1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "legalizedag"
57
58 namespace {
59
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63 EVT FloatVT;
64 SDValue Chain;
65 SDValue FloatPtr;
66 SDValue IntPtr;
67 MachinePointerInfo IntPointerInfo;
68 MachinePointerInfo FloatPointerInfo;
69 SDValue IntValue;
70 APInt SignMask;
71 uint8_t SignBit;
72 };
73
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it. This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing. For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86 const TargetMachine &TM;
87 const TargetLowering &TLI;
88 SelectionDAG &DAG;
89
90 /// The set of nodes which have already been legalized. We hold a
91 /// reference to it in order to update as necessary on node deletion.
92 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93
94 /// A set of all the nodes updated during legalization.
95 SmallSetVector<SDNode *, 16> *UpdatedNodes;
96
getSetCCResultType(EVT VT) const97 EVT getSetCCResultType(EVT VT) const {
98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99 }
100
101 // Libcall insertion helpers.
102
103 public:
SelectionDAGLegalize(SelectionDAG & DAG,SmallPtrSetImpl<SDNode * > & LegalizedNodes,SmallSetVector<SDNode *,16> * UpdatedNodes=nullptr)104 SelectionDAGLegalize(SelectionDAG &DAG,
105 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109
110 /// Legalizes the given operation.
111 void LegalizeOp(SDNode *Node);
112
113 private:
114 SDValue OptimizeFloatStore(StoreSDNode *ST);
115
116 void LegalizeLoadOps(SDNode *Node);
117 void LegalizeStoreOps(SDNode *Node);
118
119 /// Some targets cannot handle a variable
120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
121 /// is necessary to spill the vector being inserted into to memory, perform
122 /// the insert there, and then read the result back.
123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124 const SDLoc &dl);
125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126 const SDLoc &dl);
127
128 /// Return a vector shuffle operation which
129 /// performs the same shuffe in terms of order or result bytes, but on a type
130 /// whose vector element type is narrower than the original shuffle type.
131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133 SDValue N1, SDValue N2,
134 ArrayRef<int> Mask) const;
135
136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
137
138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC,
139 SmallVectorImpl<SDValue> &Results);
140 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
141 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
142 RTLIB::Libcall Call_F128,
143 RTLIB::Libcall Call_PPCF128,
144 SmallVectorImpl<SDValue> &Results);
145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
146 RTLIB::Libcall Call_I8,
147 RTLIB::Libcall Call_I16,
148 RTLIB::Libcall Call_I32,
149 RTLIB::Libcall Call_I64,
150 RTLIB::Libcall Call_I128);
151 void ExpandArgFPLibCall(SDNode *Node,
152 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
153 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
154 RTLIB::Libcall Call_PPCF128,
155 SmallVectorImpl<SDValue> &Results);
156 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
158
159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
160 const SDLoc &dl);
161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162 const SDLoc &dl, SDValue ChainIn);
163 SDValue ExpandBUILD_VECTOR(SDNode *Node);
164 SDValue ExpandSPLAT_VECTOR(SDNode *Node);
165 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
166 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
167 SmallVectorImpl<SDValue> &Results);
168 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
169 SDValue Value) const;
170 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
171 SDValue NewIntValue) const;
172 SDValue ExpandFCOPYSIGN(SDNode *Node) const;
173 SDValue ExpandFABS(SDNode *Node) const;
174 SDValue ExpandFNEG(SDNode *Node) const;
175 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
176 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
177 SmallVectorImpl<SDValue> &Results);
178 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
179 SmallVectorImpl<SDValue> &Results);
180 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl);
181
182 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl);
183
184 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
185 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
186 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
187
188 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
189 SDValue ExpandConstant(ConstantSDNode *CP);
190
191 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
192 bool ExpandNode(SDNode *Node);
193 void ConvertNodeToLibcall(SDNode *Node);
194 void PromoteNode(SDNode *Node);
195
196 public:
197 // Node replacement helpers
198
ReplacedNode(SDNode * N)199 void ReplacedNode(SDNode *N) {
200 LegalizedNodes.erase(N);
201 if (UpdatedNodes)
202 UpdatedNodes->insert(N);
203 }
204
ReplaceNode(SDNode * Old,SDNode * New)205 void ReplaceNode(SDNode *Old, SDNode *New) {
206 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
207 dbgs() << " with: "; New->dump(&DAG));
208
209 assert(Old->getNumValues() == New->getNumValues() &&
210 "Replacing one node with another that produces a different number "
211 "of values!");
212 DAG.ReplaceAllUsesWith(Old, New);
213 if (UpdatedNodes)
214 UpdatedNodes->insert(New);
215 ReplacedNode(Old);
216 }
217
ReplaceNode(SDValue Old,SDValue New)218 void ReplaceNode(SDValue Old, SDValue New) {
219 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
220 dbgs() << " with: "; New->dump(&DAG));
221
222 DAG.ReplaceAllUsesWith(Old, New);
223 if (UpdatedNodes)
224 UpdatedNodes->insert(New.getNode());
225 ReplacedNode(Old.getNode());
226 }
227
ReplaceNode(SDNode * Old,const SDValue * New)228 void ReplaceNode(SDNode *Old, const SDValue *New) {
229 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
230
231 DAG.ReplaceAllUsesWith(Old, New);
232 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
233 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: ");
234 New[i]->dump(&DAG));
235 if (UpdatedNodes)
236 UpdatedNodes->insert(New[i].getNode());
237 }
238 ReplacedNode(Old);
239 }
240
ReplaceNodeWithValue(SDValue Old,SDValue New)241 void ReplaceNodeWithValue(SDValue Old, SDValue New) {
242 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
243 dbgs() << " with: "; New->dump(&DAG));
244
245 DAG.ReplaceAllUsesOfValueWith(Old, New);
246 if (UpdatedNodes)
247 UpdatedNodes->insert(New.getNode());
248 ReplacedNode(Old.getNode());
249 }
250 };
251
252 } // end anonymous namespace
253
254 /// Return a vector shuffle operation which
255 /// performs the same shuffle in terms of order or result bytes, but on a type
256 /// whose vector element type is narrower than the original shuffle type.
257 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
ShuffleWithNarrowerEltType(EVT NVT,EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask) const258 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
259 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
260 ArrayRef<int> Mask) const {
261 unsigned NumMaskElts = VT.getVectorNumElements();
262 unsigned NumDestElts = NVT.getVectorNumElements();
263 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
264
265 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
266
267 if (NumEltsGrowth == 1)
268 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
269
270 SmallVector<int, 8> NewMask;
271 for (unsigned i = 0; i != NumMaskElts; ++i) {
272 int Idx = Mask[i];
273 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
274 if (Idx < 0)
275 NewMask.push_back(-1);
276 else
277 NewMask.push_back(Idx * NumEltsGrowth + j);
278 }
279 }
280 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
281 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
282 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
283 }
284
285 /// Expands the ConstantFP node to an integer constant or
286 /// a load from the constant pool.
287 SDValue
ExpandConstantFP(ConstantFPSDNode * CFP,bool UseCP)288 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
289 bool Extend = false;
290 SDLoc dl(CFP);
291
292 // If a FP immediate is precise when represented as a float and if the
293 // target can do an extending load from float to double, we put it into
294 // the constant pool as a float, even if it's is statically typed as a
295 // double. This shrinks FP constants and canonicalizes them for targets where
296 // an FP extending load is the same cost as a normal load (such as on the x87
297 // fp stack or PPC FP unit).
298 EVT VT = CFP->getValueType(0);
299 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
300 if (!UseCP) {
301 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
302 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
303 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
304 }
305
306 APFloat APF = CFP->getValueAPF();
307 EVT OrigVT = VT;
308 EVT SVT = VT;
309
310 // We don't want to shrink SNaNs. Converting the SNaN back to its real type
311 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
312 if (!APF.isSignaling()) {
313 while (SVT != MVT::f32 && SVT != MVT::f16) {
314 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
315 if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
316 // Only do this if the target has a native EXTLOAD instruction from
317 // smaller type.
318 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
319 TLI.ShouldShrinkFPConstant(OrigVT)) {
320 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
321 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
322 VT = SVT;
323 Extend = true;
324 }
325 }
326 }
327
328 SDValue CPIdx =
329 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
330 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
331 if (Extend) {
332 SDValue Result = DAG.getExtLoad(
333 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
334 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
335 Alignment);
336 return Result;
337 }
338 SDValue Result = DAG.getLoad(
339 OrigVT, dl, DAG.getEntryNode(), CPIdx,
340 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
341 return Result;
342 }
343
344 /// Expands the Constant node to a load from the constant pool.
ExpandConstant(ConstantSDNode * CP)345 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
346 SDLoc dl(CP);
347 EVT VT = CP->getValueType(0);
348 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
349 TLI.getPointerTy(DAG.getDataLayout()));
350 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
351 SDValue Result = DAG.getLoad(
352 VT, dl, DAG.getEntryNode(), CPIdx,
353 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
354 return Result;
355 }
356
357 /// Some target cannot handle a variable insertion index for the
358 /// INSERT_VECTOR_ELT instruction. In this case, it
359 /// is necessary to spill the vector being inserted into to memory, perform
360 /// the insert there, and then read the result back.
PerformInsertVectorEltInMemory(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)361 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
362 SDValue Val,
363 SDValue Idx,
364 const SDLoc &dl) {
365 SDValue Tmp1 = Vec;
366 SDValue Tmp2 = Val;
367 SDValue Tmp3 = Idx;
368
369 // If the target doesn't support this, we have to spill the input vector
370 // to a temporary stack slot, update the element, then reload it. This is
371 // badness. We could also load the value into a vector register (either
372 // with a "move to register" or "extload into register" instruction, then
373 // permute it into place, if the idx is a constant and if the idx is
374 // supported by the target.
375 EVT VT = Tmp1.getValueType();
376 EVT EltVT = VT.getVectorElementType();
377 SDValue StackPtr = DAG.CreateStackTemporary(VT);
378
379 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
380
381 // Store the vector.
382 SDValue Ch = DAG.getStore(
383 DAG.getEntryNode(), dl, Tmp1, StackPtr,
384 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
385
386 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
387
388 // Store the scalar value.
389 Ch = DAG.getTruncStore(
390 Ch, dl, Tmp2, StackPtr2,
391 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
392 // Load the updated vector.
393 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
394 DAG.getMachineFunction(), SPFI));
395 }
396
ExpandINSERT_VECTOR_ELT(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)397 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
398 SDValue Idx,
399 const SDLoc &dl) {
400 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
401 // SCALAR_TO_VECTOR requires that the type of the value being inserted
402 // match the element type of the vector being created, except for
403 // integers in which case the inserted value can be over width.
404 EVT EltVT = Vec.getValueType().getVectorElementType();
405 if (Val.getValueType() == EltVT ||
406 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
407 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
408 Vec.getValueType(), Val);
409
410 unsigned NumElts = Vec.getValueType().getVectorNumElements();
411 // We generate a shuffle of InVec and ScVec, so the shuffle mask
412 // should be 0,1,2,3,4,5... with the appropriate element replaced with
413 // elt 0 of the RHS.
414 SmallVector<int, 8> ShufOps;
415 for (unsigned i = 0; i != NumElts; ++i)
416 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
417
418 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
419 }
420 }
421 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
422 }
423
OptimizeFloatStore(StoreSDNode * ST)424 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
425 if (!ISD::isNormalStore(ST))
426 return SDValue();
427
428 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
429 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
430 // FIXME: move this to the DAG Combiner! Note that we can't regress due
431 // to phase ordering between legalized code and the dag combiner. This
432 // probably means that we need to integrate dag combiner and legalizer
433 // together.
434 // We generally can't do this one for long doubles.
435 SDValue Chain = ST->getChain();
436 SDValue Ptr = ST->getBasePtr();
437 SDValue Value = ST->getValue();
438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
439 AAMDNodes AAInfo = ST->getAAInfo();
440 SDLoc dl(ST);
441
442 // Don't optimise TargetConstantFP
443 if (Value.getOpcode() == ISD::TargetConstantFP)
444 return SDValue();
445
446 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
447 if (CFP->getValueType(0) == MVT::f32 &&
448 TLI.isTypeLegal(MVT::i32)) {
449 SDValue Con = DAG.getConstant(CFP->getValueAPF().
450 bitcastToAPInt().zextOrTrunc(32),
451 SDLoc(CFP), MVT::i32);
452 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
453 ST->getOriginalAlign(), MMOFlags, AAInfo);
454 }
455
456 if (CFP->getValueType(0) == MVT::f64) {
457 // If this target supports 64-bit registers, do a single 64-bit store.
458 if (TLI.isTypeLegal(MVT::i64)) {
459 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
460 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
461 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
462 ST->getOriginalAlign(), MMOFlags, AAInfo);
463 }
464
465 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
466 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
467 // stores. If the target supports neither 32- nor 64-bits, this
468 // xform is certainly not worth it.
469 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
470 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
471 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
472 if (DAG.getDataLayout().isBigEndian())
473 std::swap(Lo, Hi);
474
475 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
476 ST->getOriginalAlign(), MMOFlags, AAInfo);
477 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl);
478 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
479 ST->getPointerInfo().getWithOffset(4),
480 ST->getOriginalAlign(), MMOFlags, AAInfo);
481
482 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
483 }
484 }
485 }
486 return SDValue();
487 }
488
LegalizeStoreOps(SDNode * Node)489 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
490 StoreSDNode *ST = cast<StoreSDNode>(Node);
491 SDValue Chain = ST->getChain();
492 SDValue Ptr = ST->getBasePtr();
493 SDLoc dl(Node);
494
495 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
496 AAMDNodes AAInfo = ST->getAAInfo();
497
498 if (!ST->isTruncatingStore()) {
499 LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
500 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
501 ReplaceNode(ST, OptStore);
502 return;
503 }
504
505 SDValue Value = ST->getValue();
506 MVT VT = Value.getSimpleValueType();
507 switch (TLI.getOperationAction(ISD::STORE, VT)) {
508 default: llvm_unreachable("This action is not supported yet!");
509 case TargetLowering::Legal: {
510 // If this is an unaligned store and the target doesn't support it,
511 // expand it.
512 EVT MemVT = ST->getMemoryVT();
513 const DataLayout &DL = DAG.getDataLayout();
514 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
515 *ST->getMemOperand())) {
516 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
517 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
518 ReplaceNode(SDValue(ST, 0), Result);
519 } else
520 LLVM_DEBUG(dbgs() << "Legal store\n");
521 break;
522 }
523 case TargetLowering::Custom: {
524 LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
525 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
526 if (Res && Res != SDValue(Node, 0))
527 ReplaceNode(SDValue(Node, 0), Res);
528 return;
529 }
530 case TargetLowering::Promote: {
531 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
532 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
533 "Can only promote stores to same size type");
534 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
535 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
536 ST->getOriginalAlign(), MMOFlags, AAInfo);
537 ReplaceNode(SDValue(Node, 0), Result);
538 break;
539 }
540 }
541 return;
542 }
543
544 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
545 SDValue Value = ST->getValue();
546 EVT StVT = ST->getMemoryVT();
547 TypeSize StWidth = StVT.getSizeInBits();
548 TypeSize StSize = StVT.getStoreSizeInBits();
549 auto &DL = DAG.getDataLayout();
550
551 if (StWidth != StSize) {
552 // Promote to a byte-sized store with upper bits zero if not
553 // storing an integral number of bytes. For example, promote
554 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
555 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize());
556 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
557 SDValue Result =
558 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
559 ST->getOriginalAlign(), MMOFlags, AAInfo);
560 ReplaceNode(SDValue(Node, 0), Result);
561 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) {
562 // If not storing a power-of-2 number of bits, expand as two stores.
563 assert(!StVT.isVector() && "Unsupported truncstore!");
564 unsigned StWidthBits = StWidth.getFixedSize();
565 unsigned LogStWidth = Log2_32(StWidthBits);
566 assert(LogStWidth < 32);
567 unsigned RoundWidth = 1 << LogStWidth;
568 assert(RoundWidth < StWidthBits);
569 unsigned ExtraWidth = StWidthBits - RoundWidth;
570 assert(ExtraWidth < RoundWidth);
571 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
572 "Store size not an integral number of bytes!");
573 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
574 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
575 SDValue Lo, Hi;
576 unsigned IncrementSize;
577
578 if (DL.isLittleEndian()) {
579 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
580 // Store the bottom RoundWidth bits.
581 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
582 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
583
584 // Store the remaining ExtraWidth bits.
585 IncrementSize = RoundWidth / 8;
586 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
587 Hi = DAG.getNode(
588 ISD::SRL, dl, Value.getValueType(), Value,
589 DAG.getConstant(RoundWidth, dl,
590 TLI.getShiftAmountTy(Value.getValueType(), DL)));
591 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
592 ST->getPointerInfo().getWithOffset(IncrementSize),
593 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
594 } else {
595 // Big endian - avoid unaligned stores.
596 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
597 // Store the top RoundWidth bits.
598 Hi = DAG.getNode(
599 ISD::SRL, dl, Value.getValueType(), Value,
600 DAG.getConstant(ExtraWidth, dl,
601 TLI.getShiftAmountTy(Value.getValueType(), DL)));
602 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
603 ST->getOriginalAlign(), MMOFlags, AAInfo);
604
605 // Store the remaining ExtraWidth bits.
606 IncrementSize = RoundWidth / 8;
607 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
608 DAG.getConstant(IncrementSize, dl,
609 Ptr.getValueType()));
610 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
611 ST->getPointerInfo().getWithOffset(IncrementSize),
612 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
613 }
614
615 // The order of the stores doesn't matter.
616 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
617 ReplaceNode(SDValue(Node, 0), Result);
618 } else {
619 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
620 default: llvm_unreachable("This action is not supported yet!");
621 case TargetLowering::Legal: {
622 EVT MemVT = ST->getMemoryVT();
623 // If this is an unaligned store and the target doesn't support it,
624 // expand it.
625 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
626 *ST->getMemOperand())) {
627 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
628 ReplaceNode(SDValue(ST, 0), Result);
629 }
630 break;
631 }
632 case TargetLowering::Custom: {
633 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
634 if (Res && Res != SDValue(Node, 0))
635 ReplaceNode(SDValue(Node, 0), Res);
636 return;
637 }
638 case TargetLowering::Expand:
639 assert(!StVT.isVector() &&
640 "Vector Stores are handled in LegalizeVectorOps");
641
642 SDValue Result;
643
644 // TRUNCSTORE:i16 i32 -> STORE i16
645 if (TLI.isTypeLegal(StVT)) {
646 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
647 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
648 ST->getOriginalAlign(), MMOFlags, AAInfo);
649 } else {
650 // The in-memory type isn't legal. Truncate to the type it would promote
651 // to, and then do a truncstore.
652 Value = DAG.getNode(ISD::TRUNCATE, dl,
653 TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
654 Value);
655 Result =
656 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
657 ST->getOriginalAlign(), MMOFlags, AAInfo);
658 }
659
660 ReplaceNode(SDValue(Node, 0), Result);
661 break;
662 }
663 }
664 }
665
LegalizeLoadOps(SDNode * Node)666 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
667 LoadSDNode *LD = cast<LoadSDNode>(Node);
668 SDValue Chain = LD->getChain(); // The chain.
669 SDValue Ptr = LD->getBasePtr(); // The base pointer.
670 SDValue Value; // The value returned by the load op.
671 SDLoc dl(Node);
672
673 ISD::LoadExtType ExtType = LD->getExtensionType();
674 if (ExtType == ISD::NON_EXTLOAD) {
675 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
676 MVT VT = Node->getSimpleValueType(0);
677 SDValue RVal = SDValue(Node, 0);
678 SDValue RChain = SDValue(Node, 1);
679
680 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
681 default: llvm_unreachable("This action is not supported yet!");
682 case TargetLowering::Legal: {
683 EVT MemVT = LD->getMemoryVT();
684 const DataLayout &DL = DAG.getDataLayout();
685 // If this is an unaligned load and the target doesn't support it,
686 // expand it.
