1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/DataTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 #define DEBUG_TYPE "codegen"
42
43 static cl::opt<bool> PrintSlotIndexes(
44 "print-slotindexes",
45 cl::desc("When printing machine IR, annotate instructions and blocks with "
46 "SlotIndexes when available"),
47 cl::init(true), cl::Hidden);
48
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)49 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
50 : BB(B), Number(-1), xParent(&MF) {
51 Insts.Parent = this;
52 if (B)
53 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
54 }
55
~MachineBasicBlock()56 MachineBasicBlock::~MachineBasicBlock() {
57 }
58
59 /// Return the MCSymbol for this basic block.
getSymbol() const60 MCSymbol *MachineBasicBlock::getSymbol() const {
61 if (!CachedMCSymbol) {
62 const MachineFunction *MF = getParent();
63 MCContext &Ctx = MF->getContext();
64
65 // We emit a non-temporary symbol -- with a descriptive name -- if it begins
66 // a section (with basic block sections). Otherwise we fall back to use temp
67 // label.
68 if (MF->hasBBSections() && isBeginSection()) {
69 SmallString<5> Suffix;
70 if (SectionID == MBBSectionID::ColdSectionID) {
71 Suffix += ".cold";
72 } else if (SectionID == MBBSectionID::ExceptionSectionID) {
73 Suffix += ".eh";
74 } else {
75 // For symbols that represent basic block sections, we add ".__part." to
76 // allow tools like symbolizers to know that this represents a part of
77 // the original function.
78 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
79 }
80 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
81 } else {
82 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
83 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
84 Twine(MF->getFunctionNumber()) +
85 "_" + Twine(getNumber()));
86 }
87 }
88 return CachedMCSymbol;
89 }
90
getEHCatchretSymbol() const91 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
92 if (!CachedEHCatchretMCSymbol) {
93 const MachineFunction *MF = getParent();
94 SmallString<128> SymbolName;
95 raw_svector_ostream(SymbolName)
96 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
97 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
98 }
99 return CachedEHCatchretMCSymbol;
100 }
101
getEndSymbol() const102 MCSymbol *MachineBasicBlock::getEndSymbol() const {
103 if (!CachedEndMCSymbol) {
104 const MachineFunction *MF = getParent();
105 MCContext &Ctx = MF->getContext();
106 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
107 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
108 Twine(MF->getFunctionNumber()) +
109 "_" + Twine(getNumber()));
110 }
111 return CachedEndMCSymbol;
112 }
113
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)114 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
115 MBB.print(OS);
116 return OS;
117 }
118
printMBBReference(const MachineBasicBlock & MBB)119 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
120 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
121 }
122
123 /// When an MBB is added to an MF, we need to update the parent pointer of the
124 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
125 /// operand list for registers.
126 ///
127 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
128 /// gets the next available unique MBB number. If it is removed from a
129 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)130 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
131 MachineBasicBlock *N) {
132 MachineFunction &MF = *N->getParent();
133 N->Number = MF.addToMBBNumbering(N);
134
135 // Make sure the instructions have their operands in the reginfo lists.
136 MachineRegisterInfo &RegInfo = MF.getRegInfo();
137 for (MachineBasicBlock::instr_iterator
138 I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
139 I->AddRegOperandsToUseLists(RegInfo);
140 }
141
removeNodeFromList(MachineBasicBlock * N)142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
143 MachineBasicBlock *N) {
144 N->getParent()->removeFromMBBNumbering(N->Number);
145 N->Number = -1;
146 }
147
148 /// When we add an instruction to a basic block list, we update its parent
149 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
151 assert(!N->getParent() && "machine instruction already in a basic block");
152 N->setParent(Parent);
153
154 // Add the instruction's register operands to their corresponding
155 // use/def lists.
156 MachineFunction *MF = Parent->getParent();
157 N->AddRegOperandsToUseLists(MF->getRegInfo());
158 MF->handleInsertion(*N);
159 }
160
161 /// When we remove an instruction from a basic block list, we update its parent
162 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
164 assert(N->getParent() && "machine instruction not in a basic block");
165
166 // Remove from the use/def lists.
167 if (MachineFunction *MF = N->getMF()) {
168 MF->handleRemoval(*N);
169 N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
170 }
171
172 N->setParent(nullptr);
173 }
174
175 /// When moving a range of instructions from one MBB list to another, we need to
176 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
178 instr_iterator First,
179 instr_iterator Last) {
180 assert(Parent->getParent() == FromList.Parent->getParent() &&
181 "cannot transfer MachineInstrs between MachineFunctions");
182
183 // If it's within the same BB, there's nothing to do.
184 if (this == &FromList)
185 return;
186
187 assert(Parent != FromList.Parent && "Two lists have the same parent?");
188
189 // If splicing between two blocks within the same function, just update the
190 // parent pointers.
191 for (; First != Last; ++First)
192 First->setParent(Parent);
193 }
194
deleteNode(MachineInstr * MI)195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
196 assert(!MI->getParent() && "MI is still in a block!");
197 Parent->getParent()->DeleteMachineInstr(MI);
198 }
199
getFirstNonPHI()200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
201 instr_iterator I = instr_begin(), E = instr_end();
202 while (I != E && I->isPHI())
203 ++I;
204 assert((I == E || !I->isInsideBundle()) &&
205 "First non-phi MI cannot be inside a bundle!");
206 return I;
207 }
208
209 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
211 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
212
213 iterator E = end();
214 while (I != E && (I->isPHI() || I->isPosition() ||
215 TII->isBasicBlockPrologue(*I)))
216 ++I;
217 // FIXME: This needs to change if we wish to bundle labels
218 // inside the bundle.
219 assert((I == E || !I->isInsideBundle()) &&
220 "First non-phi / non-label instruction is inside a bundle!");
221 return I;
222 }
223
224 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,bool SkipPseudoOp)225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
226 bool SkipPseudoOp) {
227 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
228
229 iterator E = end();
230 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
231 (SkipPseudoOp && I->isPseudoProbe()) ||
232 TII->isBasicBlockPrologue(*I)))
233 ++I;
234 // FIXME: This needs to change if we wish to bundle labels / dbg_values
235 // inside the bundle.
