1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GCMetadata.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/RuntimeLibcalls.h"
29 #include "llvm/CodeGen/SelectionDAG.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/GCStrategy.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/Statepoint.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetOptions.h"
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49 #include <iterator>
50 #include <tuple>
51 #include <utility>
52
53 using namespace llvm;
54
55 #define DEBUG_TYPE "statepoint-lowering"
56
57 STATISTIC(NumSlotsAllocatedForStatepoints,
58 "Number of stack slots allocated for statepoints");
59 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
60 STATISTIC(StatepointMaxSlotsRequired,
61 "Maximum number of stack slots required for a singe statepoint");
62
63 cl::opt<bool> UseRegistersForDeoptValues(
64 "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
65 cl::desc("Allow using registers for non pointer deopt args"));
66
67 cl::opt<bool> UseRegistersForGCPointersInLandingPad(
68 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
69 cl::desc("Allow using registers for gc pointer in landing pad"));
70
71 cl::opt<unsigned> MaxRegistersForGCPointers(
72 "max-registers-for-gc-values", cl::Hidden, cl::init(0),
73 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
74
75 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
76
pushStackMapConstant(SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder,uint64_t Value)77 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
78 SelectionDAGBuilder &Builder, uint64_t Value) {
79 SDLoc L = Builder.getCurSDLoc();
80 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
81 MVT::i64));
82 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
83 }
84
startNewStatepoint(SelectionDAGBuilder & Builder)85 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
86 // Consistency check
87 assert(PendingGCRelocateCalls.empty() &&
88 "Trying to visit statepoint before finished processing previous one");
89 Locations.clear();
90 NextSlotToAllocate = 0;
91 // Need to resize this on each safepoint - we need the two to stay in sync and
92 // the clear patterns of a SelectionDAGBuilder have no relation to
93 // FunctionLoweringInfo. Also need to ensure used bits get cleared.
94 AllocatedStackSlots.clear();
95 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
96 }
97
clear()98 void StatepointLoweringState::clear() {
99 Locations.clear();
100 AllocatedStackSlots.clear();
101 assert(PendingGCRelocateCalls.empty() &&
102 "cleared before statepoint sequence completed");
103 }
104
105 SDValue
allocateStackSlot(EVT ValueType,SelectionDAGBuilder & Builder)106 StatepointLoweringState::allocateStackSlot(EVT ValueType,
107 SelectionDAGBuilder &Builder) {
108 NumSlotsAllocatedForStatepoints++;
109 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
110
111 unsigned SpillSize = ValueType.getStoreSize();
112 assert((SpillSize * 8) ==
113 (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8.
114 "Size not in bytes?");
115
116 // First look for a previously created stack slot which is not in
117 // use (accounting for the fact arbitrary slots may already be
118 // reserved), or to create a new stack slot and use it.
119
120 const size_t NumSlots = AllocatedStackSlots.size();
121 assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
122
123 assert(AllocatedStackSlots.size() ==
124 Builder.FuncInfo.StatepointStackSlots.size() &&
125 "Broken invariant");
126
127 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
128 if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
129 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
130 if (MFI.getObjectSize(FI) == SpillSize) {
131 AllocatedStackSlots.set(NextSlotToAllocate);
132 // TODO: Is ValueType the right thing to use here?
133 return Builder.DAG.getFrameIndex(FI, ValueType);
134 }
135 }
136 }
137
138 // Couldn't find a free slot, so create a new one:
139
140 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
141 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
142 MFI.markAsStatepointSpillSlotObjectIndex(FI);
143
144 Builder.FuncInfo.StatepointStackSlots.push_back(FI);
145 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
146 assert(AllocatedStackSlots.size() ==
147 Builder.FuncInfo.StatepointStackSlots.size() &&
148 "Broken invariant");
149
150 StatepointMaxSlotsRequired.updateMax(
151 Builder.FuncInfo.StatepointStackSlots.size());
152
153 return SpillSlot;
154 }
155
156 /// Utility function for reservePreviousStackSlotForValue. Tries to find
157 /// stack slot index to which we have spilled value for previous statepoints.
158 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
findPreviousSpillSlot(const Value * Val,SelectionDAGBuilder & Builder,int LookUpDepth)159 static Optional<int> findPreviousSpillSlot(const Value *Val,
160 SelectionDAGBuilder &Builder,
161 int LookUpDepth) {
162 // Can not look any further - give up now
163 if (LookUpDepth <= 0)
164 return None;
165
166 // Spill location is known for gc relocates
167 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
168 const auto &RelocationMap =
169 Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()];
170
171 auto It = RelocationMap.find(Relocate->getDerivedPtr());
172 if (It == RelocationMap.end())
173 return None;
174
175 auto &Record = It->second;
176 if (Record.type != RecordType::Spill)
177 return None;
178
179 return Record.payload.FI;
180 }
181
182 // Look through bitcast instructions.
183 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
184 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
185
186 // Look through phi nodes
187 // All incoming values should have same known stack slot, otherwise result
188 // is unknown.
189 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
190 Optional<int> MergedResult = None;
191
192 for (auto &IncomingValue : Phi->incoming_values()) {
193 Optional<int> SpillSlot =
194 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
195 if (!SpillSlot.hasValue())
196 return None;
197
198 if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
199 return None;
200
201 MergedResult = SpillSlot;
202 }
203 return MergedResult;
204 }
205
206 // TODO: We can do better for PHI nodes. In cases like this:
207 // ptr = phi(relocated_pointer, not_relocated_pointer)
208 // statepoint(ptr)
209 // We will return that stack slot for ptr is unknown. And later we might
210 // assign different stack slots for ptr and relocated_pointer. This limits
211 // llvm's ability to remove redundant stores.
