1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related semantic analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/TypeLoc.h"
23 #include "clang/AST/TypeLocVisitor.h"
24 #include "clang/Basic/PartialDiagnostic.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Sema/DeclSpec.h"
28 #include "clang/Sema/DelayedDiagnostic.h"
29 #include "clang/Sema/Lookup.h"
30 #include "clang/Sema/ParsedTemplate.h"
31 #include "clang/Sema/ScopeInfo.h"
32 #include "clang/Sema/SemaInternal.h"
33 #include "clang/Sema/Template.h"
34 #include "clang/Sema/TemplateInstCallback.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include <bitset>
41 
42 using namespace clang;
43 
44 enum TypeDiagSelector {
45   TDS_Function,
46   TDS_Pointer,
47   TDS_ObjCObjOrBlock
48 };
49 
50 /// isOmittedBlockReturnType - Return true if this declarator is missing a
51 /// return type because this is a omitted return type on a block literal.
isOmittedBlockReturnType(const Declarator & D)52 static bool isOmittedBlockReturnType(const Declarator &D) {
53   if (D.getContext() != DeclaratorContext::BlockLiteral ||
54       D.getDeclSpec().hasTypeSpecifier())
55     return false;
56 
57   if (D.getNumTypeObjects() == 0)
58     return true;   // ^{ ... }
59 
60   if (D.getNumTypeObjects() == 1 &&
61       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
62     return true;   // ^(int X, float Y) { ... }
63 
64   return false;
65 }
66 
67 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
68 /// doesn't apply to the given type.
diagnoseBadTypeAttribute(Sema & S,const ParsedAttr & attr,QualType type)69 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
70                                      QualType type) {
71   TypeDiagSelector WhichType;
72   bool useExpansionLoc = true;
73   switch (attr.getKind()) {
74   case ParsedAttr::AT_ObjCGC:
75     WhichType = TDS_Pointer;
76     break;
77   case ParsedAttr::AT_ObjCOwnership:
78     WhichType = TDS_ObjCObjOrBlock;
79     break;
80   default:
81     // Assume everything else was a function attribute.
82     WhichType = TDS_Function;
83     useExpansionLoc = false;
84     break;
85   }
86 
87   SourceLocation loc = attr.getLoc();
88   StringRef name = attr.getAttrName()->getName();
89 
90   // The GC attributes are usually written with macros;  special-case them.
91   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
92                                           : nullptr;
93   if (useExpansionLoc && loc.isMacroID() && II) {
94     if (II->isStr("strong")) {
95       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
96     } else if (II->isStr("weak")) {
97       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
98     }
99   }
100 
101   S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
102     << type;
103 }
104 
105 // objc_gc applies to Objective-C pointers or, otherwise, to the
106 // smallest available pointer type (i.e. 'void*' in 'void**').
107 #define OBJC_POINTER_TYPE_ATTRS_CASELIST                                       \
108   case ParsedAttr::AT_ObjCGC:                                                  \
109   case ParsedAttr::AT_ObjCOwnership
110 
111 // Calling convention attributes.
112 #define CALLING_CONV_ATTRS_CASELIST                                            \
113   case ParsedAttr::AT_CDecl:                                                   \
114   case ParsedAttr::AT_FastCall:                                                \
115   case ParsedAttr::AT_StdCall:                                                 \
116   case ParsedAttr::AT_ThisCall:                                                \
117   case ParsedAttr::AT_RegCall:                                                 \
118   case ParsedAttr::AT_Pascal:                                                  \
119   case ParsedAttr::AT_SwiftCall:                                               \
120   case ParsedAttr::AT_SwiftAsyncCall:                                          \
121   case ParsedAttr::AT_VectorCall:                                              \
122   case ParsedAttr::AT_AArch64VectorPcs:                                        \
123   case ParsedAttr::AT_MSABI:                                                   \
124   case ParsedAttr::AT_SysVABI:                                                 \
125   case ParsedAttr::AT_Pcs:                                                     \
126   case ParsedAttr::AT_IntelOclBicc:                                            \
127   case ParsedAttr::AT_PreserveMost:                                            \
128   case ParsedAttr::AT_PreserveAll
129 
130 // Function type attributes.