687 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
688 *LD->getMemOperand())) {
689 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
690 }
691 break;
692 }
693 case TargetLowering::Custom:
694 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
695 RVal = Res;
696 RChain = Res.getValue(1);
697 }
698 break;
699
700 case TargetLowering::Promote: {
701 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
702 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
703 "Can only promote loads to same size type");
704
705 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
706 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
707 RChain = Res.getValue(1);
708 break;
709 }
710 }
711 if (RChain.getNode() != Node) {
712 assert(RVal.getNode() != Node && "Load must be completely replaced");
713 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
714 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
715 if (UpdatedNodes) {
716 UpdatedNodes->insert(RVal.getNode());
717 UpdatedNodes->insert(RChain.getNode());
718 }
719 ReplacedNode(Node);
720 }
721 return;
722 }
723
724 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
725 EVT SrcVT = LD->getMemoryVT();
726 TypeSize SrcWidth = SrcVT.getSizeInBits();
727 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
728 AAMDNodes AAInfo = LD->getAAInfo();
729
730 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
731 // Some targets pretend to have an i1 loading operation, and actually
732 // load an i8. This trick is correct for ZEXTLOAD because the top 7
733 // bits are guaranteed to be zero; it helps the optimizers understand
734 // that these bits are zero. It is also useful for EXTLOAD, since it
735 // tells the optimizers that those bits are undefined. It would be
736 // nice to have an effective generic way of getting these benefits...
737 // Until such a way is found, don't insist on promoting i1 here.
738 (SrcVT != MVT::i1 ||
739 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
740 TargetLowering::Promote)) {
741 // Promote to a byte-sized load if not loading an integral number of
742 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
743 unsigned NewWidth = SrcVT.getStoreSizeInBits();
744 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
745 SDValue Ch;
746
747 // The extra bits are guaranteed to be zero, since we stored them that
748 // way. A zext load from NVT thus automatically gives zext from SrcVT.
749
750 ISD::LoadExtType NewExtType =
751 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
752
753 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
754 Chain, Ptr, LD->getPointerInfo(), NVT,
755 LD->getOriginalAlign(), MMOFlags, AAInfo);
756
757 Ch = Result.getValue(1); // The chain.
758
759 if (ExtType == ISD::SEXTLOAD)
760 // Having the top bits zero doesn't help when sign extending.
761 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
762 Result.getValueType(),
763 Result, DAG.getValueType(SrcVT));
764 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
765 // All the top bits are guaranteed to be zero - inform the optimizers.
766 Result = DAG.getNode(ISD::AssertZext, dl,
767 Result.getValueType(), Result,
768 DAG.getValueType(SrcVT));
769
770 Value = Result;
771 Chain = Ch;
772 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) {
773 // If not loading a power-of-2 number of bits, expand as two loads.
774 assert(!SrcVT.isVector() && "Unsupported extload!");
775 unsigned SrcWidthBits = SrcWidth.getFixedSize();
776 unsigned LogSrcWidth = Log2_32(SrcWidthBits);
777 assert(LogSrcWidth < 32);
778 unsigned RoundWidth = 1 << LogSrcWidth;
779 assert(RoundWidth < SrcWidthBits);
780 unsigned ExtraWidth = SrcWidthBits - RoundWidth;
781 assert(ExtraWidth < RoundWidth);
782 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
783 "Load size not an integral number of bytes!");
784 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
785 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
786 SDValue Lo, Hi, Ch;
787 unsigned IncrementSize;
788 auto &DL = DAG.getDataLayout();
789
790 if (DL.isLittleEndian()) {
791 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
792 // Load the bottom RoundWidth bits.
793 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
794 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
795 MMOFlags, AAInfo);
796
797 // Load the remaining ExtraWidth bits.
798 IncrementSize = RoundWidth / 8;
799 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
800 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
801 LD->getPointerInfo().getWithOffset(IncrementSize),
802 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
803
804 // Build a factor node to remember that this load is independent of
805 // the other one.
806 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
807 Hi.getValue(1));
808
809 // Move the top bits to the right place.
810 Hi = DAG.getNode(
811 ISD::SHL, dl, Hi.getValueType(), Hi,
812 DAG.getConstant(RoundWidth, dl,
813 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
814
815 // Join the hi and lo parts.
816 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
817 } else {
818 // Big endian - avoid unaligned loads.
819 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
820 // Load the top RoundWidth bits.
821 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
822 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
823 MMOFlags, AAInfo);
824
825 // Load the remaining ExtraWidth bits.
826 IncrementSize = RoundWidth / 8;
827 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
828 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
829 LD->getPointerInfo().getWithOffset(IncrementSize),
830 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
831
832 // Build a factor node to remember that this load is independent of
833 // the other one.
834 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
835 Hi.getValue(1));
836
837 // Move the top bits to the right place.
838 Hi = DAG.getNode(
839 ISD::SHL, dl, Hi.getValueType(), Hi,
840 DAG.getConstant(ExtraWidth, dl,
841 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
842
843 // Join the hi and lo parts.
844 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
845 }
846
847 Chain = Ch;
848 } else {
849 bool isCustom = false;
850 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
851 SrcVT.getSimpleVT())) {
852 default: llvm_unreachable("This action is not supported yet!");
853 case TargetLowering::Custom:
854 isCustom = true;
855 LLVM_FALLTHROUGH;
856 case TargetLowering::Legal:
857 Value = SDValue(Node, 0);
858 Chain = SDValue(Node, 1);
859
860 if (isCustom) {
861 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
862 Value = Res;
863 Chain = Res.getValue(1);
864 }
865 } else {
866 // If this is an unaligned load and the target doesn't support it,
867 // expand it.
868 EVT MemVT = LD->getMemoryVT();
869 const DataLayout &DL = DAG.getDataLayout();
870 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
871 *LD->getMemOperand())) {
872 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
873 }
874 }
875 break;
876
877 case TargetLowering::Expand: {
878 EVT DestVT = Node->getValueType(0);
879 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
880 // If the source type is not legal, see if there is a legal extload to
881 // an intermediate type that we can then extend further.
882 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
883 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
884 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
885 // If we are loading a legal type, this is a non-extload followed by a
886 // full extend.
887 ISD::LoadExtType MidExtType =
888 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
889
890 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
891 SrcVT, LD->getMemOperand());
892 unsigned ExtendOp =
893 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
894 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
895 Chain = Load.getValue(1);
896 break;
897 }
898
899 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
900 // normal undefined upper bits behavior to allow using an in-reg extend
901 // with the illegal FP type, so load as an integer and do the
902 // from-integer conversion.
903 if (SrcVT.getScalarType() == MVT::f16) {
904 EVT ISrcVT = SrcVT.changeTypeToInteger();
905 EVT IDestVT = DestVT.changeTypeToInteger();
906 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
907
908 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
909 Ptr, ISrcVT, LD->getMemOperand());
910 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
911 Chain = Result.getValue(1);
912 break;
913 }
914 }
915
916 assert(!SrcVT.isVector() &&
917 "Vector Loads are handled in LegalizeVectorOps");
918
919 // FIXME: This does not work for vectors on most targets. Sign-
920 // and zero-extend operations are currently folded into extending
921 // loads, whether they are legal or not, and then we end up here
922 // without any support for legalizing them.
923 assert(ExtType != ISD::EXTLOAD &&
924 "EXTLOAD should always be supported!");
925 // Turn the unsupported load into an EXTLOAD followed by an
926 // explicit zero/sign extend inreg.
927 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
928 Node->getValueType(0),
929 Chain, Ptr, SrcVT,
930 LD->getMemOperand());
931 SDValue ValRes;
932 if (ExtType == ISD::SEXTLOAD)
933 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
934 Result.getValueType(),
935 Result, DAG.getValueType(SrcVT));
936 else
937 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
938 Value = ValRes;
939 Chain = Result.getValue(1);
940 break;
941 }
942 }
943 }
944
945 // Since loads produce two values, make sure to remember that we legalized
946 // both of them.
947 if (Chain.getNode() != Node) {
948 assert(Value.getNode() != Node && "Load must be completely replaced");
949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
950 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
951 if (UpdatedNodes) {
952 UpdatedNodes->insert(Value.getNode());
953 UpdatedNodes->insert(Chain.getNode());
954 }
955 ReplacedNode(Node);
956 }
957 }
958
959 /// Return a legal replacement for the given operation, with all legal operands.
LegalizeOp(SDNode * Node)960 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
961 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
962
963 // Allow illegal target nodes and illegal registers.
964 if (Node->getOpcode() == ISD::TargetConstant ||
965 Node->getOpcode() == ISD::Register)
966 return;
967
968 #ifndef NDEBUG
969 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
970 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
971 TargetLowering::TypeLegal &&
972 "Unexpected illegal type!");
973
974 for (const SDValue &Op : Node->op_values())
975 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
976 TargetLowering::TypeLegal ||
977 Op.getOpcode() == ISD::TargetConstant ||
978 Op.getOpcode() == ISD::Register) &&
979 "Unexpected illegal type!");
980 #endif
981
982 // Figure out the correct action; the way to query this varies by opcode
983 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
984 bool SimpleFinishLegalizing = true;
985 switch (Node->getOpcode()) {
986 case ISD::INTRINSIC_W_CHAIN:
987 case ISD::INTRINSIC_WO_CHAIN:
988 case ISD::INTRINSIC_VOID:
989 case ISD::STACKSAVE:
990 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
991 break;
992 case ISD::GET_DYNAMIC_AREA_OFFSET:
993 Action = TLI.getOperationAction(Node->getOpcode(),
994 Node->getValueType(0));
995 break;
996 case ISD::VAARG:
997 Action = TLI.getOperationAction(Node->getOpcode(),
998 Node->getValueType(0));
999 if (Action != TargetLowering::Promote)
1000 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1001 break;
1002 case ISD::FP_TO_FP16:
1003 case ISD::SINT_TO_FP:
1004 case ISD::UINT_TO_FP:
1005 case ISD::EXTRACT_VECTOR_ELT:
1006 case ISD::LROUND:
1007 case ISD::LLROUND:
1008 case ISD::LRINT:
1009 case ISD::LLRINT:
1010 Action = TLI.getOperationAction(Node->getOpcode(),
1011 Node->getOperand(0).getValueType());
1012 break;
1013 case ISD::STRICT_FP_TO_FP16:
1014 case ISD::STRICT_SINT_TO_FP:
1015 case ISD::STRICT_UINT_TO_FP:
1016 case ISD::STRICT_LRINT:
1017 case ISD::STRICT_LLRINT:
1018 case ISD::STRICT_LROUND:
1019 case ISD::STRICT_LLROUND:
1020 // These pseudo-ops are the same as the other STRICT_ ops except
1021 // they are registered with setOperationAction() using the input type
1022 // instead of the output type.
1023 Action = TLI.getOperationAction(Node->getOpcode(),
1024 Node->getOperand(1).getValueType());
1025 break;
1026 case ISD::SIGN_EXTEND_INREG: {
1027 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1028 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1029 break;
1030 }
1031 case ISD::ATOMIC_STORE:
1032 Action = TLI.getOperationAction(Node->getOpcode(),
1033 Node->getOperand(2).getValueType());
1034 break;
1035 case ISD::SELECT_CC:
1036 case ISD::STRICT_FSETCC:
1037 case ISD::STRICT_FSETCCS:
1038 case ISD::SETCC:
1039 case ISD::BR_CC: {
1040 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1041 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1042 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1043 Node->getOpcode() == ISD::SETCC ? 2 : 1;
1044 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1045 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1046 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1047 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1048 ISD::CondCode CCCode =
1049 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1050 Action = TLI.getCondCodeAction(CCCode, OpVT);
1051 if (Action == TargetLowering::Legal) {
1052 if (Node->getOpcode() == ISD::SELECT_CC)
1053 Action = TLI.getOperationAction(Node->getOpcode(),
1054 Node->getValueType(0));
1055 else
1056 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1057 }
1058 break;
1059 }
1060 case ISD::LOAD:
1061 case ISD::STORE:
1062 // FIXME: Model these properly. LOAD and STORE are complicated, and
1063 // STORE expects the unlegalized operand in some cases.
1064 SimpleFinishLegalizing = false;
1065 break;
1066 case ISD::CALLSEQ_START:
1067 case ISD::CALLSEQ_END:
1068 // FIXME: This shouldn't be necessary. These nodes have special properties
1069 // dealing with the recursive nature of legalization. Removing this
1070 // special case should be done as part of making LegalizeDAG non-recursive.
1071 SimpleFinishLegalizing = false;
1072 break;
1073 case ISD::EXTRACT_ELEMENT:
1074 case ISD::FLT_ROUNDS_:
1075 case ISD::MERGE_VALUES:
1076 case ISD::EH_RETURN:
1077 case ISD::FRAME_TO_ARGS_OFFSET:
1078 case ISD::EH_DWARF_CFA:
1079 case ISD::EH_SJLJ_SETJMP:
1080 case ISD::EH_SJLJ_LONGJMP:
1081 case ISD::EH_SJLJ_SETUP_DISPATCH:
1082 // These operations lie about being legal: when they claim to be legal,
1083 // they should actually be expanded.
1084 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1085 if (Action == TargetLowering::Legal)
1086 Action = TargetLowering::Expand;
1087 break;
1088 case ISD::INIT_TRAMPOLINE:
1089 case ISD::ADJUST_TRAMPOLINE:
1090 case ISD::FRAMEADDR:
1091 case ISD::RETURNADDR:
1092 case ISD::ADDROFRETURNADDR:
1093 case ISD::SPONENTRY:
1094 // These operations lie about being legal: when they claim to be legal,
1095 // they should actually be custom-lowered.
1096 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1097 if (Action == TargetLowering::Legal)
1098 Action = TargetLowering::Custom;
1099 break;
1100 case ISD::READCYCLECOUNTER:
1101 // READCYCLECOUNTER returns an i64, even if type legalization might have
1102 // expanded that to several smaller types.
1103 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1104 break;
1105 case ISD::READ_REGISTER:
1106 case ISD::WRITE_REGISTER:
1107 // Named register is legal in the DAG, but blocked by register name
1108 // selection if not implemented by target (to chose the correct register)
1109 // They'll be converted to Copy(To/From)Reg.
1110 Action = TargetLowering::Legal;
1111 break;
1112 case ISD::UBSANTRAP:
1113 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1114 if (Action == TargetLowering::Expand) {
1115 // replace ISD::UBSANTRAP with ISD::TRAP
1116 SDValue NewVal;
1117 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1118 Node->getOperand(0));
1119 ReplaceNode(Node, NewVal.getNode());
1120 LegalizeOp(NewVal.getNode());
1121 return;
1122 }
1123 break;
1124 case ISD::DEBUGTRAP:
1125 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1126 if (Action == TargetLowering::Expand) {
1127 // replace ISD::DEBUGTRAP with ISD::TRAP
1128 SDValue NewVal;
1129 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1130 Node->getOperand(0));
1131 ReplaceNode(Node, NewVal.getNode());
1132 LegalizeOp(NewVal.getNode());
1133 return;
1134 }
1135 break;
1136 case ISD::SADDSAT:
1137 case ISD::UADDSAT:
1138 case ISD::SSUBSAT:
1139 case ISD::USUBSAT:
1140 case ISD::SSHLSAT:
1141 case ISD::USHLSAT:
1142 case ISD::FP_TO_SINT_SAT:
1143 case ISD::FP_TO_UINT_SAT:
1144 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1145 break;
1146 case ISD::SMULFIX:
1147 case ISD::SMULFIXSAT:
1148 case ISD::UMULFIX:
1149 case ISD::UMULFIXSAT:
1150 case ISD::SDIVFIX:
1151 case ISD::SDIVFIXSAT:
1152 case ISD::UDIVFIX:
1153 case ISD::UDIVFIXSAT: {
1154 unsigned Scale = Node->getConstantOperandVal(2);
1155 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1156 Node->getValueType(0), Scale);
1157 break;
1158 }
1159 case ISD::MSCATTER:
1160 Action = TLI.getOperationAction(Node->getOpcode(),
1161 cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1162 break;
1163 case ISD::MSTORE:
1164 Action = TLI.getOperationAction(Node->getOpcode(),
1165 cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1166 break;
1167 case ISD::VECREDUCE_FADD:
1168 case ISD::VECREDUCE_FMUL:
1169 case ISD::VECREDUCE_ADD:
1170 case ISD::VECREDUCE_MUL:
1171 case ISD::VECREDUCE_AND:
1172 case ISD::VECREDUCE_OR:
1173 case ISD::VECREDUCE_XOR:
1174 case ISD::VECREDUCE_SMAX:
1175 case ISD::VECREDUCE_SMIN:
1176 case ISD::VECREDUCE_UMAX:
1177 case ISD::VECREDUCE_UMIN:
1178 case ISD::VECREDUCE_FMAX:
1179 case ISD::VECREDUCE_FMIN:
1180 Action = TLI.getOperationAction(
1181 Node->getOpcode(), Node->getOperand(0).getValueType());
1182 break;
1183 case ISD::VECREDUCE_SEQ_FADD:
1184 Action = TLI.getOperationAction(
1185 Node->getOpcode(), Node->getOperand(1).getValueType());
1186 break;
1187 default:
1188 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1189 Action = TargetLowering::Legal;
1190 } else {
1191 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1192 }
1193 break;
1194 }
1195
1196 if (SimpleFinishLegalizing) {
1197 SDNode *NewNode = Node;
1198 switch (Node->getOpcode()) {
1199 default: break;
1200 case ISD::SHL:
1201 case ISD::SRL:
1202 case ISD::SRA:
1203 case ISD::ROTL:
1204 case ISD::ROTR: {
1205 // Legalizing shifts/rotates requires adjusting the shift amount
1206 // to the appropriate width.
1207 SDValue Op0 = Node->getOperand(0);
1208 SDValue Op1 = Node->getOperand(1);
1209 if (!Op1.getValueType().isVector()) {
1210 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1211 // The getShiftAmountOperand() may create a new operand node or
1212 // return the existing one. If new operand is created we need
1213 // to update the parent node.
1214 // Do not try to legalize SAO here! It will be automatically legalized
1215 // in the next round.
1216 if (SAO != Op1)
1217 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1218 }
1219 }
1220 break;
1221 case ISD::FSHL:
1222 case ISD::FSHR:
1223 case ISD::SRL_PARTS:
1224 case ISD::SRA_PARTS:
1225 case ISD::SHL_PARTS: {
1226 // Legalizing shifts/rotates requires adjusting the shift amount
1227 // to the appropriate width.
1228 SDValue Op0 = Node->getOperand(0);
1229 SDValue Op1 = Node->getOperand(1);
1230 SDValue Op2 = Node->getOperand(2);
1231 if (!Op2.getValueType().isVector()) {
1232 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1233 // The getShiftAmountOperand() may create a new operand node or
1234 // return the existing one. If new operand is created we need
1235 // to update the parent node.
1236 if (SAO != Op2)
1237 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1238 }
1239 break;
1240 }
1241 }
1242
1243 if (NewNode != Node) {
1244 ReplaceNode(Node, NewNode);
1245 Node = NewNode;
1246 }
1247 switch (Action) {
1248 case TargetLowering::Legal:
1249 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1250 return;
1251 case TargetLowering::Custom:
1252 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1253 // FIXME: The handling for custom lowering with multiple results is
1254 // a complete mess.
1255 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1256 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1257 return;
1258
1259 if (Node->getNumValues() == 1) {
1260 // Verify the new types match the original. Glue is waived because
1261 // ISD::ADDC can be legalized by replacing Glue with an integer type.
1262 assert((Res.getValueType() == Node->getValueType(0) ||
1263 Node->getValueType(0) == MVT::Glue) &&
1264 "Type mismatch for custom legalized operation");
1265 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1266 // We can just directly replace this node with the lowered value.
1267 ReplaceNode(SDValue(Node, 0), Res);
1268 return;
1269 }
1270
1271 SmallVector<SDValue, 8> ResultVals;
1272 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1273 // Verify the new types match the original. Glue is waived because
1274 // ISD::ADDC can be legalized by replacing Glue with an integer type.
