1//===-- SIInstructions.td - SI Instruction Definitions --------------------===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// This file was originally auto-generated from a GPU register header file and 9// all the instruction definitions were originally commented out. Instructions 10// that are not yet supported remain commented out. 11//===----------------------------------------------------------------------===// 12 13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl { 14 15} 16 17include "SOPInstructions.td" 18include "VOPInstructions.td" 19include "SMInstructions.td" 20include "FLATInstructions.td" 21include "BUFInstructions.td" 22include "EXPInstructions.td" 23 24//===----------------------------------------------------------------------===// 25// VINTRP Instructions 26//===----------------------------------------------------------------------===// 27 28// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI) 29def VINTRPDst : VINTRPDstOperand <VGPR_32>; 30 31let Uses = [MODE, M0, EXEC] in { 32 33// FIXME: Specify SchedRW for VINTRP instructions. 34 35multiclass V_INTERP_P1_F32_m : VINTRP_m < 36 0x00000000, 37 (outs VINTRPDst:$vdst), 38 (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), 39 "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan", 40 [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc, 41 (i32 timm:$attrchan), (i32 timm:$attr), M0))] 42>; 43 44let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in { 45 46defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; 47 48} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus] 49 50let OtherPredicates = [has16BankLDS, isNotGFX90APlus], 51 Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in { 52 53defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; 54 55} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus], 56 // Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 57 58let OtherPredicates = [isNotGFX90APlus] in { 59let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in { 60 61defm V_INTERP_P2_F32 : VINTRP_m < 62 0x00000001, 63 (outs VINTRPDst:$vdst), 64 (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), 65 "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan", 66 [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc, 67 (i32 timm:$attrchan), (i32 timm:$attr), M0))]>; 68 69} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst" 70 71defm V_INTERP_MOV_F32 : VINTRP_m < 72 0x00000002, 73 (outs VINTRPDst:$vdst), 74 (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan), 75 "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan", 76 [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc), 77 (i32 timm:$attrchan), (i32 timm:$attr), M0))]>; 78 79} // End OtherPredicates = [isNotGFX90APlus] 80 81} // End Uses = [MODE, M0, EXEC] 82 83//===----------------------------------------------------------------------===// 84// Pseudo Instructions 85//===----------------------------------------------------------------------===// 86def ATOMIC_FENCE : SPseudoInstSI< 87 (outs), (ins i32imm:$ordering, i32imm:$scope), 88 [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))], 89 "ATOMIC_FENCE $ordering, $scope"> { 90 let hasSideEffects = 1; 91 let maybeAtomic = 1; 92} 93 94let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { 95 96// For use in patterns 97def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst), 98 (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> { 99 let isPseudo = 1; 100 let isCodeGenOnly = 1; 101 let usesCustomInserter = 1; 102} 103 104// 64-bit vector move instruction. This is mainly used by the 105// SIFoldOperands pass to enable folding of inline immediates. 106def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst), 107 (ins VSrc_b64:$src0)> { 108 let isReMaterializable = 1; 109 let isAsCheapAsAMove = 1; 110 let isMoveImm = 1; 111 let SchedRW = [Write64Bit]; 112 let Size = 16; // Needs maximum 2 v_mov_b32 instructions 8 byte long each. 113} 114 115// 64-bit vector move with dpp. Expanded post-RA. 116def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> { 117 let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete. 118} 119 120// 64-bit scalar move immediate instruction. This is used to avoid subregs 121// initialization and allow rematerialization. 122def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst), 123 (ins i64imm:$src0)> { 124 let isReMaterializable = 1; 125 let isAsCheapAsAMove = 1; 126 let isMoveImm = 1; 127 let SchedRW = [WriteSALU, Write64Bit]; 128 let Size = 16; // Needs maximum 2 s_mov_b32 instructions 8 byte long each. 129 let Uses = []; 130} 131 132// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the 133// WQM pass processes it. 134def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 135 136// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is 137// turned into a copy by WQM pass, but does not seed WQM requirements. 138def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 139 140// Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so 141// that the @earlyclobber is respected. The @earlyclobber is to make sure that 142// the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't 143// accidentally clobber inactive channels of $vdst. 144let Constraints = "@earlyclobber $vdst" in { 145def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 146def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 147} 148 149} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] 150 151def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> { 152 let Uses = [EXEC]; 153 let Defs = [EXEC, SCC]; 154 let hasSideEffects = 0; 155 let mayLoad = 0; 156 let mayStore = 0; 157} 158 159def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> { 160 let hasSideEffects = 0; 161 let mayLoad = 0; 162 let mayStore = 0; 163} 164 165def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> { 166 let Uses = [EXEC]; 167 let Defs = [EXEC, SCC]; 168 let hasSideEffects = 0; 169 let mayLoad = 0; 170 let mayStore = 0; 171} 172 173def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> { 174 let hasSideEffects = 0; 175 let mayLoad = 0; 176 let mayStore = 0; 177} 178 179// Invert the exec mask and overwrite the inactive lanes of dst with inactive, 180// restoring it after we're done. 181let Defs = [SCC] in { 182def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst), 183 (ins VGPR_32: $src, VSrc_b32:$inactive), 184 [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> { 185 let Constraints = "$src = $vdst"; 186} 187 188def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst), 189 (ins VReg_64: $src, VSrc_b64:$inactive), 190 [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> { 191 let Constraints = "$src = $vdst"; 192} 193} // End Defs = [SCC] 194 195let usesCustomInserter = 1, Defs = [VCC, EXEC] in { 196def V_ADD_U64_PSEUDO : VPseudoInstSI < 197 (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1), 198 [(set VReg_64:$vdst, (getDivergentFrag<add>.ret i64:$src0, i64:$src1))] 199>; 200 201def V_SUB_U64_PSEUDO : VPseudoInstSI < 202 (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1), 203 [(set VReg_64:$vdst, (getDivergentFrag<sub>.ret i64:$src0, i64:$src1))] 204>; 205} // End usesCustomInserter = 1, Defs = [VCC, EXEC] 206 207let usesCustomInserter = 1, Defs = [SCC] in { 208def S_ADD_U64_PSEUDO : SPseudoInstSI < 209 (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), 210 [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))] 211>; 212 213def S_SUB_U64_PSEUDO : SPseudoInstSI < 214 (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), 215 [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))] 216>; 217 218def S_ADD_U64_CO_PSEUDO : SPseudoInstSI < 219 (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) 220>; 221 222def S_SUB_U64_CO_PSEUDO : SPseudoInstSI < 223 (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) 224>; 225 226def S_ADD_CO_PSEUDO : SPseudoInstSI < 227 (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in) 228>; 229 230def S_SUB_CO_PSEUDO : SPseudoInstSI < 231 (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in) 232>; 233 234def S_UADDO_PSEUDO : SPseudoInstSI < 235 (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1) 236>; 237 238def S_USUBO_PSEUDO : SPseudoInstSI < 239 (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1) 240>; 241 242} // End usesCustomInserter = 1, Defs = [SCC] 243 244let usesCustomInserter = 1 in { 245def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins), 246 [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>; 247} // End let usesCustomInserter = 1, SALU = 1 248 249// Wrap an instruction by duplicating it, except for setting isTerminator. 250class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI< 251 base_inst.OutOperandList, 252 base_inst.InOperandList> { 253 let Uses = base_inst.Uses; 254 let Defs = base_inst.Defs; 255 let isTerminator = 1; 256 let isAsCheapAsAMove = base_inst.isAsCheapAsAMove; 257 let hasSideEffects = base_inst.hasSideEffects; 258 let UseNamedOperandTable = base_inst.UseNamedOperandTable; 259 let CodeSize = base_inst.CodeSize; 260 let SchedRW = base_inst.SchedRW; 261} 262 263let WaveSizePredicate = isWave64 in { 264def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>; 265def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>; 266def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>; 267def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>; 268def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>; 269} 270 271let WaveSizePredicate = isWave32 in { 272def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>; 273def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>; 274def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>; 275def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>; 276def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>; 277} 278 279 280def WAVE_BARRIER : SPseudoInstSI<(outs), (ins), 281 [(int_amdgcn_wave_barrier)]> { 282 let SchedRW = []; 283 let hasNoSchedulingInfo = 1; 284 let hasSideEffects = 1; 285 let mayLoad = 0; 286 let mayStore = 0; 287 let isConvergent = 1; 288 let FixedSize = 1; 289 let Size = 0; 290} 291 292// SI pseudo instructions. These are used by the CFG structurizer pass 293// and should be lowered to ISA instructions prior to codegen. 294 295let isTerminator = 1 in { 296 297let OtherPredicates = [EnableLateCFGStructurize] in { 298 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI < 299 (outs), 300 (ins SReg_1:$vcc, brtarget:$target), 301 [(brcond i1:$vcc, bb:$target)]> { 302 let Size = 12; 303} 304} 305 306def SI_IF: CFPseudoInstSI < 307 (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target), 308 [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> { 309 let Constraints = ""; 310 let Size = 12; 311 let hasSideEffects = 1; 312} 313 314def SI_ELSE : CFPseudoInstSI < 315 (outs SReg_1:$dst), 316 (ins SReg_1:$src, brtarget:$target), [], 1, 1> { 317 let Size = 12; 318 let hasSideEffects = 1; 319} 320 321def SI_WATERFALL_LOOP : CFPseudoInstSI < 322 (outs), 323 (ins brtarget:$target), [], 1> { 324 let Size = 8; 325 let isBranch = 1; 326 let Defs = []; 327} 328 329def SI_LOOP : CFPseudoInstSI < 330 (outs), (ins SReg_1:$saved, brtarget:$target), 331 [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> { 332 let Size = 8; 333 let isBranch = 1; 334 let hasSideEffects = 1; 335} 336 337} // End isTerminator = 1 338 339def SI_END_CF : CFPseudoInstSI < 340 (outs), (ins SReg_1:$saved), [], 1, 1> { 341 let Size = 4; 342 let isAsCheapAsAMove = 1; 343 let isReMaterializable = 1; 344 let hasSideEffects = 1; 345 let mayLoad = 1; // FIXME: Should not need memory flags 346 let mayStore = 1; 347} 348 349def SI_IF_BREAK : CFPseudoInstSI < 350 (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> { 351 let Size = 4; 352 let isAsCheapAsAMove = 1; 353 let isReMaterializable = 1; 354} 355 356// Branch to the early termination block of the shader if SCC is 0. 357// This uses SCC from a previous SALU operation, i.e. the update of 358// a mask of live lanes after a kill/demote operation. 359// Only valid in pixel shaders. 