131 #define FUNCTION_TYPE_ATTRS_CASELIST                                           \
132   case ParsedAttr::AT_NSReturnsRetained:                                       \
133   case ParsedAttr::AT_NoReturn:                                                \
134   case ParsedAttr::AT_Regparm:                                                 \
135   case ParsedAttr::AT_CmseNSCall:                                              \
136   case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:                            \
137   case ParsedAttr::AT_AnyX86NoCfCheck:                                         \
138     CALLING_CONV_ATTRS_CASELIST
139 
140 // Microsoft-specific type qualifiers.
141 #define MS_TYPE_ATTRS_CASELIST                                                 \
142   case ParsedAttr::AT_Ptr32:                                                   \
143   case ParsedAttr::AT_Ptr64:                                                   \
144   case ParsedAttr::AT_SPtr:                                                    \
145   case ParsedAttr::AT_UPtr
146 
147 // Nullability qualifiers.
148 #define NULLABILITY_TYPE_ATTRS_CASELIST                                        \
149   case ParsedAttr::AT_TypeNonNull:                                             \
150   case ParsedAttr::AT_TypeNullable:                                            \
151   case ParsedAttr::AT_TypeNullableResult:                                      \
152   case ParsedAttr::AT_TypeNullUnspecified
153 
154 namespace {
155   /// An object which stores processing state for the entire
156   /// GetTypeForDeclarator process.
157   class TypeProcessingState {
158     Sema &sema;
159 
160     /// The declarator being processed.
161     Declarator &declarator;
162 
163     /// The index of the declarator chunk we're currently processing.
164     /// May be the total number of valid chunks, indicating the
165     /// DeclSpec.
166     unsigned chunkIndex;
167 
168     /// Whether there are non-trivial modifications to the decl spec.
169     bool trivial;
170 
171     /// Whether we saved the attributes in the decl spec.
172     bool hasSavedAttrs;
173 
174     /// The original set of attributes on the DeclSpec.
175     SmallVector<ParsedAttr *, 2> savedAttrs;
176 
177     /// A list of attributes to diagnose the uselessness of when the
178     /// processing is complete.
179     SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
180 
181     /// Attributes corresponding to AttributedTypeLocs that we have not yet
182     /// populated.
183     // FIXME: The two-phase mechanism by which we construct Types and fill
184     // their TypeLocs makes it hard to correctly assign these. We keep the
185     // attributes in creation order as an attempt to make them line up
186     // properly.
187     using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
188     SmallVector<TypeAttrPair, 8> AttrsForTypes;
189     bool AttrsForTypesSorted = true;
190 
191     /// MacroQualifiedTypes mapping to macro expansion locations that will be
192     /// stored in a MacroQualifiedTypeLoc.
193     llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
194 
195     /// Flag to indicate we parsed a noderef attribute. This is used for
196     /// validating that noderef was used on a pointer or array.
197     bool parsedNoDeref;
198 
199   public:
TypeProcessingState(Sema & sema,Declarator & declarator)200     TypeProcessingState(Sema &sema, Declarator &declarator)
201         : sema(sema), declarator(declarator),
202           chunkIndex(declarator.getNumTypeObjects()), trivial(true),
203           hasSavedAttrs(false), parsedNoDeref(false) {}
204 
getSema() const205     Sema &getSema() const {
206       return sema;
207     }
208 
getDeclarator() const209     Declarator &getDeclarator() const {
210       return declarator;
211     }
212 
isProcessingDeclSpec() const213     bool isProcessingDeclSpec() const {
214       return chunkIndex == declarator.getNumTypeObjects();
215     }
216 
getCurrentChunkIndex() const217     unsigned getCurrentChunkIndex() const {
218       return chunkIndex;
219     }
220 
setCurrentChunkIndex(unsigned idx)221     void setCurrentChunkIndex(unsigned idx) {
222       assert(idx <= declarator.getNumTypeObjects());
223       chunkIndex = idx;
224     }
225 
getCurrentAttributes() const226     ParsedAttributesView &getCurrentAttributes() const {
227       if (isProcessingDeclSpec())
228         return getMutableDeclSpec().getAttributes();
229       return declarator.getTypeObject(chunkIndex).getAttrs();
230     }
231 
232     /// Save the current set of attributes on the DeclSpec.
saveDeclSpecAttrs()233     void saveDeclSpecAttrs() {
234       // Don't try to save them multiple times.