236 assert((I == E || !I->isInsideBundle()) &&
237 "First non-phi / non-label / non-debug "
238 "instruction is inside a bundle!");
239 return I;
240 }
241
getFirstTerminator()242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
243 iterator B = begin(), E = end(), I = E;
244 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
245 ; /*noop */
246 while (I != E && !I->isTerminator())
247 ++I;
248 return I;
249 }
250
getFirstInstrTerminator()251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
252 instr_iterator B = instr_begin(), E = instr_end(), I = E;
253 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
254 ; /*noop */
255 while (I != E && !I->isTerminator())
256 ++I;
257 return I;
258 }
259
260 MachineBasicBlock::iterator
getFirstNonDebugInstr(bool SkipPseudoOp)261 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
262 // Skip over begin-of-block dbg_value instructions.
263 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
264 }
265
266 MachineBasicBlock::iterator
getLastNonDebugInstr(bool SkipPseudoOp)267 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
268 // Skip over end-of-block dbg_value instructions.
269 instr_iterator B = instr_begin(), I = instr_end();
270 while (I != B) {
271 --I;
272 // Return instruction that starts a bundle.
273 if (I->isDebugInstr() || I->isInsideBundle())
274 continue;
275 if (SkipPseudoOp && I->isPseudoProbe())
276 continue;
277 return I;
278 }
279 // The block is all debug values.
280 return end();
281 }
282
hasEHPadSuccessor() const283 bool MachineBasicBlock::hasEHPadSuccessor() const {
284 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
285 if ((*I)->isEHPad())
286 return true;
287 return false;
288 }
289
isEntryBlock() const290 bool MachineBasicBlock::isEntryBlock() const {
291 return getParent()->begin() == getIterator();
292 }
293
294 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const295 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
296 print(dbgs());
297 }
298 #endif
299
mayHaveInlineAsmBr() const300 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
301 for (const MachineBasicBlock *Succ : successors()) {
302 if (Succ->isInlineAsmBrIndirectTarget())
303 return true;
304 }
305 return false;
306 }
307
isLegalToHoistInto() const308 bool MachineBasicBlock::isLegalToHoistInto() const {
309 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
310 return false;
311 return true;
312 }
313
getName() const314 StringRef MachineBasicBlock::getName() const {
315 if (const BasicBlock *LBB = getBasicBlock())
316 return LBB->getName();
317 else
318 return StringRef("", 0);
319 }
320
321 /// Return a hopefully unique identifier for this block.
getFullName() const322 std::string MachineBasicBlock::getFullName() const {
323 std::string Name;
324 if (getParent())
325 Name = (getParent()->getName() + ":").str();
326 if (getBasicBlock())
327 Name += getBasicBlock()->getName();
328 else
329 Name += ("BB" + Twine(getNumber())).str();
330 return Name;
331 }
332
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const333 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
334 bool IsStandalone) const {
335 const MachineFunction *MF = getParent();
336 if (!MF) {
337 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
338 << " is null\n";
339 return;
340 }
341 const Function &F = MF->getFunction();
342 const Module *M = F.getParent();
343 ModuleSlotTracker MST(M);
344 MST.incorporateFunction(F);
345 print(OS, MST, Indexes, IsStandalone);
346 }
347
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const348 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
349 const SlotIndexes *Indexes,
350 bool IsStandalone) const {
351 const MachineFunction *MF = getParent();
352 if (!MF) {
353 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
354 << " is null\n";
355 return;
356 }
357
358 if (Indexes && PrintSlotIndexes)
359 OS << Indexes->getMBBStartIdx(this) << '\t';
360
361 printName(OS, PrintNameIr | PrintNameAttributes, &MST);
362 OS << ":\n";
363
364 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
365 const MachineRegisterInfo &MRI = MF->getRegInfo();
366 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
367 bool HasLineAttributes = false;
368
369 // Print the preds of this block according to the CFG.
370 if (!pred_empty() && IsStandalone) {
371 if (Indexes) OS << '\t';
372 // Don't indent(2), align with previous line attributes.
373 OS << "; predecessors: ";
374 ListSeparator LS;
375 for (auto *Pred : predecessors())
376 OS << LS << printMBBReference(*Pred);
377 OS << '\n';
378 HasLineAttributes = true;
379 }
380
381 if (!succ_empty()) {
382 if (Indexes) OS << '\t';
383 // Print the successors
384 OS.indent(2) << "successors: ";
385 ListSeparator LS;
386 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
387 OS << LS << printMBBReference(**I);
388 if (!Probs.empty())
389 OS << '('
390 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
391 << ')';
392 }
393 if (!Probs.empty() && IsStandalone) {
394 // Print human readable probabilities as comments.
395 OS << "; ";
396 ListSeparator LS;
397 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
398 const BranchProbability &BP = getSuccProbability(I);
399 OS << LS << printMBBReference(**I) << '('
400 << format("%.2f%%",
401 rint(((double)BP.getNumerator() / BP.getDenominator()) *
402 100.0 * 100.0) /
403 100.0)
404 << ')';
405 }
406 }
407
408 OS << '\n';
409 HasLineAttributes = true;
410 }
411
412 if (!livein_empty() && MRI.tracksLiveness()) {
413 if (Indexes) OS << '\t';
414 OS.indent(2) << "liveins: ";
415
416 ListSeparator LS;
417 for (const auto &LI : liveins()) {
418 OS << LS << printReg(LI.PhysReg, TRI);
419 if (!LI.LaneMask.all())
420 OS << ":0x" << PrintLaneMask(LI.LaneMask);
421 }
422 HasLineAttributes = true;
423 }
424
425 if (HasLineAttributes)
426 OS << '\n';
427
428 bool IsInBundle = false;
429 for (const MachineInstr &MI : instrs()) {
430 if (Indexes && PrintSlotIndexes) {
431 if (Indexes->hasIndex(MI))
432 OS << Indexes->getInstructionIndex(MI);
433 OS << '\t';
434 }
435
436 if (IsInBundle && !MI.isInsideBundle()) {
437 OS.indent(2) << "}\n";
438 IsInBundle = false;
439 }
440
441 OS.indent(IsInBundle ? 4 : 2);
442 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
443 /*AddNewLine=*/false, &TII);
444
445 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
446 OS << " {";
447 IsInBundle = true;
448 }
449 OS << '\n';
450 }
451
452 if (IsInBundle)
453 OS.indent(2) << "}\n";
454
455 if (IrrLoopHeaderWeight && IsStandalone) {
456 if (Indexes) OS << '\t';
457 OS.indent(2) << "; Irreducible loop header weight: "
458 << IrrLoopHeaderWeight.getValue() << '\n';
459 }
460 }
461
462 /// Print the basic block's name as:
463 ///
464 /// bb.{number}[.{ir-name}] [(attributes...)]
