {
1248           DstRegs.push_back(FullExtensionReg);
1249           continue;
1250         }
1251         DstRegs.push_back(
1252             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1253                 .getReg(0));
1254         FullExtensionReg = DstRegs.back();
1255       } else {
1256         DstRegs.push_back(
1257             MIRBuilder
1258                 .buildInstr(
1259                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1260                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1261                 .getReg(0));
1262         PartialExtensionReg = DstRegs.back();
1263       }
1264     }
1265 
1266     // Gather the destination registers into the final destination.
1267     Register DstReg = MI.getOperand(0).getReg();
1268     MIRBuilder.buildMerge(DstReg, DstRegs);
1269     MI.eraseFromParent();
1270     return Legalized;
1271   }
1272   case TargetOpcode::G_BSWAP:
1273   case TargetOpcode::G_BITREVERSE: {
1274     if (SizeOp0 % NarrowSize != 0)
1275       return UnableToLegalize;
1276 
1277     Observer.changingInstr(MI);
1278     SmallVector<Register, 2> SrcRegs, DstRegs;
1279     unsigned NumParts = SizeOp0 / NarrowSize;
1280     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1281 
1282     for (unsigned i = 0; i < NumParts; ++i) {
1283       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1284                                            {SrcRegs[NumParts - 1 - i]});
1285       DstRegs.push_back(DstPart.getReg(0));
1286     }
1287 
1288     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1289 
1290     Observer.changedInstr(MI);
1291     MI.eraseFromParent();
1292     return Legalized;
1293   }
1294   case TargetOpcode::G_PTR_ADD:
1295   case TargetOpcode::G_PTRMASK: {
1296     if (TypeIdx != 1)
1297       return UnableToLegalize;
1298     Observer.changingInstr(MI);
1299     narrowScalarSrc(MI, NarrowTy, 2);
1300     Observer.changedInstr(MI);
1301     return Legalized;
1302   }
1303   case TargetOpcode::G_FPTOUI:
1304   case TargetOpcode::G_FPTOSI:
1305     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1306   case TargetOpcode::G_FPEXT:
1307     if (TypeIdx != 0)
1308       return UnableToLegalize;
1309     Observer.changingInstr(MI);
1310     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1311     Observer.changedInstr(MI);
1312     return Legalized;
1313   }
1314 }
1315 
coerceToScalar(Register Val)1316 Register LegalizerHelper::coerceToScalar(Register Val) {
1317   LLT Ty = MRI.getType(Val);
1318   if (Ty.isScalar())
1319     return Val;
1320 
1321   const DataLayout &DL = MIRBuilder.getDataLayout();
1322   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1323   if (Ty.isPointer()) {
1324     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1325       return Register();
1326     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1327   }
1328 
1329   Register NewVal = Val;
1330 
1331   assert(Ty.isVector());
1332   LLT EltTy = Ty.getElementType();
1333   if (EltTy.isPointer())
1334     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1335   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1336 }
1337 
widenScalarSrc(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned ExtOpcode)1338 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1339                                      unsigned OpIdx, unsigned ExtOpcode) {
1340   MachineOperand &MO = MI.getOperand(OpIdx);
1341   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1342   MO.setReg(ExtB.getReg(0));
1343 }
1344 
narrowScalarSrc(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx)1345 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1346                                       unsigned OpIdx) {
1347   MachineOperand &MO = MI.getOperand(OpIdx);
1348   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1349   MO.setReg(ExtB.getReg(0));
1350 }
1351 
widenScalarDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned TruncOpcode)1352 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1353                                      unsigned OpIdx, unsigned TruncOpcode) {
1354   MachineOperand &MO = MI.getOperand(OpIdx);
1355   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1356   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1357   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1358   MO.setReg(DstExt);
1359 }
1360 
narrowScalarDst(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx,unsigned ExtOpcode)1361 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1362                                       unsigned OpIdx, unsigned ExtOpcode) {
1363   MachineOperand &MO = MI.getOperand(OpIdx);
1364   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1365   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1366   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1367   MO.setReg(DstTrunc);
1368 }
1369 
moreElementsVectorDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx)1370 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1371                                             unsigned OpIdx) {
1372   MachineOperand &MO = MI.getOperand(OpIdx);
1373   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1374   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1375 }
1376 
moreElementsVectorSrc(MachineInstr & MI,LLT MoreTy,unsigned OpIdx)1377 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1378                                             unsigned OpIdx) {
1379   MachineOperand &MO = MI.getOperand(OpIdx);
1380 
1381   LLT OldTy = MRI.getType(MO.getReg());
1382   unsigned OldElts = OldTy.getNumElements();
1383   unsigned NewElts = MoreTy.getNumElements();
1384 
1385   unsigned NumParts = NewElts / OldElts;
1386 
1387   // Use concat_vectors if the result is a multiple of the number of elements.
1388   if (NumParts * OldElts == NewElts) {
1389     SmallVector<Register, 8> Parts;
1390     Parts.push_back(MO.getReg());
1391 
1392     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1393     for (unsigned I = 1; I != NumParts; ++I)
1394       Parts.push_back(ImpDef);
1395 
1396     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1397     MO.setReg(Concat.getReg(0));
1398     return;
1399   }
1400 
1401   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1402   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1403   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1404   MO.setReg(MoreReg);
1405 }
1406 
bitcastSrc(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1407 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1408   MachineOperand &Op = MI.getOperand(OpIdx);
1409   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1410 }
1411 
bitcastDst(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1412 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1413   MachineOperand &MO = MI.getOperand(OpIdx);
1414   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1415   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1416   MIRBuilder.buildBitcast(MO, CastDst);
1417   MO.setReg(CastDst);
1418 }
1419 
1420 LegalizerHelper::LegalizeResult
widenScalarMergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1421 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1422                                         LLT WideTy) {
1423   if (TypeIdx != 1)
1424     return UnableToLegalize;
1425 
1426   Register DstReg = MI.getOperand(0).getReg();
1427   LLT DstTy = MRI.getType(DstReg);
1428   if (DstTy.isVector())
1429     return UnableToLegalize;
1430 
1431   Register Src1 = MI.getOperand(1).getReg();
1432   LLT SrcTy = MRI.getType(Src1);
1433   const int DstSize = DstTy.getSizeInBits();
1434   const int SrcSize = SrcTy.getSizeInBits();
1435   const int WideSize = WideTy.getSizeInBits();
1436   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1437 
1438   unsigned NumOps = MI.getNumOperands();
1439   unsigned NumSrc = MI.getNumOperands() - 1;
1440   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1441 
1442   if (WideSize >= DstSize) {
1443     // Directly pack the bits in the target type.
1444     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1445 
1446     for (unsigned I = 2; I != NumOps; ++I) {
1447       const unsigned Offset = (I - 1) * PartSize;
1448 
1449       Register SrcReg = MI.getOperand(I).getReg();
1450       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1451 
1452       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1453 
1454       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1455         MRI.createGenericVirtualRegister(WideTy);
1456 
1457       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1458       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1459       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1460       ResultReg = NextResult;
1461     }
1462 
1463     if (WideSize > DstSize)
1464       MIRBuilder.buildTrunc(DstReg, ResultReg);
1465     else if (DstTy.isPointer())
1466       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1467 
1468     MI.eraseFromParent();
1469     return Legalized;
1470   }
1471 
1472   // Unmerge the original values to the GCD type, and recombine to the next
1473   // multiple greater than the original type.
1474   //
1475   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1476   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1477   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1478   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1479   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1480   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1481   // %12:_(s12) = G_MERGE_VALUES %10, %11
1482   //
1483   // Padding with undef if necessary:
1484   //
1485   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1486   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1487   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1488   // %7:_(s2) = G_IMPLICIT_DEF
1489   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1490   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1491   // %10:_(s12) = G_MERGE_VALUES %8, %9
1492 
1493   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1494   LLT GCDTy = LLT::scalar(GCD);
1495 
1496   SmallVector<Register, 8> Parts;
1497   SmallVector<Register, 8> NewMergeRegs;
1498   SmallVector<Register, 8> Unmerges;
1499   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1500 
1501   // Decompose the original operands if they don't evenly divide.
1502   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1503     Register SrcReg = MI.getOperand(I).getReg();
1504     if (GCD == SrcSize) {
1505       Unmerges.push_back(SrcReg);
1506     } else {
1507       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1508       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1509         Unmerges.push_back(Unmerge.getReg(J));
1510     }
1511   }
1512 
1513   // Pad with undef to the next size that is a multiple of the requested size.
1514   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1515     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1516     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1517       Unmerges.push_back(UndefReg);
1518   }
1519 
1520   const int PartsPerGCD = WideSize / GCD;
1521 
1522   // Build merges of each piece.
1523   ArrayRef<Register> Slicer(Unmerges);
1524   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1525     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1526     NewMergeRegs.push_back(Merge.getReg(0));
1527   }
1528 
1529   // A truncate may be necessary if the requested type doesn't evenly divide the
1530   // original result type.
1531   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1532     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1533   } else {
1534     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1535     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1536   }
1537 
1538   MI.eraseFromParent();
1539   return Legalized;
1540 }
1541 
widenWithUnmerge(LLT WideTy,Register OrigReg)1542 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1543   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1544   LLT OrigTy = MRI.getType(OrigReg);
1545   LLT LCMTy = getLCMType(WideTy, OrigTy);
1546 
1547   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1548   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1549 
1550   Register UnmergeSrc = WideReg;
1551 
1552   // Create a merge to the LCM type, padding with undef
1553   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1554   // =>
1555   // %1:_(<4 x s32>) = G_FOO
1556   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1557   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1558   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1559   if (NumMergeParts > 1) {
1560     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1561     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1562     MergeParts[0] = WideReg;
1563     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1564   }
1565 
1566   // Unmerge to the original register and pad with dead defs.
1567   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1568   UnmergeResults[0] = OrigReg;
1569   for (int I = 1; I != NumUnmergeParts; ++I)
1570     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1571 
1572   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1573   return WideReg;
1574 }
1575 
1576 LegalizerHelper::LegalizeResult
widenScalarUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1577 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1578                                           LLT WideTy) {
1579   if (TypeIdx != 0)
1580     return UnableToLegalize;
1581 
1582   int NumDst = MI.getNumOperands() - 1;
1583   Register SrcReg = MI.getOperand(NumDst).getReg();
1584   LLT SrcTy = MRI.getType(SrcReg);
1585   if (SrcTy.isVector())
1586     return UnableToLegalize;
1587 
1588   Register Dst0Reg = MI.getOperand(0).getReg();
1589   LLT DstTy = MRI.getType(Dst0Reg);
1590   if (!DstTy.isScalar())
1591     return UnableToLegalize;
1592 
1593   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1594     if (SrcTy.isPointer()) {
1595       const DataLayout &DL = MIRBuilder.getDataLayout();
1596       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1597         LLVM_DEBUG(
1598             dbgs() << "Not casting non-integral address space integer\n");
1599         return UnableToLegalize;
1600       }
1601 
1602       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1603       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1604     }
1605 
1606     // Widen SrcTy to WideTy. This does not affect the result, but since the
1607     // user requested this size, it is probably better handled than SrcTy and
1608     // should reduce the total number of legalization artifacts
1609     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1610       SrcTy = WideTy;
1611       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1612     }
1613 
1614     // Theres no unmerge type to target. Directly extract the bits from the
1615     // source type
1616     unsigned DstSize = DstTy.getSizeInBits();
1617 
1618     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1619     for (int I = 1; I != NumDst; ++I) {
1620       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1621       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1622       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1623     }
1624 
1625     MI.eraseFromParent();
1626     return Legalized;
1627   }
1628 
1629   // Extend the source to a wider type.
1630   LLT LCMTy = getLCMType(SrcTy, WideTy);
1631 
1632   Register WideSrc = SrcReg;
1633   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1634     // TODO: If this is an integral address space, cast to integer and anyext.
1635     if (SrcTy.isPointer()) {
1636       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1637       return UnableToLegalize;
1638     }
1639 
1640     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1641   }
1642 
1643   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1644 
1645   // Create a sequence of unmerges and merges to the original results. Since we
1646   // may have widened the source, we will need to pad the results with dead defs
1647   // to cover the source register.
1648   // e.g. widen s48 to s64:
1649   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1650   //
1651   // =>
1652   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1653   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1654   //  ; unpack to GCD type, with extra dead defs
1655   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1656   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1657   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1658   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1659   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1660   const LLT GCDTy = getGCDType(WideTy, DstTy);
1661   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1662   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1663 
1664   // Directly unmerge to the destination without going through a GCD type
1665   // if possible
1666   if (PartsPerRemerge == 1) {
1667     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1668 
1669     for (int I = 0; I != NumUnmerge; ++I) {
1670       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1671 
1672       for (int J = 0; J != PartsPerUnmerge; ++J) {
1673         int Idx = I * PartsPerUnmerge + J;
1674         if (Idx < NumDst)
1675           MIB.addDef(MI.getOperand(Idx).getReg());
1676         else {
1677           // Create dead def for excess components.
1678           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1679         }
1680       }
1681 
1682       MIB.addUse(Unmerge.getReg(I));
1683     }
1684   } else {
1685     SmallVector<Register, 16> Parts;
1686     for (int J = 0; J != NumUnmerge; ++J)
1687       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1688 
1689     SmallVector<Register, 8> RemergeParts;
1690     for (int I = 0; I != NumDst; ++I) {
1691       for (int J = 0; J < PartsPerRemerge; ++J) {
1692         const int Idx = I * PartsPerRemerge + J;
1693         RemergeParts.emplace_back(Parts[Idx]);
1694       }
1695 
1696       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1697       RemergeParts.clear();
1698     }
1699   }
1700 
1701   MI.eraseFromParent();
1702   return Legalized;
1703 }
1704 
1705 LegalizerHelper::LegalizeResult
widenScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1706 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1707                                     LLT WideTy) {
1708   Register DstReg = MI.getOperand(0).getReg();
1709   Register SrcReg = MI.getOperand(1).getReg();
1710   LLT SrcTy = MRI.getType(SrcReg);
1711 
1712   LLT DstTy = MRI.getType(DstReg);
1713   unsigned Offset = MI.getOperand(2).getImm();
1714 
1715   if (TypeIdx == 0) {
1716     if (SrcTy.isVector() || DstTy.isVector())
1717       return UnableToLegalize;
1718 
1719     SrcOp Src(SrcReg);
1720     if (SrcTy.isPointer()) {
1721       // Extracts from pointers can be handled only if they are really just
1722       // simple integers.
1723       const DataLayout &DL = MIRBuilder.getDataLayout();
1724       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1725         return UnableToLegalize;
1726 
1727       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1728       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1729       SrcTy = SrcAsIntTy;
1730     }
1731 
1732     if (DstTy.isPointer())
1733       return UnableToLegalize;
1734 
1735     if (Offset == 0) {
1736       // Avoid a shift in the degenerate case.
1737       MIRBuilder.buildTrunc(DstReg,
1738                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1739       MI.eraseFromParent();
1740       return Legalized;
1741     }
1742 
1743     // Do a shift in the source type.
1744     LLT ShiftTy = SrcTy;
1745     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1746       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1747       ShiftTy = WideTy;
1748     }
1749 
1750     auto LShr = MIRBuilder.buildLShr(
1751       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1752     MIRBuilder.buildTrunc(DstReg, LShr);
1753     MI.eraseFromParent();
1754     return Legalized;
1755   }
1756 
1757   if (SrcTy.isScalar()) {
1758     Observer.changingInstr(MI);
1759     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1760     Observer.changedInstr(MI);
1761     return Legalized;
1762   }
1763 
1764   if (!SrcTy.isVector())
1765     return UnableToLegalize;
1766 
1767   if (DstTy != SrcTy.getElementType())
1768     return UnableToLegalize;
1769 
1770   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1771     return UnableToLegalize;
1772 
1773   Observer.changingInstr(MI);
1774   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1775 
1776   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1777                           Offset);
1778   widenScalarDst(MI, WideTy.getScalarType(), 0);
1779   Observer.changedInstr(MI);
1780   return Legalized;
1781 }
1782 
1783 LegalizerHelper::LegalizeResult
widenScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1784 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1785                                    LLT WideTy) {
1786   if (TypeIdx != 0 || WideTy.isVector())
1787     return UnableToLegalize;
1788   Observer.changingInstr(MI);
1789   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1790   widenScalarDst(MI, WideTy);
1791   Observer.changedInstr(MI);
1792   return Legalized;
1793 }
1794 
1795 LegalizerHelper::LegalizeResult
widenScalarAddSubOverflow(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1796 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1797                                            LLT WideTy) {
1798   if (TypeIdx == 1)
1799     return UnableToLegalize; // TODO
1800 
1801   unsigned Opcode;
1802   unsigned ExtOpcode;
1803   Optional<Register> CarryIn = None;
1804   switch (MI.getOpcode()) {
1805   default:
1806     llvm_unreachable("Unexpected opcode!");
1807   case TargetOpcode::G_SADDO:
1808     Opcode = TargetOpcode::G_ADD;
1809     ExtOpcode = TargetOpcode::G_SEXT;
1810     break;
1811   case TargetOpcode::G_SSUBO:
1812     Opcode = TargetOpcode::G_SUB;
1813     ExtOpcode = TargetOpcode::G_SEXT;
1814     break;
1815   case TargetOpcode::G_UADDO:
1816     Opcode = TargetOpcode::G_ADD;
1817     ExtOpcode = TargetOpcode::G_ZEXT;
1818     break;
1819   case TargetOpcode::G_USUBO:
1820     Opcode = TargetOpcode::G_SUB;
1821     ExtOpcode = TargetOpcode::G_ZEXT;
1822     break;
1823   case TargetOpcode::G_SADDE:
1824     Opcode = TargetOpcode::G_UADDE;
1825     ExtOpcode = TargetOpcode::G_SEXT;
1826     CarryIn = MI.getOperand(4).getReg();
1827     break;
1828   case TargetOpcode::G_SSUBE:
1829     Opcode = TargetOpcode::G_USUBE;
1830     ExtOpcode = TargetOpcode::G_SEXT;
1831     CarryIn = MI.getOperand(4).getReg();
1832     break;
1833   case TargetOpcode::G_UADDE:
1834     Opcode = TargetOpcode::G_UADDE;
1835     ExtOpcode = TargetOpcode::G_ZEXT;
1836     CarryIn = MI.getOperand(4).getReg();
1837     break;
1838   case TargetOpcode::G_USUBE:
1839     Opcode = TargetOpcode::G_USUBE;
1840     ExtOpcode = TargetOpcode::G_ZEXT;
1841     CarryIn = MI.getOperand(4).getReg();
1842     break;
1843   }
1844 
1845   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1846   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1847   // Do the arithmetic in the larger type.
1848   Register NewOp;
1849   if (CarryIn) {
1850     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1851     NewOp = MIRBuilder
1852                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1853                             {LHSExt, RHSExt, *CarryIn})
1854                 .getReg(0);
1855   } else {
1856     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1857   }
1858   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1859   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1860   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1861   // There is no overflow if the ExtOp is the same as NewOp.
1862   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1863   // Now trunc the NewOp to the original result.
1864   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1865   MI.eraseFromParent();
1866   return Legalized;
1867 }
1868 
1869 LegalizerHelper::LegalizeResult
widenScalarAddSubShlSat(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1870 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1871                                          LLT WideTy) {
1872   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1873                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1874                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1875   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1876                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1877   // We can convert this to:
1878   //   1. Any extend iN to iM
1879   //   2. SHL by M-N
1880   //   3. [US][ADD|SUB|SHL]SAT
1881   //   4. L/ASHR by M-N
1882   //
1883   // It may be more efficient to lower this to a min and a max operation in
1884   // the higher precision arithmetic if the promoted operation isn't legal,
1885   // but this decision is up to the target's lowering request.
1886   Register DstReg = MI.getOperand(0).getReg();
1887 
1888   unsigned NewBits = WideTy.getScalarSizeInBits();
1889   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1890 
1891   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1892   // must not left shift the RHS to preserve the shift amount.
1893   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1894   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1895                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1896   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1897   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1898   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1899 
1900   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1901                                         {ShiftL, ShiftR}, MI.getFlags());
1902 
1903   // Use a shift that will preserve the number of sign bits when the trunc is
1904   // folded away.
1905   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1906                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1907 
1908   MIRBuilder.buildTrunc(DstReg, Result);
1909   MI.eraseFromParent();
1910   return Legalized;
1911 }
1912 
1913 LegalizerHelper::LegalizeResult
widenScalarMulo(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1914 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1915                                  LLT WideTy) {
1916   if (TypeIdx == 1)
1917     return UnableToLegalize;
1918 
1919   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1920   Register Result = MI.getOperand(0).getReg();
1921   Register OriginalOverflow = MI.getOperand(1).getReg();
1922   Register LHS = MI.getOperand(2).getReg();
1923   Register RHS = MI.getOperand(3).getReg();
1924   LLT SrcTy = MRI.getType(LHS);
1925   LLT OverflowTy = MRI.getType(OriginalOverflow);
1926   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1927 
1928   // To determine if the result overflowed in the larger type, we extend the
1929   // input to the larger type, do the multiply (checking if it overflows),
1930   // then also check the high bits of the result to see if overflow happened
1931   // there.
1932   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1933   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1934   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1935 
1936   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1937                                     {LeftOperand, RightOperand});
1938   auto Mul = Mulo->getOperand(0);
1939   MIRBuilder.buildTrunc(Result, Mul);
1940 
1941   MachineInstrBuilder ExtResult;
1942   // Overflow occurred if it occurred in the larger type, or if the high part
1943   // of the result does not zero/sign-extend the low part.  Check this second
1944   // possibility first.
1945   if (IsSigned) {
1946     // For signed, overflow occurred when the high part does not sign-extend
1947     // the low part.
1948     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1949   } else {
1950     // Unsigned overflow occurred when the high part does not zero-extend the
1951     // low part.
1952     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1953   }
1954 
1955   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1956   // so we don't need to check the overflow result of larger type Mulo.
1957   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1958     auto Overflow =
1959         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1960     // Finally check if the multiplication in the larger type itself overflowed.