1275 assert((Res->getValueType(i) == Node->getValueType(i) ||
1276 Node->getValueType(i) == MVT::Glue) &&
1277 "Type mismatch for custom legalized operation");
1278 ResultVals.push_back(Res.getValue(i));
1279 }
1280 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1281 ReplaceNode(Node, ResultVals.data());
1282 return;
1283 }
1284 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1285 LLVM_FALLTHROUGH;
1286 case TargetLowering::Expand:
1287 if (ExpandNode(Node))
1288 return;
1289 LLVM_FALLTHROUGH;
1290 case TargetLowering::LibCall:
1291 ConvertNodeToLibcall(Node);
1292 return;
1293 case TargetLowering::Promote:
1294 PromoteNode(Node);
1295 return;
1296 }
1297 }
1298
1299 switch (Node->getOpcode()) {
1300 default:
1301 #ifndef NDEBUG
1302 dbgs() << "NODE: ";
1303 Node->dump( &DAG);
1304 dbgs() << "\n";
1305 #endif
1306 llvm_unreachable("Do not know how to legalize this operator!");
1307
1308 case ISD::CALLSEQ_START:
1309 case ISD::CALLSEQ_END:
1310 break;
1311 case ISD::LOAD:
1312 return LegalizeLoadOps(Node);
1313 case ISD::STORE:
1314 return LegalizeStoreOps(Node);
1315 }
1316 }
1317
ExpandExtractFromVectorThroughStack(SDValue Op)1318 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1319 SDValue Vec = Op.getOperand(0);
1320 SDValue Idx = Op.getOperand(1);
1321 SDLoc dl(Op);
1322
1323 // Before we generate a new store to a temporary stack slot, see if there is
1324 // already one that we can use. There often is because when we scalarize
1325 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1326 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1327 // the vector. If all are expanded here, we don't want one store per vector
1328 // element.
1329
1330 // Caches for hasPredecessorHelper
1331 SmallPtrSet<const SDNode *, 32> Visited;
1332 SmallVector<const SDNode *, 16> Worklist;
1333 Visited.insert(Op.getNode());
1334 Worklist.push_back(Idx.getNode());
1335 SDValue StackPtr, Ch;
1336 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1337 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1338 SDNode *User = *UI;
1339 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1340 if (ST->isIndexed() || ST->isTruncatingStore() ||
1341 ST->getValue() != Vec)
1342 continue;
1343
1344 // Make sure that nothing else could have stored into the destination of
1345 // this store.
1346 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1347 continue;
1348
1349 // If the index is dependent on the store we will introduce a cycle when
1350 // creating the load (the load uses the index, and by replacing the chain
1351 // we will make the index dependent on the load). Also, the store might be
1352 // dependent on the extractelement and introduce a cycle when creating
1353 // the load.
1354 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1355 ST->hasPredecessor(Op.getNode()))
1356 continue;
1357
1358 StackPtr = ST->getBasePtr();
1359 Ch = SDValue(ST, 0);
1360 break;
1361 }
1362 }
1363
1364 EVT VecVT = Vec.getValueType();
1365
1366 if (!Ch.getNode()) {
1367 // Store the value to a temporary stack slot, then LOAD the returned part.
1368 StackPtr = DAG.CreateStackTemporary(VecVT);
1369 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1370 MachinePointerInfo());
1371 }
1372
1373 SDValue NewLoad;
1374
1375 if (Op.getValueType().isVector()) {
1376 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT,
1377 Op.getValueType(), Idx);
1378 NewLoad =
1379 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1380 } else {
1381 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1382 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1383 MachinePointerInfo(),
1384 VecVT.getVectorElementType());
1385 }
1386
1387 // Replace the chain going out of the store, by the one out of the load.
1388 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1389
1390 // We introduced a cycle though, so update the loads operands, making sure
1391 // to use the original store's chain as an incoming chain.
1392 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1393 NewLoad->op_end());
1394 NewLoadOperands[0] = Ch;
1395 NewLoad =
1396 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1397 return NewLoad;
1398 }
1399
ExpandInsertToVectorThroughStack(SDValue Op)1400 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1401 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1402
1403 SDValue Vec = Op.getOperand(0);
1404 SDValue Part = Op.getOperand(1);
1405 SDValue Idx = Op.getOperand(2);
1406 SDLoc dl(Op);
1407
1408 // Store the value to a temporary stack slot, then LOAD the returned part.
1409 EVT VecVT = Vec.getValueType();
1410 EVT SubVecVT = Part.getValueType();
1411 SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1412 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1413 MachinePointerInfo PtrInfo =
1414 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1415
1416 // First store the whole vector.
1417 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1418
1419 // Then store the inserted part.
1420 SDValue SubStackPtr =
1421 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx);
1422
1423 // Store the subvector.
1424 Ch = DAG.getStore(
1425 Ch, dl, Part, SubStackPtr,
1426 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1427
1428 // Finally, load the updated vector.
1429 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1430 }
1431
ExpandVectorBuildThroughStack(SDNode * Node)1432 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1433 assert((Node->getOpcode() == ISD::BUILD_VECTOR ||
1434 Node->getOpcode() == ISD::CONCAT_VECTORS) &&
1435 "Unexpected opcode!");
1436
1437 // We can't handle this case efficiently. Allocate a sufficiently
1438 // aligned object on the stack, store each operand into it, then load
1439 // the result as a vector.
1440 // Create the stack frame object.
1441 EVT VT = Node->getValueType(0);
1442 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType()
1443 : Node->getOperand(0).getValueType();
1444 SDLoc dl(Node);
1445 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1446 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1447 MachinePointerInfo PtrInfo =
1448 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1449
1450 // Emit a store of each element to the stack slot.
1451 SmallVector<SDValue, 8> Stores;
1452 unsigned TypeByteSize = MemVT.getSizeInBits() / 8;
1453 assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1454
1455 // If the destination vector element type of a BUILD_VECTOR is narrower than
1456 // the source element type, only store the bits necessary.
1457 bool Truncate = isa<BuildVectorSDNode>(Node) &&
1458 MemVT.bitsLT(Node->getOperand(0).getValueType());
1459
1460 // Store (in the right endianness) the elements to memory.
1461 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1462 // Ignore undef elements.
1463 if (Node->getOperand(i).isUndef()) continue;
1464
1465 unsigned Offset = TypeByteSize*i;
1466
1467 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl);
1468
1469 if (Truncate)
1470 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1471 Node->getOperand(i), Idx,
1472 PtrInfo.getWithOffset(Offset), MemVT));
1473 else
1474 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1475 Idx, PtrInfo.getWithOffset(Offset)));
1476 }
1477
1478 SDValue StoreChain;
1479 if (!Stores.empty()) // Not all undef elements?
1480 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1481 else
1482 StoreChain = DAG.getEntryNode();
1483
1484 // Result is a load from the stack slot.
1485 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1486 }
1487
1488 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1489 /// containing the sign bit if the target has no integer value capable of
1490 /// holding all bits of the floating-point value.
getSignAsIntValue(FloatSignAsInt & State,const SDLoc & DL,SDValue Value) const1491 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1492 const SDLoc &DL,
1493 SDValue Value) const {
1494 EVT FloatVT = Value.getValueType();
1495 unsigned NumBits = FloatVT.getScalarSizeInBits();
1496 State.FloatVT = FloatVT;
1497 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1498 // Convert to an integer of the same size.
1499 if (TLI.isTypeLegal(IVT)) {
1500 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1501 State.SignMask = APInt::getSignMask(NumBits);
1502 State.SignBit = NumBits - 1;
1503 return;
1504 }
1505
1506 auto &DataLayout = DAG.getDataLayout();
1507 // Store the float to memory, then load the sign part out as an integer.
1508 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1509 // First create a temporary that is aligned for both the load and store.
1510 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1511 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1512 // Then store the float to it.
1513 State.FloatPtr = StackPtr;
1514 MachineFunction &MF = DAG.getMachineFunction();
1515 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1516 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1517 State.FloatPointerInfo);
1518
1519 SDValue IntPtr;
1520 if (DataLayout.isBigEndian()) {
1521 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1522 // Load out a legal integer with the same sign bit as the float.
1523 IntPtr = StackPtr;
1524 State.IntPointerInfo = State.FloatPointerInfo;
1525 } else {
1526 // Advance the pointer so that the loaded byte will contain the sign bit.
1527 unsigned ByteOffset = (NumBits / 8) - 1;
1528 IntPtr =
1529 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL);
1530 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1531 ByteOffset);
1532 }
1533
1534 State.IntPtr = IntPtr;
1535 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1536 State.IntPointerInfo, MVT::i8);
1537 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7);
1538 State.SignBit = 7;
1539 }
1540
1541 /// Replace the integer value produced by getSignAsIntValue() with a new value
1542 /// and cast the result back to a floating-point type.
modifySignAsInt(const FloatSignAsInt & State,const SDLoc & DL,SDValue NewIntValue) const1543 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1544 const SDLoc &DL,
1545 SDValue NewIntValue) const {
1546 if (!State.Chain)
1547 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1548
1549 // Override the part containing the sign bit in the value stored on the stack.
1550 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1551 State.IntPointerInfo, MVT::i8);
1552 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1553 State.FloatPointerInfo);
1554 }
1555
ExpandFCOPYSIGN(SDNode * Node) const1556 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1557 SDLoc DL(Node);
1558 SDValue Mag = Node->getOperand(0);
1559 SDValue Sign = Node->getOperand(1);
1560
1561 // Get sign bit into an integer value.
1562 FloatSignAsInt SignAsInt;
1563 getSignAsIntValue(SignAsInt, DL, Sign);
1564
1565 EVT IntVT = SignAsInt.IntValue.getValueType();
1566 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1567 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1568 SignMask);
1569
1570 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1571 EVT FloatVT = Mag.getValueType();
1572 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1573 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1574 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1575 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1576 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1577 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1578 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1579 }
1580
1581 // Transform Mag value to integer, and clear the sign bit.
1582 FloatSignAsInt MagAsInt;
1583 getSignAsIntValue(MagAsInt, DL, Mag);
1584 EVT MagVT = MagAsInt.IntValue.getValueType();
1585 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1586 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1587 ClearSignMask);
1588
1589 // Get the signbit at the right position for MagAsInt.
1590 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1591 EVT ShiftVT = IntVT;
1592 if (SignBit.getScalarValueSizeInBits() <
1593 ClearedSign.getScalarValueSizeInBits()) {
1594 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1595 ShiftVT = MagVT;
1596 }
1597 if (ShiftAmount > 0) {
1598 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1599 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1600 } else if (ShiftAmount < 0) {
1601 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1602 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1603 }
1604 if (SignBit.getScalarValueSizeInBits() >
1605 ClearedSign.getScalarValueSizeInBits()) {
1606 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1607 }
1608
1609 // Store the part with the modified sign and convert back to float.
1610 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1611 return modifySignAsInt(MagAsInt, DL, CopiedSign);
1612 }
1613
ExpandFNEG(SDNode * Node) const1614 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const {
1615 // Get the sign bit as an integer.
1616 SDLoc DL(Node);
1617 FloatSignAsInt SignAsInt;
1618 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0));
1619 EVT IntVT = SignAsInt.IntValue.getValueType();
1620
1621 // Flip the sign.
1622 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1623 SDValue SignFlip =
1624 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask);
1625
1626 // Convert back to float.
1627 return modifySignAsInt(SignAsInt, DL, SignFlip);
1628 }
1629
ExpandFABS(SDNode * Node) const1630 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1631 SDLoc DL(Node);
1632 SDValue Value = Node->getOperand(0);
1633
1634 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1635 EVT FloatVT = Value.getValueType();
1636 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1637 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1638 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1639 }
1640
1641 // Transform value to integer, clear the sign bit and transform back.
1642 FloatSignAsInt ValueAsInt;
1643 getSignAsIntValue(ValueAsInt, DL, Value);
1644 EVT IntVT = ValueAsInt.IntValue.getValueType();
1645 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1646 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1647 ClearSignMask);
1648 return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1649 }
1650
ExpandDYNAMIC_STACKALLOC(SDNode * Node,SmallVectorImpl<SDValue> & Results)1651 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1652 SmallVectorImpl<SDValue> &Results) {
1653 Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
1654 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1655 " not tell us which reg is the stack pointer!");
1656 SDLoc dl(Node);
1657 EVT VT = Node->getValueType(0);
1658 SDValue Tmp1 = SDValue(Node, 0);
1659 SDValue Tmp2 = SDValue(Node, 1);
1660 SDValue Tmp3 = Node->getOperand(2);
1661 SDValue Chain = Tmp1.getOperand(0);
1662
1663 // Chain the dynamic stack allocation so that it doesn't modify the stack
1664 // pointer when other instructions are using the stack.
1665 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1666
1667 SDValue Size = Tmp2.getOperand(1);
1668 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1669 Chain = SP.getValue(1);
1670 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue();
1671 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering();
1672 unsigned Opc =
1673 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
1674 ISD::ADD : ISD::SUB;
1675
1676 Align StackAlign = TFL->getStackAlign();
1677 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value
1678 if (Alignment > StackAlign)
1679 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1680 DAG.getConstant(-Alignment.value(), dl, VT));
1681 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1682
1683 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1684 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1685
1686 Results.push_back(Tmp1);
1687 Results.push_back(Tmp2);
1688 }
1689
1690 /// Emit a store/load combination to the stack. This stores
1691 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1692 /// a load from the stack slot to DestVT, extending it if needed.
1693 /// The resultant code need not be legal.
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,const SDLoc & dl)1694 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1695 EVT DestVT, const SDLoc &dl) {
1696 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1697 }
1698
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,const SDLoc & dl,SDValue Chain)1699 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1700 EVT DestVT, const SDLoc &dl,
1701 SDValue Chain) {
1702 unsigned SrcSize = SrcOp.getValueSizeInBits();
1703 unsigned SlotSize = SlotVT.getSizeInBits();
1704 unsigned DestSize = DestVT.getSizeInBits();
1705 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1706 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType);
1707
1708 // Don't convert with stack if the load/store is expensive.
1709 if ((SrcSize > SlotSize &&
1710 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) ||
1711 (SlotSize < DestSize &&
1712 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT)))
1713 return SDValue();
1714
1715 // Create the stack frame object.
1716 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign(
1717 SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1718 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign);
1719
1720 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1721 int SPFI = StackPtrFI->getIndex();
1722 MachinePointerInfo PtrInfo =
1723 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1724
1725 // Emit a store to the stack slot. Use a truncstore if the input value is
1726 // later than DestVT.
1727 SDValue Store;
1728
1729 if (SrcSize > SlotSize)
1730 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1731 SlotVT, SrcAlign);
1732 else {
1733 assert(SrcSize == SlotSize && "Invalid store");
1734 Store =
1735 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1736 }
1737
1738 // Result is a load from the stack slot.
1739 if (SlotSize == DestSize)
1740 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1741
1742 assert(SlotSize < DestSize && "Unknown extension!");
1743 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1744 DestAlign);
1745 }
1746
ExpandSCALAR_TO_VECTOR(SDNode * Node)1747 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1748 SDLoc dl(Node);
1749 // Create a vector sized/aligned stack slot, store the value to element #0,
1750 // then load the whole vector back out.
1751 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1752
1753 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1754 int SPFI = StackPtrFI->getIndex();
1755
1756 SDValue Ch = DAG.getTruncStore(
1757 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1758 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1759 Node->getValueType(0).getVectorElementType());
1760 return DAG.getLoad(
1761 Node->getValueType(0), dl, Ch, StackPtr,
1762 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1763 }
1764
1765 static bool
ExpandBVWithShuffles(SDNode * Node,SelectionDAG & DAG,const TargetLowering & TLI,SDValue & Res)1766 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1767 const TargetLowering &TLI, SDValue &Res) {
1768 unsigned NumElems = Node->getNumOperands();
1769 SDLoc dl(Node);
1770 EVT VT = Node->getValueType(0);
1771
1772 // Try to group the scalars into pairs, shuffle the pairs together, then
1773 // shuffle the pairs of pairs together, etc. until the vector has
1774 // been built. This will work only if all of the necessary shuffle masks
1775 // are legal.
1776
1777 // We do this in two phases; first to check the legality of the shuffles,
1778 // and next, assuming that all shuffles are legal, to create the new nodes.
1779 for (int Phase = 0; Phase < 2; ++Phase) {
1780 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1781 NewIntermedVals;
1782 for (unsigned i = 0; i < NumElems; ++i) {
1783 SDValue V = Node->getOperand(i);
1784 if (V.isUndef())
1785 continue;
1786
1787 SDValue Vec;
1788 if (Phase)
1789 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1790 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1791 }
1792
1793 while (IntermedVals.size() > 2) {
1794 NewIntermedVals.clear();
1795 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1796 // This vector and the next vector are shuffled together (simply to
1797 // append the one to the other).
1798 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1799
1800 SmallVector<int, 16> FinalIndices;
1801 FinalIndices.reserve(IntermedVals[i].second.size() +
1802 IntermedVals[i+1].second.size());
1803
1804 int k = 0;
1805 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1806 ++j, ++k) {
1807 ShuffleVec[k] = j;
1808 FinalIndices.push_back(IntermedVals[i].second[j]);
1809 }
1810 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1811 ++j, ++k) {
1812 ShuffleVec[k] = NumElems + j;
1813 FinalIndices.push_back(IntermedVals[i+1].second[j]);
1814 }
1815
1816 SDValue Shuffle;
1817 if (Phase)
1818 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1819 IntermedVals[i+1].first,
1820 ShuffleVec);
1821 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1822 return false;
1823 NewIntermedVals.push_back(
1824 std::make_pair(Shuffle, std::move(FinalIndices)));
1825 }
1826
1827 // If we had an odd number of defined values, then append the last
1828 // element to the array of new vectors.
1829 if ((IntermedVals.size() & 1) != 0)
1830 NewIntermedVals.push_back(IntermedVals.back());
1831
1832 IntermedVals.swap(NewIntermedVals);
1833 }
1834
1835 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1836 "Invalid number of intermediate vectors");
1837 SDValue Vec1 = IntermedVals[0].first;
1838 SDValue Vec2;
1839 if (IntermedVals.size() > 1)
1840 Vec2 = IntermedVals[1].first;
1841 else if (Phase)
1842 Vec2 = DAG.getUNDEF(VT);
1843
1844 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1845 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1846 ShuffleVec[IntermedVals[0].second[i]] = i;
1847 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1848 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1849
1850 if (Phase)
1851 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1852 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1853 return false;
1854 }
1855
1856 return true;
1857 }
1858
1859 /// Expand a BUILD_VECTOR node on targets that don't
1860 /// support the operation, but do support the resultant vector type.
ExpandBUILD_VECTOR(SDNode * Node)1861 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1862 unsigned NumElems = Node->getNumOperands();
1863 SDValue Value1, Value2;
1864 SDLoc dl(Node);
1865 EVT VT = Node->getValueType(0);
1866 EVT OpVT = Node->getOperand(0).getValueType();
1867 EVT EltVT = VT.getVectorElementType();
1868
1869 // If the only non-undef value is the low element, turn this into a
1870 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1871 bool isOnlyLowElement = true;
1872 bool MoreThanTwoValues = false;
1873 bool isConstant = true;
1874 for (unsigned i = 0; i < NumElems; ++i) {
1875 SDValue V = Node->getOperand(i);
1876 if (V.isUndef())
1877 continue;
1878 if (i > 0)
1879 isOnlyLowElement = false;
1880 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1881 isConstant = false;
1882
1883 if (!Value1.getNode()) {
1884 Value1 = V;
1885 } else if (!Value2.getNode()) {
1886 if (V != Value1)
1887 Value2 = V;
1888 } else if (V != Value1 && V != Value2) {
1889 MoreThanTwoValues = true;
1890 }
1891 }
1892
1893 if (!Value1.getNode())
1894 return DAG.getUNDEF(VT);
1895
1896 if (isOnlyLowElement)
1897 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1898
1899 // If all elements are constants, create a load from the constant pool.
1900 if (isConstant) {
1901 SmallVector<Constant*, 16> CV;
1902 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1903 if (ConstantFPSDNode *V =
1904 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1905 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1906 } else if (ConstantSDNode *V =
1907 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1908 if (OpVT==EltVT)
1909 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1910 else {
1911 // If OpVT and EltVT don't match, EltVT is not legal and the
1912 // element values have been promoted/truncated earlier. Undo this;
1913 // we don't want a v16i8 to become a v16i32 for example.