212 // Unfortunately it's hard to accomplish in current infrastructure.
213 // We use this function to eliminate spill store completely, while
214 // in example we still need to emit store, but instead of any location
215 // we need to use special "preferred" location.
216
217 // TODO: handle simple updates. If a value is modified and the original
218 // value is no longer live, it would be nice to put the modified value in the
219 // same slot. This allows folding of the memory accesses for some
220 // instructions types (like an increment).
221 // statepoint (i)
222 // i1 = i+1
223 // statepoint (i1)
224 // However we need to be careful for cases like this:
225 // statepoint(i)
226 // i1 = i+1
227 // statepoint(i, i1)
228 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
229 // put handling of simple modifications in this function like it's done
230 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
231 // which we visit values is unspecified.
232
233 // Don't know any information about this instruction
234 return None;
235 }
236
237 /// Return true if-and-only-if the given SDValue can be lowered as either a
238 /// constant argument or a stack reference. The key point is that the value
239 /// doesn't need to be spilled or tracked as a vreg use.
willLowerDirectly(SDValue Incoming)240 static bool willLowerDirectly(SDValue Incoming) {
241 // We are making an unchecked assumption that the frame size <= 2^16 as that
242 // is the largest offset which can be encoded in the stackmap format.
243 if (isa<FrameIndexSDNode>(Incoming))
244 return true;
245
246 // The largest constant describeable in the StackMap format is 64 bits.
247 // Potential Optimization: Constants values are sign extended by consumer,
248 // and thus there are many constants of static type > 64 bits whose value
249 // happens to be sext(Con64) and could thus be lowered directly.
250 if (Incoming.getValueType().getSizeInBits() > 64)
251 return false;
252
253 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
254 Incoming.isUndef());
255 }
256
257 /// Try to find existing copies of the incoming values in stack slots used for
258 /// statepoint spilling. If we can find a spill slot for the incoming value,
259 /// mark that slot as allocated, and reuse the same slot for this safepoint.
260 /// This helps to avoid series of loads and stores that only serve to reshuffle
261 /// values on the stack between calls.
reservePreviousStackSlotForValue(const Value * IncomingValue,SelectionDAGBuilder & Builder)262 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
263 SelectionDAGBuilder &Builder) {
264 SDValue Incoming = Builder.getValue(IncomingValue);
265
266 // If we won't spill this, we don't need to check for previously allocated
267 // stack slots.
268 if (willLowerDirectly(Incoming))
269 return;
270
271 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
272 if (OldLocation.getNode())
273 // Duplicates in input
274 return;
275
276 const int LookUpDepth = 6;
277 Optional<int> Index =
278 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
279 if (!Index.hasValue())
280 return;
281
282 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
283
284 auto SlotIt = find(StatepointSlots, *Index);
285 assert(SlotIt != StatepointSlots.end() &&
286 "Value spilled to the unknown stack slot");
287
288 // This is one of our dedicated lowering slots
289 const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
290 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
291 // stack slot already assigned to someone else, can't use it!
292 // TODO: currently we reserve space for gc arguments after doing
293 // normal allocation for deopt arguments. We should reserve for
294 // _all_ deopt and gc arguments, then start allocating. This
295 // will prevent some moves being inserted when vm state changes,
296 // but gc state doesn't between two calls.
297 return;
298 }
299 // Reserve this stack slot
300 Builder.StatepointLowering.reserveStackSlot(Offset);
301
302 // Cache this slot so we find it when going through the normal
303 // assignment loop.
304 SDValue Loc =
305 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
306 Builder.StatepointLowering.setLocation(Incoming, Loc);
307 }
308
309 /// Extract call from statepoint, lower it and return pointer to the
310 /// call node. Also update NodeMap so that getValue(statepoint) will
311 /// reference lowered call result
lowerCallFromStatepointLoweringInfo(SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder,SmallVectorImpl<SDValue> & PendingExports)312 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
313 SelectionDAGBuilder::StatepointLoweringInfo &SI,
314 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
315 SDValue ReturnValue, CallEndVal;
316 std::tie(ReturnValue, CallEndVal) =
317 Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
318 SDNode *CallEnd = CallEndVal.getNode();
319
320 // Get a call instruction from the call sequence chain. Tail calls are not
321 // allowed. The following code is essentially reverse engineering X86's
322 // LowerCallTo.
323 //
324 // We are expecting DAG to have the following form:
325 //
326 // ch = eh_label (only in case of invoke statepoint)
327 // ch, glue = callseq_start ch
328 // ch, glue = X86::Call ch, glue
329 // ch, glue = callseq_end ch, glue
330 // get_return_value ch, glue
331 //
332 // get_return_value can either be a sequence of CopyFromReg instructions
333 // to grab the return value from the return register(s), or it can be a LOAD
334 // to load a value returned by reference via a stack slot.
