1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the abstract lowering for the Swift calling convention.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/CodeGen/SwiftCallingConv.h"
14 #include "clang/Basic/TargetInfo.h"
15 #include "CodeGenModule.h"
16 #include "TargetInfo.h"
17
18 using namespace clang;
19 using namespace CodeGen;
20 using namespace swiftcall;
21
getSwiftABIInfo(CodeGenModule & CGM)22 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
23 return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
24 }
25
isPowerOf2(unsigned n)26 static bool isPowerOf2(unsigned n) {
27 return n == (n & -n);
28 }
29
30 /// Given two types with the same size, try to find a common type.
getCommonType(llvm::Type * first,llvm::Type * second)31 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
32 assert(first != second);
33
34 // Allow pointers to merge with integers, but prefer the integer type.
35 if (first->isIntegerTy()) {
36 if (second->isPointerTy()) return first;
37 } else if (first->isPointerTy()) {
38 if (second->isIntegerTy()) return second;
39 if (second->isPointerTy()) return first;
40
41 // Allow two vectors to be merged (given that they have the same size).
42 // This assumes that we never have two different vector register sets.
43 } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
44 if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
45 if (auto commonTy = getCommonType(firstVecTy->getElementType(),
46 secondVecTy->getElementType())) {
47 return (commonTy == firstVecTy->getElementType() ? first : second);
48 }
49 }
50 }
51
52 return nullptr;
53 }
54
getTypeStoreSize(CodeGenModule & CGM,llvm::Type * type)55 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
56 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
57 }
58
getTypeAllocSize(CodeGenModule & CGM,llvm::Type * type)59 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
60 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
61 }
62
addTypedData(QualType type,CharUnits begin)63 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
64 // Deal with various aggregate types as special cases:
65
66 // Record types.
67 if (auto recType = type->getAs<RecordType>()) {
68 addTypedData(recType->getDecl(), begin);
69
70 // Array types.
71 } else if (type->isArrayType()) {
72 // Incomplete array types (flexible array members?) don't provide
73 // data to lay out, and the other cases shouldn't be possible.
74 auto arrayType = CGM.getContext().getAsConstantArrayType(type);
75 if (!arrayType) return;
76
77 QualType eltType = arrayType->getElementType();
78 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
79 for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
80 addTypedData(eltType, begin + i * eltSize);
81 }
82
83 // Complex types.
84 } else if (auto complexType = type->getAs<ComplexType>()) {
85 auto eltType = complexType->getElementType();
86 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
87 auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
88 addTypedData(eltLLVMType, begin, begin + eltSize);
89 addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
90
91 // Member pointer types.
92 } else if (type->getAs<MemberPointerType>()) {
93 // Just add it all as opaque.
94 addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
95
96 // Atomic types.
97 } else if (const auto *atomicType = type->getAs<AtomicType>()) {
98 auto valueType = atomicType->getValueType();
99 auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType);
100 auto valueSize = CGM.getContext().getTypeSizeInChars(valueType);
101
102 addTypedData(atomicType->getValueType(), begin);
103
104 // Add atomic padding.
105 auto atomicPadding = atomicSize - valueSize;
106 if (atomicPadding > CharUnits::Zero())
107 addOpaqueData(begin + valueSize, begin + atomicSize);
108
109 // Everything else is scalar and should not convert as an LLVM aggregate.
110 } else {
111 // We intentionally convert as !ForMem because we want to preserve
112 // that a type was an i1.
113 auto *llvmType = CGM.getTypes().ConvertType(type);
114 addTypedData(llvmType, begin);
115 }
116 }
117
addTypedData(const RecordDecl * record,CharUnits begin)118 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
119 addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
120 }
121
addTypedData(const RecordDecl * record,CharUnits begin,const ASTRecordLayout & layout)122 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
123 const ASTRecordLayout &layout) {
124 // Unions are a special case.
125 if (record->isUnion()) {
126 for (auto field : record->fields()) {
127 if (field->isBitField()) {
128 addBitFieldData(field, begin, 0);
129 } else {
130 addTypedData(field->getType(), begin);
131 }
132 }
133 return;
134 }
135
136 // Note that correctness does not rely on us adding things in
137 // their actual order of layout; it's just somewhat more efficient
138 // for the builder.
