1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/BranchProbability.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41
42 using namespace llvm;
43
44 #define GET_INSTRINFO_CTOR_DTOR
45 #define GET_INSTRMAP_INFO
46 #include "SystemZGenInstrInfo.inc"
47
48 #define DEBUG_TYPE "systemz-II"
49
50 // Return a mask with Count low bits set.
allOnes(unsigned int Count)51 static uint64_t allOnes(unsigned int Count) {
52 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
53 }
54
55 // Pin the vtable to this file.
anchor()56 void SystemZInstrInfo::anchor() {}
57
SystemZInstrInfo(SystemZSubtarget & sti)58 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
59 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
60 RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister()),
61 STI(sti) {}
62
63 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores,
64 // each having the opcode given by NewOpcode.
splitMove(MachineBasicBlock::iterator MI,unsigned NewOpcode) const65 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
66 unsigned NewOpcode) const {
67 MachineBasicBlock *MBB = MI->getParent();
68 MachineFunction &MF = *MBB->getParent();
69
70 // Get two load or store instructions. Use the original instruction for one
71 // of them (arbitrarily the second here) and create a clone for the other.
72 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
73 MBB->insert(MI, EarlierMI);
74
75 // Set up the two 64-bit registers and remember super reg and its flags.
76 MachineOperand &HighRegOp = EarlierMI->getOperand(0);
77 MachineOperand &LowRegOp = MI->getOperand(0);
78 Register Reg128 = LowRegOp.getReg();
79 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
80 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef());
81 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
82 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
83
84 if (MI->mayStore()) {
85 // Add implicit uses of the super register in case one of the subregs is
86 // undefined. We could track liveness and skip storing an undefined
87 // subreg, but this is hopefully rare (discovered with llvm-stress).
88 // If Reg128 was killed, set kill flag on MI.
89 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
90 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
91 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
92 }
93
94 // The address in the first (high) instruction is already correct.
95 // Adjust the offset in the second (low) instruction.
96 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
97 MachineOperand &LowOffsetOp = MI->getOperand(2);
98 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
99
100 // Clear the kill flags on the registers in the first instruction.
101 if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
102 EarlierMI->getOperand(0).setIsKill(false);
103 EarlierMI->getOperand(1).setIsKill(false);
104 EarlierMI->getOperand(3).setIsKill(false);
105
106 // Set the opcodes.
107 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
108 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
109 assert(HighOpcode && LowOpcode && "Both offsets should be in range");
110
111 EarlierMI->setDesc(get(HighOpcode));
112 MI->setDesc(get(LowOpcode));
113 }
114
115 // Split ADJDYNALLOC instruction MI.
splitAdjDynAlloc(MachineBasicBlock::iterator MI) const116 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
117 MachineBasicBlock *MBB = MI->getParent();
118 MachineFunction &MF = *MBB->getParent();
119 MachineFrameInfo &MFFrame = MF.getFrameInfo();
120 MachineOperand &OffsetMO = MI->getOperand(2);
121
122 uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
123 SystemZMC::ELFCallFrameSize +
124 OffsetMO.getImm());
125 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
126 assert(NewOpcode && "No support for huge argument lists yet");
127 MI->setDesc(get(NewOpcode));
128 OffsetMO.setImm(Offset);
129 }
130
131 // MI is an RI-style pseudo instruction. Replace it with LowOpcode
132 // if the first operand is a low GR32 and HighOpcode if the first operand
133 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand
134 // and HighOpcode takes an unsigned 32-bit operand. In those cases,
135 // MI has the same kind of operand as LowOpcode, so needs to be converted
136 // if HighOpcode is used.
expandRIPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned HighOpcode,bool ConvertHigh) const137 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
138 unsigned HighOpcode,
139 bool ConvertHigh) const {
140 Register Reg = MI.getOperand(0).getReg();
141 bool IsHigh = SystemZ::isHighReg(Reg);
142 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
143 if (IsHigh && ConvertHigh)
144 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
145 }
146
147 // MI is a three-operand RIE-style pseudo instruction. Replace it with
148 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
149 // followed by HighOpcode or LowOpcode, depending on whether the target
150 // is a high or low GR32.
expandRIEPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned LowOpcodeK,unsigned HighOpcode) const151 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
152 unsigned LowOpcodeK,
153 unsigned HighOpcode) const {
154 Register DestReg = MI.getOperand(0).getReg();
155 Register SrcReg = MI.getOperand(1).getReg();
156 bool DestIsHigh = SystemZ::isHighReg(DestReg);
157 bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
158 if (!DestIsHigh && !SrcIsHigh)
159 MI.setDesc(get(LowOpcodeK));
160 else {
161 if (DestReg != SrcReg) {
162 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
163 SystemZ::LR, 32, MI.getOperand(1).isKill(),
164 MI.getOperand(1).isUndef());
165 MI.getOperand(1).setReg(DestReg);
166 }
167 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
168 MI.tieOperands(0, 1);
169 }
170 }
171
172 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode
173 // if the first operand is a low GR32 and HighOpcode if the first operand
174 // is a high GR32.
expandRXYPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned HighOpcode) const175 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
176 unsigned HighOpcode) const {
177 Register Reg = MI.getOperand(0).getReg();
178 unsigned Opcode = getOpcodeForOffset(
179 SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
180 MI.getOperand(2).getImm());
181 MI.setDesc(get(Opcode));
182 }
183
184 // MI is a load-on-condition pseudo instruction with a single register
185 // (source or destination) operand. Replace it with LowOpcode if the
186 // register is a low GR32 and HighOpcode if the register is a high GR32.
expandLOCPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned HighOpcode) const187 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
188 unsigned HighOpcode) const {
189 Register Reg = MI.getOperand(0).getReg();
190 unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
191 MI.setDesc(get(Opcode));
192 }
193
194 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
195 // of one GRX32 into another. Replace it with LowOpcode if both operands
196 // are low registers, otherwise use RISB[LH]G.
expandZExtPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned Size) const197 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
198 unsigned Size) const {
199 MachineInstrBuilder MIB =
200 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
201 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
202 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
203
204 // Keep the remaining operands as-is.
205 for (unsigned I = 2; I < MI.getNumOperands(); ++I)
206 MIB.add(MI.getOperand(I));
207
208 MI.eraseFromParent();
209 }
210
expandLoadStackGuard(MachineInstr * MI) const211 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
212 MachineBasicBlock *MBB = MI->getParent();
213 MachineFunction &MF = *MBB->getParent();
214 const Register Reg64 = MI->getOperand(0).getReg();
215 const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
216
217 // EAR can only load the low subregister so us a shift for %a0 to produce
218 // the GR containing %a0 and %a1.
219
220 // ear <reg>, %a0
221 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
222 .addReg(SystemZ::A0)
223 .addReg(Reg64, RegState::ImplicitDefine);
224
225 // sllg <reg>, <reg>, 32
226 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
227 .addReg(Reg64)
228 .addReg(0)
229 .addImm(32);
230
231 // ear <reg>, %a1
232 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
233 .addReg(SystemZ::A1);
234
235 // lg <reg>, 40(<reg>)
236 MI->setDesc(get(SystemZ::LG));
237 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
238 }
239
240 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
241 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg
242 // are low registers, otherwise use RISB[LH]G. Size is the number of bits
243 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
244 // KillSrc is true if this move is the last use of SrcReg.
245 MachineInstrBuilder
emitGRX32Move(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,unsigned LowLowOpcode,unsigned Size,bool KillSrc,bool UndefSrc) const246 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
247 MachineBasicBlock::iterator MBBI,
248 const DebugLoc &DL, unsigned DestReg,
249 unsigned SrcReg, unsigned LowLowOpcode,
250 unsigned Size, bool KillSrc,
251 bool UndefSrc) const {
252 unsigned Opcode;
253 bool DestIsHigh = SystemZ::isHighReg(DestReg);
254 bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
255 if (DestIsHigh && SrcIsHigh)
256 Opcode = SystemZ::RISBHH;
257 else if (DestIsHigh && !SrcIsHigh)
258 Opcode = SystemZ::RISBHL;
259 else if (!DestIsHigh && SrcIsHigh)
260 Opcode = SystemZ::RISBLH;
261 else {
262 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
263 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
264 }
265 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
266 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
267 .addReg(DestReg, RegState::Undef)
268 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
269 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
270 }
271
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const272 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
273 bool NewMI,
274 unsigned OpIdx1,
275 unsigned OpIdx2) const {
276 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
277 if (NewMI)
278 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
279 return MI;
280 };
281
282 switch (MI.getOpcode()) {
283 case SystemZ::SELRMux:
284 case SystemZ::SELFHR:
285 case SystemZ::SELR:
286 case SystemZ::SELGR:
287 case SystemZ::LOCRMux:
288 case SystemZ::LOCFHR:
289 case SystemZ::LOCR:
290 case SystemZ::LOCGR: {
291 auto &WorkingMI = cloneIfNew(MI);
292 // Invert condition.