335
336 bool HasDef = !SI.CLI.RetTy->isVoidTy();
337 if (HasDef) {
338 if (CallEnd->getOpcode() == ISD::LOAD)
339 CallEnd = CallEnd->getOperand(0).getNode();
340 else
341 while (CallEnd->getOpcode() == ISD::CopyFromReg)
342 CallEnd = CallEnd->getOperand(0).getNode();
343 }
344
345 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
346 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
347 }
348
getMachineMemOperand(MachineFunction & MF,FrameIndexSDNode & FI)349 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
350 FrameIndexSDNode &FI) {
351 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
352 auto MMOFlags = MachineMemOperand::MOStore |
353 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
354 auto &MFI = MF.getFrameInfo();
355 return MF.getMachineMemOperand(PtrInfo, MMOFlags,
356 MFI.getObjectSize(FI.getIndex()),
357 MFI.getObjectAlign(FI.getIndex()));
358 }
359
360 /// Spill a value incoming to the statepoint. It might be either part of
361 /// vmstate
362 /// or gcstate. In both cases unconditionally spill it on the stack unless it
363 /// is a null constant. Return pair with first element being frame index
364 /// containing saved value and second element with outgoing chain from the
365 /// emitted store
366 static std::tuple<SDValue, SDValue, MachineMemOperand*>
spillIncomingStatepointValue(SDValue Incoming,SDValue Chain,SelectionDAGBuilder & Builder)367 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
368 SelectionDAGBuilder &Builder) {
369 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
370 MachineMemOperand* MMO = nullptr;
371
372 // Emit new store if we didn't do it for this ptr before
373 if (!Loc.getNode()) {
374 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
375 Builder);
376 int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
377 // We use TargetFrameIndex so that isel will not select it into LEA
378 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
379
380 // Right now we always allocate spill slots that are of the same
381 // size as the value we're about to spill (the size of spillee can
382 // vary since we spill vectors of pointers too). At some point we
383 // can consider allowing spills of smaller values to larger slots
384 // (i.e. change the '==' in the assert below to a '>=').
385 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
386 assert((MFI.getObjectSize(Index) * 8) ==
387 (-8 & (7 + // Round up modulo 8.
388 (int64_t)Incoming.getValueSizeInBits())) &&
389 "Bad spill: stack slot does not match!");
390
391 // Note: Using the alignment of the spill slot (rather than the abi or
392 // preferred alignment) is required for correctness when dealing with spill
393 // slots with preferred alignments larger than frame alignment..
394 auto &MF = Builder.DAG.getMachineFunction();
395 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
396 auto *StoreMMO = MF.getMachineMemOperand(
397 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
398 MFI.getObjectAlign(Index));
399 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
400 StoreMMO);
401
402 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
403
404 Builder.StatepointLowering.setLocation(Incoming, Loc);
405 }
406
407 assert(Loc.getNode());
408 return std::make_tuple(Loc, Chain, MMO);
409 }
410
411 /// Lower a single value incoming to a statepoint node. This value can be
412 /// either a deopt value or a gc value, the handling is the same. We special
413 /// case constants and allocas, then fall back to spilling if required.
414 static void
lowerIncomingStatepointValue(SDValue Incoming,bool RequireSpillSlot,SmallVectorImpl<SDValue> & Ops,SmallVectorImpl<MachineMemOperand * > & MemRefs,SelectionDAGBuilder & Builder)415 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
416 SmallVectorImpl<SDValue> &Ops,
417 SmallVectorImpl<MachineMemOperand *> &MemRefs,
418 SelectionDAGBuilder &Builder) {
419
420 if (willLowerDirectly(Incoming)) {
421 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
422 // This handles allocas as arguments to the statepoint (this is only
423 // really meaningful for a deopt value. For GC, we'd be trying to
424 // relocate the address of the alloca itself?)
425 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
426 "Incoming value is a frame index!");
427 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
428 Builder.getFrameIndexTy()));
429
430 auto &MF = Builder.DAG.getMachineFunction();
431 auto *MMO = getMachineMemOperand(MF, *FI);
432 MemRefs.push_back(MMO);
433 return;
434 }
435
436 assert(Incoming.getValueType().getSizeInBits() <= 64);
437
438 if (Incoming.isUndef()) {
439 // Put an easily recognized constant that's unlikely to be a valid
440 // value so that uses of undef by the consumer of the stackmap is
441 // easily recognized. This is legal since the compiler is always
442 // allowed to chose an arbitrary value for undef.
443 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
444 return;
445 }
446
447 // If the original value was a constant, make sure it gets recorded as
448 // such in the stackmap. This is required so that the consumer can
449 // parse any internal format to the deopt state. It also handles null
450 // pointers and other constant pointers in GC states.
451 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
452 pushStackMapConstant(Ops, Builder, C->getSExtValue());
453 return;
454 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
455 pushStackMapConstant(Ops, Builder,
456 C->getValueAPF().bitcastToAPInt().getZExtValue());
457 return;
458 }
459
460 llvm_unreachable("unhandled direct lowering case");
461 }
462
463
464
465 if (!RequireSpillSlot) {
466 // If this value is live in (not live-on-return, or live-through), we can
467 // treat it the same way patchpoint treats it's "live in" values. We'll
468 // end up folding some of these into stack references, but they'll be
469 // handled by the register allocator. Note that we do not have the notion
470 // of a late use so these values might be placed in registers which are
471 // clobbered by the call. This is fine for live-in. For live-through
472 // fix-up pass should be executed to force spilling of such registers.
473 Ops.push_back(Incoming);
474 } else {
475 // Otherwise, locate a spill slot and explicitly spill it so it can be
476 // found by the runtime later. Note: We know all of these spills are
477 // independent, but don't bother to exploit that chain wise. DAGCombine
478 // will happily do so as needed, so doing it here would be a small compile
479 // time win at most.
480 SDValue Chain = Builder.getRoot();
481 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
482 Ops.push_back(std::get<0>(Res));
483 if (auto *MMO = std::get<2>(Res))
484 MemRefs.push_back(MMO);
485 Chain = std::get<1>(Res);;
486 Builder.DAG.setRoot(Chain);
487 }
488
489 }
490
491 /// Return true if value V represents the GC value. The behavior is conservative
492 /// in case it is not sure that value is not GC the function returns true.
isGCValue(const Value * V,SelectionDAGBuilder & Builder)493 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) {
494 auto *Ty = V->getType();
495 if (!Ty->isPtrOrPtrVectorTy())
496 return false;
497 if (auto *GFI = Builder.GFI)
498 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
499 return *IsManaged;
500 return true; // conservative
501 }
502
503 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
504 /// lowering is described in lowerIncomingStatepointValue. This function is
505 /// responsible for lowering everything in the right position and playing some
506 /// tricks to avoid redundant stack manipulation where possible. On
507 /// completion, 'Ops' will contain ready to use operands for machine code
508 /// statepoint. The chain nodes will have already been created and the DAG root
509 /// will be set to the last value spilled (if any were).
