1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "mlir/IR/SymbolTable.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/OpImplementation.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/StringSwitch.h"
16
17 using namespace mlir;
18
19 /// Return true if the given operation is unknown and may potentially define a
20 /// symbol table.
isPotentiallyUnknownSymbolTable(Operation * op)21 static bool isPotentiallyUnknownSymbolTable(Operation *op) {
22 return op->getNumRegions() == 1 && !op->getDialect();
23 }
24
25 /// Returns the string name of the given symbol, or None if this is not a
26 /// symbol.
getNameIfSymbol(Operation * symbol)27 static Optional<StringRef> getNameIfSymbol(Operation *symbol) {
28 auto nameAttr =
29 symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
30 return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
31 }
getNameIfSymbol(Operation * symbol,Identifier symbolAttrNameId)32 static Optional<StringRef> getNameIfSymbol(Operation *symbol,
33 Identifier symbolAttrNameId) {
34 auto nameAttr = symbol->getAttrOfType<StringAttr>(symbolAttrNameId);
35 return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
36 }
37
38 /// Computes the nested symbol reference attribute for the symbol 'symbolName'
39 /// that are usable within the symbol table operations from 'symbol' as far up
40 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
41 /// Returns success if all references up to 'within' could be computed.
42 static LogicalResult
collectValidReferencesFor(Operation * symbol,StringRef symbolName,Operation * within,SmallVectorImpl<SymbolRefAttr> & results)43 collectValidReferencesFor(Operation *symbol, StringRef symbolName,
44 Operation *within,
45 SmallVectorImpl<SymbolRefAttr> &results) {
46 assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
47 MLIRContext *ctx = symbol->getContext();
48
49 auto leafRef = FlatSymbolRefAttr::get(ctx, symbolName);
50 results.push_back(leafRef);
51
52 // Early exit for when 'within' is the parent of 'symbol'.
53 Operation *symbolTableOp = symbol->getParentOp();
54 if (within == symbolTableOp)
55 return success();
56
57 // Collect references until 'symbolTableOp' reaches 'within'.
58 SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
59 Identifier symbolNameId =
60 Identifier::get(SymbolTable::getSymbolAttrName(), ctx);
61 do {
62 // Each parent of 'symbol' should define a symbol table.
63 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
64 return failure();
65 // Each parent of 'symbol' should also be a symbol.
66 Optional<StringRef> symbolTableName =
67 getNameIfSymbol(symbolTableOp, symbolNameId);
68 if (!symbolTableName)
69 return failure();
70 results.push_back(SymbolRefAttr::get(ctx, *symbolTableName, nestedRefs));
71
72 symbolTableOp = symbolTableOp->getParentOp();
73 if (symbolTableOp == within)
74 break;
75 nestedRefs.insert(nestedRefs.begin(),
76 FlatSymbolRefAttr::get(ctx, *symbolTableName));
77 } while (true);
78 return success();
79 }
80
81 /// Walk all of the operations within the given set of regions, without
82 /// traversing into any nested symbol tables. Stops walking if the result of the
83 /// callback is anything other than `WalkResult::advance`.
84 static Optional<WalkResult>
walkSymbolTable(MutableArrayRef<Region> regions,function_ref<Optional<WalkResult> (Operation *)> callback)85 walkSymbolTable(MutableArrayRef<Region> regions,
86 function_ref<Optional<WalkResult>(Operation *)> callback) {
87 SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
88 while (!worklist.empty()) {
89 for (Operation &op : worklist.pop_back_val()->getOps()) {
90 Optional<WalkResult> result = callback(&op);
91 if (result != WalkResult::advance())
92 return result;
93
94 // If this op defines a new symbol table scope, we can't traverse. Any
95 // symbol references nested within 'op' are different semantically.
96 if (!op.hasTrait<OpTrait::SymbolTable>()) {
97 for (Region ®ion : op.getRegions())
98 worklist.push_back(®ion);
99 }
100 }
101 }
102 return WalkResult::advance();
103 }
104
105 //===----------------------------------------------------------------------===//
106 // SymbolTable
107 //===----------------------------------------------------------------------===//
108
109 /// Build a symbol table with the symbols within the given operation.
SymbolTable(Operation * symbolTableOp)110 SymbolTable::SymbolTable(Operation *symbolTableOp)
111 : symbolTableOp(symbolTableOp) {
112 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
113 "expected operation to have SymbolTable trait");
114 assert(symbolTableOp->getNumRegions() == 1 &&
115 "expected operation to have a single region");
116 assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
117 "expected operation to have a single block");
118
119 Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(),
120 symbolTableOp->getContext());
121 for (auto &op : symbolTableOp->getRegion(0).front()) {
122 Optional<StringRef> name = getNameIfSymbol(&op, symbolNameId);
123 if (!name)
124 continue;
125
126 auto inserted = symbolTable.insert({*name, &op});
127 (void)inserted;
128 assert(inserted.second &&
129 "expected region to contain uniquely named symbol operations");
130 }
131 }
132
133 /// Look up a symbol with the specified name, returning null if no such name
134 /// exists. Names never include the @ on them.
lookup(StringRef name) const135 Operation *SymbolTable::lookup(StringRef name) const {
136 return symbolTable.lookup(name);
137 }
138
139 /// Erase the given symbol from the table.