1961     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1962   } else {
1963     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1964   }
1965   MI.eraseFromParent();
1966   return Legalized;
1967 }
1968 
1969 LegalizerHelper::LegalizeResult
widenScalar(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1970 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1971   switch (MI.getOpcode()) {
1972   default:
1973     return UnableToLegalize;
1974   case TargetOpcode::G_ATOMICRMW_XCHG:
1975   case TargetOpcode::G_ATOMICRMW_ADD:
1976   case TargetOpcode::G_ATOMICRMW_SUB:
1977   case TargetOpcode::G_ATOMICRMW_AND:
1978   case TargetOpcode::G_ATOMICRMW_OR:
1979   case TargetOpcode::G_ATOMICRMW_XOR:
1980   case TargetOpcode::G_ATOMICRMW_MIN:
1981   case TargetOpcode::G_ATOMICRMW_MAX:
1982   case TargetOpcode::G_ATOMICRMW_UMIN:
1983   case TargetOpcode::G_ATOMICRMW_UMAX:
1984     assert(TypeIdx == 0 && "atomicrmw with second scalar type");
1985     Observer.changingInstr(MI);
1986     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1987     widenScalarDst(MI, WideTy, 0);
1988     Observer.changedInstr(MI);
1989     return Legalized;
1990   case TargetOpcode::G_ATOMIC_CMPXCHG:
1991     assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
1992     Observer.changingInstr(MI);
1993     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1994     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1995     widenScalarDst(MI, WideTy, 0);
1996     Observer.changedInstr(MI);
1997     return Legalized;
1998   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
1999     if (TypeIdx == 0) {
2000       Observer.changingInstr(MI);
2001       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2002       widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2003       widenScalarDst(MI, WideTy, 0);
2004       Observer.changedInstr(MI);
2005       return Legalized;
2006     }
2007     assert(TypeIdx == 1 &&
2008            "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2009     Observer.changingInstr(MI);
2010     widenScalarDst(MI, WideTy, 1);
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013   case TargetOpcode::G_EXTRACT:
2014     return widenScalarExtract(MI, TypeIdx, WideTy);
2015   case TargetOpcode::G_INSERT:
2016     return widenScalarInsert(MI, TypeIdx, WideTy);
2017   case TargetOpcode::G_MERGE_VALUES:
2018     return widenScalarMergeValues(MI, TypeIdx, WideTy);
2019   case TargetOpcode::G_UNMERGE_VALUES:
2020     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2021   case TargetOpcode::G_SADDO:
2022   case TargetOpcode::G_SSUBO:
2023   case TargetOpcode::G_UADDO:
2024   case TargetOpcode::G_USUBO:
2025   case TargetOpcode::G_SADDE:
2026   case TargetOpcode::G_SSUBE:
2027   case TargetOpcode::G_UADDE:
2028   case TargetOpcode::G_USUBE:
2029     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2030   case TargetOpcode::G_UMULO:
2031   case TargetOpcode::G_SMULO:
2032     return widenScalarMulo(MI, TypeIdx, WideTy);
2033   case TargetOpcode::G_SADDSAT:
2034   case TargetOpcode::G_SSUBSAT:
2035   case TargetOpcode::G_SSHLSAT:
2036   case TargetOpcode::G_UADDSAT:
2037   case TargetOpcode::G_USUBSAT:
2038   case TargetOpcode::G_USHLSAT:
2039     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2040   case TargetOpcode::G_CTTZ:
2041   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2042   case TargetOpcode::G_CTLZ:
2043   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2044   case TargetOpcode::G_CTPOP: {
2045     if (TypeIdx == 0) {
2046       Observer.changingInstr(MI);
2047       widenScalarDst(MI, WideTy, 0);
2048       Observer.changedInstr(MI);
2049       return Legalized;
2050     }
2051 
2052     Register SrcReg = MI.getOperand(1).getReg();
2053 
2054     // First ZEXT the input.
2055     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
2056     LLT CurTy = MRI.getType(SrcReg);
2057     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
2058       // The count is the same in the larger type except if the original
2059       // value was zero.  This can be handled by setting the bit just off
2060       // the top of the original type.
2061       auto TopBit =
2062           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2063       MIBSrc = MIRBuilder.buildOr(
2064         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2065     }
2066 
2067     // Perform the operation at the larger size.
2068     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
2069     // This is already the correct result for CTPOP and CTTZs
2070     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2071         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2072       // The correct result is NewOp - (Difference in widety and current ty).
2073       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2074       MIBNewOp = MIRBuilder.buildSub(
2075           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2076     }
2077 
2078     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2079     MI.eraseFromParent();
2080     return Legalized;
2081   }
2082   case TargetOpcode::G_BSWAP: {
2083     Observer.changingInstr(MI);
2084     Register DstReg = MI.getOperand(0).getReg();
2085 
2086     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2087     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2088     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2089     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2090 
2091     MI.getOperand(0).setReg(DstExt);
2092 
2093     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2094 
2095     LLT Ty = MRI.getType(DstReg);
2096     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2097     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2098     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2099 
2100     MIRBuilder.buildTrunc(DstReg, ShrReg);
2101     Observer.changedInstr(MI);
2102     return Legalized;
2103   }
2104   case TargetOpcode::G_BITREVERSE: {
2105     Observer.changingInstr(MI);
2106 
2107     Register DstReg = MI.getOperand(0).getReg();
2108     LLT Ty = MRI.getType(DstReg);
2109     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2110 
2111     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2112     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2113     MI.getOperand(0).setReg(DstExt);
2114     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2115 
2116     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2117     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2118     MIRBuilder.buildTrunc(DstReg, Shift);
2119     Observer.changedInstr(MI);
2120     return Legalized;
2121   }
2122   case TargetOpcode::G_FREEZE:
2123     Observer.changingInstr(MI);
2124     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2125     widenScalarDst(MI, WideTy);
2126     Observer.changedInstr(MI);
2127     return Legalized;
2128 
2129   case TargetOpcode::G_ABS:
2130     Observer.changingInstr(MI);
2131     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2132     widenScalarDst(MI, WideTy);
2133     Observer.changedInstr(MI);
2134     return Legalized;
2135 
2136   case TargetOpcode::G_ADD:
2137   case TargetOpcode::G_AND:
2138   case TargetOpcode::G_MUL:
2139   case TargetOpcode::G_OR:
2140   case TargetOpcode::G_XOR:
2141   case TargetOpcode::G_SUB:
2142     // Perform operation at larger width (any extension is fines here, high bits
2143     // don't affect the result) and then truncate the result back to the
2144     // original type.
2145     Observer.changingInstr(MI);
2146     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2147     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2148     widenScalarDst(MI, WideTy);
2149     Observer.changedInstr(MI);
2150     return Legalized;
2151 
2152   case TargetOpcode::G_SBFX:
2153   case TargetOpcode::G_UBFX:
2154     Observer.changingInstr(MI);
2155 
2156     if (TypeIdx == 0) {
2157       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2158       widenScalarDst(MI, WideTy);
2159     } else {
2160       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2161       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2162     }
2163 
2164     Observer.changedInstr(MI);
2165     return Legalized;
2166 
2167   case TargetOpcode::G_SHL:
2168     Observer.changingInstr(MI);
2169 
2170     if (TypeIdx == 0) {
2171       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2172       widenScalarDst(MI, WideTy);
2173     } else {
2174       assert(TypeIdx == 1);
2175       // The "number of bits to shift" operand must preserve its value as an
2176       // unsigned integer:
2177       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2178     }
2179 
2180     Observer.changedInstr(MI);
2181     return Legalized;
2182 
2183   case TargetOpcode::G_SDIV:
2184   case TargetOpcode::G_SREM:
2185   case TargetOpcode::G_SMIN:
2186   case TargetOpcode::G_SMAX:
2187     Observer.changingInstr(MI);
2188     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2189     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2190     widenScalarDst(MI, WideTy);
2191     Observer.changedInstr(MI);
2192     return Legalized;
2193 
2194   case TargetOpcode::G_SDIVREM:
2195     Observer.changingInstr(MI);
2196     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2197     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2198     widenScalarDst(MI, WideTy);
2199     widenScalarDst(MI, WideTy, 1);
2200     Observer.changedInstr(MI);
2201     return Legalized;
2202 
2203   case TargetOpcode::G_ASHR:
2204   case TargetOpcode::G_LSHR:
2205     Observer.changingInstr(MI);
2206 
2207     if (TypeIdx == 0) {
2208       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2209         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2210 
2211       widenScalarSrc(MI, WideTy, 1, CvtOp);
2212       widenScalarDst(MI, WideTy);
2213     } else {
2214       assert(TypeIdx == 1);
2215       // The "number of bits to shift" operand must preserve its value as an
2216       // unsigned integer:
2217       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2218     }
2219 
2220     Observer.changedInstr(MI);
2221     return Legalized;
2222   case TargetOpcode::G_UDIV:
2223   case TargetOpcode::G_UREM:
2224   case TargetOpcode::G_UMIN:
2225   case TargetOpcode::G_UMAX:
2226     Observer.changingInstr(MI);
2227     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2228     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2229     widenScalarDst(MI, WideTy);
2230     Observer.changedInstr(MI);
2231     return Legalized;
2232 
2233   case TargetOpcode::G_UDIVREM:
2234     Observer.changingInstr(MI);
2235     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2236     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2237     widenScalarDst(MI, WideTy);
2238     widenScalarDst(MI, WideTy, 1);
2239     Observer.changedInstr(MI);
2240     return Legalized;
2241 
2242   case TargetOpcode::G_SELECT:
2243     Observer.changingInstr(MI);
2244     if (TypeIdx == 0) {
2245       // Perform operation at larger width (any extension is fine here, high
2246       // bits don't affect the result) and then truncate the result back to the
2247       // original type.
2248       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2249       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2250       widenScalarDst(MI, WideTy);
2251     } else {
2252       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2253       // Explicit extension is required here since high bits affect the result.
2254       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2255     }
2256     Observer.changedInstr(MI);
2257     return Legalized;
2258 
2259   case TargetOpcode::G_FPTOSI:
2260   case TargetOpcode::G_FPTOUI:
2261     Observer.changingInstr(MI);
2262 
2263     if (TypeIdx == 0)
2264       widenScalarDst(MI, WideTy);
2265     else
2266       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2267 
2268     Observer.changedInstr(MI);
2269     return Legalized;
2270   case TargetOpcode::G_SITOFP:
2271     Observer.changingInstr(MI);
2272 
2273     if (TypeIdx == 0)
2274       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2275     else
2276       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2277 
2278     Observer.changedInstr(MI);
2279     return Legalized;
2280   case TargetOpcode::G_UITOFP:
2281     Observer.changingInstr(MI);
2282 
2283     if (TypeIdx == 0)
2284       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2285     else
2286       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2287 
2288     Observer.changedInstr(MI);
2289     return Legalized;
2290   case TargetOpcode::G_LOAD:
2291   case TargetOpcode::G_SEXTLOAD:
2292   case TargetOpcode::G_ZEXTLOAD:
2293     Observer.changingInstr(MI);
2294     widenScalarDst(MI, WideTy);
2295     Observer.changedInstr(MI);
2296     return Legalized;
2297 
2298   case TargetOpcode::G_STORE: {
2299     if (TypeIdx != 0)
2300       return UnableToLegalize;
2301 
2302     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2303     if (!Ty.isScalar())
2304       return UnableToLegalize;
2305 
2306     Observer.changingInstr(MI);
2307 
2308     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2309       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2310     widenScalarSrc(MI, WideTy, 0, ExtType);
2311 
2312     Observer.changedInstr(MI);
2313     return Legalized;
2314   }
2315   case TargetOpcode::G_CONSTANT: {
2316     MachineOperand &SrcMO = MI.getOperand(1);
2317     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2318     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2319         MRI.getType(MI.getOperand(0).getReg()));
2320     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2321             ExtOpc == TargetOpcode::G_ANYEXT) &&
2322            "Illegal Extend");
2323     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2324     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2325                            ? SrcVal.sext(WideTy.getSizeInBits())
2326                            : SrcVal.zext(WideTy.getSizeInBits());
2327     Observer.changingInstr(MI);
2328     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2329 
2330     widenScalarDst(MI, WideTy);
2331     Observer.changedInstr(MI);
2332     return Legalized;
2333   }
2334   case TargetOpcode::G_FCONSTANT: {
2335     MachineOperand &SrcMO = MI.getOperand(1);
2336     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2337     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2338     bool LosesInfo;
2339     switch (WideTy.getSizeInBits()) {
2340     case 32:
2341       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2342                   &LosesInfo);
2343       break;
2344     case 64:
2345       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2346                   &LosesInfo);
2347       break;
2348     default:
2349       return UnableToLegalize;
2350     }
2351 
2352     assert(!LosesInfo && "extend should always be lossless");
2353 
2354     Observer.changingInstr(MI);
2355     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2356 
2357     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2358     Observer.changedInstr(MI);
2359     return Legalized;
2360   }
2361   case TargetOpcode::G_IMPLICIT_DEF: {
2362     Observer.changingInstr(MI);
2363     widenScalarDst(MI, WideTy);
2364     Observer.changedInstr(MI);
2365     return Legalized;
2366   }
2367   case TargetOpcode::G_BRCOND:
2368     Observer.changingInstr(MI);
2369     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2370     Observer.changedInstr(MI);
2371     return Legalized;
2372 
2373   case TargetOpcode::G_FCMP:
2374     Observer.changingInstr(MI);
2375     if (TypeIdx == 0)
2376       widenScalarDst(MI, WideTy);
2377     else {
2378       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2379       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2380     }
2381     Observer.changedInstr(MI);
2382     return Legalized;
2383 
2384   case TargetOpcode::G_ICMP:
2385     Observer.changingInstr(MI);
2386     if (TypeIdx == 0)
2387       widenScalarDst(MI, WideTy);
2388     else {
2389       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2390                                MI.getOperand(1).getPredicate()))
2391                                ? TargetOpcode::G_SEXT
2392                                : TargetOpcode::G_ZEXT;
2393       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2394       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2395     }
2396     Observer.changedInstr(MI);
2397     return Legalized;
2398 
2399   case TargetOpcode::G_PTR_ADD:
2400     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2401     Observer.changingInstr(MI);
2402     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2403     Observer.changedInstr(MI);
2404     return Legalized;
2405 
2406   case TargetOpcode::G_PHI: {
2407     assert(TypeIdx == 0 && "Expecting only Idx 0");
2408 
2409     Observer.changingInstr(MI);
2410     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2411       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2412       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2413       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2414     }
2415 
2416     MachineBasicBlock &MBB = *MI.getParent();
2417     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2418     widenScalarDst(MI, WideTy);
2419     Observer.changedInstr(MI);
2420     return Legalized;
2421   }
2422   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2423     if (TypeIdx == 0) {
2424       Register VecReg = MI.getOperand(1).getReg();
2425       LLT VecTy = MRI.getType(VecReg);
2426       Observer.changingInstr(MI);
2427 
2428       widenScalarSrc(
2429           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2430           TargetOpcode::G_SEXT);
2431 
2432       widenScalarDst(MI, WideTy, 0);
2433       Observer.changedInstr(MI);
2434       return Legalized;
2435     }
2436 
2437     if (TypeIdx != 2)
2438       return UnableToLegalize;
2439     Observer.changingInstr(MI);
2440     // TODO: Probably should be zext
2441     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2442     Observer.changedInstr(MI);
2443     return Legalized;
2444   }
2445   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2446     if (TypeIdx == 1) {
2447       Observer.changingInstr(MI);
2448 
2449       Register VecReg = MI.getOperand(1).getReg();
2450       LLT VecTy = MRI.getType(VecReg);
2451       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2452 
2453       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2454       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2455       widenScalarDst(MI, WideVecTy, 0);
2456       Observer.changedInstr(MI);
2457       return Legalized;
2458     }
2459 
2460     if (TypeIdx == 2) {
2461       Observer.changingInstr(MI);
2462       // TODO: Probably should be zext
2463       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2464       Observer.changedInstr(MI);
2465       return Legalized;
2466     }
2467 
2468     return UnableToLegalize;
2469   }
2470   case TargetOpcode::G_FADD:
2471   case TargetOpcode::G_FMUL:
2472   case TargetOpcode::G_FSUB:
2473   case TargetOpcode::G_FMA:
2474   case TargetOpcode::G_FMAD:
2475   case TargetOpcode::G_FNEG:
2476   case TargetOpcode::G_FABS:
2477   case TargetOpcode::G_FCANONICALIZE:
2478   case TargetOpcode::G_FMINNUM:
2479   case TargetOpcode::G_FMAXNUM:
2480   case TargetOpcode::G_FMINNUM_IEEE:
2481   case TargetOpcode::G_FMAXNUM_IEEE:
2482   case TargetOpcode::G_FMINIMUM:
2483   case TargetOpcode::G_FMAXIMUM:
2484   case TargetOpcode::G_FDIV:
2485   case TargetOpcode::G_FREM:
2486   case TargetOpcode::G_FCEIL:
2487   case TargetOpcode::G_FFLOOR:
2488   case TargetOpcode::G_FCOS:
2489   case TargetOpcode::G_FSIN:
2490   case TargetOpcode::G_FLOG10:
2491   case TargetOpcode::G_FLOG:
2492   case TargetOpcode::G_FLOG2:
2493   case TargetOpcode::G_FRINT:
2494   case TargetOpcode::G_FNEARBYINT:
2495   case TargetOpcode::G_FSQRT:
2496   case TargetOpcode::G_FEXP:
2497   case TargetOpcode::G_FEXP2:
2498   case TargetOpcode::G_FPOW:
2499   case TargetOpcode::G_INTRINSIC_TRUNC:
2500   case TargetOpcode::G_INTRINSIC_ROUND:
2501   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2502     assert(TypeIdx == 0);
2503     Observer.changingInstr(MI);
2504 
2505     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2506       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2507 
2508     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2509     Observer.changedInstr(MI);
2510     return Legalized;
2511   case TargetOpcode::G_FPOWI: {
2512     if (TypeIdx != 0)
2513       return UnableToLegalize;
2514     Observer.changingInstr(MI);
2515     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2516     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2517     Observer.changedInstr(MI);
2518     return Legalized;
2519   }
2520   case TargetOpcode::G_INTTOPTR:
2521     if (TypeIdx != 1)
2522       return UnableToLegalize;
2523 
2524     Observer.changingInstr(MI);
2525     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2526     Observer.changedInstr(MI);
2527     return Legalized;
2528   case TargetOpcode::G_PTRTOINT:
2529     if (TypeIdx != 0)
2530       return UnableToLegalize;
2531 
2532     Observer.changingInstr(MI);
2533     widenScalarDst(MI, WideTy, 0);
2534     Observer.changedInstr(MI);
2535     return Legalized;
2536   case TargetOpcode::G_BUILD_VECTOR: {
2537     Observer.changingInstr(MI);
2538 
2539     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2540     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2541       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2542 
2543     // Avoid changing the result vector type if the source element type was
2544     // requested.
2545     if (TypeIdx == 1) {
2546       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2547     } else {
2548       widenScalarDst(MI, WideTy, 0);
2549     }
2550 
2551     Observer.changedInstr(MI);
2552     return Legalized;
2553   }
2554   case TargetOpcode::G_SEXT_INREG:
2555     if (TypeIdx != 0)
2556       return UnableToLegalize;
2557 
2558     Observer.changingInstr(MI);
2559     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2560     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2561     Observer.changedInstr(MI);
2562     return Legalized;
2563   case TargetOpcode::G_PTRMASK: {
2564     if (TypeIdx != 1)
2565       return UnableToLegalize;
2566     Observer.changingInstr(MI);
2567     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2568     Observer.changedInstr(MI);
2569     return Legalized;
2570   }
2571   }
2572 }
2573 
getUnmergePieces(SmallVectorImpl<Register> & Pieces,MachineIRBuilder & B,Register Src,LLT Ty)2574 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2575                              MachineIRBuilder &B, Register Src, LLT Ty) {
2576   auto Unmerge = B.buildUnmerge(Ty, Src);
2577   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2578     Pieces.push_back(Unmerge.getReg(I));
2579 }
2580 
2581 LegalizerHelper::LegalizeResult
lowerBitcast(MachineInstr & MI)2582 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2583   Register Dst = MI.getOperand(0).getReg();
2584   Register Src = MI.getOperand(1).getReg();
2585   LLT DstTy = MRI.getType(Dst);
2586   LLT SrcTy = MRI.getType(Src);
2587 
2588   if (SrcTy.isVector()) {
2589     LLT SrcEltTy = SrcTy.getElementType();
2590     SmallVector<Register, 8> SrcRegs;
2591 
2592     if (DstTy.isVector()) {
2593       int NumDstElt = DstTy.getNumElements();
2594       int NumSrcElt = SrcTy.getNumElements();
2595 
2596       LLT DstEltTy = DstTy.getElementType();
2597       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2598       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2599 
2600       // If there's an element size mismatch, insert intermediate casts to match
2601       // the result element type.
2602       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2603         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2604         //
2605         // =>
2606         //
2607         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2608         // %3:_(<2 x s8>) = G_BITCAST %2
2609         // %4:_(<2 x s8>) = G_BITCAST %3
2610         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2611         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2612         SrcPartTy = SrcEltTy;
2613       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2614         //
2615         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2616         //
2617         // =>
2618         //
2619         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2620         // %3:_(s16) = G_BITCAST %2
2621         // %4:_(s16) = G_BITCAST %3
2622         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2623         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2624         DstCastTy = DstEltTy;
2625       }
2626 
2627       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2628       for (Register &SrcReg : SrcRegs)
2629         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2630     } else
2631       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2632 
2633     MIRBuilder.buildMerge(Dst, SrcRegs);
2634     MI.eraseFromParent();
2635     return Legalized;
2636   }
2637 
2638   if (DstTy.isVector()) {
2639     SmallVector<Register, 8> SrcRegs;
2640     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2641     MIRBuilder.buildMerge(Dst, SrcRegs);
2642     MI.eraseFromParent();
2643     return Legalized;
2644   }
2645 
2646   return UnableToLegalize;
2647 }
2648 
2649 /// Figure out the bit offset into a register when coercing a vector index for
2650 /// the wide element type. This is only for the case when promoting vector to
2651 /// one with larger elements.
2652 //
2653 ///
2654 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2655 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
getBitcastWiderVectorElementOffset(MachineIRBuilder & B,Register Idx,unsigned NewEltSize,unsigned OldEltSize)2656 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2657                                                    Register Idx,
2658                                                    unsigned NewEltSize,
2659                                                    unsigned OldEltSize) {
2660   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2661   LLT IdxTy = B.getMRI()->getType(Idx);
2662 
2663   // Now figure out the amount we need to shift to get the target bits.
2664   auto OffsetMask = B.buildConstant(
2665     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2666   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2667   return B.buildShl(IdxTy, OffsetIdx,
2668                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2669 }
2670 
2671 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2672 /// is casting to a vector with a smaller element size, perform multiple element
2673 /// extracts and merge the results. If this is coercing to a vector with larger
2674 /// elements, index the bitcasted vector and extract the target element with bit
2675 /// operations. This is intended to force the indexing in the native register
2676 /// size for architectures that can dynamically index the register file.
2677 LegalizerHelper::LegalizeResult
bitcastExtractVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2678 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2679                                          LLT CastTy) {
2680   if (TypeIdx != 1)
2681     return UnableToLegalize;
2682 
2683   Register Dst = MI.getOperand(0).getReg();
2684   Register SrcVec = MI.getOperand(1).getReg();
2685   Register Idx = MI.getOperand(2).getReg();
2686   LLT SrcVecTy = MRI.getType(SrcVec);
2687   LLT IdxTy = MRI.getType(Idx);
2688 
2689   LLT SrcEltTy = SrcVecTy.getElementType();
2690   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2691   unsigned OldNumElts = SrcVecTy.getNumElements();
2692 
2693   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2694   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2695 
2696   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2697   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2698   if (NewNumElts > OldNumElts) {
2699     // Decreasing the vector element size
2700     //
2701     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2702     //  =>
2703     //  v4i32:castx = bitcast x:v2i64
2704     //
2705     // i64 = bitcast
2706     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2707     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2708     //
2709     if (NewNumElts % OldNumElts != 0)
2710       return UnableToLegalize;
2711 
2712     // Type of the intermediate result vector.
2713     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2714     LLT MidTy =
2715         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2716 
2717     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2718 
2719     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2720     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2721 
2722     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2723       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2724       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2725       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2726       NewOps[I] = Elt.getReg(0);
2727     }
2728 
2729     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2730     MIRBuilder.buildBitcast(Dst, NewVec);
2731     MI.eraseFromParent();
2732     return Legalized;
2733   }
2734 
2735   if (NewNumElts < OldNumElts) {
2736     if (NewEltSize % OldEltSize != 0)
2737       return UnableToLegalize;
2738 
2739     // This only depends on powers of 2 because we use bit tricks to figure out
2740     // the bit offset we need to shift to get the target element. A general
2741     // expansion could emit division/multiply.
2742     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2743       return UnableToLegalize;
2744 
2745     // Increasing the vector element size.
2746     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2747     //
2748     //   =>
2749     //
2750     // %cast = G_BITCAST %vec
2751     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2752     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2753     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2754     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2755     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2756     // %elt = G_TRUNC %elt_bits
2757 
2758     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2759     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2760 
2761     // Divide to get the index in the wider element type.
