1 //===- AffineStructures.h - MLIR Affine Structures Class --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Structures for affine/polyhedral analysis of ML functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef MLIR_ANALYSIS_AFFINESTRUCTURES_H
14 #define MLIR_ANALYSIS_AFFINESTRUCTURES_H
15 
16 #include "mlir/Analysis/Presburger/Matrix.h"
17 #include "mlir/IR/AffineExpr.h"
18 #include "mlir/IR/OpDefinition.h"
19 #include "mlir/Support/LogicalResult.h"
20 
21 namespace mlir {
22 
23 class AffineCondition;
24 class AffineForOp;
25 class AffineIfOp;
26 class AffineMap;
27 class AffineValueMap;
28 class IntegerSet;
29 class MLIRContext;
30 class Value;
31 class MemRefType;
32 struct MutableAffineMap;
33 
34 /// A flat list of affine equalities and inequalities in the form.
35 /// Inequality: c_0*x_0 + c_1*x_1 + .... + c_{n-1}*x_{n-1} >= 0
36 /// Equality: c_0*x_0 + c_1*x_1 + .... + c_{n-1}*x_{n-1} == 0
37 ///
38 /// FlatAffineConstraints stores coefficients in a contiguous buffer (one buffer
39 /// for equalities and one for inequalities). The size of each buffer is
40 /// numReservedCols * number of inequalities (or equalities). The reserved size
41 /// is numReservedCols * numReservedInequalities (or numReservedEqualities). A
42 /// coefficient (r, c) lives at the location numReservedCols * r + c in the
43 /// buffer. The extra space between getNumCols() and numReservedCols exists to
44 /// prevent frequent movement of data when adding columns, especially at the
45 /// end.
46 ///
47 /// The identifiers x_0, x_1, ... appear in the order: dimensional identifiers,
48 /// symbolic identifiers, and local identifiers.  The local identifiers
49 /// correspond to local/internal variables created when converting from
50 /// AffineExpr's containing mod's and div's; they are thus needed to increase
51 /// representational power. Each local identifier is always (by construction) a
52 /// floordiv of a pure add/mul affine function of dimensional, symbolic, and
53 /// other local identifiers, in a non-mutually recursive way. Hence, every local
54 /// identifier can ultimately always be recovered as an affine function of
55 /// dimensional and symbolic identifiers (involving floordiv's); note however
56 /// that some floordiv combinations are converted to mod's by AffineExpr
57 /// construction.
58 ///
59 class FlatAffineConstraints {
60 public:
61   enum IdKind { Dimension, Symbol, Local };
62 
63   /// Constructs a constraint system reserving memory for the specified number
64   /// of constraints and identifiers..
65   FlatAffineConstraints(unsigned numReservedInequalities,
66                         unsigned numReservedEqualities,
67                         unsigned numReservedCols, unsigned numDims = 0,
68                         unsigned numSymbols = 0, unsigned numLocals = 0,
69                         ArrayRef<Optional<Value>> idArgs = {})
70       : numIds(numDims + numSymbols + numLocals), numDims(numDims),
71         numSymbols(numSymbols),
72         equalities(0, numIds + 1, numReservedEqualities, numReservedCols),
73         inequalities(0, numIds + 1, numReservedInequalities, numReservedCols) {
74     assert(numReservedCols >= numIds + 1);
75     assert(idArgs.empty() || idArgs.size() == numIds);
76     ids.reserve(numReservedCols);
77     if (idArgs.empty())
78       ids.resize(numIds, None);
79     else
80       ids.append(idArgs.begin(), idArgs.end());
81   }
82 
83   /// Constructs a constraint system with the specified number of
84   /// dimensions and symbols.
85   FlatAffineConstraints(unsigned numDims = 0, unsigned numSymbols = 0,
86                         unsigned numLocals = 0,
87                         ArrayRef<Optional<Value>> idArgs = {})
88       : FlatAffineConstraints(/*numReservedInequalities=*/0,
89                               /*numReservedEqualities=*/0,
90                               /*numReservedCols=*/numDims + numSymbols +
91                                   numLocals + 1,
92                               numDims, numSymbols, numLocals, idArgs) {}
93 
94   /// Return a system with no constraints, i.e., one which is satisfied by all
95   /// points.
96   static FlatAffineConstraints getUniverse(unsigned numDims = 0,
97                                            unsigned numSymbols = 0) {
98     return FlatAffineConstraints(numDims, numSymbols);
99   }
100 
101   /// Create a flat affine constraint system from an AffineValueMap or a list of
102   /// these. The constructed system will only include equalities.