1914 const ConstantInt *CI = V->getConstantIntValue();
1915 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1916 CI->getZExtValue()));
1917 }
1918 } else {
1919 assert(Node->getOperand(i).isUndef());
1920 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1921 CV.push_back(UndefValue::get(OpNTy));
1922 }
1923 }
1924 Constant *CP = ConstantVector::get(CV);
1925 SDValue CPIdx =
1926 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1927 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
1928 return DAG.getLoad(
1929 VT, dl, DAG.getEntryNode(), CPIdx,
1930 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1931 Alignment);
1932 }
1933
1934 SmallSet<SDValue, 16> DefinedValues;
1935 for (unsigned i = 0; i < NumElems; ++i) {
1936 if (Node->getOperand(i).isUndef())
1937 continue;
1938 DefinedValues.insert(Node->getOperand(i));
1939 }
1940
1941 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1942 if (!MoreThanTwoValues) {
1943 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1944 for (unsigned i = 0; i < NumElems; ++i) {
1945 SDValue V = Node->getOperand(i);
1946 if (V.isUndef())
1947 continue;
1948 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1949 }
1950 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1951 // Get the splatted value into the low element of a vector register.
1952 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1953 SDValue Vec2;
1954 if (Value2.getNode())
1955 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1956 else
1957 Vec2 = DAG.getUNDEF(VT);
1958
1959 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1960 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1961 }
1962 } else {
1963 SDValue Res;
1964 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
1965 return Res;
1966 }
1967 }
1968
1969 // Otherwise, we can't handle this case efficiently.
1970 return ExpandVectorBuildThroughStack(Node);
1971 }
1972
ExpandSPLAT_VECTOR(SDNode * Node)1973 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
1974 SDLoc DL(Node);
1975 EVT VT = Node->getValueType(0);
1976 SDValue SplatVal = Node->getOperand(0);
1977
1978 return DAG.getSplatBuildVector(VT, DL, SplatVal);
1979 }
1980
1981 // Expand a node into a call to a libcall. If the result value
1982 // does not fit into a register, return the lo part and set the hi part to the
1983 // by-reg argument. If it does fit into a single register, return the result
1984 // and leave the Hi part unset.
ExpandLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)1985 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1986 bool isSigned) {
1987 TargetLowering::ArgListTy Args;
1988 TargetLowering::ArgListEntry Entry;
1989 for (const SDValue &Op : Node->op_values()) {
1990 EVT ArgVT = Op.getValueType();
1991 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1992 Entry.Node = Op;
1993 Entry.Ty = ArgTy;
1994 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
1995 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
1996 Args.push_back(Entry);
1997 }
1998 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1999 TLI.getPointerTy(DAG.getDataLayout()));
2000
2001 EVT RetVT = Node->getValueType(0);
2002 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2003
2004 // By default, the input chain to this libcall is the entry node of the
2005 // function. If the libcall is going to be emitted as a tail call then
2006 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2007 // node which is being folded has a non-entry input chain.
2008 SDValue InChain = DAG.getEntryNode();
2009
2010 // isTailCall may be true since the callee does not reference caller stack
2011 // frame. Check if it's in the right position and that the return types match.
2012 SDValue TCChain = InChain;
2013 const Function &F = DAG.getMachineFunction().getFunction();
2014 bool isTailCall =
2015 TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2016 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2017 if (isTailCall)
2018 InChain = TCChain;
2019
2020 TargetLowering::CallLoweringInfo CLI(DAG);
2021 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2022 CLI.setDebugLoc(SDLoc(Node))
2023 .setChain(InChain)
2024 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2025 std::move(Args))
2026 .setTailCall(isTailCall)
2027 .setSExtResult(signExtend)
2028 .setZExtResult(!signExtend)
2029 .setIsPostTypeLegalization(true);
2030
2031 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2032
2033 if (!CallInfo.second.getNode()) {
2034 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2035 // It's a tailcall, return the chain (which is the DAG root).
2036 return DAG.getRoot();
2037 }
2038
2039 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2040 return CallInfo.first;
2041 }
2042
ExpandFPLibCall(SDNode * Node,RTLIB::Libcall LC,SmallVectorImpl<SDValue> & Results)2043 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2044 RTLIB::Libcall LC,
2045 SmallVectorImpl<SDValue> &Results) {
2046 if (LC == RTLIB::UNKNOWN_LIBCALL)
2047 llvm_unreachable("Can't create an unknown libcall!");
2048
2049 if (Node->isStrictFPOpcode()) {
2050 EVT RetVT = Node->getValueType(0);
2051 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops()));
2052 TargetLowering::MakeLibCallOptions CallOptions;
2053 // FIXME: This doesn't support tail calls.
2054 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2055 Ops, CallOptions,
2056 SDLoc(Node),
2057 Node->getOperand(0));
2058 Results.push_back(Tmp.first);
2059 Results.push_back(Tmp.second);
2060 } else {
2061 SDValue Tmp = ExpandLibCall(LC, Node, false);
2062 Results.push_back(Tmp);
2063 }
2064 }
2065
2066 /// Expand the node to a libcall based on the result type.
ExpandFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128,SmallVectorImpl<SDValue> & Results)2067 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2068 RTLIB::Libcall Call_F32,
2069 RTLIB::Libcall Call_F64,
2070 RTLIB::Libcall Call_F80,
2071 RTLIB::Libcall Call_F128,
2072 RTLIB::Libcall Call_PPCF128,
2073 SmallVectorImpl<SDValue> &Results) {
2074 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0),
2075 Call_F32, Call_F64, Call_F80,
2076 Call_F128, Call_PPCF128);
2077 ExpandFPLibCall(Node, LC, Results);
2078 }
2079
ExpandIntLibCall(SDNode * Node,bool isSigned,RTLIB::Libcall Call_I8,RTLIB::Libcall Call_I16,RTLIB::Libcall Call_I32,RTLIB::Libcall Call_I64,RTLIB::Libcall Call_I128)2080 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2081 RTLIB::Libcall Call_I8,
2082 RTLIB::Libcall Call_I16,
2083 RTLIB::Libcall Call_I32,
2084 RTLIB::Libcall Call_I64,
2085 RTLIB::Libcall Call_I128) {
2086 RTLIB::Libcall LC;
2087 switch (Node->getSimpleValueType(0).SimpleTy) {
2088 default: llvm_unreachable("Unexpected request for libcall!");
2089 case MVT::i8: LC = Call_I8; break;
2090 case MVT::i16: LC = Call_I16; break;
2091 case MVT::i32: LC = Call_I32; break;
2092 case MVT::i64: LC = Call_I64; break;
2093 case MVT::i128: LC = Call_I128; break;
2094 }
2095 return ExpandLibCall(LC, Node, isSigned);
2096 }
2097
2098 /// Expand the node to a libcall based on first argument type (for instance
2099 /// lround and its variant).
ExpandArgFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128,SmallVectorImpl<SDValue> & Results)2100 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2101 RTLIB::Libcall Call_F32,
2102 RTLIB::Libcall Call_F64,
2103 RTLIB::Libcall Call_F80,
2104 RTLIB::Libcall Call_F128,
2105 RTLIB::Libcall Call_PPCF128,
2106 SmallVectorImpl<SDValue> &Results) {
2107 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2108 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(),
2109 Call_F32, Call_F64, Call_F80,
2110 Call_F128, Call_PPCF128);
2111 ExpandFPLibCall(Node, LC, Results);
2112 }
2113
2114 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2115 void
ExpandDivRemLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2116 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2117 SmallVectorImpl<SDValue> &Results) {
2118 unsigned Opcode = Node->getOpcode();
2119 bool isSigned = Opcode == ISD::SDIVREM;
2120
2121 RTLIB::Libcall LC;
2122 switch (Node->getSimpleValueType(0).SimpleTy) {
2123 default: llvm_unreachable("Unexpected request for libcall!");
2124 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2125 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2126 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2127 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2128 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2129 }
2130
2131 // The input chain to this libcall is the entry node of the function.
2132 // Legalizing the call will automatically add the previous call to the
2133 // dependence.
2134 SDValue InChain = DAG.getEntryNode();
2135
2136 EVT RetVT = Node->getValueType(0);
2137 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2138
2139 TargetLowering::ArgListTy Args;
2140 TargetLowering::ArgListEntry Entry;
2141 for (const SDValue &Op : Node->op_values()) {
2142 EVT ArgVT = Op.getValueType();
2143 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2144 Entry.Node = Op;
2145 Entry.Ty = ArgTy;
2146 Entry.IsSExt = isSigned;
2147 Entry.IsZExt = !isSigned;
2148 Args.push_back(Entry);
2149 }
2150
2151 // Also pass the return address of the remainder.
2152 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2153 Entry.Node = FIPtr;
2154 Entry.Ty = RetTy->getPointerTo();
2155 Entry.IsSExt = isSigned;
2156 Entry.IsZExt = !isSigned;
2157 Args.push_back(Entry);
2158
2159 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2160 TLI.getPointerTy(DAG.getDataLayout()));
2161
2162 SDLoc dl(Node);
2163 TargetLowering::CallLoweringInfo CLI(DAG);
2164 CLI.setDebugLoc(dl)
2165 .setChain(InChain)
2166 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2167 std::move(Args))
2168 .setSExtResult(isSigned)
2169 .setZExtResult(!isSigned);
2170
2171 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2172
2173 // Remainder is loaded back from the stack frame.
2174 SDValue Rem =
2175 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2176 Results.push_back(CallInfo.first);
2177 Results.push_back(Rem);
2178 }
2179
2180 /// Return true if sincos libcall is available.
isSinCosLibcallAvailable(SDNode * Node,const TargetLowering & TLI)2181 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2182 RTLIB::Libcall LC;
2183 switch (Node->getSimpleValueType(0).SimpleTy) {
2184 default: llvm_unreachable("Unexpected request for libcall!");
2185 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2186 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2187 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2188 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2189 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2190 }
2191 return TLI.getLibcallName(LC) != nullptr;
2192 }
2193
2194 /// Only issue sincos libcall if both sin and cos are needed.
useSinCos(SDNode * Node)2195 static bool useSinCos(SDNode *Node) {
2196 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2197 ? ISD::FCOS : ISD::FSIN;
2198
2199 SDValue Op0 = Node->getOperand(0);
2200 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2201 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2202 SDNode *User = *UI;
2203 if (User == Node)
2204 continue;
2205 // The other user might have been turned into sincos already.
2206 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2207 return true;
2208 }
2209 return false;
2210 }
2211
2212 /// Issue libcalls to sincos to compute sin / cos pairs.
2213 void
ExpandSinCosLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2214 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2215 SmallVectorImpl<SDValue> &Results) {
2216 RTLIB::Libcall LC;
2217 switch (Node->getSimpleValueType(0).SimpleTy) {
2218 default: llvm_unreachable("Unexpected request for libcall!");
2219 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2220 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2221 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2222 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2223 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2224 }
2225
2226 // The input chain to this libcall is the entry node of the function.
2227 // Legalizing the call will automatically add the previous call to the
2228 // dependence.
2229 SDValue InChain = DAG.getEntryNode();
2230
2231 EVT RetVT = Node->getValueType(0);
2232 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2233
2234 TargetLowering::ArgListTy Args;
2235 TargetLowering::ArgListEntry Entry;
2236
2237 // Pass the argument.
2238 Entry.Node = Node->getOperand(0);
2239 Entry.Ty = RetTy;
2240 Entry.IsSExt = false;
2241 Entry.IsZExt = false;
2242 Args.push_back(Entry);
2243
2244 // Pass the return address of sin.
2245 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2246 Entry.Node = SinPtr;
2247 Entry.Ty = RetTy->getPointerTo();
2248 Entry.IsSExt = false;
2249 Entry.IsZExt = false;
2250 Args.push_back(Entry);
2251
2252 // Also pass the return address of the cos.
2253 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2254 Entry.Node = CosPtr;
2255 Entry.Ty = RetTy->getPointerTo();
2256 Entry.IsSExt = false;
2257 Entry.IsZExt = false;
2258 Args.push_back(Entry);
2259
2260 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2261 TLI.getPointerTy(DAG.getDataLayout()));
2262
2263 SDLoc dl(Node);
2264 TargetLowering::CallLoweringInfo CLI(DAG);
2265 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2266 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2267 std::move(Args));
2268
2269 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2270
2271 Results.push_back(
2272 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2273 Results.push_back(
2274 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2275 }
2276
2277 /// This function is responsible for legalizing a
2278 /// INT_TO_FP operation of the specified operand when the target requests that
2279 /// we expand it. At this point, we know that the result and operand types are
2280 /// legal for the target.
ExpandLegalINT_TO_FP(SDNode * Node,SDValue & Chain)2281 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2282 SDValue &Chain) {
2283 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2284 Node->getOpcode() == ISD::SINT_TO_FP);
2285 EVT DestVT = Node->getValueType(0);
2286 SDLoc dl(Node);
2287 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2288 SDValue Op0 = Node->getOperand(OpNo);
2289 EVT SrcVT = Op0.getValueType();
2290
2291 // TODO: Should any fast-math-flags be set for the created nodes?
2292 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2293 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) &&
2294 (DestVT.bitsLE(MVT::f64) ||
2295 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND
2296 : ISD::FP_EXTEND,
2297 DestVT))) {
2298 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2299 "expansion\n");
2300
2301 // Get the stack frame index of a 8 byte buffer.
2302 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2303
2304 SDValue Lo = Op0;
2305 // if signed map to unsigned space
2306 if (isSigned) {
2307 // Invert sign bit (signed to unsigned mapping).
2308 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo,
2309 DAG.getConstant(0x80000000u, dl, MVT::i32));
2310 }
2311 // Initial hi portion of constructed double.
2312 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2313
2314 // If this a big endian target, swap the lo and high data.
2315 if (DAG.getDataLayout().isBigEndian())
2316 std::swap(Lo, Hi);
2317
2318 SDValue MemChain = DAG.getEntryNode();
2319
2320 // Store the lo of the constructed double.
2321 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot,
2322 MachinePointerInfo());
2323 // Store the hi of the constructed double.
2324 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl);
2325 SDValue Store2 =
2326 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo());
2327 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
2328
2329 // load the constructed double
2330 SDValue Load =
2331 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
2332 // FP constant to bias correct the final result
2333 SDValue Bias = DAG.getConstantFP(isSigned ?
2334 BitsToDouble(0x4330000080000000ULL) :
2335 BitsToDouble(0x4330000000000000ULL),
2336 dl, MVT::f64);
2337 // Subtract the bias and get the final result.
2338 SDValue Sub;
2339 SDValue Result;
2340 if (Node->isStrictFPOpcode()) {
2341 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2342 {Node->getOperand(0), Load, Bias});
2343 Chain = Sub.getValue(1);
2344 if (DestVT != Sub.getValueType()) {
2345 std::pair<SDValue, SDValue> ResultPair;
2346 ResultPair =
2347 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2348 Result = ResultPair.first;
2349 Chain = ResultPair.second;
2350 }
2351 else
2352 Result = Sub;
2353 } else {
2354 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2355 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2356 }
2357 return Result;
2358 }
2359
2360 if (isSigned)
2361 return SDValue();
2362
2363 // TODO: Generalize this for use with other types.
2364 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) ||
2365 (SrcVT == MVT::i64 && DestVT == MVT::f64)) {
2366 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n");
2367 // For unsigned conversions, convert them to signed conversions using the
2368 // algorithm from the x86_64 __floatundisf in compiler_rt. That method
2369 // should be valid for i32->f32 as well.
2370
2371 // More generally this transform should be valid if there are 3 more bits
2372 // in the integer type than the significand. Rounding uses the first bit
2373 // after the width of the significand and the OR of all bits after that. So
2374 // we need to be able to OR the shifted out bit into one of the bits that
2375 // participate in the OR.
2376
2377 // TODO: This really should be implemented using a branch rather than a
2378 // select. We happen to get lucky and machinesink does the right
2379 // thing most of the time. This would be a good candidate for a
2380 // pseudo-op, or, even better, for whole-function isel.
2381 EVT SetCCVT = getSetCCResultType(SrcVT);
2382
2383 SDValue SignBitTest = DAG.getSetCC(
2384 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2385
2386 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
2387 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
2388 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
2389 SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
2390 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
2391 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
2392
2393 SDValue Slow, Fast;
2394 if (Node->isStrictFPOpcode()) {
2395 // In strict mode, we must avoid spurious exceptions, and therefore
2396 // must make sure to only emit a single STRICT_SINT_TO_FP.
2397 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
2398 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2399 { Node->getOperand(0), InCvt });
2400 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2401 { Fast.getValue(1), Fast, Fast });
2402 Chain = Slow.getValue(1);
2403 // The STRICT_SINT_TO_FP inherits the exception mode from the
2404 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
2405 // never raise any exception.
2406 SDNodeFlags Flags;
2407 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
2408 Fast->setFlags(Flags);
2409 Flags.setNoFPExcept(true);
2410 Slow->setFlags(Flags);
2411 } else {
2412 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
2413 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
2414 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2415 }
2416
2417 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
2418 }
2419
2420 // Don't expand it if there isn't cheap fadd.
2421 if (!TLI.isOperationLegalOrCustom(
2422 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT))
2423 return SDValue();
2424
2425 // The following optimization is valid only if every value in SrcVT (when
2426 // treated as signed) is representable in DestVT. Check that the mantissa
2427 // size of DestVT is >= than the number of bits in SrcVT -1.
2428 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
2429 SrcVT.getSizeInBits() - 1 &&
2430 "Cannot perform lossless SINT_TO_FP!");
2431
2432 SDValue Tmp1;
2433 if (Node->isStrictFPOpcode()) {
2434 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2435 { Node->getOperand(0), Op0 });
2436 } else
2437 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2438
2439 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2440 DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2441 SDValue Zero = DAG.getIntPtrConstant(0, dl),
2442 Four = DAG.getIntPtrConstant(4, dl);
2443 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2444 SignSet, Four, Zero);
2445
2446 // If the sign bit of the integer is set, the large number will be treated
2447 // as a negative number. To counteract this, the dynamic code adds an
2448 // offset depending on the data type.
2449 uint64_t FF;
2450 switch (SrcVT.getSimpleVT().SimpleTy) {
2451 default:
2452 return SDValue();
2453 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2454 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2455 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2456 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2457 }
2458 if (DAG.getDataLayout().isLittleEndian())
2459 FF <<= 32;
2460 Constant *FudgeFactor = ConstantInt::get(
2461 Type::getInt64Ty(*DAG.getContext()), FF);
2462
2463 SDValue CPIdx =
2464 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2465 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
2466 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2467 Alignment = commonAlignment(Alignment, 4);
2468 SDValue FudgeInReg;
2469 if (DestVT == MVT::f32)
2470 FudgeInReg = DAG.getLoad(
2471 MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2472 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2473 Alignment);
2474 else {
2475 SDValue Load = DAG.getExtLoad(
2476 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2477 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2478 Alignment);
2479 HandleSDNode Handle(Load);
2480 LegalizeOp(Load.getNode());
2481 FudgeInReg = Handle.getValue();
2482 }
2483
2484 if (Node->isStrictFPOpcode()) {
2485 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2486 { Tmp1.getValue(1), Tmp1, FudgeInReg });
2487 Chain = Result.getValue(1);
2488 return Result;
2489 }
2490
2491 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2492 }
2493
2494 /// This function is responsible for legalizing a
2495 /// *INT_TO_FP operation of the specified operand when the target requests that
2496 /// we promote it. At this point, we know that the result and operand types are
2497 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2498 /// operation that takes a larger input.
PromoteLegalINT_TO_FP(SDNode * N,const SDLoc & dl,SmallVectorImpl<SDValue> & Results)2499 void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2500 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2501 bool IsStrict = N->isStrictFPOpcode();
2502 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2503 N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2504 EVT DestVT = N->getValueType(0);
2505 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2506 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2507 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2508
2509 // First step, figure out the appropriate *INT_TO_FP operation to use.
2510 EVT NewInTy = LegalOp.getValueType();
2511
2512 unsigned OpToUse = 0;
2513
2514 // Scan for the appropriate larger type to use.
2515 while (true) {
2516 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2517 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2518
2519 // If the target supports SINT_TO_FP of this type, use it.
2520 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2521 OpToUse = SIntOp;
2522 break;
2523 }
2524 if (IsSigned)
2525 continue;
2526
2527 // If the target supports UINT_TO_FP of this type, use it.
2528 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2529 OpToUse = UIntOp;
2530 break;
2531 }
2532
2533 // Otherwise, try a larger type.