139
140 // With that in mind, add "early" C++ data.
141 auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
142 if (cxxRecord) {
143 // - a v-table pointer, if the class adds its own
144 if (layout.hasOwnVFPtr()) {
145 addTypedData(CGM.Int8PtrTy, begin);
146 }
147
148 // - non-virtual bases
149 for (auto &baseSpecifier : cxxRecord->bases()) {
150 if (baseSpecifier.isVirtual()) continue;
151
152 auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
153 addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
154 }
155
156 // - a vbptr if the class adds its own
157 if (layout.hasOwnVBPtr()) {
158 addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
159 }
160 }
161
162 // Add fields.
163 for (auto field : record->fields()) {
164 auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
165 if (field->isBitField()) {
166 addBitFieldData(field, begin, fieldOffsetInBits);
167 } else {
168 addTypedData(field->getType(),
169 begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
170 }
171 }
172
173 // Add "late" C++ data:
174 if (cxxRecord) {
175 // - virtual bases
176 for (auto &vbaseSpecifier : cxxRecord->vbases()) {
177 auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
178 addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
179 }
180 }
181 }
182
addBitFieldData(const FieldDecl * bitfield,CharUnits recordBegin,uint64_t bitfieldBitBegin)183 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
184 CharUnits recordBegin,
185 uint64_t bitfieldBitBegin) {
186 assert(bitfield->isBitField());
187 auto &ctx = CGM.getContext();
188 auto width = bitfield->getBitWidthValue(ctx);
189
190 // We can ignore zero-width bit-fields.
191 if (width == 0) return;
192
193 // toCharUnitsFromBits rounds down.
194 CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
195
196 // Find the offset of the last byte that is partially occupied by the
197 // bit-field; since we otherwise expect exclusive ends, the end is the
198 // next byte.
199 uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
200 CharUnits bitfieldByteEnd =
201 ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
202 addOpaqueData(recordBegin + bitfieldByteBegin,
203 recordBegin + bitfieldByteEnd);
204 }
205
addTypedData(llvm::Type * type,CharUnits begin)206 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
207 assert(type && "didn't provide type for typed data");
208 addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
209 }
210
addTypedData(llvm::Type * type,CharUnits begin,CharUnits end)211 void SwiftAggLowering::addTypedData(llvm::Type *type,
212 CharUnits begin, CharUnits end) {
213 assert(type && "didn't provide type for typed data");
214 assert(getTypeStoreSize(CGM, type) == end - begin);
215
216 // Legalize vector types.
217 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
218 SmallVector<llvm::Type*, 4> componentTys;
219 legalizeVectorType(CGM, end - begin, vecTy, componentTys);
220 assert(componentTys.size() >= 1);
221
222 // Walk the initial components.
223 for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
224 llvm::Type *componentTy = componentTys[i];
225 auto componentSize = getTypeStoreSize(CGM, componentTy);
226 assert(componentSize < end - begin);
227 addLegalTypedData(componentTy, begin, begin + componentSize);
228 begin += componentSize;
229 }
230
231 return addLegalTypedData(componentTys.back(), begin, end);
232 }
233
234 // Legalize integer types.
235 if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
236 if (!isLegalIntegerType(CGM, intTy))
237 return addOpaqueData(begin, end);
238 }
239
240 // All other types should be legal.
241 return addLegalTypedData(type, begin, end);
242 }
243
addLegalTypedData(llvm::Type * type,CharUnits begin,CharUnits end)244 void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
245 CharUnits begin, CharUnits end) {
246 // Require the type to be naturally aligned.
247 if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
248
249 // Try splitting vector types.
250 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
251 auto split = splitLegalVectorType(CGM, end - begin, vecTy);
252 auto eltTy = split.first;
253 auto numElts = split.second;
254
255 auto eltSize = (end - begin) / numElts;
256 assert(eltSize == getTypeStoreSize(CGM, eltTy));
257 for (size_t i = 0, e = numElts; i != e; ++i) {
258 addLegalTypedData(eltTy, begin, begin + eltSize);
259 begin += eltSize;
260 }
261 assert(begin == end);
262 return;
263 }
264
265 return addOpaqueData(begin, end);
266 }
267
268 addEntry(type, begin, end);
269 }
270
addEntry(llvm::Type * type,CharUnits begin,CharUnits end)271 void SwiftAggLowering::addEntry(llvm::Type *type,
272 CharUnits begin, CharUnits end) {
273 assert((!type ||
274 (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
275 "cannot add aggregate-typed data");
276 assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
277
278 // Fast path: we can just add entries to the end.