465 ///
466 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
467 /// (which is the default). If the IR block has no name, it is identified
468 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
469 ///
470 /// When the \ref PrintNameAttributes flag is passed, additional attributes
471 /// of the block are printed when set.
472 ///
473 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
474 /// the parts to print.
475 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
476 /// incorporate its own tracker when necessary to
477 /// determine the block's IR name.
printName(raw_ostream & os,unsigned printNameFlags,ModuleSlotTracker * moduleSlotTracker) const478 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
479 ModuleSlotTracker *moduleSlotTracker) const {
480 os << "bb." << getNumber();
481 bool hasAttributes = false;
482
483 if (printNameFlags & PrintNameIr) {
484 if (const auto *bb = getBasicBlock()) {
485 if (bb->hasName()) {
486 os << '.' << bb->getName();
487 } else {
488 hasAttributes = true;
489 os << " (";
490
491 int slot = -1;
492
493 if (moduleSlotTracker) {
494 slot = moduleSlotTracker->getLocalSlot(bb);
495 } else if (bb->getParent()) {
496 ModuleSlotTracker tmpTracker(bb->getModule(), false);
497 tmpTracker.incorporateFunction(*bb->getParent());
498 slot = tmpTracker.getLocalSlot(bb);
499 }
500
501 if (slot == -1)
502 os << "<ir-block badref>";
503 else
504 os << (Twine("%ir-block.") + Twine(slot)).str();
505 }
506 }
507 }
508
509 if (printNameFlags & PrintNameAttributes) {
510 if (hasAddressTaken()) {
511 os << (hasAttributes ? ", " : " (");
512 os << "address-taken";
513 hasAttributes = true;
514 }
515 if (isEHPad()) {
516 os << (hasAttributes ? ", " : " (");
517 os << "landing-pad";
518 hasAttributes = true;
519 }
520 if (isEHFuncletEntry()) {
521 os << (hasAttributes ? ", " : " (");
522 os << "ehfunclet-entry";
523 hasAttributes = true;
524 }
525 if (getAlignment() != Align(1)) {
526 os << (hasAttributes ? ", " : " (");
527 os << "align " << getAlignment().value();
528 hasAttributes = true;
529 }
530 if (getSectionID() != MBBSectionID(0)) {
531 os << (hasAttributes ? ", " : " (");
532 os << "bbsections ";
533 switch (getSectionID().Type) {
534 case MBBSectionID::SectionType::Exception:
535 os << "Exception";
536 break;
537 case MBBSectionID::SectionType::Cold:
538 os << "Cold";
539 break;
540 default:
541 os << getSectionID().Number;
542 }
543 hasAttributes = true;
544 }
545 }
546
547 if (hasAttributes)
548 os << ')';
549 }
550
printAsOperand(raw_ostream & OS,bool) const551 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
552 bool /*PrintType*/) const {
553 OS << '%';
554 printName(OS, 0);
555 }
556
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)557 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
558 LiveInVector::iterator I = find_if(
559 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
560 if (I == LiveIns.end())
561 return;
562
563 I->LaneMask &= ~LaneMask;
564 if (I->LaneMask.none())
565 LiveIns.erase(I);
566 }
567
568 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)569 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
570 // Get non-const version of iterator.
571 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
572 return LiveIns.erase(LI);
573 }
574
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const575 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
576 livein_iterator I = find_if(
577 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
578 return I != livein_end() && (I->LaneMask & LaneMask).any();
579 }
580
sortUniqueLiveIns()581 void MachineBasicBlock::sortUniqueLiveIns() {
582 llvm::sort(LiveIns,
583 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
584 return LI0.PhysReg < LI1.PhysReg;
585 });
586 // Liveins are sorted by physreg now we can merge their lanemasks.
587 LiveInVector::const_iterator I = LiveIns.begin();
588 LiveInVector::const_iterator J;
589 LiveInVector::iterator Out = LiveIns.begin();
590 for (; I != LiveIns.end(); ++Out, I = J) {
591 MCRegister PhysReg = I->PhysReg;
592 LaneBitmask LaneMask = I->LaneMask;
593 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
594 LaneMask |= J->LaneMask;
595 Out->PhysReg = PhysReg;
596 Out->LaneMask = LaneMask;
597 }
598 LiveIns.erase(Out, LiveIns.end());
599 }
600
601 Register
addLiveIn(MCRegister PhysReg,const TargetRegisterClass * RC)602 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
603 assert(getParent() && "MBB must be inserted in function");
604 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
605 assert(RC && "Register class is required");
606 assert((isEHPad() || this == &getParent()->front()) &&
607 "Only the entry block and landing pads can have physreg live ins");
608
609 bool LiveIn = isLiveIn(PhysReg);
610 iterator I = SkipPHIsAndLabels(begin()), E = end();
611 MachineRegisterInfo &MRI = getParent()->getRegInfo();
612 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
613
614 // Look for an existing copy.
615 if (LiveIn)
616 for (;I != E && I->isCopy(); ++I)
617 if (I->getOperand(1).getReg() == PhysReg) {
618 Register VirtReg = I->getOperand(0).getReg();
619 if (!MRI.constrainRegClass(VirtReg, RC))
620 llvm_unreachable("Incompatible live-in register class.");
621 return VirtReg;
622 }
623
624 // No luck, create a virtual register.
625 Register VirtReg = MRI.createVirtualRegister(RC);
626 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
627 .addReg(PhysReg, RegState::Kill);
628 if (!LiveIn)
629 addLiveIn(PhysReg);
630 return VirtReg;
631 }
632
moveBefore(MachineBasicBlock * NewAfter)633 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
634 getParent()->splice(NewAfter->getIterator(), getIterator());
635 }
636
moveAfter(MachineBasicBlock * NewBefore)637 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
638 getParent()->splice(++NewBefore->getIterator(), getIterator());
639 }
640
updateTerminator(MachineBasicBlock * PreviousLayoutSuccessor)641 void MachineBasicBlock::updateTerminator(
642 MachineBasicBlock *PreviousLayoutSuccessor) {
643 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
644 << "\n");
645
646 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
647 // A block with no successors has no concerns with fall-through edges.