293 unsigned CCValid = WorkingMI.getOperand(3).getImm();
294 unsigned CCMask = WorkingMI.getOperand(4).getImm();
295 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
296 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
297 OpIdx1, OpIdx2);
298 }
299 default:
300 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
301 }
302 }
303
304 // If MI is a simple load or store for a frame object, return the register
305 // it loads or stores and set FrameIndex to the index of the frame object.
306 // Return 0 otherwise.
307 //
308 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
isSimpleMove(const MachineInstr & MI,int & FrameIndex,unsigned Flag)309 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
310 unsigned Flag) {
311 const MCInstrDesc &MCID = MI.getDesc();
312 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
313 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
314 FrameIndex = MI.getOperand(1).getIndex();
315 return MI.getOperand(0).getReg();
316 }
317 return 0;
318 }
319
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const320 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
321 int &FrameIndex) const {
322 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
323 }
324
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const325 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
326 int &FrameIndex) const {
327 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
328 }
329
isStackSlotCopy(const MachineInstr & MI,int & DestFrameIndex,int & SrcFrameIndex) const330 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
331 int &DestFrameIndex,
332 int &SrcFrameIndex) const {
333 // Check for MVC 0(Length,FI1),0(FI2)
334 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
335 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
336 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
337 MI.getOperand(4).getImm() != 0)
338 return false;
339
340 // Check that Length covers the full slots.
341 int64_t Length = MI.getOperand(2).getImm();
342 unsigned FI1 = MI.getOperand(0).getIndex();
343 unsigned FI2 = MI.getOperand(3).getIndex();
344 if (MFI.getObjectSize(FI1) != Length ||
345 MFI.getObjectSize(FI2) != Length)
346 return false;
347
348 DestFrameIndex = FI1;
349 SrcFrameIndex = FI2;
350 return true;
351 }
352
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const353 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
354 MachineBasicBlock *&TBB,
355 MachineBasicBlock *&FBB,
356 SmallVectorImpl<MachineOperand> &Cond,
357 bool AllowModify) const {
358 // Most of the code and comments here are boilerplate.
359
360 // Start from the bottom of the block and work up, examining the
361 // terminator instructions.
362 MachineBasicBlock::iterator I = MBB.end();
363 while (I != MBB.begin()) {
364 --I;
365 if (I->isDebugInstr())
366 continue;
367
368 // Working from the bottom, when we see a non-terminator instruction, we're
369 // done.
370 if (!isUnpredicatedTerminator(*I))
371 break;
372
373 // A terminator that isn't a branch can't easily be handled by this
374 // analysis.
375 if (!I->isBranch())
376 return true;
377
378 // Can't handle indirect branches.
379 SystemZII::Branch Branch(getBranchInfo(*I));
380 if (!Branch.hasMBBTarget())
381 return true;
382
383 // Punt on compound branches.
384 if (Branch.Type != SystemZII::BranchNormal)
385 return true;
386
387 if (Branch.CCMask == SystemZ::CCMASK_ANY) {
388 // Handle unconditional branches.
389 if (!AllowModify) {
390 TBB = Branch.getMBBTarget();
391 continue;
392 }
393
394 // If the block has any instructions after a JMP, delete them.
395 while (std::next(I) != MBB.end())
396 std::next(I)->eraseFromParent();
397
398 Cond.clear();
399 FBB = nullptr;
400
401 // Delete the JMP if it's equivalent to a fall-through.
402 if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
403 TBB = nullptr;
404 I->eraseFromParent();
405 I = MBB.end();
406 continue;
407 }
408
409 // TBB is used to indicate the unconditinal destination.
410 TBB = Branch.getMBBTarget();
411 continue;
412 }
413
414 // Working from the bottom, handle the first conditional branch.
415 if (Cond.empty()) {
416 // FIXME: add X86-style branch swap
417 FBB = TBB;
418 TBB = Branch.getMBBTarget();
419 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
420 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
421 continue;
422 }
423
424 // Handle subsequent conditional branches.
425 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
426
427 // Only handle the case where all conditional branches branch to the same
428 // destination.
429 if (TBB != Branch.getMBBTarget())
430 return true;
431
432 // If the conditions are the same, we can leave them alone.
433 unsigned OldCCValid = Cond[0].getImm();
434 unsigned OldCCMask = Cond[1].getImm();
435 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
436 continue;
437
438 // FIXME: Try combining conditions like X86 does. Should be easy on Z!
439 return false;
440 }
441
442 return false;
443 }
444
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const445 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
446 int *BytesRemoved) const {
447 assert(!BytesRemoved && "code size not handled");
448
449 // Most of the code and comments here are boilerplate.
450 MachineBasicBlock::iterator I = MBB.end();
451 unsigned Count = 0;
452
453 while (I != MBB.begin()) {
454 --I;
455 if (I->isDebugInstr())
456 continue;
457 if (!I->isBranch())
458 break;
459 if (!getBranchInfo(*I).hasMBBTarget())
460 break;
461 // Remove the branch.
462 I->eraseFromParent();
463 I = MBB.end();
464 ++Count;
465 }
466
467 return Count;
468 }
469
470 bool SystemZInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const471 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
472 assert(Cond.size() == 2 && "Invalid condition");
473 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
474 return false;
475 }
476
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const477 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
478 MachineBasicBlock *TBB,
479 MachineBasicBlock *FBB,
480 ArrayRef<MachineOperand> Cond,
481 const DebugLoc &DL,
482 int *BytesAdded) const {
483 // In this function we output 32-bit branches, which should always
484 // have enough range. They can be shortened and relaxed by later code
485 // in the pipeline, if desired.
486
487 // Shouldn't be a fall through.
488 assert(TBB && "insertBranch must not be told to insert a fallthrough");
489 assert((Cond.size() == 2 || Cond.size() == 0) &&
490 "SystemZ branch conditions have one component!");
491 assert(!BytesAdded && "code size not handled");
492
493 if (Cond.empty()) {
494 // Unconditional branch?
495 assert(!FBB && "Unconditional branch with multiple successors!");
496 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
497 return 1;
498 }
499
500 // Conditional branch.
501 unsigned Count = 0;
502 unsigned CCValid = Cond[0].getImm();
503 unsigned CCMask = Cond[1].getImm();
504 BuildMI(&MBB, DL, get(SystemZ::BRC))
505 .addImm(CCValid).addImm(CCMask).addMBB(TBB);
506 ++Count;
507
508 if (FBB) {
509 // Two-way Conditional branch. Insert the second branch.
510 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
511 ++Count;
512 }
513 return Count;
514 }
515
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int & Mask,int & Value) const516 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
517 Register &SrcReg2, int &Mask,
518 int &Value) const {
519 assert(MI.isCompare() && "Caller should have checked for a comparison");
520
521 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
522 MI.getOperand(1).isImm()) {
523 SrcReg = MI.getOperand(0).getReg();
524 SrcReg2 = 0;
525 Value = MI.getOperand(1).getImm();
526 Mask = ~0;
527 return true;
528 }
529
530 return false;
531 }
532
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Pred,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const533 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
534 ArrayRef<MachineOperand> Pred,
535 Register DstReg, Register TrueReg,
536 Register FalseReg, int &CondCycles,
537 int &TrueCycles,
538 int &FalseCycles) const {
539 // Not all subtargets have LOCR instructions.
540 if (!STI.hasLoadStoreOnCond())
541 return false;
542 if (Pred.size() != 2)
543 return false;
544
545 // Check register classes.
546 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
547 const TargetRegisterClass *RC =
548 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
549 if (!RC)
550 return false;
551
552 // We have LOCR instructions for 32 and 64 bit general purpose registers.