510 static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> & Ops,SmallVectorImpl<MachineMemOperand * > & MemRefs,SmallVectorImpl<SDValue> & GCPtrs,DenseMap<SDValue,int> & LowerAsVReg,SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder)511 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
512 SmallVectorImpl<MachineMemOperand *> &MemRefs,
513 SmallVectorImpl<SDValue> &GCPtrs,
514 DenseMap<SDValue, int> &LowerAsVReg,
515 SelectionDAGBuilder::StatepointLoweringInfo &SI,
516 SelectionDAGBuilder &Builder) {
517 // Lower the deopt and gc arguments for this statepoint. Layout will be:
518 // deopt argument length, deopt arguments.., gc arguments...
519 #ifndef NDEBUG
520 if (auto *GFI = Builder.GFI) {
521 // Check that each of the gc pointer and bases we've gotten out of the
522 // safepoint is something the strategy thinks might be a pointer (or vector
523 // of pointers) into the GC heap. This is basically just here to help catch
524 // errors during statepoint insertion. TODO: This should actually be in the
525 // Verifier, but we can't get to the GCStrategy from there (yet).
526 GCStrategy &S = GFI->getStrategy();
527 for (const Value *V : SI.Bases) {
528 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
529 if (Opt.hasValue()) {
530 assert(Opt.getValue() &&
531 "non gc managed base pointer found in statepoint");
532 }
533 }
534 for (const Value *V : SI.Ptrs) {
535 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
536 if (Opt.hasValue()) {
537 assert(Opt.getValue() &&
538 "non gc managed derived pointer found in statepoint");
539 }
540 }
541 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
542 } else {
543 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
544 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
545 }
546 #endif
547
548 // Figure out what lowering strategy we're going to use for each part
549 // Note: Is is conservatively correct to lower both "live-in" and "live-out"
550 // as "live-through". A "live-through" variable is one which is "live-in",
551 // "live-out", and live throughout the lifetime of the call (i.e. we can find
552 // it from any PC within the transitive callee of the statepoint). In
553 // particular, if the callee spills callee preserved registers we may not
554 // be able to find a value placed in that register during the call. This is
555 // fine for live-out, but not for live-through. If we were willing to make
556 // assumptions about the code generator producing the callee, we could
557 // potentially allow live-through values in callee saved registers.
558 const bool LiveInDeopt =
559 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
560
561 // Decide which deriver pointers will go on VRegs
562 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
563
564 // Pointers used on exceptional path of invoke statepoint.
565 // We cannot assing them to VRegs.
566 SmallSet<SDValue, 8> LPadPointers;
567 if (!UseRegistersForGCPointersInLandingPad)
568 if (auto *StInvoke = dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
569 LandingPadInst *LPI = StInvoke->getLandingPadInst();
570 for (auto *Relocate : SI.GCRelocates)
571 if (Relocate->getOperand(0) == LPI) {
572 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
573 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
574 }
575 }
576
577 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
578
579 // List of unique lowered GC Pointer values.
580 SmallSetVector<SDValue, 16> LoweredGCPtrs;
581 // Map lowered GC Pointer value to the index in above vector
582 DenseMap<SDValue, unsigned> GCPtrIndexMap;
583
584 unsigned CurNumVRegs = 0;
585
586 auto canPassGCPtrOnVReg = [&](SDValue SD) {
587 if (SD.getValueType().isVector())
588 return false;
589 if (LPadPointers.count(SD))
590 return false;
591 return !willLowerDirectly(SD);
592 };
593
594 auto processGCPtr = [&](const Value *V) {
595 SDValue PtrSD = Builder.getValue(V);
596 if (!LoweredGCPtrs.insert(PtrSD))
597 return; // skip duplicates
598 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
599
600 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
601 if (LowerAsVReg.size() == MaxVRegPtrs)
602 return;
603 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
604 "IR and SD types disagree");
605 if (!canPassGCPtrOnVReg(PtrSD)) {
606 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
607 return;
608 }
609 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
610 LowerAsVReg[PtrSD] = CurNumVRegs++;
611 };
612
613 // Process derived pointers first to give them more chance to go on VReg.
614 for (const Value *V : SI.Ptrs)
615 processGCPtr(V);
616 for (const Value *V : SI.Bases)
617 processGCPtr(V);
618
619 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");
620
621 auto requireSpillSlot = [&](const Value *V) {
622 if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal(
623 Builder.getValue(V).getValueType()))
624 return true;
625 if (isGCValue(V, Builder))
626 return !LowerAsVReg.count(Builder.getValue(V));
627 return !(LiveInDeopt || UseRegistersForDeoptValues);
628 };
629
630 // Before we actually start lowering (and allocating spill slots for values),
631 // reserve any stack slots which we judge to be profitable to reuse for a
632 // particular value. This is purely an optimization over the code below and
633 // doesn't change semantics at all. It is important for performance that we
634 // reserve slots for both deopt and gc values before lowering either.
635 for (const Value *V : SI.DeoptState) {
636 if (requireSpillSlot(V))
637 reservePreviousStackSlotForValue(V, Builder);
638 }
639
640 for (const Value *V : SI.Ptrs) {
641 SDValue SDV = Builder.getValue(V);
642 if (!LowerAsVReg.count(SDV))
643 reservePreviousStackSlotForValue(V, Builder);
644 }
645
646 for (const Value *V : SI.Bases) {
647 SDValue SDV = Builder.getValue(V);
648 if (!LowerAsVReg.count(SDV))
649 reservePreviousStackSlotForValue(V, Builder);
650 }
651
652 // First, prefix the list with the number of unique values to be
653 // lowered. Note that this is the number of *Values* not the
654 // number of SDValues required to lower them.