2762     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2763 
2764     Register WideElt = CastVec;
2765     if (CastTy.isVector()) {
2766       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2767                                                      ScaledIdx).getReg(0);
2768     }
2769 
2770     // Compute the bit offset into the register of the target element.
2771     Register OffsetBits = getBitcastWiderVectorElementOffset(
2772       MIRBuilder, Idx, NewEltSize, OldEltSize);
2773 
2774     // Shift the wide element to get the target element.
2775     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2776     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2777     MI.eraseFromParent();
2778     return Legalized;
2779   }
2780 
2781   return UnableToLegalize;
2782 }
2783 
2784 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2785 /// TargetReg, while preserving other bits in \p TargetReg.
2786 ///
2787 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
buildBitFieldInsert(MachineIRBuilder & B,Register TargetReg,Register InsertReg,Register OffsetBits)2788 static Register buildBitFieldInsert(MachineIRBuilder &B,
2789                                     Register TargetReg, Register InsertReg,
2790                                     Register OffsetBits) {
2791   LLT TargetTy = B.getMRI()->getType(TargetReg);
2792   LLT InsertTy = B.getMRI()->getType(InsertReg);
2793   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2794   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2795 
2796   // Produce a bitmask of the value to insert
2797   auto EltMask = B.buildConstant(
2798     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2799                                    InsertTy.getSizeInBits()));
2800   // Shift it into position
2801   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2802   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2803 
2804   // Clear out the bits in the wide element
2805   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2806 
2807   // The value to insert has all zeros already, so stick it into the masked
2808   // wide element.
2809   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2810 }
2811 
2812 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2813 /// is increasing the element size, perform the indexing in the target element
2814 /// type, and use bit operations to insert at the element position. This is
2815 /// intended for architectures that can dynamically index the register file and
2816 /// want to force indexing in the native register size.
2817 LegalizerHelper::LegalizeResult
bitcastInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2818 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2819                                         LLT CastTy) {
2820   if (TypeIdx != 0)
2821     return UnableToLegalize;
2822 
2823   Register Dst = MI.getOperand(0).getReg();
2824   Register SrcVec = MI.getOperand(1).getReg();
2825   Register Val = MI.getOperand(2).getReg();
2826   Register Idx = MI.getOperand(3).getReg();
2827 
2828   LLT VecTy = MRI.getType(Dst);
2829   LLT IdxTy = MRI.getType(Idx);
2830 
2831   LLT VecEltTy = VecTy.getElementType();
2832   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2833   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2834   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2835 
2836   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2837   unsigned OldNumElts = VecTy.getNumElements();
2838 
2839   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2840   if (NewNumElts < OldNumElts) {
2841     if (NewEltSize % OldEltSize != 0)
2842       return UnableToLegalize;
2843 
2844     // This only depends on powers of 2 because we use bit tricks to figure out
2845     // the bit offset we need to shift to get the target element. A general
2846     // expansion could emit division/multiply.
2847     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2848       return UnableToLegalize;
2849 
2850     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2851     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2852 
2853     // Divide to get the index in the wider element type.
2854     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2855 
2856     Register ExtractedElt = CastVec;
2857     if (CastTy.isVector()) {
2858       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2859                                                           ScaledIdx).getReg(0);
2860     }
2861 
2862     // Compute the bit offset into the register of the target element.
2863     Register OffsetBits = getBitcastWiderVectorElementOffset(
2864       MIRBuilder, Idx, NewEltSize, OldEltSize);
2865 
2866     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2867                                                Val, OffsetBits);
2868     if (CastTy.isVector()) {
2869       InsertedElt = MIRBuilder.buildInsertVectorElement(
2870         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2871     }
2872 
2873     MIRBuilder.buildBitcast(Dst, InsertedElt);
2874     MI.eraseFromParent();
2875     return Legalized;
2876   }
2877 
2878   return UnableToLegalize;
2879 }
2880 
lowerLoad(GAnyLoad & LoadMI)2881 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2882   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2883   Register DstReg = LoadMI.getDstReg();
2884   Register PtrReg = LoadMI.getPointerReg();
2885   LLT DstTy = MRI.getType(DstReg);
2886   MachineMemOperand &MMO = LoadMI.getMMO();
2887   LLT MemTy = MMO.getMemoryType();
2888   MachineFunction &MF = MIRBuilder.getMF();
2889   if (MemTy.isVector())
2890     return UnableToLegalize;
2891 
2892   unsigned MemSizeInBits = MemTy.getSizeInBits();
2893   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2894 
2895   if (MemSizeInBits != MemStoreSizeInBits) {
2896     // Promote to a byte-sized load if not loading an integral number of
2897     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2898     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2899     MachineMemOperand *NewMMO =
2900         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2901 
2902     Register LoadReg = DstReg;
2903     LLT LoadTy = DstTy;
2904 
2905     // If this wasn't already an extending load, we need to widen the result
2906     // register to avoid creating a load with a narrower result than the source.
2907     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2908       LoadTy = WideMemTy;
2909       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2910     }
2911 
2912     if (isa<GSExtLoad>(LoadMI)) {
2913       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2914       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2915     } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) {
2916       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2917       // The extra bits are guaranteed to be zero, since we stored them that
2918       // way.  A zext load from Wide thus automatically gives zext from MemVT.
2919       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
2920     } else {
2921       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
2922     }
2923 
2924     if (DstTy != LoadTy)
2925       MIRBuilder.buildTrunc(DstReg, LoadReg);
2926 
2927     LoadMI.eraseFromParent();
2928     return Legalized;
2929   }
2930 
2931   // This load needs splitting into power of 2 sized loads.
2932   if (DstTy.isVector())
2933     return UnableToLegalize;
2934   if (isPowerOf2_32(MemSizeInBits))
2935     return UnableToLegalize; // Don't know what we're being asked to do.
2936 
2937   // Big endian lowering not implemented.
2938   if (MIRBuilder.getDataLayout().isBigEndian())
2939     return UnableToLegalize;
2940 
2941   // Our strategy here is to generate anyextending loads for the smaller
2942   // types up to next power-2 result type, and then combine the two larger
2943   // result values together, before truncating back down to the non-pow-2
2944   // type.
2945   // E.g. v1 = i24 load =>
2946   // v2 = i32 zextload (2 byte)
2947   // v3 = i32 load (1 byte)
2948   // v4 = i32 shl v3, 16
2949   // v5 = i32 or v4, v2
2950   // v1 = i24 trunc v5
2951   // By doing this we generate the correct truncate which should get
2952   // combined away as an artifact with a matching extend.
2953   uint64_t LargeSplitSize = PowerOf2Floor(MemSizeInBits);
2954   uint64_t SmallSplitSize = MemSizeInBits - LargeSplitSize;
2955 
2956   MachineMemOperand *LargeMMO =
2957       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2958   MachineMemOperand *SmallMMO =
2959       MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2960 
2961   LLT PtrTy = MRI.getType(PtrReg);
2962   unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
2963   LLT AnyExtTy = LLT::scalar(AnyExtSize);
2964   auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
2965                                              PtrReg, *LargeMMO);
2966 
2967   auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
2968                                             LargeSplitSize / 8);
2969   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2970   auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2971   auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
2972                                              SmallPtr, *SmallMMO);
2973 
2974   auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2975   auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2976 
2977   if (AnyExtTy == DstTy)
2978     MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
2979   else {
2980     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2981     MIRBuilder.buildTrunc(DstReg, {Or});
2982   }
2983 
2984   LoadMI.eraseFromParent();
2985   return Legalized;
2986 }
2987 
lowerStore(GStore & StoreMI)2988 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
2989   // Lower a non-power of 2 store into multiple pow-2 stores.
2990   // E.g. split an i24 store into an i16 store + i8 store.
2991   // We do this by first extending the stored value to the next largest power
2992   // of 2 type, and then using truncating stores to store the components.
2993   // By doing this, likewise with G_LOAD, generate an extend that can be
2994   // artifact-combined away instead of leaving behind extracts.
2995   Register SrcReg = StoreMI.getValueReg();
2996   Register PtrReg = StoreMI.getPointerReg();
2997   LLT SrcTy = MRI.getType(SrcReg);
2998   MachineFunction &MF = MIRBuilder.getMF();
2999   MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3000   LLT MemTy = MMO.getMemoryType();
3001 
3002   if (SrcTy.isVector())
3003     return UnableToLegalize;
3004 
3005   unsigned StoreWidth = MemTy.getSizeInBits();
3006   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3007 
3008   if (StoreWidth != StoreSizeInBits) {
3009     // Promote to a byte-sized store with upper bits zero if not
3010     // storing an integral number of bytes.  For example, promote
3011     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3012     LLT WideTy = LLT::scalar(StoreSizeInBits);
3013 
3014     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3015       // Avoid creating a store with a narrower source than result.
3016       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3017       SrcTy = WideTy;
3018     }
3019 
3020     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3021 
3022     MachineMemOperand *NewMMO =
3023         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3024     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3025     StoreMI.eraseFromParent();
3026     return Legalized;
3027   }
3028 
3029   if (isPowerOf2_32(MemTy.getSizeInBits()))
3030     return UnableToLegalize; // Don't know what we're being asked to do.
3031 
3032   // Extend to the next pow-2. If this store was itself the result of lowering,
3033   // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3034   // that's wider the stored size.
3035   const LLT NewSrcTy = LLT::scalar(NextPowerOf2(MemTy.getSizeInBits()));
3036   auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3037 
3038   // Obtain the smaller value by shifting away the larger value.
3039   uint64_t LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3040   uint64_t SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3041   auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3042   auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3043 
3044   // Generate the PtrAdd and truncating stores.
3045   LLT PtrTy = MRI.getType(PtrReg);
3046   auto OffsetCst = MIRBuilder.buildConstant(
3047     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3048   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3049   auto SmallPtr =
3050     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3051 
3052   MachineMemOperand *LargeMMO =
3053     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3054   MachineMemOperand *SmallMMO =
3055     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3056   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3057   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3058   StoreMI.eraseFromParent();
3059   return Legalized;
3060 }
3061 
3062 LegalizerHelper::LegalizeResult
bitcast(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)3063 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3064   switch (MI.getOpcode()) {
3065   case TargetOpcode::G_LOAD: {
3066     if (TypeIdx != 0)
3067       return UnableToLegalize;
3068     MachineMemOperand &MMO = **MI.memoperands_begin();
3069 
3070     // Not sure how to interpret a bitcast of an extending load.
3071     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3072       return UnableToLegalize;
3073 
3074     Observer.changingInstr(MI);
3075     bitcastDst(MI, CastTy, 0);
3076     MMO.setType(CastTy);
3077     Observer.changedInstr(MI);
3078     return Legalized;
3079   }
3080   case TargetOpcode::G_STORE: {
3081     if (TypeIdx != 0)
3082       return UnableToLegalize;
3083 
3084     MachineMemOperand &MMO = **MI.memoperands_begin();
3085 
3086     // Not sure how to interpret a bitcast of a truncating store.
3087     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3088       return UnableToLegalize;
3089 
3090     Observer.changingInstr(MI);
3091     bitcastSrc(MI, CastTy, 0);
3092     MMO.setType(CastTy);
3093     Observer.changedInstr(MI);
3094     return Legalized;
3095   }
3096   case TargetOpcode::G_SELECT: {
3097     if (TypeIdx != 0)
3098       return UnableToLegalize;
3099 
3100     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3101       LLVM_DEBUG(
3102           dbgs() << "bitcast action not implemented for vector select\n");
3103       return UnableToLegalize;
3104     }
3105 
3106     Observer.changingInstr(MI);
3107     bitcastSrc(MI, CastTy, 2);
3108     bitcastSrc(MI, CastTy, 3);
3109     bitcastDst(MI, CastTy, 0);
3110     Observer.changedInstr(MI);
3111     return Legalized;
3112   }
3113   case TargetOpcode::G_AND:
3114   case TargetOpcode::G_OR:
3115   case TargetOpcode::G_XOR: {
3116     Observer.changingInstr(MI);
3117     bitcastSrc(MI, CastTy, 1);
3118     bitcastSrc(MI, CastTy, 2);
3119     bitcastDst(MI, CastTy, 0);
3120     Observer.changedInstr(MI);
3121     return Legalized;
3122   }
3123   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3124     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3125   case TargetOpcode::G_INSERT_VECTOR_ELT:
3126     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3127   default:
3128     return UnableToLegalize;
3129   }
3130 }
3131 
3132 // Legalize an instruction by changing the opcode in place.
changeOpcode(MachineInstr & MI,unsigned NewOpcode)3133 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3134     Observer.changingInstr(MI);
3135     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3136     Observer.changedInstr(MI);
3137 }
3138 
3139 LegalizerHelper::LegalizeResult
lower(MachineInstr & MI,unsigned TypeIdx,LLT LowerHintTy)3140 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3141   using namespace TargetOpcode;
3142 
3143   switch(MI.getOpcode()) {
3144   default:
3145     return UnableToLegalize;
3146   case TargetOpcode::G_BITCAST:
3147     return lowerBitcast(MI);
3148   case TargetOpcode::G_SREM:
3149   case TargetOpcode::G_UREM: {
3150     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3151     auto Quot =
3152         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3153                               {MI.getOperand(1), MI.getOperand(2)});
3154 
3155     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3156     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3157     MI.eraseFromParent();
3158     return Legalized;
3159   }
3160   case TargetOpcode::G_SADDO:
3161   case TargetOpcode::G_SSUBO:
3162     return lowerSADDO_SSUBO(MI);
3163   case TargetOpcode::G_UMULH:
3164   case TargetOpcode::G_SMULH:
3165     return lowerSMULH_UMULH(MI);
3166   case TargetOpcode::G_SMULO:
3167   case TargetOpcode::G_UMULO: {
3168     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3169     // result.
3170     Register Res = MI.getOperand(0).getReg();
3171     Register Overflow = MI.getOperand(1).getReg();
3172     Register LHS = MI.getOperand(2).getReg();
3173     Register RHS = MI.getOperand(3).getReg();
3174     LLT Ty = MRI.getType(Res);
3175 
3176     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3177                           ? TargetOpcode::G_SMULH
3178                           : TargetOpcode::G_UMULH;
3179 
3180     Observer.changingInstr(MI);
3181     const auto &TII = MIRBuilder.getTII();
3182     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3183     MI.RemoveOperand(1);
3184     Observer.changedInstr(MI);
3185 
3186     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3187     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3188 
3189     // Move insert point forward so we can use the Res register if needed.
3190     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3191 
3192     // For *signed* multiply, overflow is detected by checking:
3193     // (hi != (lo >> bitwidth-1))
3194     if (Opcode == TargetOpcode::G_SMULH) {
3195       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3196       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3197       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3198     } else {
3199       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3200     }
3201     return Legalized;
3202   }
3203   case TargetOpcode::G_FNEG: {
3204     Register Res = MI.getOperand(0).getReg();
3205     LLT Ty = MRI.getType(Res);
3206 
3207     // TODO: Handle vector types once we are able to
3208     // represent them.
3209     if (Ty.isVector())
3210       return UnableToLegalize;
3211     auto SignMask =
3212         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3213     Register SubByReg = MI.getOperand(1).getReg();
3214     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3215     MI.eraseFromParent();
3216     return Legalized;
3217   }
3218   case TargetOpcode::G_FSUB: {
3219     Register Res = MI.getOperand(0).getReg();
3220     LLT Ty = MRI.getType(Res);
3221 
3222     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3223     // First, check if G_FNEG is marked as Lower. If so, we may
3224     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3225     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3226       return UnableToLegalize;
3227     Register LHS = MI.getOperand(1).getReg();
3228     Register RHS = MI.getOperand(2).getReg();
3229     Register Neg = MRI.createGenericVirtualRegister(Ty);
3230     MIRBuilder.buildFNeg(Neg, RHS);
3231     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3232     MI.eraseFromParent();
3233     return Legalized;
3234   }
3235   case TargetOpcode::G_FMAD:
3236     return lowerFMad(MI);
3237   case TargetOpcode::G_FFLOOR:
3238     return lowerFFloor(MI);
3239   case TargetOpcode::G_INTRINSIC_ROUND:
3240     return lowerIntrinsicRound(MI);
3241   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3242     // Since round even is the assumed rounding mode for unconstrained FP
3243     // operations, rint and roundeven are the same operation.
3244     changeOpcode(MI, TargetOpcode::G_FRINT);
3245     return Legalized;
3246   }
3247   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3248     Register OldValRes = MI.getOperand(0).getReg();
3249     Register SuccessRes = MI.getOperand(1).getReg();
3250     Register Addr = MI.getOperand(2).getReg();
3251     Register CmpVal = MI.getOperand(3).getReg();
3252     Register NewVal = MI.getOperand(4).getReg();
3253     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3254                                   **MI.memoperands_begin());
3255     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3256     MI.eraseFromParent();
3257     return Legalized;
3258   }
3259   case TargetOpcode::G_LOAD:
3260   case TargetOpcode::G_SEXTLOAD:
3261   case TargetOpcode::G_ZEXTLOAD:
3262     return lowerLoad(cast<GAnyLoad>(MI));
3263   case TargetOpcode::G_STORE:
3264     return lowerStore(cast<GStore>(MI));
3265   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3266   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3267   case TargetOpcode::G_CTLZ:
3268   case TargetOpcode::G_CTTZ:
3269   case TargetOpcode::G_CTPOP:
3270     return lowerBitCount(MI);
3271   case G_UADDO: {
3272     Register Res = MI.getOperand(0).getReg();
3273     Register CarryOut = MI.getOperand(1).getReg();
3274     Register LHS = MI.getOperand(2).getReg();
3275     Register RHS = MI.getOperand(3).getReg();
3276 
3277     MIRBuilder.buildAdd(Res, LHS, RHS);
3278     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3279 
3280     MI.eraseFromParent();
3281     return Legalized;
3282   }
3283   case G_UADDE: {
3284     Register Res = MI.getOperand(0).getReg();
3285     Register CarryOut = MI.getOperand(1).getReg();
3286     Register LHS = MI.getOperand(2).getReg();
3287     Register RHS = MI.getOperand(3).getReg();
3288     Register CarryIn = MI.getOperand(4).getReg();
3289     LLT Ty = MRI.getType(Res);
3290 
3291     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3292     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3293     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3294     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3295 
3296     MI.eraseFromParent();
3297     return Legalized;
3298   }
3299   case G_USUBO: {
3300     Register Res = MI.getOperand(0).getReg();
3301     Register BorrowOut = MI.getOperand(1).getReg();
3302     Register LHS = MI.getOperand(2).getReg();
3303     Register RHS = MI.getOperand(3).getReg();
3304 
3305     MIRBuilder.buildSub(Res, LHS, RHS);
3306     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3307 
3308     MI.eraseFromParent();
3309     return Legalized;
3310   }
3311   case G_USUBE: {
3312     Register Res = MI.getOperand(0).getReg();
3313     Register BorrowOut = MI.getOperand(1).getReg();
3314     Register LHS = MI.getOperand(2).getReg();
3315     Register RHS = MI.getOperand(3).getReg();
3316     Register BorrowIn = MI.getOperand(4).getReg();
3317     const LLT CondTy = MRI.getType(BorrowOut);
3318     const LLT Ty = MRI.getType(Res);
3319 
3320     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3321     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3322     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3323 
3324     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3325     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3326     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3327 
3328     MI.eraseFromParent();
3329     return Legalized;
3330   }
3331   case G_UITOFP:
3332     return lowerUITOFP(MI);
3333   case G_SITOFP:
3334     return lowerSITOFP(MI);
3335   case G_FPTOUI:
3336     return lowerFPTOUI(MI);
3337   case G_FPTOSI:
3338     return lowerFPTOSI(MI);
3339   case G_FPTRUNC:
3340     return lowerFPTRUNC(MI);
3341   case G_FPOWI:
3342     return lowerFPOWI(MI);
3343   case G_SMIN:
3344   case G_SMAX:
3345   case G_UMIN:
3346   case G_UMAX:
3347     return lowerMinMax(MI);
3348   case G_FCOPYSIGN:
3349     return lowerFCopySign(MI);
3350   case G_FMINNUM:
3351   case G_FMAXNUM:
3352     return lowerFMinNumMaxNum(MI);
3353   case G_MERGE_VALUES:
3354     return lowerMergeValues(MI);
3355   case G_UNMERGE_VALUES:
3356     return lowerUnmergeValues(MI);
3357   case TargetOpcode::G_SEXT_INREG: {
3358     assert(MI.getOperand(2).isImm() && "Expected immediate");
3359     int64_t SizeInBits = MI.getOperand(2).getImm();
3360 
3361     Register DstReg = MI.getOperand(0).getReg();
3362     Register SrcReg = MI.getOperand(1).getReg();
3363     LLT DstTy = MRI.getType(DstReg);
3364     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3365 
3366     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3367     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3368     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3369     MI.eraseFromParent();
3370     return Legalized;
3371   }
3372   case G_EXTRACT_VECTOR_ELT:
3373   case G_INSERT_VECTOR_ELT:
3374     return lowerExtractInsertVectorElt(MI);
3375   case G_SHUFFLE_VECTOR:
3376     return lowerShuffleVector(MI);
3377   case G_DYN_STACKALLOC:
3378     return lowerDynStackAlloc(MI);
3379   case G_EXTRACT:
3380     return lowerExtract(MI);
3381   case G_INSERT:
3382     return lowerInsert(MI);
3383   case G_BSWAP:
3384     return lowerBswap(MI);
3385   case G_BITREVERSE:
3386     return lowerBitreverse(MI);
3387   case G_READ_REGISTER:
3388   case G_WRITE_REGISTER:
3389     return lowerReadWriteRegister(MI);
3390   case G_UADDSAT:
3391   case G_USUBSAT: {
3392     // Try to make a reasonable guess about which lowering strategy to use. The
3393     // target can override this with custom lowering and calling the
3394     // implementation functions.
3395     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3396     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3397       return lowerAddSubSatToMinMax(MI);
3398     return lowerAddSubSatToAddoSubo(MI);
3399   }
3400   case G_SADDSAT:
3401   case G_SSUBSAT: {
3402     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3403 
3404     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3405     // since it's a shorter expansion. However, we would need to figure out the
3406     // preferred boolean type for the carry out for the query.
3407     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3408       return lowerAddSubSatToMinMax(MI);
3409     return lowerAddSubSatToAddoSubo(MI);
3410   }
3411   case G_SSHLSAT:
3412   case G_USHLSAT:
3413     return lowerShlSat(MI);
3414   case G_ABS:
3415     return lowerAbsToAddXor(MI);
3416   case G_SELECT:
3417     return lowerSelect(MI);
3418   case G_SDIVREM:
3419   case G_UDIVREM:
3420     return lowerDIVREM(MI);
3421   case G_FSHL:
3422   case G_FSHR:
3423     return lowerFunnelShift(MI);
3424   case G_ROTL:
3425   case G_ROTR:
3426     return lowerRotate(MI);
3427   }
3428 }
3429 
getStackTemporaryAlignment(LLT Ty,Align MinAlign) const3430 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3431                                                   Align MinAlign) const {
3432   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3433   // datalayout for the preferred alignment. Also there should be a target hook
3434   // for this to allow targets to reduce the alignment and ignore the
3435   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3436   // the type.