553 if ((STI.hasLoadStoreOnCond2() &&
554 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
555 SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
556 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
557 CondCycles = 2;
558 TrueCycles = 2;
559 FalseCycles = 2;
560 return true;
561 }
562
563 // Can't do anything else.
564 return false;
565 }
566
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Pred,Register TrueReg,Register FalseReg) const567 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
568 MachineBasicBlock::iterator I,
569 const DebugLoc &DL, Register DstReg,
570 ArrayRef<MachineOperand> Pred,
571 Register TrueReg,
572 Register FalseReg) const {
573 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
574 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
575
576 assert(Pred.size() == 2 && "Invalid condition");
577 unsigned CCValid = Pred[0].getImm();
578 unsigned CCMask = Pred[1].getImm();
579
580 unsigned Opc;
581 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
582 if (STI.hasMiscellaneousExtensions3())
583 Opc = SystemZ::SELRMux;
584 else if (STI.hasLoadStoreOnCond2())
585 Opc = SystemZ::LOCRMux;
586 else {
587 Opc = SystemZ::LOCR;
588 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
589 Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
590 Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
591 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
592 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
593 TrueReg = TReg;
594 FalseReg = FReg;
595 }
596 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
597 if (STI.hasMiscellaneousExtensions3())
598 Opc = SystemZ::SELGR;
599 else
600 Opc = SystemZ::LOCGR;
601 } else
602 llvm_unreachable("Invalid register class");
603
604 BuildMI(MBB, I, DL, get(Opc), DstReg)
605 .addReg(FalseReg).addReg(TrueReg)
606 .addImm(CCValid).addImm(CCMask);
607 }
608
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI) const609 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
610 Register Reg,
611 MachineRegisterInfo *MRI) const {
612 unsigned DefOpc = DefMI.getOpcode();
613 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
614 DefOpc != SystemZ::LGHI)
615 return false;
616 if (DefMI.getOperand(0).getReg() != Reg)
617 return false;
618 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
619
620 unsigned UseOpc = UseMI.getOpcode();
621 unsigned NewUseOpc;
622 unsigned UseIdx;
623 int CommuteIdx = -1;
624 bool TieOps = false;
625 switch (UseOpc) {
626 case SystemZ::SELRMux:
627 TieOps = true;
628 LLVM_FALLTHROUGH;
629 case SystemZ::LOCRMux:
630 if (!STI.hasLoadStoreOnCond2())
631 return false;
632 NewUseOpc = SystemZ::LOCHIMux;
633 if (UseMI.getOperand(2).getReg() == Reg)
634 UseIdx = 2;
635 else if (UseMI.getOperand(1).getReg() == Reg)
636 UseIdx = 2, CommuteIdx = 1;
637 else
638 return false;
639 break;
640 case SystemZ::SELGR:
641 TieOps = true;
642 LLVM_FALLTHROUGH;
643 case SystemZ::LOCGR:
644 if (!STI.hasLoadStoreOnCond2())
645 return false;
646 NewUseOpc = SystemZ::LOCGHI;
647 if (UseMI.getOperand(2).getReg() == Reg)
648 UseIdx = 2;
649 else if (UseMI.getOperand(1).getReg() == Reg)
650 UseIdx = 2, CommuteIdx = 1;
651 else
652 return false;
653 break;
654 default:
655 return false;
656 }
657
658 if (CommuteIdx != -1)
659 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
660 return false;
661
662 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
663 UseMI.setDesc(get(NewUseOpc));
664 if (TieOps)
665 UseMI.tieOperands(0, 1);
666 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
667 if (DeleteDef)
668 DefMI.eraseFromParent();
669
670 return true;
671 }
672
isPredicable(const MachineInstr & MI) const673 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
674 unsigned Opcode = MI.getOpcode();
675 if (Opcode == SystemZ::Return ||
676 Opcode == SystemZ::Trap ||
677 Opcode == SystemZ::CallJG ||
678 Opcode == SystemZ::CallBR)
679 return true;
680 return false;
681 }
682
683 bool SystemZInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const684 isProfitableToIfCvt(MachineBasicBlock &MBB,
685 unsigned NumCycles, unsigned ExtraPredCycles,
686 BranchProbability Probability) const {
687 // Avoid using conditional returns at the end of a loop (since then
688 // we'd need to emit an unconditional branch to the beginning anyway,
689 // making the loop body longer). This doesn't apply for low-probability
690 // loops (eg. compare-and-swap retry), so just decide based on branch
691 // probability instead of looping structure.
692 // However, since Compare and Trap instructions cost the same as a regular
693 // Compare instruction, we should allow the if conversion to convert this
694 // into a Conditional Compare regardless of the branch probability.
695 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
696 MBB.succ_empty() && Probability < BranchProbability(1, 8))
697 return false;
698 // For now only convert single instructions.
699 return NumCycles == 1;
700 }
701
702 bool SystemZInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumCyclesT,unsigned ExtraPredCyclesT,MachineBasicBlock & FMBB,unsigned NumCyclesF,unsigned ExtraPredCyclesF,BranchProbability Probability) const703 isProfitableToIfCvt(MachineBasicBlock &TMBB,
704 unsigned NumCyclesT, unsigned ExtraPredCyclesT,
705 MachineBasicBlock &FMBB,
706 unsigned NumCyclesF, unsigned ExtraPredCyclesF,
707 BranchProbability Probability) const {
708 // For now avoid converting mutually-exclusive cases.
709 return false;
710 }
711
712 bool SystemZInstrInfo::
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability) const713 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
714 BranchProbability Probability) const {
715 // For now only duplicate single instructions.
716 return NumCycles == 1;
717 }
718
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const719 bool SystemZInstrInfo::PredicateInstruction(
720 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
721 assert(Pred.size() == 2 && "Invalid condition");
722 unsigned CCValid = Pred[0].getImm();
723 unsigned CCMask = Pred[1].getImm();
724 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
725 unsigned Opcode = MI.getOpcode();
726 if (Opcode == SystemZ::Trap) {
727 MI.setDesc(get(SystemZ::CondTrap));
728 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
729 .addImm(CCValid).addImm(CCMask)
730 .addReg(SystemZ::CC, RegState::Implicit);
731 return true;
732 }
733 if (Opcode == SystemZ::Return) {
734 MI.setDesc(get(SystemZ::CondReturn));
735 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
736 .addImm(CCValid).addImm(CCMask)
737 .addReg(SystemZ::CC, RegState::Implicit);
738 return true;
739 }
740 if (Opcode == SystemZ::CallJG) {
741 MachineOperand FirstOp = MI.getOperand(0);
742 const uint32_t *RegMask = MI.getOperand(1).getRegMask();
743 MI.RemoveOperand(1);
744 MI.RemoveOperand(0);
745 MI.setDesc(get(SystemZ::CallBRCL));
746 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
747 .addImm(CCValid)
748 .addImm(CCMask)
749 .add(FirstOp)
750 .addRegMask(RegMask)
751 .addReg(SystemZ::CC, RegState::Implicit);
752 return true;
753 }
754 if (Opcode == SystemZ::CallBR) {
755 MachineOperand Target = MI.getOperand(0);
756 const uint32_t *RegMask = MI.getOperand(1).getRegMask();
757 MI.RemoveOperand(1);
758 MI.RemoveOperand(0);
759 MI.setDesc(get(SystemZ::CallBCR));
760 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
761 .addImm(CCValid).addImm(CCMask)
762 .add(Target)
763 .addRegMask(RegMask)
764 .addReg(SystemZ::CC, RegState::Implicit);
765 return true;
766 }
767 return false;
768 }
769
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const770 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
771 MachineBasicBlock::iterator MBBI,
772 const DebugLoc &DL, MCRegister DestReg,
773 MCRegister SrcReg, bool KillSrc) const {
774 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
775 // super register in case one of the subregs is undefined.
776 // This handles ADDR128 too.
777 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
778 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
779 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
780 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
781 .addReg(SrcReg, RegState::Implicit);
782 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
783 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
784 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
785 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
786 return;
787 }
788
789 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
790 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
791 false);
792 return;
793 }
794
795 // Move 128-bit floating-point values between VR128 and FP128.