655 const int NumVMSArgs = SI.DeoptState.size();
656 pushStackMapConstant(Ops, Builder, NumVMSArgs);
657
658 // The vm state arguments are lowered in an opaque manner. We do not know
659 // what type of values are contained within.
660 LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
661 for (const Value *V : SI.DeoptState) {
662 SDValue Incoming;
663 // If this is a function argument at a static frame index, generate it as
664 // the frame index.
665 if (const Argument *Arg = dyn_cast<Argument>(V)) {
666 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
667 if (FI != INT_MAX)
668 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
669 }
670 if (!Incoming.getNode())
671 Incoming = Builder.getValue(V);
672 LLVM_DEBUG(dbgs() << "Value " << *V
673 << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
674 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
675 Builder);
676 }
677
678 // Finally, go ahead and lower all the gc arguments.
679 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
680 for (SDValue SDV : LoweredGCPtrs)
681 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
682 Builder);
683
684 // Copy to out vector. LoweredGCPtrs will be empty after this point.
685 GCPtrs = LoweredGCPtrs.takeVector();
686
687 // If there are any explicit spill slots passed to the statepoint, record
688 // them, but otherwise do not do anything special. These are user provided
689 // allocas and give control over placement to the consumer. In this case,
690 // it is the contents of the slot which may get updated, not the pointer to
691 // the alloca
692 SmallVector<SDValue, 4> Allocas;
693 for (Value *V : SI.GCArgs) {
694 SDValue Incoming = Builder.getValue(V);
695 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
696 // This handles allocas as arguments to the statepoint
697 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
698 "Incoming value is a frame index!");
699 Allocas.push_back(Builder.DAG.getTargetFrameIndex(
700 FI->getIndex(), Builder.getFrameIndexTy()));
701
702 auto &MF = Builder.DAG.getMachineFunction();
703 auto *MMO = getMachineMemOperand(MF, *FI);
704 MemRefs.push_back(MMO);
705 }
706 }
707 pushStackMapConstant(Ops, Builder, Allocas.size());
708 Ops.append(Allocas.begin(), Allocas.end());
709
710 // Now construct GC base/derived map;
711 pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
712 SDLoc L = Builder.getCurSDLoc();
713 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
714 SDValue Base = Builder.getValue(SI.Bases[i]);
715 assert(GCPtrIndexMap.count(Base) && "base not found in index map");
716 Ops.push_back(
717 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
718 SDValue Derived = Builder.getValue(SI.Ptrs[i]);
719 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
720 Ops.push_back(
721 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
722 }
723 }
724
LowerAsSTATEPOINT(SelectionDAGBuilder::StatepointLoweringInfo & SI)725 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
726 SelectionDAGBuilder::StatepointLoweringInfo &SI) {
727 // The basic scheme here is that information about both the original call and
728 // the safepoint is encoded in the CallInst. We create a temporary call and
729 // lower it, then reverse engineer the calling sequence.
730
731 NumOfStatepoints++;
732 // Clear state
733 StatepointLowering.startNewStatepoint(*this);
734 assert(SI.Bases.size() == SI.Ptrs.size());
735
736 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
737 #ifndef NDEBUG
738 for (auto *Reloc : SI.GCRelocates)
739 if (Reloc->getParent() == SI.StatepointInstr->getParent())
740 StatepointLowering.scheduleRelocCall(*Reloc);
741 #endif
742
743 // Lower statepoint vmstate and gcstate arguments
744
745 // All lowered meta args.
746 SmallVector<SDValue, 10> LoweredMetaArgs;
747 // Lowered GC pointers (subset of above).
748 SmallVector<SDValue, 16> LoweredGCArgs;
749 SmallVector<MachineMemOperand*, 16> MemRefs;
750 // Maps derived pointer SDValue to statepoint result of relocated pointer.
751 DenseMap<SDValue, int> LowerAsVReg;
752 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
753 SI, *this);
754
755 // Now that we've emitted the spills, we need to update the root so that the
756 // call sequence is ordered correctly.
757 SI.CLI.setChain(getRoot());
758
759 // Get call node, we will replace it later with statepoint
760 SDValue ReturnVal;
761 SDNode *CallNode;
762 std::tie(ReturnVal, CallNode) =
763 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
764
765 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
766 // nodes with all the appropriate arguments and return values.
767
768 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
769 SDValue Chain = CallNode->getOperand(0);
770
771 SDValue Glue;
772 bool CallHasIncomingGlue = CallNode->getGluedNode();
773 if (CallHasIncomingGlue) {
774 // Glue is always last operand
775 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
776 }
777
778 // Build the GC_TRANSITION_START node if necessary.
779 //
780 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
781 // order in which they appear in the call to the statepoint intrinsic. If
782 // any of the operands is a pointer-typed, that operand is immediately
783 // followed by a SRCVALUE for the pointer that may be used during lowering
784 // (e.g. to form MachinePointerInfo values for loads/stores).
785 const bool IsGCTransition =
786 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
787 (uint64_t)StatepointFlags::GCTransition;
788 if (IsGCTransition) {
789 SmallVector<SDValue, 8> TSOps;
790
791 // Add chain
792 TSOps.push_back(Chain);
793
794 // Add GC transition arguments
795 for (const Value *V : SI.GCTransitionArgs) {
796 TSOps.push_back(getValue(V));
797 if (V->getType()->isPointerTy())
798 TSOps.push_back(DAG.getSrcValue(V));
799 }
800
801 // Add glue if necessary
802 if (CallHasIncomingGlue)
803 TSOps.push_back(Glue);
804
805 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
806
807 SDValue GCTransitionStart =
808 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
809
810 Chain = GCTransitionStart.getValue(0);
811 Glue = GCTransitionStart.getValue(1);
812 }
813
814 // TODO: Currently, all of these operands are being marked as read/write in
815 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
816 // and flags to be read-only.