3437   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3438 }
3439 
3440 MachineInstrBuilder
createStackTemporary(TypeSize Bytes,Align Alignment,MachinePointerInfo & PtrInfo)3441 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3442                                       MachinePointerInfo &PtrInfo) {
3443   MachineFunction &MF = MIRBuilder.getMF();
3444   const DataLayout &DL = MIRBuilder.getDataLayout();
3445   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3446 
3447   unsigned AddrSpace = DL.getAllocaAddrSpace();
3448   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3449 
3450   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3451   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3452 }
3453 
clampDynamicVectorIndex(MachineIRBuilder & B,Register IdxReg,LLT VecTy)3454 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3455                                         LLT VecTy) {
3456   int64_t IdxVal;
3457   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3458     return IdxReg;
3459 
3460   LLT IdxTy = B.getMRI()->getType(IdxReg);
3461   unsigned NElts = VecTy.getNumElements();
3462   if (isPowerOf2_32(NElts)) {
3463     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3464     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3465   }
3466 
3467   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3468       .getReg(0);
3469 }
3470 
getVectorElementPointer(Register VecPtr,LLT VecTy,Register Index)3471 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3472                                                   Register Index) {
3473   LLT EltTy = VecTy.getElementType();
3474 
3475   // Calculate the element offset and add it to the pointer.
3476   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3477   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3478          "Converting bits to bytes lost precision");
3479 
3480   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3481 
3482   LLT IdxTy = MRI.getType(Index);
3483   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3484                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3485 
3486   LLT PtrTy = MRI.getType(VecPtr);
3487   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3488 }
3489 
fewerElementsVectorImplicitDef(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3490 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3491     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3492   Register DstReg = MI.getOperand(0).getReg();
3493   LLT DstTy = MRI.getType(DstReg);
3494   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3495 
3496   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3497 
3498   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3499   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3500 
3501   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3502   MI.eraseFromParent();
3503   return Legalized;
3504 }
3505 
3506 // Handle splitting vector operations which need to have the same number of
3507 // elements in each type index, but each type index may have a different element
3508 // type.
3509 //
3510 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3511 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3512 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3513 //
3514 // Also handles some irregular breakdown cases, e.g.
3515 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3516 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3517 //             s64 = G_SHL s64, s32
3518 LegalizerHelper::LegalizeResult
fewerElementsVectorMultiEltType(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTyArg)3519 LegalizerHelper::fewerElementsVectorMultiEltType(
3520   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3521   if (TypeIdx != 0)
3522     return UnableToLegalize;
3523 
3524   const LLT NarrowTy0 = NarrowTyArg;
3525   const Register DstReg = MI.getOperand(0).getReg();
3526   LLT DstTy = MRI.getType(DstReg);
3527   LLT LeftoverTy0;
3528 
3529   // All of the operands need to have the same number of elements, so if we can
3530   // determine a type breakdown for the result type, we can for all of the
3531   // source types.
3532   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3533   if (NumParts < 0)
3534     return UnableToLegalize;
3535 
3536   SmallVector<MachineInstrBuilder, 4> NewInsts;
3537 
3538   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3539   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3540 
3541   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3542     Register SrcReg = MI.getOperand(I).getReg();
3543     LLT SrcTyI = MRI.getType(SrcReg);
3544     const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount()
3545                                             : ElementCount::getFixed(1);
3546     LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType());
3547     LLT LeftoverTyI;
3548 
3549     // Split this operand into the requested typed registers, and any leftover
3550     // required to reproduce the original type.
3551     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3552                       LeftoverRegs))
3553       return UnableToLegalize;
3554 
3555     if (I == 1) {
3556       // For the first operand, create an instruction for each part and setup
3557       // the result.
3558       for (Register PartReg : PartRegs) {
3559         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3560         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3561                                .addDef(PartDstReg)
3562                                .addUse(PartReg));
3563         DstRegs.push_back(PartDstReg);
3564       }
3565 
3566       for (Register LeftoverReg : LeftoverRegs) {
3567         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3568         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3569                                .addDef(PartDstReg)
3570                                .addUse(LeftoverReg));
3571         LeftoverDstRegs.push_back(PartDstReg);
3572       }
3573     } else {
3574       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3575 
3576       // Add the newly created operand splits to the existing instructions. The
3577       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3578       // pieces.
3579       unsigned InstCount = 0;
3580       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3581         NewInsts[InstCount++].addUse(PartRegs[J]);
3582       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3583         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3584     }
3585 
3586     PartRegs.clear();
3587     LeftoverRegs.clear();
3588   }
3589 
3590   // Insert the newly built operations and rebuild the result register.
3591   for (auto &MIB : NewInsts)
3592     MIRBuilder.insertInstr(MIB);
3593 
3594   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3595 
3596   MI.eraseFromParent();
3597   return Legalized;
3598 }
3599 
3600 LegalizerHelper::LegalizeResult
fewerElementsVectorCasts(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3601 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3602                                           LLT NarrowTy) {
3603   if (TypeIdx != 0)
3604     return UnableToLegalize;
3605 
3606   Register DstReg = MI.getOperand(0).getReg();
3607   Register SrcReg = MI.getOperand(1).getReg();
3608   LLT DstTy = MRI.getType(DstReg);
3609   LLT SrcTy = MRI.getType(SrcReg);
3610 
3611   LLT NarrowTy0 = NarrowTy;
3612   LLT NarrowTy1;
3613   unsigned NumParts;
3614 
3615   if (NarrowTy.isVector()) {
3616     // Uneven breakdown not handled.
3617     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3618     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3619       return UnableToLegalize;
3620 
3621     NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType());
3622   } else {
3623     NumParts = DstTy.getNumElements();
3624     NarrowTy1 = SrcTy.getElementType();
3625   }
3626 
3627   SmallVector<Register, 4> SrcRegs, DstRegs;
3628   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3629 
3630   for (unsigned I = 0; I < NumParts; ++I) {
3631     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3632     MachineInstr *NewInst =
3633         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3634 
3635     NewInst->setFlags(MI.getFlags());
3636     DstRegs.push_back(DstReg);
3637   }
3638 
3639   if (NarrowTy.isVector())
3640     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3641   else
3642     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3643 
3644   MI.eraseFromParent();
3645   return Legalized;
3646 }
3647 
3648 LegalizerHelper::LegalizeResult
fewerElementsVectorCmp(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3649 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3650                                         LLT NarrowTy) {
3651   Register DstReg = MI.getOperand(0).getReg();
3652   Register Src0Reg = MI.getOperand(2).getReg();
3653   LLT DstTy = MRI.getType(DstReg);
3654   LLT SrcTy = MRI.getType(Src0Reg);
3655 
3656   unsigned NumParts;
3657   LLT NarrowTy0, NarrowTy1;
3658 
3659   if (TypeIdx == 0) {
3660     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3661     unsigned OldElts = DstTy.getNumElements();
3662 
3663     NarrowTy0 = NarrowTy;
3664     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3665     NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(),
3666                                                   SrcTy.getScalarSizeInBits())
3667                                     : SrcTy.getElementType();
3668 
3669   } else {
3670     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3671     unsigned OldElts = SrcTy.getNumElements();
3672 
3673     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3674       NarrowTy.getNumElements();
3675     NarrowTy0 =
3676         LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits());
3677     NarrowTy1 = NarrowTy;
3678   }
3679 
3680   // FIXME: Don't know how to handle the situation where the small vectors
3681   // aren't all the same size yet.
3682   if (NarrowTy1.isVector() &&
3683       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3684     return UnableToLegalize;
3685 
3686   CmpInst::Predicate Pred
3687     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3688 
3689   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3690   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3691   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3692 
3693   for (unsigned I = 0; I < NumParts; ++I) {
3694     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3695     DstRegs.push_back(DstReg);
3696 
3697     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3698       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3699     else {
3700       MachineInstr *NewCmp
3701         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3702       NewCmp->setFlags(MI.getFlags());
3703     }
3704   }
3705 
3706   if (NarrowTy1.isVector())
3707     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3708   else
3709     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3710 
3711   MI.eraseFromParent();
3712   return Legalized;
3713 }
3714 
3715 LegalizerHelper::LegalizeResult
fewerElementsVectorSelect(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3716 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3717                                            LLT NarrowTy) {
3718   Register DstReg = MI.getOperand(0).getReg();
3719   Register CondReg = MI.getOperand(1).getReg();
3720 
3721   unsigned NumParts = 0;
3722   LLT NarrowTy0, NarrowTy1;
3723 
3724   LLT DstTy = MRI.getType(DstReg);
3725   LLT CondTy = MRI.getType(CondReg);
3726   unsigned Size = DstTy.getSizeInBits();
3727 
3728   assert(TypeIdx == 0 || CondTy.isVector());
3729 
3730   if (TypeIdx == 0) {
3731     NarrowTy0 = NarrowTy;
3732     NarrowTy1 = CondTy;
3733 
3734     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3735     // FIXME: Don't know how to handle the situation where the small vectors
3736     // aren't all the same size yet.
3737     if (Size % NarrowSize != 0)
3738       return UnableToLegalize;
3739 
3740     NumParts = Size / NarrowSize;
3741 
3742     // Need to break down the condition type
3743     if (CondTy.isVector()) {
3744       if (CondTy.getNumElements() == NumParts)
3745         NarrowTy1 = CondTy.getElementType();
3746       else
3747         NarrowTy1 =
3748             LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts),
3749                         CondTy.getScalarSizeInBits());
3750     }
3751   } else {
3752     NumParts = CondTy.getNumElements();
3753     if (NarrowTy.isVector()) {
3754       // TODO: Handle uneven breakdown.
3755       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3756         return UnableToLegalize;
3757 
3758       return UnableToLegalize;
3759     } else {
3760       NarrowTy0 = DstTy.getElementType();
3761       NarrowTy1 = NarrowTy;
3762     }
3763   }
3764 
3765   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3766   if (CondTy.isVector())
3767     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3768 
3769   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3770   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3771 
3772   for (unsigned i = 0; i < NumParts; ++i) {
3773     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3774     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3775                            Src1Regs[i], Src2Regs[i]);
3776     DstRegs.push_back(DstReg);
3777   }
3778 
3779   if (NarrowTy0.isVector())
3780     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3781   else
3782     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3783 
3784   MI.eraseFromParent();
3785   return Legalized;
3786 }
3787 
3788 LegalizerHelper::LegalizeResult
fewerElementsVectorPhi(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3789 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3790                                         LLT NarrowTy) {
3791   const Register DstReg = MI.getOperand(0).getReg();
3792   LLT PhiTy = MRI.getType(DstReg);
3793   LLT LeftoverTy;
3794 
3795   // All of the operands need to have the same number of elements, so if we can
3796   // determine a type breakdown for the result type, we can for all of the
3797   // source types.
3798   int NumParts, NumLeftover;
3799   std::tie(NumParts, NumLeftover)
3800     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3801   if (NumParts < 0)
3802     return UnableToLegalize;
3803 
3804   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3805   SmallVector<MachineInstrBuilder, 4> NewInsts;
3806 
3807   const int TotalNumParts = NumParts + NumLeftover;
3808 
3809   // Insert the new phis in the result block first.
3810   for (int I = 0; I != TotalNumParts; ++I) {
3811     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3812     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3813     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3814                        .addDef(PartDstReg));
3815     if (I < NumParts)
3816       DstRegs.push_back(PartDstReg);
3817     else
3818       LeftoverDstRegs.push_back(PartDstReg);
3819   }
3820 
3821   MachineBasicBlock *MBB = MI.getParent();
3822   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3823   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3824 
3825   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3826 
3827   // Insert code to extract the incoming values in each predecessor block.
3828   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3829     PartRegs.clear();
3830     LeftoverRegs.clear();
3831 
3832     Register SrcReg = MI.getOperand(I).getReg();
3833     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3834     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3835 
3836     LLT Unused;
3837     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3838                       LeftoverRegs))
3839       return UnableToLegalize;
3840 
3841     // Add the newly created operand splits to the existing instructions. The
3842     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3843     // pieces.
3844     for (int J = 0; J != TotalNumParts; ++J) {
3845       MachineInstrBuilder MIB = NewInsts[J];
3846       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3847       MIB.addMBB(&OpMBB);
3848     }
3849   }
3850 
3851   MI.eraseFromParent();
3852   return Legalized;
3853 }
3854 
3855 LegalizerHelper::LegalizeResult
fewerElementsVectorUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3856 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3857                                                   unsigned TypeIdx,
3858                                                   LLT NarrowTy) {
3859   if (TypeIdx != 1)
3860     return UnableToLegalize;
3861 
3862   const int NumDst = MI.getNumOperands() - 1;
3863   const Register SrcReg = MI.getOperand(NumDst).getReg();
3864   LLT SrcTy = MRI.getType(SrcReg);
3865 
3866   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3867 
3868   // TODO: Create sequence of extracts.
3869   if (DstTy == NarrowTy)
3870     return UnableToLegalize;
3871 
3872   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3873   if (DstTy == GCDTy) {
3874     // This would just be a copy of the same unmerge.
3875     // TODO: Create extracts, pad with undef and create intermediate merges.
3876     return UnableToLegalize;
3877   }
3878 
3879   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3880   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3881   const int PartsPerUnmerge = NumDst / NumUnmerge;
3882 
3883   for (int I = 0; I != NumUnmerge; ++I) {
3884     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3885 
3886     for (int J = 0; J != PartsPerUnmerge; ++J)
3887       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3888     MIB.addUse(Unmerge.getReg(I));
3889   }
3890 
3891   MI.eraseFromParent();
3892   return Legalized;
3893 }
3894 
3895 LegalizerHelper::LegalizeResult
fewerElementsVectorMulo(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3896 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3897                                          LLT NarrowTy) {
3898   Register Result = MI.getOperand(0).getReg();
3899   Register Overflow = MI.getOperand(1).getReg();
3900   Register LHS = MI.getOperand(2).getReg();
3901   Register RHS = MI.getOperand(3).getReg();
3902 
3903   LLT SrcTy = MRI.getType(LHS);
3904   if (!SrcTy.isVector())
3905     return UnableToLegalize;
3906 
3907   LLT ElementType = SrcTy.getElementType();
3908   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3909   const ElementCount NumResult = SrcTy.getElementCount();
3910   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3911 
3912   // Unmerge the operands to smaller parts of GCD type.
3913   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3914   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3915 
3916   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3917   const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps);
3918   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3919   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3920 
3921   // Perform the operation over unmerged parts.
3922   SmallVector<Register, 8> ResultParts;
3923   SmallVector<Register, 8> OverflowParts;
3924   for (int I = 0; I != NumOps; ++I) {
3925     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3926     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3927     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3928                                          {Operand1, Operand2});
3929     ResultParts.push_back(PartMul->getOperand(0).getReg());
3930     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3931   }
3932 
3933   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3934   LLT OverflowLCMTy =
3935       LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy);
3936 
3937   // Recombine the pieces to the original result and overflow registers.
3938   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3939   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3940   MI.eraseFromParent();
3941   return Legalized;
3942 }
3943 
3944 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3945 // a vector
3946 //
3947 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3948 // undef as necessary.
3949 //
3950 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3951 //   -> <2 x s16>
3952 //
3953 // %4:_(s16) = G_IMPLICIT_DEF
3954 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3955 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3956 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3957 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3958 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3959 LegalizerHelper::LegalizeResult
fewerElementsVectorMerge(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3960 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3961                                           LLT NarrowTy) {
3962   Register DstReg = MI.getOperand(0).getReg();
3963   LLT DstTy = MRI.getType(DstReg);
3964   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3965   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3966 
3967   // Break into a common type
3968   SmallVector<Register, 16> Parts;
3969   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3970     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3971 
3972   // Build the requested new merge, padding with undef.
3973   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3974                                   TargetOpcode::G_ANYEXT);
3975 
3976   // Pack into the original result register.
3977   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3978 
3979   MI.eraseFromParent();
3980   return Legalized;
3981 }
3982 
3983 LegalizerHelper::LegalizeResult
fewerElementsVectorExtractInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowVecTy)3984 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3985                                                            unsigned TypeIdx,
3986                                                            LLT NarrowVecTy) {
3987   Register DstReg = MI.getOperand(0).getReg();
3988   Register SrcVec = MI.getOperand(1).getReg();
3989   Register InsertVal;
3990   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3991 
3992   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3993   if (IsInsert)
3994     InsertVal = MI.getOperand(2).getReg();
3995 
3996   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3997 
3998   // TODO: Handle total scalarization case.
3999   if (!NarrowVecTy.isVector())
4000     return UnableToLegalize;
4001 
4002   LLT VecTy = MRI.getType(SrcVec);
4003 
4004   // If the index is a constant, we can really break this down as you would
4005   // expect, and index into the target size pieces.
4006   int64_t IdxVal;
4007   auto MaybeCst =
4008       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
4009                                         /*HandleFConstants*/ false);
4010   if (MaybeCst) {
4011     IdxVal = MaybeCst->Value.getSExtValue();
4012     // Avoid out of bounds indexing the pieces.
4013     if (IdxVal >= VecTy.getNumElements()) {
4014       MIRBuilder.buildUndef(DstReg);
4015       MI.eraseFromParent();
4016       return Legalized;
4017     }
4018 
4019     SmallVector<Register, 8> VecParts;
4020     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4021 
4022     // Build a sequence of NarrowTy pieces in VecParts for this operand.
4023     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4024                                     TargetOpcode::G_ANYEXT);
4025 
4026     unsigned NewNumElts = NarrowVecTy.getNumElements();
4027 
4028     LLT IdxTy = MRI.getType(Idx);
4029     int64_t PartIdx = IdxVal / NewNumElts;
4030     auto NewIdx =
4031         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4032 
4033     if (IsInsert) {
4034       LLT PartTy = MRI.getType(VecParts[PartIdx]);
4035 
4036       // Use the adjusted index to insert into one of the subvectors.
4037       auto InsertPart = MIRBuilder.buildInsertVectorElement(
4038           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4039       VecParts[PartIdx] = InsertPart.getReg(0);
4040 
4041       // Recombine the inserted subvector with the others to reform the result
4042       // vector.
4043       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4044     } else {
4045       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4046     }
4047 
4048     MI.eraseFromParent();
4049     return Legalized;
4050   }
4051 
4052   // With a variable index, we can't perform the operation in a smaller type, so
4053   // we're forced to expand this.
4054   //
4055   // TODO: We could emit a chain of compare/select to figure out which piece to
4056   // index.
4057   return lowerExtractInsertVectorElt(MI);
4058 }
4059 
4060 LegalizerHelper::LegalizeResult
reduceLoadStoreWidth(GLoadStore & LdStMI,unsigned TypeIdx,LLT NarrowTy)4061 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4062                                       LLT NarrowTy) {
4063   // FIXME: Don't know how to handle secondary types yet.
4064   if (TypeIdx != 0)
4065     return UnableToLegalize;
4066 
4067   // This implementation doesn't work for atomics. Give up instead of doing
4068   // something invalid.
4069   if (LdStMI.isAtomic())
4070     return UnableToLegalize;
4071 
4072   bool IsLoad = isa<GLoad>(LdStMI);
4073   Register ValReg = LdStMI.getReg(0);
4074   Register AddrReg = LdStMI.getPointerReg();
4075   LLT ValTy = MRI.getType(ValReg);
4076 
4077   // FIXME: Do we need a distinct NarrowMemory legalize action?
4078   if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4079     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4080     return UnableToLegalize;
4081   }
4082 
4083   int NumParts = -1;
4084   int NumLeftover = -1;
4085   LLT LeftoverTy;
4086   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4087   if (IsLoad) {
4088     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4089   } else {
4090     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4091                      NarrowLeftoverRegs)) {
4092       NumParts = NarrowRegs.size();
4093       NumLeftover = NarrowLeftoverRegs.size();
4094     }
4095   }
4096 
4097   if (NumParts == -1)
4098     return UnableToLegalize;
4099 
4100   LLT PtrTy = MRI.getType(AddrReg);
4101   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4102 
4103   unsigned TotalSize = ValTy.getSizeInBits();
4104 
4105   // Split the load/store into PartTy sized pieces starting at Offset. If this
4106   // is a load, return the new registers in ValRegs. For a store, each elements
4107   // of ValRegs should be PartTy. Returns the next offset that needs to be
4108   // handled.
4109   auto MMO = LdStMI.getMMO();
4110   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4111                              unsigned Offset) -> unsigned {
4112     MachineFunction &MF = MIRBuilder.getMF();
4113     unsigned PartSize = PartTy.getSizeInBits();
4114     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4115          Offset += PartSize, ++Idx) {
4116       unsigned ByteOffset = Offset / 8;
4117       Register NewAddrReg;
4118 
4119       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4120 
4121       MachineMemOperand *NewMMO =
4122           MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4123 
4124       if (IsLoad) {
4125         Register Dst = MRI.createGenericVirtualRegister(PartTy);
4126         ValRegs.push_back(Dst);
4127         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4128       } else {
4129         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4130       }
4131     }
4132 
4133     return Offset;
4134   };
4135 
4136   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
4137 
4138   // Handle the rest of the register if this isn't an even type breakdown.
4139   if (LeftoverTy.isValid())
4140     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
4141 
4142   if (IsLoad) {
4143     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4144                 LeftoverTy, NarrowLeftoverRegs);
4145   }
4146 
4147   LdStMI.eraseFromParent();
4148   return Legalized;
4149 }
4150 
4151 LegalizerHelper::LegalizeResult
reduceOperationWidth(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)4152 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
4153                                       LLT NarrowTy) {
4154   assert(TypeIdx == 0 && "only one type index expected");
4155 
4156   const unsigned Opc = MI.getOpcode();
4157   const int NumDefOps = MI.getNumExplicitDefs();
4158   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
4159   const unsigned Flags = MI.getFlags();
4160   const unsigned NarrowSize = NarrowTy.getSizeInBits();
4161   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
4162 
4163   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
4164                                      "result and 1-3 sources or 2 results and "
4165                                      "1-2 sources");
4166 
4167   SmallVector<Register, 2> DstRegs;
4168   for (int I = 0; I < NumDefOps; ++I)
4169     DstRegs.push_back(MI.getOperand(I).getReg());
4170 
4171   // First of all check whether we are narrowing (changing the element type)
4172   // or reducing the vector elements
4173   const LLT DstTy = MRI.getType(DstRegs[0]);
4174   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
4175 
4176   SmallVector<Register, 8> ExtractedRegs[3];
4177   SmallVector<Register, 8> Parts;
4178 
4179   // Break down all the sources into NarrowTy pieces we can operate on. This may
4180   // involve creating merges to a wider type, padded with undef.
4181   for (int I = 0; I != NumSrcOps; ++I) {
4182     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
4183     LLT SrcTy = MRI.getType(SrcReg);
4184 
4185     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
4186     // For fewerElements, this is a smaller vector with the same element type.
4187     LLT OpNarrowTy;
4188     if (IsNarrow) {
4189       OpNarrowTy = NarrowScalarTy;
4190 
4191       // In case of narrowing, we need to cast vectors to scalars for this to
4192       // work properly
4193       // FIXME: Can we do without the bitcast here if we're narrowing?
4194       if (SrcTy.isVector()) {
4195         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4196         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4197       }
4198     } else {
4199       auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount()
4200                                           : ElementCount::getFixed(1);
4201       OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType());
4202     }
4203 
4204     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4205 
4206     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4207     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4208                         TargetOpcode::G_ANYEXT);
4209   }
4210 
4211   SmallVector<Register, 8> ResultRegs[2];
4212 
4213   // Input operands for each sub-instruction.
4214   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4215 
4216   int NumParts = ExtractedRegs[0].size();
4217   const unsigned DstSize = DstTy.getSizeInBits();
4218   const LLT DstScalarTy = LLT::scalar(DstSize);
4219 
4220   // Narrowing needs to use scalar types
4221   LLT DstLCMTy, NarrowDstTy;
4222   if (IsNarrow) {
4223     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4224     NarrowDstTy = NarrowScalarTy;
4225   } else {
4226     DstLCMTy = getLCMType(DstTy, NarrowTy);
4227     NarrowDstTy = NarrowTy;
4228   }
4229 
4230   // We widened the source registers to satisfy merge/unmerge size
4231   // constraints. We'll have some extra fully undef parts.
4232   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4233 
4234   for (int I = 0; I != NumRealParts; ++I) {
4235     // Emit this instruction on each of the split pieces.