360def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> { 361 let Uses = [EXEC,SCC]; 362} 363 364let Uses = [EXEC] in { 365 366multiclass PseudoInstKill <dag ins> { 367 // Even though this pseudo can usually be expanded without an SCC def, we 368 // conservatively assume that it has an SCC def, both because it is sometimes 369 // required in degenerate cases (when V_CMPX cannot be used due to constant 370 // bus limitations) and because it allows us to avoid having to track SCC 371 // liveness across basic blocks. 372 let Defs = [EXEC,SCC] in 373 def _PSEUDO : PseudoInstSI <(outs), ins> { 374 let isConvergent = 1; 375 let usesCustomInserter = 1; 376 } 377 378 let Defs = [EXEC,SCC] in 379 def _TERMINATOR : SPseudoInstSI <(outs), ins> { 380 let isTerminator = 1; 381 } 382} 383 384defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>; 385let Defs = [VCC] in 386defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>; 387 388let Defs = [EXEC,VCC] in 389def SI_ILLEGAL_COPY : SPseudoInstSI < 390 (outs unknown:$dst), (ins unknown:$src), 391 [], " ; illegal copy $src to $dst">; 392 393} // End Uses = [EXEC], Defs = [EXEC,VCC] 394 395// Branch on undef scc. Used to avoid intermediate copy from 396// IMPLICIT_DEF to SCC. 397def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> { 398 let isTerminator = 1; 399 let usesCustomInserter = 1; 400 let isBranch = 1; 401} 402 403def SI_PS_LIVE : PseudoInstSI < 404 (outs SReg_1:$dst), (ins), 405 [(set i1:$dst, (int_amdgcn_ps_live))]> { 406 let SALU = 1; 407} 408 409let Uses = [EXEC] in { 410def SI_LIVE_MASK : PseudoInstSI < 411 (outs SReg_1:$dst), (ins), 412 [(set i1:$dst, (int_amdgcn_live_mask))]> { 413 let SALU = 1; 414} 415let Defs = [EXEC,SCC] in { 416// Demote: Turn a pixel shader thread into a helper lane. 417def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>; 418} // End Defs = [EXEC,SCC] 419} // End Uses = [EXEC] 420 421def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins), 422 [(int_amdgcn_unreachable)], 423 "; divergent unreachable"> { 424 let Size = 0; 425 let hasNoSchedulingInfo = 1; 426 let FixedSize = 1; 427} 428 429// Used as an isel pseudo to directly emit initialization with an 430// s_mov_b32 rather than a copy of another initialized 431// register. MachineCSE skips copies, and we don't want to have to 432// fold operands before it runs. 433def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> { 434 let Defs = [M0]; 435 let usesCustomInserter = 1; 436 let isAsCheapAsAMove = 1; 437 let isReMaterializable = 1; 438} 439 440def SI_INIT_EXEC : SPseudoInstSI < 441 (outs), (ins i64imm:$src), 442 [(int_amdgcn_init_exec (i64 timm:$src))]> { 443 let Defs = [EXEC]; 444 let isAsCheapAsAMove = 1; 445} 446 447def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI < 448 (outs), (ins SSrc_b32:$input, i32imm:$shift), 449 [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> { 450 let Defs = [EXEC]; 451} 452 453// Return for returning shaders to a shader variant epilog. 454def SI_RETURN_TO_EPILOG : SPseudoInstSI < 455 (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> { 456 let isTerminator = 1; 457 let isBarrier = 1; 458 let isReturn = 1; 459 let hasNoSchedulingInfo = 1; 460 let DisableWQM = 1; 461 let FixedSize = 1; 462} 463 464// Return for returning function calls. 465def SI_RETURN : SPseudoInstSI < 466 (outs), (ins), [], 467 "; return"> { 468 let isTerminator = 1; 469 let isBarrier = 1; 470 let isReturn = 1; 471 let SchedRW = [WriteBranch]; 472} 473 474// Return for returning function calls without output register. 475// 476// This version is only needed so we can fill in the output register 477// in the custom inserter. 478def SI_CALL_ISEL : SPseudoInstSI < 479 (outs), (ins SSrc_b64:$src0, unknown:$callee), 480 [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> { 481 let Size = 4; 482 let isCall = 1; 483 let SchedRW = [WriteBranch]; 484 let usesCustomInserter = 1; 485 // TODO: Should really base this on the call target 486 let isConvergent = 1; 487} 488 489def : GCNPat< 490 (AMDGPUcall i64:$src0, (i64 0)), 491 (SI_CALL_ISEL $src0, (i64 0)) 492>; 493 494// Wrapper around s_swappc_b64 with extra $callee parameter to track 495// the called function after regalloc. 496def SI_CALL : SPseudoInstSI < 497 (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> { 498 let Size = 4; 499 let isCall = 1; 500 let UseNamedOperandTable = 1; 501 let SchedRW = [WriteBranch]; 502 // TODO: Should really base this on the call target 503 let isConvergent = 1; 504} 505 506// Tail call handling pseudo 507def SI_TCRETURN : SPseudoInstSI <(outs), 508 (ins SReg_64:$src0, unknown:$callee, i32imm:$fpdiff), 509 [(AMDGPUtc_return i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> { 510 let Size = 4; 511 let isCall = 1; 512 let isTerminator = 1; 513 let isReturn = 1; 514 let isBarrier = 1; 515 let UseNamedOperandTable = 1; 516 let SchedRW = [WriteBranch]; 517 // TODO: Should really base this on the call target 518 let isConvergent = 1; 519} 520 521// Handle selecting indirect tail calls 522def : GCNPat< 523 (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)), 524 (SI_TCRETURN SReg_64:$src0, (i64 0), i32imm:$fpdiff) 525>; 526 527def ADJCALLSTACKUP : SPseudoInstSI< 528 (outs), (ins i32imm:$amt0, i32imm:$amt1), 529 [(callseq_start timm:$amt0, timm:$amt1)], 530 "; adjcallstackup $amt0 $amt1"> { 531 let Size = 8; // Worst case. (s_add_u32 + constant) 532 let FixedSize = 1; 533 let hasSideEffects = 1; 534 let usesCustomInserter = 1; 535 let SchedRW = [WriteSALU]; 536 let Defs = [SCC]; 537} 538 539def ADJCALLSTACKDOWN : SPseudoInstSI< 540 (outs), (ins i32imm:$amt1, i32imm:$amt2), 541 [(callseq_end timm:$amt1, timm:$amt2)], 542 "; adjcallstackdown $amt1"> { 543 let Size = 8; // Worst case. (s_add_u32 + constant) 544 let hasSideEffects = 1; 545 let usesCustomInserter = 1; 546 let SchedRW = [WriteSALU]; 547 let Defs = [SCC]; 548} 549 550let Defs = [M0, EXEC, SCC], 551 UseNamedOperandTable = 1 in { 552 553// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect 554// addressing implementation. 555class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI < 556 (outs VGPR_32:$vdst), 557 (ins rc:$src, VS_32:$idx, i32imm:$offset)> { 558 let usesCustomInserter = 1; 559} 560 561class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI < 562 (outs rc:$vdst), 563 (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> { 564 let Constraints = "$src = $vdst"; 565 let usesCustomInserter = 1; 566} 567 568def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>; 569def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>; 570def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>; 571def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>; 572def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>; 573def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>; 574 575def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>; 576def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>; 577def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>; 578def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>; 579def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>; 580def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>; 581 582} // End Uses = [EXEC], Defs = [M0, EXEC] 583 584// This is a pseudo variant of the v_movreld_b32 instruction in which the 585// vector operand appears only twice, once as def and once as use. Using this 586// pseudo avoids problems with the Two Address instructions pass. 587class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc, 588 RegisterOperand val_ty> : PseudoInstSI < 589 (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> { 590 let Constraints = "$vsrc = $vdst"; 591 let Uses = [M0]; 592} 593 594class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> : 595 INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> { 596 let VALU = 1; 597 let VOP1 = 1; 598 let Uses = [M0, EXEC]; 599} 600 601class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc, 602 RegisterOperand val_ty> : 603 INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> { 604 let SALU = 1; 605 let SOP1 = 1; 606 let Uses = [M0]; 607} 608 609class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> : 610 S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>; 611class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> : 612 S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>; 613 614def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>; 615def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>; 616def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>; 617def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>; 618def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>; 619def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>; 620def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>; 621def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>; 622 623def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>; 624def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>; 625def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>; 626def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>; 627def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>; 628def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>; 629def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>; 630def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>; 631 632def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>; 633def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>; 634def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>; 635def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>; 636def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>; 637 638// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these 639// pseudos we avoid spills or copies being inserted within indirect sequences 640// that switch the VGPR indexing mode. Spills to accvgprs could be effected by 641// this mode switching. 642 643class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI < 644 (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> { 645 let Constraints = "$vsrc = $vdst"; 646 let VALU = 1; 647 let Uses = [M0, EXEC]; 648 let Defs = [M0]; 649} 650 651def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>; 652def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>; 653def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>; 654def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>; 655def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>; 656def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>; 657def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>; 658def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>; 659 660class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI < 661 (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> { 662 let VALU = 1; 663 let Uses = [M0, EXEC]; 664 let Defs = [M0]; 665} 666 667def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>; 668def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>; 669def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>; 670def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>; 671def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>; 672def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>; 673def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>; 674def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>; 675 676multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> { 677 let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in { 678 def _SAVE : PseudoInstSI < 679 (outs), 680 (ins sgpr_class:$data, i32imm:$addr)> { 681 let mayStore = 1; 682 let mayLoad = 0; 683 } 684 685 def _RESTORE : PseudoInstSI < 686 (outs sgpr_class:$data), 687 (ins i32imm:$addr)> { 688 let mayStore = 0; 689 let mayLoad = 1; 690 } 691 } // End UseNamedOperandTable = 1 692} 693 694// You cannot use M0 as the output of v_readlane_b32 instructions or 695// use it in the sdata operand of SMEM instructions. We still need to 696// be able to spill the physical register m0, so allow it for 697// SI_SPILL_32_* instructions. 