103   explicit FlatAffineConstraints(const AffineValueMap &avm);
104   explicit FlatAffineConstraints(ArrayRef<const AffineValueMap *> avmRef);
105 
106   /// Creates an affine constraint system from an IntegerSet.
107   explicit FlatAffineConstraints(IntegerSet set);
108 
109   FlatAffineConstraints(ArrayRef<const AffineValueMap *> avmRef,
110                         IntegerSet set);
111 
112   FlatAffineConstraints(const MutableAffineMap &map);
113 
~FlatAffineConstraints()114   ~FlatAffineConstraints() {}
115 
116   // Clears any existing data and reserves memory for the specified constraints.
117   void reset(unsigned numReservedInequalities, unsigned numReservedEqualities,
118              unsigned numReservedCols, unsigned numDims, unsigned numSymbols,
119              unsigned numLocals = 0, ArrayRef<Value> idArgs = {});
120 
121   void reset(unsigned numDims = 0, unsigned numSymbols = 0,
122              unsigned numLocals = 0, ArrayRef<Value> idArgs = {});
123 
124   /// Appends constraints from 'other' into this. This is equivalent to an
125   /// intersection with no simplification of any sort attempted.
126   void append(const FlatAffineConstraints &other);
127 
128   /// Checks for emptiness by performing variable elimination on all
129   /// identifiers, running the GCD test on each equality constraint, and
130   /// checking for invalid constraints. Returns true if the GCD test fails for
131   /// any equality, or if any invalid constraints are discovered on any row.
132   /// Returns false otherwise.
133   bool isEmpty() const;
134 
135   /// Runs the GCD test on all equality constraints. Returns 'true' if this test
136   /// fails on any equality. Returns 'false' otherwise.
137   /// This test can be used to disprove the existence of a solution. If it
138   /// returns true, no integer solution to the equality constraints can exist.
139   bool isEmptyByGCDTest() const;
140 
141   /// Returns true if the set of constraints is found to have no solution,
142   /// false if a solution exists. Uses the same algorithm as findIntegerSample.
143   bool isIntegerEmpty() const;
144 
145   // Returns a matrix where each row is a vector along which the polytope is
146   // bounded. The span of the returned vectors is guaranteed to contain all
147   // such vectors. The returned vectors are NOT guaranteed to be linearly
148   // independent. This function should not be called on empty sets.
149   Matrix getBoundedDirections() const;
150 
151   /// Find an integer sample point satisfying the constraints using a
152   /// branch and bound algorithm with generalized basis reduction, with some
153   /// additional processing using Simplex for unbounded sets.
154   ///
155   /// Returns an integer sample point if one exists, or an empty Optional
156   /// otherwise.
157   Optional<SmallVector<int64_t, 8>> findIntegerSample() const;
158 
159   /// Returns true if the given point satisfies the constraints, or false
160   /// otherwise.
161   bool containsPoint(ArrayRef<int64_t> point) const;
162 
163   // Clones this object.
164   std::unique_ptr<FlatAffineConstraints> clone() const;
165 
166   /// Returns the value at the specified equality row and column.
atEq(unsigned i,unsigned j)167   inline int64_t atEq(unsigned i, unsigned j) const { return equalities(i, j); }
atEq(unsigned i,unsigned j)168   inline int64_t &atEq(unsigned i, unsigned j) { return equalities(i, j); }
169 
atIneq(unsigned i,unsigned j)170   inline int64_t atIneq(unsigned i, unsigned j) const {
171     return inequalities(i, j);
172   }
173 
atIneq(unsigned i,unsigned j)174   inline int64_t &atIneq(unsigned i, unsigned j) { return inequalities(i, j); }
175 
176   /// Returns the number of columns in the constraint system.
getNumCols()177   inline unsigned getNumCols() const { return numIds + 1; }
178 
getNumEqualities()179   inline unsigned getNumEqualities() const { return equalities.getNumRows(); }
180 
getNumInequalities()181   inline unsigned getNumInequalities() const {
182     return inequalities.getNumRows();
183   }
184 
getNumReservedEqualities()185   inline unsigned getNumReservedEqualities() const {
186     return equalities.getNumReservedRows();
187   }
188 
getNumReservedInequalities()189   inline unsigned getNumReservedInequalities() const {
190     return inequalities.getNumReservedRows();
191   }
192 
getEquality(unsigned idx)193   inline ArrayRef<int64_t> getEquality(unsigned idx) const {
194     return equalities.getRow(idx);
195   }
196 
getInequality(unsigned idx)197   inline ArrayRef<int64_t> getInequality(unsigned idx) const {
198     return inequalities.getRow(idx);
199   }
200 
201   /// Adds constraints (lower and upper bounds) for the specified 'affine.for'
202   /// operation's Value using IR information stored in its bound maps. The
203   /// right identifier is first looked up using forOp's Value. Asserts if the
204   /// Value corresponding to the 'affine.for' operation isn't found in the
205   /// constraint system. Returns failure for the yet unimplemented/unsupported
206   /// cases.  Any new identifiers that are found in the bound operands of the
207   /// 'affine.for' operation are added as trailing identifiers (either
208   /// dimensional or symbolic depending on whether the operand is a valid
209   /// symbol).