erase(Operation * symbol)140 void SymbolTable::erase(Operation *symbol) {
141 Optional<StringRef> name = getNameIfSymbol(symbol);
142 assert(name && "expected valid 'name' attribute");
143 assert(symbol->getParentOp() == symbolTableOp &&
144 "expected this operation to be inside of the operation with this "
145 "SymbolTable");
146
147 auto it = symbolTable.find(*name);
148 if (it != symbolTable.end() && it->second == symbol) {
149 symbolTable.erase(it);
150 symbol->erase();
151 }
152 }
153
154 // TODO: Consider if this should be renamed to something like insertOrUpdate
155 /// Insert a new symbol into the table and associated operation if not already
156 /// there and rename it as necessary to avoid collisions.
insert(Operation * symbol,Block::iterator insertPt)157 void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
158 // The symbol cannot be the child of another op and must be the child of the
159 // symbolTableOp after this.
160 //
161 // TODO: consider if SymbolTable's constructor should behave the same.
162 if (!symbol->getParentOp()) {
163 auto &body = symbolTableOp->getRegion(0).front();
164 if (insertPt == Block::iterator()) {
165 insertPt = Block::iterator(body.end());
166 } else {
167 assert((insertPt == body.end() ||
168 insertPt->getParentOp() == symbolTableOp) &&
169 "expected insertPt to be in the associated module operation");
170 }
171 // Insert before the terminator, if any.
172 if (insertPt == Block::iterator(body.end()) && !body.empty() &&
173 std::prev(body.end())->hasTrait<OpTrait::IsTerminator>())
174 insertPt = std::prev(body.end());
175
176 body.getOperations().insert(insertPt, symbol);
177 }
178 assert(symbol->getParentOp() == symbolTableOp &&
179 "symbol is already inserted in another op");
180
181 // Add this symbol to the symbol table, uniquing the name if a conflict is
182 // detected.
183 StringRef name = getSymbolName(symbol);
184 if (symbolTable.insert({name, symbol}).second)
185 return;
186 // If the symbol was already in the table, also return.
187 if (symbolTable.lookup(name) == symbol)
188 return;
189 // If a conflict was detected, then the symbol will not have been added to
190 // the symbol table. Try suffixes until we get to a unique name that works.
191 SmallString<128> nameBuffer(name);
192 unsigned originalLength = nameBuffer.size();
193
194 // Iteratively try suffixes until we find one that isn't used.
195 do {
196 nameBuffer.resize(originalLength);
197 nameBuffer += '_';
198 nameBuffer += std::to_string(uniquingCounter++);
199 } while (!symbolTable.insert({nameBuffer, symbol}).second);
200 setSymbolName(symbol, nameBuffer);
201 }
202
203 /// Returns the name of the given symbol operation.
getSymbolName(Operation * symbol)204 StringRef SymbolTable::getSymbolName(Operation *symbol) {
205 Optional<StringRef> name = getNameIfSymbol(symbol);
206 assert(name && "expected valid symbol name");
207 return *name;
208 }
209 /// Sets the name of the given symbol operation.
setSymbolName(Operation * symbol,StringRef name)210 void SymbolTable::setSymbolName(Operation *symbol, StringRef name) {
211 symbol->setAttr(getSymbolAttrName(),
212 StringAttr::get(symbol->getContext(), name));
213 }
214
215 /// Returns the visibility of the given symbol operation.
getSymbolVisibility(Operation * symbol)216 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
217 // If the attribute doesn't exist, assume public.
218 StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
219 if (!vis)
220 return Visibility::Public;
221
222 // Otherwise, switch on the string value.
223 return StringSwitch<Visibility>(vis.getValue())
224 .Case("private", Visibility::Private)
225 .Case("nested", Visibility::Nested)
226 .Case("public", Visibility::Public);
227 }
228 /// Sets the visibility of the given symbol operation.
setSymbolVisibility(Operation * symbol,Visibility vis)229 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
230 MLIRContext *ctx = symbol->getContext();
231
232 // If the visibility is public, just drop the attribute as this is the
233 // default.
234 if (vis == Visibility::Public) {
235 symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
236 return;
237 }
238
239 // Otherwise, update the attribute.
240 assert((vis == Visibility::Private || vis == Visibility::Nested) &&
241 "unknown symbol visibility kind");
242
243 StringRef visName = vis == Visibility::Private ? "private" : "nested";
244 symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName));
245 }
246
247 /// Returns the nearest symbol table from a given operation `from`. Returns
248 /// nullptr if no valid parent symbol table could be found.
getNearestSymbolTable(Operation * from)249 Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
250 assert(from && "expected valid operation");
251 if (isPotentiallyUnknownSymbolTable(from))
252 return nullptr;
253
254 while (!from->hasTrait<OpTrait::SymbolTable>()) {
255 from = from->getParentOp();
256
257 // Check that this is a valid op and isn't an unknown symbol table.
258 if (!from || isPotentiallyUnknownSymbolTable(from))
259 return nullptr;
260 }
261 return from;
262 }
263
264 /// Walks all symbol table operations nested within, and including, `op`. For
265 /// each symbol table operation, the provided callback is invoked with the op
266 /// and a boolean signifying if the symbols within that symbol table can be
267 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether
268 /// all of the symbol uses of symbols within `op` are visible.
walkSymbolTables(Operation * op,bool allSymUsesVisible,function_ref<void (Operation *,bool)> callback)269 void SymbolTable::walkSymbolTables(
270 Operation *op, bool allSymUsesVisible,
271 function_ref<void(Operation *, bool)> callback) {
272 bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
273 if (isSymbolTable) {
274 SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
275 allSymUsesVisible |= !symbol || symbol.isPrivate();
276 } else {
277 // Otherwise if 'op' is not a symbol table, any nested symbols are
278 // guaranteed to be hidden.