279 if (Entries.empty() || Entries.back().End <= begin) {
280 Entries.push_back({begin, end, type});
281 return;
282 }
283
284 // Find the first existing entry that ends after the start of the new data.
285 // TODO: do a binary search if Entries is big enough for it to matter.
286 size_t index = Entries.size() - 1;
287 while (index != 0) {
288 if (Entries[index - 1].End <= begin) break;
289 --index;
290 }
291
292 // The entry ends after the start of the new data.
293 // If the entry starts after the end of the new data, there's no conflict.
294 if (Entries[index].Begin >= end) {
295 // This insertion is potentially O(n), but the way we generally build
296 // these layouts makes that unlikely to matter: we'd need a union of
297 // several very large types.
298 Entries.insert(Entries.begin() + index, {begin, end, type});
299 return;
300 }
301
302 // Otherwise, the ranges overlap. The new range might also overlap
303 // with later ranges.
304 restartAfterSplit:
305
306 // Simplest case: an exact overlap.
307 if (Entries[index].Begin == begin && Entries[index].End == end) {
308 // If the types match exactly, great.
309 if (Entries[index].Type == type) return;
310
311 // If either type is opaque, make the entry opaque and return.
312 if (Entries[index].Type == nullptr) {
313 return;
314 } else if (type == nullptr) {
315 Entries[index].Type = nullptr;
316 return;
317 }
318
319 // If they disagree in an ABI-agnostic way, just resolve the conflict
320 // arbitrarily.
321 if (auto entryType = getCommonType(Entries[index].Type, type)) {
322 Entries[index].Type = entryType;
323 return;
324 }
325
326 // Otherwise, make the entry opaque.
327 Entries[index].Type = nullptr;
328 return;
329 }
330
331 // Okay, we have an overlapping conflict of some sort.
332
333 // If we have a vector type, split it.
334 if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
335 auto eltTy = vecTy->getElementType();
336 CharUnits eltSize =
337 (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements();
338 assert(eltSize == getTypeStoreSize(CGM, eltTy));
339 for (unsigned i = 0,
340 e = cast<llvm::FixedVectorType>(vecTy)->getNumElements();
341 i != e; ++i) {
342 addEntry(eltTy, begin, begin + eltSize);
343 begin += eltSize;
344 }
345 assert(begin == end);
346 return;
347 }
348
349 // If the entry is a vector type, split it and try again.
350 if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
351 splitVectorEntry(index);
352 goto restartAfterSplit;
353 }
354
355 // Okay, we have no choice but to make the existing entry opaque.
356
357 Entries[index].Type = nullptr;
358
359 // Stretch the start of the entry to the beginning of the range.
360 if (begin < Entries[index].Begin) {
361 Entries[index].Begin = begin;
362 assert(index == 0 || begin >= Entries[index - 1].End);
363 }
364
365 // Stretch the end of the entry to the end of the range; but if we run
366 // into the start of the next entry, just leave the range there and repeat.
367 while (end > Entries[index].End) {
368 assert(Entries[index].Type == nullptr);
369
370 // If the range doesn't overlap the next entry, we're done.
371 if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
372 Entries[index].End = end;
373 break;
374 }
375
376 // Otherwise, stretch to the start of the next entry.
377 Entries[index].End = Entries[index + 1].Begin;
378
379 // Continue with the next entry.
380 index++;
381
382 // This entry needs to be made opaque if it is not already.
383 if (Entries[index].Type == nullptr)
384 continue;
385
386 // Split vector entries unless we completely subsume them.
387 if (Entries[index].Type->isVectorTy() &&
388 end < Entries[index].End) {
389 splitVectorEntry(index);
390 }
391
392 // Make the entry opaque.