698defm SI_SPILL_S32 : SI_SPILL_SGPR <SReg_32>; 699defm SI_SPILL_S64 : SI_SPILL_SGPR <SReg_64>; 700defm SI_SPILL_S96 : SI_SPILL_SGPR <SReg_96>; 701defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>; 702defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>; 703defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>; 704defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>; 705defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>; 706defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>; 707defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>; 708 709// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register 710// needs to be used and an extra instruction to move between VGPR and AGPR. 711// UsesTmp adds to the total size of an expanded spill in this case. 712multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> { 713 let UseNamedOperandTable = 1, VGPRSpill = 1, 714 SchedRW = [WriteVMEM] in { 715 def _SAVE : VPseudoInstSI < 716 (outs), 717 (ins vgpr_class:$vdata, i32imm:$vaddr, 718 SReg_32:$soffset, i32imm:$offset)> { 719 let mayStore = 1; 720 let mayLoad = 0; 721 // (2 * 4) + (8 * num_subregs) bytes maximum 722 int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8); 723 // Size field is unsigned char and cannot fit more. 724 let Size = !if(!le(MaxSize, 256), MaxSize, 252); 725 } 726 727 def _RESTORE : VPseudoInstSI < 728 (outs vgpr_class:$vdata), 729 (ins i32imm:$vaddr, 730 SReg_32:$soffset, i32imm:$offset)> { 731 let mayStore = 0; 732 let mayLoad = 1; 733 734 // (2 * 4) + (8 * num_subregs) bytes maximum 735 int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8); 736 // Size field is unsigned char and cannot fit more. 737 let Size = !if(!le(MaxSize, 256), MaxSize, 252); 738 } 739 } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] 740} 741 742defm SI_SPILL_V32 : SI_SPILL_VGPR <VGPR_32>; 743defm SI_SPILL_V64 : SI_SPILL_VGPR <VReg_64>; 744defm SI_SPILL_V96 : SI_SPILL_VGPR <VReg_96>; 745defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>; 746defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>; 747defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>; 748defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>; 749defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>; 750defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>; 751defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>; 752 753defm SI_SPILL_A32 : SI_SPILL_VGPR <AGPR_32, 1>; 754defm SI_SPILL_A64 : SI_SPILL_VGPR <AReg_64, 1>; 755defm SI_SPILL_A96 : SI_SPILL_VGPR <AReg_96, 1>; 756defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>; 757defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>; 758defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>; 759defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>; 760defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>; 761defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>; 762defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>; 763 764def SI_PC_ADD_REL_OFFSET : SPseudoInstSI < 765 (outs SReg_64:$dst), 766 (ins si_ga:$ptr_lo, si_ga:$ptr_hi), 767 [(set SReg_64:$dst, 768 (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> { 769 let Defs = [SCC]; 770} 771 772def : GCNPat < 773 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0), 774 (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0)) 775>; 776 777def : GCNPat< 778 (AMDGPUtrap timm:$trapid), 779 (S_TRAP $trapid) 780>; 781 782def : GCNPat< 783 (AMDGPUelse i1:$src, bb:$target), 784 (SI_ELSE $src, $target) 785>; 786 787def : Pat < 788 (int_amdgcn_kill i1:$src), 789 (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0) 790>; 791 792def : Pat < 793 (int_amdgcn_kill (i1 (not i1:$src))), 794 (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1) 795>; 796 797def : Pat < 798 (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))), 799 (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond)) 800>; 801 802def : Pat < 803 (int_amdgcn_wqm_demote i1:$src), 804 (SI_DEMOTE_I1 SCSrc_i1:$src, 0) 805>; 806 807def : Pat < 808 (int_amdgcn_wqm_demote (i1 (not i1:$src))), 809 (SI_DEMOTE_I1 SCSrc_i1:$src, -1) 810>; 811 812 // TODO: we could add more variants for other types of conditionals 813 814def : Pat < 815 (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))), 816 (COPY $src) // Return the SGPRs representing i1 src 817>; 818 819def : Pat < 820 (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))), 821 (COPY $src) // Return the SGPRs representing i1 src 822>; 823 824//===----------------------------------------------------------------------===// 825// VOP1 Patterns 826//===----------------------------------------------------------------------===// 827 828let OtherPredicates = [UnsafeFPMath] in { 829 830//defm : RsqPat<V_RSQ_F32_e32, f32>; 831 832def : RsqPat<V_RSQ_F32_e32, f32>; 833 834// Convert (x - floor(x)) to fract(x) 835def : GCNPat < 836 (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)), 837 (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))), 838 (V_FRACT_F32_e64 $mods, $x) 839>; 840 841// Convert (x + (-floor(x))) to fract(x) 842def : GCNPat < 843 (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)), 844 (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))), 845 (V_FRACT_F64_e64 $mods, $x) 846>; 847 848} // End OtherPredicates = [UnsafeFPMath] 849 850 851// f16_to_fp patterns 852def : GCNPat < 853 (f32 (f16_to_fp i32:$src0)), 854 (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0) 855>; 856 857def : GCNPat < 858 (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))), 859 (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0) 860>; 861 862def : GCNPat < 863 (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))), 864 (V_CVT_F32_F16_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0))) 865>; 866 867def : GCNPat < 868 (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))), 869 (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0) 870>; 871 872def : GCNPat < 873 (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))), 874 (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0) 875>; 876 877def : GCNPat < 878 (f64 (fpextend f16:$src)), 879 (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src)) 880>; 881 882// fp_to_fp16 patterns 883def : GCNPat < 884 (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), 885 (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0) 886>; 887 888def : GCNPat < 889 (i32 (fp_to_sint f16:$src)), 890 (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src)) 891>; 892 893def : GCNPat < 894 (i32 (fp_to_uint f16:$src)), 895 (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src)) 896>; 897 898def : GCNPat < 899 (f16 (sint_to_fp i32:$src)), 900 (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 VSrc_b32:$src)) 901>; 902 903def : GCNPat < 904 (f16 (uint_to_fp i32:$src)), 905 (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 VSrc_b32:$src)) 906>; 907 908//===----------------------------------------------------------------------===// 909// VOP2 Patterns 910//===----------------------------------------------------------------------===// 911 912// NoMods pattern used for mac. If there are any source modifiers then it's 913// better to select mad instead of mac. 914class FMADPat <ValueType vt, Instruction inst, SDPatternOperator node> 915 : GCNPat <(vt (node (vt (VOP3NoMods vt:$src0)), 916 (vt (VOP3NoMods vt:$src1)), 917 (vt (VOP3NoMods vt:$src2)))), 918 (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, 919 SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 920>; 921 922// Prefer mac form when there are no modifiers. 923let AddedComplexity = 9 in { 924let OtherPredicates = [HasMadMacF32Insts] in { 925def : FMADPat <f32, V_MAC_F32_e64, fmad>; 926def : FMADPat <f32, V_MAC_F32_e64, AMDGPUfmad_ftz>; 927} // OtherPredicates = [HasMadMacF32Insts] 928 929// Don't allow source modifiers. If there are any source modifiers then it's 930// better to select mad instead of mac. 931let SubtargetPredicate = isGFX6GFX7GFX10, 932 OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in 933def : GCNPat < 934 (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0), 935 (VOP3NoMods f32:$src1)), 936 (VOP3NoMods f32:$src2))), 937 (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, 938 SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 939>; 940 941// Don't allow source modifiers. If there are any source modifiers then it's 942// better to select fma instead of fmac. 943let SubtargetPredicate = HasFmaLegacy32 in 944def : GCNPat < 945 (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0), 946 (VOP3NoMods f32:$src1), 947 (VOP3NoMods f32:$src2))), 948 (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, 949 SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 950>; 951 952let SubtargetPredicate = Has16BitInsts in { 953def : FMADPat <f16, V_MAC_F16_e64, fmad>; 954def : FMADPat <f16, V_MAC_F16_e64, AMDGPUfmad_ftz>; 955} // SubtargetPredicate = Has16BitInsts 956} // AddedComplexity = 9 957 958class FMADModsPat<ValueType Ty, Instruction inst, SDPatternOperator mad_opr> 959 : GCNPat< 960 (Ty (mad_opr (Ty (VOP3Mods Ty:$src0, i32:$src0_mod)), 961 (Ty (VOP3Mods Ty:$src1, i32:$src1_mod)), 962 (Ty (VOP3Mods Ty:$src2, i32:$src2_mod)))), 963 (inst $src0_mod, $src0, $src1_mod, $src1, 964 $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 965>; 966 967let OtherPredicates = [HasMadMacF32Insts] in 968def : FMADModsPat<f32, V_MAD_F32_e64, AMDGPUfmad_ftz>; 969 970let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in 971def : GCNPat < 972 (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod), 973 (VOP3Mods f32:$src1, i32:$src1_mod)), 974 (VOP3Mods f32:$src2, i32:$src2_mod))), 975 (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1, 976 $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 977>; 978 979let SubtargetPredicate = Has16BitInsts in 980def : FMADModsPat<f16, V_MAD_F16_e64, AMDGPUfmad_ftz>; 981 982class VOPSelectModsPat <ValueType vt> : GCNPat < 983 (vt (select i1:$src0, (VOP3Mods vt:$src1, i32:$src1_mods), 984 (VOP3Mods vt:$src2, i32:$src2_mods))), 985 (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2, 986 FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0) 987>; 988 989class VOPSelectPat <ValueType vt> : GCNPat < 990 (vt (select i1:$src0, vt:$src1, vt:$src2)), 991 (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0) 992>; 993 994def : VOPSelectModsPat <i32>; 995def : VOPSelectModsPat <f32>; 996def : VOPSelectPat <f16>; 997def : VOPSelectPat <i16>; 998 999let AddedComplexity = 1 in { 1000def : GCNPat < 1001 (i32 (add (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)), i32:$val)), 1002 (V_BCNT_U32_B32_e64 $popcnt, $val) 1003>; 1004} 1005 1006def : GCNPat < 1007 (i32 (ctpop i32:$popcnt)), 1008 (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0)) 1009>; 1010 1011def : GCNPat < 1012 (i16 (add (i16 (trunc (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)))), i16:$val)), 1013 (V_BCNT_U32_B32_e64 $popcnt, $val) 1014>; 1015 1016/********** ============================================ **********/ 1017/********** Extraction, Insertion, Building and Casting **********/ 1018/********** ============================================ **********/ 1019 1020foreach Index = 0-2 in { 1021 def Extract_Element_v2i32_#Index : Extract_Element < 1022 i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) 1023 >; 1024 def Insert_Element_v2i32_#Index : Insert_Element < 1025 i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) 1026 >; 1027 1028 def Extract_Element_v2f32_#Index : Extract_Element < 1029 f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) 1030 >; 1031 def Insert_Element_v2f32_#Index : Insert_Element < 1032 f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) 1033 >; 1034} 1035 1036foreach Index = 0-2 in { 1037 def Extract_Element_v3i32_#Index : Extract_Element < 1038 i32, v3i32, Index, !cast<SubRegIndex>(sub#Index) 1039 >; 1040 def Insert_Element_v3i32_#Index : Insert_Element < 1041 i32, v3i32, Index, !cast<SubRegIndex>(sub#Index) 1042 >; 1043 1044 def Extract_Element_v3f32_#Index : Extract_Element < 1045 f32, v3f32, Index, !cast<SubRegIndex>(sub#Index) 1046 >; 1047 def Insert_Element_v3f32_#Index : Insert_Element < 1048 f32, v3f32, Index, !cast<SubRegIndex>(sub#Index) 1049 >; 1050} 1051 1052foreach Index = 0-3 in { 1053 def Extract_Element_v4i32_#Index : Extract_Element < 1054 