648 if (this->succ_empty())
649 return;
650
651 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
652 SmallVector<MachineOperand, 4> Cond;
653 DebugLoc DL = findBranchDebugLoc();
654 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
655 (void) B;
656 assert(!B && "UpdateTerminators requires analyzable predecessors!");
657 if (Cond.empty()) {
658 if (TBB) {
659 // The block has an unconditional branch. If its successor is now its
660 // layout successor, delete the branch.
661 if (isLayoutSuccessor(TBB))
662 TII->removeBranch(*this);
663 } else {
664 // The block has an unconditional fallthrough, or the end of the block is
665 // unreachable.
666
667 // Unfortunately, whether the end of the block is unreachable is not
668 // immediately obvious; we must fall back to checking the successor list,
669 // and assuming that if the passed in block is in the succesor list and
670 // not an EHPad, it must be the intended target.
671 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
672 PreviousLayoutSuccessor->isEHPad())
673 return;
674
675 // If the unconditional successor block is not the current layout
676 // successor, insert a branch to jump to it.
677 if (!isLayoutSuccessor(PreviousLayoutSuccessor))
678 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
679 }
680 return;
681 }
682
683 if (FBB) {
684 // The block has a non-fallthrough conditional branch. If one of its
685 // successors is its layout successor, rewrite it to a fallthrough
686 // conditional branch.
687 if (isLayoutSuccessor(TBB)) {
688 if (TII->reverseBranchCondition(Cond))
689 return;
690 TII->removeBranch(*this);
691 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
692 } else if (isLayoutSuccessor(FBB)) {
693 TII->removeBranch(*this);
694 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
695 }
696 return;
697 }
698
699 // We now know we're going to fallthrough to PreviousLayoutSuccessor.
700 assert(PreviousLayoutSuccessor);
701 assert(!PreviousLayoutSuccessor->isEHPad());
702 assert(isSuccessor(PreviousLayoutSuccessor));
703
704 if (PreviousLayoutSuccessor == TBB) {
705 // We had a fallthrough to the same basic block as the conditional jump
706 // targets. Remove the conditional jump, leaving an unconditional
707 // fallthrough or an unconditional jump.
708 TII->removeBranch(*this);
709 if (!isLayoutSuccessor(TBB)) {
710 Cond.clear();
711 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
712 }
713 return;
714 }
715
716 // The block has a fallthrough conditional branch.
717 if (isLayoutSuccessor(TBB)) {
718 if (TII->reverseBranchCondition(Cond)) {
719 // We can't reverse the condition, add an unconditional branch.
720 Cond.clear();
721 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
722 return;
723 }
724 TII->removeBranch(*this);
725 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
726 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
727 TII->removeBranch(*this);
728 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
729 }
730 }
731
validateSuccProbs() const732 void MachineBasicBlock::validateSuccProbs() const {
733 #ifndef NDEBUG
734 int64_t Sum = 0;
735 for (auto Prob : Probs)
736 Sum += Prob.getNumerator();
737 // Due to precision issue, we assume that the sum of probabilities is one if
738 // the difference between the sum of their numerators and the denominator is
739 // no greater than the number of successors.
740 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
741 Probs.size() &&
742 "The sum of successors's probabilities exceeds one.");
743 #endif // NDEBUG
744 }
745
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)746 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
747 BranchProbability Prob) {
748 // Probability list is either empty (if successor list isn't empty, this means
749 // disabled optimization) or has the same size as successor list.
750 if (!(Probs.empty() && !Successors.empty()))
751 Probs.push_back(Prob);
752 Successors.push_back(Succ);
753 Succ->addPredecessor(this);
754 }
755
addSuccessorWithoutProb(MachineBasicBlock * Succ)756 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
757 // We need to make sure probability list is either empty or has the same size
758 // of successor list. When this function is called, we can safely delete all
759 // probability in the list.
760 Probs.clear();
761 Successors.push_back(Succ);
762 Succ->addPredecessor(this);
763 }
764
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)765 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
766 MachineBasicBlock *New,
767 bool NormalizeSuccProbs) {
768 succ_iterator OldI = llvm::find(successors(), Old);
769 assert(OldI != succ_end() && "Old is not a successor of this block!");
770 assert(!llvm::is_contained(successors(), New) &&
771 "New is already a successor of this block!");
772
773 // Add a new successor with equal probability as the original one. Note
774 // that we directly copy the probability using the iterator rather than
775 // getting a potentially synthetic probability computed when unknown. This
776 // preserves the probabilities as-is and then we can renormalize them and
777 // query them effectively afterward.
778 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
779 : *getProbabilityIterator(OldI));
780 if (NormalizeSuccProbs)
781 normalizeSuccProbs();
782 }
783
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)784 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
785 bool NormalizeSuccProbs) {
786 succ_iterator I = find(Successors, Succ);
787 removeSuccessor(I, NormalizeSuccProbs);
788 }
789
790 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)791 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
792 assert(I != Successors.end() && "Not a current successor!");
793
794 // If probability list is empty it means we don't use it (disabled
795 // optimization).
796 if (!Probs.empty()) {
797 probability_iterator WI = getProbabilityIterator(I);
798 Probs.erase(WI);
799 if (NormalizeSuccProbs)
800 normalizeSuccProbs();
801 }
802
803 (*I)->removePredecessor(this);
804 return Successors.erase(I);
805 }
806
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)807 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
808 MachineBasicBlock *New) {
809 if (Old == New)
810 return;
811
812 succ_iterator E = succ_end();
813 succ_iterator NewI = E;
814 succ_iterator OldI = E;
815 for (succ_iterator I = succ_begin(); I != E; ++I) {
816 if (*I == Old) {
817 OldI = I;
818 if (NewI != E)
819 break;
820 }
821 if (*I == New) {
822 NewI = I;
823 if (OldI != E)
824 break;
825 }
826 }
827 assert(OldI != E && "Old is not a successor of this block");
828
829 // If New isn't already a successor, let it take Old's place.
830 if (NewI == E) {
831 Old->removePredecessor(this);
832 New->addPredecessor(this);
833 *OldI = New;
834 return;
835 }
836
837 // New is already a successor.
838 // Update its probability instead of adding a duplicate edge.