2534 }
2535
2536 // Okay, we found the operation and type to use. Zero extend our input to the
2537 // desired type then run the operation on it.
2538 if (IsStrict) {
2539 SDValue Res =
2540 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2541 {N->getOperand(0),
2542 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2543 dl, NewInTy, LegalOp)});
2544 Results.push_back(Res);
2545 Results.push_back(Res.getValue(1));
2546 return;
2547 }
2548
2549 Results.push_back(
2550 DAG.getNode(OpToUse, dl, DestVT,
2551 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2552 dl, NewInTy, LegalOp)));
2553 }
2554
2555 /// This function is responsible for legalizing a
2556 /// FP_TO_*INT operation of the specified operand when the target requests that
2557 /// we promote it. At this point, we know that the result and operand types are
2558 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2559 /// operation that returns a larger result.
PromoteLegalFP_TO_INT(SDNode * N,const SDLoc & dl,SmallVectorImpl<SDValue> & Results)2560 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2561 SmallVectorImpl<SDValue> &Results) {
2562 bool IsStrict = N->isStrictFPOpcode();
2563 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2564 N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2565 EVT DestVT = N->getValueType(0);
2566 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2567 // First step, figure out the appropriate FP_TO*INT operation to use.
2568 EVT NewOutTy = DestVT;
2569
2570 unsigned OpToUse = 0;
2571
2572 // Scan for the appropriate larger type to use.
2573 while (true) {
2574 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2575 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2576
2577 // A larger signed type can hold all unsigned values of the requested type,
2578 // so using FP_TO_SINT is valid
2579 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2580 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2581 break;
2582
2583 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2584 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2585 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2586 break;
2587
2588 // Otherwise, try a larger type.
2589 }
2590
2591 // Okay, we found the operation and type to use.
2592 SDValue Operation;
2593 if (IsStrict) {
2594 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2595 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2596 } else
2597 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2598
2599 // Truncate the result of the extended FP_TO_*INT operation to the desired
2600 // size.
2601 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2602 Results.push_back(Trunc);
2603 if (IsStrict)
2604 Results.push_back(Operation.getValue(1));
2605 }
2606
2607 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point
2608 /// the result and operand types are legal and there must be a legal
2609 /// FP_TO_*INT_SAT operation for a larger result type.
PromoteLegalFP_TO_INT_SAT(SDNode * Node,const SDLoc & dl)2610 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node,
2611 const SDLoc &dl) {
2612 unsigned Opcode = Node->getOpcode();
2613
2614 // Scan for the appropriate larger type to use.
2615 EVT NewOutTy = Node->getValueType(0);
2616 while (true) {
2617 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1);
2618 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2619
2620 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy))
2621 break;
2622 }
2623
2624 // Saturation width is determined by second operand, so we don't have to
2625 // perform any fixup and can directly truncate the result.
2626 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0),
2627 Node->getOperand(1));
2628 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result);
2629 }
2630
2631 /// Open code the operations for PARITY of the specified operation.
ExpandPARITY(SDValue Op,const SDLoc & dl)2632 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) {
2633 EVT VT = Op.getValueType();
2634 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2635 unsigned Sz = VT.getScalarSizeInBits();
2636
2637 // If CTPOP is legal, use it. Otherwise use shifts and xor.
2638 SDValue Result;
2639 if (TLI.isOperationLegal(ISD::CTPOP, VT)) {
2640 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
2641 } else {
2642 Result = Op;
2643 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) {
2644 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result,
2645 DAG.getConstant(1ULL << (--i), dl, ShVT));
2646 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift);
2647 }
2648 }
2649
2650 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT));
2651 }
2652
ExpandNode(SDNode * Node)2653 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2654 LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2655 SmallVector<SDValue, 8> Results;
2656 SDLoc dl(Node);
2657 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2658 bool NeedInvert;
2659 switch (Node->getOpcode()) {
2660 case ISD::ABS:
2661 if (TLI.expandABS(Node, Tmp1, DAG))
2662 Results.push_back(Tmp1);
2663 break;
2664 case ISD::CTPOP:
2665 if (TLI.expandCTPOP(Node, Tmp1, DAG))
2666 Results.push_back(Tmp1);
2667 break;
2668 case ISD::CTLZ:
2669 case ISD::CTLZ_ZERO_UNDEF:
2670 if (TLI.expandCTLZ(Node, Tmp1, DAG))
2671 Results.push_back(Tmp1);
2672 break;
2673 case ISD::CTTZ:
2674 case ISD::CTTZ_ZERO_UNDEF:
2675 if (TLI.expandCTTZ(Node, Tmp1, DAG))
2676 Results.push_back(Tmp1);
2677 break;
2678 case ISD::BITREVERSE:
2679 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG)))
2680 Results.push_back(Tmp1);
2681 break;
2682 case ISD::BSWAP:
2683 if ((Tmp1 = TLI.expandBSWAP(Node, DAG)))
2684 Results.push_back(Tmp1);
2685 break;
2686 case ISD::PARITY:
2687 Results.push_back(ExpandPARITY(Node->getOperand(0), dl));
2688 break;
2689 case ISD::FRAMEADDR:
2690 case ISD::RETURNADDR:
2691 case ISD::FRAME_TO_ARGS_OFFSET:
2692 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2693 break;
2694 case ISD::EH_DWARF_CFA: {
2695 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2696 TLI.getPointerTy(DAG.getDataLayout()));
2697 SDValue Offset = DAG.getNode(ISD::ADD, dl,
2698 CfaArg.getValueType(),
2699 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2700 CfaArg.getValueType()),
2701 CfaArg);
2702 SDValue FA = DAG.getNode(
2703 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2704 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2705 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2706 FA, Offset));
2707 break;
2708 }
2709 case ISD::FLT_ROUNDS_:
2710 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2711 Results.push_back(Node->getOperand(0));
2712 break;
2713 case ISD::EH_RETURN:
2714 case ISD::EH_LABEL:
2715 case ISD::PREFETCH:
2716 case ISD::VAEND:
2717 case ISD::EH_SJLJ_LONGJMP:
2718 // If the target didn't expand these, there's nothing to do, so just
2719 // preserve the chain and be done.
2720 Results.push_back(Node->getOperand(0));
2721 break;
2722 case ISD::READCYCLECOUNTER:
2723 // If the target didn't expand this, just return 'zero' and preserve the
2724 // chain.
2725 Results.append(Node->getNumValues() - 1,
2726 DAG.getConstant(0, dl, Node->getValueType(0)));
2727 Results.push_back(Node->getOperand(0));
2728 break;
2729 case ISD::EH_SJLJ_SETJMP:
2730 // If the target didn't expand this, just return 'zero' and preserve the
2731 // chain.
2732 Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2733 Results.push_back(Node->getOperand(0));
2734 break;
2735 case ISD::ATOMIC_LOAD: {
2736 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2737 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2738 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2739 SDValue Swap = DAG.getAtomicCmpSwap(
2740 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2741 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2742 cast<AtomicSDNode>(Node)->getMemOperand());
2743 Results.push_back(Swap.getValue(0));
2744 Results.push_back(Swap.getValue(1));
2745 break;
2746 }
2747 case ISD::ATOMIC_STORE: {
2748 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2749 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2750 cast<AtomicSDNode>(Node)->getMemoryVT(),
2751 Node->getOperand(0),
2752 Node->getOperand(1), Node->getOperand(2),
2753 cast<AtomicSDNode>(Node)->getMemOperand());
2754 Results.push_back(Swap.getValue(1));
2755 break;
2756 }
2757 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2758 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2759 // splits out the success value as a comparison. Expanding the resulting
2760 // ATOMIC_CMP_SWAP will produce a libcall.
2761 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2762 SDValue Res = DAG.getAtomicCmpSwap(
2763 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2764 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2765 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2766
2767 SDValue ExtRes = Res;
2768 SDValue LHS = Res;
2769 SDValue RHS = Node->getOperand(1);
2770
2771 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2772 EVT OuterType = Node->getValueType(0);
2773 switch (TLI.getExtendForAtomicOps()) {
2774 case ISD::SIGN_EXTEND:
2775 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2776 DAG.getValueType(AtomicType));
2777 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2778 Node->getOperand(2), DAG.getValueType(AtomicType));
2779 ExtRes = LHS;
2780 break;
2781 case ISD::ZERO_EXTEND:
2782 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2783 DAG.getValueType(AtomicType));
2784 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2785 ExtRes = LHS;
2786 break;
2787 case ISD::ANY_EXTEND:
2788 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2789 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2790 break;
2791 default:
2792 llvm_unreachable("Invalid atomic op extension");
2793 }
2794
2795 SDValue Success =
2796 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2797
2798 Results.push_back(ExtRes.getValue(0));
2799 Results.push_back(Success);
2800 Results.push_back(Res.getValue(1));
2801 break;
2802 }
2803 case ISD::DYNAMIC_STACKALLOC:
2804 ExpandDYNAMIC_STACKALLOC(Node, Results);
2805 break;
2806 case ISD::MERGE_VALUES:
2807 for (unsigned i = 0; i < Node->getNumValues(); i++)
2808 Results.push_back(Node->getOperand(i));
2809 break;
2810 case ISD::UNDEF: {
2811 EVT VT = Node->getValueType(0);
2812 if (VT.isInteger())
2813 Results.push_back(DAG.getConstant(0, dl, VT));
2814 else {
2815 assert(VT.isFloatingPoint() && "Unknown value type!");
2816 Results.push_back(DAG.getConstantFP(0, dl, VT));
2817 }
2818 break;
2819 }
2820 case ISD::STRICT_FP_ROUND:
2821 // When strict mode is enforced we can't do expansion because it
2822 // does not honor the "strict" properties. Only libcall is allowed.
2823 if (TLI.isStrictFPEnabled())
2824 break;
2825 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2826 // since this operation is more efficient than stack operation.
2827 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2828 Node->getValueType(0))
2829 == TargetLowering::Legal)
2830 break;
2831 // We fall back to use stack operation when the FP_ROUND operation
2832 // isn't available.
2833 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0),
2834 Node->getValueType(0), dl,
2835 Node->getOperand(0)))) {
2836 ReplaceNode(Node, Tmp1.getNode());
2837 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2838 return true;
2839 }
2840 break;
2841 case ISD::FP_ROUND:
2842 case ISD::BITCAST:
2843 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2844 Node->getValueType(0), dl)))
2845 Results.push_back(Tmp1);
2846 break;
2847 case ISD::STRICT_FP_EXTEND:
2848 // When strict mode is enforced we can't do expansion because it
2849 // does not honor the "strict" properties. Only libcall is allowed.
2850 if (TLI.isStrictFPEnabled())
2851 break;
2852 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2853 // since this operation is more efficient than stack operation.
2854 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2855 Node->getValueType(0))
2856 == TargetLowering::Legal)
2857 break;
2858 // We fall back to use stack operation when the FP_EXTEND operation
2859 // isn't available.
2860 if ((Tmp1 = EmitStackConvert(
2861 Node->getOperand(1), Node->getOperand(1).getValueType(),
2862 Node->getValueType(0), dl, Node->getOperand(0)))) {
2863 ReplaceNode(Node, Tmp1.getNode());
2864 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2865 return true;
2866 }
2867 break;
2868 case ISD::FP_EXTEND:
2869 if ((Tmp1 = EmitStackConvert(Node->getOperand(0),
2870 Node->getOperand(0).getValueType(),
2871 Node->getValueType(0), dl)))
2872 Results.push_back(Tmp1);
2873 break;
2874 case ISD::SIGN_EXTEND_INREG: {
2875 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2876 EVT VT = Node->getValueType(0);
2877
2878 // An in-register sign-extend of a boolean is a negation:
2879 // 'true' (1) sign-extended is -1.
2880 // 'false' (0) sign-extended is 0.
2881 // However, we must mask the high bits of the source operand because the
2882 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2883
2884 // TODO: Do this for vectors too?
2885 if (ExtraVT.getSizeInBits() == 1) {
2886 SDValue One = DAG.getConstant(1, dl, VT);
2887 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2888 SDValue Zero = DAG.getConstant(0, dl, VT);
2889 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2890 Results.push_back(Neg);
2891 break;
2892 }
2893
2894 // NOTE: we could fall back on load/store here too for targets without
2895 // SRA. However, it is doubtful that any exist.
2896 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2897 unsigned BitsDiff = VT.getScalarSizeInBits() -
2898 ExtraVT.getScalarSizeInBits();
2899 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2900 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2901 Node->getOperand(0), ShiftCst);
2902 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2903 Results.push_back(Tmp1);
2904 break;
2905 }
2906 case ISD::UINT_TO_FP:
2907 case ISD::STRICT_UINT_TO_FP:
2908 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
2909 Results.push_back(Tmp1);
2910 if (Node->isStrictFPOpcode())
2911 Results.push_back(Tmp2);
2912 break;
2913 }
2914 LLVM_FALLTHROUGH;
2915 case ISD::SINT_TO_FP:
2916 case ISD::STRICT_SINT_TO_FP:
2917 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) {
2918 Results.push_back(Tmp1);
2919 if (Node->isStrictFPOpcode())
2920 Results.push_back(Tmp2);
2921 }
2922 break;
2923 case ISD::FP_TO_SINT:
2924 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2925 Results.push_back(Tmp1);
2926 break;
2927 case ISD::STRICT_FP_TO_SINT:
2928 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
2929 ReplaceNode(Node, Tmp1.getNode());
2930 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
2931 return true;
2932 }
2933 break;
2934 case ISD::FP_TO_UINT:
2935 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
2936 Results.push_back(Tmp1);
2937 break;
2938 case ISD::STRICT_FP_TO_UINT:
2939 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
2940 // Relink the chain.
2941 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
2942 // Replace the new UINT result.
2943 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
2944 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
2945 return true;
2946 }
2947 break;
2948 case ISD::FP_TO_SINT_SAT:
2949 case ISD::FP_TO_UINT_SAT:
2950 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG));
2951 break;
2952 case ISD::VAARG:
2953 Results.push_back(DAG.expandVAArg(Node));
2954 Results.push_back(Results[0].getValue(1));
2955 break;
2956 case ISD::VACOPY:
2957 Results.push_back(DAG.expandVACopy(Node));
2958 break;
2959 case ISD::EXTRACT_VECTOR_ELT:
2960 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2961 // This must be an access of the only element. Return it.
2962 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2963 Node->getOperand(0));
2964 else
2965 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2966 Results.push_back(Tmp1);
2967 break;
2968 case ISD::EXTRACT_SUBVECTOR:
2969 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2970 break;
2971 case ISD::INSERT_SUBVECTOR:
2972 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2973 break;
2974 case ISD::CONCAT_VECTORS:
2975 Results.push_back(ExpandVectorBuildThroughStack(Node));
2976 break;
2977 case ISD::SCALAR_TO_VECTOR:
2978 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2979 break;
2980 case ISD::INSERT_VECTOR_ELT:
2981 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2982 Node->getOperand(1),
2983 Node->getOperand(2), dl));
2984 break;
2985 case ISD::VECTOR_SHUFFLE: {
2986 SmallVector<int, 32> NewMask;
2987 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2988
2989 EVT VT = Node->getValueType(0);
2990 EVT EltVT = VT.getVectorElementType();
2991 SDValue Op0 = Node->getOperand(0);
2992 SDValue Op1 = Node->getOperand(1);
2993 if (!TLI.isTypeLegal(EltVT)) {
2994 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2995
2996 // BUILD_VECTOR operands are allowed to be wider than the element type.
2997 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2998 // it.
2999 if (NewEltVT.bitsLT(EltVT)) {
3000 // Convert shuffle node.
3001 // If original node was v4i64 and the new EltVT is i32,
3002 // cast operands to v8i32 and re-build the mask.
3003
3004 // Calculate new VT, the size of the new VT should be equal to original.
3005 EVT NewVT =
3006 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3007 VT.getSizeInBits() / NewEltVT.getSizeInBits());
3008 assert(NewVT.bitsEq(VT));
3009
3010 // cast operands to new VT
3011 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3012 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3013
3014 // Convert the shuffle mask
3015 unsigned int factor =
3016 NewVT.getVectorNumElements()/VT.getVectorNumElements();
3017
3018 // EltVT gets smaller
3019 assert(factor > 0);
3020
3021 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3022 if (Mask[i] < 0) {
3023 for (unsigned fi = 0; fi < factor; ++fi)
3024 NewMask.push_back(Mask[i]);
3025 }
3026 else {
3027 for (unsigned fi = 0; fi < factor; ++fi)
3028 NewMask.push_back(Mask[i]*factor+fi);
3029 }
3030 }
3031 Mask = NewMask;
3032 VT = NewVT;
3033 }
3034 EltVT = NewEltVT;
3035 }
3036 unsigned NumElems = VT.getVectorNumElements();
3037 SmallVector<SDValue, 16> Ops;
3038 for (unsigned i = 0; i != NumElems; ++i) {
3039 if (Mask[i] < 0) {
3040 Ops.push_back(DAG.getUNDEF(EltVT));
3041 continue;
3042 }
3043 unsigned Idx = Mask[i];
3044 if (Idx < NumElems)
3045 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3046 DAG.getVectorIdxConstant(Idx, dl)));
3047 else
3048 Ops.push_back(
3049 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3050 DAG.getVectorIdxConstant(Idx - NumElems, dl)));
3051 }
3052
3053 Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3054 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3055 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3056 Results.push_back(Tmp1);
3057 break;
3058 }
3059 case ISD::VECTOR_SPLICE: {
3060 Results.push_back(TLI.expandVectorSplice(Node, DAG));
3061 break;
3062 }
3063 case ISD::EXTRACT_ELEMENT: {
3064 EVT OpTy = Node->getOperand(0).getValueType();
3065 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3066 // 1 -> Hi
3067 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3068 DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3069 TLI.getShiftAmountTy(
3070 Node->getOperand(0).getValueType(),
3071 DAG.getDataLayout())));
3072 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3073 } else {
3074 // 0 -> Lo
3075 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3076 Node->getOperand(0));
3077 }
3078 Results.push_back(Tmp1);
3079 break;
3080 }
3081 case ISD::STACKSAVE:
3082 // Expand to CopyFromReg if the target set
3083 // StackPointerRegisterToSaveRestore.
3084 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) {
3085 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3086 Node->getValueType(0)));
3087 Results.push_back(Results[0].getValue(1));
3088 } else {
3089 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3090 Results.push_back(Node->getOperand(0));
3091 }
3092 break;
3093 case ISD::STACKRESTORE:
3094 // Expand to CopyToReg if the target set
3095 // StackPointerRegisterToSaveRestore.
3096 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) {
3097 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3098 Node->getOperand(1)));
3099 } else {
3100 Results.push_back(Node->getOperand(0));
3101 }
3102 break;
3103 case ISD::GET_DYNAMIC_AREA_OFFSET:
3104 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3105 Results.push_back(Results[0].getValue(0));
3106 break;
3107 case ISD::FCOPYSIGN:
3108 Results.push_back(ExpandFCOPYSIGN(Node));
3109 break;
3110 case ISD::FNEG:
3111 Results.push_back(ExpandFNEG(Node));
3112 break;
3113 case ISD::FABS:
3114 Results.push_back(ExpandFABS(Node));
3115 break;
3116 case ISD::SMIN:
3117 case ISD::SMAX:
3118 case ISD::UMIN:
3119 case ISD::UMAX: {
3120 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3121 ISD::CondCode Pred;
3122 switch (Node->getOpcode()) {
3123 default: llvm_unreachable("How did we get here?");
3124 case ISD::SMAX: Pred = ISD::SETGT; break;
3125 case ISD::SMIN: Pred = ISD::SETLT; break;
3126 case ISD::UMAX: Pred = ISD::SETUGT; break;
3127 case ISD::UMIN: Pred = ISD::SETULT; break;
3128 }
3129 Tmp1 = Node->getOperand(0);
3130 Tmp2 = Node->getOperand(1);
3131 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3132 Results.push_back(Tmp1);
3133 break;
3134 }
3135 case ISD::FMINNUM:
3136 case ISD::FMAXNUM: {
3137 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3138 Results.push_back(Expanded);
3139 break;
3140 }
3141 case ISD::FSIN:
3142 case ISD::FCOS: {
3143 EVT VT = Node->getValueType(0);
3144 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3145 // fcos which share the same operand and both are used.