210   //  TODO: add support for non-unit strides.
211   LogicalResult addAffineForOpDomain(AffineForOp forOp);
212 
213   /// Adds constraints (lower and upper bounds) for each loop in the loop nest
214   /// described by the bound maps 'lbMaps' and 'ubMaps' of a computation slice.
215   /// Every pair ('lbMaps[i]', 'ubMaps[i]') describes the bounds of a loop in
216   /// the nest, sorted outer-to-inner. 'operands' contains the bound operands
217   /// for a single bound map. All the bound maps will use the same bound
218   /// operands. Note that some loops described by a computation slice might not
219   /// exist yet in the IR so the Value attached to those dimension identifiers
220   /// might be empty. For that reason, this method doesn't perform Value
221   /// look-ups to retrieve the dimension identifier positions. Instead, it
222   /// assumes the position of the dim identifiers in the constraint system is
223   /// the same as the position of the loop in the loop nest.
224   LogicalResult addDomainFromSliceMaps(ArrayRef<AffineMap> lbMaps,
225                                        ArrayRef<AffineMap> ubMaps,
226                                        ArrayRef<Value> operands);
227 
228   /// Adds constraints imposed by the `affine.if` operation. These constraints
229   /// are collected from the IntegerSet attached to the given `affine.if`
230   /// instance argument (`ifOp`). It is asserted that:
231   /// 1) The IntegerSet of the given `affine.if` instance should not contain
232   /// semi-affine expressions,
233   /// 2) The columns of the constraint system created from `ifOp` should match
234   /// the columns in the current one regarding numbers and values.
235   void addAffineIfOpDomain(AffineIfOp ifOp);
236 
237   /// Adds a lower or an upper bound for the identifier at the specified
238   /// position with constraints being drawn from the specified bound map and
239   /// operands. If `eq` is true, add a single equality equal to the bound map's
240   /// first result expr.
241   LogicalResult addLowerOrUpperBound(unsigned pos, AffineMap boundMap,
242                                      ValueRange operands, bool eq,
243                                      bool lower = true);
244 
245   /// Returns the bound for the identifier at `pos` from the inequality at
246   /// `ineqPos` as a 1-d affine value map (affine map + operands). The returned
247   /// affine value map can either be a lower bound or an upper bound depending
248   /// on the sign of atIneq(ineqPos, pos). Asserts if the row at `ineqPos` does
249   /// not involve the `pos`th identifier.
250   void getIneqAsAffineValueMap(unsigned pos, unsigned ineqPos,
251                                AffineValueMap &vmap,
252                                MLIRContext *context) const;
253 
254   /// Returns the constraint system as an integer set. Returns a null integer
255   /// set if the system has no constraints, or if an integer set couldn't be
256   /// constructed as a result of a local variable's explicit representation not
257   /// being known and such a local variable appearing in any of the constraints.
258   IntegerSet getAsIntegerSet(MLIRContext *context) const;
259 
260   /// Computes the lower and upper bounds of the first 'num' dimensional
261   /// identifiers (starting at 'offset') as an affine map of the remaining
262   /// identifiers (dimensional and symbolic). This method is able to detect
263   /// identifiers as floordiv's and mod's of affine expressions of other
264   /// identifiers with respect to (positive) constants. Sets bound map to a
265   /// null AffineMap if such a bound can't be found (or yet unimplemented).
266   void getSliceBounds(unsigned offset, unsigned num, MLIRContext *context,
267                       SmallVectorImpl<AffineMap> *lbMaps,
268                       SmallVectorImpl<AffineMap> *ubMaps);
269 
270   /// Adds slice lower bounds represented by lower bounds in 'lbMaps' and upper
271   /// bounds in 'ubMaps' to each identifier in the constraint system which has
272   /// a value in 'values'. Note that both lower/upper bounds share the same
273   /// operand list 'operands'.