i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) 1055 >; 1056 def Insert_Element_v4i32_#Index : Insert_Element < 1057 i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) 1058 >; 1059 1060 def Extract_Element_v4f32_#Index : Extract_Element < 1061 f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) 1062 >; 1063 def Insert_Element_v4f32_#Index : Insert_Element < 1064 f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) 1065 >; 1066} 1067 1068foreach Index = 0-4 in { 1069 def Extract_Element_v5i32_#Index : Extract_Element < 1070 i32, v5i32, Index, !cast<SubRegIndex>(sub#Index) 1071 >; 1072 def Insert_Element_v5i32_#Index : Insert_Element < 1073 i32, v5i32, Index, !cast<SubRegIndex>(sub#Index) 1074 >; 1075 1076 def Extract_Element_v5f32_#Index : Extract_Element < 1077 f32, v5f32, Index, !cast<SubRegIndex>(sub#Index) 1078 >; 1079 def Insert_Element_v5f32_#Index : Insert_Element < 1080 f32, v5f32, Index, !cast<SubRegIndex>(sub#Index) 1081 >; 1082} 1083 1084foreach Index = 0-5 in { 1085 def Extract_Element_v6i32_#Index : Extract_Element < 1086 i32, v6i32, Index, !cast<SubRegIndex>(sub#Index) 1087 >; 1088 def Insert_Element_v6i32_#Index : Insert_Element < 1089 i32, v6i32, Index, !cast<SubRegIndex>(sub#Index) 1090 >; 1091 1092 def Extract_Element_v6f32_#Index : Extract_Element < 1093 f32, v6f32, Index, !cast<SubRegIndex>(sub#Index) 1094 >; 1095 def Insert_Element_v6f32_#Index : Insert_Element < 1096 f32, v6f32, Index, !cast<SubRegIndex>(sub#Index) 1097 >; 1098} 1099 1100foreach Index = 0-6 in { 1101 def Extract_Element_v7i32_#Index : Extract_Element < 1102 i32, v7i32, Index, !cast<SubRegIndex>(sub#Index) 1103 >; 1104 def Insert_Element_v7i32_#Index : Insert_Element < 1105 i32, v7i32, Index, !cast<SubRegIndex>(sub#Index) 1106 >; 1107 1108 def Extract_Element_v7f32_#Index : Extract_Element < 1109 f32, v7f32, Index, !cast<SubRegIndex>(sub#Index) 1110 >; 1111 def Insert_Element_v7f32_#Index : Insert_Element < 1112 f32, v7f32, Index, !cast<SubRegIndex>(sub#Index) 1113 >; 1114} 1115 1116foreach Index = 0-7 in { 1117 def Extract_Element_v8i32_#Index : Extract_Element < 1118 i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) 1119 >; 1120 def Insert_Element_v8i32_#Index : Insert_Element < 1121 i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) 1122 >; 1123 1124 def Extract_Element_v8f32_#Index : Extract_Element < 1125 f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) 1126 >; 1127 def Insert_Element_v8f32_#Index : Insert_Element < 1128 f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) 1129 >; 1130} 1131 1132foreach Index = 0-15 in { 1133 def Extract_Element_v16i32_#Index : Extract_Element < 1134 i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) 1135 >; 1136 def Insert_Element_v16i32_#Index : Insert_Element < 1137 i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) 1138 >; 1139 1140 def Extract_Element_v16f32_#Index : Extract_Element < 1141 f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) 1142 >; 1143 def Insert_Element_v16f32_#Index : Insert_Element < 1144 f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) 1145 >; 1146} 1147 1148 1149def : Pat < 1150 (extract_subvector v4i16:$vec, (i32 0)), 1151 (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0)) 1152>; 1153 1154def : Pat < 1155 (extract_subvector v4i16:$vec, (i32 2)), 1156 (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1)) 1157>; 1158 1159def : Pat < 1160 (extract_subvector v4f16:$vec, (i32 0)), 1161 (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0)) 1162>; 1163 1164def : Pat < 1165 (extract_subvector v4f16:$vec, (i32 2)), 1166 (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1)) 1167>; 1168 1169foreach Index = 0-31 in { 1170 def Extract_Element_v32i32_#Index : Extract_Element < 1171 i32, v32i32, Index, !cast<SubRegIndex>(sub#Index) 1172 >; 1173 1174 def Insert_Element_v32i32_#Index : Insert_Element < 1175 i32, v32i32, Index, !cast<SubRegIndex>(sub#Index) 1176 >; 1177 1178 def Extract_Element_v32f32_#Index : Extract_Element < 1179 f32, v32f32, Index, !cast<SubRegIndex>(sub#Index) 1180 >; 1181 1182 def Insert_Element_v32f32_#Index : Insert_Element < 1183 f32, v32f32, Index, !cast<SubRegIndex>(sub#Index) 1184 >; 1185} 1186 1187// FIXME: Why do only some of these type combinations for SReg and 1188// VReg? 1189// 16-bit bitcast 1190def : BitConvert <i16, f16, VGPR_32>; 1191def : BitConvert <f16, i16, VGPR_32>; 1192def : BitConvert <i16, f16, SReg_32>; 1193def : BitConvert <f16, i16, SReg_32>; 1194 1195// 32-bit bitcast 1196def : BitConvert <i32, f32, VGPR_32>; 1197def : BitConvert <f32, i32, VGPR_32>; 1198def : BitConvert <i32, f32, SReg_32>; 1199def : BitConvert <f32, i32, SReg_32>; 1200def : BitConvert <v2i16, i32, SReg_32>; 1201def : BitConvert <i32, v2i16, SReg_32>; 1202def : BitConvert <v2f16, i32, SReg_32>; 1203def : BitConvert <i32, v2f16, SReg_32>; 1204def : BitConvert <v2i16, v2f16, SReg_32>; 1205def : BitConvert <v2f16, v2i16, SReg_32>; 1206def : BitConvert <v2f16, f32, SReg_32>; 1207def : BitConvert <f32, v2f16, SReg_32>; 1208def : BitConvert <v2i16, f32, SReg_32>; 1209def : BitConvert <f32, v2i16, SReg_32>; 1210 1211// 64-bit bitcast 1212def : BitConvert <i64, f64, VReg_64>; 1213def : BitConvert <f64, i64, VReg_64>; 1214def : BitConvert <v2i32, v2f32, VReg_64>; 1215def : BitConvert <v2f32, v2i32, VReg_64>; 1216def : BitConvert <i64, v2i32, VReg_64>; 1217def : BitConvert <v2i32, i64, VReg_64>; 1218def : BitConvert <i64, v2f32, VReg_64>; 1219def : BitConvert <v2f32, i64, VReg_64>; 1220def : BitConvert <f64, v2f32, VReg_64>; 1221def : BitConvert <v2f32, f64, VReg_64>; 1222def : BitConvert <f64, v2i32, VReg_64>; 1223def : BitConvert <v2i32, f64, VReg_64>; 1224def : BitConvert <v4i16, v4f16, VReg_64>; 1225def : BitConvert <v4f16, v4i16, VReg_64>; 1226 1227// FIXME: Make SGPR 1228def : BitConvert <v2i32, v4f16, VReg_64>; 1229def : BitConvert <v4f16, v2i32, VReg_64>; 1230def : BitConvert <v2i32, v4f16, VReg_64>; 1231def : BitConvert <v2i32, v4i16, VReg_64>; 1232def : BitConvert <v4i16, v2i32, VReg_64>; 1233def : BitConvert <v2f32, v4f16, VReg_64>; 1234def : BitConvert <v4f16, v2f32, VReg_64>; 1235def : BitConvert <v2f32, v4i16, VReg_64>; 1236def : BitConvert <v4i16, v2f32, VReg_64>; 1237def : BitConvert <v4i16, f64, VReg_64>; 1238def : BitConvert <v4f16, f64, VReg_64>; 1239def : BitConvert <f64, v4i16, VReg_64>; 1240def : BitConvert <f64, v4f16, VReg_64>; 1241def : BitConvert <v4i16, i64, VReg_64>; 1242def : BitConvert <v4f16, i64, VReg_64>; 1243def : BitConvert <i64, v4i16, VReg_64>; 1244def : BitConvert <i64, v4f16, VReg_64>; 1245 1246def : BitConvert <v4i32, v4f32, VReg_128>; 1247def : BitConvert <v4f32, v4i32, VReg_128>; 1248 1249// 96-bit bitcast 1250def : BitConvert <v3i32, v3f32, SGPR_96>; 1251def : BitConvert <v3f32, v3i32, SGPR_96>; 1252 1253// 128-bit bitcast 1254def : BitConvert <v2i64, v4i32, SReg_128>; 1255def : BitConvert <v4i32, v2i64, SReg_128>; 1256def : BitConvert <v2f64, v4f32, VReg_128>; 1257def : BitConvert <v2f64, v4i32, VReg_128>; 1258def : BitConvert <v4f32, v2f64, VReg_128>; 1259def : BitConvert <v4i32, v2f64, VReg_128>; 1260def : BitConvert <v2i64, v2f64, VReg_128>; 1261def : BitConvert <v2f64, v2i64, VReg_128>; 1262def : BitConvert <v4f32, v2i64, VReg_128>; 1263def : BitConvert <v2i64, v4f32, VReg_128>; 1264 1265// 160-bit bitcast 1266def : BitConvert <v5i32, v5f32, SReg_160>; 1267def : BitConvert <v5f32, v5i32, SReg_160>; 1268def : BitConvert <v5i32, v5f32, VReg_160>; 1269def : BitConvert <v5f32, v5i32, VReg_160>; 1270 1271// 192-bit bitcast 1272def : BitConvert <v6i32, v6f32, SReg_192>; 1273def : BitConvert <v6f32, v6i32, SReg_192>; 1274def : BitConvert <v6i32, v6f32, VReg_192>; 1275def : BitConvert <v6f32, v6i32, VReg_192>; 1276def : BitConvert <v3i64, v3f64, VReg_192>; 1277def : BitConvert <v3f64, v3i64, VReg_192>; 1278def : BitConvert <v3i64, v6i32, VReg_192>; 1279def : BitConvert <v3i64, v6f32, VReg_192>; 1280def : BitConvert <v3f64, v6i32, VReg_192>; 1281def : BitConvert <v3f64, v6f32, VReg_192>; 1282def : BitConvert <v6i32, v3i64, VReg_192>; 1283def : BitConvert <v6f32, v3i64, VReg_192>; 1284def : BitConvert <v6i32, v3f64, VReg_192>; 1285def : BitConvert <v6f32, v3f64, VReg_192>; 1286 1287// 224-bit bitcast 1288def : BitConvert <v7i32, v7f32, SReg_224>; 1289def : BitConvert <v7f32, v7i32, SReg_224>; 1290def : BitConvert <v7i32, v7f32, VReg_224>; 1291def : BitConvert <v7f32, v7i32, VReg_224>; 1292 1293// 256-bit bitcast 1294def : BitConvert <v8i32, v8f32, SReg_256>; 1295def : BitConvert <v8f32, v8i32, SReg_256>; 1296def : BitConvert <v8i32, v8f32, VReg_256>; 1297def : BitConvert <v8f32, v8i32, VReg_256>; 1298def : BitConvert <v4i64, v4f64, VReg_256>; 1299def : BitConvert <v4f64, v4i64, VReg_256>; 1300def : BitConvert <v4i64, v8i32, VReg_256>; 1301def : BitConvert <v4i64, v8f32, VReg_256>; 1302def : BitConvert <v4f64, v8i32, VReg_256>; 1303def : BitConvert <v4f64, v8f32, VReg_256>; 1304def : BitConvert <v8i32, v4i64, VReg_256>; 1305def : BitConvert <v8f32, v4i64, VReg_256>; 1306def : BitConvert <v8i32, v4f64, VReg_256>; 1307def : BitConvert <v8f32, v4f64, VReg_256>; 1308 1309 1310// 512-bit bitcast 1311def : BitConvert <v16i32, v16f32, VReg_512>; 1312def : BitConvert <v16f32, v16i32, VReg_512>; 1313def : BitConvert <v8i64, v8f64, VReg_512>; 1314def : BitConvert <v8f64, v8i64, VReg_512>; 1315def : BitConvert <v8i64, v16i32, VReg_512>; 1316def : BitConvert <v8f64, v16i32, VReg_512>; 1317def : BitConvert <v16i32, v8i64, VReg_512>; 1318def : BitConvert <v16i32, v8f64, VReg_512>; 1319def : BitConvert <v8i64, v16f32, VReg_512>; 1320def : BitConvert <v8f64, v16f32, VReg_512>; 1321def : BitConvert <v16f32, v8i64, VReg_512>; 1322def : BitConvert <v16f32, v8f64, VReg_512>; 1323 1324// 1024-bit bitcast 1325def : BitConvert <v32i32, v32f32, VReg_1024>; 1326def : BitConvert <v32f32, v32i32, VReg_1024>; 1327def : BitConvert <v16i64, v16f64, VReg_1024>; 1328def : BitConvert <v16f64, v16i64, VReg_1024>; 1329def : BitConvert <v16i64, v32i32, VReg_1024>; 1330def : BitConvert <v32i32, v16i64, VReg_1024>; 1331def : BitConvert <v16f64, v32f32, VReg_1024>; 1332def : BitConvert <v32f32, v16f64, VReg_1024>; 1333def : BitConvert <v16i64, v32f32, VReg_1024>; 1334def : BitConvert <v32i32, v16f64, VReg_1024>; 1335def : BitConvert <v16f64, v32i32, VReg_1024>; 1336def : BitConvert <v32f32, v16i64, VReg_1024>; 1337 1338 1339/********** =================== **********/ 1340/********** Src & Dst modifiers **********/ 1341/********** =================== **********/ 1342 1343 1344// If denormals are not enabled, it only impacts the compare of the 1345// inputs. The output result is not flushed. 