3146 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3147 isSinCosLibcallAvailable(Node, TLI))
3148 && useSinCos(Node)) {
3149 SDVTList VTs = DAG.getVTList(VT, VT);
3150 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3151 if (Node->getOpcode() == ISD::FCOS)
3152 Tmp1 = Tmp1.getValue(1);
3153 Results.push_back(Tmp1);
3154 }
3155 break;
3156 }
3157 case ISD::FMAD:
3158 llvm_unreachable("Illegal fmad should never be formed");
3159
3160 case ISD::FP16_TO_FP:
3161 if (Node->getValueType(0) != MVT::f32) {
3162 // We can extend to types bigger than f32 in two steps without changing
3163 // the result. Since "f16 -> f32" is much more commonly available, give
3164 // CodeGen the option of emitting that before resorting to a libcall.
3165 SDValue Res =
3166 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3167 Results.push_back(
3168 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3169 }
3170 break;
3171 case ISD::STRICT_FP16_TO_FP:
3172 if (Node->getValueType(0) != MVT::f32) {
3173 // We can extend to types bigger than f32 in two steps without changing
3174 // the result. Since "f16 -> f32" is much more commonly available, give
3175 // CodeGen the option of emitting that before resorting to a libcall.
3176 SDValue Res =
3177 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
3178 {Node->getOperand(0), Node->getOperand(1)});
3179 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
3180 {Node->getValueType(0), MVT::Other},
3181 {Res.getValue(1), Res});
3182 Results.push_back(Res);
3183 Results.push_back(Res.getValue(1));
3184 }
3185 break;
3186 case ISD::FP_TO_FP16:
3187 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3188 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3189 SDValue Op = Node->getOperand(0);
3190 MVT SVT = Op.getSimpleValueType();
3191 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3192 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3193 // Under fastmath, we can expand this node into a fround followed by
3194 // a float-half conversion.
3195 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3196 DAG.getIntPtrConstant(0, dl));
3197 Results.push_back(
3198 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3199 }
3200 }
3201 break;
3202 case ISD::ConstantFP: {
3203 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3204 // Check to see if this FP immediate is already legal.
3205 // If this is a legal constant, turn it into a TargetConstantFP node.
3206 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3207 DAG.shouldOptForSize()))
3208 Results.push_back(ExpandConstantFP(CFP, true));
3209 break;
3210 }
3211 case ISD::Constant: {
3212 ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3213 Results.push_back(ExpandConstant(CP));
3214 break;
3215 }
3216 case ISD::FSUB: {
3217 EVT VT = Node->getValueType(0);
3218 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3219 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3220 const SDNodeFlags Flags = Node->getFlags();
3221 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3222 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3223 Results.push_back(Tmp1);
3224 }
3225 break;
3226 }
3227 case ISD::SUB: {
3228 EVT VT = Node->getValueType(0);
3229 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3230 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3231 "Don't know how to expand this subtraction!");
3232 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3233 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3234 VT));
3235 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3236 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3237 break;
3238 }
3239 case ISD::UREM:
3240 case ISD::SREM:
3241 if (TLI.expandREM(Node, Tmp1, DAG))
3242 Results.push_back(Tmp1);
3243 break;
3244 case ISD::UDIV:
3245 case ISD::SDIV: {
3246 bool isSigned = Node->getOpcode() == ISD::SDIV;
3247 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3248 EVT VT = Node->getValueType(0);
3249 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3250 SDVTList VTs = DAG.getVTList(VT, VT);
3251 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3252 Node->getOperand(1));
3253 Results.push_back(Tmp1);
3254 }
3255 break;
3256 }
3257 case ISD::MULHU:
3258 case ISD::MULHS: {
3259 unsigned ExpandOpcode =
3260 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3261 EVT VT = Node->getValueType(0);
3262 SDVTList VTs = DAG.getVTList(VT, VT);
3263
3264 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3265 Node->getOperand(1));
3266 Results.push_back(Tmp1.getValue(1));
3267 break;
3268 }
3269 case ISD::UMUL_LOHI:
3270 case ISD::SMUL_LOHI: {
3271 SDValue LHS = Node->getOperand(0);
3272 SDValue RHS = Node->getOperand(1);
3273 MVT VT = LHS.getSimpleValueType();
3274 unsigned MULHOpcode =
3275 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3276
3277 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3278 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3279 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3280 break;
3281 }
3282
3283 SmallVector<SDValue, 4> Halves;
3284 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3285 assert(TLI.isTypeLegal(HalfType));
3286 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves,
3287 HalfType, DAG,
3288 TargetLowering::MulExpansionKind::Always)) {
3289 for (unsigned i = 0; i < 2; ++i) {
3290 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3291 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3292 SDValue Shift = DAG.getConstant(
3293 HalfType.getScalarSizeInBits(), dl,
3294 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3295 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3296 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3297 }
3298 break;
3299 }
3300 break;
3301 }
3302 case ISD::MUL: {
3303 EVT VT = Node->getValueType(0);
3304 SDVTList VTs = DAG.getVTList(VT, VT);
3305 // See if multiply or divide can be lowered using two-result operations.
3306 // We just need the low half of the multiply; try both the signed
3307 // and unsigned forms. If the target supports both SMUL_LOHI and
3308 // UMUL_LOHI, form a preference by checking which forms of plain
3309 // MULH it supports.
3310 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3311 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3312 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3313 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3314 unsigned OpToUse = 0;
3315 if (HasSMUL_LOHI && !HasMULHS) {
3316 OpToUse = ISD::SMUL_LOHI;
3317 } else if (HasUMUL_LOHI && !HasMULHU) {
3318 OpToUse = ISD::UMUL_LOHI;
3319 } else if (HasSMUL_LOHI) {
3320 OpToUse = ISD::SMUL_LOHI;
3321 } else if (HasUMUL_LOHI) {
3322 OpToUse = ISD::UMUL_LOHI;
3323 }
3324 if (OpToUse) {
3325 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3326 Node->getOperand(1)));
3327 break;
3328 }
3329
3330 SDValue Lo, Hi;
3331 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3332 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3333 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3334 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3335 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3336 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3337 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3338 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3339 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3340 SDValue Shift =
3341 DAG.getConstant(HalfType.getSizeInBits(), dl,
3342 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3343 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3344 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3345 }
3346 break;
3347 }
3348 case ISD::FSHL:
3349 case ISD::FSHR:
3350 if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3351 Results.push_back(Tmp1);
3352 break;
3353 case ISD::ROTL:
3354 case ISD::ROTR:
3355 if (TLI.expandROT(Node, true /*AllowVectorOps*/, Tmp1, DAG))
3356 Results.push_back(Tmp1);
3357 break;
3358 case ISD::SADDSAT:
3359 case ISD::UADDSAT:
3360 case ISD::SSUBSAT:
3361 case ISD::USUBSAT:
3362 Results.push_back(TLI.expandAddSubSat(Node, DAG));
3363 break;
3364 case ISD::SSHLSAT:
3365 case ISD::USHLSAT:
3366 Results.push_back(TLI.expandShlSat(Node, DAG));
3367 break;
3368 case ISD::SMULFIX:
3369 case ISD::SMULFIXSAT:
3370 case ISD::UMULFIX:
3371 case ISD::UMULFIXSAT:
3372 Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3373 break;
3374 case ISD::SDIVFIX:
3375 case ISD::SDIVFIXSAT:
3376 case ISD::UDIVFIX:
3377 case ISD::UDIVFIXSAT:
3378 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3379 Node->getOperand(0),
3380 Node->getOperand(1),
3381 Node->getConstantOperandVal(2),
3382 DAG)) {
3383 Results.push_back(V);
3384 break;
3385 }
3386 // FIXME: We might want to retry here with a wider type if we fail, if that
3387 // type is legal.
3388 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3389 // <= 128 (which is the case for all of the default Embedded-C types),
3390 // we will only get here with types and scales that we could always expand
3391 // if we were allowed to generate libcalls to division functions of illegal
3392 // type. But we cannot do that.
3393 llvm_unreachable("Cannot expand DIVFIX!");
3394 case ISD::ADDCARRY:
3395 case ISD::SUBCARRY: {
3396 SDValue LHS = Node->getOperand(0);
3397 SDValue RHS = Node->getOperand(1);
3398 SDValue Carry = Node->getOperand(2);
3399
3400 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3401
3402 // Initial add of the 2 operands.
3403 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3404 EVT VT = LHS.getValueType();
3405 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3406
3407 // Initial check for overflow.
3408 EVT CarryType = Node->getValueType(1);
3409 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3410 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3411 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3412
3413 // Add of the sum and the carry.
3414 SDValue One = DAG.getConstant(1, dl, VT);
3415 SDValue CarryExt =
3416 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
3417 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3418
3419 // Second check for overflow. If we are adding, we can only overflow if the
3420 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3421 // If we are subtracting, we can only overflow if the initial sum is 0 and
3422 // the carry is set, resulting in a new sum of all 1s.
3423 SDValue Zero = DAG.getConstant(0, dl, VT);
3424 SDValue Overflow2 =
3425 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3426 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3427 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3428 DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3429
3430 SDValue ResultCarry =
3431 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3432
3433 Results.push_back(Sum2);
3434 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3435 break;
3436 }
3437 case ISD::SADDO:
3438 case ISD::SSUBO: {
3439 SDValue Result, Overflow;
3440 TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3441 Results.push_back(Result);
3442 Results.push_back(Overflow);
3443 break;
3444 }
3445 case ISD::UADDO:
3446 case ISD::USUBO: {
3447 SDValue Result, Overflow;
3448 TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3449 Results.push_back(Result);
3450 Results.push_back(Overflow);
3451 break;
3452 }
3453 case ISD::UMULO:
3454 case ISD::SMULO: {
3455 SDValue Result, Overflow;
3456 if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3457 Results.push_back(Result);
3458 Results.push_back(Overflow);
3459 }
3460 break;
3461 }
3462 case ISD::BUILD_PAIR: {
3463 EVT PairTy = Node->getValueType(0);
3464 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3465 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3466 Tmp2 = DAG.getNode(
3467 ISD::SHL, dl, PairTy, Tmp2,
3468 DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3469 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3470 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3471 break;
3472 }
3473 case ISD::SELECT:
3474 Tmp1 = Node->getOperand(0);
3475 Tmp2 = Node->getOperand(1);
3476 Tmp3 = Node->getOperand(2);
3477 if (Tmp1.getOpcode() == ISD::SETCC) {
3478 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3479 Tmp2, Tmp3,
3480 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3481 } else {
3482 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3483 DAG.getConstant(0, dl, Tmp1.getValueType()),
3484 Tmp2, Tmp3, ISD::SETNE);
3485 }
3486 Tmp1->setFlags(Node->getFlags());
3487 Results.push_back(Tmp1);
3488 break;
3489 case ISD::BR_JT: {
3490 SDValue Chain = Node->getOperand(0);
3491 SDValue Table = Node->getOperand(1);
3492 SDValue Index = Node->getOperand(2);
3493
3494 const DataLayout &TD = DAG.getDataLayout();
3495 EVT PTy = TLI.getPointerTy(TD);
3496
3497 unsigned EntrySize =
3498 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3499
3500 // For power-of-two jumptable entry sizes convert multiplication to a shift.
3501 // This transformation needs to be done here since otherwise the MIPS
3502 // backend will end up emitting a three instruction multiply sequence
3503 // instead of a single shift and MSP430 will call a runtime function.
3504 if (llvm::isPowerOf2_32(EntrySize))
3505 Index = DAG.getNode(
3506 ISD::SHL, dl, Index.getValueType(), Index,
3507 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3508 else
3509 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3510 DAG.getConstant(EntrySize, dl, Index.getValueType()));
3511 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3512 Index, Table);
3513
3514 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3515 SDValue LD = DAG.getExtLoad(
3516 ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3517 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3518 Addr = LD;
3519 if (TLI.isJumpTableRelative()) {
3520 // For PIC, the sequence is:
3521 // BRIND(load(Jumptable + index) + RelocBase)
3522 // RelocBase can be JumpTable, GOT or some sort of global base.
3523 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3524 TLI.getPICJumpTableRelocBase(Table, DAG));
3525 }
3526
3527 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3528 Results.push_back(Tmp1);
3529 break;
3530 }
3531 case ISD::BRCOND:
3532 // Expand brcond's setcc into its constituent parts and create a BR_CC
3533 // Node.
3534 Tmp1 = Node->getOperand(0);
3535 Tmp2 = Node->getOperand(1);
3536 if (Tmp2.getOpcode() == ISD::SETCC) {
3537 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3538 Tmp1, Tmp2.getOperand(2),
3539 Tmp2.getOperand(0), Tmp2.getOperand(1),
3540 Node->getOperand(2));
3541 } else {
3542 // We test only the i1 bit. Skip the AND if UNDEF or another AND.
3543 if (Tmp2.isUndef() ||
3544 (Tmp2.getOpcode() == ISD::AND &&
3545 isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3546 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3547 Tmp3 = Tmp2;
3548 else
3549 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3550 DAG.getConstant(1, dl, Tmp2.getValueType()));
3551 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3552 DAG.getCondCode(ISD::SETNE), Tmp3,
3553 DAG.getConstant(0, dl, Tmp3.getValueType()),
3554 Node->getOperand(2));
3555 }
3556 Results.push_back(Tmp1);
3557 break;
3558 case ISD::SETCC:
3559 case ISD::STRICT_FSETCC:
3560 case ISD::STRICT_FSETCCS: {
3561 bool IsStrict = Node->getOpcode() != ISD::SETCC;
3562 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3563 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3564 unsigned Offset = IsStrict ? 1 : 0;
3565 Tmp1 = Node->getOperand(0 + Offset);
3566 Tmp2 = Node->getOperand(1 + Offset);
3567 Tmp3 = Node->getOperand(2 + Offset);
3568 bool Legalized =
3569 TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3570 NeedInvert, dl, Chain, IsSignaling);
3571
3572 if (Legalized) {
3573 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3574 // condition code, create a new SETCC node.
3575 if (Tmp3.getNode())
3576 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3577 Tmp1, Tmp2, Tmp3, Node->getFlags());
3578
3579 // If we expanded the SETCC by inverting the condition code, then wrap
3580 // the existing SETCC in a NOT to restore the intended condition.
3581 if (NeedInvert)
3582 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3583
3584 Results.push_back(Tmp1);
3585 if (IsStrict)
3586 Results.push_back(Chain);
3587
3588 break;
3589 }
3590
3591 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3592 // understand if this code is useful for strict nodes.
3593 assert(!IsStrict && "Don't know how to expand for strict nodes.");
3594
3595 // Otherwise, SETCC for the given comparison type must be completely
3596 // illegal; expand it into a SELECT_CC.
3597 EVT VT = Node->getValueType(0);
3598 int TrueValue;
3599 switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3600 case TargetLowering::ZeroOrOneBooleanContent:
3601 case TargetLowering::UndefinedBooleanContent:
3602 TrueValue = 1;
3603 break;
3604 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3605 TrueValue = -1;
3606 break;
3607 }
3608 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3609 DAG.getConstant(TrueValue, dl, VT),
3610 DAG.getConstant(0, dl, VT),
3611 Tmp3);
3612 Tmp1->setFlags(Node->getFlags());
3613 Results.push_back(Tmp1);
3614 break;
3615 }
3616 case ISD::SELECT_CC: {
3617 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3618 Tmp1 = Node->getOperand(0); // LHS
3619 Tmp2 = Node->getOperand(1); // RHS
3620 Tmp3 = Node->getOperand(2); // True
3621 Tmp4 = Node->getOperand(3); // False
3622 EVT VT = Node->getValueType(0);
3623 SDValue Chain;
3624 SDValue CC = Node->getOperand(4);
3625 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3626
3627 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3628 // If the condition code is legal, then we need to expand this
3629 // node using SETCC and SELECT.
3630 EVT CmpVT = Tmp1.getValueType();
3631 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3632 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3633 "expanded.");
3634 EVT CCVT = getSetCCResultType(CmpVT);
3635 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3636 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3637 break;
3638 }
3639
3640 // SELECT_CC is legal, so the condition code must not be.
3641 bool Legalized = false;
3642 // Try to legalize by inverting the condition. This is for targets that
3643 // might support an ordered version of a condition, but not the unordered
3644 // version (or vice versa).
3645 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3646 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3647 // Use the new condition code and swap true and false
3648 Legalized = true;
3649 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3650 Tmp1->setFlags(Node->getFlags());
3651 } else {
3652 // If The inverse is not legal, then try to swap the arguments using
3653 // the inverse condition code.
3654 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3655 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3656 // The swapped inverse condition is legal, so swap true and false,
3657 // lhs and rhs.
3658 Legalized = true;
3659 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3660 Tmp1->setFlags(Node->getFlags());
3661 }
3662 }
3663
3664 if (!Legalized) {
3665 Legalized = TLI.LegalizeSetCCCondCode(
3666 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC,
3667 NeedInvert, dl, Chain);
3668
3669 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3670
3671 // If we expanded the SETCC by inverting the condition code, then swap
3672 // the True/False operands to match.
3673 if (NeedInvert)
3674 std::swap(Tmp3, Tmp4);
3675
3676 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3677 // condition code, create a new SELECT_CC node.
3678 if (CC.getNode()) {
3679 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3680 Tmp1, Tmp2, Tmp3, Tmp4, CC);
3681 } else {
3682 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3683 CC = DAG.getCondCode(ISD::SETNE);
3684 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3685 Tmp2, Tmp3, Tmp4, CC);
3686 }
3687 Tmp1->setFlags(Node->getFlags());
3688 }
3689 Results.push_back(Tmp1);
3690 break;
3691 }
3692 case ISD::BR_CC: {
3693 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3694 SDValue Chain;
3695 Tmp1 = Node->getOperand(0); // Chain
3696 Tmp2 = Node->getOperand(2); // LHS
3697 Tmp3 = Node->getOperand(3); // RHS
3698 Tmp4 = Node->getOperand(1); // CC
3699
3700 bool Legalized =
3701 TLI.LegalizeSetCCCondCode(DAG, getSetCCResultType(Tmp2.getValueType()),
3702 Tmp2, Tmp3, Tmp4, NeedInvert, dl, Chain);
3703 (void)Legalized;
3704 assert(Legalized && "Can't legalize BR_CC with legal condition!");
3705
3706 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3707 // node.
3708 if (Tmp4.getNode()) {
3709 assert(!NeedInvert && "Don't know how to invert BR_CC!");
3710
3711 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3712 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3713 } else {
3714 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3715 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE);
3716 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3717 Tmp2, Tmp3, Node->getOperand(4));
3718 }
3719 Results.push_back(Tmp1);
3720 break;
3721 }
3722 case ISD::BUILD_VECTOR:
3723 Results.push_back(ExpandBUILD_VECTOR(Node));
3724 break;
3725 case ISD::SPLAT_VECTOR:
3726 Results.push_back(ExpandSPLAT_VECTOR(Node));
3727 break;
3728 case ISD::SRA:
3729 case ISD::SRL:
3730 case ISD::SHL: {
3731 // Scalarize vector SRA/SRL/SHL.
3732 EVT VT = Node->getValueType(0);
3733 assert(VT.isVector() && "Unable to legalize non-vector shift");
3734 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3735 unsigned NumElem = VT.getVectorNumElements();
3736
3737 SmallVector<SDValue, 8> Scalars;
3738 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3739 SDValue Ex =
3740 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3741 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
3742 SDValue Sh =
3743 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3744 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
3745 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3746 VT.getScalarType(), Ex, Sh));
3747 }
3748
3749 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3750 Results.push_back(Result);
3751 break;
3752 }
3753 case ISD::VECREDUCE_FADD:
3754 case ISD::VECREDUCE_FMUL:
3755 case ISD::VECREDUCE_ADD:
3756 case ISD::VECREDUCE_MUL:
3757 case ISD::VECREDUCE_AND:
3758 case ISD::VECREDUCE_OR:
3759 case ISD::VECREDUCE_XOR:
3760 case ISD::VECREDUCE_SMAX:
3761 case ISD::VECREDUCE_SMIN:
3762 case ISD::VECREDUCE_UMAX:
3763 case ISD::VECREDUCE_UMIN:
3764 case ISD::VECREDUCE_FMAX:
3765 case ISD::VECREDUCE_FMIN:
3766 Results.push_back(TLI.expandVecReduce(Node, DAG));
3767 break;
3768 case ISD::GLOBAL_OFFSET_TABLE:
3769 case ISD::GlobalAddress:
3770 case ISD::GlobalTLSAddress:
3771 case ISD::ExternalSymbol:
3772 case ISD::ConstantPool:
3773 case ISD::JumpTable:
3774 case ISD::INTRINSIC_W_CHAIN:
3775 case ISD::INTRINSIC_WO_CHAIN:
3776 case ISD::INTRINSIC_VOID:
3777 // FIXME: Custom lowering for these operations shouldn't return null!