393 Entries[index].Type = nullptr;
394 }
395 }
396
397 /// Replace the entry of vector type at offset 'index' with a sequence
398 /// of its component vectors.
splitVectorEntry(unsigned index)399 void SwiftAggLowering::splitVectorEntry(unsigned index) {
400 auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
401 auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
402
403 auto eltTy = split.first;
404 CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
405 auto numElts = split.second;
406 Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
407
408 CharUnits begin = Entries[index].Begin;
409 for (unsigned i = 0; i != numElts; ++i) {
410 Entries[index].Type = eltTy;
411 Entries[index].Begin = begin;
412 Entries[index].End = begin + eltSize;
413 begin += eltSize;
414 }
415 }
416
417 /// Given a power-of-two unit size, return the offset of the aligned unit
418 /// of that size which contains the given offset.
419 ///
420 /// In other words, round down to the nearest multiple of the unit size.
getOffsetAtStartOfUnit(CharUnits offset,CharUnits unitSize)421 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
422 assert(isPowerOf2(unitSize.getQuantity()));
423 auto unitMask = ~(unitSize.getQuantity() - 1);
424 return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
425 }
426
areBytesInSameUnit(CharUnits first,CharUnits second,CharUnits chunkSize)427 static bool areBytesInSameUnit(CharUnits first, CharUnits second,
428 CharUnits chunkSize) {
429 return getOffsetAtStartOfUnit(first, chunkSize)
430 == getOffsetAtStartOfUnit(second, chunkSize);
431 }
432
isMergeableEntryType(llvm::Type * type)433 static bool isMergeableEntryType(llvm::Type *type) {
434 // Opaquely-typed memory is always mergeable.
435 if (type == nullptr) return true;
436
437 // Pointers and integers are always mergeable. In theory we should not
438 // merge pointers, but (1) it doesn't currently matter in practice because
439 // the chunk size is never greater than the size of a pointer and (2)
440 // Swift IRGen uses integer types for a lot of things that are "really"
441 // just storing pointers (like Optional<SomePointer>). If we ever have a
442 // target that would otherwise combine pointers, we should put some effort
443 // into fixing those cases in Swift IRGen and then call out pointer types
444 // here.
445
446 // Floating-point and vector types should never be merged.
447 // Most such types are too large and highly-aligned to ever trigger merging
448 // in practice, but it's important for the rule to cover at least 'half'
449 // and 'float', as well as things like small vectors of 'i1' or 'i8'.
450 return (!type->isFloatingPointTy() && !type->isVectorTy());
451 }
452
shouldMergeEntries(const StorageEntry & first,const StorageEntry & second,CharUnits chunkSize)453 bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
454 const StorageEntry &second,
455 CharUnits chunkSize) {
456 // Only merge entries that overlap the same chunk. We test this first
457 // despite being a bit more expensive because this is the condition that
458 // tends to prevent merging.
459 if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
460 chunkSize))
461 return false;
462
463 return (isMergeableEntryType(first.Type) &&
464 isMergeableEntryType(second.Type));
465 }
466
finish()467 void SwiftAggLowering::finish() {
468 if (Entries.empty()) {
469 Finished = true;
470 return;
471 }
472
473 // We logically split the layout down into a series of chunks of this size,
474 // which is generally the size of a pointer.
475 const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
476
477 // First pass: if two entries should be merged, make them both opaque
478 // and stretch one to meet the next.
479 // Also, remember if there are any opaque entries.
480 bool hasOpaqueEntries = (Entries[0].Type == nullptr);
481 for (size_t i = 1, e = Entries.size(); i != e; ++i) {
482 if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
483 Entries[i - 1].Type = nullptr;
484 Entries[i].Type = nullptr;
485 Entries[i - 1].End = Entries[i].Begin;
486 hasOpaqueEntries = true;
487
488 } else if (Entries[i].Type == nullptr) {
489 hasOpaqueEntries = true;
490 }
491 }
492
493 // The rest of the algorithm leaves non-opaque entries alone, so if we
494 // have no opaque entries, we're done.
495 if (!hasOpaqueEntries) {
496 Finished = true;
497 return;
498 }
499
500 // Okay, move the entries to a temporary and rebuild Entries.
501 auto orig = std::move(Entries);
502 assert(Entries.empty());
503
504 for (size_t i = 0, e = orig.size(); i != e; ++i) {
505 // Just copy over non-opaque entries.
506 if (orig[i].Type != nullptr) {
507 Entries.push_back(orig[i]);
508 continue;
509 }
510
511 // Scan forward to determine the full extent of the next opaque range.