279 allSymUsesVisible = true;
280 }
281
282 for (Region ®ion : op->getRegions())
283 for (Block &block : region)
284 for (Operation &nestedOp : block)
285 walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
286
287 // If 'op' had the symbol table trait, visit it after any nested symbol
288 // tables.
289 if (isSymbolTable)
290 callback(op, allSymUsesVisible);
291 }
292
293 /// Returns the operation registered with the given symbol name with the
294 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
295 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
296 /// was found.
lookupSymbolIn(Operation * symbolTableOp,StringRef symbol)297 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
298 StringRef symbol) {
299 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
300 Region ®ion = symbolTableOp->getRegion(0);
301 if (region.empty())
302 return nullptr;
303
304 // Look for a symbol with the given name.
305 Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(),
306 symbolTableOp->getContext());
307 for (auto &op : region.front())
308 if (getNameIfSymbol(&op, symbolNameId) == symbol)
309 return &op;
310 return nullptr;
311 }
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr symbol)312 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
313 SymbolRefAttr symbol) {
314 SmallVector<Operation *, 4> resolvedSymbols;
315 if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
316 return nullptr;
317 return resolvedSymbols.back();
318 }
319
320 /// Internal implementation of `lookupSymbolIn` that allows for specialized
321 /// implementations of the lookup function.
lookupSymbolInImpl(Operation * symbolTableOp,SymbolRefAttr symbol,SmallVectorImpl<Operation * > & symbols,function_ref<Operation * (Operation *,StringRef)> lookupSymbolFn)322 static LogicalResult lookupSymbolInImpl(
323 Operation *symbolTableOp, SymbolRefAttr symbol,
324 SmallVectorImpl<Operation *> &symbols,
325 function_ref<Operation *(Operation *, StringRef)> lookupSymbolFn) {
326 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
327
328 // Lookup the root reference for this symbol.
329 symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference());
330 if (!symbolTableOp)
331 return failure();
332 symbols.push_back(symbolTableOp);
333
334 // If there are no nested references, just return the root symbol directly.
335 ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
336 if (nestedRefs.empty())
337 return success();
338
339 // Verify that the root is also a symbol table.
340 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
341 return failure();
342
343 // Otherwise, lookup each of the nested non-leaf references and ensure that
344 // each corresponds to a valid symbol table.
345 for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
346 symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getValue());
347 if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
348 return failure();
349 symbols.push_back(symbolTableOp);
350 }
351 symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference()));
352 return success(symbols.back());
353 }
354
355 LogicalResult
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr symbol,SmallVectorImpl<Operation * > & symbols)356 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
357 SmallVectorImpl<Operation *> &symbols) {
358 auto lookupFn = [](Operation *symbolTableOp, StringRef symbol) {
359 return lookupSymbolIn(symbolTableOp, symbol);
360 };
361 return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn);
362 }
363
364 /// Returns the operation registered with the given symbol name within the
365 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
366 /// nullptr if no valid symbol was found.
lookupNearestSymbolFrom(Operation * from,StringRef symbol)367 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
368 StringRef symbol) {
369 Operation *symbolTableOp = getNearestSymbolTable(from);
370 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
371 }
lookupNearestSymbolFrom(Operation * from,SymbolRefAttr symbol)372 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
373 SymbolRefAttr symbol) {
374 Operation *symbolTableOp = getNearestSymbolTable(from);
375 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
376 }
377
operator <<(raw_ostream & os,SymbolTable::Visibility visibility)378 raw_ostream &mlir::operator<<(raw_ostream &os,
379 SymbolTable::Visibility visibility) {
380 switch (visibility) {
381 case SymbolTable::Visibility::Public:
382 return os << "public";
383 case SymbolTable::Visibility::Private:
384 return os << "private";
385 case SymbolTable::Visibility::Nested:
386 return os << "nested";
387 }
388 llvm_unreachable("Unexpected visibility");
389 }
390
391 //===----------------------------------------------------------------------===//
392 // SymbolTable Trait Types
393 //===----------------------------------------------------------------------===//
394
verifySymbolTable(Operation * op)395 LogicalResult detail::verifySymbolTable(Operation *op) {
396 if (op->getNumRegions() != 1)
397 return op->emitOpError()
398 << "Operations with a 'SymbolTable' must have exactly one region";
399 if (!llvm::hasSingleElement(op->getRegion(0)))
400 return op->emitOpError()
401 << "Operations with a 'SymbolTable' must have exactly one block";
402
403 // Check that all symbols are uniquely named within child regions.
404 DenseMap<Attribute, Location> nameToOrigLoc;
405 for (auto &block : op->getRegion(0)) {
406 for (auto &op : block) {
407 // Check for a symbol name attribute.
408 auto nameAttr =
409 op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
410 if (!nameAttr)
411 continue;
412
413 // Try to insert this symbol into the table.