796 if (SystemZ::VR128BitRegClass.contains(DestReg) &&
797 SystemZ::FP128BitRegClass.contains(SrcReg)) {
798 MCRegister SrcRegHi =
799 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
800 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
801 MCRegister SrcRegLo =
802 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
803 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
804
805 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
806 .addReg(SrcRegHi, getKillRegState(KillSrc))
807 .addReg(SrcRegLo, getKillRegState(KillSrc));
808 return;
809 }
810 if (SystemZ::FP128BitRegClass.contains(DestReg) &&
811 SystemZ::VR128BitRegClass.contains(SrcReg)) {
812 MCRegister DestRegHi =
813 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
814 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
815 MCRegister DestRegLo =
816 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
817 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
818
819 if (DestRegHi != SrcReg)
820 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
821 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
822 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
823 return;
824 }
825
826 // Move CC value from a GR32.
827 if (DestReg == SystemZ::CC) {
828 unsigned Opcode =
829 SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH;
830 BuildMI(MBB, MBBI, DL, get(Opcode))
831 .addReg(SrcReg, getKillRegState(KillSrc))
832 .addImm(3 << (SystemZ::IPM_CC - 16));
833 return;
834 }
835
836 // Everything else needs only one instruction.
837 unsigned Opcode;
838 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
839 Opcode = SystemZ::LGR;
840 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
841 // For z13 we prefer LDR over LER to avoid partial register dependencies.
842 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
843 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
844 Opcode = SystemZ::LDR;
845 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
846 Opcode = SystemZ::LXR;
847 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
848 Opcode = SystemZ::VLR32;
849 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
850 Opcode = SystemZ::VLR64;
851 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
852 Opcode = SystemZ::VLR;
853 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
854 Opcode = SystemZ::CPYA;
855 else
856 llvm_unreachable("Impossible reg-to-reg copy");
857
858 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
859 .addReg(SrcReg, getKillRegState(KillSrc));
860 }
861
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,Register SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const862 void SystemZInstrInfo::storeRegToStackSlot(
863 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
864 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
865 const TargetRegisterInfo *TRI) const {
866 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
867
868 // Callers may expect a single instruction, so keep 128-bit moves
869 // together for now and lower them after register allocation.
870 unsigned LoadOpcode, StoreOpcode;
871 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
872 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
873 .addReg(SrcReg, getKillRegState(isKill)),
874 FrameIdx);
875 }
876
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,Register DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const877 void SystemZInstrInfo::loadRegFromStackSlot(
878 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg,
879 int FrameIdx, const TargetRegisterClass *RC,
880 const TargetRegisterInfo *TRI) const {
881 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
882
883 // Callers may expect a single instruction, so keep 128-bit moves
884 // together for now and lower them after register allocation.
885 unsigned LoadOpcode, StoreOpcode;
886 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
887 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
888 FrameIdx);
889 }
890
891 // Return true if MI is a simple load or store with a 12-bit displacement
892 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
isSimpleBD12Move(const MachineInstr * MI,unsigned Flag)893 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
894 const MCInstrDesc &MCID = MI->getDesc();
895 return ((MCID.TSFlags & Flag) &&
896 isUInt<12>(MI->getOperand(2).getImm()) &&
897 MI->getOperand(3).getReg() == 0);
898 }
899
900 namespace {
901
902 struct LogicOp {
903 LogicOp() = default;
LogicOp__anonb09efcdd0211::LogicOp904 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
905 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
906
operator bool__anonb09efcdd0211::LogicOp907 explicit operator bool() const { return RegSize; }
908
909 unsigned RegSize = 0;
910 unsigned ImmLSB = 0;
911 unsigned ImmSize = 0;
912 };
913
914 } // end anonymous namespace
915
interpretAndImmediate(unsigned Opcode)916 static LogicOp interpretAndImmediate(unsigned Opcode) {
917 switch (Opcode) {
918 case SystemZ::NILMux: return LogicOp(32, 0, 16);
919 case SystemZ::NIHMux: return LogicOp(32, 16, 16);
920 case SystemZ::NILL64: return LogicOp(64, 0, 16);
921 case SystemZ::NILH64: return LogicOp(64, 16, 16);
922 case SystemZ::NIHL64: return LogicOp(64, 32, 16);
923 case SystemZ::NIHH64: return LogicOp(64, 48, 16);
924 case SystemZ::NIFMux: return LogicOp(32, 0, 32);
925 case SystemZ::NILF64: return LogicOp(64, 0, 32);
926 case SystemZ::NIHF64: return LogicOp(64, 32, 32);
927 default: return LogicOp();
928 }
929 }
930
transferDeadCC(MachineInstr * OldMI,MachineInstr * NewMI)931 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
932 if (OldMI->registerDefIsDead(SystemZ::CC)) {
933 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
934 if (CCDef != nullptr)
935 CCDef->setIsDead(true);
936 }
937 }
938
transferMIFlag(MachineInstr * OldMI,MachineInstr * NewMI,MachineInstr::MIFlag Flag)939 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
940 MachineInstr::MIFlag Flag) {
941 if (OldMI->getFlag(Flag))
942 NewMI->setFlag(Flag);
943 }
944
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV) const945 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
946 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
947 MachineBasicBlock *MBB = MI.getParent();
948
949 // Try to convert an AND into an RISBG-type instruction.
950 // TODO: It might be beneficial to select RISBG and shorten to AND instead.
951 if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
952 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
953 // AND IMMEDIATE leaves the other bits of the register unchanged.
954 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
955 unsigned Start, End;
956 if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
957 unsigned NewOpcode;
958 if (And.RegSize == 64) {
959 NewOpcode = SystemZ::RISBG;
960 // Prefer RISBGN if available, since it does not clobber CC.
961 if (STI.hasMiscellaneousExtensions())
962 NewOpcode = SystemZ::RISBGN;
963 } else {
964 NewOpcode = SystemZ::RISBMux;
965 Start &= 31;
966 End &= 31;
967 }
968 MachineOperand &Dest = MI.getOperand(0);
969 MachineOperand &Src = MI.getOperand(1);
970 MachineInstrBuilder MIB =
971 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
972 .add(Dest)
973 .addReg(0)
974 .addReg(Src.getReg(), getKillRegState(Src.isKill()),
975 Src.getSubReg())
976 .addImm(Start)
977 .addImm(End + 128)
978 .addImm(0);
979 if (LV) {
980 unsigned NumOps = MI.getNumOperands();
981 for (unsigned I = 1; I < NumOps; ++I) {
982 MachineOperand &Op = MI.getOperand(I);
983 if (Op.isReg() && Op.isKill())
984 LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
985 }
986 }
987 transferDeadCC(&MI, MIB);
988 return MIB;
989 }
990 }
991 return nullptr;
992 }
993
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex,LiveIntervals * LIS,VirtRegMap * VRM) const994 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
995 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
996 MachineBasicBlock::iterator InsertPt, int FrameIndex,
997 LiveIntervals *LIS, VirtRegMap *VRM) const {
998 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
999 MachineRegisterInfo &MRI = MF.getRegInfo();
1000 const MachineFrameInfo &MFI = MF.getFrameInfo();
1001 unsigned Size = MFI.getObjectSize(FrameIndex);
1002 unsigned Opcode = MI.getOpcode();
1003
1004 // Check CC liveness if new instruction introduces a dead def of CC.
1005 MCRegUnitIterator CCUnit(MCRegister::from(SystemZ::CC), TRI);
1006 SlotIndex MISlot = SlotIndex();
1007 LiveRange *CCLiveRange = nullptr;
1008 bool CCLiveAtMI = true;
1009 if (LIS) {
1010 MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1011 CCLiveRange = &LIS->getRegUnit(*CCUnit);
1012 CCLiveAtMI = CCLiveRange->liveAt(MISlot);
1013 }
1014 ++CCUnit;
1015 assert(!CCUnit.isValid() && "CC only has one reg unit.");
1016
1017 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1018 if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1019 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1020 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1021 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1022 MI.getDebugLoc(), get(SystemZ::AGSI))
1023 .addFrameIndex(FrameIndex)
1024 .addImm(0)
1025 .addImm(MI.getOperand(2).getImm());
1026 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1027 CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1028 return BuiltMI;
1029 }
1030 return nullptr;
1031 }
1032
1033 // All other cases require a single operand.