512 // We know from the first pass that only contiguous ranges will overlap
513 // the same aligned chunk.
514 auto begin = orig[i].Begin;
515 auto end = orig[i].End;
516 while (i + 1 != e &&
517 orig[i + 1].Type == nullptr &&
518 end == orig[i + 1].Begin) {
519 end = orig[i + 1].End;
520 i++;
521 }
522
523 // Add an entry per intersected chunk.
524 do {
525 // Find the smallest aligned storage unit in the maximal aligned
526 // storage unit containing 'begin' that contains all the bytes in
527 // the intersection between the range and this chunk.
528 CharUnits localBegin = begin;
529 CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
530 CharUnits chunkEnd = chunkBegin + chunkSize;
531 CharUnits localEnd = std::min(end, chunkEnd);
532
533 // Just do a simple loop over ever-increasing unit sizes.
534 CharUnits unitSize = CharUnits::One();
535 CharUnits unitBegin, unitEnd;
536 for (; ; unitSize *= 2) {
537 assert(unitSize <= chunkSize);
538 unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
539 unitEnd = unitBegin + unitSize;
540 if (unitEnd >= localEnd) break;
541 }
542
543 // Add an entry for this unit.
544 auto entryTy =
545 llvm::IntegerType::get(CGM.getLLVMContext(),
546 CGM.getContext().toBits(unitSize));
547 Entries.push_back({unitBegin, unitEnd, entryTy});
548
549 // The next chunk starts where this chunk left off.
550 begin = localEnd;
551 } while (begin != end);
552 }
553
554 // Okay, finally finished.
555 Finished = true;
556 }
557
enumerateComponents(EnumerationCallback callback) const558 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
559 assert(Finished && "haven't yet finished lowering");
560
561 for (auto &entry : Entries) {
562 callback(entry.Begin, entry.End, entry.Type);
563 }
564 }
565
566 std::pair<llvm::StructType*, llvm::Type*>
getCoerceAndExpandTypes() const567 SwiftAggLowering::getCoerceAndExpandTypes() const {
568 assert(Finished && "haven't yet finished lowering");
569
570 auto &ctx = CGM.getLLVMContext();
571
572 if (Entries.empty()) {
573 auto type = llvm::StructType::get(ctx);
574 return { type, type };
575 }
576
577 SmallVector<llvm::Type*, 8> elts;
578 CharUnits lastEnd = CharUnits::Zero();
579 bool hasPadding = false;
580 bool packed = false;
581 for (auto &entry : Entries) {
582 if (entry.Begin != lastEnd) {
583 auto paddingSize = entry.Begin - lastEnd;
584 assert(!paddingSize.isNegative());
585
586 auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
587 paddingSize.getQuantity());
588 elts.push_back(padding);
589 hasPadding = true;
590 }
591
592 if (!packed && !entry.Begin.isMultipleOf(
593 CharUnits::fromQuantity(
594 CGM.getDataLayout().getABITypeAlignment(entry.Type))))
595 packed = true;
596
597 elts.push_back(entry.Type);
598
599 lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
600 assert(entry.End <= lastEnd);
601 }
602
603 // We don't need to adjust 'packed' to deal with possible tail padding
604 // because we never do that kind of access through the coercion type.
605 auto coercionType = llvm::StructType::get(ctx, elts, packed);
606
607 llvm::Type *unpaddedType = coercionType;
608 if (hasPadding) {
609 elts.clear();
610 for (auto &entry : Entries) {
611 elts.push_back(entry.Type);
612 }
613 if (elts.size() == 1) {
614 unpaddedType = elts[0];
615 } else {
616 unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
617 }
618 } else if (Entries.size() == 1) {
619 unpaddedType = Entries[0].Type;
620 }
621
622 return { coercionType, unpaddedType };
623 }
624
shouldPassIndirectly(bool asReturnValue) const625 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
626 assert(Finished && "haven't yet finished lowering");
627
628 // Empty types don't need to be passed indirectly.
629 if (Entries.empty()) return false;
630
631 // Avoid copying the array of types when there's just a single element.