414 auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
415 if (!it.second)
416 return op.emitError()
417 .append("redefinition of symbol named '", nameAttr.getValue(), "'")
418 .attachNote(it.first->second)
419 .append("see existing symbol definition here");
420 }
421 }
422
423 // Verify any nested symbol user operations.
424 SymbolTableCollection symbolTable;
425 auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> {
426 if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op))
427 return WalkResult(user.verifySymbolUses(symbolTable));
428 return WalkResult::advance();
429 };
430
431 Optional<WalkResult> result =
432 walkSymbolTable(op->getRegions(), verifySymbolUserFn);
433 return success(result && !result->wasInterrupted());
434 }
435
verifySymbol(Operation * op)436 LogicalResult detail::verifySymbol(Operation *op) {
437 // Verify the name attribute.
438 if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
439 return op->emitOpError() << "requires string attribute '"
440 << mlir::SymbolTable::getSymbolAttrName() << "'";
441
442 // Verify the visibility attribute.
443 if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
444 StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
445 if (!visStrAttr)
446 return op->emitOpError() << "requires visibility attribute '"
447 << mlir::SymbolTable::getVisibilityAttrName()
448 << "' to be a string attribute, but got " << vis;
449
450 if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
451 visStrAttr.getValue()))
452 return op->emitOpError()
453 << "visibility expected to be one of [\"public\", \"private\", "
454 "\"nested\"], but got "
455 << visStrAttr;
456 }
457 return success();
458 }
459
460 //===----------------------------------------------------------------------===//
461 // Symbol Use Lists
462 //===----------------------------------------------------------------------===//
463
464 /// Walk all of the symbol references within the given operation, invoking the
465 /// provided callback for each found use. The callbacks takes as arguments: the
466 /// use of the symbol, and the nested access chain to the attribute within the
467 /// operation dictionary. An access chain is a set of indices into nested
468 /// container attributes. For example, a symbol use in an attribute dictionary
469 /// that looks like the following:
470 ///
471 /// {use = [{other_attr, @symbol}]}
472 ///
473 /// May have the following access chain:
474 ///
475 /// [0, 0, 1]
476 ///
walkSymbolRefs(Operation * op,function_ref<WalkResult (SymbolTable::SymbolUse,ArrayRef<int>)> callback)477 static WalkResult walkSymbolRefs(
478 Operation *op,
479 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
480 // Check to see if the operation has any attributes.
481 DictionaryAttr attrDict = op->getAttrDictionary();
482 if (attrDict.empty())
483 return WalkResult::advance();
484
485 // A worklist of a container attribute and the current index into the held
486 // attribute list.
487 SmallVector<Attribute, 1> attrWorklist(1, attrDict);
488 SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
489
490 // Process the symbol references within the given nested attribute range.
491 auto processAttrs = [&](int &index, auto attrRange) -> WalkResult {
492 for (Attribute attr : llvm::drop_begin(attrRange, index)) {
493 /// Check for a nested container attribute, these will also need to be
494 /// walked.
495 if (attr.isa<ArrayAttr, DictionaryAttr>()) {
496 attrWorklist.push_back(attr);
497 curAccessChain.push_back(-1);
498 return WalkResult::advance();
499 }
500
501 // Invoke the provided callback if we find a symbol use and check for a
502 // requested interrupt.
503 if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
504 if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
505 return WalkResult::interrupt();
506
507 // Make sure to keep the index counter in sync.
508 ++index;
509 }
510
511 // Pop this container attribute from the worklist.
512 attrWorklist.pop_back();
513 curAccessChain.pop_back();
514 return WalkResult::advance();
515 };
516
517 WalkResult result = WalkResult::advance();
518 do {
519 Attribute attr = attrWorklist.back();
520 int &index = curAccessChain.back();
521 ++index;
522
523 // Process the given attribute, which is guaranteed to be a container.
524 if (auto dict = attr.dyn_cast<DictionaryAttr>())
525 result = processAttrs(index, make_second_range(dict.getValue()));
526 else
527 result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
528 } while (!attrWorklist.empty() && !result.wasInterrupted());
529 return result;
530 }
531
532 /// Walk all of the uses, for any symbol, that are nested within the given
533 /// regions, invoking the provided callback for each. This does not traverse
534 /// into any nested symbol tables.
walkSymbolUses(MutableArrayRef<Region> regions,function_ref<WalkResult (SymbolTable::SymbolUse,ArrayRef<int>)> callback)535 static Optional<WalkResult> walkSymbolUses(
536 MutableArrayRef<Region> regions,
537 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
538 return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> {
539 // Check that this isn't a potentially unknown symbol table.
540 if (isPotentiallyUnknownSymbolTable(op))
541 return llvm::None;
542
543 return walkSymbolRefs(op, callback);
544 });
545 }
546 /// Walk all of the uses, for any symbol, that are nested within the given
547 /// operation 'from', invoking the provided callback for each. This does not
548 /// traverse into any nested symbol tables.
walkSymbolUses(Operation * from,function_ref<WalkResult (SymbolTable::SymbolUse,ArrayRef<int>)> callback)549 static Optional<WalkResult> walkSymbolUses(
550 Operation *from,
551 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
552 // If this operation has regions, and it, as well as its dialect, isn't
553 // registered then conservatively fail. The operation may define a
554 // symbol table, so we can't opaquely know if we should traverse to find
555 // nested uses.