1034 if (Ops.size() != 1)
1035 return nullptr;
1036
1037 unsigned OpNum = Ops[0];
1038 assert(Size * 8 ==
1039 TRI->getRegSizeInBits(*MF.getRegInfo()
1040 .getRegClass(MI.getOperand(OpNum).getReg())) &&
1041 "Invalid size combination");
1042
1043 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1044 isInt<8>(MI.getOperand(2).getImm())) {
1045 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1046 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1047 MachineInstr *BuiltMI =
1048 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1049 .addFrameIndex(FrameIndex)
1050 .addImm(0)
1051 .addImm(MI.getOperand(2).getImm());
1052 transferDeadCC(&MI, BuiltMI);
1053 transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1054 return BuiltMI;
1055 }
1056
1057 if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1058 isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1059 (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1060 isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1061 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1062 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1063 MachineInstr *BuiltMI =
1064 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1065 .addFrameIndex(FrameIndex)
1066 .addImm(0)
1067 .addImm((int8_t)MI.getOperand(2).getImm());
1068 transferDeadCC(&MI, BuiltMI);
1069 return BuiltMI;
1070 }
1071
1072 if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1073 isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1074 (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1075 isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1076 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1077 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1078 MachineInstr *BuiltMI =
1079 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1080 .addFrameIndex(FrameIndex)
1081 .addImm(0)
1082 .addImm((int8_t)-MI.getOperand(2).getImm());
1083 transferDeadCC(&MI, BuiltMI);
1084 return BuiltMI;
1085 }
1086
1087 unsigned MemImmOpc = 0;
1088 switch (Opcode) {
1089 case SystemZ::LHIMux:
1090 case SystemZ::LHI: MemImmOpc = SystemZ::MVHI; break;
1091 case SystemZ::LGHI: MemImmOpc = SystemZ::MVGHI; break;
1092 case SystemZ::CHIMux:
1093 case SystemZ::CHI: MemImmOpc = SystemZ::CHSI; break;
1094 case SystemZ::CGHI: MemImmOpc = SystemZ::CGHSI; break;
1095 case SystemZ::CLFIMux:
1096 case SystemZ::CLFI:
1097 if (isUInt<16>(MI.getOperand(1).getImm()))
1098 MemImmOpc = SystemZ::CLFHSI;
1099 break;
1100 case SystemZ::CLGFI:
1101 if (isUInt<16>(MI.getOperand(1).getImm()))
1102 MemImmOpc = SystemZ::CLGHSI;
1103 break;
1104 default: break;
1105 }
1106 if (MemImmOpc)
1107 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1108 get(MemImmOpc))
1109 .addFrameIndex(FrameIndex)
1110 .addImm(0)
1111 .addImm(MI.getOperand(1).getImm());
1112
1113 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1114 bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1115 bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1116 // If we're spilling the destination of an LDGR or LGDR, store the
1117 // source register instead.
1118 if (OpNum == 0) {
1119 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1120 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1121 get(StoreOpcode))
1122 .add(MI.getOperand(1))
1123 .addFrameIndex(FrameIndex)
1124 .addImm(0)
1125 .addReg(0);
1126 }
1127 // If we're spilling the source of an LDGR or LGDR, load the
1128 // destination register instead.
1129 if (OpNum == 1) {
1130 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1131 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1132 get(LoadOpcode))
1133 .add(MI.getOperand(0))
1134 .addFrameIndex(FrameIndex)
1135 .addImm(0)
1136 .addReg(0);
1137 }
1138 }
1139
1140 // Look for cases where the source of a simple store or the destination
1141 // of a simple load is being spilled. Try to use MVC instead.
1142 //
1143 // Although MVC is in practice a fast choice in these cases, it is still
1144 // logically a bytewise copy. This means that we cannot use it if the
1145 // load or store is volatile. We also wouldn't be able to use MVC if
1146 // the two memories partially overlap, but that case cannot occur here,
1147 // because we know that one of the memories is a full frame index.
1148 //
1149 // For performance reasons, we also want to avoid using MVC if the addresses
1150 // might be equal. We don't worry about that case here, because spill slot
1151 // coloring happens later, and because we have special code to remove
1152 // MVCs that turn out to be redundant.
1153 if (OpNum == 0 && MI.hasOneMemOperand()) {
1154 MachineMemOperand *MMO = *MI.memoperands_begin();
1155 if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1156 // Handle conversion of loads.
1157 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1158 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1159 get(SystemZ::MVC))
1160 .addFrameIndex(FrameIndex)
1161 .addImm(0)
1162 .addImm(Size)
1163 .add(MI.getOperand(1))
1164 .addImm(MI.getOperand(2).getImm())
1165 .addMemOperand(MMO);
1166 }
1167 // Handle conversion of stores.
1168 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1169 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1170 get(SystemZ::MVC))
1171 .add(MI.getOperand(1))
1172 .addImm(MI.getOperand(2).getImm())
1173 .addImm(Size)
1174 .addFrameIndex(FrameIndex)
1175 .addImm(0)
1176 .addMemOperand(MMO);
1177 }
1178 }
1179 }
1180
1181 // If the spilled operand is the final one or the instruction is
1182 // commutable, try to change <INSN>R into <INSN>. Don't introduce a def of
1183 // CC if it is live and MI does not define it.
1184 unsigned NumOps = MI.getNumExplicitOperands();
1185 int MemOpcode = SystemZ::getMemOpcode(Opcode);
1186 if (MemOpcode == -1 ||
1187 (CCLiveAtMI && !MI.definesRegister(SystemZ::CC) &&
1188 get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)))
1189 return nullptr;
1190
1191 // Check if all other vregs have a usable allocation in the case of vector
1192 // to FP conversion.
1193 const MCInstrDesc &MCID = MI.getDesc();
1194 for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) {
1195 const MCOperandInfo &MCOI = MCID.OpInfo[I];
1196 if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum)
1197 continue;
1198 const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass);
1199 if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) {
1200 Register Reg = MI.getOperand(I).getReg();
1201 Register PhysReg = Register::isVirtualRegister(Reg)
1202 ? (VRM ? Register(VRM->getPhys(Reg)) : Register())
1203 : Reg;
1204 if (!PhysReg ||
1205 !(SystemZ::FP32BitRegClass.contains(PhysReg) ||
1206 SystemZ::FP64BitRegClass.contains(PhysReg) ||
1207 SystemZ::VF128BitRegClass.contains(PhysReg)))
1208 return nullptr;
1209 }
1210 }
1211 // Fused multiply and add/sub need to have the same dst and accumulator reg.
1212 bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB ||
1213 Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB);
1214 if (FusedFPOp) {
1215 Register DstReg = VRM->getPhys(MI.getOperand(0).getReg());
1216 Register AccReg = VRM->getPhys(MI.getOperand(3).getReg());
1217 if (OpNum == 0 || OpNum == 3 || DstReg != AccReg)
1218 return nullptr;
1219 }
1220
1221 // Try to swap compare operands if possible.
1222 bool NeedsCommute = false;
1223 if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR ||
1224 MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR ||
1225 MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB ||
1226 MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) &&
1227 OpNum == 0 && prepareCompareSwapOperands(MI))
1228 NeedsCommute = true;
1229
1230 bool CCOperands = false;
1231 if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR ||
1232 MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) {
1233 assert(MI.getNumOperands() == 6 && NumOps == 5 &&
1234 "LOCR/SELR instruction operands corrupt?");
1235 NumOps -= 2;
1236 CCOperands = true;
1237 }
1238
1239 // See if this is a 3-address instruction that is convertible to 2-address
1240 // and suitable for folding below. Only try this with virtual registers
1241 // and a provided VRM (during regalloc).