274   /// This function assumes 'values.size' == 'lbMaps.size' == 'ubMaps.size'.
275   /// Note that both lower/upper bounds use operands from 'operands'.
276   LogicalResult addSliceBounds(ArrayRef<Value> values,
277                                ArrayRef<AffineMap> lbMaps,
278                                ArrayRef<AffineMap> ubMaps,
279                                ArrayRef<Value> operands);
280 
281   // Adds an inequality (>= 0) from the coefficients specified in inEq.
282   void addInequality(ArrayRef<int64_t> inEq);
283   // Adds an equality from the coefficients specified in eq.
284   void addEquality(ArrayRef<int64_t> eq);
285 
286   /// Adds a constant lower bound constraint for the specified identifier.
287   void addConstantLowerBound(unsigned pos, int64_t lb);
288   /// Adds a constant upper bound constraint for the specified identifier.
289   void addConstantUpperBound(unsigned pos, int64_t ub);
290 
291   /// Adds a new local identifier as the floordiv of an affine function of other
292   /// identifiers, the coefficients of which are provided in 'dividend' and with
293   /// respect to a positive constant 'divisor'. Two constraints are added to the
294   /// system to capture equivalence with the floordiv:
295   /// q = dividend floordiv c    <=>   c*q <= dividend <= c*q + c - 1.
296   void addLocalFloorDiv(ArrayRef<int64_t> dividend, int64_t divisor);
297 
298   /// Adds a constant lower bound constraint for the specified expression.
299   void addConstantLowerBound(ArrayRef<int64_t> expr, int64_t lb);
300   /// Adds a constant upper bound constraint for the specified expression.
301   void addConstantUpperBound(ArrayRef<int64_t> expr, int64_t ub);
302 
303   /// Sets the identifier at the specified position to a constant.
304   void setIdToConstant(unsigned pos, int64_t val);
305 
306   /// Sets the identifier corresponding to the specified Value id to a
307   /// constant. Asserts if the 'id' is not found.
308   void setIdToConstant(Value id, int64_t val);
309 
310   /// Looks up the position of the identifier with the specified Value. Returns
311   /// true if found (false otherwise). `pos' is set to the (column) position of
312   /// the identifier.
313   bool findId(Value id, unsigned *pos) const;
314 
315   /// Returns true if an identifier with the specified Value exists, false
316   /// otherwise.
317   bool containsId(Value id) const;
318 
319   /// Swap the posA^th identifier with the posB^th identifier.
320   void swapId(unsigned posA, unsigned posB);
321 
322   // Add identifiers of the specified kind - specified positions are relative to
323   // the kind of identifier. The coefficient column corresponding to the added
324   // identifier is initialized to zero. 'id' is the Value corresponding to the
325   // identifier that can optionally be provided.
326   void addDimId(unsigned pos, Value id = nullptr);
327   void addSymbolId(unsigned pos, Value id = nullptr);
328   void addLocalId(unsigned pos);
329   void addId(IdKind kind, unsigned pos, Value id = nullptr);
330 
331   /// Add the specified values as a dim or symbol id depending on its nature, if
332   /// it already doesn't exist in the system. `id' has to be either a terminal
333   /// symbol or a loop IV, i.e., it cannot be the result affine.apply of any
334   /// symbols or loop IVs. The identifier is added to the end of the existing
335   /// dims or symbols. Additional information on the identifier is extracted
336   /// from the IR and added to the constraint system.
337   void addInductionVarOrTerminalSymbol(Value id);
338 
339   /// Composes the affine value map with this FlatAffineConstrains, adding the
340   /// results of the map as dimensions at the front [0, vMap->getNumResults())
341   /// and with the dimensions set to the equalities specified by the value map.
342   /// Returns failure if the composition fails (when vMap is a semi-affine map).
343   /// The vMap's operand Value's are used to look up the right positions in
344   /// the FlatAffineConstraints with which to associate. The dimensional and
345   /// symbolic operands of vMap should match 1:1 (in the same order) with those
346   /// of this constraint system, but the latter could have additional trailing
347   /// operands.
348   LogicalResult composeMap(const AffineValueMap *vMap);
349 
350   /// Composes an affine map whose dimensions match one to one to the
351   /// dimensions of this FlatAffineConstraints. The results of the map 'other'
352   /// are added as the leading dimensions of this constraint system. Returns
353   /// failure if 'other' is a semi-affine map.
354   LogicalResult composeMatchingMap(AffineMap other);
355 
356   /// Projects out (aka eliminates) 'num' identifiers starting at position
357   /// 'pos'. The resulting constraint system is the shadow along the dimensions
358   /// that still exist. This method may not always be integer exact.