556 if (isPotentiallyUnknownSymbolTable(from))
557 return llvm::None;
558
559 // Walk the uses on this operation.
560 if (walkSymbolRefs(from, callback).wasInterrupted())
561 return WalkResult::interrupt();
562
563 // Only recurse if this operation is not a symbol table. A symbol table
564 // defines a new scope, so we can't walk the attributes from within the symbol
565 // table op.
566 if (!from->hasTrait<OpTrait::SymbolTable>())
567 return walkSymbolUses(from->getRegions(), callback);
568 return WalkResult::advance();
569 }
570
571 namespace {
572 /// This class represents a single symbol scope. A symbol scope represents the
573 /// set of operations nested within a symbol table that may reference symbols
574 /// within that table. A symbol scope does not contain the symbol table
575 /// operation itself, just its contained operations. A scope ends at leaf
576 /// operations or another symbol table operation.
577 struct SymbolScope {
578 /// Walk the symbol uses within this scope, invoking the given callback.
579 /// This variant is used when the callback type matches that expected by
580 /// 'walkSymbolUses'.
581 template <typename CallbackT,
582 typename std::enable_if_t<!std::is_same<
583 typename llvm::function_traits<CallbackT>::result_t,
584 void>::value> * = nullptr>
walk__anon8066b17f0511::SymbolScope585 Optional<WalkResult> walk(CallbackT cback) {
586 if (Region *region = limit.dyn_cast<Region *>())
587 return walkSymbolUses(*region, cback);
588 return walkSymbolUses(limit.get<Operation *>(), cback);
589 }
590 /// This variant is used when the callback type matches a stripped down type:
591 /// void(SymbolTable::SymbolUse use)
592 template <typename CallbackT,
593 typename std::enable_if_t<std::is_same<
594 typename llvm::function_traits<CallbackT>::result_t,
595 void>::value> * = nullptr>
walk__anon8066b17f0511::SymbolScope596 Optional<WalkResult> walk(CallbackT cback) {
597 return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) {
598 return cback(use), WalkResult::advance();
599 });
600 }
601
602 /// The representation of the symbol within this scope.
603 SymbolRefAttr symbol;
604
605 /// The IR unit representing this scope.
606 llvm::PointerUnion<Operation *, Region *> limit;
607 };
608 } // end anonymous namespace
609
610 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
collectSymbolScopes(Operation * symbol,Operation * limit)611 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
612 Operation *limit) {
613 StringRef symName = SymbolTable::getSymbolName(symbol);
614 assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
615
616 // Compute the ancestors of 'limit'.
617 SetVector<Operation *, SmallVector<Operation *, 4>,
618 SmallPtrSet<Operation *, 4>>
619 limitAncestors;
620 Operation *limitAncestor = limit;
621 do {
622 // Check to see if 'symbol' is an ancestor of 'limit'.
623 if (limitAncestor == symbol) {
624 // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
625 // doesn't support parent references.
626 if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
627 symbol->getParentOp())
628 return {{SymbolRefAttr::get(symbol->getContext(), symName), limit}};
629 return {};
630 }
631
632 limitAncestors.insert(limitAncestor);
633 } while ((limitAncestor = limitAncestor->getParentOp()));
634
635 // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
636 Operation *commonAncestor = symbol->getParentOp();
637 do {
638 if (limitAncestors.count(commonAncestor))
639 break;
640 } while ((commonAncestor = commonAncestor->getParentOp()));
641 assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
642
643 // Compute the set of valid nested references for 'symbol' as far up to the
644 // common ancestor as possible.
645 SmallVector<SymbolRefAttr, 2> references;
646 bool collectedAllReferences = succeeded(
647 collectValidReferencesFor(symbol, symName, commonAncestor, references));
648
649 // Handle the case where the common ancestor is 'limit'.
650 if (commonAncestor == limit) {
651 SmallVector<SymbolScope, 2> scopes;
652
653 // Walk each of the ancestors of 'symbol', calling the compute function for
654 // each one.
655 Operation *limitIt = symbol->getParentOp();
656 for (size_t i = 0, e = references.size(); i != e;
657 ++i, limitIt = limitIt->getParentOp()) {
658 assert(limitIt->hasTrait<OpTrait::SymbolTable>());
659 scopes.push_back({references[i], &limitIt->getRegion(0)});
660 }
661 return scopes;
662 }
663
664 // Otherwise, we just need the symbol reference for 'symbol' that will be
665 // used within 'limit'. This is the last reference in the list we computed
666 // above if we were able to collect all references.
667 if (!collectedAllReferences)
668 return {};
669 return {{references.back(), limit}};
670 }
collectSymbolScopes(Operation * symbol,Region * limit)671 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
672 Region *limit) {
673 auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
674
675 // If we collected some scopes to walk, make sure to constrain the one for
676 // limit to the specific region requested.
677 if (!scopes.empty())
678 scopes.back().limit = limit;
679 return scopes;
680 }
681 template <typename IRUnit>
collectSymbolScopes(StringRef symbol,IRUnit * limit)682 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol,
683 IRUnit *limit) {
684 return {{SymbolRefAttr::get(limit->getContext(), symbol), limit}};
685 }
686
687 /// Returns true if the given reference 'SubRef' is a sub reference of the
688 /// reference 'ref', i.e. 'ref' is a further qualified reference.
isReferencePrefixOf(SymbolRefAttr subRef,SymbolRefAttr ref)689 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
690 if (ref == subRef)
691 return true;
692
693 // If the references are not pointer equal, check to see if `subRef` is a
694 // prefix of `ref`.