1346class ClampPat<Instruction inst, ValueType vt> : GCNPat < 1347 (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))), 1348 (inst i32:$src0_modifiers, vt:$src0, 1349 i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE) 1350>; 1351 1352def : ClampPat<V_MAX_F32_e64, f32>; 1353def : ClampPat<V_MAX_F64_e64, f64>; 1354def : ClampPat<V_MAX_F16_e64, f16>; 1355 1356let SubtargetPredicate = HasVOP3PInsts in { 1357def : GCNPat < 1358 (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))), 1359 (V_PK_MAX_F16 $src0_modifiers, $src0, 1360 $src0_modifiers, $src0, DSTCLAMP.ENABLE) 1361>; 1362} 1363 1364/********** ================================ **********/ 1365/********** Floating point absolute/negative **********/ 1366/********** ================================ **********/ 1367 1368// Prevent expanding both fneg and fabs. 1369// TODO: Add IgnoredBySelectionDAG bit? 1370let AddedComplexity = 1 in { // Prefer SALU to VALU patterns for DAG 1371 1372def : GCNPat < 1373 (fneg (fabs (f32 SReg_32:$src))), 1374 (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit 1375>; 1376 1377def : GCNPat < 1378 (fabs (f32 SReg_32:$src)), 1379 (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff))) 1380>; 1381 1382def : GCNPat < 1383 (fneg (f32 SReg_32:$src)), 1384 (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) 1385>; 1386 1387def : GCNPat < 1388 (fneg (f16 SReg_32:$src)), 1389 (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) 1390>; 1391 1392def : GCNPat < 1393 (fneg (f16 VGPR_32:$src)), 1394 (V_XOR_B32_e32 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) 1395>; 1396 1397def : GCNPat < 1398 (fabs (f16 SReg_32:$src)), 1399 (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff))) 1400>; 1401 1402def : GCNPat < 1403 (fneg (fabs (f16 SReg_32:$src))), 1404 (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit 1405>; 1406 1407def : GCNPat < 1408 (fneg (fabs (f16 VGPR_32:$src))), 1409 (V_OR_B32_e32 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit 1410>; 1411 1412def : GCNPat < 1413 (fneg (v2f16 SReg_32:$src)), 1414 (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) 1415>; 1416 1417def : GCNPat < 1418 (fabs (v2f16 SReg_32:$src)), 1419 (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff))) 1420>; 1421 1422// This is really (fneg (fabs v2f16:$src)) 1423// 1424// fabs is not reported as free because there is modifier for it in 1425// VOP3P instructions, so it is turned into the bit op. 1426def : GCNPat < 1427 (fneg (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))), 1428 (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit 1429>; 1430 1431def : GCNPat < 1432 (fneg (v2f16 (fabs SReg_32:$src))), 1433 (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit 1434>; 1435 1436// FIXME: The implicit-def of scc from S_[X]OR/AND_B32 is mishandled 1437 // def : GCNPat < 1438// (fneg (f64 SReg_64:$src)), 1439// (REG_SEQUENCE SReg_64, 1440// (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), 1441// sub0, 1442// (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), 1443// (i32 (S_MOV_B32 (i32 0x80000000)))), 1444// sub1) 1445// >; 1446 1447// def : GCNPat < 1448// (fneg (fabs (f64 SReg_64:$src))), 1449// (REG_SEQUENCE SReg_64, 1450// (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), 1451// sub0, 1452// (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), 1453// (S_MOV_B32 (i32 0x80000000))), // Set sign bit. 1454// sub1) 1455// >; 1456 1457// FIXME: Use S_BITSET0_B32/B64? 1458// def : GCNPat < 1459// (fabs (f64 SReg_64:$src)), 1460// (REG_SEQUENCE SReg_64, 1461// (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), 1462// sub0, 1463// (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), 1464// (i32 (S_MOV_B32 (i32 0x7fffffff)))), 1465// sub1) 1466// >; 1467 1468// COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead 1469// of the real value. 1470def : GCNPat < 1471 (fneg (v2f32 SReg_64:$src)), 1472 (v2f32 (REG_SEQUENCE SReg_64, 1473 (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)), 1474 (i32 (S_MOV_B32 (i32 0x80000000)))), 1475 SReg_32)), sub0, 1476 (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)), 1477 (i32 (S_MOV_B32 (i32 0x80000000)))), 1478 SReg_32)), sub1)) 1479>; 1480 1481} // End let AddedComplexity = 1 1482 1483def : GCNPat < 1484 (fabs (f32 VGPR_32:$src)), 1485 (V_AND_B32_e32 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src) 1486>; 1487 1488def : GCNPat < 1489 (fneg (f32 VGPR_32:$src)), 1490 (V_XOR_B32_e32 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) 1491>; 1492 1493def : GCNPat < 1494 (fabs (f16 VGPR_32:$src)), 1495 (V_AND_B32_e32 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src) 1496>; 1497 1498def : GCNPat < 1499 (fneg (v2f16 VGPR_32:$src)), 1500 (V_XOR_B32_e32 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) 1501>; 1502 1503def : GCNPat < 1504 (fabs (v2f16 VGPR_32:$src)), 1505 (V_AND_B32_e32 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src) 1506>; 1507 1508def : GCNPat < 1509 (fneg (v2f16 (fabs VGPR_32:$src))), 1510 (V_OR_B32_e32 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) // Set sign bit 1511>; 1512 1513def : GCNPat < 1514 (fabs (f64 VReg_64:$src)), 1515 (REG_SEQUENCE VReg_64, 1516 (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), 1517 sub0, 1518 (V_AND_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)), 1519 (V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit. 1520 sub1) 1521>; 1522 1523// TODO: Use SGPR for constant 1524def : GCNPat < 1525 (fneg (f64 VReg_64:$src)), 1526 (REG_SEQUENCE VReg_64, 1527 (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), 1528 sub0, 1529 (V_XOR_B32_e32 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)), 1530 (i32 (V_MOV_B32_e32 (i32 0x80000000)))), 1531 sub1) 1532>; 1533 1534// TODO: Use SGPR for constant 1535def : GCNPat < 1536 (fneg (fabs (f64 VReg_64:$src))), 1537 (REG_SEQUENCE VReg_64, 1538 (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), 1539 sub0, 1540 (V_OR_B32_e32 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)), 1541 (V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit. 1542 sub1) 1543>; 1544 1545def : GCNPat < 1546 (getDivergentFrag<fneg>.ret (v2f32 VReg_64:$src)), 1547 (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src, 1548 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, 0, 1549 0, 0, 0, 0, 0) 1550> { 1551 let SubtargetPredicate = HasPackedFP32Ops; 1552} 1553 1554def : GCNPat < 1555 (fcopysign f16:$src0, f16:$src1), 1556 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1) 1557>; 1558 1559def : GCNPat < 1560 (fcopysign f32:$src0, f16:$src1), 1561 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, 1562 (V_LSHLREV_B32_e64 (i32 16), $src1)) 1563>; 1564 1565def : GCNPat < 1566 (fcopysign f64:$src0, f16:$src1), 1567 (REG_SEQUENCE SReg_64, 1568 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 1569 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), 1570 (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1) 1571>; 1572 1573def : GCNPat < 1574 (fcopysign f16:$src0, f32:$src1), 1575 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, 1576 (V_LSHRREV_B32_e64 (i32 16), $src1)) 1577>; 1578 1579def : GCNPat < 1580 (fcopysign f16:$src0, f64:$src1), 1581 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, 1582 (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1))) 1583>; 1584 1585/********** ================== **********/ 1586/********** Immediate Patterns **********/ 1587/********** ================== **********/ 1588 1589def : GCNPat < 1590 (VGPRImm<(i32 imm)>:$imm), 1591 (V_MOV_B32_e32 imm:$imm) 1592>; 1593 1594def : GCNPat < 1595 (VGPRImm<(f32 fpimm)>:$imm), 1596 (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) 1597>; 1598 1599def : GCNPat < 1600 (i32 imm:$imm), 1601 (S_MOV_B32 imm:$imm) 1602>; 1603 1604def : GCNPat < 1605 (VGPRImm<(SIlds tglobaladdr:$ga)>), 1606 (V_MOV_B32_e32 $ga) 1607>; 1608 1609def : GCNPat < 1610 (SIlds tglobaladdr:$ga), 1611 (S_MOV_B32 $ga) 1612>; 1613 1614// FIXME: Workaround for ordering issue with peephole optimizer where 1615// a register class copy interferes with immediate folding. Should 1616// use s_mov_b32, which can be shrunk to s_movk_i32 1617def : GCNPat < 1618 (VGPRImm<(f16 fpimm)>:$imm), 1619 (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm))) 1620>; 1621 1622def : GCNPat < 1623 (f32 fpimm:$imm), 1624 (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) 1625>; 1626 1627def : GCNPat < 1628 (f16 fpimm:$imm), 1629 (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) 1630>; 1631 1632def : GCNPat < 1633 (p5 frameindex:$fi), 1634 (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi))) 1635>; 1636 1637def : GCNPat < 1638 (p5 frameindex:$fi), 1639 (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi))) 1640>; 1641 1642def : GCNPat < 1643 (i64 InlineImm64:$imm), 1644 (S_MOV_B64 InlineImm64:$imm) 1645>; 1646 1647// XXX - Should this use a s_cmp to set SCC? 1648 1649// Set to sign-extended 64-bit value (true = -1, false = 0) 1650def : GCNPat < 1651 (i1 imm:$imm), 1652 (S_MOV_B64 (i64 (as_i64imm $imm))) 1653> { 1654 let WaveSizePredicate = isWave64; 1655} 1656 1657def : GCNPat < 1658 (i1 imm:$imm), 1659 (S_MOV_B32 (i32 (as_i32imm $imm))) 1660> { 1661 let WaveSizePredicate = isWave32; 1662} 1663 1664def : GCNPat < 1665 (f64 InlineImmFP64:$imm), 1666 (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm))) 1667>; 1668 1669/********** ================== **********/ 1670/********** Intrinsic Patterns **********/ 1671/********** ================== **********/ 1672 1673let OtherPredicates = [isNotGFX90APlus] in 1674// FIXME: Should use _e64 and select source modifiers. 1675def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>; 1676 1677let OtherPredicates = [isGFX90APlus] in 1678def : GCNPat < 1679 (fpow f32:$src0, f32:$src1), 1680 (V_EXP_F32_e32 (V_MUL_LEGACY_F32_e64 0, f32:$src1, SRCMODS.NONE, (V_LOG_F32_e32 f32:$src0), 0, 0)) 1681>; 1682 1683def : GCNPat < 1684 (i32 (sext i1:$src0)), 1685 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1686 /*src1mod*/(i32 0), /*src1*/(i32 -1), $src0) 1687>; 1688 1689class Ext32Pat <SDNode ext> : GCNPat < 1690 (i32 (ext i1:$src0)), 1691 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1692 /*src1mod*/(i32 0), /*src1*/(i32 1), $src0) 1693>; 1694 1695def : Ext32Pat <zext>; 1696def : Ext32Pat <anyext>; 1697 1698// The multiplication scales from [0,1) to the unsigned integer range, 1699// rounding down a bit to avoid unwanted overflow. 1700def : GCNPat < 1701 (AMDGPUurecip i32:$src0), 1702 (V_CVT_U32_F32_e32 1703 (V_MUL_F32_e32 (i32 CONST.FP_4294966784), 1704 (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) 1705>; 1706 1707//===----------------------------------------------------------------------===// 1708// VOP3 Patterns 1709//===----------------------------------------------------------------------===// 1710 1711def : IMad24Pat<V_MAD_I32_I24_e64, 1>; 1712def : UMad24Pat<V_MAD_U32_U24_e64, 1>; 1713 1714// BFI patterns 1715 1716def BFIImm32 : PatFrag< 1717 (ops node:$x, node:$y, node:$z), 1718 (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))), 1719 [{ 1720 auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1)); 1721 auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1)); 1722 return X && NotX && 1723 ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue(); 1724 }] 1725>; 1726 1727// Definition from ISA doc: 1728// (y & x) | (z & ~x) 1729def : AMDGPUPat < 1730 (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))), 1731 (V_BFI_B32_e64 $x, $y, $z) 1732>; 1733 1734// (y & C) | (z & ~C) 1735def : AMDGPUPat < 1736 (BFIImm32 i32:$x, i32:$y, i32:$z), 1737 (V_BFI_B32_e64 $x, $y, $z) 1738>; 1739 1740// 64-bit version 1741def : AMDGPUPat < 1742 (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))), 1743 (REG_SEQUENCE SReg_64, 1744 (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub0)), 1745 (i32 (EXTRACT_SUBREG SReg_64:$y, sub0)), 1746 (i32 (EXTRACT_SUBREG SReg_64:$z, sub0))), sub0, 1747 (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub1)), 1748 (i32 (EXTRACT_SUBREG SReg_64:$y, sub1)), 1749 (i32 (EXTRACT_SUBREG SReg_64:$z, sub1))), sub1) 1750>; 1751 1752// SHA-256 Ch function 1753// z ^ (x & (y ^ z)) 1754def : AMDGPUPat < 1755 (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))), 1756 (V_BFI_B32_e64 $x, $y, $z) 1757>; 1758 1759// 64-bit version 1760def : AMDGPUPat < 1761 (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))), 1762 (REG_SEQUENCE SReg_64, 1763 (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub0)), 1764 (i32 (EXTRACT_SUBREG SReg_64:$y, sub0)), 1765 (i32 (EXTRACT_SUBREG SReg_64:$z, sub0))), sub0, 1766 (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub1)), 1767 (i32 (EXTRACT_SUBREG SReg_64:$y, sub1)), 1768 (i32 (EXTRACT_SUBREG SReg_64:$z, sub1))), sub1) 1769>; 1770 1771def : AMDGPUPat < 1772 (fcopysign f32:$src0, f32:$src1), 1773 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1) 1774>; 1775 1776def : AMDGPUPat < 1777 (fcopysign f32:$src0, f64:$src1), 1778 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, 1779 (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))) 1780>; 1781 1782def : AMDGPUPat < 1783 (fcopysign f64:$src0, f64:$src1), 1784 (REG_SEQUENCE SReg_64, 1785 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 1786 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), 1787 (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)), 1788 (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1) 1789>; 1790 1791def : AMDGPUPat < 1792 (fcopysign f64:$src0, f32:$src1), 1793 (REG_SEQUENCE SReg_64, 1794 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 1795 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), 1796 (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)), 1797 $src1), sub1) 1798>; 1799 1800def : ROTRPattern <V_ALIGNBIT_B32_e64>; 1801 1802def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))), 1803 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), 1804 (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; 1805 1806def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), 1807 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), 1808 (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; 1809 1810/********** ====================== **********/ 1811/********** Indirect addressing **********/ 1812/********** ====================== **********/ 1813 1814multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> { 1815 // Extract with offset 1816 def : GCNPat< 1817 (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))), 1818 (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset) 1819 >; 1820 1821 // Insert with offset 1822 def : GCNPat< 1823 (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))), 1824 (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val) 1825 >; 1826} 1827 1828defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">; 1829defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">; 1830defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">; 1831defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">; 1832defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">; 1833 1834defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">; 1835defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">; 1836defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">; 1837defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">; 1838defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">; 1839 1840//===----------------------------------------------------------------------===// 1841// SAD Patterns 1842//===----------------------------------------------------------------------===// 1843 1844def : GCNPat < 1845 (add (sub_oneuse (umax i32:$src0, i32:$src1), 1846 (umin i32:$src0, i32:$src1)), 1847 i32:$src2), 1848 (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0)) 1849>; 1850 1851def : GCNPat < 1852 (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)), 1853 (sub i32:$src0, i32:$src1), 1854 (sub i32:$src1, i32:$src0)), 1855 i32:$src2), 1856 (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0)) 1857>; 1858 1859//===----------------------------------------------------------------------===// 1860// Conversion Patterns 1861//===----------------------------------------------------------------------===// 1862 1863def : GCNPat<(i32 (sext_inreg i32:$src, i1)), 1864 (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16 1865 1866// Handle sext_inreg in i64 1867def : GCNPat < 1868 (i64 (sext_inreg i64:$src, i1)), 1869 (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16 1870>; 1871 1872def : GCNPat < 1873 (i16 (sext_inreg i16:$src, i1)), 1874 (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16 1875>; 1876 1877def : GCNPat < 1878 (i16 (sext_inreg i16:$src, i8)), 1879 (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16 1880>; 1881 1882def : GCNPat < 1883 (i64 (sext_inreg i64:$src, i8)), 1884 (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16 1885>; 1886 1887def : GCNPat < 1888 (i64 (sext_inreg i64:$src, i16)), 1889 (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16 1890>; 1891 1892def : GCNPat < 1893 (i64 (sext_inreg i64:$src, i32)), 1894 (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16 1895>; 1896 1897def : GCNPat < 1898 (i64 (zext i32:$src)), 1899 (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1) 1900>; 1901 1902def : GCNPat < 1903 (i64 (anyext i32:$src)), 1904 (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1) 1905>; 1906 1907class ZExt_i64_i1_Pat <SDNode ext> : GCNPat < 1908 (i64 (ext i1:$src)), 1909 (REG_SEQUENCE VReg_64, 1910 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1911 /*src1mod*/(i32 0), /*src1*/(i32 1), $src), 1912 sub0, (S_MOV_B32 (i32 0)), sub1) 1913>; 1914 1915 1916def : ZExt_i64_i1_Pat<zext>; 1917def : ZExt_i64_i1_Pat<anyext>; 1918 1919// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that 1920// REG_SEQUENCE patterns don't support instructions with multiple outputs. 1921def : GCNPat < 1922 (i64 (sext i32:$src)), 1923 (REG_SEQUENCE SReg_64, $src, sub0, 1924 (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1) 1925>; 1926 1927def : GCNPat < 1928 (i64 (sext i1:$src)), 1929 (REG_SEQUENCE VReg_64, 1930 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1931 /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0, 1932 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1933 /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1) 1934>; 1935 1936class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat < 1937 (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))), 1938 (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE)) 1939>; 1940 1941def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>; 1942def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>; 1943def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>; 1944def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>; 1945def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>; 1946def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>; 1947 1948// If we need to perform a logical operation on i1 values, we need to 1949// use vector comparisons since there is only one SCC register. Vector 1950// comparisons may write to a pair of SGPRs or a single SGPR, so treat 1951// these as 32 or 64-bit comparisons. When legalizing SGPR copies, 1952// instructions resulting in the copies from SCC to these instructions 1953// will be moved to the VALU. 1954 1955let WaveSizePredicate = isWave64 in { 1956def : GCNPat < 1957 (i1 (and i1:$src0, i1:$src1)), 1958 (S_AND_B64 $src0, $src1) 1959>; 1960 1961def : GCNPat < 1962 (i1 (or i1:$src0, i1:$src1)), 1963 (S_OR_B64 $src0, $src1) 1964>; 1965 1966def : GCNPat < 1967 (i1 (xor i1:$src0, i1:$src1)), 1968 (S_XOR_B64 $src0, $src1) 1969>; 1970 1971def : GCNPat < 1972 (i1 (add i1:$src0, i1:$src1)), 1973 (S_XOR_B64 $src0, $src1) 1974>; 1975 1976def : GCNPat < 1977 (i1 (sub i1:$src0, i1:$src1)), 1978 (S_XOR_B64 $src0, $src1) 1979>; 1980 1981let AddedComplexity = 1 in { 1982def : GCNPat < 1983 (i1 (add i1:$src0, (i1 -1))), 1984 (S_NOT_B64 $src0) 1985>; 1986 1987def : GCNPat < 1988 (i1 (sub i1:$src0, (i1 -1))), 1989 (S_NOT_B64 $src0) 1990>; 1991} 1992} // end isWave64 1993 1994let WaveSizePredicate = isWave32 in { 1995def : GCNPat < 1996 (i1 (and i1:$src0, i1:$src1)), 1997 (S_AND_B32 $src0, $src1) 1998>; 1999 2000def : GCNPat < 2001 (i1 (or i1:$src0, i1:$src1)), 2002 (S_OR_B32 $src0, $src1) 2003>; 2004 2005def : GCNPat < 2006 (i1 (xor i1:$src0, i1:$src1)), 2007 (S_XOR_B32 $src0, $src1) 2008>; 2009 2010def : GCNPat < 2011 (i1 (add i1:$src0, i1:$src1)), 2012 (S_XOR_B32 $src0, $src1) 2013>; 2014 2015def : GCNPat < 2016 (i1 (sub i1:$src0, i1:$src1)), 2017 (S_XOR_B32 $src0, $src1) 2018>; 2019 2020let AddedComplexity = 1 in { 2021def : GCNPat < 2022 (i1 (add i1:$src0, (i1 -1))), 2023 (S_NOT_B32 $src0) 2024>; 2025 2026def : GCNPat < 2027 (i1 (sub i1:$src0, (i1 -1))), 2028 (S_NOT_B32 $src0) 2029>; 2030} 2031} // end isWave32 2032 2033def : GCNPat < 2034 (f16 (sint_to_fp i1:$src)), 2035 (V_CVT_F16_F32_e32 ( 2036 V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 2037 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), 2038 SSrc_i1:$src)) 2039>; 2040 2041def : GCNPat < 2042 (f16 (uint_to_fp i1:$src)), 2043 (V_CVT_F16_F32_e32 ( 2044 V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 2045 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), 2046 SSrc_i1:$src)) 2047>; 2048 2049def : GCNPat < 2050 (f32 (sint_to_fp i1:$src)), 2051 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 2052 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), 2053 SSrc_i1:$src) 2054>; 2055 2056def : GCNPat < 2057 (f32 (uint_to_fp i1:$src)), 2058 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 2059 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), 2060 SSrc_i1:$src) 2061>; 2062 2063def : GCNPat < 2064 (f64 (sint_to_fp i1:$src)), 2065 (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 2066 /*src1mod*/(i32 0), /*src1*/(i32 -1), 2067 SSrc_i1:$src)) 2068>; 2069 2070def : GCNPat < 2071 (f64 (uint_to_fp i1:$src)), 2072 (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 2073 /*src1mod*/(i32 0), /*src1*/(i32 1), 2074 SSrc_i1:$src)) 2075>; 2076 2077//===----------------------------------------------------------------------===// 2078// Miscellaneous Patterns 2079//===----------------------------------------------------------------------===// 2080 2081// Eliminate a zero extension from an fp16 operation if it already 2082// zeros the high bits of the 32-bit register. 2083// 2084// This is complicated on gfx9+. Some instructions maintain the legacy 2085// zeroing behavior, but others preserve the high bits. Some have a 2086// control bit to change the behavior. We can't simply say with 2087// certainty what the source behavior is without more context on how 2088// the src is lowered. e.g. fptrunc + fma may be lowered to a 2089// v_fma_mix* instruction which does not zero, or may not. 2090def : GCNPat< 2091 (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))), 2092 (COPY VSrc_b16:$src)>; 2093 2094def : GCNPat < 2095 (i32 (trunc i64:$a)), 2096 (EXTRACT_SUBREG $a, sub0) 2097>; 2098 2099def : GCNPat < 2100 (i1 (trunc i32:$a)), 2101 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) 2102>; 2103 2104def : GCNPat < 2105 (i1 (trunc i16:$a)), 2106 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) 2107>; 2108 2109def : GCNPat < 2110 (i1 (trunc i64:$a)), 2111 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), 2112 (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) 2113>; 2114 2115def : GCNPat < 2116 (i32 (bswap i32:$a)), 2117 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), 2118 (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)), 2119 (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8))) 2120>; 2121 2122// FIXME: This should have been narrowed to i32 during legalization. 2123// This pattern should also be skipped for GlobalISel 2124def : GCNPat < 2125 (i64 (bswap i64:$a)), 2126 (REG_SEQUENCE VReg_64, 2127 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), 2128 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), 2129 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), 2130 (i32 24)), 2131 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), 2132 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), 2133 (i32 8))), 2134 sub0, 2135 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), 2136 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), 2137 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), 2138 (i32 24)), 2139 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), 2140 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), 2141 (i32 8))), 2142 sub1) 2143>; 2144 2145// FIXME: The AddedComplexity should not be needed, but in GlobalISel 2146// the BFI pattern ends up taking precedence without it. 2147let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in { 2148// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24) 2149// 2150// My reading of the manual suggests we should be using src0 for the 2151// register value, but this is what seems to work. 2152def : GCNPat < 2153 (i32 (bswap i32:$a)), 2154 (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203))) 2155>; 2156 2157// FIXME: This should have been narrowed to i32 during legalization. 2158// This pattern should also be skipped for GlobalISel 2159def : GCNPat < 2160 (i64 (bswap i64:$a)), 2161 (REG_SEQUENCE VReg_64, 2162 (V_PERM_B32_e64 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1), 2163 (S_MOV_B32 (i32 0x00010203))), 2164 sub0, 2165 (V_PERM_B32_e64 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0), 2166 (S_MOV_B32 (i32 0x00010203))), 2167 sub1) 2168>; 2169 2170// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24) 2171// The 12s emit 0s. 2172def : GCNPat < 2173 (i16 (bswap i16:$a)), 2174 (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001))) 2175>; 2176 2177def : GCNPat < 2178 (i32 (zext (bswap i16:$a))), 2179 (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001))) 2180>; 2181 2182// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24) 2183def : GCNPat < 2184 (v2i16 (bswap v2i16:$a)), 2185 (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001))) 2186>; 2187 2188} 2189 2190 2191// Prefer selecting to max when legal, but using mul is always valid. 