359   // TODO: deal with integer exactness when necessary - can return a value to
360   // mark exactness for example.
361   void projectOut(unsigned pos, unsigned num);
projectOut(unsigned pos)362   inline void projectOut(unsigned pos) { return projectOut(pos, 1); }
363 
364   /// Projects out the identifier that is associate with Value .
365   void projectOut(Value id);
366 
367   /// Removes the specified identifier from the system.
368   void removeId(unsigned pos);
369 
370   void removeEquality(unsigned pos);
371   void removeInequality(unsigned pos);
372 
373   /// Changes the partition between dimensions and symbols. Depending on the new
374   /// symbol count, either a chunk of trailing dimensional identifiers becomes
375   /// symbols, or some of the leading symbols become dimensions.
376   void setDimSymbolSeparation(unsigned newSymbolCount);
377 
378   /// Changes all symbol identifiers which are loop IVs to dim identifiers.
379   void convertLoopIVSymbolsToDims();
380 
381   /// Sets the values.size() identifiers starting at pos to the specified values
382   /// and removes them.
383   void setAndEliminate(unsigned pos, ArrayRef<int64_t> values);
384 
385   /// Tries to fold the specified identifier to a constant using a trivial
386   /// equality detection; if successful, the constant is substituted for the
387   /// identifier everywhere in the constraint system and then removed from the
388   /// system.
389   LogicalResult constantFoldId(unsigned pos);
390 
391   /// This method calls constantFoldId for the specified range of identifiers,
392   /// 'num' identifiers starting at position 'pos'.
393   void constantFoldIdRange(unsigned pos, unsigned num);
394 
395   /// Updates the constraints to be the smallest bounding (enclosing) box that
396   /// contains the points of 'this' set and that of 'other', with the symbols
397   /// being treated specially. For each of the dimensions, the min of the lower
398   /// bounds (symbolic) and the max of the upper bounds (symbolic) is computed
399   /// to determine such a bounding box. `other' is expected to have the same
400   /// dimensional identifiers as this constraint system (in the same order).
401   ///
402   /// Eg: if 'this' is {0 <= d0 <= 127}, 'other' is {16 <= d0 <= 192}, the
403   ///      output is {0 <= d0 <= 192}.
404   /// 2) 'this' = {s0 + 5 <= d0 <= s0 + 20}, 'other' is {s0 + 1 <= d0 <= s0 +
405   ///     9}, output = {s0 + 1 <= d0 <= s0 + 20}.
406   /// 3) 'this' = {0 <= d0 <= 5, 1 <= d1 <= 9}, 'other' = {2 <= d0 <= 6, 5 <= d1
407   ///     <= 15}, output = {0 <= d0 <= 6, 1 <= d1 <= 15}.
408   LogicalResult unionBoundingBox(const FlatAffineConstraints &other);
409 
410   /// Returns 'true' if this constraint system and 'other' are in the same
411   /// space, i.e., if they are associated with the same set of identifiers,
412   /// appearing in the same order. Returns 'false' otherwise.
413   bool areIdsAlignedWithOther(const FlatAffineConstraints &other);
414 
415   /// Merge and align the identifiers of 'this' and 'other' starting at
416   /// 'offset', so that both constraint systems get the union of the contained
417   /// identifiers that is dimension-wise and symbol-wise unique; both
418   /// constraint systems are updated so that they have the union of all
419   /// identifiers, with this's original identifiers appearing first followed by
420   /// any of other's identifiers that didn't appear in 'this'. Local
421   /// identifiers of each system are by design separate/local and are placed
422   /// one after other (this's followed by other's).
423   //  Eg: Input: 'this'  has ((%i %j) [%M %N])
424   //             'other' has (%k, %j) [%P, %N, %M])
425   //      Output: both 'this', 'other' have (%i, %j, %k) [%M, %N, %P]
426   //
427   void mergeAndAlignIdsWithOther(unsigned offset, FlatAffineConstraints *other);
428 
getNumConstraints()429   unsigned getNumConstraints() const {
430     return getNumInequalities() + getNumEqualities();
431   }
getNumIds()432   inline unsigned getNumIds() const { return numIds; }
getNumDimIds()433   inline unsigned getNumDimIds() const { return numDims; }
getNumSymbolIds()434   inline unsigned getNumSymbolIds() const { return numSymbols; }
getNumDimAndSymbolIds()435   inline unsigned getNumDimAndSymbolIds() const { return numDims + numSymbols; }
getNumLocalIds()436   inline unsigned getNumLocalIds() const {
437     return numIds - numDims - numSymbols;
438   }
439 
getIds()440   inline ArrayRef<Optional<Value>> getIds() const {
441     return {ids.data(), ids.size()};
442   }
getIds()443   inline MutableArrayRef<Optional<Value>> getIds() {
444     return {ids.data(), ids.size()};
445   }
446 
447   /// Returns the optional Value corresponding to the pos^th identifier.