1242 if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) {
1243 if (VRM == nullptr)
1244 return nullptr;
1245 else {
1246 Register DstReg = MI.getOperand(0).getReg();
1247 Register DstPhys =
1248 (Register::isVirtualRegister(DstReg) ? Register(VRM->getPhys(DstReg))
1249 : DstReg);
1250 Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1251 : ((OpNum == 1 && MI.isCommutable())
1252 ? MI.getOperand(2).getReg()
1253 : Register()));
1254 if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1255 Register::isVirtualRegister(SrcReg) &&
1256 DstPhys == VRM->getPhys(SrcReg))
1257 NeedsCommute = (OpNum == 1);
1258 else
1259 return nullptr;
1260 }
1261 }
1262
1263 if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) {
1264 const MCInstrDesc &MemDesc = get(MemOpcode);
1265 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1266 assert(AccessBytes != 0 && "Size of access should be known");
1267 assert(AccessBytes <= Size && "Access outside the frame index");
1268 uint64_t Offset = Size - AccessBytes;
1269 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1270 MI.getDebugLoc(), get(MemOpcode));
1271 if (MI.isCompare()) {
1272 assert(NumOps == 2 && "Expected 2 register operands for a compare.");
1273 MIB.add(MI.getOperand(NeedsCommute ? 1 : 0));
1274 }
1275 else if (FusedFPOp) {
1276 MIB.add(MI.getOperand(0));
1277 MIB.add(MI.getOperand(3));
1278 MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1));
1279 }
1280 else {
1281 MIB.add(MI.getOperand(0));
1282 if (NeedsCommute)
1283 MIB.add(MI.getOperand(2));
1284 else
1285 for (unsigned I = 1; I < OpNum; ++I)
1286 MIB.add(MI.getOperand(I));
1287 }
1288 MIB.addFrameIndex(FrameIndex).addImm(Offset);
1289 if (MemDesc.TSFlags & SystemZII::HasIndex)
1290 MIB.addReg(0);
1291 if (CCOperands) {
1292 unsigned CCValid = MI.getOperand(NumOps).getImm();
1293 unsigned CCMask = MI.getOperand(NumOps + 1).getImm();
1294 MIB.addImm(CCValid);
1295 MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask);
1296 }
1297 if (MIB->definesRegister(SystemZ::CC) &&
1298 (!MI.definesRegister(SystemZ::CC) ||
1299 MI.registerDefIsDead(SystemZ::CC))) {
1300 MIB->addRegisterDead(SystemZ::CC, TRI);
1301 if (CCLiveRange)
1302 CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1303 }
1304 // Constrain the register classes if converted from a vector opcode. The
1305 // allocated regs are in an FP reg-class per previous check above.
1306 for (const MachineOperand &MO : MIB->operands())
1307 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
1308 unsigned Reg = MO.getReg();
1309 if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass)
1310 MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass);
1311 else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass)
1312 MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass);
1313 else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass)
1314 MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass);
1315 }
1316
1317 transferDeadCC(&MI, MIB);
1318 transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1319 transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept);
1320 return MIB;
1321 }
1322
1323 return nullptr;
1324 }
1325
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,MachineInstr & LoadMI,LiveIntervals * LIS) const1326 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1327 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1328 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1329 LiveIntervals *LIS) const {
1330 return nullptr;
1331 }
1332
expandPostRAPseudo(MachineInstr & MI) const1333 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1334 switch (MI.getOpcode()) {
1335 case SystemZ::L128:
1336 splitMove(MI, SystemZ::LG);
1337 return true;
1338
1339 case SystemZ::ST128:
1340 splitMove(MI, SystemZ::STG);
1341 return true;
1342
1343 case SystemZ::LX:
1344 splitMove(MI, SystemZ::LD);
1345 return true;
1346
1347 case SystemZ::STX:
1348 splitMove(MI, SystemZ::STD);
1349 return true;
1350
1351 case SystemZ::LBMux:
1352 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1353 return true;
1354
1355 case SystemZ::LHMux:
1356 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1357 return true;
1358
1359 case SystemZ::LLCRMux:
1360 expandZExtPseudo(MI, SystemZ::LLCR, 8);
1361 return true;
1362
1363 case SystemZ::LLHRMux:
1364 expandZExtPseudo(MI, SystemZ::LLHR, 16);
1365 return true;
1366
1367 case SystemZ::LLCMux:
1368 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1369 return true;
1370
1371 case SystemZ::LLHMux:
1372 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1373 return true;
1374
1375 case SystemZ::LMux:
1376 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1377 return true;
1378
1379 case SystemZ::LOCMux:
1380 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1381 return true;
1382
1383 case SystemZ::LOCHIMux:
1384 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1385 return true;
1386
1387 case SystemZ::STCMux:
1388 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1389 return true;
1390
1391 case SystemZ::STHMux:
1392 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1393 return true;
1394
1395 case SystemZ::STMux:
1396 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1397 return true;
1398
1399 case SystemZ::STOCMux:
1400 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1401 return true;
1402
1403 case SystemZ::LHIMux:
1404 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1405 return true;
1406
1407 case SystemZ::IIFMux:
1408 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1409 return true;
1410
1411 case SystemZ::IILMux:
1412 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1413 return true;
1414
1415 case SystemZ::IIHMux:
1416 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1417 return true;
1418
1419 case SystemZ::NIFMux:
1420 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1421 return true;
1422
1423 case SystemZ::NILMux:
1424 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1425 return true;
1426
1427 case SystemZ::NIHMux:
1428 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1429 return true;
1430
1431 case SystemZ::OIFMux:
1432 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1433 return true;
1434
1435 case SystemZ::OILMux:
1436 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1437 return true;
1438
1439 case SystemZ::OIHMux:
1440 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1441 return true;
1442
1443 case SystemZ::XIFMux:
1444 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1445 return true;
1446
1447 case SystemZ::TMLMux:
1448 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1449 return true;
1450
1451 case SystemZ::TMHMux:
1452 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1453 return true;
1454
1455 case SystemZ::AHIMux:
1456 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1457 return true;
1458
1459 case SystemZ::AHIMuxK:
1460 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1461 return true;
1462
1463 case SystemZ::AFIMux:
1464 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1465 return true;
1466
1467 case SystemZ::CHIMux:
1468 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1469 return true;
1470
1471 case SystemZ::CFIMux:
1472 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1473 return true;
1474
1475 case SystemZ::CLFIMux:
1476 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1477 return true;
1478
1479 case SystemZ::CMux:
1480 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1481 return true;
1482
1483 case SystemZ::CLMux:
1484 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1485 return true;
1486
1487 case SystemZ::RISBMux: {
1488 bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1489 bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1490 if (SrcIsHigh == DestIsHigh)