2192let AddedComplexity = -5 in { 2193def : GCNPat< 2194 (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), 2195 (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src) 2196>; 2197 2198def : GCNPat< 2199 (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))), 2200 (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src) 2201>; 2202 2203def : GCNPat< 2204 (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), 2205 (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE) 2206>; 2207 2208def : GCNPat< 2209 (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), 2210 (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src) 2211>; 2212 2213def : GCNPat< 2214 (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))), 2215 (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src) 2216>; 2217 2218// TODO: Handle fneg like other types. 2219def : GCNPat< 2220 (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), 2221 (V_MUL_F64_e64 0, CONST.FP64_ONE, $src_mods, $src) 2222>; 2223} // End AddedComplexity = -5 2224 2225multiclass SelectCanonicalizeAsMax< 2226 list<Predicate> f32_preds = [], 2227 list<Predicate> f64_preds = [], 2228 list<Predicate> f16_preds = []> { 2229 def : GCNPat< 2230 (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), 2231 (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> { 2232 let OtherPredicates = f32_preds; 2233 } 2234 2235 def : GCNPat< 2236 (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), 2237 (V_MAX_F64_e64 $src_mods, $src, $src_mods, $src)> { 2238 let OtherPredicates = f64_preds; 2239 } 2240 2241 def : GCNPat< 2242 (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), 2243 (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> { 2244 // FIXME: Should have 16-bit inst subtarget predicate 2245 let OtherPredicates = f16_preds; 2246 } 2247 2248 def : GCNPat< 2249 (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), 2250 (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> { 2251 // FIXME: Should have VOP3P subtarget predicate 2252 let OtherPredicates = f16_preds; 2253 } 2254} 2255 2256// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal 2257// mode, and would never flush. For f64, it's faster to do implement 2258// this with a max. For f16/f32 it's a wash, but prefer max when 2259// valid. 2260// 2261// FIXME: Lowering f32/f16 with max is worse since we can use a 2262// smaller encoding if the input is fneg'd. It also adds an extra 2263// register use. 2264let SubtargetPredicate = HasMinMaxDenormModes in { 2265 defm : SelectCanonicalizeAsMax<[], [], []>; 2266} // End SubtargetPredicate = HasMinMaxDenormModes 2267 2268let SubtargetPredicate = NotHasMinMaxDenormModes in { 2269 // Use the max lowering if we don't need to flush. 2270 2271 // FIXME: We don't do use this for f32 as a workaround for the 2272 // library being compiled with the default ieee mode, but 2273 // potentially being called from flushing kernels. Really we should 2274 // not be mixing code expecting different default FP modes, but mul 2275 // works in any FP environment. 2276 defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>; 2277} // End SubtargetPredicate = NotHasMinMaxDenormModes 2278 2279 2280let OtherPredicates = [HasDLInsts] in { 2281def : GCNPat < 2282 (fma (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)), 2283 (f32 (VOP3Mods f32:$src1, i32:$src1_modifiers)), 2284 (f32 (VOP3NoMods f32:$src2))), 2285 (V_FMAC_F32_e64 $src0_modifiers, $src0, $src1_modifiers, $src1, 2286 SRCMODS.NONE, $src2) 2287>; 2288} // End OtherPredicates = [HasDLInsts] 2289 2290let SubtargetPredicate = isGFX10Plus in 2291def : GCNPat < 2292 (fma (f16 (VOP3Mods f32:$src0, i32:$src0_modifiers)), 2293 (f16 (VOP3Mods f32:$src1, i32:$src1_modifiers)), 2294 (f16 (VOP3NoMods f32:$src2))), 2295 (V_FMAC_F16_e64 $src0_modifiers, $src0, $src1_modifiers, $src1, 2296 SRCMODS.NONE, $src2) 2297>; 2298 2299let SubtargetPredicate = isGFX90APlus in 2300def : GCNPat < 2301 (fma (f64 (VOP3Mods0 f64:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)), 2302 (f64 (VOP3Mods f64:$src1, i32:$src1_modifiers)), 2303 (f64 (VOP3NoMods f64:$src2))), 2304 (V_FMAC_F64_e64 $src0_modifiers, $src0, $src1_modifiers, $src1, 2305 SRCMODS.NONE, $src2, $clamp, $omod) 2306>; 2307 2308// COPY is workaround tablegen bug from multiple outputs 2309// from S_LSHL_B32's multiple outputs from implicit scc def. 2310def : GCNPat < 2311 (v2i16 (build_vector (i16 0), (i16 SReg_32:$src1))), 2312 (S_LSHL_B32 SReg_32:$src1, (i16 16)) 2313>; 2314 2315def : GCNPat < 2316 (v2i16 (build_vector (i16 SReg_32:$src1), (i16 0))), 2317 (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1) 2318>; 2319 2320def : GCNPat < 2321 (v2f16 (build_vector (f16 SReg_32:$src1), (f16 FP_ZERO))), 2322 (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1) 2323>; 2324 2325def : GCNPat < 2326 (v2i16 (build_vector (i16 SReg_32:$src0), (i16 undef))), 2327 (COPY_TO_REGCLASS SReg_32:$src0, SReg_32) 2328>; 2329 2330def : GCNPat < 2331 (v2i16 (build_vector (i16 VGPR_32:$src0), (i16 undef))), 2332 (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32) 2333>; 2334 2335def : GCNPat < 2336 (v2f16 (build_vector f16:$src0, (f16 undef))), 2337 (COPY $src0) 2338>; 2339 2340def : GCNPat < 2341 (v2i16 (build_vector (i16 undef), (i16 SReg_32:$src1))), 2342 (S_LSHL_B32 SReg_32:$src1, (i32 16)) 2343>; 2344 2345def : GCNPat < 2346 (v2f16 (build_vector (f16 undef), (f16 SReg_32:$src1))), 2347 (S_LSHL_B32 SReg_32:$src1, (i32 16)) 2348>; 2349 2350let SubtargetPredicate = HasVOP3PInsts in { 2351def : GCNPat < 2352 (v2i16 (build_vector (i16 SReg_32:$src0), (i16 SReg_32:$src1))), 2353 (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1) 2354>; 2355 2356// With multiple uses of the shift, this will duplicate the shift and 2357// increase register pressure. 2358def : GCNPat < 2359 (v2i16 (build_vector (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))), 2360 (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1)) 2361>; 2362 2363 2364def : GCNPat < 2365 (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), 2366 (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))), 2367 (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1) 2368>; 2369 2370// TODO: Should source modifiers be matched to v_pack_b32_f16? 2371def : GCNPat < 2372 (v2f16 (build_vector (f16 SReg_32:$src0), (f16 SReg_32:$src1))), 2373 (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1) 2374>; 2375 2376def : GCNPat < 2377 (v2f16 (is_canonicalized<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)), 2378 (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))), 2379 (V_PACK_B32_F16_e64 $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1) 2380>; 2381} // End SubtargetPredicate = HasVOP3PInsts 2382 2383def : GCNPat < 2384 (v2f16 (scalar_to_vector f16:$src0)), 2385 (COPY $src0) 2386>; 2387 2388def : GCNPat < 2389 (v2i16 (scalar_to_vector i16:$src0)), 2390 (COPY $src0) 2391>; 2392 2393def : GCNPat < 2394 (v4i16 (scalar_to_vector i16:$src0)), 2395 (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) 2396>; 2397 2398def : GCNPat < 2399 (v4f16 (scalar_to_vector f16:$src0)), 2400 (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) 2401>; 2402 2403def : GCNPat < 2404 (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask, 2405 timm:$bank_mask, timm:$bound_ctrl)), 2406 (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src, 2407 (as_i32timm $dpp_ctrl), (as_i32timm $row_mask), 2408 (as_i32timm $bank_mask), 2409 (as_i1timm $bound_ctrl)) 2410>; 2411 2412def : GCNPat < 2413 (i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask, 2414 timm:$bank_mask, timm:$bound_ctrl)), 2415 (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl), 2416 (as_i32timm $row_mask), (as_i32timm $bank_mask), 2417 (as_i1timm $bound_ctrl)) 2418>; 2419 2420//===----------------------------------------------------------------------===// 2421// Fract Patterns 2422//===----------------------------------------------------------------------===// 2423 2424let SubtargetPredicate = isGFX6 in { 2425 2426// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is 2427// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient 2428// way to implement it is using V_FRACT_F64. 2429// The workaround for the V_FRACT bug is: 2430// fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) 2431 2432// Convert floor(x) to (x - fract(x)) 2433 2434// Don't bother handling this for GlobalISel, it's handled during 2435// lowering. 2436// 2437// FIXME: DAG should also custom lower this. 2438def : GCNPat < 2439 (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), 2440 (V_ADD_F64_e64 2441 $mods, 2442 $x, 2443 SRCMODS.NEG, 2444 (V_CNDMASK_B64_PSEUDO 2445 (V_MIN_F64_e64 2446 SRCMODS.NONE, 2447 (V_FRACT_F64_e64 $mods, $x), 2448 SRCMODS.NONE, 2449 (V_MOV_B64_PSEUDO 0x3fefffffffffffff)), 2450 $x, 2451 (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/)))) 2452>; 2453 2454} // End SubtargetPredicates = isGFX6 2455 2456//============================================================================// 2457// Miscellaneous Optimization Patterns 2458//============================================================================// 2459 2460// Undo sub x, c -> add x, -c canonicalization since c is more likely 2461// an inline immediate than -c. 2462// TODO: Also do for 64-bit. 2463def : GCNPat< 2464 (add i32:$src0, (i32 NegSubInlineConst32:$src1)), 2465 (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1) 2466>; 2467 2468def : GCNPat< 2469 (add i32:$src0, (i32 NegSubInlineConst32:$src1)), 2470 (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> { 2471 let SubtargetPredicate = HasAddNoCarryInsts; 2472} 2473 2474def : GCNPat< 2475 (add i32:$src0, (i32 NegSubInlineConst32:$src1)), 2476 (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> { 2477 let SubtargetPredicate = NotHasAddNoCarryInsts; 2478} 2479 2480 2481// Avoid pointlessly materializing a constant in VGPR. 2482// FIXME: Should also do this for readlane, but tablegen crashes on 2483// the ignored src1. 2484def : GCNPat< 2485 (int_amdgcn_readfirstlane (i32 imm:$src)), 2486 (S_MOV_B32 SReg_32:$src) 2487>; 2488 2489multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> { 2490 def : GCNPat < 2491 (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), 2492 (BFM $a, $b) 2493 >; 2494 2495 def : GCNPat < 2496 (vt (add (vt (shl 1, vt:$a)), -1)), 2497 (BFM $a, (MOV (i32 0))) 2498 >; 2499} 2500 2501defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>; 2502// FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>; 2503 2504// Bitfield extract patterns 2505 2506def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{ 2507 return isMask_32(Imm); 2508}]>; 2509 2510def IMMPopCount : SDNodeXForm<imm, [{ 2511 return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N), 2512 MVT::i32); 2513}]>; 2514 2515def : AMDGPUPat < 2516 (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)), 2517 IMMZeroBasedBitfieldMask:$mask), 2518 (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask))) 2519>; 2520 2521// x & ((1 << y) - 1) 2522def : AMDGPUPat < 2523 (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)), 2524 (V_BFE_U32_e64 $src, (i32 0), $width) 2525>; 2526 2527// x & ~(-1 << y) 2528def : AMDGPUPat < 2529 (DivergentBinFrag<and> i32:$src, 2530 (xor_oneuse (shl_oneuse -1, i32:$width), -1)), 2531 (V_BFE_U32_e64 $src, (i32 0), $width) 2532>; 2533 2534// x & (-1 >> (bitwidth - y)) 2535def : AMDGPUPat < 2536 (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, i32:$width))), 2537 (V_BFE_U32_e64 $src, (i32 0), $width) 2538>; 2539 2540// x << (bitwidth - y) >> (bitwidth - y) 2541def : AMDGPUPat < 2542 (DivergentBinFrag<srl> (shl_oneuse i32:$src, (sub 32, i32:$width)), 2543 (sub 32, i32:$width)), 2544 (V_BFE_U32_e64 $src, (i32 0), $width) 2545>; 2546 2547def : AMDGPUPat < 2548 (DivergentBinFrag<sra> (shl_oneuse