632 if (Entries.size() == 1) {
633 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(
634 Entries.back().Type,
635 asReturnValue);
636 }
637
638 SmallVector<llvm::Type*, 8> componentTys;
639 componentTys.reserve(Entries.size());
640 for (auto &entry : Entries) {
641 componentTys.push_back(entry.Type);
642 }
643 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
644 asReturnValue);
645 }
646
shouldPassIndirectly(CodeGenModule & CGM,ArrayRef<llvm::Type * > componentTys,bool asReturnValue)647 bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
648 ArrayRef<llvm::Type*> componentTys,
649 bool asReturnValue) {
650 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
651 asReturnValue);
652 }
653
getMaximumVoluntaryIntegerSize(CodeGenModule & CGM)654 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
655 // Currently always the size of an ordinary pointer.
656 return CGM.getContext().toCharUnitsFromBits(
657 CGM.getContext().getTargetInfo().getPointerWidth(0));
658 }
659
getNaturalAlignment(CodeGenModule & CGM,llvm::Type * type)660 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
661 // For Swift's purposes, this is always just the store size of the type
662 // rounded up to a power of 2.
663 auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
664 if (!isPowerOf2(size)) {
665 size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
666 }
667 assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
668 return CharUnits::fromQuantity(size);
669 }
670
isLegalIntegerType(CodeGenModule & CGM,llvm::IntegerType * intTy)671 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
672 llvm::IntegerType *intTy) {
673 auto size = intTy->getBitWidth();
674 switch (size) {
675 case 1:
676 case 8:
677 case 16:
678 case 32:
679 case 64:
680 // Just assume that the above are always legal.
681 return true;
682
683 case 128:
684 return CGM.getContext().getTargetInfo().hasInt128Type();
685
686 default:
687 return false;
688 }
689 }
690
isLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::VectorType * vectorTy)691 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
692 llvm::VectorType *vectorTy) {
693 return isLegalVectorType(
694 CGM, vectorSize, vectorTy->getElementType(),
695 cast<llvm::FixedVectorType>(vectorTy)->getNumElements());
696 }
697
isLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::Type * eltTy,unsigned numElts)698 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
699 llvm::Type *eltTy, unsigned numElts) {
700 assert(numElts > 1 && "illegal vector length");
701 return getSwiftABIInfo(CGM)
702 .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
703 }
704
705 std::pair<llvm::Type*, unsigned>
splitLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::VectorType * vectorTy)706 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
707 llvm::VectorType *vectorTy) {
708 auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements();
709 auto eltTy = vectorTy->getElementType();
710
711 // Try to split the vector type in half.
712 if (numElts >= 4 && isPowerOf2(numElts)) {
713 if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
714 return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2};
715 }
716
717 return {eltTy, numElts};
718 }
719
legalizeVectorType(CodeGenModule & CGM,CharUnits origVectorSize,llvm::VectorType * origVectorTy,llvm::SmallVectorImpl<llvm::Type * > & components)720 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
721 llvm::VectorType *origVectorTy,
722 llvm::SmallVectorImpl<llvm::Type*> &components) {
723 // If it's already a legal vector type, use it.
724 if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
725 components.push_back(origVectorTy);
726 return;
727 }
728
729 // Try to split the vector into legal subvectors.
730 auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements();
731 auto eltTy = origVectorTy->getElementType();
732 assert(numElts != 1);
733
734 // The largest size that we're still considering making subvectors of.
735 // Always a power of 2.
736 unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
737 unsigned candidateNumElts = 1U << logCandidateNumElts;
738 assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
739
740 // Minor optimization: don't check the legality of this exact size twice.
741 if (candidateNumElts == numElts) {
742 logCandidateNumElts--;
743 candidateNumElts >>= 1;
744 }
745
746 CharUnits eltSize = (origVectorSize / numElts);
747 CharUnits candidateSize = eltSize * candidateNumElts;
748
749 // The sensibility of this algorithm relies on the fact that we never
750 // have a legal non-power-of-2 vector size without having the power of 2
751 // also be legal.
752 while (logCandidateNumElts > 0) {
753 assert(candidateNumElts == 1U << logCandidateNumElts);
754 assert(candidateNumElts <= numElts);
755 assert(candidateSize == eltSize * candidateNumElts);
756
757 // Skip illegal vector sizes.
758 if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
759 logCandidateNumElts--;
760 candidateNumElts /= 2;
761 candidateSize /= 2;
762 continue;
763 }
764
765 // Add the right number of vectors of this size.