4236     for (int J = 0; J != NumSrcOps; ++J)
4237       InputRegs[J] = ExtractedRegs[J][I];
4238 
4239     MachineInstrBuilder Inst;
4240     if (NumDefOps == 1)
4241       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4242     else
4243       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4244                                    Flags);
4245 
4246     for (int J = 0; J != NumDefOps; ++J)
4247       ResultRegs[J].push_back(Inst.getReg(J));
4248   }
4249 
4250   // Fill out the widened result with undef instead of creating instructions
4251   // with undef inputs.
4252   int NumUndefParts = NumParts - NumRealParts;
4253   if (NumUndefParts != 0) {
4254     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4255     for (int I = 0; I != NumDefOps; ++I)
4256       ResultRegs[I].append(NumUndefParts, Undef);
4257   }
4258 
4259   // Extract the possibly padded result. Use a scratch register if we need to do
4260   // a final bitcast, otherwise use the original result register.
4261   Register MergeDstReg;
4262   for (int I = 0; I != NumDefOps; ++I) {
4263     if (IsNarrow && DstTy.isVector())
4264       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4265     else
4266       MergeDstReg = DstRegs[I];
4267 
4268     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4269 
4270     // Recast to vector if we narrowed a vector
4271     if (IsNarrow && DstTy.isVector())
4272       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4273   }
4274 
4275   MI.eraseFromParent();
4276   return Legalized;
4277 }
4278 
4279 LegalizerHelper::LegalizeResult
fewerElementsVectorSextInReg(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4280 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4281                                               LLT NarrowTy) {
4282   Register DstReg = MI.getOperand(0).getReg();
4283   Register SrcReg = MI.getOperand(1).getReg();
4284   int64_t Imm = MI.getOperand(2).getImm();
4285 
4286   LLT DstTy = MRI.getType(DstReg);
4287 
4288   SmallVector<Register, 8> Parts;
4289   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4290   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4291 
4292   for (Register &R : Parts)
4293     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4294 
4295   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4296 
4297   MI.eraseFromParent();
4298   return Legalized;
4299 }
4300 
4301 LegalizerHelper::LegalizeResult
fewerElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4302 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4303                                      LLT NarrowTy) {
4304   using namespace TargetOpcode;
4305 
4306   switch (MI.getOpcode()) {
4307   case G_IMPLICIT_DEF:
4308     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4309   case G_TRUNC:
4310   case G_AND:
4311   case G_OR:
4312   case G_XOR:
4313   case G_ADD:
4314   case G_SUB:
4315   case G_MUL:
4316   case G_PTR_ADD:
4317   case G_SMULH:
4318   case G_UMULH:
4319   case G_FADD:
4320   case G_FMUL:
4321   case G_FSUB:
4322   case G_FNEG:
4323   case G_FABS:
4324   case G_FCANONICALIZE:
4325   case G_FDIV:
4326   case G_FREM:
4327   case G_FMA:
4328   case G_FMAD:
4329   case G_FPOW:
4330   case G_FEXP:
4331   case G_FEXP2:
4332   case G_FLOG:
4333   case G_FLOG2:
4334   case G_FLOG10:
4335   case G_FNEARBYINT:
4336   case G_FCEIL:
4337   case G_FFLOOR:
4338   case G_FRINT:
4339   case G_INTRINSIC_ROUND:
4340   case G_INTRINSIC_ROUNDEVEN:
4341   case G_INTRINSIC_TRUNC:
4342   case G_FCOS:
4343   case G_FSIN:
4344   case G_FSQRT:
4345   case G_BSWAP:
4346   case G_BITREVERSE:
4347   case G_SDIV:
4348   case G_UDIV:
4349   case G_SREM:
4350   case G_UREM:
4351   case G_SDIVREM:
4352   case G_UDIVREM:
4353   case G_SMIN:
4354   case G_SMAX:
4355   case G_UMIN:
4356   case G_UMAX:
4357   case G_ABS:
4358   case G_FMINNUM:
4359   case G_FMAXNUM:
4360   case G_FMINNUM_IEEE:
4361   case G_FMAXNUM_IEEE:
4362   case G_FMINIMUM:
4363   case G_FMAXIMUM:
4364   case G_FSHL:
4365   case G_FSHR:
4366   case G_FREEZE:
4367   case G_SADDSAT:
4368   case G_SSUBSAT:
4369   case G_UADDSAT:
4370   case G_USUBSAT:
4371     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4372   case G_UMULO:
4373   case G_SMULO:
4374     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4375   case G_SHL:
4376   case G_LSHR:
4377   case G_ASHR:
4378   case G_SSHLSAT:
4379   case G_USHLSAT:
4380   case G_CTLZ:
4381   case G_CTLZ_ZERO_UNDEF:
4382   case G_CTTZ:
4383   case G_CTTZ_ZERO_UNDEF:
4384   case G_CTPOP:
4385   case G_FCOPYSIGN:
4386     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4387   case G_ZEXT:
4388   case G_SEXT:
4389   case G_ANYEXT:
4390   case G_FPEXT:
4391   case G_FPTRUNC:
4392   case G_SITOFP:
4393   case G_UITOFP:
4394   case G_FPTOSI:
4395   case G_FPTOUI:
4396   case G_INTTOPTR:
4397   case G_PTRTOINT:
4398   case G_ADDRSPACE_CAST:
4399     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4400   case G_ICMP:
4401   case G_FCMP:
4402     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4403   case G_SELECT:
4404     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4405   case G_PHI:
4406     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4407   case G_UNMERGE_VALUES:
4408     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4409   case G_BUILD_VECTOR:
4410     assert(TypeIdx == 0 && "not a vector type index");
4411     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4412   case G_CONCAT_VECTORS:
4413     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4414       return UnableToLegalize;
4415     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4416   case G_EXTRACT_VECTOR_ELT:
4417   case G_INSERT_VECTOR_ELT:
4418     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4419   case G_LOAD:
4420   case G_STORE:
4421     return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4422   case G_SEXT_INREG:
4423     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4424   GISEL_VECREDUCE_CASES_NONSEQ
4425     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4426   case G_SHUFFLE_VECTOR:
4427     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4428   default:
4429     return UnableToLegalize;
4430   }
4431 }
4432 
fewerElementsVectorShuffle(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)4433 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4434     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4435   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4436   if (TypeIdx != 0)
4437     return UnableToLegalize;
4438 
4439   Register DstReg = MI.getOperand(0).getReg();
4440   Register Src1Reg = MI.getOperand(1).getReg();
4441   Register Src2Reg = MI.getOperand(2).getReg();
4442   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4443   LLT DstTy = MRI.getType(DstReg);
4444   LLT Src1Ty = MRI.getType(Src1Reg);
4445   LLT Src2Ty = MRI.getType(Src2Reg);
4446   // The shuffle should be canonicalized by now.
4447   if (DstTy != Src1Ty)
4448     return UnableToLegalize;
4449   if (DstTy != Src2Ty)
4450     return UnableToLegalize;
4451 
4452   if (!isPowerOf2_32(DstTy.getNumElements()))
4453     return UnableToLegalize;
4454 
4455   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4456   // Further legalization attempts will be needed to do split further.
4457   NarrowTy =
4458       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4459   unsigned NewElts = NarrowTy.getNumElements();
4460 
4461   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4462   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4463   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4464   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4465                         SplitSrc2Regs[1]};
4466 
4467   Register Hi, Lo;
4468 
4469   // If Lo or Hi uses elements from at most two of the four input vectors, then
4470   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4471   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4472   SmallVector<int, 16> Ops;
4473   for (unsigned High = 0; High < 2; ++High) {
4474     Register &Output = High ? Hi : Lo;
4475 
4476     // Build a shuffle mask for the output, discovering on the fly which
4477     // input vectors to use as shuffle operands (recorded in InputUsed).
4478     // If building a suitable shuffle vector proves too hard, then bail
4479     // out with useBuildVector set.
4480     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4481     unsigned FirstMaskIdx = High * NewElts;
4482     bool UseBuildVector = false;
4483     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4484       // The mask element.  This indexes into the input.
4485       int Idx = Mask[FirstMaskIdx + MaskOffset];
4486 
4487       // The input vector this mask element indexes into.
4488       unsigned Input = (unsigned)Idx / NewElts;
4489 
4490       if (Input >= array_lengthof(Inputs)) {
4491         // The mask element does not index into any input vector.
4492         Ops.push_back(-1);
4493         continue;
4494       }
4495 
4496       // Turn the index into an offset from the start of the input vector.
4497       Idx -= Input * NewElts;
4498 
4499       // Find or create a shuffle vector operand to hold this input.
4500       unsigned OpNo;
4501       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4502         if (InputUsed[OpNo] == Input) {
4503           // This input vector is already an operand.
4504           break;
4505         } else if (InputUsed[OpNo] == -1U) {
4506           // Create a new operand for this input vector.
4507           InputUsed[OpNo] = Input;
4508           break;
4509         }
4510       }
4511 
4512       if (OpNo >= array_lengthof(InputUsed)) {
4513         // More than two input vectors used!  Give up on trying to create a
4514         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4515         UseBuildVector = true;
4516         break;
4517       }
4518 
4519       // Add the mask index for the new shuffle vector.
4520       Ops.push_back(Idx + OpNo * NewElts);
4521     }
4522 
4523     if (UseBuildVector) {
4524       LLT EltTy = NarrowTy.getElementType();
4525       SmallVector<Register, 16> SVOps;
4526 
4527       // Extract the input elements by hand.
4528       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4529         // The mask element.  This indexes into the input.
4530         int Idx = Mask[FirstMaskIdx + MaskOffset];
4531 
4532         // The input vector this mask element indexes into.
4533         unsigned Input = (unsigned)Idx / NewElts;
4534 
4535         if (Input >= array_lengthof(Inputs)) {
4536           // The mask element is "undef" or indexes off the end of the input.
4537           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4538           continue;
4539         }
4540 
4541         // Turn the index into an offset from the start of the input vector.
4542         Idx -= Input * NewElts;
4543 
4544         // Extract the vector element by hand.
4545         SVOps.push_back(MIRBuilder
4546                             .buildExtractVectorElement(
4547                                 EltTy, Inputs[Input],
4548                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4549                             .getReg(0));
4550       }
4551 
4552       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4553       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4554     } else if (InputUsed[0] == -1U) {
4555       // No input vectors were used! The result is undefined.
4556       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4557     } else {
4558       Register Op0 = Inputs[InputUsed[0]];
4559       // If only one input was used, use an undefined vector for the other.
4560       Register Op1 = InputUsed[1] == -1U
4561                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4562                          : Inputs[InputUsed[1]];
4563       // At least one input vector was used. Create a new shuffle vector.
4564       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4565     }
4566 
4567     Ops.clear();
4568   }
4569 
4570   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4571   MI.eraseFromParent();
4572   return Legalized;
4573 }
4574 
fewerElementsVectorReductions(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)4575 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4576     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4577   unsigned Opc = MI.getOpcode();
4578   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4579          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4580          "Sequential reductions not expected");
4581 
4582   if (TypeIdx != 1)
4583     return UnableToLegalize;
4584 
4585   // The semantics of the normal non-sequential reductions allow us to freely
4586   // re-associate the operation.
4587   Register SrcReg = MI.getOperand(1).getReg();
4588   LLT SrcTy = MRI.getType(SrcReg);
4589   Register DstReg = MI.getOperand(0).getReg();
4590   LLT DstTy = MRI.getType(DstReg);
4591 
4592   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4593     return UnableToLegalize;
4594 
4595   SmallVector<Register> SplitSrcs;
4596   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4597   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4598   SmallVector<Register> PartialReductions;
4599   for (unsigned Part = 0; Part < NumParts; ++Part) {
4600     PartialReductions.push_back(
4601         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4602   }
4603 
4604   unsigned ScalarOpc;
4605   switch (Opc) {
4606   case TargetOpcode::G_VECREDUCE_FADD:
4607     ScalarOpc = TargetOpcode::G_FADD;
4608     break;
4609   case TargetOpcode::G_VECREDUCE_FMUL:
4610     ScalarOpc = TargetOpcode::G_FMUL;
4611     break;
4612   case TargetOpcode::G_VECREDUCE_FMAX:
4613     ScalarOpc = TargetOpcode::G_FMAXNUM;
4614     break;
4615   case TargetOpcode::G_VECREDUCE_FMIN:
4616     ScalarOpc = TargetOpcode::G_FMINNUM;
4617     break;
4618   case TargetOpcode::G_VECREDUCE_ADD:
4619     ScalarOpc = TargetOpcode::G_ADD;
4620     break;
4621   case TargetOpcode::G_VECREDUCE_MUL:
4622     ScalarOpc = TargetOpcode::G_MUL;
4623     break;
4624   case TargetOpcode::G_VECREDUCE_AND:
4625     ScalarOpc = TargetOpcode::G_AND;
4626     break;
4627   case TargetOpcode::G_VECREDUCE_OR:
4628     ScalarOpc = TargetOpcode::G_OR;
4629     break;
4630   case TargetOpcode::G_VECREDUCE_XOR:
4631     ScalarOpc = TargetOpcode::G_XOR;
4632     break;
4633   case TargetOpcode::G_VECREDUCE_SMAX:
4634     ScalarOpc = TargetOpcode::G_SMAX;
4635     break;
4636   case TargetOpcode::G_VECREDUCE_SMIN:
4637     ScalarOpc = TargetOpcode::G_SMIN;
4638     break;
4639   case TargetOpcode::G_VECREDUCE_UMAX:
4640     ScalarOpc = TargetOpcode::G_UMAX;
4641     break;
4642   case TargetOpcode::G_VECREDUCE_UMIN:
4643     ScalarOpc = TargetOpcode::G_UMIN;
4644     break;
4645   default:
4646     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4647     return UnableToLegalize;
4648   }
4649 
4650   // If the types involved are powers of 2, we can generate intermediate vector
4651   // ops, before generating a final reduction operation.
4652   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4653       isPowerOf2_32(NarrowTy.getNumElements())) {
4654     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4655   }
4656 
4657   Register Acc = PartialReductions[0];
4658   for (unsigned Part = 1; Part < NumParts; ++Part) {
4659     if (Part == NumParts - 1) {
4660       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4661                             {Acc, PartialReductions[Part]});
4662     } else {
4663       Acc = MIRBuilder
4664                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4665                 .getReg(0);
4666     }
4667   }
4668   MI.eraseFromParent();
4669   return Legalized;
4670 }
4671 
4672 LegalizerHelper::LegalizeResult
tryNarrowPow2Reduction(MachineInstr & MI,Register SrcReg,LLT SrcTy,LLT NarrowTy,unsigned ScalarOpc)4673 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4674                                         LLT SrcTy, LLT NarrowTy,
4675                                         unsigned ScalarOpc) {
4676   SmallVector<Register> SplitSrcs;
4677   // Split the sources into NarrowTy size pieces.
4678   extractParts(SrcReg, NarrowTy,
4679                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4680   // We're going to do a tree reduction using vector operations until we have
4681   // one NarrowTy size value left.
4682   while (SplitSrcs.size() > 1) {
4683     SmallVector<Register> PartialRdxs;
4684     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4685       Register LHS = SplitSrcs[Idx];
4686       Register RHS = SplitSrcs[Idx + 1];
4687       // Create the intermediate vector op.
4688       Register Res =
4689           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4690       PartialRdxs.push_back(Res);
4691     }
4692     SplitSrcs = std::move(PartialRdxs);
4693   }
4694   // Finally generate the requested NarrowTy based reduction.
4695   Observer.changingInstr(MI);
4696   MI.getOperand(1).setReg(SplitSrcs[0]);
4697   Observer.changedInstr(MI);
4698   return Legalized;
4699 }
4700 
4701 LegalizerHelper::LegalizeResult
narrowScalarShiftByConstant(MachineInstr & MI,const APInt & Amt,const LLT HalfTy,const LLT AmtTy)4702 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4703                                              const LLT HalfTy, const LLT AmtTy) {
4704 
4705   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4706   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4707   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4708 
4709   if (Amt.isNullValue()) {
4710     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4711     MI.eraseFromParent();
4712     return Legalized;
4713   }
4714 
4715   LLT NVT = HalfTy;
4716   unsigned NVTBits = HalfTy.getSizeInBits();
4717   unsigned VTBits = 2 * NVTBits;
4718 
4719   SrcOp Lo(Register(0)), Hi(Register(0));
4720   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4721     if (Amt.ugt(VTBits)) {
4722       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4723     } else if (Amt.ugt(NVTBits)) {
4724       Lo = MIRBuilder.buildConstant(NVT, 0);
4725       Hi = MIRBuilder.buildShl(NVT, InL,
4726                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4727     } else if (Amt == NVTBits) {
4728       Lo = MIRBuilder.buildConstant(NVT, 0);
4729       Hi = InL;
4730     } else {
4731       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4732       auto OrLHS =
4733           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4734       auto OrRHS = MIRBuilder.buildLShr(
4735           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4736       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4737     }
4738   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4739     if (Amt.ugt(VTBits)) {
4740       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4741     } else if (Amt.ugt(NVTBits)) {
4742       Lo = MIRBuilder.buildLShr(NVT, InH,
4743                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4744       Hi = MIRBuilder.buildConstant(NVT, 0);
4745     } else if (Amt == NVTBits) {
4746       Lo = InH;
4747       Hi = MIRBuilder.buildConstant(NVT, 0);
4748     } else {
4749       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4750 
4751       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4752       auto OrRHS = MIRBuilder.buildShl(
4753           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4754 
4755       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4756       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4757     }
4758   } else {
4759     if (Amt.ugt(VTBits)) {
4760       Hi = Lo = MIRBuilder.buildAShr(
4761           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4762     } else if (Amt.ugt(NVTBits)) {
4763       Lo = MIRBuilder.buildAShr(NVT, InH,
4764                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4765       Hi = MIRBuilder.buildAShr(NVT, InH,
4766                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4767     } else if (Amt == NVTBits) {
4768       Lo = InH;
4769       Hi = MIRBuilder.buildAShr(NVT, InH,
4770                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4771     } else {
4772       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4773 
4774       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4775       auto OrRHS = MIRBuilder.buildShl(
4776           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4777 
4778       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4779       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4780     }
4781   }
4782 
4783   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4784   MI.eraseFromParent();
4785 
4786   return Legalized;
4787 }
4788 
4789 // TODO: Optimize if constant shift amount.
4790 LegalizerHelper::LegalizeResult
narrowScalarShift(MachineInstr & MI,unsigned TypeIdx,LLT RequestedTy)4791 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4792                                    LLT RequestedTy) {
4793   if (TypeIdx == 1) {
4794     Observer.changingInstr(MI);
4795     narrowScalarSrc(MI, RequestedTy, 2);
4796     Observer.changedInstr(MI);
4797     return Legalized;
4798   }
4799 
4800   Register DstReg = MI.getOperand(0).getReg();
4801   LLT DstTy = MRI.getType(DstReg);
4802   if (DstTy.isVector())
4803     return UnableToLegalize;
4804 
4805   Register Amt = MI.getOperand(2).getReg();
4806   LLT ShiftAmtTy = MRI.getType(Amt);
4807   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4808   if (DstEltSize % 2 != 0)
4809     return UnableToLegalize;
4810 
4811   // Ignore the input type. We can only go to exactly half the size of the
4812   // input. If that isn't small enough, the resulting pieces will be further
4813   // legalized.
4814   const unsigned NewBitSize = DstEltSize / 2;
4815   const LLT HalfTy = LLT::scalar(NewBitSize);
4816   const LLT CondTy = LLT::scalar(1);
4817 
4818   if (const MachineInstr *KShiftAmt =
4819           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4820     return narrowScalarShiftByConstant(
4821         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4822   }
4823 
4824   // TODO: Expand with known bits.
4825 
4826   // Handle the fully general expansion by an unknown amount.
4827   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4828 
4829   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4830   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4831   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4832 
4833   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4834   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4835 
4836   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4837   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4838   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4839 
4840   Register ResultRegs[2];
4841   switch (MI.getOpcode()) {
4842   case TargetOpcode::G_SHL: {
4843     // Short: ShAmt < NewBitSize
4844     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4845 
4846     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4847     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4848     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4849 
4850     // Long: ShAmt >= NewBitSize
4851     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4852     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4853 
4854     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4855     auto Hi = MIRBuilder.buildSelect(
4856         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4857 
4858     ResultRegs[0] = Lo.getReg(0);
4859     ResultRegs[1] = Hi.getReg(0);
4860     break;
4861   }
4862   case TargetOpcode::G_LSHR:
4863   case TargetOpcode::G_ASHR: {
4864     // Short: ShAmt < NewBitSize
4865     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4866 
4867     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4868     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4869     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4870 
4871     // Long: ShAmt >= NewBitSize
4872     MachineInstrBuilder HiL;
4873     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4874       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4875     } else {
4876       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4877       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4878     }
4879     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4880                                      {InH, AmtExcess});     // Lo from Hi part.