695 if (ref.isa<FlatSymbolRefAttr>() ||
696 ref.getRootReference() != subRef.getRootReference())
697 return false;
698
699 auto refLeafs = ref.getNestedReferences();
700 auto subRefLeafs = subRef.getNestedReferences();
701 return subRefLeafs.size() < refLeafs.size() &&
702 subRefLeafs == refLeafs.take_front(subRefLeafs.size());
703 }
704
705 //===----------------------------------------------------------------------===//
706 // SymbolTable::getSymbolUses
707
708 /// The implementation of SymbolTable::getSymbolUses below.
709 template <typename FromT>
getSymbolUsesImpl(FromT from)710 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
711 std::vector<SymbolTable::SymbolUse> uses;
712 auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
713 uses.push_back(symbolUse);
714 return WalkResult::advance();
715 };
716 auto result = walkSymbolUses(from, walkFn);
717 return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None;
718 }
719
720 /// Get an iterator range for all of the uses, for any symbol, that are nested
721 /// within the given operation 'from'. This does not traverse into any nested
722 /// symbol tables, and will also only return uses on 'from' if it does not
723 /// also define a symbol table. This is because we treat the region as the
724 /// boundary of the symbol table, and not the op itself. This function returns
725 /// None if there are any unknown operations that may potentially be symbol
726 /// tables.
getSymbolUses(Operation * from)727 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
728 return getSymbolUsesImpl(from);
729 }
getSymbolUses(Region * from)730 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> {
731 return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
732 }
733
734 //===----------------------------------------------------------------------===//
735 // SymbolTable::getSymbolUses
736
737 /// The implementation of SymbolTable::getSymbolUses below.
738 template <typename SymbolT, typename IRUnitT>
getSymbolUsesImpl(SymbolT symbol,IRUnitT * limit)739 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
740 IRUnitT *limit) {
741 std::vector<SymbolTable::SymbolUse> uses;
742 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
743 if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
744 if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
745 uses.push_back(symbolUse);
746 }))
747 return llvm::None;
748 }
749 return SymbolTable::UseRange(std::move(uses));
750 }
751
752 /// Get all of the uses of the given symbol that are nested within the given
753 /// operation 'from', invoking the provided callback for each. This does not
754 /// traverse into any nested symbol tables. This function returns None if there
755 /// are any unknown operations that may potentially be symbol tables.
getSymbolUses(StringRef symbol,Operation * from)756 auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from)
757 -> Optional<UseRange> {
758 return getSymbolUsesImpl(symbol, from);
759 }
getSymbolUses(Operation * symbol,Operation * from)760 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
761 -> Optional<UseRange> {
762 return getSymbolUsesImpl(symbol, from);
763 }
getSymbolUses(StringRef symbol,Region * from)764 auto SymbolTable::getSymbolUses(StringRef symbol, Region *from)
765 -> Optional<UseRange> {
766 return getSymbolUsesImpl(symbol, from);
767 }
getSymbolUses(Operation * symbol,Region * from)768 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
769 -> Optional<UseRange> {
770 return getSymbolUsesImpl(symbol, from);
771 }
772
773 //===----------------------------------------------------------------------===//
774 // SymbolTable::symbolKnownUseEmpty
775
776 /// The implementation of SymbolTable::symbolKnownUseEmpty below.
777 template <typename SymbolT, typename IRUnitT>
symbolKnownUseEmptyImpl(SymbolT symbol,IRUnitT * limit)778 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
779 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
780 // Walk all of the symbol uses looking for a reference to 'symbol'.
781 if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
782 return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
783 ? WalkResult::interrupt()
784 : WalkResult::advance();
785 }) != WalkResult::advance())
786 return false;
787 }
788 return true;
789 }
790
791 /// Return if the given symbol is known to have no uses that are nested within
792 /// the given operation 'from'. This does not traverse into any nested symbol
793 /// tables. This function will also return false if there are any unknown
794 /// operations that may potentially be symbol tables.
symbolKnownUseEmpty(StringRef symbol,Operation * from)795 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) {
796 return symbolKnownUseEmptyImpl(symbol, from);
797 }
symbolKnownUseEmpty(Operation * symbol,Operation * from)798 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
799 return symbolKnownUseEmptyImpl(symbol, from);
800 }
symbolKnownUseEmpty(StringRef symbol,Region * from)801 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) {
802 return symbolKnownUseEmptyImpl(symbol, from);
803 }
symbolKnownUseEmpty(Operation * symbol,Region * from)804 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
805 return symbolKnownUseEmptyImpl(symbol, from);
806 }
807
808 //===----------------------------------------------------------------------===//
809 // SymbolTable::replaceAllSymbolUses
810
811 /// Rebuild the given attribute container after replacing all references to a
812 /// symbol with the updated attribute in 'accesses'.
rebuildAttrAfterRAUW(Attribute container,ArrayRef<std::pair<SmallVector<int,1>,SymbolRefAttr>> accesses,unsigned depth)813 static Attribute rebuildAttrAfterRAUW(
814 Attribute container,
815 ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
816 unsigned depth) {
817 // Given a range of Attributes, update the ones referred to by the given
818 // access chains to point to the new symbol attribute.