getId(unsigned pos)448   inline Optional<Value> getId(unsigned pos) const { return ids[pos]; }
getId(unsigned pos)449   inline Optional<Value> &getId(unsigned pos) { return ids[pos]; }
450 
451   /// Returns the Value associated with the pos^th identifier. Asserts if
452   /// no Value identifier was associated.
getIdValue(unsigned pos)453   inline Value getIdValue(unsigned pos) const {
454     assert(ids[pos].hasValue() && "identifier's Value not set");
455     return ids[pos].getValue();
456   }
457 
458   /// Returns the Values associated with identifiers in range [start, end).
459   /// Asserts if no Value was associated with one of these identifiers.
getIdValues(unsigned start,unsigned end,SmallVectorImpl<Value> * values)460   void getIdValues(unsigned start, unsigned end,
461                    SmallVectorImpl<Value> *values) const {
462     assert((start < numIds || start == end) && "invalid start position");
463     assert(end <= numIds && "invalid end position");
464     values->clear();
465     values->reserve(end - start);
466     for (unsigned i = start; i < end; i++) {
467       values->push_back(getIdValue(i));
468     }
469   }
getAllIdValues(SmallVectorImpl<Value> * values)470   inline void getAllIdValues(SmallVectorImpl<Value> *values) const {
471     getIdValues(0, numIds, values);
472   }
473 
474   /// Sets Value associated with the pos^th identifier.
setIdValue(unsigned pos,Value val)475   inline void setIdValue(unsigned pos, Value val) {
476     assert(pos < numIds && "invalid id position");
477     ids[pos] = val;
478   }
479   /// Sets Values associated with identifiers in the range [start, end).
setIdValues(unsigned start,unsigned end,ArrayRef<Value> values)480   void setIdValues(unsigned start, unsigned end, ArrayRef<Value> values) {
481     assert((start < numIds || end == start) && "invalid start position");
482     assert(end <= numIds && "invalid end position");
483     assert(values.size() == end - start);
484     for (unsigned i = start; i < end; ++i)
485       ids[i] = values[i - start];
486   }
487 
488   /// Clears this list of constraints and copies other into it.
489   void clearAndCopyFrom(const FlatAffineConstraints &other);
490 
491   /// Returns the smallest known constant bound for the extent of the specified
492   /// identifier (pos^th), i.e., the smallest known constant that is greater
493   /// than or equal to 'exclusive upper bound' - 'lower bound' of the
494   /// identifier. This constant bound is guaranteed to be non-negative. Returns
495   /// None if it's not a constant. This method employs trivial (low complexity /
496   /// cost) checks and detection. Symbolic identifiers are treated specially,
497   /// i.e., it looks for constant differences between affine expressions
498   /// involving only the symbolic identifiers. `lb` and `ub` (along with the
499   /// `boundFloorDivisor`) are set to represent the lower and upper bound
500   /// associated with the constant difference: `lb`, `ub` have the coefficients,
501   /// and boundFloorDivisor, their divisor. `minLbPos` and `minUbPos` if
502   /// non-null are set to the position of the constant lower bound and upper
503   /// bound respectively (to the same if they are from an equality). Ex: if the
504   /// lower bound is [(s0 + s2 - 1) floordiv 32] for a system with three
505   /// symbolic identifiers, *lb = [1, 0, 1], lbDivisor = 32. See comments at
506   /// function definition for examples.
507   Optional<int64_t> getConstantBoundOnDimSize(
508       unsigned pos, SmallVectorImpl<int64_t> *lb = nullptr,
509       int64_t *boundFloorDivisor = nullptr,
510       SmallVectorImpl<int64_t> *ub = nullptr, unsigned *minLbPos = nullptr,
511       unsigned *minUbPos = nullptr) const;
512 
513   /// Returns the constant lower bound for the pos^th identifier if there is
514   /// one; None otherwise.
515   Optional<int64_t> getConstantLowerBound(unsigned pos) const;
516 
517   /// Returns the constant upper bound for the pos^th identifier if there is
518   /// one; None otherwise.