1491 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1492 else {
1493 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1494 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1495 }
1496 return true;
1497 }
1498
1499 case SystemZ::ADJDYNALLOC:
1500 splitAdjDynAlloc(MI);
1501 return true;
1502
1503 case TargetOpcode::LOAD_STACK_GUARD:
1504 expandLoadStackGuard(&MI);
1505 return true;
1506
1507 default:
1508 return false;
1509 }
1510 }
1511
getInstSizeInBytes(const MachineInstr & MI) const1512 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1513 if (MI.isInlineAsm()) {
1514 const MachineFunction *MF = MI.getParent()->getParent();
1515 const char *AsmStr = MI.getOperand(0).getSymbolName();
1516 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1517 }
1518 return MI.getDesc().getSize();
1519 }
1520
1521 SystemZII::Branch
getBranchInfo(const MachineInstr & MI) const1522 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1523 switch (MI.getOpcode()) {
1524 case SystemZ::BR:
1525 case SystemZ::BI:
1526 case SystemZ::J:
1527 case SystemZ::JG:
1528 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1529 SystemZ::CCMASK_ANY, &MI.getOperand(0));
1530
1531 case SystemZ::BRC:
1532 case SystemZ::BRCL:
1533 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1534 MI.getOperand(1).getImm(), &MI.getOperand(2));
1535
1536 case SystemZ::BRCT:
1537 case SystemZ::BRCTH:
1538 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1539 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1540
1541 case SystemZ::BRCTG:
1542 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1543 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1544
1545 case SystemZ::CIJ:
1546 case SystemZ::CRJ:
1547 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1548 MI.getOperand(2).getImm(), &MI.getOperand(3));
1549
1550 case SystemZ::CLIJ:
1551 case SystemZ::CLRJ:
1552 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1553 MI.getOperand(2).getImm(), &MI.getOperand(3));
1554
1555 case SystemZ::CGIJ:
1556 case SystemZ::CGRJ:
1557 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1558 MI.getOperand(2).getImm(), &MI.getOperand(3));
1559
1560 case SystemZ::CLGIJ:
1561 case SystemZ::CLGRJ:
1562 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1563 MI.getOperand(2).getImm(), &MI.getOperand(3));
1564
1565 case SystemZ::INLINEASM_BR:
1566 // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1567 return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1568
1569 default:
1570 llvm_unreachable("Unrecognized branch opcode");
1571 }
1572 }
1573
getLoadStoreOpcodes(const TargetRegisterClass * RC,unsigned & LoadOpcode,unsigned & StoreOpcode) const1574 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1575 unsigned &LoadOpcode,
1576 unsigned &StoreOpcode) const {
1577 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1578 LoadOpcode = SystemZ::L;
1579 StoreOpcode = SystemZ::ST;
1580 } else if (RC == &SystemZ::GRH32BitRegClass) {
1581 LoadOpcode = SystemZ::LFH;
1582 StoreOpcode = SystemZ::STFH;
1583 } else if (RC == &SystemZ::GRX32BitRegClass) {
1584 LoadOpcode = SystemZ::LMux;
1585 StoreOpcode = SystemZ::STMux;
1586 } else if (RC == &SystemZ::GR64BitRegClass ||
1587 RC == &SystemZ::ADDR64BitRegClass) {
1588 LoadOpcode = SystemZ::LG;
1589 StoreOpcode = SystemZ::STG;
1590 } else if (RC == &SystemZ::GR128BitRegClass ||
1591 RC == &SystemZ::ADDR128BitRegClass) {
1592 LoadOpcode = SystemZ::L128;
1593 StoreOpcode = SystemZ::ST128;
1594 } else if (RC == &SystemZ::FP32BitRegClass) {
1595 LoadOpcode = SystemZ::LE;
1596 StoreOpcode = SystemZ::STE;
1597 } else if (RC == &SystemZ::FP64BitRegClass) {
1598 LoadOpcode = SystemZ::LD;
1599 StoreOpcode = SystemZ::STD;
1600 } else if (RC == &SystemZ::FP128BitRegClass) {
1601 LoadOpcode = SystemZ::LX;
1602 StoreOpcode = SystemZ::STX;
1603 } else if (RC == &SystemZ::VR32BitRegClass) {
1604 LoadOpcode = SystemZ::VL32;
1605 StoreOpcode = SystemZ::VST32;
1606 } else if (RC == &SystemZ::VR64BitRegClass) {
1607 LoadOpcode = SystemZ::VL64;
1608 StoreOpcode = SystemZ::VST64;
1609 } else if (RC == &SystemZ::VF128BitRegClass ||
1610 RC == &SystemZ::VR128BitRegClass) {
1611 LoadOpcode = SystemZ::VL;
1612 StoreOpcode = SystemZ::VST;
1613 } else
1614 llvm_unreachable("Unsupported regclass to load or store");
1615 }
1616
getOpcodeForOffset(unsigned Opcode,int64_t Offset) const1617 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1618 int64_t Offset) const {
1619 const MCInstrDesc &MCID = get(Opcode);
1620 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1621 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1622 // Get the instruction to use for unsigned 12-bit displacements.
1623 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1624 if (Disp12Opcode >= 0)
1625 return Disp12Opcode;
1626
1627 // All address-related instructions can use unsigned 12-bit
1628 // displacements.
1629 return Opcode;
1630 }
1631 if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1632 // Get the instruction to use for signed 20-bit displacements.
1633 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1634 if (Disp20Opcode >= 0)
1635 return Disp20Opcode;
1636
1637 // Check whether Opcode allows signed 20-bit displacements.
1638 if (MCID.TSFlags & SystemZII::Has20BitOffset)
1639 return Opcode;
1640 }
1641 return 0;
1642 }
1643
getLoadAndTest(unsigned Opcode) const1644 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1645 switch (Opcode) {
1646 case SystemZ::L: return SystemZ::LT;
1647 case SystemZ::LY: return SystemZ::LT;
1648 case SystemZ::LG: return SystemZ::LTG;
1649 case SystemZ::LGF: return SystemZ::LTGF;
1650 case SystemZ::LR: return SystemZ::LTR;
1651 case SystemZ::LGFR: return SystemZ::LTGFR;
1652 case SystemZ::LGR: return SystemZ::LTGR;
1653 case SystemZ::LER: return SystemZ::LTEBR;
1654 case SystemZ::LDR: return SystemZ::LTDBR;
1655 case SystemZ::LXR: return SystemZ::LTXBR;
1656 case SystemZ::LCDFR: return SystemZ::LCDBR;
1657 case SystemZ::LPDFR: return SystemZ::LPDBR;
1658 case SystemZ::LNDFR: return SystemZ::LNDBR;
1659 case SystemZ::LCDFR_32: return SystemZ::LCEBR;
1660 case SystemZ::LPDFR_32: return SystemZ::LPEBR;
1661 case SystemZ::LNDFR_32: return SystemZ::LNEBR;
1662 // On zEC12 we prefer to use RISBGN. But if there is a chance to
1663 // actually use the condition code, we may turn it back into RISGB.
1664 // Note that RISBG is not really a "load-and-test" instruction,
1665 // but sets the same condition code values, so is OK to use here.
1666 case SystemZ::RISBGN: return SystemZ::RISBG;
1667 default: return 0;
1668 }
1669 }
1670
1671 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1672 // have already been filtered out. Store the first set bit in LSB and
1673 // the number of set bits in Length if so.
isStringOfOnes(uint64_t Mask,unsigned & LSB,unsigned & Length)1674 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1675 unsigned First = findFirstSet(Mask);
1676 uint64_t Top = (Mask >> First) + 1;
1677 if ((Top & -Top) == Top) {
1678 LSB = First;
1679 Length = findFirstSet(Top);
1680 return true;
1681 }
1682 return false;
1683 }
1684
isRxSBGMask(uint64_t Mask,unsigned BitSize,unsigned & Start,unsigned & End) const1685 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1686 unsigned &Start, unsigned &End) const {
1687 // Reject trivial all-zero masks.
1688 Mask &= allOnes(BitSize);
1689 if (Mask == 0)
1690 return false;
1691
1692 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
1693 // the msb and End specifies the index of the lsb.
1694 unsigned LSB, Length;
1695 if (isStringOfOnes(Mask, LSB, Length)) {
1696 Start = 63 - (LSB + Length - 1);
1697 End = 63 - LSB;
1698 return true;
1699 }
1700
1701 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
1702 // of the low 1s and End specifies the lsb of the high 1s.