817 SmallVector<SDValue, 40> Ops;
818
819 // Add the <id> and <numBytes> constants.
820 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
821 Ops.push_back(
822 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
823
824 // Calculate and push starting position of vmstate arguments
825 // Get number of arguments incoming directly into call node
826 unsigned NumCallRegArgs =
827 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
828 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
829
830 // Add call target
831 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
832 Ops.push_back(CallTarget);
833
834 // Add call arguments
835 // Get position of register mask in the call
836 SDNode::op_iterator RegMaskIt;
837 if (CallHasIncomingGlue)
838 RegMaskIt = CallNode->op_end() - 2;
839 else
840 RegMaskIt = CallNode->op_end() - 1;
841 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
842
843 // Add a constant argument for the calling convention
844 pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
845
846 // Add a constant argument for the flags
847 uint64_t Flags = SI.StatepointFlags;
848 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
849 "Unknown flag used");
850 pushStackMapConstant(Ops, *this, Flags);
851
852 // Insert all vmstate and gcstate arguments
853 llvm::append_range(Ops, LoweredMetaArgs);
854
855 // Add register mask from call node
856 Ops.push_back(*RegMaskIt);
857
858 // Add chain
859 Ops.push_back(Chain);
860
861 // Same for the glue, but we add it only if original call had it
862 if (Glue.getNode())
863 Ops.push_back(Glue);
864
865 // Compute return values. Provide a glue output since we consume one as
866 // input. This allows someone else to chain off us as needed.
867 SmallVector<EVT, 8> NodeTys;
868 for (auto SD : LoweredGCArgs) {
869 if (!LowerAsVReg.count(SD))
870 continue;
871 NodeTys.push_back(SD.getValueType());
872 }
873 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
874 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
875 NodeTys.push_back(MVT::Other);
876 NodeTys.push_back(MVT::Glue);
877
878 unsigned NumResults = NodeTys.size();
879 MachineSDNode *StatepointMCNode =
880 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
881 DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
882
883 // For values lowered to tied-defs, create the virtual registers. Note that
884 // for simplicity, we *always* create a vreg even within a single block.
885 DenseMap<SDValue, Register> VirtRegs;
886 for (const auto *Relocate : SI.GCRelocates) {
887 Value *Derived = Relocate->getDerivedPtr();
888 SDValue SD = getValue(Derived);
889 if (!LowerAsVReg.count(SD))
890 continue;
891
892 // Handle multiple gc.relocates of the same input efficiently.
893 if (VirtRegs.count(SD))
894 continue;
895
896 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
897
898 auto *RetTy = Relocate->getType();
899 Register Reg = FuncInfo.CreateRegs(RetTy);
900 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
901 DAG.getDataLayout(), Reg, RetTy, None);
902 SDValue Chain = DAG.getRoot();
903 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
904 PendingExports.push_back(Chain);
905
906 VirtRegs[SD] = Reg;
907 }
908
909 // Record for later use how each relocation was lowered. This is needed to
910 // allow later gc.relocates to mirror the lowering chosen.
911 const Instruction *StatepointInstr = SI.StatepointInstr;
912 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
913 for (const GCRelocateInst *Relocate : SI.GCRelocates) {
914 const Value *V = Relocate->getDerivedPtr();
915 SDValue SDV = getValue(V);
916 SDValue Loc = StatepointLowering.getLocation(SDV);
917
918 RecordType Record;
919 if (LowerAsVReg.count(SDV)) {
920 Record.type = RecordType::VReg;
921 assert(VirtRegs.count(SDV));
922 Record.payload.Reg = VirtRegs[SDV];
923 } else if (Loc.getNode()) {
924 Record.type = RecordType::Spill;
925 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
926 } else {
927 Record.type = RecordType::NoRelocate;
928 // If we didn't relocate a value, we'll essentialy end up inserting an
929 // additional use of the original value when lowering the gc.relocate.
930 // We need to make sure the value is available at the new use, which
931 // might be in another block.
932 if (Relocate->getParent() != StatepointInstr->getParent())
933 ExportFromCurrentBlock(V);
934 }
935 RelocationMap[V] = Record;
936 }
937
938
939
940 SDNode *SinkNode = StatepointMCNode;
941
942 // Build the GC_TRANSITION_END node if necessary.
943 //
944 // See the comment above regarding GC_TRANSITION_START for the layout of
945 // the operands to the GC_TRANSITION_END node.
946 if (IsGCTransition) {
947 SmallVector<SDValue, 8> TEOps;
948
949 // Add chain
950 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
951
952 // Add GC transition arguments
953 for (const Value *V : SI.GCTransitionArgs) {
954 TEOps.push_back(getValue(V));
955 if (V->getType()->isPointerTy())
956 TEOps.push_back(DAG.getSrcValue(V));
957 }
958
959 // Add glue
960 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
961
962 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
963
964 SDValue GCTransitionStart =
965 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
966
967 SinkNode = GCTransitionStart.getNode();
968 }
969
970 // Replace original call
971 // Call: ch,glue = CALL ...
972 // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
973 unsigned NumSinkValues = SinkNode->getNumValues();
974 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
975 SDValue(SinkNode, NumSinkValues - 1)};
976 DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
977 // Remove original call node
978 DAG.DeleteNode(CallNode);
979
980 // Since we always emit CopyToRegs (even for local relocates), we must
981 // update root, so that they are emitted before any local uses.