235       if (hasSavedAttrs) return;
236 
237       DeclSpec &spec = getMutableDeclSpec();
238       for (ParsedAttr &AL : spec.getAttributes())
239         savedAttrs.push_back(&AL);
240       trivial &= savedAttrs.empty();
241       hasSavedAttrs = true;
242     }
243 
244     /// Record that we had nowhere to put the given type attribute.
245     /// We will diagnose such attributes later.
addIgnoredTypeAttr(ParsedAttr & attr)246     void addIgnoredTypeAttr(ParsedAttr &attr) {
247       ignoredTypeAttrs.push_back(&attr);
248     }
249 
250     /// Diagnose all the ignored type attributes, given that the
251     /// declarator worked out to the given type.
diagnoseIgnoredTypeAttrs(QualType type) const252     void diagnoseIgnoredTypeAttrs(QualType type) const {
253       for (auto *Attr : ignoredTypeAttrs)
254         diagnoseBadTypeAttribute(getSema(), *Attr, type);
255     }
256 
257     /// Get an attributed type for the given attribute, and remember the Attr
258     /// object so that we can attach it to the AttributedTypeLoc.
getAttributedType(Attr * A,QualType ModifiedType,QualType EquivType)259     QualType getAttributedType(Attr *A, QualType ModifiedType,
260                                QualType EquivType) {
261       QualType T =
262           sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
263       AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
264       AttrsForTypesSorted = false;
265       return T;
266     }
267 
268     /// Completely replace the \c auto in \p TypeWithAuto by
269     /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
270     /// necessary.
ReplaceAutoType(QualType TypeWithAuto,QualType Replacement)271     QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
272       QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
273       if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
274         // Attributed type still should be an attributed type after replacement.
275         auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
276         for (TypeAttrPair &A : AttrsForTypes) {
277           if (A.first == AttrTy)
278             A.first = NewAttrTy;
279         }
280         AttrsForTypesSorted = false;
281       }
282       return T;
283     }
284 
285     /// Extract and remove the Attr* for a given attributed type.
takeAttrForAttributedType(const AttributedType * AT)286     const Attr *takeAttrForAttributedType(const AttributedType *AT) {
287       if (!AttrsForTypesSorted) {
288         llvm::stable_sort(AttrsForTypes, llvm::less_first());
289         AttrsForTypesSorted = true;
290       }
291 
292       // FIXME: This is quadratic if we have lots of reuses of the same
293       // attributed type.
294       for (auto It = std::partition_point(
295                AttrsForTypes.begin(), AttrsForTypes.end(),
296                [=](const TypeAttrPair &A) { return A.first < AT; });
297            It != AttrsForTypes.end() && It->first == AT; ++It) {
298         if (It->second) {
299           const Attr *Result = It->second;
300           It->second = nullptr;
301           return Result;
302         }
303       }
304 
305       llvm_unreachable("no Attr* for AttributedType*");
306     }
307 
308     SourceLocation
getExpansionLocForMacroQualifiedType(const MacroQualifiedType * MQT) const309     getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
310       auto FoundLoc = LocsForMacros.find(MQT);
311       assert(FoundLoc != LocsForMacros.end() &&
312              "Unable to find macro expansion location for MacroQualifedType");
313       return FoundLoc->second;
314     }
315 
setExpansionLocForMacroQualifiedType(const MacroQualifiedType * MQT,SourceLocation Loc)316     void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
317                                               SourceLocation Loc) {
318       LocsForMacros[MQT] = Loc;
319     }
320 
setParsedNoDeref(bool parsed)321     void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
322 
didParseNoDeref() const323     bool didParseNoDeref() const { return parsedNoDeref; }
324 
~TypeProcessingState()325     ~TypeProcessingState() {
326       if (trivial) return;
327 
328       restoreDeclSpecAttrs();
329     }
330 
331   private:
getMutableDeclSpec() const332     DeclSpec &getMutableDeclSpec() const {
333       return const_cast<DeclSpec&>(declarator.getDeclSpec());
334     }
335 
restoreDeclSpecAttrs()336     void restoreDeclSpecAttrs() {
337       assert(hasSavedAttrs);
338 
339       getMutableDeclSpec().getAttributes().clearListOnly();
340       for (ParsedAttr *AL : savedAttrs)
341         getMutableDeclSpec().getAttributes().addAtEnd(AL);
342     }
343   };
344 } // end anonymous namespace
345 
moveAttrFromListToList(ParsedAttr & attr,ParsedAttributesView & fromList,ParsedAttributesView & toList)346 static void moveAttrFromListToList(ParsedAttr &attr,
347                                    ParsedAttributesView &fromList,
348                                    ParsedAttributesView &toList) {
349   fromList.remove(&attr);
350   toList.addAtEnd(&attr);
351 }
352 
353 /// The location of a type attribute.