819 auto updateAttrs = [&](auto &&attrRange) {
820 auto attrBegin = std::begin(attrRange);
821 for (unsigned i = 0, e = accesses.size(); i != e;) {
822 ArrayRef<int> access = accesses[i].first;
823 Attribute &attr = *std::next(attrBegin, access[depth]);
824
825 // Check to see if this is a leaf access, i.e. a SymbolRef.
826 if (access.size() == depth + 1) {
827 attr = accesses[i].second;
828 ++i;
829 continue;
830 }
831
832 // Otherwise, this is a container. Collect all of the accesses for this
833 // index and recurse. The recursion here is bounded by the size of the
834 // largest access array.
835 auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
836 ArrayRef<int> nextAccess = it.first;
837 return nextAccess.size() > depth + 1 &&
838 nextAccess[depth] == access[depth];
839 });
840 attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1);
841
842 // Skip over all of the accesses that refer to the nested container.
843 i += nestedAccesses.size();
844 }
845 };
846
847 if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) {
848 auto newAttrs = llvm::to_vector<4>(dictAttr.getValue());
849 updateAttrs(make_second_range(newAttrs));
850 return DictionaryAttr::get(dictAttr.getContext(), newAttrs);
851 }
852 auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue());
853 updateAttrs(newAttrs);
854 return ArrayAttr::get(container.getContext(), newAttrs);
855 }
856
857 /// Generates a new symbol reference attribute with a new leaf reference.
generateNewRefAttr(SymbolRefAttr oldAttr,FlatSymbolRefAttr newLeafAttr)858 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
859 FlatSymbolRefAttr newLeafAttr) {
860 if (oldAttr.isa<FlatSymbolRefAttr>())
861 return newLeafAttr;
862 auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
863 nestedRefs.back() = newLeafAttr;
864 return SymbolRefAttr::get(oldAttr.getContext(), oldAttr.getRootReference(),
865 nestedRefs);
866 }
867
868 /// The implementation of SymbolTable::replaceAllSymbolUses below.
869 template <typename SymbolT, typename IRUnitT>
870 static LogicalResult
replaceAllSymbolUsesImpl(SymbolT symbol,StringRef newSymbol,IRUnitT * limit)871 replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) {
872 // A collection of operations along with their new attribute dictionary.
873 std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
874
875 // The current operation being processed.
876 Operation *curOp = nullptr;
877
878 // The set of access chains into the attribute dictionary of the current
879 // operation, as well as the replacement attribute to use.
880 SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
881
882 // Generate a new attribute dictionary for the current operation by replacing
883 // references to the old symbol.
884 auto generateNewAttrDict = [&] {
885 auto oldDict = curOp->getAttrDictionary();
886 auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
887 return newDict.cast<DictionaryAttr>();
888 };
889
890 // Generate a new attribute to replace the given attribute.
891 MLIRContext *ctx = limit->getContext();
892 FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(ctx, newSymbol);
893 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
894 SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
895 auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
896 ArrayRef<int> accessChain) {
897 SymbolRefAttr useRef = symbolUse.getSymbolRef();
898 if (!isReferencePrefixOf(scope.symbol, useRef))
899 return WalkResult::advance();
900
901 // If we have a valid match, check to see if this is a proper
902 // subreference. If it is, then we will need to generate a different new
903 // attribute specifically for this use.
904 SymbolRefAttr replacementRef = newAttr;
905 if (useRef != scope.symbol) {
906 if (scope.symbol.isa<FlatSymbolRefAttr>()) {
907 replacementRef =
908 SymbolRefAttr::get(ctx, newSymbol, useRef.getNestedReferences());
909 } else {
910 auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
911 nestedRefs[scope.symbol.getNestedReferences().size() - 1] =
912 newLeafAttr;
913 replacementRef =
914 SymbolRefAttr::get(ctx, useRef.getRootReference(), nestedRefs);
915 }
916 }
917
918 // If there was a previous operation, generate a new attribute dict
919 // for it. This means that we've finished processing the current
920 // operation, so generate a new dictionary for it.
921 if (curOp && symbolUse.getUser() != curOp) {
922 updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
923 accessChains.clear();
924 }
925
926 // Record this access.
927 curOp = symbolUse.getUser();
928 accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
929 return WalkResult::advance();
930 };
931 if (!scope.walk(walkFn))
932 return failure();
933
934 // Check to see if we have a dangling op that needs to be processed.
935 if (curOp) {
936 updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
937 curOp = nullptr;
938 }
939 }
940
941 // Update the attribute dictionaries as necessary.