982 (void)getControlRoot();
983
984 // TODO: A better future implementation would be to emit a single variable
985 // argument, variable return value STATEPOINT node here and then hookup the
986 // return value of each gc.relocate to the respective output of the
987 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
988 // to actually be possible today.
989
990 return ReturnVal;
991 }
992
993 void
LowerStatepoint(const GCStatepointInst & I,const BasicBlock * EHPadBB)994 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
995 const BasicBlock *EHPadBB /*= nullptr*/) {
996 assert(I.getCallingConv() != CallingConv::AnyReg &&
997 "anyregcc is not supported on statepoints!");
998
999 #ifndef NDEBUG
1000 // Check that the associated GCStrategy expects to encounter statepoints.
1001 assert(GFI->getStrategy().useStatepoints() &&
1002 "GCStrategy does not expect to encounter statepoints");
1003 #endif
1004
1005 SDValue ActualCallee;
1006 SDValue Callee = getValue(I.getActualCalledOperand());
1007
1008 if (I.getNumPatchBytes() > 0) {
1009 // If we've been asked to emit a nop sequence instead of a call instruction
1010 // for this statepoint then don't lower the call target, but use a constant
1011 // `undef` instead. Not lowering the call target lets statepoint clients
1012 // get away without providing a physical address for the symbolic call
1013 // target at link time.
1014 ActualCallee = DAG.getUNDEF(Callee.getValueType());
1015 } else {
1016 ActualCallee = Callee;
1017 }
1018
1019 StatepointLoweringInfo SI(DAG);
1020 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
1021 I.getNumCallArgs(), ActualCallee,
1022 I.getActualReturnType(), false /* IsPatchPoint */);
1023
1024 // There may be duplication in the gc.relocate list; such as two copies of
1025 // each relocation on normal and exceptional path for an invoke. We only
1026 // need to spill once and record one copy in the stackmap, but we need to
1027 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best
1028 // handled as a CSE problem elsewhere.)
1029 // TODO: There a couple of major stackmap size optimizations we could do
1030 // here if we wished.
1031 // 1) If we've encountered a derived pair {B, D}, we don't need to actually
1032 // record {B,B} if it's seen later.
1033 // 2) Due to rematerialization, actual derived pointers are somewhat rare;
1034 // given that, we could change the format to record base pointer relocations
1035 // separately with half the space. This would require a format rev and a
1036 // fairly major rework of the STATEPOINT node though.
1037 SmallSet<SDValue, 8> Seen;
1038 for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
1039 SI.GCRelocates.push_back(Relocate);
1040
1041 SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
1042 if (Seen.insert(DerivedSD).second) {
1043 SI.Bases.push_back(Relocate->getBasePtr());
1044 SI.Ptrs.push_back(Relocate->getDerivedPtr());
1045 }
1046 }
1047
1048 // If we find a deopt value which isn't explicitly added, we need to
1049 // ensure it gets lowered such that gc cycles occurring before the
1050 // deoptimization event during the lifetime of the call don't invalidate
1051 // the pointer we're deopting with. Note that we assume that all
1052 // pointers passed to deopt are base pointers; relaxing that assumption
1053 // would require relatively large changes to how we represent relocations.
1054 for (Value *V : I.deopt_operands()) {
1055 if (!isGCValue(V, *this))
1056 continue;
1057 if (Seen.insert(getValue(V)).second) {
1058 SI.Bases.push_back(V);
1059 SI.Ptrs.push_back(V);
1060 }
1061 }
1062
1063 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
1064 SI.StatepointInstr = &I;
1065 SI.ID = I.getID();
1066
1067 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
1068 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
1069 I.gc_transition_args_end());
1070
1071 SI.StatepointFlags = I.getFlags();
1072 SI.NumPatchBytes = I.getNumPatchBytes();
1073 SI.EHPadBB = EHPadBB;
1074
1075 SDValue ReturnValue = LowerAsSTATEPOINT(SI);
1076
1077 // Export the result value if needed
1078 const std::pair<bool, bool> GCResultLocality = I.getGCResultLocality();
1079 Type *RetTy = I.getActualReturnType();
1080
1081 if (RetTy->isVoidTy() ||
1082 (!GCResultLocality.first && !GCResultLocality.second)) {
1083 // The return value is not needed, just generate a poison value.
1084 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
1085 return;
1086 }
1087
1088 if (GCResultLocality.first) {
1089 // Result value will be used in a same basic block. Don't export it or
1090 // perform any explicit register copies. The gc_result will simply grab
1091 // this value.
1092 setValue(&I, ReturnValue);
1093 }
1094
1095 if (!GCResultLocality.second)
1096 return;
1097 // Result value will be used in a different basic block so we need to export
1098 // it now. Default exporting mechanism will not work here because statepoint
1099 // call has a different type than the actual call. It means that by default
1100 // llvm will create export register of the wrong type (always i32 in our
1101 // case). So instead we need to create export register with correct type
1102 // manually.
1103 // TODO: To eliminate this problem we can remove gc.result intrinsics
1104 // completely and make statepoint call to return a tuple.