354 enum TypeAttrLocation {
355   /// The attribute is in the decl-specifier-seq.
356   TAL_DeclSpec,
357   /// The attribute is part of a DeclaratorChunk.
358   TAL_DeclChunk,
359   /// The attribute is immediately after the declaration's name.
360   TAL_DeclName
361 };
362 
363 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
364                              TypeAttrLocation TAL, ParsedAttributesView &attrs);
365 
366 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
367                                    QualType &type);
368 
369 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
370                                              ParsedAttr &attr, QualType &type);
371 
372 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
373                                  QualType &type);
374 
375 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
376                                         ParsedAttr &attr, QualType &type);
377 
handleObjCPointerTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)378 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
379                                       ParsedAttr &attr, QualType &type) {
380   if (attr.getKind() == ParsedAttr::AT_ObjCGC)
381     return handleObjCGCTypeAttr(state, attr, type);
382   assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
383   return handleObjCOwnershipTypeAttr(state, attr, type);
384 }
385 
386 /// Given the index of a declarator chunk, check whether that chunk
387 /// directly specifies the return type of a function and, if so, find
388 /// an appropriate place for it.
389 ///
390 /// \param i - a notional index which the search will start
391 ///   immediately inside
392 ///
393 /// \param onlyBlockPointers Whether we should only look into block
394 /// pointer types (vs. all pointer types).
maybeMovePastReturnType(Declarator & declarator,unsigned i,bool onlyBlockPointers)395 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
396                                                 unsigned i,
397                                                 bool onlyBlockPointers) {
398   assert(i <= declarator.getNumTypeObjects());
399 
400   DeclaratorChunk *result = nullptr;
401 
402   // First, look inwards past parens for a function declarator.
403   for (; i != 0; --i) {
404     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
405     switch (fnChunk.Kind) {
406     case DeclaratorChunk::Paren:
407       continue;
408 
409     // If we find anything except a function, bail out.
410     case DeclaratorChunk::Pointer:
411     case DeclaratorChunk::BlockPointer:
412     case DeclaratorChunk::Array:
413     case DeclaratorChunk::Reference:
414     case DeclaratorChunk::MemberPointer:
415     case DeclaratorChunk::Pipe:
416       return result;
417 
418     // If we do find a function declarator, scan inwards from that,
419     // looking for a (block-)pointer declarator.
420     case DeclaratorChunk::Function:
421       for (--i; i != 0; --i) {
422         DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
423         switch (ptrChunk.Kind) {
424         case DeclaratorChunk::Paren:
425         case DeclaratorChunk::Array:
426         case DeclaratorChunk::Function:
427         case DeclaratorChunk::Reference:
428         case DeclaratorChunk::Pipe:
429           continue;
430 
431         case DeclaratorChunk::MemberPointer:
432         case DeclaratorChunk::Pointer:
433           if (onlyBlockPointers)
434             continue;
435 
436           LLVM_FALLTHROUGH;
437 
438         case DeclaratorChunk::BlockPointer:
439           result = &ptrChunk;
440           goto continue_outer;
441         }
442         llvm_unreachable("bad declarator chunk kind");
443       }
444 
445       // If we run out of declarators doing that, we're done.
446       return result;
447     }
448     llvm_unreachable("bad declarator chunk kind");
449 
450     // Okay, reconsider from our new point.
451   continue_outer: ;
452   }
453 
454   // Ran out of chunks, bail out.