i32:$src, (sub 32, i32:$width)), 2549 (sub 32, i32:$width)), 2550 (V_BFE_I32_e64 $src, (i32 0), $width) 2551>; 2552 2553// SHA-256 Ma patterns 2554 2555// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y 2556def : AMDGPUPat < 2557 (DivergentBinFrag<or> (and i32:$x, i32:$z), 2558 (and i32:$y, (or i32:$x, i32:$z))), 2559 (V_BFI_B32_e64 (V_XOR_B32_e64 i32:$x, i32:$y), i32:$z, i32:$y) 2560>; 2561 2562def : AMDGPUPat < 2563 (DivergentBinFrag<or> (and i64:$x, i64:$z), 2564 (and i64:$y, (or i64:$x, i64:$z))), 2565 (REG_SEQUENCE SReg_64, 2566 (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub0)), 2567 (i32 (EXTRACT_SUBREG SReg_64:$y, sub0))), 2568 (i32 (EXTRACT_SUBREG SReg_64:$z, sub0)), 2569 (i32 (EXTRACT_SUBREG SReg_64:$y, sub0))), sub0, 2570 (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub1)), 2571 (i32 (EXTRACT_SUBREG SReg_64:$y, sub1))), 2572 (i32 (EXTRACT_SUBREG SReg_64:$z, sub1)), 2573 (i32 (EXTRACT_SUBREG SReg_64:$y, sub1))), sub1) 2574>; 2575 2576multiclass IntMed3Pat<Instruction med3Inst, 2577 SDPatternOperator min, 2578 SDPatternOperator max, 2579 SDPatternOperator min_oneuse, 2580 SDPatternOperator max_oneuse> { 2581 2582 // This matches 16 permutations of 2583 // min(max(a, b), max(min(a, b), c)) 2584 def : AMDGPUPat < 2585 (min (max_oneuse i32:$src0, i32:$src1), 2586 (max_oneuse (min_oneuse i32:$src0, i32:$src1), i32:$src2)), 2587 (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2) 2588>; 2589 2590 // This matches 16 permutations of 2591 // max(min(x, y), min(max(x, y), z)) 2592 def : AMDGPUPat < 2593 (max (min_oneuse i32:$src0, i32:$src1), 2594 (min_oneuse (max_oneuse i32:$src0, i32:$src1), i32:$src2)), 2595 (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2) 2596>; 2597} 2598 2599defm : IntMed3Pat<V_MED3_I32_e64, smin, smax, smin_oneuse, smax_oneuse>; 2600defm : IntMed3Pat<V_MED3_U32_e64, umin, umax, umin_oneuse, umax_oneuse>; 2601 2602// This matches 16 permutations of 2603// max(min(x, y), min(max(x, y), z)) 2604class FPMed3Pat<ValueType vt, 2605 //SDPatternOperator max, SDPatternOperator min, 2606 Instruction med3Inst> : GCNPat< 2607 (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 2608 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 2609 (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 2610 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 2611 (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), 2612 (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 2613>; 2614 2615class FP16Med3Pat<ValueType vt, 2616 Instruction med3Inst> : GCNPat< 2617 (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 2618 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 2619 (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 2620 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 2621 (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), 2622 (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE) 2623>; 2624 2625multiclass Int16Med3Pat<Instruction med3Inst, 2626 SDPatternOperator min, 2627 SDPatternOperator max, 2628 SDPatternOperator max_oneuse, 2629 SDPatternOperator min_oneuse> { 2630 // This matches 16 permutations of 2631 // max(min(x, y), min(max(x, y), z)) 2632 def : GCNPat < 2633 (max (min_oneuse i16:$src0, i16:$src1), 2634 (min_oneuse (max_oneuse i16:$src0, i16:$src1), i16:$src2)), 2635 (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE) 2636>; 2637 2638 // This matches 16 permutations of 2639 // min(max(a, b), max(min(a, b), c)) 2640 def : GCNPat < 2641 (min (max_oneuse i16:$src0, i16:$src1), 2642 (max_oneuse (min_oneuse i16:$src0, i16:$src1), i16:$src2)), 2643 (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE) 2644>; 2645} 2646 2647def : FPMed3Pat<f32, V_MED3_F32_e64>; 2648 2649let OtherPredicates = [isGFX9Plus] in { 2650def : FP16Med3Pat<f16, V_MED3_F16_e64>; 2651defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax, smax_oneuse, smin_oneuse>; 2652defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax, umax_oneuse, umin_oneuse>; 2653} // End Predicates = [isGFX9Plus] 2654 2655class AMDGPUGenericInstruction : GenericInstruction { 2656 let Namespace = "AMDGPU"; 2657} 2658 2659def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction { 2660 let OutOperandList = (outs type0:$dst); 2661 let InOperandList = (ins type1:$src); 2662 let hasSideEffects = 0; 2663} 2664 2665def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction { 2666 let OutOperandList = (outs type0:$dst); 2667 let InOperandList = (ins type1:$src); 2668 let hasSideEffects = 0; 2669} 2670 2671class BufferLoadGenericInstruction : AMDGPUGenericInstruction { 2672 let OutOperandList = (outs type0:$dst); 2673 let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset, 2674 type2:$soffset, untyped_imm_0:$offset, 2675 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2676 let hasSideEffects = 0; 2677 let mayLoad = 1; 2678} 2679 2680class TBufferLoadGenericInstruction : AMDGPUGenericInstruction { 2681 let OutOperandList = (outs type0:$dst); 2682 let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset, 2683 type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format, 2684 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2685 let hasSideEffects = 0; 2686 let mayLoad = 1; 2687} 2688 2689def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction; 2690def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction; 2691def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction; 2692def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction; 2693def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction; 2694def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction; 2695def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction; 2696def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction; 2697def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction; 2698 2699class BufferStoreGenericInstruction : AMDGPUGenericInstruction { 2700 let OutOperandList = (outs); 2701 let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, 2702 type2:$soffset, untyped_imm_0:$offset, 2703 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2704 let hasSideEffects = 0; 2705 let mayStore = 1; 2706} 2707 2708class TBufferStoreGenericInstruction : AMDGPUGenericInstruction { 2709 let OutOperandList = (outs); 2710 let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, 2711 type2:$soffset, untyped_imm_0:$offset, 2712 untyped_imm_0:$format, 2713 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2714 let hasSideEffects = 0; 2715 let mayStore = 1; 2716} 2717 2718def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction; 2719def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction; 2720def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction; 2721def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction; 2722def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction; 2723def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction; 2724def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction; 2725 2726def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction { 2727 let OutOperandList = (outs type0:$dst); 2728 let InOperandList = (ins type0:$src0, type0:$src1); 2729 let hasSideEffects = 0; 2730} 2731 2732def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction { 2733 let OutOperandList = (outs type0:$dst); 2734 let InOperandList = (ins type0:$src0, type0:$src1); 2735 let hasSideEffects = 0; 2736} 2737 2738foreach N = 0-3 in { 2739def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction { 2740 let OutOperandList = (outs type0:$dst); 2741 let InOperandList = (ins type0:$src0); 2742 let hasSideEffects = 0; 2743} 2744} 2745 2746def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction { 2747 let OutOperandList = (outs type0:$dst); 2748 let InOperandList = (ins type0:$src0, type0:$src1); 2749 let hasSideEffects = 0; 2750} 2751 2752def G_AMDGPU_SMED3 : AMDGPUGenericInstruction { 2753 let OutOperandList = (outs type0:$dst); 2754 let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2); 2755 let hasSideEffects = 0; 2756} 2757 2758def G_AMDGPU_UMED3 : AMDGPUGenericInstruction { 2759 let OutOperandList = (outs type0:$dst); 2760 let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2); 2761 let hasSideEffects = 0; 2762} 2763 2764// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector 2765// operand Expects a MachineMemOperand in addition to explicit 2766// operands. 2767def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction { 2768 let OutOperandList = (outs type0:$oldval); 2769 let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval); 2770 let hasSideEffects = 0; 2771 let mayLoad = 1; 2772 let mayStore = 1; 2773} 2774 2775let Namespace = "AMDGPU" in { 2776def G_AMDGPU_ATOMIC_INC : G_ATOMICRMW_OP; 2777def G_AMDGPU_ATOMIC_DEC : G_ATOMICRMW_OP; 2778def G_AMDGPU_ATOMIC_FMIN : G_ATOMICRMW_OP; 2779def G_AMDGPU_ATOMIC_FMAX : G_ATOMICRMW_OP; 2780} 2781 2782class BufferAtomicGenericInstruction<bit NoRtn = 0> : AMDGPUGenericInstruction { 2783 let OutOperandList = !if(NoRtn, (outs), (outs type0:$dst)); 2784 let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, 2785 type2:$soffset, untyped_imm_0:$offset, 2786 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2787 let hasSideEffects = 0; 2788 let mayLoad = 1; 2789 let mayStore = 1; 2790} 2791 2792def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction; 2793def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction; 2794def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction; 2795def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction; 2796def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction; 2797def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction; 2798def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction; 2799def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction; 2800def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction; 2801def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction; 2802def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction; 2803def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction; 2804def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction; 2805def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction; 2806def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction; 2807 2808def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction { 2809 let OutOperandList = (outs type0:$dst); 2810 let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex, 2811 type2:$voffset, type2:$soffset, untyped_imm_0:$offset, 2812 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2813 let hasSideEffects = 0; 2814 let mayLoad = 1; 2815 let mayStore = 1; 2816} 2817 2818// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as 2819// a workaround for the intrinsic being defined as readnone, but 2820// really needs a memory operand. 2821def G_AMDGPU_S_BUFFER_LOAD : AMDGPUGenericInstruction { 2822 let OutOperandList = (outs type0:$dst); 2823 let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy); 2824 let hasSideEffects = 0; 2825 let mayLoad = 1; 2826 let mayStore = 0; 2827} 2828 2829// This is equivalent to the G_INTRINSIC*, but the operands may have 2830// been legalized depending on the subtarget requirements. 2831def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction { 2832 let OutOperandList = (outs type0:$dst); 2833 let InOperandList = (ins unknown:$intrin, variable_ops); 2834 let hasSideEffects = 0; 2835 let mayLoad = 1; 2836 2837 // FIXME: Use separate opcode for atomics. 2838 let mayStore = 1; 2839} 2840 2841// This is equivalent to the G_INTRINSIC*, but the operands may have 2842// been legalized depending on the subtarget requirements. 2843def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction { 2844 let OutOperandList = (outs); 2845 let InOperandList = (ins unknown:$intrin, variable_ops); 2846 let hasSideEffects = 0; 2847 let mayStore = 1; 2848} 2849 2850def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction { 2851 let OutOperandList = (outs type0:$dst); 2852 let InOperandList = (ins unknown:$intrin, variable_ops); 2853 let hasSideEffects = 0; 2854 let mayLoad = 1; 2855 let mayStore = 0; 2856} 2857