839 if (!Probs.empty()) {
840 auto ProbIter = getProbabilityIterator(NewI);
841 if (!ProbIter->isUnknown())
842 *ProbIter += *getProbabilityIterator(OldI);
843 }
844 removeSuccessor(OldI);
845 }
846
copySuccessor(MachineBasicBlock * Orig,succ_iterator I)847 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
848 succ_iterator I) {
849 if (!Orig->Probs.empty())
850 addSuccessor(*I, Orig->getSuccProbability(I));
851 else
852 addSuccessorWithoutProb(*I);
853 }
854
addPredecessor(MachineBasicBlock * Pred)855 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
856 Predecessors.push_back(Pred);
857 }
858
removePredecessor(MachineBasicBlock * Pred)859 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
860 pred_iterator I = find(Predecessors, Pred);
861 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
862 Predecessors.erase(I);
863 }
864
transferSuccessors(MachineBasicBlock * FromMBB)865 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
866 if (this == FromMBB)
867 return;
868
869 while (!FromMBB->succ_empty()) {
870 MachineBasicBlock *Succ = *FromMBB->succ_begin();
871
872 // If probability list is empty it means we don't use it (disabled
873 // optimization).
874 if (!FromMBB->Probs.empty()) {
875 auto Prob = *FromMBB->Probs.begin();
876 addSuccessor(Succ, Prob);
877 } else
878 addSuccessorWithoutProb(Succ);
879
880 FromMBB->removeSuccessor(Succ);
881 }
882 }
883
884 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)885 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
886 if (this == FromMBB)
887 return;
888
889 while (!FromMBB->succ_empty()) {
890 MachineBasicBlock *Succ = *FromMBB->succ_begin();
891 if (!FromMBB->Probs.empty()) {
892 auto Prob = *FromMBB->Probs.begin();
893 addSuccessor(Succ, Prob);
894 } else
895 addSuccessorWithoutProb(Succ);
896 FromMBB->removeSuccessor(Succ);
897
898 // Fix up any PHI nodes in the successor.
899 Succ->replacePhiUsesWith(FromMBB, this);
900 }
901 normalizeSuccProbs();
902 }
903
isPredecessor(const MachineBasicBlock * MBB) const904 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
905 return is_contained(predecessors(), MBB);
906 }
907
isSuccessor(const MachineBasicBlock * MBB) const908 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
909 return is_contained(successors(), MBB);
910 }
911
isLayoutSuccessor(const MachineBasicBlock * MBB) const912 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
913 MachineFunction::const_iterator I(this);
914 return std::next(I) == MachineFunction::const_iterator(MBB);
915 }
916
getFallThrough()917 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
918 MachineFunction::iterator Fallthrough = getIterator();
919 ++Fallthrough;
920 // If FallthroughBlock is off the end of the function, it can't fall through.
921 if (Fallthrough == getParent()->end())
922 return nullptr;
923
924 // If FallthroughBlock isn't a successor, no fallthrough is possible.
925 if (!isSuccessor(&*Fallthrough))
926 return nullptr;
927
928 // Analyze the branches, if any, at the end of the block.
929 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
930 SmallVector<MachineOperand, 4> Cond;
931 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
932 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
933 // If we couldn't analyze the branch, examine the last instruction.
934 // If the block doesn't end in a known control barrier, assume fallthrough
935 // is possible. The isPredicated check is needed because this code can be
936 // called during IfConversion, where an instruction which is normally a
937 // Barrier is predicated and thus no longer an actual control barrier.
938 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
939 ? &*Fallthrough
940 : nullptr;
941 }
942
943 // If there is no branch, control always falls through.
944 if (!TBB) return &*Fallthrough;
945
946 // If there is some explicit branch to the fallthrough block, it can obviously
947 // reach, even though the branch should get folded to fall through implicitly.
948 if (MachineFunction::iterator(TBB) == Fallthrough ||
949 MachineFunction::iterator(FBB) == Fallthrough)
950 return &*Fallthrough;
951
952 // If it's an unconditional branch to some block not the fall through, it
953 // doesn't fall through.
954 if (Cond.empty()) return nullptr;
955
956 // Otherwise, if it is conditional and has no explicit false block, it falls
957 // through.
958 return (FBB == nullptr) ? &*Fallthrough : nullptr;
959 }
960
canFallThrough()961 bool MachineBasicBlock::canFallThrough() {
962 return getFallThrough() != nullptr;
963 }
964
splitAt(MachineInstr & MI,bool UpdateLiveIns,LiveIntervals * LIS)965 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
966 bool UpdateLiveIns,
967 LiveIntervals *LIS) {
968 MachineBasicBlock::iterator SplitPoint(&MI);
969 ++SplitPoint;
970
971 if (SplitPoint == end()) {
972 // Don't bother with a new block.
973 return this;
974 }
975
976 MachineFunction *MF = getParent();
977
978 LivePhysRegs LiveRegs;
979 if (UpdateLiveIns) {
980 // Make sure we add any physregs we define in the block as liveins to the
981 // new block.
982 MachineBasicBlock::iterator Prev(&MI);
983 LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
984 LiveRegs.addLiveOuts(*this);
985 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
986 LiveRegs.stepBackward(*I);
987 }
988
989 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
990
991 MF->insert(++MachineFunction::iterator(this), SplitBB);
992 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
993
994 SplitBB->transferSuccessorsAndUpdatePHIs(this);
995 addSuccessor(SplitBB);
996
997 if (UpdateLiveIns)
998 addLiveIns(*SplitBB, LiveRegs);
999
1000 if (LIS)
1001 LIS->insertMBBInMaps(SplitBB);
1002
1003 return SplitBB;
1004 }
1005
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P,std::vector<SparseBitVector<>> * LiveInSets)1006 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1007 MachineBasicBlock *Succ, Pass &P,
1008 std::vector<SparseBitVector<>> *LiveInSets) {
1009 if (!canSplitCriticalEdge(Succ))
1010 return nullptr;
1011
1012 MachineFunction *MF = getParent();
1013 MachineBasicBlock *PrevFallthrough = getNextNode();
1014 DebugLoc DL; // FIXME: this is nowhere
1015
1016 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1017 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1018 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1019 << " -- " << printMBBReference(*NMBB) << " -- "
1020 << printMBBReference(*Succ) << '\n');
1021
1022 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1023 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1024 if (LIS)
1025 LIS->insertMBBInMaps(NMBB);
1026 else if (Indexes)
1027 Indexes->insertMBBInMaps(NMBB);
1028
1029 // On some targets like Mips, branches may kill virtual registers. Make sure
1030 // that LiveVariables is properly updated after updateTerminator replaces the
1031 // terminators.
1032 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1033
1034 // Collect a list of virtual registers killed by the terminators.