455   return result;
456 }
457 
458 /// Given that an objc_gc attribute was written somewhere on a
459 /// declaration *other* than on the declarator itself (for which, use
460 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
461 /// didn't apply in whatever position it was written in, try to move
462 /// it to a more appropriate position.
distributeObjCPointerTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType type)463 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
464                                           ParsedAttr &attr, QualType type) {
465   Declarator &declarator = state.getDeclarator();
466 
467   // Move it to the outermost normal or block pointer declarator.
468   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
469     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
470     switch (chunk.Kind) {
471     case DeclaratorChunk::Pointer:
472     case DeclaratorChunk::BlockPointer: {
473       // But don't move an ARC ownership attribute to the return type
474       // of a block.
475       DeclaratorChunk *destChunk = nullptr;
476       if (state.isProcessingDeclSpec() &&
477           attr.getKind() == ParsedAttr::AT_ObjCOwnership)
478         destChunk = maybeMovePastReturnType(declarator, i - 1,
479                                             /*onlyBlockPointers=*/true);
480       if (!destChunk) destChunk = &chunk;
481 
482       moveAttrFromListToList(attr, state.getCurrentAttributes(),
483                              destChunk->getAttrs());
484       return;
485     }
486 
487     case DeclaratorChunk::Paren:
488     case DeclaratorChunk::Array:
489       continue;
490 
491     // We may be starting at the return type of a block.
492     case DeclaratorChunk::Function:
493       if (state.isProcessingDeclSpec() &&
494           attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
495         if (DeclaratorChunk *dest = maybeMovePastReturnType(
496                                       declarator, i,
497                                       /*onlyBlockPointers=*/true)) {
498           moveAttrFromListToList(attr, state.getCurrentAttributes(),
499                                  dest->getAttrs());
500           return;
501         }
502       }
503       goto error;
504 
505     // Don't walk through these.
506     case DeclaratorChunk::Reference:
507     case DeclaratorChunk::MemberPointer:
508     case DeclaratorChunk::Pipe:
509       goto error;
510     }
511   }
512  error:
513 
514   diagnoseBadTypeAttribute(state.getSema(), attr, type);
515 }
516 
517 /// Distribute an objc_gc type attribute that was written on the
518 /// declarator.
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState & state,ParsedAttr & attr,QualType & declSpecType)519 static void distributeObjCPointerTypeAttrFromDeclarator(
520     TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
521   Declarator &declarator = state.getDeclarator();
522 
523   // objc_gc goes on the innermost pointer to something that's not a
524   // pointer.
525   unsigned innermost = -1U;
526   bool considerDeclSpec = true;
527   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
528     DeclaratorChunk &chunk = declarator.getTypeObject(i);
529     switch (chunk.Kind) {
530     case DeclaratorChunk::Pointer:
531     case DeclaratorChunk::BlockPointer:
532       innermost = i;
533       continue;
534 
535     case DeclaratorChunk::Reference:
536     case DeclaratorChunk::MemberPointer:
537     case DeclaratorChunk::Paren:
538     case DeclaratorChunk::Array:
539     case DeclaratorChunk::Pipe:
540       continue;
541 
542     case DeclaratorChunk::Function:
543       considerDeclSpec = false;
544       goto done;
545     }
546   }
547  done:
548 
549   // That might actually be the decl spec if we weren't blocked by
550   // anything in the declarator.
551   if (considerDeclSpec) {
552     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
553       // Splice the attribute into the decl spec.  Prevents the
554       // attribute from being applied multiple times and gives
555       // the source-location-filler something to work with.
556       state.saveDeclSpecAttrs();
557       declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
558           declarator.getAttributes(), &attr);
559       return;
560     }
561   }
562 
563   // Otherwise, if we found an appropriate chunk, splice the attribute
564   // into it.
565   if (innermost != -1U) {
566     moveAttrFromListToList(attr, declarator.getAttributes(),
567                            declarator.getTypeObject(innermost).getAttrs());
568     return;
569   }
570 
571   // Otherwise, diagnose when we're done building the type.