4881 
4882     auto Lo = MIRBuilder.buildSelect(
4883         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4884 
4885     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4886 
4887     ResultRegs[0] = Lo.getReg(0);
4888     ResultRegs[1] = Hi.getReg(0);
4889     break;
4890   }
4891   default:
4892     llvm_unreachable("not a shift");
4893   }
4894 
4895   MIRBuilder.buildMerge(DstReg, ResultRegs);
4896   MI.eraseFromParent();
4897   return Legalized;
4898 }
4899 
4900 LegalizerHelper::LegalizeResult
moreElementsVectorPhi(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)4901 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4902                                        LLT MoreTy) {
4903   assert(TypeIdx == 0 && "Expecting only Idx 0");
4904 
4905   Observer.changingInstr(MI);
4906   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4907     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4908     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4909     moreElementsVectorSrc(MI, MoreTy, I);
4910   }
4911 
4912   MachineBasicBlock &MBB = *MI.getParent();
4913   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4914   moreElementsVectorDst(MI, MoreTy, 0);
4915   Observer.changedInstr(MI);
4916   return Legalized;
4917 }
4918 
4919 LegalizerHelper::LegalizeResult
moreElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)4920 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4921                                     LLT MoreTy) {
4922   unsigned Opc = MI.getOpcode();
4923   switch (Opc) {
4924   case TargetOpcode::G_IMPLICIT_DEF:
4925   case TargetOpcode::G_LOAD: {
4926     if (TypeIdx != 0)
4927       return UnableToLegalize;
4928     Observer.changingInstr(MI);
4929     moreElementsVectorDst(MI, MoreTy, 0);
4930     Observer.changedInstr(MI);
4931     return Legalized;
4932   }
4933   case TargetOpcode::G_STORE:
4934     if (TypeIdx != 0)
4935       return UnableToLegalize;
4936     Observer.changingInstr(MI);
4937     moreElementsVectorSrc(MI, MoreTy, 0);
4938     Observer.changedInstr(MI);
4939     return Legalized;
4940   case TargetOpcode::G_AND:
4941   case TargetOpcode::G_OR:
4942   case TargetOpcode::G_XOR:
4943   case TargetOpcode::G_SMIN:
4944   case TargetOpcode::G_SMAX:
4945   case TargetOpcode::G_UMIN:
4946   case TargetOpcode::G_UMAX:
4947   case TargetOpcode::G_FMINNUM:
4948   case TargetOpcode::G_FMAXNUM:
4949   case TargetOpcode::G_FMINNUM_IEEE:
4950   case TargetOpcode::G_FMAXNUM_IEEE:
4951   case TargetOpcode::G_FMINIMUM:
4952   case TargetOpcode::G_FMAXIMUM: {
4953     Observer.changingInstr(MI);
4954     moreElementsVectorSrc(MI, MoreTy, 1);
4955     moreElementsVectorSrc(MI, MoreTy, 2);
4956     moreElementsVectorDst(MI, MoreTy, 0);
4957     Observer.changedInstr(MI);
4958     return Legalized;
4959   }
4960   case TargetOpcode::G_EXTRACT:
4961     if (TypeIdx != 1)
4962       return UnableToLegalize;
4963     Observer.changingInstr(MI);
4964     moreElementsVectorSrc(MI, MoreTy, 1);
4965     Observer.changedInstr(MI);
4966     return Legalized;
4967   case TargetOpcode::G_INSERT:
4968   case TargetOpcode::G_FREEZE:
4969     if (TypeIdx != 0)
4970       return UnableToLegalize;
4971     Observer.changingInstr(MI);
4972     moreElementsVectorSrc(MI, MoreTy, 1);
4973     moreElementsVectorDst(MI, MoreTy, 0);
4974     Observer.changedInstr(MI);
4975     return Legalized;
4976   case TargetOpcode::G_SELECT:
4977     if (TypeIdx != 0)
4978       return UnableToLegalize;
4979     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4980       return UnableToLegalize;
4981 
4982     Observer.changingInstr(MI);
4983     moreElementsVectorSrc(MI, MoreTy, 2);
4984     moreElementsVectorSrc(MI, MoreTy, 3);
4985     moreElementsVectorDst(MI, MoreTy, 0);
4986     Observer.changedInstr(MI);
4987     return Legalized;
4988   case TargetOpcode::G_UNMERGE_VALUES: {
4989     if (TypeIdx != 1)
4990       return UnableToLegalize;
4991 
4992     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4993     int NumDst = MI.getNumOperands() - 1;
4994     moreElementsVectorSrc(MI, MoreTy, NumDst);
4995 
4996     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4997     for (int I = 0; I != NumDst; ++I)
4998       MIB.addDef(MI.getOperand(I).getReg());
4999 
5000     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
5001     for (int I = NumDst; I != NewNumDst; ++I)
5002       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
5003 
5004     MIB.addUse(MI.getOperand(NumDst).getReg());
5005     MI.eraseFromParent();
5006     return Legalized;
5007   }
5008   case TargetOpcode::G_PHI:
5009     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
5010   case TargetOpcode::G_SHUFFLE_VECTOR:
5011     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
5012   default:
5013     return UnableToLegalize;
5014   }
5015 }
5016 
5017 LegalizerHelper::LegalizeResult
moreElementsVectorShuffle(MachineInstr & MI,unsigned int TypeIdx,LLT MoreTy)5018 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
5019                                            unsigned int TypeIdx, LLT MoreTy) {
5020   if (TypeIdx != 0)
5021     return UnableToLegalize;
5022 
5023   Register DstReg = MI.getOperand(0).getReg();
5024   Register Src1Reg = MI.getOperand(1).getReg();
5025   Register Src2Reg = MI.getOperand(2).getReg();
5026   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5027   LLT DstTy = MRI.getType(DstReg);
5028   LLT Src1Ty = MRI.getType(Src1Reg);
5029   LLT Src2Ty = MRI.getType(Src2Reg);
5030   unsigned NumElts = DstTy.getNumElements();
5031   unsigned WidenNumElts = MoreTy.getNumElements();
5032 
5033   // Expect a canonicalized shuffle.
5034   if (DstTy != Src1Ty || DstTy != Src2Ty)
5035     return UnableToLegalize;
5036 
5037   moreElementsVectorSrc(MI, MoreTy, 1);
5038   moreElementsVectorSrc(MI, MoreTy, 2);
5039 
5040   // Adjust mask based on new input vector length.
5041   SmallVector<int, 16> NewMask;
5042   for (unsigned I = 0; I != NumElts; ++I) {
5043     int Idx = Mask[I];
5044     if (Idx < static_cast<int>(NumElts))
5045       NewMask.push_back(Idx);
5046     else
5047       NewMask.push_back(Idx - NumElts + WidenNumElts);
5048   }
5049   for (unsigned I = NumElts; I != WidenNumElts; ++I)
5050     NewMask.push_back(-1);
5051   moreElementsVectorDst(MI, MoreTy, 0);
5052   MIRBuilder.setInstrAndDebugLoc(MI);
5053   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
5054                                 MI.getOperand(1).getReg(),
5055                                 MI.getOperand(2).getReg(), NewMask);
5056   MI.eraseFromParent();
5057   return Legalized;
5058 }
5059 
multiplyRegisters(SmallVectorImpl<Register> & DstRegs,ArrayRef<Register> Src1Regs,ArrayRef<Register> Src2Regs,LLT NarrowTy)5060 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
5061                                         ArrayRef<Register> Src1Regs,
5062                                         ArrayRef<Register> Src2Regs,
5063                                         LLT NarrowTy) {
5064   MachineIRBuilder &B = MIRBuilder;
5065   unsigned SrcParts = Src1Regs.size();
5066   unsigned DstParts = DstRegs.size();
5067 
5068   unsigned DstIdx = 0; // Low bits of the result.
5069   Register FactorSum =
5070       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
5071   DstRegs[DstIdx] = FactorSum;
5072 
5073   unsigned CarrySumPrevDstIdx;
5074   SmallVector<Register, 4> Factors;
5075 
5076   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5077     // Collect low parts of muls for DstIdx.
5078     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5079          i <= std::min(DstIdx, SrcParts - 1); ++i) {
5080       MachineInstrBuilder Mul =
5081           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5082       Factors.push_back(Mul.getReg(0));
5083     }
5084     // Collect high parts of muls from previous DstIdx.
5085     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5086          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5087       MachineInstrBuilder Umulh =
5088           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5089       Factors.push_back(Umulh.getReg(0));
5090     }
5091     // Add CarrySum from additions calculated for previous DstIdx.
5092     if (DstIdx != 1) {
5093       Factors.push_back(CarrySumPrevDstIdx);
5094     }
5095 
5096     Register CarrySum;
5097     // Add all factors and accumulate all carries into CarrySum.
5098     if (DstIdx != DstParts - 1) {
5099       MachineInstrBuilder Uaddo =
5100           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5101       FactorSum = Uaddo.getReg(0);
5102       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5103       for (unsigned i = 2; i < Factors.size(); ++i) {
5104         MachineInstrBuilder Uaddo =
5105             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5106         FactorSum = Uaddo.getReg(0);
5107         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5108         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5109       }
5110     } else {
5111       // Since value for the next index is not calculated, neither is CarrySum.
5112       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5113       for (unsigned i = 2; i < Factors.size(); ++i)
5114         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5115     }
5116 
5117     CarrySumPrevDstIdx = CarrySum;
5118     DstRegs[DstIdx] = FactorSum;
5119     Factors.clear();
5120   }
5121 }
5122 
5123 LegalizerHelper::LegalizeResult
narrowScalarAddSub(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5124 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5125                                     LLT NarrowTy) {
5126   if (TypeIdx != 0)
5127     return UnableToLegalize;
5128 
5129   Register DstReg = MI.getOperand(0).getReg();
5130   LLT DstType = MRI.getType(DstReg);
5131   // FIXME: add support for vector types
5132   if (DstType.isVector())
5133     return UnableToLegalize;
5134 
5135   unsigned Opcode = MI.getOpcode();
5136   unsigned OpO, OpE, OpF;
5137   switch (Opcode) {
5138   case TargetOpcode::G_SADDO:
5139   case TargetOpcode::G_SADDE:
5140   case TargetOpcode::G_UADDO:
5141   case TargetOpcode::G_UADDE:
5142   case TargetOpcode::G_ADD:
5143     OpO = TargetOpcode::G_UADDO;
5144     OpE = TargetOpcode::G_UADDE;
5145     OpF = TargetOpcode::G_UADDE;
5146     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5147       OpF = TargetOpcode::G_SADDE;
5148     break;
5149   case TargetOpcode::G_SSUBO:
5150   case TargetOpcode::G_SSUBE:
5151   case TargetOpcode::G_USUBO:
5152   case TargetOpcode::G_USUBE:
5153   case TargetOpcode::G_SUB:
5154     OpO = TargetOpcode::G_USUBO;
5155     OpE = TargetOpcode::G_USUBE;
5156     OpF = TargetOpcode::G_USUBE;
5157     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5158       OpF = TargetOpcode::G_SSUBE;
5159     break;
5160   default:
5161     llvm_unreachable("Unexpected add/sub opcode!");
5162   }
5163 
5164   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5165   unsigned NumDefs = MI.getNumExplicitDefs();
5166   Register Src1 = MI.getOperand(NumDefs).getReg();
5167   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5168   Register CarryDst, CarryIn;
5169   if (NumDefs == 2)
5170     CarryDst = MI.getOperand(1).getReg();
5171   if (MI.getNumOperands() == NumDefs + 3)
5172     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5173 
5174   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5175   LLT LeftoverTy, DummyTy;
5176   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5177   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5178   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5179 
5180   int NarrowParts = Src1Regs.size();
5181   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5182     Src1Regs.push_back(Src1Left[I]);
5183     Src2Regs.push_back(Src2Left[I]);
5184   }
5185   DstRegs.reserve(Src1Regs.size());
5186 
5187   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5188     Register DstReg =
5189         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5190     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5191     // Forward the final carry-out to the destination register
5192     if (i == e - 1 && CarryDst)
5193       CarryOut = CarryDst;
5194 
5195     if (!CarryIn) {
5196       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5197                             {Src1Regs[i], Src2Regs[i]});
5198     } else if (i == e - 1) {
5199       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5200                             {Src1Regs[i], Src2Regs[i], CarryIn});
5201     } else {
5202       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5203                             {Src1Regs[i], Src2Regs[i], CarryIn});
5204     }
5205 
5206     DstRegs.push_back(DstReg);
5207     CarryIn = CarryOut;
5208   }
5209   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5210               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5211               makeArrayRef(DstRegs).drop_front(NarrowParts));
5212 
5213   MI.eraseFromParent();
5214   return Legalized;
5215 }
5216 
5217 LegalizerHelper::LegalizeResult
narrowScalarMul(MachineInstr & MI,LLT NarrowTy)5218 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5219   Register DstReg = MI.getOperand(0).getReg();
5220   Register Src1 = MI.getOperand(1).getReg();
5221   Register Src2 = MI.getOperand(2).getReg();
5222 
5223   LLT Ty = MRI.getType(DstReg);
5224   if (Ty.isVector())
5225     return UnableToLegalize;
5226 
5227   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
5228   unsigned DstSize = Ty.getSizeInBits();
5229   unsigned NarrowSize = NarrowTy.getSizeInBits();
5230   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
5231     return UnableToLegalize;
5232 
5233   unsigned NumDstParts = DstSize / NarrowSize;
5234   unsigned NumSrcParts = SrcSize / NarrowSize;
5235   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5236   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
5237 
5238   SmallVector<Register, 2> Src1Parts, Src2Parts;
5239   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5240   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
5241   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
5242   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5243 
5244   // Take only high half of registers if this is high mul.
5245   ArrayRef<Register> DstRegs(
5246       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5247   MIRBuilder.buildMerge(DstReg, DstRegs);
5248   MI.eraseFromParent();
5249   return Legalized;
5250 }
5251 
5252 LegalizerHelper::LegalizeResult
narrowScalarFPTOI(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5253 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5254                                    LLT NarrowTy) {
5255   if (TypeIdx != 0)
5256     return UnableToLegalize;
5257 
5258   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5259 
5260   Register Src = MI.getOperand(1).getReg();
5261   LLT SrcTy = MRI.getType(Src);
5262 
5263   // If all finite floats fit into the narrowed integer type, we can just swap
5264   // out the result type. This is practically only useful for conversions from
5265   // half to at least 16-bits, so just handle the one case.
5266   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5267       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5268     return UnableToLegalize;
5269 
5270   Observer.changingInstr(MI);
5271   narrowScalarDst(MI, NarrowTy, 0,
5272                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5273   Observer.changedInstr(MI);
5274   return Legalized;
5275 }
5276 
5277 LegalizerHelper::LegalizeResult
narrowScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5278 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5279                                      LLT NarrowTy) {
5280   if (TypeIdx != 1)
5281     return UnableToLegalize;
5282 
5283   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5284 
5285   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5286   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5287   // NarrowSize.
5288   if (SizeOp1 % NarrowSize != 0)
5289     return UnableToLegalize;
5290   int NumParts = SizeOp1 / NarrowSize;
5291 
5292   SmallVector<Register, 2> SrcRegs, DstRegs;
5293   SmallVector<uint64_t, 2> Indexes;
5294   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5295 
5296   Register OpReg = MI.getOperand(0).getReg();
5297   uint64_t OpStart = MI.getOperand(2).getImm();
5298   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5299   for (int i = 0; i < NumParts; ++i) {
5300     unsigned SrcStart = i * NarrowSize;
5301 
5302     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5303       // No part of the extract uses this subregister, ignore it.
5304       continue;
5305     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5306       // The entire subregister is extracted, forward the value.
5307       DstRegs.push_back(SrcRegs[i]);
5308       continue;
5309     }
5310 
5311     // OpSegStart is where this destination segment would start in OpReg if it
5312     // extended infinitely in both directions.
5313     int64_t ExtractOffset;
5314     uint64_t SegSize;
5315     if (OpStart < SrcStart) {
5316       ExtractOffset = 0;
5317       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5318     } else {
5319       ExtractOffset = OpStart - SrcStart;
5320       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5321     }
5322 
5323     Register SegReg = SrcRegs[i];
5324     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5325       // A genuine extract is needed.
5326       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5327       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5328     }
5329 
5330     DstRegs.push_back(SegReg);
5331   }
5332 
5333   Register DstReg = MI.getOperand(0).getReg();
5334   if (MRI.getType(DstReg).isVector())
5335     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5336   else if (DstRegs.size() > 1)
5337     MIRBuilder.buildMerge(DstReg, DstRegs);
5338   else
5339     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5340   MI.eraseFromParent();
5341   return Legalized;
5342 }
5343 
5344 LegalizerHelper::LegalizeResult
narrowScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5345 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5346                                     LLT NarrowTy) {
5347   // FIXME: Don't know how to handle secondary types yet.
5348   if (TypeIdx != 0)
5349     return UnableToLegalize;
5350 
5351   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5352   SmallVector<uint64_t, 2> Indexes;
5353   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5354   LLT LeftoverTy;
5355   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5356                LeftoverRegs);
5357 
5358   for (Register Reg : LeftoverRegs)
5359     SrcRegs.push_back(Reg);
5360 
5361   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5362   Register OpReg = MI.getOperand(2).getReg();
5363   uint64_t OpStart = MI.getOperand(3).getImm();
5364   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5365   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5366     unsigned DstStart = I * NarrowSize;
5367 
5368     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5369       // The entire subregister is defined by this insert, forward the new
5370       // value.
5371       DstRegs.push_back(OpReg);
5372       continue;
5373     }
5374 
5375     Register SrcReg = SrcRegs[I];
5376     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5377       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5378       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5379       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5380     }
5381 
5382     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5383       // No part of the insert affects this subregister, forward the original.
5384       DstRegs.push_back(SrcReg);
5385       continue;
5386     }
5387 
5388     // OpSegStart is where this destination segment would start in OpReg if it
5389     // extended infinitely in both directions.
5390     int64_t ExtractOffset, InsertOffset;
5391     uint64_t SegSize;
5392     if (OpStart < DstStart) {
5393       InsertOffset = 0;
5394       ExtractOffset = DstStart - OpStart;
5395       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5396     } else {
5397       InsertOffset = OpStart - DstStart;
5398       ExtractOffset = 0;
5399       SegSize =
5400         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5401     }
5402 
5403     Register SegReg = OpReg;
5404     if (ExtractOffset != 0 || SegSize != OpSize) {
5405       // A genuine extract is needed.
5406       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5407       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5408     }
5409 
5410     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5411     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5412     DstRegs.push_back(DstReg);
5413   }
5414 
5415   uint64_t WideSize = DstRegs.size() * NarrowSize;
5416   Register DstReg = MI.getOperand(0).getReg();
5417   if (WideSize > RegTy.getSizeInBits()) {
5418     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5419     MIRBuilder.buildMerge(MergeReg, DstRegs);
5420     MIRBuilder.buildTrunc(DstReg, MergeReg);
5421   } else
5422     MIRBuilder.buildMerge(DstReg, DstRegs);
5423 
5424   MI.eraseFromParent();
5425   return Legalized;
5426 }
5427 
5428 LegalizerHelper::LegalizeResult
narrowScalarBasic(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5429 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5430                                    LLT NarrowTy) {
5431   Register DstReg = MI.getOperand(0).getReg();
5432   LLT DstTy = MRI.getType(DstReg);
5433 
5434   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5435 
5436   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5437   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5438   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5439   LLT LeftoverTy;
5440   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5441                     Src0Regs, Src0LeftoverRegs))
5442     return UnableToLegalize;
5443 
5444   LLT Unused;
5445   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5446                     Src1Regs, Src1LeftoverRegs))
5447     llvm_unreachable("inconsistent extractParts result");
5448 
5449   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5450     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5451                                         {Src0Regs[I], Src1Regs[I]});
5452     DstRegs.push_back(Inst.getReg(0));
5453   }
5454 
5455   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5456     auto Inst = MIRBuilder.buildInstr(
5457       MI.getOpcode(),
5458       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5459     DstLeftoverRegs.push_back(Inst.getReg(0));
5460   }
5461 
5462   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5463               LeftoverTy, DstLeftoverRegs);
5464 
5465   MI.eraseFromParent();
5466   return Legalized;
5467 }
5468 
5469 LegalizerHelper::LegalizeResult
narrowScalarExt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5470 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5471                                  LLT NarrowTy) {
5472   if (TypeIdx != 0)
5473     return UnableToLegalize;
5474 
5475   Register DstReg = MI.getOperand(0).getReg();
5476   Register SrcReg = MI.getOperand(1).getReg();
5477 
5478   LLT DstTy = MRI.getType(DstReg);
5479   if (DstTy.isVector())
5480     return UnableToLegalize;
5481 
5482   SmallVector<Register, 8> Parts;
5483   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5484   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5485   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5486 
5487   MI.eraseFromParent();
5488   return Legalized;
5489 }
5490 
5491 LegalizerHelper::LegalizeResult
narrowScalarSelect(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5492 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5493                                     LLT NarrowTy) {
5494   if (TypeIdx != 0)
5495     return UnableToLegalize;
5496 
5497   Register CondReg = MI.getOperand(1).getReg();
5498   LLT CondTy = MRI.getType(CondReg);
5499   if (CondTy.isVector()) // TODO: Handle vselect
5500     return UnableToLegalize;
5501 
5502   Register DstReg = MI.getOperand(0).getReg();
5503   LLT DstTy = MRI.getType(DstReg);
5504 
5505   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5506   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5507   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5508   LLT LeftoverTy;
5509   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5510                     Src1Regs, Src1LeftoverRegs))
5511     return UnableToLegalize;
5512 
5513   LLT Unused;
5514   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5515                     Src2Regs, Src2LeftoverRegs))
5516     llvm_unreachable("inconsistent extractParts result");
5517 
5518   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5519     auto Select = MIRBuilder.buildSelect(NarrowTy,
5520                                          CondReg, Src1Regs[I], Src2Regs[I]);
5521     DstRegs.push_back(Select.getReg(0));
5522   }
5523 
5524   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5525     auto Select = MIRBuilder.buildSelect(
5526       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5527     DstLeftoverRegs.push_back(Select.getReg(0));
5528   }
5529 
5530   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5531               LeftoverTy, DstLeftoverRegs);
5532 
5533   MI.eraseFromParent();
5534   return Legalized;
5535 }
5536 
5537 LegalizerHelper::LegalizeResult
narrowScalarCTLZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5538 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5539                                   LLT NarrowTy) {
5540   if (TypeIdx != 1)
5541     return UnableToLegalize;
5542 
5543   Register DstReg = MI.getOperand(0).getReg();
5544   Register SrcReg = MI.getOperand(1).getReg();
5545   LLT DstTy = MRI.getType(DstReg);
5546   LLT SrcTy = MRI.getType(SrcReg);
5547   unsigned NarrowSize = NarrowTy.getSizeInBits();
5548 
5549   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5550     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5551 
5552     MachineIRBuilder &B = MIRBuilder;
5553     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5554     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5555     auto C_0 = B.buildConstant(NarrowTy, 0);
5556     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5557                                 UnmergeSrc.getReg(1), C_0);
5558     auto LoCTLZ = IsUndef ?
5559       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5560       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5561     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5562     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5563     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5564     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5565 
5566     MI.eraseFromParent();
5567     return Legalized;
5568   }
5569 
5570   return UnableToLegalize;
5571 }
5572 
5573 LegalizerHelper::LegalizeResult
narrowScalarCTTZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5574 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5575                                   LLT NarrowTy) {
5576   if (TypeIdx != 1)
5577     return UnableToLegalize;
5578 
5579   Register DstReg = MI.getOperand(0).getReg();
5580   Register SrcReg = MI.getOperand(1).getReg();
5581   LLT DstTy = MRI.getType(DstReg);
5582   LLT SrcTy = MRI.getType(SrcReg);
5583   unsigned NarrowSize = NarrowTy.getSizeInBits();
5584 
5585   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5586     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5587 
5588     MachineIRBuilder &B = MIRBuilder;
5589     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5590     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5591     auto C_0 = B.buildConstant(NarrowTy, 0);
5592     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5593                                 UnmergeSrc.getReg(0), C_0);
5594     auto HiCTTZ = IsUndef ?
5595       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5596       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5597     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5598     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5599     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5600     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5601 
5602     MI.eraseFromParent();
5603     return Legalized;
5604   }
5605 
5606   return UnableToLegalize;
5607 }
5608 
5609 LegalizerHelper::LegalizeResult
narrowScalarCTPOP(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5610 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5611                                    LLT NarrowTy) {
5612   if (TypeIdx != 1)
5613     return UnableToLegalize;
5614 
5615   Register DstReg = MI.getOperand(0).getReg();
5616   LLT DstTy = MRI.getType(DstReg);
5617   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5618   unsigned NarrowSize = NarrowTy.getSizeInBits();
5619 
5620   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5621     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5622 
5623     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5624     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5625     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5626 
5627     MI.eraseFromParent();
5628     return Legalized;
5629   }
5630 
5631   return UnableToLegalize;
5632 }
5633 
5634 LegalizerHelper::LegalizeResult
lowerBitCount(MachineInstr & MI)5635 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5636   unsigned Opc = MI.getOpcode();
5637   const auto &TII = MIRBuilder.getTII();
5638   auto isSupported = [this](const LegalityQuery &Q) {
5639     auto QAction = LI.getAction(Q).Action;
5640     return QAction == Legal || QAction == Libcall || QAction == Custom;
5641   };
5642   switch (Opc) {
5643   default:
5644     return UnableToLegalize;
5645   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5646     // This trivially expands to CTLZ.
5647     Observer.changingInstr(MI);
5648     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5649     Observer.changedInstr(MI);
5650     return Legalized;
5651   }
5652   case TargetOpcode::G_CTLZ: {
5653     Register DstReg = MI.getOperand(0).getReg();
5654     Register SrcReg = MI.getOperand(1).getReg();
5655     LLT DstTy = MRI.getType(DstReg);
5656     LLT SrcTy = MRI.getType(SrcReg);
5657     unsigned Len = SrcTy.getSizeInBits();
5658 
5659     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5660       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5661       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5662       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5663       auto ICmp = MIRBuilder.buildICmp(
5664           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5665       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5666       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5667       MI.eraseFromParent();
5668       return Legalized;
5669     }
5670     // for now, we do this:
5671     // NewLen = NextPowerOf2(Len);
5672     // x = x | (x >> 1);
5673     // x = x | (x >> 2);
5674     // ...