3778 // Return true so that we don't call ConvertNodeToLibcall which also won't
3779 // do anything.
3780 return true;
3781 }
3782
3783 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3784 // FIXME: We were asked to expand a strict floating-point operation,
3785 // but there is currently no expansion implemented that would preserve
3786 // the "strict" properties. For now, we just fall back to the non-strict
3787 // version if that is legal on the target. The actual mutation of the
3788 // operation will happen in SelectionDAGISel::DoInstructionSelection.
3789 switch (Node->getOpcode()) {
3790 default:
3791 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3792 Node->getValueType(0))
3793 == TargetLowering::Legal)
3794 return true;
3795 break;
3796 case ISD::STRICT_FSUB: {
3797 if (TLI.getStrictFPOperationAction(
3798 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal)
3799 return true;
3800 if (TLI.getStrictFPOperationAction(
3801 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal)
3802 break;
3803
3804 EVT VT = Node->getValueType(0);
3805 const SDNodeFlags Flags = Node->getFlags();
3806 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags);
3807 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(),
3808 {Node->getOperand(0), Node->getOperand(1), Neg},
3809 Flags);
3810
3811 Results.push_back(Fadd);
3812 Results.push_back(Fadd.getValue(1));
3813 break;
3814 }
3815 case ISD::STRICT_SINT_TO_FP:
3816 case ISD::STRICT_UINT_TO_FP:
3817 case ISD::STRICT_LRINT:
3818 case ISD::STRICT_LLRINT:
3819 case ISD::STRICT_LROUND:
3820 case ISD::STRICT_LLROUND:
3821 // These are registered by the operand type instead of the value
3822 // type. Reflect that here.
3823 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3824 Node->getOperand(1).getValueType())
3825 == TargetLowering::Legal)
3826 return true;
3827 break;
3828 }
3829 }
3830
3831 // Replace the original node with the legalized result.
3832 if (Results.empty()) {
3833 LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3834 return false;
3835 }
3836
3837 LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3838 ReplaceNode(Node, Results.data());
3839 return true;
3840 }
3841
ConvertNodeToLibcall(SDNode * Node)3842 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3843 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3844 SmallVector<SDValue, 8> Results;
3845 SDLoc dl(Node);
3846 // FIXME: Check flags on the node to see if we can use a finite call.
3847 unsigned Opc = Node->getOpcode();
3848 switch (Opc) {
3849 case ISD::ATOMIC_FENCE: {
3850 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3851 // FIXME: handle "fence singlethread" more efficiently.
3852 TargetLowering::ArgListTy Args;
3853
3854 TargetLowering::CallLoweringInfo CLI(DAG);
3855 CLI.setDebugLoc(dl)
3856 .setChain(Node->getOperand(0))
3857 .setLibCallee(
3858 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3859 DAG.getExternalSymbol("__sync_synchronize",
3860 TLI.getPointerTy(DAG.getDataLayout())),
3861 std::move(Args));
3862
3863 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3864
3865 Results.push_back(CallResult.second);
3866 break;
3867 }
3868 // By default, atomic intrinsics are marked Legal and lowered. Targets
3869 // which don't support them directly, however, may want libcalls, in which
3870 // case they mark them Expand, and we get here.
3871 case ISD::ATOMIC_SWAP:
3872 case ISD::ATOMIC_LOAD_ADD:
3873 case ISD::ATOMIC_LOAD_SUB:
3874 case ISD::ATOMIC_LOAD_AND:
3875 case ISD::ATOMIC_LOAD_CLR:
3876 case ISD::ATOMIC_LOAD_OR:
3877 case ISD::ATOMIC_LOAD_XOR:
3878 case ISD::ATOMIC_LOAD_NAND:
3879 case ISD::ATOMIC_LOAD_MIN:
3880 case ISD::ATOMIC_LOAD_MAX:
3881 case ISD::ATOMIC_LOAD_UMIN:
3882 case ISD::ATOMIC_LOAD_UMAX:
3883 case ISD::ATOMIC_CMP_SWAP: {
3884 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3885 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering();
3886 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT);
3887 EVT RetVT = Node->getValueType(0);
3888 TargetLowering::MakeLibCallOptions CallOptions;
3889 SmallVector<SDValue, 4> Ops;
3890 if (TLI.getLibcallName(LC)) {
3891 // If outline atomic available, prepare its arguments and expand.
3892 Ops.append(Node->op_begin() + 2, Node->op_end());
3893 Ops.push_back(Node->getOperand(1));
3894
3895 } else {
3896 LC = RTLIB::getSYNC(Opc, VT);
3897 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
3898 "Unexpected atomic op or value type!");
3899 // Arguments for expansion to sync libcall
3900 Ops.append(Node->op_begin() + 1, Node->op_end());
3901 }
3902 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3903 Ops, CallOptions,
3904 SDLoc(Node),
3905 Node->getOperand(0));
3906 Results.push_back(Tmp.first);
3907 Results.push_back(Tmp.second);
3908 break;
3909 }
3910 case ISD::TRAP: {
3911 // If this operation is not supported, lower it to 'abort()' call
3912 TargetLowering::ArgListTy Args;
3913 TargetLowering::CallLoweringInfo CLI(DAG);
3914 CLI.setDebugLoc(dl)
3915 .setChain(Node->getOperand(0))
3916 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3917 DAG.getExternalSymbol(
3918 "abort", TLI.getPointerTy(DAG.getDataLayout())),
3919 std::move(Args));
3920 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3921
3922 Results.push_back(CallResult.second);
3923 break;
3924 }
3925 case ISD::FMINNUM:
3926 case ISD::STRICT_FMINNUM:
3927 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3928 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3929 RTLIB::FMIN_PPCF128, Results);
3930 break;
3931 case ISD::FMAXNUM:
3932 case ISD::STRICT_FMAXNUM:
3933 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3934 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3935 RTLIB::FMAX_PPCF128, Results);
3936 break;
3937 case ISD::FSQRT:
3938 case ISD::STRICT_FSQRT:
3939 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3940 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3941 RTLIB::SQRT_PPCF128, Results);
3942 break;
3943 case ISD::FCBRT:
3944 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
3945 RTLIB::CBRT_F80, RTLIB::CBRT_F128,
3946 RTLIB::CBRT_PPCF128, Results);
3947 break;
3948 case ISD::FSIN:
3949 case ISD::STRICT_FSIN:
3950 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3951 RTLIB::SIN_F80, RTLIB::SIN_F128,
3952 RTLIB::SIN_PPCF128, Results);
3953 break;
3954 case ISD::FCOS:
3955 case ISD::STRICT_FCOS:
3956 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3957 RTLIB::COS_F80, RTLIB::COS_F128,
3958 RTLIB::COS_PPCF128, Results);
3959 break;
3960 case ISD::FSINCOS:
3961 // Expand into sincos libcall.
3962 ExpandSinCosLibCall(Node, Results);
3963 break;
3964 case ISD::FLOG:
3965 case ISD::STRICT_FLOG:
3966 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
3967 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
3968 break;
3969 case ISD::FLOG2:
3970 case ISD::STRICT_FLOG2:
3971 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
3972 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
3973 break;
3974 case ISD::FLOG10:
3975 case ISD::STRICT_FLOG10:
3976 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
3977 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
3978 break;
3979 case ISD::FEXP:
3980 case ISD::STRICT_FEXP:
3981 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
3982 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
3983 break;
3984 case ISD::FEXP2:
3985 case ISD::STRICT_FEXP2:
3986 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
3987 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
3988 break;
3989 case ISD::FTRUNC:
3990 case ISD::STRICT_FTRUNC:
3991 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3992 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3993 RTLIB::TRUNC_PPCF128, Results);
3994 break;
3995 case ISD::FFLOOR:
3996 case ISD::STRICT_FFLOOR:
3997 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3998 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3999 RTLIB::FLOOR_PPCF128, Results);
4000 break;
4001 case ISD::FCEIL:
4002 case ISD::STRICT_FCEIL:
4003 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4004 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4005 RTLIB::CEIL_PPCF128, Results);
4006 break;
4007 case ISD::FRINT:
4008 case ISD::STRICT_FRINT:
4009 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4010 RTLIB::RINT_F80, RTLIB::RINT_F128,
4011 RTLIB::RINT_PPCF128, Results);
4012 break;
4013 case ISD::FNEARBYINT:
4014 case ISD::STRICT_FNEARBYINT:
4015 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4016 RTLIB::NEARBYINT_F64,
4017 RTLIB::NEARBYINT_F80,
4018 RTLIB::NEARBYINT_F128,
4019 RTLIB::NEARBYINT_PPCF128, Results);
4020 break;
4021 case ISD::FROUND:
4022 case ISD::STRICT_FROUND:
4023 ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4024 RTLIB::ROUND_F64,
4025 RTLIB::ROUND_F80,
4026 RTLIB::ROUND_F128,
4027 RTLIB::ROUND_PPCF128, Results);
4028 break;
4029 case ISD::FROUNDEVEN:
4030 case ISD::STRICT_FROUNDEVEN:
4031 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
4032 RTLIB::ROUNDEVEN_F64,
4033 RTLIB::ROUNDEVEN_F80,
4034 RTLIB::ROUNDEVEN_F128,
4035 RTLIB::ROUNDEVEN_PPCF128, Results);
4036 break;
4037 case ISD::FPOWI:
4038 case ISD::STRICT_FPOWI: {
4039 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0));
4040 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi.");
4041 if (!TLI.getLibcallName(LC)) {
4042 // Some targets don't have a powi libcall; use pow instead.
4043 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4044 Node->getValueType(0),
4045 Node->getOperand(1));
4046 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4047 Node->getValueType(0), Node->getOperand(0),
4048 Exponent));
4049 break;
4050 }
4051 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0;
4052 bool ExponentHasSizeOfInt =
4053 DAG.getLibInfo().getIntSize() ==
4054 Node->getOperand(1 + Offset).getValueType().getSizeInBits();
4055 if (!ExponentHasSizeOfInt) {
4056 // If the exponent does not match with sizeof(int) a libcall to
4057 // RTLIB::POWI would use the wrong type for the argument.
4058 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)");
4059 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
4060 break;
4061 }
4062 ExpandFPLibCall(Node, LC, Results);
4063 break;
4064 }
4065 case ISD::FPOW:
4066 case ISD::STRICT_FPOW:
4067 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4068 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4069 break;
4070 case ISD::LROUND:
4071 case ISD::STRICT_LROUND:
4072 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4073 RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4074 RTLIB::LROUND_F128,
4075 RTLIB::LROUND_PPCF128, Results);
4076 break;
4077 case ISD::LLROUND:
4078 case ISD::STRICT_LLROUND:
4079 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4080 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4081 RTLIB::LLROUND_F128,
4082 RTLIB::LLROUND_PPCF128, Results);
4083 break;
4084 case ISD::LRINT:
4085 case ISD::STRICT_LRINT:
4086 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4087 RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4088 RTLIB::LRINT_F128,
4089 RTLIB::LRINT_PPCF128, Results);
4090 break;
4091 case ISD::LLRINT:
4092 case ISD::STRICT_LLRINT:
4093 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4094 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4095 RTLIB::LLRINT_F128,
4096 RTLIB::LLRINT_PPCF128, Results);
4097 break;
4098 case ISD::FDIV:
4099 case ISD::STRICT_FDIV:
4100 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4101 RTLIB::DIV_F80, RTLIB::DIV_F128,
4102 RTLIB::DIV_PPCF128, Results);
4103 break;
4104 case ISD::FREM:
4105 case ISD::STRICT_FREM:
4106 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4107 RTLIB::REM_F80, RTLIB::REM_F128,
4108 RTLIB::REM_PPCF128, Results);
4109 break;
4110 case ISD::FMA:
4111 case ISD::STRICT_FMA:
4112 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4113 RTLIB::FMA_F80, RTLIB::FMA_F128,
4114 RTLIB::FMA_PPCF128, Results);
4115 break;
4116 case ISD::FADD:
4117 case ISD::STRICT_FADD:
4118 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4119 RTLIB::ADD_F80, RTLIB::ADD_F128,
4120 RTLIB::ADD_PPCF128, Results);
4121 break;
4122 case ISD::FMUL:
4123 case ISD::STRICT_FMUL:
4124 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4125 RTLIB::MUL_F80, RTLIB::MUL_F128,
4126 RTLIB::MUL_PPCF128, Results);
4127 break;
4128 case ISD::FP16_TO_FP:
4129 if (Node->getValueType(0) == MVT::f32) {
4130 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4131 }
4132 break;
4133 case ISD::STRICT_FP16_TO_FP: {
4134 if (Node->getValueType(0) == MVT::f32) {
4135 TargetLowering::MakeLibCallOptions CallOptions;
4136 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
4137 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
4138 SDLoc(Node), Node->getOperand(0));
4139 Results.push_back(Tmp.first);
4140 Results.push_back(Tmp.second);
4141 }
4142 break;
4143 }
4144 case ISD::FP_TO_FP16: {
4145 RTLIB::Libcall LC =
4146 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4147 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4148 Results.push_back(ExpandLibCall(LC, Node, false));
4149 break;
4150 }
4151 case ISD::STRICT_SINT_TO_FP:
4152 case ISD::STRICT_UINT_TO_FP:
4153 case ISD::SINT_TO_FP:
4154 case ISD::UINT_TO_FP: {
4155 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP
4156 bool IsStrict = Node->isStrictFPOpcode();
4157 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP ||
4158 Node->getOpcode() == ISD::STRICT_SINT_TO_FP;
4159 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType();
4160 EVT RVT = Node->getValueType(0);
4161 EVT NVT = EVT();
4162 SDLoc dl(Node);
4163
4164 // Even if the input is legal, no libcall may exactly match, eg. we don't
4165 // have i1 -> fp conversions. So, it needs to be promoted to a larger type,
4166 // eg: i13 -> fp. Then, look for an appropriate libcall.
4167 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
4168 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE;
4169 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
4170 ++t) {
4171 NVT = (MVT::SimpleValueType)t;
4172 // The source needs to big enough to hold the operand.
4173 if (NVT.bitsGE(SVT))
4174 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT)
4175 : RTLIB::getUINTTOFP(NVT, RVT);
4176 }
4177 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4178
4179 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4180 // Sign/zero extend the argument if the libcall takes a larger type.
4181 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl,
4182 NVT, Node->getOperand(IsStrict ? 1 : 0));
4183 TargetLowering::MakeLibCallOptions CallOptions;
4184 CallOptions.setSExt(Signed);
4185 std::pair<SDValue, SDValue> Tmp =
4186 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain);
4187 Results.push_back(Tmp.first);
4188 if (IsStrict)
4189 Results.push_back(Tmp.second);
4190 break;
4191 }
4192 case ISD::FP_TO_SINT:
4193 case ISD::FP_TO_UINT:
4194 case ISD::STRICT_FP_TO_SINT:
4195 case ISD::STRICT_FP_TO_UINT: {
4196 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT.
4197 bool IsStrict = Node->isStrictFPOpcode();
4198 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT ||
4199 Node->getOpcode() == ISD::STRICT_FP_TO_SINT;
4200
4201 SDValue Op = Node->getOperand(IsStrict ? 1 : 0);
4202 EVT SVT = Op.getValueType();
4203 EVT RVT = Node->getValueType(0);
4204 EVT NVT = EVT();
4205 SDLoc dl(Node);
4206
4207 // Even if the result is legal, no libcall may exactly match, eg. we don't
4208 // have fp -> i1 conversions. So, it needs to be promoted to a larger type,
4209 // eg: fp -> i32. Then, look for an appropriate libcall.
4210 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
4211 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
4212 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
4213 ++IntVT) {
4214 NVT = (MVT::SimpleValueType)IntVT;
4215 // The type needs to big enough to hold the result.
4216 if (NVT.bitsGE(RVT))
4217 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT)
4218 : RTLIB::getFPTOUINT(SVT, NVT);
4219 }
4220 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4221
4222 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4223 TargetLowering::MakeLibCallOptions CallOptions;
4224 std::pair<SDValue, SDValue> Tmp =
4225 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain);
4226
4227 // Truncate the result if the libcall returns a larger type.
4228 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first));
4229 if (IsStrict)
4230 Results.push_back(Tmp.second);
4231 break;
4232 }
4233
4234 case ISD::FP_ROUND:
4235 case ISD::STRICT_FP_ROUND: {
4236 // X = FP_ROUND(Y, TRUNC)
4237 // TRUNC is a flag, which is always an integer that is zero or one.
4238 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND
4239 // is known to not change the value of Y.
4240 // We can only expand it into libcall if the TRUNC is 0.
4241 bool IsStrict = Node->isStrictFPOpcode();
4242 SDValue Op = Node->getOperand(IsStrict ? 1 : 0);
4243 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4244 EVT VT = Node->getValueType(0);
4245 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))
4246 ->isNullValue() &&
4247 "Unable to expand as libcall if it is not normal rounding");
4248
4249 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT);
4250 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4251
4252 TargetLowering::MakeLibCallOptions CallOptions;
4253 std::pair<SDValue, SDValue> Tmp =
4254 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain);
4255 Results.push_back(Tmp.first);
4256 if (IsStrict)
4257 Results.push_back(Tmp.second);
4258 break;
4259 }
4260 case ISD::FP_EXTEND: {
4261 Results.push_back(
4262 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(),
4263 Node->getValueType(0)),
4264 Node, false));
4265 break;
4266 }
4267 case ISD::STRICT_FP_EXTEND:
4268 case ISD::STRICT_FP_TO_FP16: {
4269 RTLIB::Libcall LC =
4270 Node->getOpcode() == ISD::STRICT_FP_TO_FP16
4271 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16)
4272 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(),
4273 Node->getValueType(0));
4274 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4275
4276 TargetLowering::MakeLibCallOptions CallOptions;
4277 std::pair<SDValue, SDValue> Tmp =
4278 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
4279 CallOptions, SDLoc(Node), Node->getOperand(0));
4280 Results.push_back(Tmp.first);
4281 Results.push_back(Tmp.second);
4282 break;
4283 }
4284 case ISD::FSUB:
4285 case ISD::STRICT_FSUB:
4286 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4287 RTLIB::SUB_F80, RTLIB::SUB_F128,
4288 RTLIB::SUB_PPCF128, Results);
4289 break;
4290 case ISD::SREM:
4291 Results.push_back(ExpandIntLibCall(Node, true,
4292 RTLIB::SREM_I8,
4293 RTLIB::SREM_I16, RTLIB::SREM_I32,
4294 RTLIB::SREM_I64, RTLIB::SREM_I128));
4295 break;
4296 case ISD::UREM:
4297 Results.push_back(ExpandIntLibCall(Node, false,
4298 RTLIB::UREM_I8,
4299 RTLIB::UREM_I16, RTLIB::UREM_I32,
4300 RTLIB::UREM_I64, RTLIB::UREM_I128));
4301 break;
4302 case ISD::SDIV:
4303 Results.push_back(ExpandIntLibCall(Node, true,
4304 RTLIB::SDIV_I8,
4305 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4306 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4307 break;
4308 case ISD::UDIV:
4309 Results.push_back(ExpandIntLibCall(Node, false,
4310 RTLIB::UDIV_I8,
4311 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4312 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4313 break;
4314 case ISD::SDIVREM:
4315 case ISD::UDIVREM:
4316 // Expand into divrem libcall
4317 ExpandDivRemLibCall(Node, Results);
4318 break;
4319 case ISD::MUL:
4320 Results.push_back(ExpandIntLibCall(Node, false,
4321 RTLIB::MUL_I8,
4322 RTLIB::MUL_I16, RTLIB::MUL_I32,
4323 RTLIB::MUL_I64, RTLIB::MUL_I128));
4324 break;
4325 case ISD::CTLZ_ZERO_UNDEF:
4326 switch (Node->getSimpleValueType(0).SimpleTy) {
4327 default:
4328 llvm_unreachable("LibCall explicitly requested, but not available");
4329 case MVT::i32:
4330 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4331 break;
4332 case MVT::i64:
4333 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4334 break;
4335 case MVT::i128:
4336 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4337 break;
4338 }
4339 break;
4340 }
4341
4342 // Replace the original node with the legalized result.