572   declarator.getAttributes().remove(&attr);
573   state.addIgnoredTypeAttr(attr);
574 }
575 
576 /// A function type attribute was written somewhere in a declaration
577 /// *other* than on the declarator itself or in the decl spec.  Given
578 /// that it didn't apply in whatever position it was written in, try
579 /// to move it to a more appropriate position.
distributeFunctionTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType type)580 static void distributeFunctionTypeAttr(TypeProcessingState &state,
581                                        ParsedAttr &attr, QualType type) {
582   Declarator &declarator = state.getDeclarator();
583 
584   // Try to push the attribute from the return type of a function to
585   // the function itself.
586   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
587     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
588     switch (chunk.Kind) {
589     case DeclaratorChunk::Function:
590       moveAttrFromListToList(attr, state.getCurrentAttributes(),
591                              chunk.getAttrs());
592       return;
593 
594     case DeclaratorChunk::Paren:
595     case DeclaratorChunk::Pointer:
596     case DeclaratorChunk::BlockPointer:
597     case DeclaratorChunk::Array:
598     case DeclaratorChunk::Reference:
599     case DeclaratorChunk::MemberPointer:
600     case DeclaratorChunk::Pipe:
601       continue;
602     }
603   }
604 
605   diagnoseBadTypeAttribute(state.getSema(), attr, type);
606 }
607 
608 /// Try to distribute a function type attribute to the innermost
609 /// function chunk or type.  Returns true if the attribute was
610 /// distributed, false if no location was found.
distributeFunctionTypeAttrToInnermost(TypeProcessingState & state,ParsedAttr & attr,ParsedAttributesView & attrList,QualType & declSpecType)611 static bool distributeFunctionTypeAttrToInnermost(
612     TypeProcessingState &state, ParsedAttr &attr,
613     ParsedAttributesView &attrList, QualType &declSpecType) {
614   Declarator &declarator = state.getDeclarator();
615 
616   // Put it on the innermost function chunk, if there is one.
617   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
618     DeclaratorChunk &chunk = declarator.getTypeObject(i);
619     if (chunk.Kind != DeclaratorChunk::Function) continue;
620 
621     moveAttrFromListToList(attr, attrList, chunk.getAttrs());
622     return true;
623   }
624 
625   return handleFunctionTypeAttr(state, attr, declSpecType);
626 }
627 
628 /// A function type attribute was written in the decl spec.  Try to
629 /// apply it somewhere.
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState & state,ParsedAttr & attr,QualType & declSpecType)630 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
631                                                    ParsedAttr &attr,
632                                                    QualType &declSpecType) {
633   state.saveDeclSpecAttrs();
634 
635   // C++11 attributes before the decl specifiers actually appertain to
636   // the declarators. Move them straight there. We don't support the
637   // 'put them wherever you like' semantics we allow for GNU attributes.
638   if (attr.isStandardAttributeSyntax()) {
639     moveAttrFromListToList(attr, state.getCurrentAttributes(),
640                            state.getDeclarator().getAttributes());
641     return;
642   }
643 
644   // Try to distribute to the innermost.
645   if (distributeFunctionTypeAttrToInnermost(
646           state, attr, state.getCurrentAttributes(), declSpecType))
647     return;
648 
649   // If that failed, diagnose the bad attribute when the declarator is
650   // fully built.
651   state.addIgnoredTypeAttr(attr);
652 }
653 
654 /// A function type attribute was written on the declarator.  Try to
655 /// apply it somewhere.
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState & state,ParsedAttr & attr,QualType & declSpecType)656 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
657                                                      ParsedAttr &attr,
658                                                      QualType &declSpecType) {
659   Declarator &declarator = state.getDeclarator();
660 
661   // Try to distribute to the innermost.
662   if (distributeFunctionTypeAttrToInnermost(
663           state, attr, declarator.getAttributes(), declSpecType))
664     return;
665 
666   // If that failed, diagnose the bad attribute when the declarator is
667   // fully built.
668   declarator.getAttributes().remove(&attr);
669   state.addIgnoredTypeAttr(attr);
670 }
671 
672 /// Given that there are attributes written on the declarator
673 /// itself, try to distribute any type attributes to the appropriate
674 /// declarator chunk.