5675     // x = x | (x >>16);
5676     // x = x | (x >>32); // for 64-bit input
5677     // Upto NewLen/2
5678     // return Len - popcount(x);
5679     //
5680     // Ref: "Hacker's Delight" by Henry Warren
5681     Register Op = SrcReg;
5682     unsigned NewLen = PowerOf2Ceil(Len);
5683     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5684       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5685       auto MIBOp = MIRBuilder.buildOr(
5686           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5687       Op = MIBOp.getReg(0);
5688     }
5689     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5690     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5691                         MIBPop);
5692     MI.eraseFromParent();
5693     return Legalized;
5694   }
5695   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5696     // This trivially expands to CTTZ.
5697     Observer.changingInstr(MI);
5698     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5699     Observer.changedInstr(MI);
5700     return Legalized;
5701   }
5702   case TargetOpcode::G_CTTZ: {
5703     Register DstReg = MI.getOperand(0).getReg();
5704     Register SrcReg = MI.getOperand(1).getReg();
5705     LLT DstTy = MRI.getType(DstReg);
5706     LLT SrcTy = MRI.getType(SrcReg);
5707 
5708     unsigned Len = SrcTy.getSizeInBits();
5709     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5710       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5711       // zero.
5712       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5713       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5714       auto ICmp = MIRBuilder.buildICmp(
5715           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5716       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5717       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5718       MI.eraseFromParent();
5719       return Legalized;
5720     }
5721     // for now, we use: { return popcount(~x & (x - 1)); }
5722     // unless the target has ctlz but not ctpop, in which case we use:
5723     // { return 32 - nlz(~x & (x-1)); }
5724     // Ref: "Hacker's Delight" by Henry Warren
5725     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5726     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5727     auto MIBTmp = MIRBuilder.buildAnd(
5728         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5729     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5730         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5731       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5732       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5733                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5734       MI.eraseFromParent();
5735       return Legalized;
5736     }
5737     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5738     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5739     return Legalized;
5740   }
5741   case TargetOpcode::G_CTPOP: {
5742     Register SrcReg = MI.getOperand(1).getReg();
5743     LLT Ty = MRI.getType(SrcReg);
5744     unsigned Size = Ty.getSizeInBits();
5745     MachineIRBuilder &B = MIRBuilder;
5746 
5747     // Count set bits in blocks of 2 bits. Default approach would be
5748     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5749     // We use following formula instead:
5750     // B2Count = val - { (val >> 1) & 0x55555555 }
5751     // since it gives same result in blocks of 2 with one instruction less.
5752     auto C_1 = B.buildConstant(Ty, 1);
5753     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5754     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5755     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5756     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5757     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5758 
5759     // In order to get count in blocks of 4 add values from adjacent block of 2.
5760     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5761     auto C_2 = B.buildConstant(Ty, 2);
5762     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5763     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5764     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5765     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5766     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5767     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5768 
5769     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5770     // addition since count value sits in range {0,...,8} and 4 bits are enough
5771     // to hold such binary values. After addition high 4 bits still hold count
5772     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5773     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5774     auto C_4 = B.buildConstant(Ty, 4);
5775     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5776     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5777     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5778     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5779     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5780 
5781     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5782     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5783     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5784     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5785     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5786 
5787     // Shift count result from 8 high bits to low bits.
5788     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5789     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5790 
5791     MI.eraseFromParent();
5792     return Legalized;
5793   }
5794   }
5795 }
5796 
5797 // Check that (every element of) Reg is undef or not an exact multiple of BW.
isNonZeroModBitWidthOrUndef(const MachineRegisterInfo & MRI,Register Reg,unsigned BW)5798 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5799                                         Register Reg, unsigned BW) {
5800   return matchUnaryPredicate(
5801       MRI, Reg,
5802       [=](const Constant *C) {
5803         // Null constant here means an undef.
5804         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5805         return !CI || CI->getValue().urem(BW) != 0;
5806       },
5807       /*AllowUndefs*/ true);
5808 }
5809 
5810 LegalizerHelper::LegalizeResult
lowerFunnelShiftWithInverse(MachineInstr & MI)5811 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5812   Register Dst = MI.getOperand(0).getReg();
5813   Register X = MI.getOperand(1).getReg();
5814   Register Y = MI.getOperand(2).getReg();
5815   Register Z = MI.getOperand(3).getReg();
5816   LLT Ty = MRI.getType(Dst);
5817   LLT ShTy = MRI.getType(Z);
5818 
5819   unsigned BW = Ty.getScalarSizeInBits();
5820 
5821   if (!isPowerOf2_32(BW))
5822     return UnableToLegalize;
5823 
5824   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5825   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5826 
5827   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5828     // fshl X, Y, Z -> fshr X, Y, -Z
5829     // fshr X, Y, Z -> fshl X, Y, -Z
5830     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5831     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5832   } else {
5833     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5834     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5835     auto One = MIRBuilder.buildConstant(ShTy, 1);
5836     if (IsFSHL) {
5837       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5838       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5839     } else {
5840       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5841       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5842     }
5843 
5844     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5845   }
5846 
5847   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5848   MI.eraseFromParent();
5849   return Legalized;
5850 }
5851 
5852 LegalizerHelper::LegalizeResult
lowerFunnelShiftAsShifts(MachineInstr & MI)5853 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5854   Register Dst = MI.getOperand(0).getReg();
5855   Register X = MI.getOperand(1).getReg();
5856   Register Y = MI.getOperand(2).getReg();
5857   Register Z = MI.getOperand(3).getReg();
5858   LLT Ty = MRI.getType(Dst);
5859   LLT ShTy = MRI.getType(Z);
5860 
5861   const unsigned BW = Ty.getScalarSizeInBits();
5862   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5863 
5864   Register ShX, ShY;
5865   Register ShAmt, InvShAmt;
5866 
5867   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5868   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5869     // fshl: X << C | Y >> (BW - C)
5870     // fshr: X << (BW - C) | Y >> C
5871     // where C = Z % BW is not zero
5872     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5873     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5874     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5875     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5876     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5877   } else {
5878     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5879     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5880     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5881     if (isPowerOf2_32(BW)) {
5882       // Z % BW -> Z & (BW - 1)
5883       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5884       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5885       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5886       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5887     } else {
5888       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5889       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5890       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5891     }
5892 
5893     auto One = MIRBuilder.buildConstant(ShTy, 1);
5894     if (IsFSHL) {
5895       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5896       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5897       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5898     } else {
5899       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5900       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5901       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5902     }
5903   }
5904 
5905   MIRBuilder.buildOr(Dst, ShX, ShY);
5906   MI.eraseFromParent();
5907   return Legalized;
5908 }
5909 
5910 LegalizerHelper::LegalizeResult
lowerFunnelShift(MachineInstr & MI)5911 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5912   // These operations approximately do the following (while avoiding undefined
5913   // shifts by BW):
5914   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5915   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5916   Register Dst = MI.getOperand(0).getReg();
5917   LLT Ty = MRI.getType(Dst);
5918   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5919 
5920   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5921   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5922 
5923   // TODO: Use smarter heuristic that accounts for vector legalization.
5924   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5925     return lowerFunnelShiftAsShifts(MI);
5926 
5927   // This only works for powers of 2, fallback to shifts if it fails.
5928   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5929   if (Result == UnableToLegalize)
5930     return lowerFunnelShiftAsShifts(MI);
5931   return Result;
5932 }
5933 
5934 LegalizerHelper::LegalizeResult
lowerRotateWithReverseRotate(MachineInstr & MI)5935 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5936   Register Dst = MI.getOperand(0).getReg();
5937   Register Src = MI.getOperand(1).getReg();
5938   Register Amt = MI.getOperand(2).getReg();
5939   LLT AmtTy = MRI.getType(Amt);
5940   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5941   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5942   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5943   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5944   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5945   MI.eraseFromParent();
5946   return Legalized;
5947 }
5948 
lowerRotate(MachineInstr & MI)5949 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5950   Register Dst = MI.getOperand(0).getReg();
5951   Register Src = MI.getOperand(1).getReg();
5952   Register Amt = MI.getOperand(2).getReg();
5953   LLT DstTy = MRI.getType(Dst);
5954   LLT SrcTy = MRI.getType(Dst);
5955   LLT AmtTy = MRI.getType(Amt);
5956 
5957   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5958   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5959 
5960   MIRBuilder.setInstrAndDebugLoc(MI);
5961 
5962   // If a rotate in the other direction is supported, use it.
5963   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5964   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5965       isPowerOf2_32(EltSizeInBits))
5966     return lowerRotateWithReverseRotate(MI);
5967 
5968   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5969   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5970   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5971   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5972   Register ShVal;
5973   Register RevShiftVal;
5974   if (isPowerOf2_32(EltSizeInBits)) {
5975     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5976     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5977     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5978     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5979     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5980     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5981     RevShiftVal =
5982         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5983   } else {
5984     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5985     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5986     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5987     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5988     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5989     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5990     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5991     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5992     RevShiftVal =
5993         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5994   }
5995   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5996   MI.eraseFromParent();
5997   return Legalized;
5998 }
5999 
6000 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
6001 // representation.
6002 LegalizerHelper::LegalizeResult
lowerU64ToF32BitOps(MachineInstr & MI)6003 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
6004   Register Dst = MI.getOperand(0).getReg();
6005   Register Src = MI.getOperand(1).getReg();
6006   const LLT S64 = LLT::scalar(64);
6007   const LLT S32 = LLT::scalar(32);
6008   const LLT S1 = LLT::scalar(1);
6009 
6010   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
6011 
6012   // unsigned cul2f(ulong u) {
6013   //   uint lz = clz(u);
6014   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
6015   //   u = (u << lz) & 0x7fffffffffffffffUL;
6016   //   ulong t = u & 0xffffffffffUL;
6017   //   uint v = (e << 23) | (uint)(u >> 40);
6018   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
6019   //   return as_float(v + r);
6020   // }
6021 
6022   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
6023   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
6024 
6025   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
6026 
6027   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
6028   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
6029 
6030   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
6031   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
6032 
6033   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
6034   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
6035 
6036   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
6037 
6038   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
6039   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
6040 
6041   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
6042   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
6043   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
6044 
6045   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
6046   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
6047   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
6048   auto One = MIRBuilder.buildConstant(S32, 1);
6049 
6050   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
6051   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
6052   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
6053   MIRBuilder.buildAdd(Dst, V, R);
6054 
6055   MI.eraseFromParent();
6056   return Legalized;
6057 }
6058 
lowerUITOFP(MachineInstr & MI)6059 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6060   Register Dst = MI.getOperand(0).getReg();
6061   Register Src = MI.getOperand(1).getReg();
6062   LLT DstTy = MRI.getType(Dst);
6063   LLT SrcTy = MRI.getType(Src);
6064 
6065   if (SrcTy == LLT::scalar(1)) {
6066     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6067     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6068     MIRBuilder.buildSelect(Dst, Src, True, False);
6069     MI.eraseFromParent();
6070     return Legalized;
6071   }
6072 
6073   if (SrcTy != LLT::scalar(64))
6074     return UnableToLegalize;
6075 
6076   if (DstTy == LLT::scalar(32)) {
6077     // TODO: SelectionDAG has several alternative expansions to port which may
6078     // be more reasonble depending on the available instructions. If a target
6079     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6080     // intermediate type, this is probably worse.
6081     return lowerU64ToF32BitOps(MI);
6082   }
6083 
6084   return UnableToLegalize;
6085 }
6086 
lowerSITOFP(MachineInstr & MI)6087 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6088   Register Dst = MI.getOperand(0).getReg();
6089   Register Src = MI.getOperand(1).getReg();
6090   LLT DstTy = MRI.getType(Dst);
6091   LLT SrcTy = MRI.getType(Src);
6092 
6093   const LLT S64 = LLT::scalar(64);
6094   const LLT S32 = LLT::scalar(32);
6095   const LLT S1 = LLT::scalar(1);
6096 
6097   if (SrcTy == S1) {
6098     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6099     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6100     MIRBuilder.buildSelect(Dst, Src, True, False);
6101     MI.eraseFromParent();
6102     return Legalized;
6103   }
6104 
6105   if (SrcTy != S64)
6106     return UnableToLegalize;
6107 
6108   if (DstTy == S32) {
6109     // signed cl2f(long l) {
6110     //   long s = l >> 63;
6111     //   float r = cul2f((l + s) ^ s);
6112     //   return s ? -r : r;
6113     // }
6114     Register L = Src;
6115     auto SignBit = MIRBuilder.buildConstant(S64, 63);
6116     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6117 
6118     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6119     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6120     auto R = MIRBuilder.buildUITOFP(S32, Xor);
6121 
6122     auto RNeg = MIRBuilder.buildFNeg(S32, R);
6123     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6124                                             MIRBuilder.buildConstant(S64, 0));
6125     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6126     MI.eraseFromParent();
6127     return Legalized;
6128   }
6129 
6130   return UnableToLegalize;
6131 }
6132 
lowerFPTOUI(MachineInstr & MI)6133 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6134   Register Dst = MI.getOperand(0).getReg();
6135   Register Src = MI.getOperand(1).getReg();
6136   LLT DstTy = MRI.getType(Dst);
6137   LLT SrcTy = MRI.getType(Src);
6138   const LLT S64 = LLT::scalar(64);
6139   const LLT S32 = LLT::scalar(32);
6140 
6141   if (SrcTy != S64 && SrcTy != S32)
6142     return UnableToLegalize;
6143   if (DstTy != S32 && DstTy != S64)
6144     return UnableToLegalize;
6145 
6146   // FPTOSI gives same result as FPTOUI for positive signed integers.
6147   // FPTOUI needs to deal with fp values that convert to unsigned integers
6148   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6149 
6150   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6151   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6152                                                 : APFloat::IEEEdouble(),
6153                     APInt::getNullValue(SrcTy.getSizeInBits()));
6154   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6155 
6156   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6157 
6158   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6159   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6160   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6161   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6162   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6163   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6164   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6165 
6166   const LLT S1 = LLT::scalar(1);
6167 
6168   MachineInstrBuilder FCMP =
6169       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6170   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6171 
6172   MI.eraseFromParent();
6173   return Legalized;
6174 }
6175 
lowerFPTOSI(MachineInstr & MI)6176 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6177   Register Dst = MI.getOperand(0).getReg();
6178   Register Src = MI.getOperand(1).getReg();
6179   LLT DstTy = MRI.getType(Dst);
6180   LLT SrcTy = MRI.getType(Src);
6181   const LLT S64 = LLT::scalar(64);
6182   const LLT S32 = LLT::scalar(32);
6183 
6184   // FIXME: Only f32 to i64 conversions are supported.
6185   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6186     return UnableToLegalize;
6187 
6188   // Expand f32 -> i64 conversion
6189   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6190   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6191 
6192   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6193 
6194   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6195   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6196 
6197   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6198   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6199 
6200   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6201                                            APInt::getSignMask(SrcEltBits));
6202   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6203   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6204   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6205   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6206 
6207   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6208   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6209   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6210 
6211   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6212   R = MIRBuilder.buildZExt(DstTy, R);
6213 
6214   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6215   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6216   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6217   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6218 
6219   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6220   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6221 
6222   const LLT S1 = LLT::scalar(1);
6223   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6224                                     S1, Exponent, ExponentLoBit);
6225 
6226   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6227 
6228   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6229   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6230 
6231   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6232 
6233   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6234                                           S1, Exponent, ZeroSrcTy);
6235 
6236   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6237   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6238 
6239   MI.eraseFromParent();
6240   return Legalized;
6241 }
6242 
6243 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6244 LegalizerHelper::LegalizeResult
lowerFPTRUNC_F64_TO_F16(MachineInstr & MI)6245 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6246   Register Dst = MI.getOperand(0).getReg();
6247   Register Src = MI.getOperand(1).getReg();
6248 
6249   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6250     return UnableToLegalize;
6251 
6252   const unsigned ExpMask = 0x7ff;
6253   const unsigned ExpBiasf64 = 1023;
6254   const unsigned ExpBiasf16 = 15;
6255   const LLT S32 = LLT::scalar(32);
6256   const LLT S1 = LLT::scalar(1);
6257 
6258   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6259   Register U = Unmerge.getReg(0);
6260   Register UH = Unmerge.getReg(1);
6261 
6262   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6263   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6264 
6265   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6266   // add the f16 bias (15) to get the biased exponent for the f16 format.
6267   E = MIRBuilder.buildAdd(
6268     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6269 
6270   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6271   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6272 
6273   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6274                                        MIRBuilder.buildConstant(S32, 0x1ff));
6275   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6276 
6277   auto Zero = MIRBuilder.buildConstant(S32, 0);
6278   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6279   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6280   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6281 
6282   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6283   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6284   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6285   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6286 
6287   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6288   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6289 
6290   // N = M | (E << 12);
6291   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6292   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6293 
6294   // B = clamp(1-E, 0, 13);
6295   auto One = MIRBuilder.buildConstant(S32, 1);
6296   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6297   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6298   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6299 
6300   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6301                                        MIRBuilder.buildConstant(S32, 0x1000));
6302 
6303   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6304   auto D0 = MIRBuilder.buildShl(S32, D, B);
6305 
6306   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6307                                              D0, SigSetHigh);
6308   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6309   D = MIRBuilder.buildOr(S32, D, D1);
6310 
6311   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6312   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6313 
6314   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6315   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6316 
6317   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6318                                        MIRBuilder.buildConstant(S32, 3));
6319   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6320 
6321   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6322                                        MIRBuilder.buildConstant(S32, 5));
6323   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6324 
6325   V1 = MIRBuilder.buildOr(S32, V0, V1);
6326   V = MIRBuilder.buildAdd(S32, V, V1);
6327 
6328   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6329                                        E, MIRBuilder.buildConstant(S32, 30));
6330   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6331                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6332 
6333   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6334                                          E, MIRBuilder.buildConstant(S32, 1039));
6335   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6336 
6337   // Extract the sign bit.
6338   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6339   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6340 
6341   // Insert the sign bit
6342   V = MIRBuilder.buildOr(S32, Sign, V);
6343 
6344   MIRBuilder.buildTrunc(Dst, V);
6345   MI.eraseFromParent();
6346   return Legalized;
6347 }
6348 
6349 LegalizerHelper::LegalizeResult
lowerFPTRUNC(MachineInstr & MI)6350 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6351   Register Dst = MI.getOperand(0).getReg();
6352   Register Src = MI.getOperand(1).getReg();
6353 
6354   LLT DstTy = MRI.getType(Dst);
6355   LLT SrcTy = MRI.getType(Src);
6356   const LLT S64 = LLT::scalar(64);
6357   const LLT S16 = LLT::scalar(16);
6358 
6359   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6360     return lowerFPTRUNC_F64_TO_F16(MI);
6361 
6362   return UnableToLegalize;
6363 }
6364 
6365 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6366 // multiplication tree.
lowerFPOWI(MachineInstr & MI)6367 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6368   Register Dst = MI.getOperand(0).getReg();
6369   Register Src0 = MI.getOperand(1).getReg();
6370   Register Src1 = MI.getOperand(2).getReg();
6371   LLT Ty = MRI.getType(Dst);
6372 
6373   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6374   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6375   MI.eraseFromParent();
6376   return Legalized;
6377 }
6378 
minMaxToCompare(unsigned Opc)6379 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6380   switch (Opc) {
6381   case TargetOpcode::G_SMIN:
6382     return CmpInst::ICMP_SLT;
6383   case TargetOpcode::G_SMAX:
6384     return CmpInst::ICMP_SGT;
6385   case TargetOpcode::G_UMIN:
6386     return CmpInst::ICMP_ULT;
6387   case TargetOpcode::G_UMAX:
6388     return CmpInst::ICMP_UGT;
6389   default:
6390     llvm_unreachable("not in integer min/max");
6391   }
6392 }
6393 
lowerMinMax(MachineInstr & MI)6394 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6395   Register Dst = MI.getOperand(0).getReg();
6396   Register Src0 = MI.getOperand(1).getReg();
6397   Register Src1 = MI.getOperand(2).getReg();
6398 
6399   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6400   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6401 
6402   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6403   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6404 
6405   MI.eraseFromParent();
6406   return Legalized;
6407 }
6408 
6409 LegalizerHelper::LegalizeResult
lowerFCopySign(MachineInstr & MI)6410 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6411   Register Dst = MI.getOperand(0).getReg();
6412   Register Src0 = MI.getOperand(1).getReg();
6413   Register Src1 = MI.getOperand(2).getReg();
6414 
6415   const LLT Src0Ty = MRI.getType(Src0);
6416   const LLT Src1Ty = MRI.getType(Src1);
6417 
6418   const int Src0Size = Src0Ty.getScalarSizeInBits();
6419   const int Src1Size = Src1Ty.getScalarSizeInBits();
6420 
6421   auto SignBitMask = MIRBuilder.buildConstant(
6422     Src0Ty, APInt::getSignMask(Src0Size));
6423 
6424   auto NotSignBitMask = MIRBuilder.buildConstant(
6425     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6426 
6427   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6428   Register And1;
6429   if (Src0Ty == Src1Ty) {
6430     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6431   } else if (Src0Size > Src1Size) {
6432     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6433     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6434     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6435     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6436   } else {
6437     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6438     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6439     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6440     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6441   }
6442 
6443   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6444   // constants are a nan and -0.0, but the final result should preserve
6445   // everything.
6446   unsigned Flags = MI.getFlags();
6447   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6448 
6449   MI.eraseFromParent();
6450   return Legalized;
6451 }
6452 
6453 LegalizerHelper::LegalizeResult
lowerFMinNumMaxNum(MachineInstr & MI)6454 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6455   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6456     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6457 
6458   Register Dst = MI.getOperand(0).getReg();
6459   Register Src0 = MI.getOperand(1).getReg();
6460   Register Src1 = MI.getOperand(2).getReg();
6461   LLT Ty = MRI.getType(Dst);
6462 
6463   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6464     // Insert canonicalizes if it's possible we need to quiet to get correct
6465     // sNaN behavior.
6466 
6467     // Note this must be done here, and not as an optimization combine in the
6468     // absence of a dedicate quiet-snan instruction as we're using an
6469     // omni-purpose G_FCANONICALIZE.
6470     if (!isKnownNeverSNaN(Src0, MRI))
6471       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6472 
6473     if (!isKnownNeverSNaN(Src1, MRI))
6474       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6475   }
6476 
6477   // If there are no nans, it's safe to simply replace this with the non-IEEE
6478   // version.
6479   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6480   MI.eraseFromParent();
6481   return Legalized;
6482 }
6483 
lowerFMad(MachineInstr & MI)6484 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6485   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6486   Register DstReg = MI.getOperand(0).getReg();
6487   LLT Ty = MRI.getType(DstReg);
6488   unsigned Flags = MI.getFlags();
6489 
6490   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6491                                   Flags);
6492   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6493   MI.eraseFromParent();
6494   return Legalized;
6495 }
6496 
6497 LegalizerHelper::LegalizeResult
lowerIntrinsicRound(MachineInstr & MI)6498 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6499   Register DstReg = MI.getOperand(0).getReg();
6500   Register X = MI.getOperand(1).getReg();
6501   const unsigned Flags = MI.getFlags();
6502   const LLT Ty = MRI.getType(DstReg);
6503   const LLT CondTy = Ty.changeElementSize(1);
6504 
6505   // round(x) =>
6506   //  t = trunc(x);
6507   //  d = fabs(x - t);
6508   //  o = copysign(1.0f, x);
6509   //  return t + (d >= 0.5 ? o : 0.0);
6510 
6511   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6512 
6513   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6514   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6515   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6516   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6517   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6518   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6519 
6520   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6521                                   Flags);
6522   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6523 
6524   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6525 
6526   MI.eraseFromParent();
6527   return Legalized;
6528 }
6529 
6530 LegalizerHelper::LegalizeResult
lowerFFloor(MachineInstr & MI)6531 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6532   Register DstReg = MI.getOperand(0).getReg();
6533   Register SrcReg = MI.getOperand(1).getReg();
6534   unsigned Flags = MI.getFlags();
6535   LLT Ty = MRI.getType(DstReg);
6536   const LLT CondTy = Ty.changeElementSize(1);
6537 
6538   // result = trunc(src);
6539   // if (src < 0.0 && src != result)
6540   //   result += -1.0.