4343 if (!Results.empty()) {
4344 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4345 ReplaceNode(Node, Results.data());
4346 } else
4347 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4348 }
4349
4350 // Determine the vector type to use in place of an original scalar element when
4351 // promoting equally sized vectors.
getPromotedVectorElementType(const TargetLowering & TLI,MVT EltVT,MVT NewEltVT)4352 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4353 MVT EltVT, MVT NewEltVT) {
4354 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4355 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4356 assert(TLI.isTypeLegal(MidVT) && "unexpected");
4357 return MidVT;
4358 }
4359
PromoteNode(SDNode * Node)4360 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4361 LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4362 SmallVector<SDValue, 8> Results;
4363 MVT OVT = Node->getSimpleValueType(0);
4364 if (Node->getOpcode() == ISD::UINT_TO_FP ||
4365 Node->getOpcode() == ISD::SINT_TO_FP ||
4366 Node->getOpcode() == ISD::SETCC ||
4367 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4368 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4369 OVT = Node->getOperand(0).getSimpleValueType();
4370 }
4371 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4372 Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
4373 Node->getOpcode() == ISD::STRICT_FSETCC ||
4374 Node->getOpcode() == ISD::STRICT_FSETCCS)
4375 OVT = Node->getOperand(1).getSimpleValueType();
4376 if (Node->getOpcode() == ISD::BR_CC ||
4377 Node->getOpcode() == ISD::SELECT_CC)
4378 OVT = Node->getOperand(2).getSimpleValueType();
4379 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4380 SDLoc dl(Node);
4381 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
4382 switch (Node->getOpcode()) {
4383 case ISD::CTTZ:
4384 case ISD::CTTZ_ZERO_UNDEF:
4385 case ISD::CTLZ:
4386 case ISD::CTLZ_ZERO_UNDEF:
4387 case ISD::CTPOP:
4388 // Zero extend the argument unless its cttz, then use any_extend.
4389 if (Node->getOpcode() == ISD::CTTZ ||
4390 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
4391 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4392 else
4393 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4394
4395 if (Node->getOpcode() == ISD::CTTZ) {
4396 // The count is the same in the promoted type except if the original
4397 // value was zero. This can be handled by setting the bit just off
4398 // the top of the original type.
4399 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4400 OVT.getSizeInBits());
4401 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4402 DAG.getConstant(TopBit, dl, NVT));
4403 }
4404 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4405 // already the correct result.
4406 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4407 if (Node->getOpcode() == ISD::CTLZ ||
4408 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4409 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4410 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4411 DAG.getConstant(NVT.getSizeInBits() -
4412 OVT.getSizeInBits(), dl, NVT));
4413 }
4414 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4415 break;
4416 case ISD::BITREVERSE:
4417 case ISD::BSWAP: {
4418 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4419 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4420 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4421 Tmp1 = DAG.getNode(
4422 ISD::SRL, dl, NVT, Tmp1,
4423 DAG.getConstant(DiffBits, dl,
4424 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4425
4426 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4427 break;
4428 }
4429 case ISD::FP_TO_UINT:
4430 case ISD::STRICT_FP_TO_UINT:
4431 case ISD::FP_TO_SINT:
4432 case ISD::STRICT_FP_TO_SINT:
4433 PromoteLegalFP_TO_INT(Node, dl, Results);
4434 break;
4435 case ISD::FP_TO_UINT_SAT:
4436 case ISD::FP_TO_SINT_SAT:
4437 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl));
4438 break;
4439 case ISD::UINT_TO_FP:
4440 case ISD::STRICT_UINT_TO_FP:
4441 case ISD::SINT_TO_FP:
4442 case ISD::STRICT_SINT_TO_FP:
4443 PromoteLegalINT_TO_FP(Node, dl, Results);
4444 break;
4445 case ISD::VAARG: {
4446 SDValue Chain = Node->getOperand(0); // Get the chain.
4447 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4448
4449 unsigned TruncOp;
4450 if (OVT.isVector()) {
4451 TruncOp = ISD::BITCAST;
4452 } else {
4453 assert(OVT.isInteger()
4454 && "VAARG promotion is supported only for vectors or integer types");
4455 TruncOp = ISD::TRUNCATE;
4456 }
4457
4458 // Perform the larger operation, then convert back
4459 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4460 Node->getConstantOperandVal(3));
4461 Chain = Tmp1.getValue(1);
4462
4463 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4464
4465 // Modified the chain result - switch anything that used the old chain to
4466 // use the new one.
4467 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4468 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4469 if (UpdatedNodes) {
4470 UpdatedNodes->insert(Tmp2.getNode());
4471 UpdatedNodes->insert(Chain.getNode());
4472 }
4473 ReplacedNode(Node);
4474 break;
4475 }
4476 case ISD::MUL:
4477 case ISD::SDIV:
4478 case ISD::SREM:
4479 case ISD::UDIV:
4480 case ISD::UREM:
4481 case ISD::AND:
4482 case ISD::OR:
4483 case ISD::XOR: {
4484 unsigned ExtOp, TruncOp;
4485 if (OVT.isVector()) {
4486 ExtOp = ISD::BITCAST;
4487 TruncOp = ISD::BITCAST;
4488 } else {
4489 assert(OVT.isInteger() && "Cannot promote logic operation");
4490
4491 switch (Node->getOpcode()) {
4492 default:
4493 ExtOp = ISD::ANY_EXTEND;
4494 break;
4495 case ISD::SDIV:
4496 case ISD::SREM:
4497 ExtOp = ISD::SIGN_EXTEND;
4498 break;
4499 case ISD::UDIV:
4500 case ISD::UREM:
4501 ExtOp = ISD::ZERO_EXTEND;
4502 break;
4503 }
4504 TruncOp = ISD::TRUNCATE;
4505 }
4506 // Promote each of the values to the new type.
4507 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4508 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4509 // Perform the larger operation, then convert back
4510 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4511 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4512 break;
4513 }
4514 case ISD::UMUL_LOHI:
4515 case ISD::SMUL_LOHI: {
4516 // Promote to a multiply in a wider integer type.
4517 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4518 : ISD::SIGN_EXTEND;
4519 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4520 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4521 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4522
4523 auto &DL = DAG.getDataLayout();
4524 unsigned OriginalSize = OVT.getScalarSizeInBits();
4525 Tmp2 = DAG.getNode(
4526 ISD::SRL, dl, NVT, Tmp1,
4527 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4528 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4529 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4530 break;
4531 }
4532 case ISD::SELECT: {
4533 unsigned ExtOp, TruncOp;
4534 if (Node->getValueType(0).isVector() ||
4535 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4536 ExtOp = ISD::BITCAST;
4537 TruncOp = ISD::BITCAST;
4538 } else if (Node->getValueType(0).isInteger()) {
4539 ExtOp = ISD::ANY_EXTEND;
4540 TruncOp = ISD::TRUNCATE;
4541 } else {
4542 ExtOp = ISD::FP_EXTEND;
4543 TruncOp = ISD::FP_ROUND;
4544 }
4545 Tmp1 = Node->getOperand(0);
4546 // Promote each of the values to the new type.
4547 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4548 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4549 // Perform the larger operation, then round down.
4550 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4551 Tmp1->setFlags(Node->getFlags());
4552 if (TruncOp != ISD::FP_ROUND)
4553 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4554 else
4555 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4556 DAG.getIntPtrConstant(0, dl));
4557 Results.push_back(Tmp1);
4558 break;
4559 }
4560 case ISD::VECTOR_SHUFFLE: {
4561 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4562
4563 // Cast the two input vectors.
4564 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4565 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4566
4567 // Convert the shuffle mask to the right # elements.
4568 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4569 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4570 Results.push_back(Tmp1);
4571 break;
4572 }
4573 case ISD::VECTOR_SPLICE: {
4574 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4575 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1));
4576 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2,
4577 Node->getOperand(2));
4578 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3));
4579 break;
4580 }
4581 case ISD::SELECT_CC: {
4582 SDValue Cond = Node->getOperand(4);
4583 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get();
4584 // Type of the comparison operands.
4585 MVT CVT = Node->getSimpleValueType(0);
4586 assert(CVT == OVT && "not handled");
4587
4588 unsigned ExtOp = ISD::FP_EXTEND;
4589 if (NVT.isInteger()) {
4590 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4591 }
4592
4593 // Promote the comparison operands, if needed.
4594 if (TLI.isCondCodeLegal(CCCode, CVT)) {
4595 Tmp1 = Node->getOperand(0);
4596 Tmp2 = Node->getOperand(1);
4597 } else {
4598 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4599 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4600 }
4601 // Cast the true/false operands.
4602 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4603 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4604
4605 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond},
4606 Node->getFlags());
4607
4608 // Cast the result back to the original type.
4609 if (ExtOp != ISD::FP_EXTEND)
4610 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1);
4611 else
4612 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1,
4613 DAG.getIntPtrConstant(0, dl));
4614
4615 Results.push_back(Tmp1);
4616 break;
4617 }
4618 case ISD::SETCC:
4619 case ISD::STRICT_FSETCC:
4620 case ISD::STRICT_FSETCCS: {
4621 unsigned ExtOp = ISD::FP_EXTEND;
4622 if (NVT.isInteger()) {
4623 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
4624 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4625 }
4626 if (Node->isStrictFPOpcode()) {
4627 SDValue InChain = Node->getOperand(0);
4628 std::tie(Tmp1, std::ignore) =
4629 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT);
4630 std::tie(Tmp2, std::ignore) =
4631 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT);
4632 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)};
4633 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains);
4634 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
4635 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs,
4636 {OutChain, Tmp1, Tmp2, Node->getOperand(3)},
4637 Node->getFlags()));
4638 Results.push_back(Results.back().getValue(1));
4639 break;
4640 }
4641 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4642 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4643 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4644 Tmp2, Node->getOperand(2), Node->getFlags()));
4645 break;
4646 }
4647 case ISD::BR_CC: {
4648 unsigned ExtOp = ISD::FP_EXTEND;
4649 if (NVT.isInteger()) {
4650 ISD::CondCode CCCode =
4651 cast<CondCodeSDNode>(Node->getOperand(1))->get();
4652 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4653 }
4654 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4655 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4656 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4657 Node->getOperand(0), Node->getOperand(1),
4658 Tmp1, Tmp2, Node->getOperand(4)));
4659 break;
4660 }
4661 case ISD::FADD:
4662 case ISD::FSUB:
4663 case ISD::FMUL:
4664 case ISD::FDIV:
4665 case ISD::FREM:
4666 case ISD::FMINNUM:
4667 case ISD::FMAXNUM:
4668 case ISD::FPOW:
4669 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4670 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4671 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4672 Node->getFlags());
4673 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4674 Tmp3, DAG.getIntPtrConstant(0, dl)));
4675 break;
4676 case ISD::STRICT_FREM:
4677 case ISD::STRICT_FPOW:
4678 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4679 {Node->getOperand(0), Node->getOperand(1)});
4680 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4681 {Node->getOperand(0), Node->getOperand(2)});
4682 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4683 Tmp2.getValue(1));
4684 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4685 {Tmp3, Tmp1, Tmp2});
4686 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4687 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4688 Results.push_back(Tmp1);
4689 Results.push_back(Tmp1.getValue(1));
4690 break;
4691 case ISD::FMA:
4692 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4693 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4694 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4695 Results.push_back(
4696 DAG.getNode(ISD::FP_ROUND, dl, OVT,
4697 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4698 DAG.getIntPtrConstant(0, dl)));
4699 break;
4700 case ISD::FCOPYSIGN:
4701 case ISD::FPOWI: {
4702 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4703 Tmp2 = Node->getOperand(1);
4704 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4705
4706 // fcopysign doesn't change anything but the sign bit, so
4707 // (fp_round (fcopysign (fpext a), b))
4708 // is as precise as
4709 // (fp_round (fpext a))
4710 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4711 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4712 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4713 Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4714 break;
4715 }
4716 case ISD::FFLOOR:
4717 case ISD::FCEIL:
4718 case ISD::FRINT:
4719 case ISD::FNEARBYINT:
4720 case ISD::FROUND:
4721 case ISD::FROUNDEVEN:
4722 case ISD::FTRUNC:
4723 case ISD::FNEG:
4724 case ISD::FSQRT:
4725 case ISD::FSIN:
4726 case ISD::FCOS:
4727 case ISD::FLOG:
4728 case ISD::FLOG2:
4729 case ISD::FLOG10:
4730 case ISD::FABS:
4731 case ISD::FEXP:
4732 case ISD::FEXP2:
4733 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4734 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4735 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4736 Tmp2, DAG.getIntPtrConstant(0, dl)));
4737 break;
4738 case ISD::STRICT_FFLOOR:
4739 case ISD::STRICT_FCEIL:
4740 case ISD::STRICT_FSIN:
4741 case ISD::STRICT_FCOS:
4742 case ISD::STRICT_FLOG:
4743 case ISD::STRICT_FLOG10:
4744 case ISD::STRICT_FEXP:
4745 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4746 {Node->getOperand(0), Node->getOperand(1)});
4747 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4748 {Tmp1.getValue(1), Tmp1});
4749 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4750 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4751 Results.push_back(Tmp3);
4752 Results.push_back(Tmp3.getValue(1));
4753 break;
4754 case ISD::BUILD_VECTOR: {
4755 MVT EltVT = OVT.getVectorElementType();
4756 MVT NewEltVT = NVT.getVectorElementType();
4757
4758 // Handle bitcasts to a different vector type with the same total bit size
4759 //
4760 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4761 // =>
4762 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4763
4764 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4765 "Invalid promote type for build_vector");
4766 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4767
4768 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4769
4770 SmallVector<SDValue, 8> NewOps;
4771 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4772 SDValue Op = Node->getOperand(I);
4773 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4774 }
4775
4776 SDLoc SL(Node);
4777 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4778 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4779 Results.push_back(CvtVec);
4780 break;
4781 }
4782 case ISD::EXTRACT_VECTOR_ELT: {
4783 MVT EltVT = OVT.getVectorElementType();
4784 MVT NewEltVT = NVT.getVectorElementType();
4785
4786 // Handle bitcasts to a different vector type with the same total bit size.
4787 //
4788 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4789 // =>
4790 // v4i32:castx = bitcast x:v2i64
4791 //
4792 // i64 = bitcast
4793 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4794 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4795 //
4796
4797 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4798 "Invalid promote type for extract_vector_elt");
4799 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4800
4801 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4802 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4803
4804 SDValue Idx = Node->getOperand(1);
4805 EVT IdxVT = Idx.getValueType();
4806 SDLoc SL(Node);
4807 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4808 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4809
4810 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4811
4812 SmallVector<SDValue, 8> NewOps;
4813 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4814 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4815 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4816
4817 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4818 CastVec, TmpIdx);
4819 NewOps.push_back(Elt);
4820 }
4821
4822 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4823 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4824 break;
4825 }
4826 case ISD::INSERT_VECTOR_ELT: {
4827 MVT EltVT = OVT.getVectorElementType();
4828 MVT NewEltVT = NVT.getVectorElementType();
4829
4830 // Handle bitcasts to a different vector type with the same total bit size
4831 //
4832 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4833 // =>
4834 // v4i32:castx = bitcast x:v2i64
4835 // v2i32:casty = bitcast y:i64
4836 //
4837 // v2i64 = bitcast
4838 // (v4i32 insert_vector_elt
4839 // (v4i32 insert_vector_elt v4i32:castx,
4840 // (extract_vector_elt casty, 0), 2 * z),
4841 // (extract_vector_elt casty, 1), (2 * z + 1))
4842
4843 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4844 "Invalid promote type for insert_vector_elt");
4845 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4846
4847 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4848 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4849
4850 SDValue Val = Node->getOperand(1);
4851 SDValue Idx = Node->getOperand(2);
4852 EVT IdxVT = Idx.getValueType();
4853 SDLoc SL(Node);
4854
4855 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4856 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4857
4858 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4859 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4860
4861 SDValue NewVec = CastVec;
4862 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4863 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4864 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4865
4866 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4867 CastVal, IdxOffset);
4868
4869 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4870 NewVec, Elt, InEltIdx);
4871 }
4872
4873 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4874 break;
4875 }
4876 case ISD::SCALAR_TO_VECTOR: {
4877 MVT EltVT = OVT.getVectorElementType();
4878 MVT NewEltVT = NVT.getVectorElementType();
4879
4880 // Handle bitcasts to different vector type with the same total bit size.
4881 //
4882 // e.g. v2i64 = scalar_to_vector x:i64
4883 // =>
4884 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4885 //
4886
4887 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4888 SDValue Val = Node->getOperand(0);
4889 SDLoc SL(Node);
4890
4891 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4892 SDValue Undef = DAG.getUNDEF(MidVT);
4893
4894 SmallVector<SDValue, 8> NewElts;
4895 NewElts.push_back(CastVal);
4896 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4897 NewElts.push_back(Undef);
4898
4899 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4900 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4901 Results.push_back(CvtVec);
4902 break;
4903 }
4904 case ISD::ATOMIC_SWAP: {
4905 AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4906 SDLoc SL(Node);
4907 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4908 assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4909 "unexpected promotion type");
4910 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4911 "unexpected atomic_swap with illegal type");
4912
4913 SDValue NewAtomic
4914 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4915 DAG.getVTList(NVT, MVT::Other),
4916 { AM->getChain(), AM->getBasePtr(), CastVal },
4917 AM->getMemOperand());
4918 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4919 Results.push_back(NewAtomic.getValue(1));
4920 break;
4921 }
4922 }
4923
4924 // Replace the original node with the legalized result.
4925 if (!Results.empty()) {
4926 LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4927 ReplaceNode(Node, Results.data());
4928 } else
4929 LLVM_DEBUG(dbgs() << "Could not promote node\n");
4930 }
4931
4932 /// This is the entry point for the file.
Legalize()4933 void SelectionDAG::Legalize() {
4934 AssignTopologicalOrder();
4935
4936 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4937 // Use a delete listener to remove nodes which were deleted during
4938 // legalization from LegalizeNodes. This is needed to handle the situation
4939 // where a new node is allocated by the object pool to the same address of a
4940 // previously deleted node.
4941 DAGNodeDeletedListener DeleteListener(
4942 *this,
4943 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4944
4945 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4946
4947 // Visit all the nodes. We start in topological order, so that we see
4948 // nodes with their original operands intact. Legalization can produce
4949 // new nodes which may themselves need to be legalized. Iterate until all
4950 // nodes have been legalized.
4951 while (true) {
4952 bool AnyLegalized = false;
4953 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4954 --NI;
4955
4956 SDNode *N = &*NI;
4957 if (N->use_empty() && N != getRoot().getNode()) {
4958 ++NI;
4959 DeleteNode(N);
4960 continue;
4961 }
4962
4963 if (LegalizedNodes.insert(N).second) {
4964 AnyLegalized = true;
4965 Legalizer.LegalizeOp(N);
4966
4967 if (N->use_empty() && N != getRoot().getNode()) {
4968 ++NI;
4969 DeleteNode(N);
4970 }
4971 }
4972 }
4973 if (!AnyLegalized)
4974 break;
4975
4976 }
4977
4978 // Remove dead nodes now.
4979 RemoveDeadNodes();
4980 }
4981
LegalizeOp(SDNode * N,SmallSetVector<SDNode *,16> & UpdatedNodes)4982 bool SelectionDAG::LegalizeOp(SDNode *N,
4983 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4984 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4985 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4986
4987 // Directly insert the node in question, and legalize it. This will recurse
4988 // as needed through operands.
4989 LegalizedNodes.insert(N);
4990 Legalizer.LegalizeOp(N);
4991
4992 return LegalizedNodes.count(N);
4993 }
4994