675 ///
676 /// These are attributes like the following:
677 ///   int f ATTR;
678 ///   int (f ATTR)();
679 /// but not necessarily this:
680 ///   int f() ATTR;
distributeTypeAttrsFromDeclarator(TypeProcessingState & state,QualType & declSpecType)681 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
682                                               QualType &declSpecType) {
683   // Collect all the type attributes from the declarator itself.
684   assert(!state.getDeclarator().getAttributes().empty() &&
685          "declarator has no attrs!");
686   // The called functions in this loop actually remove things from the current
687   // list, so iterating over the existing list isn't possible.  Instead, make a
688   // non-owning copy and iterate over that.
689   ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
690   for (ParsedAttr &attr : AttrsCopy) {
691     // Do not distribute [[]] attributes. They have strict rules for what
692     // they appertain to.
693     if (attr.isStandardAttributeSyntax())
694       continue;
695 
696     switch (attr.getKind()) {
697     OBJC_POINTER_TYPE_ATTRS_CASELIST:
698       distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
699       break;
700 
701     FUNCTION_TYPE_ATTRS_CASELIST:
702       distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
703       break;
704 
705     MS_TYPE_ATTRS_CASELIST:
706       // Microsoft type attributes cannot go after the declarator-id.
707       continue;
708 
709     NULLABILITY_TYPE_ATTRS_CASELIST:
710       // Nullability specifiers cannot go after the declarator-id.
711 
712     // Objective-C __kindof does not get distributed.
713     case ParsedAttr::AT_ObjCKindOf:
714       continue;
715 
716     default:
717       break;
718     }
719   }
720 }
721 
722 /// Add a synthetic '()' to a block-literal declarator if it is
723 /// required, given the return type.
maybeSynthesizeBlockSignature(TypeProcessingState & state,QualType declSpecType)724 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
725                                           QualType declSpecType) {
726   Declarator &declarator = state.getDeclarator();
727 
728   // First, check whether the declarator would produce a function,
729   // i.e. whether the innermost semantic chunk is a function.
730   if (declarator.isFunctionDeclarator()) {
731     // If so, make that declarator a prototyped declarator.
732     declarator.getFunctionTypeInfo().hasPrototype = true;
733     return;
734   }
735 
736   // If there are any type objects, the type as written won't name a
737   // function, regardless of the decl spec type.  This is because a
738   // block signature declarator is always an abstract-declarator, and
739   // abstract-declarators can't just be parentheses chunks.  Therefore
740   // we need to build a function chunk unless there are no type
741   // objects and the decl spec type is a function.
742   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
743     return;
744 
745   // Note that there *are* cases with invalid declarators where
746   // declarators consist solely of parentheses.  In general, these
747   // occur only in failed efforts to make function declarators, so
748   // faking up the function chunk is still the right thing to do.
749 
750   // Otherwise, we need to fake up a function declarator.
751   SourceLocation loc = declarator.getBeginLoc();
752 
753   // ...and *prepend* it to the declarator.
754   SourceLocation NoLoc;
755   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
756       /*HasProto=*/true,
757       /*IsAmbiguous=*/false,
758       /*LParenLoc=*/NoLoc,
759       /*ArgInfo=*/nullptr,
760       /*NumParams=*/0,
761       /*EllipsisLoc=*/NoLoc,
762       /*RParenLoc=*/NoLoc,
763       /*RefQualifierIsLvalueRef=*/true,
764       /*RefQualifierLoc=*/NoLoc,
765       /*MutableLoc=*/NoLoc, EST_None,
766       /*ESpecRange=*/SourceRange(),
767       /*Exceptions=*/nullptr,
768       /*ExceptionRanges=*/nullptr,
769       /*NumExceptions=*/0,
770       /*NoexceptExpr=*/nullptr,
771       /*ExceptionSpecTokens=*/nullptr,
772       /*DeclsInPrototype=*/None, loc, loc, declarator));
773 
774   // For consistency, make sure the state still has us as processing
775   // the decl spec.
776   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
777   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
778 }
779 
diagnoseAndRemoveTypeQualifiers(Sema & S,const DeclSpec & DS,unsigned & TypeQuals,QualType TypeSoFar,unsigned RemoveTQs,unsigned DiagID)780 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
781                                             unsigned &TypeQuals,
782                                             QualType TypeSoFar,
783                                             unsigned RemoveTQs,
784                                             unsigned DiagID) {
785   // If this occurs outside a template instantiation, warn the user about
786   // it; they probably didn't mean to specify a redundant qualifier.