1105 unsigned Reg = FuncInfo.CreateRegs(RetTy);
1106 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1107 DAG.getDataLayout(), Reg, RetTy,
1108 I.getCallingConv());
1109 SDValue Chain = DAG.getEntryNode();
1110
1111 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
1112 PendingExports.push_back(Chain);
1113 FuncInfo.ValueMap[&I] = Reg;
1114 }
1115
LowerCallSiteWithDeoptBundleImpl(const CallBase * Call,SDValue Callee,const BasicBlock * EHPadBB,bool VarArgDisallowed,bool ForceVoidReturnTy)1116 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1117 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
1118 bool VarArgDisallowed, bool ForceVoidReturnTy) {
1119 StatepointLoweringInfo SI(DAG);
1120 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
1121 populateCallLoweringInfo(
1122 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
1123 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
1124 false);
1125 if (!VarArgDisallowed)
1126 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
1127
1128 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
1129
1130 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
1131
1132 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
1133 SI.ID = SD.StatepointID.getValueOr(DefaultID);
1134 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
1135
1136 SI.DeoptState =
1137 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
1138 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
1139 SI.EHPadBB = EHPadBB;
1140
1141 // NB! The GC arguments are deliberately left empty.
1142
1143 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
1144 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
1145 setValue(Call, ReturnVal);
1146 }
1147 }
1148
LowerCallSiteWithDeoptBundle(const CallBase * Call,SDValue Callee,const BasicBlock * EHPadBB)1149 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1150 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
1151 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
1152 /* VarArgDisallowed = */ false,
1153 /* ForceVoidReturnTy = */ false);
1154 }
1155
visitGCResult(const GCResultInst & CI)1156 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
1157 // The result value of the gc_result is simply the result of the actual
1158 // call. We've already emitted this, so just grab the value.
1159 const GCStatepointInst *SI = CI.getStatepoint();
1160
1161 if (SI->getParent() == CI.getParent()) {
1162 setValue(&CI, getValue(SI));
1163 return;
1164 }
1165 // Statepoint is in different basic block so we should have stored call
1166 // result in a virtual register.
1167 // We can not use default getValue() functionality to copy value from this
1168 // register because statepoint and actual call return types can be
1169 // different, and getValue() will use CopyFromReg of the wrong type,
1170 // which is always i32 in our case.
1171 Type *RetTy = SI->getActualReturnType();
1172 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1173
1174 assert(CopyFromReg.getNode());
1175 setValue(&CI, CopyFromReg);
1176 }
1177
visitGCRelocate(const GCRelocateInst & Relocate)1178 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1179 #ifndef NDEBUG
1180 // Consistency check
1181 // We skip this check for relocates not in the same basic block as their
1182 // statepoint. It would be too expensive to preserve validation info through
1183 // different basic blocks.
1184 if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
1185 StatepointLowering.relocCallVisited(Relocate);
1186
1187 auto *Ty = Relocate.getType()->getScalarType();
1188 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
1189 assert(*IsManaged && "Non gc managed pointer relocated!");
1190 #endif
1191
1192 const Value *DerivedPtr = Relocate.getDerivedPtr();
1193 auto &RelocationMap =
1194 FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()];
1195 auto SlotIt = RelocationMap.find(DerivedPtr);
1196 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
1197 const RecordType &Record = SlotIt->second;
1198
1199 // If relocation was done via virtual register..
1200 if (Record.type == RecordType::VReg) {
1201 Register InReg = Record.payload.Reg;
1202 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1203 DAG.getDataLayout(), InReg, Relocate.getType(),
1204 None); // This is not an ABI copy.
1205 // We generate copy to/from regs even for local uses, hence we must
1206 // chain with current root to ensure proper ordering of copies w.r.t.
1207 // statepoint.
1208 SDValue Chain = DAG.getRoot();
1209 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
1210 Chain, nullptr, nullptr);
1211 setValue(&Relocate, Relocation);
1212 return;
1213 }
1214
1215 if (Record.type == RecordType::Spill) {
1216 unsigned Index = Record.payload.FI;
1217 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1218
1219 // All the reloads are independent and are reading memory only modified by
1220 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1221 // this this let's CSE kick in for free and allows reordering of
1222 // instructions if possible. The lowering for statepoint sets the root,
1223 // so this is ordering all reloads with the either
1224 // a) the statepoint node itself, or
1225 // b) the entry of the current block for an invoke statepoint.
1226 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1227
1228 auto &MF = DAG.getMachineFunction();
1229 auto &MFI = MF.getFrameInfo();
1230 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1231 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1232 MFI.getObjectSize(Index),
1233 MFI.getObjectAlign(Index));
1234
1235 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1236 Relocate.getType());
1237
1238 SDValue SpillLoad =
1239 DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO);
1240 PendingLoads.push_back(SpillLoad.getValue(1));
1241
1242 assert(SpillLoad.getNode());
1243 setValue(&Relocate, SpillLoad);
1244 return;
1245 }
1246
1247 assert(Record.type == RecordType::NoRelocate);
1248 SDValue SD = getValue(DerivedPtr);
1249
1250 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1251 // Lowering relocate(undef) as arbitrary constant. Current constant value
1252 // is chosen such that it's unlikely to be a valid pointer.
1253 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1254 return;
1255 }
1256
1257 // We didn't need to spill these special cases (constants and allocas).
1258 // See the handling in spillIncomingValueForStatepoint for detail.
1259 setValue(&Relocate, SD);
1260 }
1261
LowerDeoptimizeCall(const CallInst * CI)1262 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1263 const auto &TLI = DAG.getTargetLoweringInfo();
1264 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1265 TLI.getPointerTy(DAG.getDataLayout()));
1266
1267 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1268 // call. We also do not lower the return value to any virtual register, and
1269 // change the immediately following return to a trap instruction.
1270 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1271 /* VarArgDisallowed = */ true,
1272 /* ForceVoidReturnTy = */ true);
1273 }
1274
LowerDeoptimizingReturn()1275 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1276 // We do not lower the return value from llvm.deoptimize to any virtual
1277 // register, and change the immediately following return to a trap
1278 // instruction.
1279 if (DAG.getTarget().Options.TrapUnreachable)
1280 DAG.setRoot(
1281 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1282 }
1283