519   Optional<int64_t> getConstantUpperBound(unsigned pos) const;
520 
521   /// Gets the lower and upper bound of the `offset` + `pos`th identifier
522   /// treating [0, offset) U [offset + num, symStartPos) as dimensions and
523   /// [symStartPos, getNumDimAndSymbolIds) as symbols, and `pos` lies in
524   /// [0, num). The multi-dimensional maps in the returned pair represent the
525   /// max and min of potentially multiple affine expressions. The upper bound is
526   /// exclusive. `localExprs` holds pre-computed AffineExpr's for all local
527   /// identifiers in the system.
528   std::pair<AffineMap, AffineMap>
529   getLowerAndUpperBound(unsigned pos, unsigned offset, unsigned num,
530                         unsigned symStartPos, ArrayRef<AffineExpr> localExprs,
531                         MLIRContext *context) const;
532 
533   /// Gather positions of all lower and upper bounds of the identifier at `pos`,
534   /// and optionally any equalities on it. In addition, the bounds are to be
535   /// independent of identifiers in position range [`offset`, `offset` + `num`).
536   void
537   getLowerAndUpperBoundIndices(unsigned pos,
538                                SmallVectorImpl<unsigned> *lbIndices,
539                                SmallVectorImpl<unsigned> *ubIndices,
540                                SmallVectorImpl<unsigned> *eqIndices = nullptr,
541                                unsigned offset = 0, unsigned num = 0) const;
542 
543   /// Removes constraints that are independent of (i.e., do not have a
544   /// coefficient for) for identifiers in the range [pos, pos + num).
545   void removeIndependentConstraints(unsigned pos, unsigned num);
546 
547   /// Returns true if the set can be trivially detected as being
548   /// hyper-rectangular on the specified contiguous set of identifiers.
549   bool isHyperRectangular(unsigned pos, unsigned num) const;
550 
551   /// Removes duplicate constraints, trivially true constraints, and constraints
552   /// that can be detected as redundant as a result of differing only in their
553   /// constant term part. A constraint of the form <non-negative constant> >= 0
554   /// is considered trivially true. This method is a linear time method on the
555   /// constraints, does a single scan, and updates in place. It also normalizes
556   /// constraints by their GCD and performs GCD tightening on inequalities.
557   void removeTrivialRedundancy();
558 
559   /// A more expensive check to detect redundant inequalities thatn
560   /// removeTrivialRedundancy.
561   void removeRedundantInequalities();
562 
563   /// Removes redundant constraints using Simplex. Although the algorithm can
564   /// theoretically take exponential time in the worst case (rare), it is known
565   /// to perform much better in the average case. If V is the number of vertices
566   /// in the polytope and C is the number of constraints, the algorithm takes
567   /// O(VC) time.
568   void removeRedundantConstraints();
569 
570   // Removes all equalities and inequalities.
571   void clearConstraints();
572 
573   void print(raw_ostream &os) const;
574   void dump() const;
575 
576 private:
577   /// Returns false if the fields corresponding to various identifier counts, or
578   /// equality/inequality buffer sizes aren't consistent; true otherwise. This
579   /// is meant to be used within an assert internally.
580   bool hasConsistentState() const;
581 
582   /// Checks all rows of equality/inequality constraints for trivial
583   /// contradictions (for example: 1 == 0, 0 >= 1), which may have surfaced
584   /// after elimination. Returns 'true' if an invalid constraint is found;
585   /// 'false'otherwise.
586   bool hasInvalidConstraint() const;
587 
588   /// Returns the constant lower bound bound if isLower is true, and the upper
589   /// bound if isLower is false.
590   template <bool isLower>
591   Optional<int64_t> computeConstantLowerOrUpperBound(unsigned pos);
592 
593   // Eliminates a single identifier at 'position' from equality and inequality
594   // constraints. Returns 'success' if the identifier was eliminated, and
595   // 'failure' otherwise.
gaussianEliminateId(unsigned position)596   inline LogicalResult gaussianEliminateId(unsigned position) {
597     return success(gaussianEliminateIds(position, position + 1) == 1);
598   }
599 
600   // Eliminates identifiers from equality and inequality constraints
601   // in column range [posStart, posLimit).
602   // Returns the number of variables eliminated.
603   unsigned gaussianEliminateIds(unsigned posStart, unsigned posLimit);
604 
605   /// Eliminates identifier at the specified position using Fourier-Motzkin
606   /// variable elimination, but uses Gaussian elimination if there is an
607   /// equality involving that identifier. If the result of the elimination is
608   /// integer exact, *isResultIntegerExact is set to true. If 'darkShadow' is
609   /// set to true, a potential under approximation (subset) of the rational
610   /// shadow / exact integer shadow is computed.