1035 SmallVector<Register, 4> KilledRegs;
1036 if (LV)
1037 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1038 I != E; ++I) {
1039 MachineInstr *MI = &*I;
1040 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1041 OE = MI->operands_end(); OI != OE; ++OI) {
1042 if (!OI->isReg() || OI->getReg() == 0 ||
1043 !OI->isUse() || !OI->isKill() || OI->isUndef())
1044 continue;
1045 Register Reg = OI->getReg();
1046 if (Register::isPhysicalRegister(Reg) ||
1047 LV->getVarInfo(Reg).removeKill(*MI)) {
1048 KilledRegs.push_back(Reg);
1049 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
1050 OI->setIsKill(false);
1051 }
1052 }
1053 }
1054
1055 SmallVector<Register, 4> UsedRegs;
1056 if (LIS) {
1057 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1058 I != E; ++I) {
1059 MachineInstr *MI = &*I;
1060
1061 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1062 OE = MI->operands_end(); OI != OE; ++OI) {
1063 if (!OI->isReg() || OI->getReg() == 0)
1064 continue;
1065
1066 Register Reg = OI->getReg();
1067 if (!is_contained(UsedRegs, Reg))
1068 UsedRegs.push_back(Reg);
1069 }
1070 }
1071 }
1072
1073 ReplaceUsesOfBlockWith(Succ, NMBB);
1074
1075 // If updateTerminator() removes instructions, we need to remove them from
1076 // SlotIndexes.
1077 SmallVector<MachineInstr*, 4> Terminators;
1078 if (Indexes) {
1079 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1080 I != E; ++I)
1081 Terminators.push_back(&*I);
1082 }
1083
1084 // Since we replaced all uses of Succ with NMBB, that should also be treated
1085 // as the fallthrough successor
1086 if (Succ == PrevFallthrough)
1087 PrevFallthrough = NMBB;
1088 updateTerminator(PrevFallthrough);
1089
1090 if (Indexes) {
1091 SmallVector<MachineInstr*, 4> NewTerminators;
1092 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1093 I != E; ++I)
1094 NewTerminators.push_back(&*I);
1095
1096 for (MachineInstr *Terminator : Terminators) {
1097 if (!is_contained(NewTerminators, Terminator))
1098 Indexes->removeMachineInstrFromMaps(*Terminator);
1099 }
1100 }
1101
1102 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1103 NMBB->addSuccessor(Succ);
1104 if (!NMBB->isLayoutSuccessor(Succ)) {
1105 SmallVector<MachineOperand, 4> Cond;
1106 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1107 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1108
1109 if (Indexes) {
1110 for (MachineInstr &MI : NMBB->instrs()) {
1111 // Some instructions may have been moved to NMBB by updateTerminator(),
1112 // so we first remove any instruction that already has an index.
1113 if (Indexes->hasIndex(MI))
1114 Indexes->removeMachineInstrFromMaps(MI);
1115 Indexes->insertMachineInstrInMaps(MI);
1116 }
1117 }
1118 }
1119
1120 // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1121 Succ->replacePhiUsesWith(this, NMBB);
1122
1123 // Inherit live-ins from the successor
1124 for (const auto &LI : Succ->liveins())
1125 NMBB->addLiveIn(LI);
1126
1127 // Update LiveVariables.
1128 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1129 if (LV) {
1130 // Restore kills of virtual registers that were killed by the terminators.
1131 while (!KilledRegs.empty()) {
1132 Register Reg = KilledRegs.pop_back_val();
1133 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1134 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1135 continue;
1136 if (Register::isVirtualRegister(Reg))
1137 LV->getVarInfo(Reg).Kills.push_back(&*I);
1138 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1139 break;
1140 }
1141 }
1142 // Update relevant live-through information.
1143 if (LiveInSets != nullptr)
1144 LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1145 else
1146 LV->addNewBlock(NMBB, this, Succ);
1147 }
1148
1149 if (LIS) {
1150 // After splitting the edge and updating SlotIndexes, live intervals may be
1151 // in one of two situations, depending on whether this block was the last in
1152 // the function. If the original block was the last in the function, all
1153 // live intervals will end prior to the beginning of the new split block. If
1154 // the original block was not at the end of the function, all live intervals
1155 // will extend to the end of the new split block.
1156
1157 bool isLastMBB =
1158 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1159
1160 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1161 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1162 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1163
1164 // Find the registers used from NMBB in PHIs in Succ.
1165 SmallSet<Register, 8> PHISrcRegs;
1166 for (MachineBasicBlock::instr_iterator
1167 I = Succ->instr_begin(), E = Succ->instr_end();
1168 I != E && I->isPHI(); ++I) {
1169 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1170 if (I->getOperand(ni+1).getMBB() == NMBB) {
1171 MachineOperand &MO = I->getOperand(ni);
1172 Register Reg = MO.getReg();
1173 PHISrcRegs.insert(Reg);
1174 if (MO.isUndef())
1175 continue;
1176
1177 LiveInterval &LI = LIS->getInterval(Reg);
1178 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1179 assert(VNI &&
1180 "PHI sources should be live out of their predecessors.");
1181 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1182 }
1183 }
1184 }
1185
1186 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1187 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1188 Register Reg = Register::index2VirtReg(i);
1189 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1190 continue;
1191
1192 LiveInterval &LI = LIS->getInterval(Reg);
1193 if (!LI.liveAt(PrevIndex))
1194 continue;
1195
1196 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1197 if (isLiveOut && isLastMBB) {
1198 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1199 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1200 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1201 } else if (!isLiveOut && !isLastMBB) {
1202 LI.removeSegment(StartIndex, EndIndex);
1203 }
1204 }
1205
1206 // Update all intervals for registers whose uses may have been modified by
1207 // updateTerminator().
1208 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1209 }
1210
1211 if (MachineDominatorTree *MDT =
1212 P.getAnalysisIfAvailable<MachineDominatorTree>())
1213 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1214
1215 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1216 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1217 // If one or the other blocks were not in a loop, the new block is not
1218 // either, and thus LI doesn't need to be updated.
1219 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1220 if (TIL == DestLoop) {
1221 // Both in the same loop, the NMBB joins loop.
1222 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1223 } else if (TIL->contains(DestLoop)) {
1224 // Edge from an outer loop to an inner loop. Add to the outer loop.
1225 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1226 } else if (DestLoop->contains(TIL)) {
1227 // Edge from an inner loop to an outer loop. Add to the outer loop.