1703 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1704 assert(LSB > 0 && "Bottom bit must be set");
1705 assert(LSB + Length < BitSize && "Top bit must be set");
1706 Start = 63 - (LSB - 1);
1707 End = 63 - (LSB + Length);
1708 return true;
1709 }
1710
1711 return false;
1712 }
1713
getFusedCompare(unsigned Opcode,SystemZII::FusedCompareType Type,const MachineInstr * MI) const1714 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1715 SystemZII::FusedCompareType Type,
1716 const MachineInstr *MI) const {
1717 switch (Opcode) {
1718 case SystemZ::CHI:
1719 case SystemZ::CGHI:
1720 if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1721 return 0;
1722 break;
1723 case SystemZ::CLFI:
1724 case SystemZ::CLGFI:
1725 if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1726 return 0;
1727 break;
1728 case SystemZ::CL:
1729 case SystemZ::CLG:
1730 if (!STI.hasMiscellaneousExtensions())
1731 return 0;
1732 if (!(MI && MI->getOperand(3).getReg() == 0))
1733 return 0;
1734 break;
1735 }
1736 switch (Type) {
1737 case SystemZII::CompareAndBranch:
1738 switch (Opcode) {
1739 case SystemZ::CR:
1740 return SystemZ::CRJ;
1741 case SystemZ::CGR:
1742 return SystemZ::CGRJ;
1743 case SystemZ::CHI:
1744 return SystemZ::CIJ;
1745 case SystemZ::CGHI:
1746 return SystemZ::CGIJ;
1747 case SystemZ::CLR:
1748 return SystemZ::CLRJ;
1749 case SystemZ::CLGR:
1750 return SystemZ::CLGRJ;
1751 case SystemZ::CLFI:
1752 return SystemZ::CLIJ;
1753 case SystemZ::CLGFI:
1754 return SystemZ::CLGIJ;
1755 default:
1756 return 0;
1757 }
1758 case SystemZII::CompareAndReturn:
1759 switch (Opcode) {
1760 case SystemZ::CR:
1761 return SystemZ::CRBReturn;
1762 case SystemZ::CGR:
1763 return SystemZ::CGRBReturn;
1764 case SystemZ::CHI:
1765 return SystemZ::CIBReturn;
1766 case SystemZ::CGHI:
1767 return SystemZ::CGIBReturn;
1768 case SystemZ::CLR:
1769 return SystemZ::CLRBReturn;
1770 case SystemZ::CLGR:
1771 return SystemZ::CLGRBReturn;
1772 case SystemZ::CLFI:
1773 return SystemZ::CLIBReturn;
1774 case SystemZ::CLGFI:
1775 return SystemZ::CLGIBReturn;
1776 default:
1777 return 0;
1778 }
1779 case SystemZII::CompareAndSibcall:
1780 switch (Opcode) {
1781 case SystemZ::CR:
1782 return SystemZ::CRBCall;
1783 case SystemZ::CGR:
1784 return SystemZ::CGRBCall;
1785 case SystemZ::CHI:
1786 return SystemZ::CIBCall;
1787 case SystemZ::CGHI:
1788 return SystemZ::CGIBCall;
1789 case SystemZ::CLR:
1790 return SystemZ::CLRBCall;
1791 case SystemZ::CLGR:
1792 return SystemZ::CLGRBCall;
1793 case SystemZ::CLFI:
1794 return SystemZ::CLIBCall;
1795 case SystemZ::CLGFI:
1796 return SystemZ::CLGIBCall;
1797 default:
1798 return 0;
1799 }
1800 case SystemZII::CompareAndTrap:
1801 switch (Opcode) {
1802 case SystemZ::CR:
1803 return SystemZ::CRT;
1804 case SystemZ::CGR:
1805 return SystemZ::CGRT;
1806 case SystemZ::CHI:
1807 return SystemZ::CIT;
1808 case SystemZ::CGHI:
1809 return SystemZ::CGIT;
1810 case SystemZ::CLR:
1811 return SystemZ::CLRT;
1812 case SystemZ::CLGR:
1813 return SystemZ::CLGRT;
1814 case SystemZ::CLFI:
1815 return SystemZ::CLFIT;
1816 case SystemZ::CLGFI:
1817 return SystemZ::CLGIT;
1818 case SystemZ::CL:
1819 return SystemZ::CLT;
1820 case SystemZ::CLG:
1821 return SystemZ::CLGT;
1822 default:
1823 return 0;
1824 }
1825 }
1826 return 0;
1827 }
1828
1829 bool SystemZInstrInfo::
prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const1830 prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const {
1831 assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() &&
1832 MBBI->getOperand(1).isReg() && !MBBI->mayLoad() &&
1833 "Not a compare reg/reg.");
1834
1835 MachineBasicBlock *MBB = MBBI->getParent();
1836 bool CCLive = true;
1837 SmallVector<MachineInstr *, 4> CCUsers;
1838 for (MachineBasicBlock::iterator Itr = std::next(MBBI);
1839 Itr != MBB->end(); ++Itr) {
1840 if (Itr->readsRegister(SystemZ::CC)) {
1841 unsigned Flags = Itr->getDesc().TSFlags;
1842 if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast))
1843 CCUsers.push_back(&*Itr);
1844 else
1845 return false;
1846 }
1847 if (Itr->definesRegister(SystemZ::CC)) {
1848 CCLive = false;
1849 break;
1850 }
1851 }
1852 if (CCLive) {
1853 LivePhysRegs LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo());
1854 LiveRegs.addLiveOuts(*MBB);
1855 if (LiveRegs.contains(SystemZ::CC))
1856 return false;
1857 }
1858
1859 // Update all CC users.
1860 for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) {
1861 unsigned Flags = CCUsers[Idx]->getDesc().TSFlags;
1862 unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ?
1863 0 : CCUsers[Idx]->getNumExplicitOperands() - 2);
1864 MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1);
1865 unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm());
1866 CCMaskMO.setImm(NewCCMask);
1867 }
1868
1869 return true;
1870 }
1871
reverseCCMask(unsigned CCMask)1872 unsigned SystemZ::reverseCCMask(unsigned CCMask) {
1873 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1874 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1875 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1876 (CCMask & SystemZ::CCMASK_CMP_UO));
1877 }
1878
emitBlockAfter(MachineBasicBlock * MBB)1879 MachineBasicBlock *SystemZ::emitBlockAfter(MachineBasicBlock *MBB) {
1880 MachineFunction &MF = *MBB->getParent();
1881 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
1882 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
1883 return NewMBB;
1884 }
1885
splitBlockAfter(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)1886 MachineBasicBlock *SystemZ::splitBlockAfter(MachineBasicBlock::iterator MI,
1887 MachineBasicBlock *MBB) {
1888 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1889 NewMBB->splice(NewMBB->begin(), MBB,
1890 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1891 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1892 return NewMBB;
1893 }
1894
splitBlockBefore(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)1895 MachineBasicBlock *SystemZ::splitBlockBefore(MachineBasicBlock::iterator MI,
1896 MachineBasicBlock *MBB) {
1897 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1898 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
1899 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1900 return NewMBB;
1901 }
1902
getLoadAndTrap(unsigned Opcode) const1903 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1904 if (!STI.hasLoadAndTrap())
1905 return 0;
1906 switch (Opcode) {
1907 case SystemZ::L:
1908 case SystemZ::LY:
1909 return SystemZ::LAT;
1910 case SystemZ::LG:
1911 return SystemZ::LGAT;
1912 case SystemZ::LFH:
1913 return SystemZ::LFHAT;
1914 case SystemZ::LLGF:
1915 return SystemZ::LLGFAT;
1916 case SystemZ::LLGT:
1917 return SystemZ::LLGTAT;
1918 }
1919 return 0;
1920 }
1921
loadImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned Reg,uint64_t Value) const1922 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1923 MachineBasicBlock::iterator MBBI,
1924 unsigned Reg, uint64_t Value) const {
1925 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1926 unsigned Opcode;
1927 if (isInt<16>(Value))
1928 Opcode = SystemZ::LGHI;
1929 else if (SystemZ::isImmLL(Value))
1930 Opcode = SystemZ::LLILL;
1931 else if (SystemZ::isImmLH(Value)) {
1932 Opcode = SystemZ::LLILH;
1933 Value >>= 16;
1934 } else {
1935 assert(isInt<32>(Value) && "Huge values not handled yet");
1936 Opcode = SystemZ::LGFI;
1937 }
1938 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1939 }
1940
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const1941 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1942 StringRef &ErrInfo) const {
1943 const MCInstrDesc &MCID = MI.getDesc();
1944 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1945 if (I >= MCID.getNumOperands())
1946 break;
1947 const MachineOperand &Op = MI.getOperand(I);
1948 const MCOperandInfo &MCOI = MCID.OpInfo[I];
1949 // Addressing modes have register and immediate operands. Op should be a
1950 // register (or frame index) operand if MCOI.RegClass contains a valid
1951 // register class, or an immediate otherwise.
1952 if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
1953 ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
1954 (MCOI.RegClass == -1 && !Op.isImm()))) {
1955 ErrInfo = "Addressing mode operands corrupt!";
1956 return false;
1957 }
1958 }
1959
1960 return true;
1961 }
1962
1963 bool SystemZInstrInfo::
areMemAccessesTriviallyDisjoint(const MachineInstr & MIa,const MachineInstr & MIb) const1964 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1965 const MachineInstr &MIb) const {
1966
1967 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1968 return false;
1969
1970 // If mem-operands show that the same address Value is used by both
1971 // instructions, check for non-overlapping offsets and widths. Not
1972 // sure if a register based analysis would be an improvement...
1973
1974 MachineMemOperand *MMOa = *MIa.memoperands_begin();
1975 MachineMemOperand *MMOb = *MIb.memoperands_begin();
1976 const Value *VALa = MMOa->getValue();
1977 const Value *VALb = MMOb->getValue();
1978 bool SameVal = (VALa && VALb && (VALa == VALb));
1979 if (!SameVal) {
1980 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1981 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1982 if (PSVa && PSVb && (PSVa == PSVb))
1983 SameVal = true;
1984 }
1985 if (SameVal) {
1986 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1987 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1988 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1989 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1990 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1991 if (LowOffset + LowWidth <= HighOffset)
1992 return true;
1993 }
1994
1995 return false;
1996 }
1997