6541 
6542   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6543   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6544 
6545   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6546                                   SrcReg, Zero, Flags);
6547   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6548                                       SrcReg, Trunc, Flags);
6549   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6550   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6551 
6552   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6553   MI.eraseFromParent();
6554   return Legalized;
6555 }
6556 
6557 LegalizerHelper::LegalizeResult
lowerMergeValues(MachineInstr & MI)6558 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6559   const unsigned NumOps = MI.getNumOperands();
6560   Register DstReg = MI.getOperand(0).getReg();
6561   Register Src0Reg = MI.getOperand(1).getReg();
6562   LLT DstTy = MRI.getType(DstReg);
6563   LLT SrcTy = MRI.getType(Src0Reg);
6564   unsigned PartSize = SrcTy.getSizeInBits();
6565 
6566   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6567   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6568 
6569   for (unsigned I = 2; I != NumOps; ++I) {
6570     const unsigned Offset = (I - 1) * PartSize;
6571 
6572     Register SrcReg = MI.getOperand(I).getReg();
6573     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6574 
6575     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6576       MRI.createGenericVirtualRegister(WideTy);
6577 
6578     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6579     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6580     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6581     ResultReg = NextResult;
6582   }
6583 
6584   if (DstTy.isPointer()) {
6585     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6586           DstTy.getAddressSpace())) {
6587       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6588       return UnableToLegalize;
6589     }
6590 
6591     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6592   }
6593 
6594   MI.eraseFromParent();
6595   return Legalized;
6596 }
6597 
6598 LegalizerHelper::LegalizeResult
lowerUnmergeValues(MachineInstr & MI)6599 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6600   const unsigned NumDst = MI.getNumOperands() - 1;
6601   Register SrcReg = MI.getOperand(NumDst).getReg();
6602   Register Dst0Reg = MI.getOperand(0).getReg();
6603   LLT DstTy = MRI.getType(Dst0Reg);
6604   if (DstTy.isPointer())
6605     return UnableToLegalize; // TODO
6606 
6607   SrcReg = coerceToScalar(SrcReg);
6608   if (!SrcReg)
6609     return UnableToLegalize;
6610 
6611   // Expand scalarizing unmerge as bitcast to integer and shift.
6612   LLT IntTy = MRI.getType(SrcReg);
6613 
6614   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6615 
6616   const unsigned DstSize = DstTy.getSizeInBits();
6617   unsigned Offset = DstSize;
6618   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6619     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6620     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6621     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6622   }
6623 
6624   MI.eraseFromParent();
6625   return Legalized;
6626 }
6627 
6628 /// Lower a vector extract or insert by writing the vector to a stack temporary
6629 /// and reloading the element or vector.
6630 ///
6631 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6632 ///  =>
6633 ///  %stack_temp = G_FRAME_INDEX
6634 ///  G_STORE %vec, %stack_temp
6635 ///  %idx = clamp(%idx, %vec.getNumElements())
6636 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6637 ///  %dst = G_LOAD %element_ptr
6638 LegalizerHelper::LegalizeResult
lowerExtractInsertVectorElt(MachineInstr & MI)6639 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6640   Register DstReg = MI.getOperand(0).getReg();
6641   Register SrcVec = MI.getOperand(1).getReg();
6642   Register InsertVal;
6643   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6644     InsertVal = MI.getOperand(2).getReg();
6645 
6646   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6647 
6648   LLT VecTy = MRI.getType(SrcVec);
6649   LLT EltTy = VecTy.getElementType();
6650   if (!EltTy.isByteSized()) { // Not implemented.
6651     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6652     return UnableToLegalize;
6653   }
6654 
6655   unsigned EltBytes = EltTy.getSizeInBytes();
6656   Align VecAlign = getStackTemporaryAlignment(VecTy);
6657   Align EltAlign;
6658 
6659   MachinePointerInfo PtrInfo;
6660   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6661                                         VecAlign, PtrInfo);
6662   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6663 
6664   // Get the pointer to the element, and be sure not to hit undefined behavior
6665   // if the index is out of bounds.
6666   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6667 
6668   int64_t IdxVal;
6669   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6670     int64_t Offset = IdxVal * EltBytes;
6671     PtrInfo = PtrInfo.getWithOffset(Offset);
6672     EltAlign = commonAlignment(VecAlign, Offset);
6673   } else {
6674     // We lose information with a variable offset.
6675     EltAlign = getStackTemporaryAlignment(EltTy);
6676     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6677   }
6678 
6679   if (InsertVal) {
6680     // Write the inserted element
6681     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6682 
6683     // Reload the whole vector.
6684     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6685   } else {
6686     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6687   }
6688 
6689   MI.eraseFromParent();
6690   return Legalized;
6691 }
6692 
6693 LegalizerHelper::LegalizeResult
lowerShuffleVector(MachineInstr & MI)6694 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6695   Register DstReg = MI.getOperand(0).getReg();
6696   Register Src0Reg = MI.getOperand(1).getReg();
6697   Register Src1Reg = MI.getOperand(2).getReg();
6698   LLT Src0Ty = MRI.getType(Src0Reg);
6699   LLT DstTy = MRI.getType(DstReg);
6700   LLT IdxTy = LLT::scalar(32);
6701 
6702   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6703 
6704   if (DstTy.isScalar()) {
6705     if (Src0Ty.isVector())
6706       return UnableToLegalize;
6707 
6708     // This is just a SELECT.
6709     assert(Mask.size() == 1 && "Expected a single mask element");
6710     Register Val;
6711     if (Mask[0] < 0 || Mask[0] > 1)
6712       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6713     else
6714       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6715     MIRBuilder.buildCopy(DstReg, Val);
6716     MI.eraseFromParent();
6717     return Legalized;
6718   }
6719 
6720   Register Undef;
6721   SmallVector<Register, 32> BuildVec;
6722   LLT EltTy = DstTy.getElementType();
6723 
6724   for (int Idx : Mask) {
6725     if (Idx < 0) {
6726       if (!Undef.isValid())
6727         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6728       BuildVec.push_back(Undef);
6729       continue;
6730     }
6731 
6732     if (Src0Ty.isScalar()) {
6733       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6734     } else {
6735       int NumElts = Src0Ty.getNumElements();
6736       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6737       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6738       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6739       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6740       BuildVec.push_back(Extract.getReg(0));
6741     }
6742   }
6743 
6744   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6745   MI.eraseFromParent();
6746   return Legalized;
6747 }
6748 
6749 LegalizerHelper::LegalizeResult
lowerDynStackAlloc(MachineInstr & MI)6750 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6751   const auto &MF = *MI.getMF();
6752   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6753   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6754     return UnableToLegalize;
6755 
6756   Register Dst = MI.getOperand(0).getReg();
6757   Register AllocSize = MI.getOperand(1).getReg();
6758   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6759 
6760   LLT PtrTy = MRI.getType(Dst);
6761   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6762 
6763   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6764   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6765   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6766 
6767   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6768   // have to generate an extra instruction to negate the alloc and then use
6769   // G_PTR_ADD to add the negative offset.
6770   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6771   if (Alignment > Align(1)) {
6772     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6773     AlignMask.negate();
6774     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6775     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6776   }
6777 
6778   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6779   MIRBuilder.buildCopy(SPReg, SPTmp);
6780   MIRBuilder.buildCopy(Dst, SPTmp);
6781 
6782   MI.eraseFromParent();
6783   return Legalized;
6784 }
6785 
6786 LegalizerHelper::LegalizeResult
lowerExtract(MachineInstr & MI)6787 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6788   Register Dst = MI.getOperand(0).getReg();
6789   Register Src = MI.getOperand(1).getReg();
6790   unsigned Offset = MI.getOperand(2).getImm();
6791 
6792   LLT DstTy = MRI.getType(Dst);
6793   LLT SrcTy = MRI.getType(Src);
6794 
6795   if (DstTy.isScalar() &&
6796       (SrcTy.isScalar() ||
6797        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6798     LLT SrcIntTy = SrcTy;
6799     if (!SrcTy.isScalar()) {
6800       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6801       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6802     }
6803 
6804     if (Offset == 0)
6805       MIRBuilder.buildTrunc(Dst, Src);
6806     else {
6807       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6808       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6809       MIRBuilder.buildTrunc(Dst, Shr);
6810     }
6811 
6812     MI.eraseFromParent();
6813     return Legalized;
6814   }
6815 
6816   return UnableToLegalize;
6817 }
6818 
lowerInsert(MachineInstr & MI)6819 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6820   Register Dst = MI.getOperand(0).getReg();
6821   Register Src = MI.getOperand(1).getReg();
6822   Register InsertSrc = MI.getOperand(2).getReg();
6823   uint64_t Offset = MI.getOperand(3).getImm();
6824 
6825   LLT DstTy = MRI.getType(Src);
6826   LLT InsertTy = MRI.getType(InsertSrc);
6827 
6828   if (InsertTy.isVector() ||
6829       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6830     return UnableToLegalize;
6831 
6832   const DataLayout &DL = MIRBuilder.getDataLayout();
6833   if ((DstTy.isPointer() &&
6834        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6835       (InsertTy.isPointer() &&
6836        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6837     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6838     return UnableToLegalize;
6839   }
6840 
6841   LLT IntDstTy = DstTy;
6842 
6843   if (!DstTy.isScalar()) {
6844     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6845     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6846   }
6847 
6848   if (!InsertTy.isScalar()) {
6849     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6850     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6851   }
6852 
6853   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6854   if (Offset != 0) {
6855     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6856     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6857   }
6858 
6859   APInt MaskVal = APInt::getBitsSetWithWrap(
6860       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6861 
6862   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6863   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6864   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6865 
6866   MIRBuilder.buildCast(Dst, Or);
6867   MI.eraseFromParent();
6868   return Legalized;
6869 }
6870 
6871 LegalizerHelper::LegalizeResult
lowerSADDO_SSUBO(MachineInstr & MI)6872 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6873   Register Dst0 = MI.getOperand(0).getReg();
6874   Register Dst1 = MI.getOperand(1).getReg();
6875   Register LHS = MI.getOperand(2).getReg();
6876   Register RHS = MI.getOperand(3).getReg();
6877   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6878 
6879   LLT Ty = MRI.getType(Dst0);
6880   LLT BoolTy = MRI.getType(Dst1);
6881 
6882   if (IsAdd)
6883     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6884   else
6885     MIRBuilder.buildSub(Dst0, LHS, RHS);
6886 
6887   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6888 
6889   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6890 
6891   // For an addition, the result should be less than one of the operands (LHS)
6892   // if and only if the other operand (RHS) is negative, otherwise there will
6893   // be overflow.
6894   // For a subtraction, the result should be less than one of the operands
6895   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6896   // otherwise there will be overflow.
6897   auto ResultLowerThanLHS =
6898       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6899   auto ConditionRHS = MIRBuilder.buildICmp(
6900       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6901 
6902   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6903   MI.eraseFromParent();
6904   return Legalized;
6905 }
6906 
6907 LegalizerHelper::LegalizeResult
lowerAddSubSatToMinMax(MachineInstr & MI)6908 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6909   Register Res = MI.getOperand(0).getReg();
6910   Register LHS = MI.getOperand(1).getReg();
6911   Register RHS = MI.getOperand(2).getReg();
6912   LLT Ty = MRI.getType(Res);
6913   bool IsSigned;
6914   bool IsAdd;
6915   unsigned BaseOp;
6916   switch (MI.getOpcode()) {
6917   default:
6918     llvm_unreachable("unexpected addsat/subsat opcode");
6919   case TargetOpcode::G_UADDSAT:
6920     IsSigned = false;
6921     IsAdd = true;
6922     BaseOp = TargetOpcode::G_ADD;
6923     break;
6924   case TargetOpcode::G_SADDSAT:
6925     IsSigned = true;
6926     IsAdd = true;
6927     BaseOp = TargetOpcode::G_ADD;
6928     break;
6929   case TargetOpcode::G_USUBSAT:
6930     IsSigned = false;
6931     IsAdd = false;
6932     BaseOp = TargetOpcode::G_SUB;
6933     break;
6934   case TargetOpcode::G_SSUBSAT:
6935     IsSigned = true;
6936     IsAdd = false;
6937     BaseOp = TargetOpcode::G_SUB;
6938     break;
6939   }
6940 
6941   if (IsSigned) {
6942     // sadd.sat(a, b) ->
6943     //   hi = 0x7fffffff - smax(a, 0)
6944     //   lo = 0x80000000 - smin(a, 0)
6945     //   a + smin(smax(lo, b), hi)
6946     // ssub.sat(a, b) ->
6947     //   lo = smax(a, -1) - 0x7fffffff
6948     //   hi = smin(a, -1) - 0x80000000
6949     //   a - smin(smax(lo, b), hi)
6950     // TODO: AMDGPU can use a "median of 3" instruction here:
6951     //   a +/- med3(lo, b, hi)
6952     uint64_t NumBits = Ty.getScalarSizeInBits();
6953     auto MaxVal =
6954         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6955     auto MinVal =
6956         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6957     MachineInstrBuilder Hi, Lo;
6958     if (IsAdd) {
6959       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6960       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6961       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6962     } else {
6963       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6964       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6965                                MaxVal);
6966       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6967                                MinVal);
6968     }
6969     auto RHSClamped =
6970         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6971     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6972   } else {
6973     // uadd.sat(a, b) -> a + umin(~a, b)
6974     // usub.sat(a, b) -> a - umin(a, b)
6975     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6976     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6977     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6978   }
6979 
6980   MI.eraseFromParent();
6981   return Legalized;
6982 }
6983 
6984 LegalizerHelper::LegalizeResult
lowerAddSubSatToAddoSubo(MachineInstr & MI)6985 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6986   Register Res = MI.getOperand(0).getReg();
6987   Register LHS = MI.getOperand(1).getReg();
6988   Register RHS = MI.getOperand(2).getReg();
6989   LLT Ty = MRI.getType(Res);
6990   LLT BoolTy = Ty.changeElementSize(1);
6991   bool IsSigned;
6992   bool IsAdd;
6993   unsigned OverflowOp;
6994   switch (MI.getOpcode()) {
6995   default:
6996     llvm_unreachable("unexpected addsat/subsat opcode");
6997   case TargetOpcode::G_UADDSAT:
6998     IsSigned = false;
6999     IsAdd = true;
7000     OverflowOp = TargetOpcode::G_UADDO;
7001     break;
7002   case TargetOpcode::G_SADDSAT:
7003     IsSigned = true;
7004     IsAdd = true;
7005     OverflowOp = TargetOpcode::G_SADDO;
7006     break;
7007   case TargetOpcode::G_USUBSAT:
7008     IsSigned = false;
7009     IsAdd = false;
7010     OverflowOp = TargetOpcode::G_USUBO;
7011     break;
7012   case TargetOpcode::G_SSUBSAT:
7013     IsSigned = true;
7014     IsAdd = false;
7015     OverflowOp = TargetOpcode::G_SSUBO;
7016     break;
7017   }
7018 
7019   auto OverflowRes =
7020       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7021   Register Tmp = OverflowRes.getReg(0);
7022   Register Ov = OverflowRes.getReg(1);
7023   MachineInstrBuilder Clamp;
7024   if (IsSigned) {
7025     // sadd.sat(a, b) ->
7026     //   {tmp, ov} = saddo(a, b)
7027     //   ov ? (tmp >>s 31) + 0x80000000 : r
7028     // ssub.sat(a, b) ->
7029     //   {tmp, ov} = ssubo(a, b)
7030     //   ov ? (tmp >>s 31) + 0x80000000 : r
7031     uint64_t NumBits = Ty.getScalarSizeInBits();
7032     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7033     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7034     auto MinVal =
7035         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7036     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7037   } else {
7038     // uadd.sat(a, b) ->
7039     //   {tmp, ov} = uaddo(a, b)
7040     //   ov ? 0xffffffff : tmp
7041     // usub.sat(a, b) ->
7042     //   {tmp, ov} = usubo(a, b)
7043     //   ov ? 0 : tmp
7044     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7045   }
7046   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7047 
7048   MI.eraseFromParent();
7049   return Legalized;
7050 }
7051 
7052 LegalizerHelper::LegalizeResult
lowerShlSat(MachineInstr & MI)7053 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7054   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7055           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7056          "Expected shlsat opcode!");
7057   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7058   Register Res = MI.getOperand(0).getReg();
7059   Register LHS = MI.getOperand(1).getReg();
7060   Register RHS = MI.getOperand(2).getReg();
7061   LLT Ty = MRI.getType(Res);
7062   LLT BoolTy = Ty.changeElementSize(1);
7063 
7064   unsigned BW = Ty.getScalarSizeInBits();
7065   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7066   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7067                        : MIRBuilder.buildLShr(Ty, Result, RHS);
7068 
7069   MachineInstrBuilder SatVal;
7070   if (IsSigned) {
7071     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7072     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7073     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7074                                     MIRBuilder.buildConstant(Ty, 0));
7075     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7076   } else {
7077     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7078   }
7079   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7080   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7081 
7082   MI.eraseFromParent();
7083   return Legalized;
7084 }
7085 
7086 LegalizerHelper::LegalizeResult
lowerBswap(MachineInstr & MI)7087 LegalizerHelper::lowerBswap(MachineInstr &MI) {
7088   Register Dst = MI.getOperand(0).getReg();
7089   Register Src = MI.getOperand(1).getReg();
7090   const LLT Ty = MRI.getType(Src);
7091   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7092   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7093 
7094   // Swap most and least significant byte, set remaining bytes in Res to zero.
7095   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7096   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7097   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7098   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7099 
7100   // Set i-th high/low byte in Res to i-th low/high byte from Src.
7101   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7102     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7103     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7104     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7105     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7106     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7107     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7108     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7109     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7110     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7111     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7112     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7113     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7114   }
7115   Res.getInstr()->getOperand(0).setReg(Dst);
7116 
7117   MI.eraseFromParent();
7118   return Legalized;
7119 }
7120 
7121 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
SwapN(unsigned N,DstOp Dst,MachineIRBuilder & B,MachineInstrBuilder Src,APInt Mask)7122 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7123                                  MachineInstrBuilder Src, APInt Mask) {
7124   const LLT Ty = Dst.getLLTTy(*B.getMRI());
7125   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7126   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7127   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7128   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7129   return B.buildOr(Dst, LHS, RHS);
7130 }
7131 
7132 LegalizerHelper::LegalizeResult
lowerBitreverse(MachineInstr & MI)7133 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7134   Register Dst = MI.getOperand(0).getReg();
7135   Register Src = MI.getOperand(1).getReg();
7136   const LLT Ty = MRI.getType(Src);
7137   unsigned Size = Ty.getSizeInBits();
7138 
7139   MachineInstrBuilder BSWAP =
7140       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7141 
7142   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7143   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7144   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7145   MachineInstrBuilder Swap4 =
7146       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7147 
7148   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7149   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7150   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7151   MachineInstrBuilder Swap2 =
7152       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7153 
7154   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7155   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7156   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7157   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7158 
7159   MI.eraseFromParent();
7160   return Legalized;
7161 }
7162 
7163 LegalizerHelper::LegalizeResult
lowerReadWriteRegister(MachineInstr & MI)7164 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7165   MachineFunction &MF = MIRBuilder.getMF();
7166 
7167   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7168   int NameOpIdx = IsRead ? 1 : 0;
7169   int ValRegIndex = IsRead ? 0 : 1;
7170 
7171   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7172   const LLT Ty = MRI.getType(ValReg);
7173   const MDString *RegStr = cast<MDString>(
7174     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7175 
7176   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7177   if (!PhysReg.isValid())
7178     return UnableToLegalize;
7179 
7180   if (IsRead)
7181     MIRBuilder.buildCopy(ValReg, PhysReg);
7182   else
7183     MIRBuilder.buildCopy(PhysReg, ValReg);
7184 
7185   MI.eraseFromParent();
7186   return Legalized;
7187 }
7188 
7189 LegalizerHelper::LegalizeResult
lowerSMULH_UMULH(MachineInstr & MI)7190 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7191   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7192   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7193   Register Result = MI.getOperand(0).getReg();
7194   LLT OrigTy = MRI.getType(Result);
7195   auto SizeInBits = OrigTy.getScalarSizeInBits();
7196   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7197 
7198   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7199   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7200   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7201   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7202 
7203   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7204   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7205   MIRBuilder.buildTrunc(Result, Shifted);
7206 
7207   MI.eraseFromParent();
7208   return Legalized;
7209 }
7210 
lowerSelect(MachineInstr & MI)7211 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7212   // Implement vector G_SELECT in terms of XOR, AND, OR.
7213   Register DstReg = MI.getOperand(0).getReg();
7214   Register MaskReg = MI.getOperand(1).getReg();
7215   Register Op1Reg = MI.getOperand(2).getReg();
7216   Register Op2Reg = MI.getOperand(3).getReg();
7217   LLT DstTy = MRI.getType(DstReg);
7218   LLT MaskTy = MRI.getType(MaskReg);
7219   LLT Op1Ty = MRI.getType(Op1Reg);
7220   if (!DstTy.isVector())
7221     return UnableToLegalize;
7222 
7223   // Vector selects can have a scalar predicate. If so, splat into a vector and
7224   // finish for later legalization attempts to try again.
7225   if (MaskTy.isScalar()) {
7226     Register MaskElt = MaskReg;
7227     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7228       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7229     // Generate a vector splat idiom to be pattern matched later.
7230     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7231     Observer.changingInstr(MI);
7232     MI.getOperand(1).setReg(ShufSplat.getReg(0));
7233     Observer.changedInstr(MI);
7234     return Legalized;
7235   }
7236 
7237   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7238     return UnableToLegalize;
7239   }
7240 
7241   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7242   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7243   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7244   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7245   MI.eraseFromParent();
7246   return Legalized;
7247 }
7248 
lowerDIVREM(MachineInstr & MI)7249 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7250   // Split DIVREM into individual instructions.
7251   unsigned Opcode = MI.getOpcode();
7252 
7253   MIRBuilder.buildInstr(
7254       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7255                                         : TargetOpcode::G_UDIV,
7256       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7257   MIRBuilder.buildInstr(
7258       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7259                                         : TargetOpcode::G_UREM,
7260       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7261   MI.eraseFromParent();
7262   return Legalized;
7263 }
7264 
7265 LegalizerHelper::LegalizeResult
lowerAbsToAddXor(MachineInstr & MI)7266 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7267   // Expand %res = G_ABS %a into:
7268   // %v1 = G_ASHR %a, scalar_size-1
7269   // %v2 = G_ADD %a, %v1
7270   // %res = G_XOR %v2, %v1
7271   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7272   Register OpReg = MI.getOperand(1).getReg();
7273   auto ShiftAmt =
7274       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7275   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7276   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7277   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7278   MI.eraseFromParent();
7279   return Legalized;
7280 }
7281 
7282 LegalizerHelper::LegalizeResult
lowerAbsToMaxNeg(MachineInstr & MI)7283 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7284   // Expand %res = G_ABS %a into:
7285   // %v1 = G_CONSTANT 0
7286   // %v2 = G_SUB %v1, %a
7287   // %res = G_SMAX %a, %v2
7288   Register SrcReg = MI.getOperand(1).getReg();
7289   LLT Ty = MRI.getType(SrcReg);
7290   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7291   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7292   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7293   MI.eraseFromParent();
7294   return Legalized;
7295 }
7296