1228 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1229 } else {
1230 // Edge from two loops with no containment relation. Because these
1231 // are natural loops, we know that the destination block must be the
1232 // header of its loop (adding a branch into a loop elsewhere would
1233 // create an irreducible loop).
1234 assert(DestLoop->getHeader() == Succ &&
1235 "Should not create irreducible loops!");
1236 if (MachineLoop *P = DestLoop->getParentLoop())
1237 P->addBasicBlockToLoop(NMBB, MLI->getBase());
1238 }
1239 }
1240 }
1241
1242 return NMBB;
1243 }
1244
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1245 bool MachineBasicBlock::canSplitCriticalEdge(
1246 const MachineBasicBlock *Succ) const {
1247 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1248 // it in this generic function.
1249 if (Succ->isEHPad())
1250 return false;
1251
1252 // Splitting the critical edge to a callbr's indirect block isn't advised.
1253 // Don't do it in this generic function.
1254 if (Succ->isInlineAsmBrIndirectTarget())
1255 return false;
1256
1257 const MachineFunction *MF = getParent();
1258 // Performance might be harmed on HW that implements branching using exec mask
1259 // where both sides of the branches are always executed.
1260 if (MF->getTarget().requiresStructuredCFG())
1261 return false;
1262
1263 // We may need to update this's terminator, but we can't do that if
1264 // analyzeBranch fails. If this uses a jump table, we won't touch it.
1265 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1266 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1267 SmallVector<MachineOperand, 4> Cond;
1268 // AnalyzeBanch should modify this, since we did not allow modification.
1269 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1270 /*AllowModify*/ false))
1271 return false;
1272
1273 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1274 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1275 // case that we can't handle. Since this never happens in properly optimized
1276 // code, just skip those edges.
1277 if (TBB && TBB == FBB) {
1278 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1279 << printMBBReference(*this) << '\n');
1280 return false;
1281 }
1282 return true;
1283 }
1284
1285 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1286 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1287 static void unbundleSingleMI(MachineInstr *MI) {
1288 // Removing the first instruction in a bundle.
1289 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1290 MI->unbundleFromSucc();
1291 // Removing the last instruction in a bundle.
1292 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1293 MI->unbundleFromPred();
1294 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1295 // are already fine.
1296 }
1297
1298 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1299 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1300 unbundleSingleMI(&*I);
1301 return Insts.erase(I);
1302 }
1303
remove_instr(MachineInstr * MI)1304 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1305 unbundleSingleMI(MI);
1306 MI->clearFlag(MachineInstr::BundledPred);
1307 MI->clearFlag(MachineInstr::BundledSucc);
1308 return Insts.remove(MI);
1309 }
1310
1311 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1312 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1313 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1314 "Cannot insert instruction with bundle flags");
1315 // Set the bundle flags when inserting inside a bundle.
1316 if (I != instr_end() && I->isBundledWithPred()) {
1317 MI->setFlag(MachineInstr::BundledPred);
1318 MI->setFlag(MachineInstr::BundledSucc);
1319 }
1320 return Insts.insert(I, MI);
1321 }
1322
1323 /// This method unlinks 'this' from the containing function, and returns it, but
1324 /// does not delete it.
removeFromParent()1325 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1326 assert(getParent() && "Not embedded in a function!");
1327 getParent()->remove(this);
1328 return this;
1329 }
1330
1331 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1332 void MachineBasicBlock::eraseFromParent() {
1333 assert(getParent() && "Not embedded in a function!");
1334 getParent()->erase(this);
1335 }
1336
1337 /// Given a machine basic block that branched to 'Old', change the code and CFG
1338 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1339 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1340 MachineBasicBlock *New) {
1341 assert(Old != New && "Cannot replace self with self!");
1342
1343 MachineBasicBlock::instr_iterator I = instr_end();
1344 while (I != instr_begin()) {
1345 --I;
1346 if (!I->isTerminator()) break;
1347
1348 // Scan the operands of this machine instruction, replacing any uses of Old
1349 // with New.
1350 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1351 if (I->getOperand(i).isMBB() &&
1352 I->getOperand(i).getMBB() == Old)
1353 I->getOperand(i).setMBB(New);
1354 }
1355
1356 // Update the successor information.
1357 replaceSuccessor(Old, New);
1358 }
1359
replacePhiUsesWith(MachineBasicBlock * Old,MachineBasicBlock * New)1360 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1361 MachineBasicBlock *New) {
1362 for (MachineInstr &MI : phis())
1363 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1364 MachineOperand &MO = MI.getOperand(i);
1365 if (MO.getMBB() == Old)
1366 MO.setMBB(New);
1367 }
1368 }
1369
1370 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1371 /// instructions. Return UnknownLoc if there is none.
1372 DebugLoc
findDebugLoc(instr_iterator MBBI)1373 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1374 // Skip debug declarations, we don't want a DebugLoc from them.
1375 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1376 if (MBBI != instr_end())
1377 return MBBI->getDebugLoc();
1378 return {};
1379 }
1380
rfindDebugLoc(reverse_instr_iterator MBBI)1381 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1382 // Skip debug declarations, we don't want a DebugLoc from them.
1383 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1384 if (!MBBI->isDebugInstr())
1385 return MBBI->getDebugLoc();
1386 return {};
1387 }
1388
1389 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1390 /// instructions. Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1391 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1392 if (MBBI == instr_begin()) return {};
1393 // Skip debug instructions, we don't want a DebugLoc from them.
1394 MBBI = prev_nodbg(MBBI, instr_begin());
1395 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1396 return {};
1397 }
1398
rfindPrevDebugLoc(reverse_instr_iterator MBBI)1399 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1400 if (MBBI == instr_rend())
1401 return {};
1402 // Skip debug declarations, we don't want a DebugLoc from them.
1403 MBBI = next_nodbg(MBBI, instr_rend());
1404 if (MBBI != instr_rend())
1405 return MBBI->getDebugLoc();
1406 return {};
1407 }
1408
1409 /// Find and return the merged DebugLoc of the branch instructions of the block.
1410 /// Return UnknownLoc if there is none.
1411 DebugLoc
findBranchDebugLoc()1412 MachineBasicBlock::findBranchDebugLoc() {
1413 DebugLoc DL;
1414 auto TI = getFirstTerminator();
1415 while (TI != end() && !TI->isBranch())
1416 ++TI;
1417
1418 if (TI != end()) {
1419 DL = TI->getDebugLoc();
1420 for (++TI ; TI != end() ; ++TI)
1421 if (TI->isBranch())
1422 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1423 }
1424 return DL;
1425 }
1426
1427 /// Return probability of the edge from this block to MBB.