942 for (auto &it : updatedAttrDicts)
943 it.first->setAttrs(it.second);
944 return success();
945 }
946
947 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the
948 /// provided symbol 'newSymbol' that are nested within the given operation
949 /// 'from'. This does not traverse into any nested symbol tables. If there are
950 /// any unknown operations that may potentially be symbol tables, no uses are
951 /// replaced and failure is returned.
replaceAllSymbolUses(StringRef oldSymbol,StringRef newSymbol,Operation * from)952 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
953 StringRef newSymbol,
954 Operation *from) {
955 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
956 }
replaceAllSymbolUses(Operation * oldSymbol,StringRef newSymbol,Operation * from)957 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
958 StringRef newSymbol,
959 Operation *from) {
960 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
961 }
replaceAllSymbolUses(StringRef oldSymbol,StringRef newSymbol,Region * from)962 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
963 StringRef newSymbol,
964 Region *from) {
965 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
966 }
replaceAllSymbolUses(Operation * oldSymbol,StringRef newSymbol,Region * from)967 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
968 StringRef newSymbol,
969 Region *from) {
970 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
971 }
972
973 //===----------------------------------------------------------------------===//
974 // SymbolTableCollection
975 //===----------------------------------------------------------------------===//
976
lookupSymbolIn(Operation * symbolTableOp,StringRef symbol)977 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
978 StringRef symbol) {
979 return getSymbolTable(symbolTableOp).lookup(symbol);
980 }
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr name)981 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
982 SymbolRefAttr name) {
983 SmallVector<Operation *, 4> symbols;
984 if (failed(lookupSymbolIn(symbolTableOp, name, symbols)))
985 return nullptr;
986 return symbols.back();
987 }
988 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by
989 /// a given SymbolRefAttr. Returns failure if any of the nested references could
990 /// not be resolved.
991 LogicalResult
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr name,SmallVectorImpl<Operation * > & symbols)992 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
993 SymbolRefAttr name,
994 SmallVectorImpl<Operation *> &symbols) {
995 auto lookupFn = [this](Operation *symbolTableOp, StringRef symbol) {
996 return lookupSymbolIn(symbolTableOp, symbol);
997 };
998 return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn);
999 }
1000
1001 /// Returns the operation registered with the given symbol name within the
1002 /// closest parent operation of, or including, 'from' with the
1003 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was
1004 /// found.
lookupNearestSymbolFrom(Operation * from,StringRef symbol)1005 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
1006 StringRef symbol) {
1007 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
1008 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
1009 }
1010 Operation *
lookupNearestSymbolFrom(Operation * from,SymbolRefAttr symbol)1011 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
1012 SymbolRefAttr symbol) {
1013 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
1014 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
1015 }
1016
1017 /// Lookup, or create, a symbol table for an operation.
getSymbolTable(Operation * op)1018 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) {
1019 auto it = symbolTables.try_emplace(op, nullptr);
1020 if (it.second)
1021 it.first->second = std::make_unique<SymbolTable>(op);
1022 return *it.first->second;
1023 }
1024
1025 //===----------------------------------------------------------------------===//
1026 // SymbolUserMap
1027 //===----------------------------------------------------------------------===//
1028
SymbolUserMap(SymbolTableCollection & symbolTable,Operation * symbolTableOp)1029 SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable,
1030 Operation *symbolTableOp)
1031 : symbolTable(symbolTable) {
1032 // Walk each of the symbol tables looking for discardable callgraph nodes.
1033 SmallVector<Operation *> symbols;
1034 auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) {
1035 for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) {
1036 auto symbolUses = SymbolTable::getSymbolUses(&nestedOp);
1037 assert(symbolUses && "expected uses to be valid");
1038
1039 for (const SymbolTable::SymbolUse &use : *symbolUses) {
1040 symbols.clear();
1041 (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(),
1042 symbols);
1043 for (Operation *symbolOp : symbols)
1044 symbolToUsers[symbolOp].insert(use.getUser());
1045 }
1046 }
1047 };
1048 // We just set `allSymUsesVisible` to false here because it isn't necessary
1049 // for building the user map.
1050 SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false,
1051 walkFn);
1052 }
1053
replaceAllUsesWith(Operation * symbol,StringRef newSymbolName)1054 void SymbolUserMap::replaceAllUsesWith(Operation *symbol,
1055 StringRef newSymbolName) {
1056 auto it = symbolToUsers.find(symbol);
1057 if (it == symbolToUsers.end())
1058 return;
1059 SetVector<Operation *> &users = it->second;
1060
1061 // Replace the uses within the users of `symbol`.
1062 for (Operation *user : users)
1063 (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user);
1064
1065 // Move the current users of `symbol` to the new symbol if it is in the
1066 // symbol table.
1067 Operation *newSymbol =
1068 symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName);
1069 if (newSymbol != symbol) {
1070 // Transfer over the users to the new symbol.
1071 auto newIt = symbolToUsers.find(newSymbol);
1072 if (newIt == symbolToUsers.end())
1073 symbolToUsers.try_emplace(newSymbol, std::move(users));
1074 else
1075 newIt->second.set_union(users);
1076 symbolToUsers.erase(symbol);
1077 }
1078 }
1079
1080 //===----------------------------------------------------------------------===//
1081 // Visibility parsing implementation.
1082 //===----------------------------------------------------------------------===//
1083
parseOptionalVisibilityKeyword(OpAsmParser & parser,NamedAttrList & attrs)1084 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser,
1085 NamedAttrList &attrs) {
1086 StringRef visibility;
1087 if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"}))
1088 return failure();
1089
1090 StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility);
1091 attrs.push_back(parser.getBuilder().getNamedAttr(
1092 SymbolTable::getVisibilityAttrName(), visibilityAttr));
1093 return success();
1094 }
1095
1096 //===----------------------------------------------------------------------===//
1097 // Symbol Interfaces
1098 //===----------------------------------------------------------------------===//
1099
1100 /// Include the generated symbol interfaces.
1101 #include "mlir/IR/SymbolInterfaces.cpp.inc"
1102