611   // See implementation comments for more details.
612   void fourierMotzkinEliminate(unsigned pos, bool darkShadow = false,
613                                bool *isResultIntegerExact = nullptr);
614 
615   /// Tightens inequalities given that we are dealing with integer spaces. This
616   /// is similar to the GCD test but applied to inequalities. The constant term
617   /// can be reduced to the preceding multiple of the GCD of the coefficients,
618   /// i.e.,
619   ///  64*i - 100 >= 0  =>  64*i - 128 >= 0 (since 'i' is an integer). This is a
620   /// fast method (linear in the number of coefficients).
621   void gcdTightenInequalities();
622 
623   /// Normalized each constraints by the GCD of its coefficients.
624   void normalizeConstraintsByGCD();
625 
626   /// Removes identifiers in the column range [idStart, idLimit), and copies any
627   /// remaining valid data into place, updates member variables, and resizes
628   /// arrays as needed.
629   void removeIdRange(unsigned idStart, unsigned idLimit);
630 
631   /// Total number of identifiers.
632   unsigned numIds;
633 
634   /// Number of identifiers corresponding to real dimensions.
635   unsigned numDims;
636 
637   /// Number of identifiers corresponding to symbols (unknown but constant for
638   /// analysis).
639   unsigned numSymbols;
640 
641   /// Coefficients of affine equalities (in == 0 form).
642   Matrix equalities;
643 
644   /// Coefficients of affine inequalities (in >= 0 form).
645   Matrix inequalities;
646 
647   /// Values corresponding to the (column) identifiers of this constraint
648   /// system appearing in the order the identifiers correspond to columns.
649   /// Temporary ones or those that aren't associated to any Value are set to
650   /// None.
651   SmallVector<Optional<Value>, 8> ids;
652 
653   /// A parameter that controls detection of an unrealistic number of
654   /// constraints. If the number of constraints is this many times the number of
655   /// variables, we consider such a system out of line with the intended use
656   /// case of FlatAffineConstraints.
657   // The rationale for 32 is that in the typical simplest of cases, an
658   // identifier is expected to have one lower bound and one upper bound
659   // constraint. With a level of tiling or a connection to another identifier
660   // through a div or mod, an extra pair of bounds gets added. As a limit, we
661   // don't expect an identifier to have more than 32 lower/upper/equality
662   // constraints. This is conservatively set low and can be raised if needed.
663   constexpr static unsigned kExplosionFactor = 32;
664 };
665 
666 /// Flattens 'expr' into 'flattenedExpr', which contains the coefficients of the
667 /// dimensions, symbols, and additional variables that represent floor divisions
668 /// of dimensions, symbols, and in turn other floor divisions.  Returns failure
669 /// if 'expr' could not be flattened (i.e., semi-affine is not yet handled).
670 /// 'cst' contains constraints that connect newly introduced local identifiers
671 /// to existing dimensional and symbolic identifiers. See documentation for
672 /// AffineExprFlattener on how mod's and div's are flattened.
673 LogicalResult getFlattenedAffineExpr(AffineExpr expr, unsigned numDims,
674                                      unsigned numSymbols,
675                                      SmallVectorImpl<int64_t> *flattenedExpr,
676                                      FlatAffineConstraints *cst = nullptr);
677 
678 /// Flattens the result expressions of the map to their corresponding flattened
679 /// forms and set in 'flattenedExprs'. Returns failure if any expression in the
680 /// map could not be flattened (i.e., semi-affine is not yet handled). 'cst'
681 /// contains constraints that connect newly introduced local identifiers to
682 /// existing dimensional and / symbolic identifiers. See documentation for
683 /// AffineExprFlattener on how mod's and div's are flattened. For all affine
684 /// expressions that share the same operands (like those of an affine map), this
685 /// method should be used instead of repeatedly calling getFlattenedAffineExpr
686 /// since local variables added to deal with div's and mod's will be reused
687 /// across expressions.
688 LogicalResult
689 getFlattenedAffineExprs(AffineMap map,
690                         std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
691                         FlatAffineConstraints *cst = nullptr);
692 LogicalResult
693 getFlattenedAffineExprs(IntegerSet set,
694                         std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
695                         FlatAffineConstraints *cst = nullptr);
696 
697 } // end namespace mlir.
698 
699 #endif // MLIR_ANALYSIS_AFFINESTRUCTURES_H
700