1428 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1429 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1430 if (Probs.empty())
1431 return BranchProbability(1, succ_size());
1432
1433 const auto &Prob = *getProbabilityIterator(Succ);
1434 if (Prob.isUnknown()) {
1435 // For unknown probabilities, collect the sum of all known ones, and evenly
1436 // ditribute the complemental of the sum to each unknown probability.
1437 unsigned KnownProbNum = 0;
1438 auto Sum = BranchProbability::getZero();
1439 for (auto &P : Probs) {
1440 if (!P.isUnknown()) {
1441 Sum += P;
1442 KnownProbNum++;
1443 }
1444 }
1445 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1446 } else
1447 return Prob;
1448 }
1449
1450 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1451 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1452 BranchProbability Prob) {
1453 assert(!Prob.isUnknown());
1454 if (Probs.empty())
1455 return;
1456 *getProbabilityIterator(I) = Prob;
1457 }
1458
1459 /// Return probability iterator corresonding to the I successor iterator
1460 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1461 MachineBasicBlock::getProbabilityIterator(
1462 MachineBasicBlock::const_succ_iterator I) const {
1463 assert(Probs.size() == Successors.size() && "Async probability list!");
1464 const size_t index = std::distance(Successors.begin(), I);
1465 assert(index < Probs.size() && "Not a current successor!");
1466 return Probs.begin() + index;
1467 }
1468
1469 /// Return probability iterator corresonding to the I successor iterator.
1470 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1471 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1472 assert(Probs.size() == Successors.size() && "Async probability list!");
1473 const size_t index = std::distance(Successors.begin(), I);
1474 assert(index < Probs.size() && "Not a current successor!");
1475 return Probs.begin() + index;
1476 }
1477
1478 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1479 /// as of just before "MI".
1480 ///
1481 /// Search is localised to a neighborhood of
1482 /// Neighborhood instructions before (searching for defs or kills) and N
1483 /// instructions after (searching just for defs) MI.
1484 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,MCRegister Reg,const_iterator Before,unsigned Neighborhood) const1485 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1486 MCRegister Reg, const_iterator Before,
1487 unsigned Neighborhood) const {
1488 unsigned N = Neighborhood;
1489
1490 // Try searching forwards from Before, looking for reads or defs.
1491 const_iterator I(Before);
1492 for (; I != end() && N > 0; ++I) {
1493 if (I->isDebugOrPseudoInstr())
1494 continue;
1495
1496 --N;
1497
1498 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1499
1500 // Register is live when we read it here.
1501 if (Info.Read)
1502 return LQR_Live;
1503 // Register is dead if we can fully overwrite or clobber it here.
1504 if (Info.FullyDefined || Info.Clobbered)
1505 return LQR_Dead;
1506 }
1507
1508 // If we reached the end, it is safe to clobber Reg at the end of a block of
1509 // no successor has it live in.
1510 if (I == end()) {
1511 for (MachineBasicBlock *S : successors()) {
1512 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1513 if (TRI->regsOverlap(LI.PhysReg, Reg))
1514 return LQR_Live;
1515 }
1516 }
1517
1518 return LQR_Dead;
1519 }
1520
1521
1522 N = Neighborhood;
1523
1524 // Start by searching backwards from Before, looking for kills, reads or defs.
1525 I = const_iterator(Before);
1526 // If this is the first insn in the block, don't search backwards.
1527 if (I != begin()) {
1528 do {
1529 --I;
1530
1531 if (I->isDebugOrPseudoInstr())
1532 continue;
1533
1534 --N;
1535
1536 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1537
1538 // Defs happen after uses so they take precedence if both are present.
1539
1540 // Register is dead after a dead def of the full register.
1541 if (Info.DeadDef)
1542 return LQR_Dead;
1543 // Register is (at least partially) live after a def.
1544 if (Info.Defined) {
1545 if (!Info.PartialDeadDef)
1546 return LQR_Live;
1547 // As soon as we saw a partial definition (dead or not),
1548 // we cannot tell if the value is partial live without
1549 // tracking the lanemasks. We are not going to do this,
1550 // so fall back on the remaining of the analysis.
1551 break;
1552 }
1553 // Register is dead after a full kill or clobber and no def.
1554 if (Info.Killed || Info.Clobbered)
1555 return LQR_Dead;
1556 // Register must be live if we read it.
1557 if (Info.Read)
1558 return LQR_Live;
1559
1560 } while (I != begin() && N > 0);
1561 }
1562
1563 // If all the instructions before this in the block are debug instructions,
1564 // skip over them.
1565 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1566 --I;
1567
1568 // Did we get to the start of the block?
1569 if (I == begin()) {
1570 // If so, the register's state is definitely defined by the live-in state.
1571 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1572 if (TRI->regsOverlap(LI.PhysReg, Reg))
1573 return LQR_Live;
1574
1575 return LQR_Dead;
1576 }
1577
1578 // At this point we have no idea of the liveness of the register.
1579 return LQR_Unknown;
1580 }
1581
1582 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1583 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1584 // EH funclet entry does not preserve any registers.
1585 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1586 }
1587
1588 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1589 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1590 // If we see a return block with successors, this must be a funclet return,
1591 // which does not preserve any registers. If there are no successors, we don't
1592 // care what kind of return it is, putting a mask after it is a no-op.
1593 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1594 }
1595
clearLiveIns()1596 void MachineBasicBlock::clearLiveIns() {
1597 LiveIns.clear();
1598 }
1599
livein_begin() const1600 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1601 assert(getParent()->getProperties().hasProperty(
1602 MachineFunctionProperties::Property::TracksLiveness) &&
1603 "Liveness information is accurate");
1604 return LiveIns.begin();
1605 }
1606
liveout_begin() const1607 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1608 const MachineFunction &MF = *getParent();
1609 assert(MF.getProperties().hasProperty(
1610 MachineFunctionProperties::Property::TracksLiveness) &&
1611 "Liveness information is accurate");
1612
1613 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1614 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1615 if (MF.getFunction().hasPersonalityFn()) {
1616 auto PersonalityFn = MF.getFunction().getPersonalityFn();
1617 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1618 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1619 }
1620
1621 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1622 }
1623
1624 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1625 const MBBSectionID
1626 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1627