766 auto numVecs = numElts >> logCandidateNumElts;
767 components.append(numVecs,
768 llvm::FixedVectorType::get(eltTy, candidateNumElts));
769 numElts -= (numVecs << logCandidateNumElts);
770
771 if (numElts == 0) return;
772
773 // It's possible that the number of elements remaining will be legal.
774 // This can happen with e.g. <7 x float> when <3 x float> is legal.
775 // This only needs to be separately checked if it's not a power of 2.
776 if (numElts > 2 && !isPowerOf2(numElts) &&
777 isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
778 components.push_back(llvm::FixedVectorType::get(eltTy, numElts));
779 return;
780 }
781
782 // Bring vecSize down to something no larger than numElts.
783 do {
784 logCandidateNumElts--;
785 candidateNumElts /= 2;
786 candidateSize /= 2;
787 } while (candidateNumElts > numElts);
788 }
789
790 // Otherwise, just append a bunch of individual elements.
791 components.append(numElts, eltTy);
792 }
793
mustPassRecordIndirectly(CodeGenModule & CGM,const RecordDecl * record)794 bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
795 const RecordDecl *record) {
796 // FIXME: should we not rely on the standard computation in Sema, just in
797 // case we want to diverge from the platform ABI (e.g. on targets where
798 // that uses the MSVC rule)?
799 return !record->canPassInRegisters();
800 }
801
classifyExpandedType(SwiftAggLowering & lowering,bool forReturn,CharUnits alignmentForIndirect)802 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
803 bool forReturn,
804 CharUnits alignmentForIndirect) {
805 if (lowering.empty()) {
806 return ABIArgInfo::getIgnore();
807 } else if (lowering.shouldPassIndirectly(forReturn)) {
808 return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
809 } else {
810 auto types = lowering.getCoerceAndExpandTypes();
811 return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
812 }
813 }
814
classifyType(CodeGenModule & CGM,CanQualType type,bool forReturn)815 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
816 bool forReturn) {
817 if (auto recordType = dyn_cast<RecordType>(type)) {
818 auto record = recordType->getDecl();
819 auto &layout = CGM.getContext().getASTRecordLayout(record);
820
821 if (mustPassRecordIndirectly(CGM, record))
822 return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
823
824 SwiftAggLowering lowering(CGM);
825 lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
826 lowering.finish();
827
828 return classifyExpandedType(lowering, forReturn, layout.getAlignment());
829 }
830
831 // Just assume that all of our target ABIs can support returning at least
832 // two integer or floating-point values.
833 if (isa<ComplexType>(type)) {
834 return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
835 }
836
837 // Vector types may need to be legalized.
838 if (isa<VectorType>(type)) {
839 SwiftAggLowering lowering(CGM);
840 lowering.addTypedData(type, CharUnits::Zero());
841 lowering.finish();
842
843 CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
844 return classifyExpandedType(lowering, forReturn, alignment);
845 }
846
847 // Member pointer types need to be expanded, but it's a simple form of
848 // expansion that 'Direct' can handle. Note that CanBeFlattened should be
849 // true for this to work.
850
851 // 'void' needs to be ignored.
852 if (type->isVoidType()) {
853 return ABIArgInfo::getIgnore();
854 }
855
856 // Everything else can be passed directly.
857 return ABIArgInfo::getDirect();
858 }
859
classifyReturnType(CodeGenModule & CGM,CanQualType type)860 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
861 return classifyType(CGM, type, /*forReturn*/ true);
862 }
863
classifyArgumentType(CodeGenModule & CGM,CanQualType type)864 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
865 CanQualType type) {
866 return classifyType(CGM, type, /*forReturn*/ false);
867 }
868
computeABIInfo(CodeGenModule & CGM,CGFunctionInfo & FI)869 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
870 auto &retInfo = FI.getReturnInfo();
871 retInfo = classifyReturnType(CGM, FI.getReturnType());
872
873 for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
874 auto &argInfo = FI.arg_begin()[i];
875 argInfo.info = classifyArgumentType(CGM, argInfo.type);
876 }
877 }
878
879 // Is swifterror lowered to a register by the target ABI.
isSwiftErrorLoweredInRegister(CodeGenModule & CGM)880 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
881 return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
882 }
883