787   typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
788   for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
789                        QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
790                        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
791                        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
792     if (!(RemoveTQs & Qual.first))
793       continue;
794 
795     if (!S.inTemplateInstantiation()) {
796       if (TypeQuals & Qual.first)
797         S.Diag(Qual.second, DiagID)
798           << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
799           << FixItHint::CreateRemoval(Qual.second);
800     }
801 
802     TypeQuals &= ~Qual.first;
803   }
804 }
805 
806 /// Return true if this is omitted block return type. Also check type
807 /// attributes and type qualifiers when returning true.
checkOmittedBlockReturnType(Sema & S,Declarator & declarator,QualType Result)808 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
809                                         QualType Result) {
810   if (!isOmittedBlockReturnType(declarator))
811     return false;
812 
813   // Warn if we see type attributes for omitted return type on a block literal.
814   SmallVector<ParsedAttr *, 2> ToBeRemoved;
815   for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
816     if (AL.isInvalid() || !AL.isTypeAttr())
817       continue;
818     S.Diag(AL.getLoc(),
819            diag::warn_block_literal_attributes_on_omitted_return_type)
820         << AL;
821     ToBeRemoved.push_back(&AL);
822   }
823   // Remove bad attributes from the list.
824   for (ParsedAttr *AL : ToBeRemoved)
825     declarator.getMutableDeclSpec().getAttributes().remove(AL);
826 
827   // Warn if we see type qualifiers for omitted return type on a block literal.
828   const DeclSpec &DS = declarator.getDeclSpec();
829   unsigned TypeQuals = DS.getTypeQualifiers();
830   diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
831       diag::warn_block_literal_qualifiers_on_omitted_return_type);
832   declarator.getMutableDeclSpec().ClearTypeQualifiers();
833 
834   return true;
835 }
836 
837 /// Apply Objective-C type arguments to the given type.
applyObjCTypeArgs(Sema & S,SourceLocation loc,QualType type,ArrayRef<TypeSourceInfo * > typeArgs,SourceRange typeArgsRange,bool failOnError=false)838 static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
839                                   ArrayRef<TypeSourceInfo *> typeArgs,
840                                   SourceRange typeArgsRange,
841                                   bool failOnError = false) {
842   // We can only apply type arguments to an Objective-C class type.
843   const auto *objcObjectType = type->getAs<ObjCObjectType>();
844   if (!objcObjectType || !objcObjectType->getInterface()) {
845     S.Diag(loc, diag::err_objc_type_args_non_class)
846       << type
847       << typeArgsRange;
848 
849     if (failOnError)
850       return QualType();
851     return type;
852   }
853 
854   // The class type must be parameterized.
855   ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
856   ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
857   if (!typeParams) {
858     S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
859       << objcClass->getDeclName()
860       << FixItHint::CreateRemoval(typeArgsRange);
861 
862     if (failOnError)
863       return QualType();
864 
865     return type;
866   }
867 
868   // The type must not already be specialized.
869   if (objcObjectType->isSpecialized()) {
870     S.Diag(loc, diag::err_objc_type_args_specialized_class)
871       << type
872       << FixItHint::CreateRemoval(typeArgsRange);
873 
874     if (failOnError)
875       return QualType();
876 
877     return type;
878   }
879 
880   // Check the type arguments.
881   SmallVector<QualType, 4> finalTypeArgs;
882   unsigned numTypeParams = typeParams->size();
883   bool anyPackExpansions = false;
884   for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
885     TypeSourceInfo *typeArgInfo = typeArgs[i];
886     QualType typeArg = typeArgInfo->getType();
887 
888     // Type arguments cannot have explicit qualifiers or nullability.
889     // We ignore indirect sources of these, e.g. behind typedefs or
890     // template arguments.
891     if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
892       bool diagnosed = false;
893       SourceRange rangeToRemove;
894       if (auto attr = qual.getAs<AttributedTypeLoc>()) {
895         rangeToRemove = attr.getLocalSourceRange();
896         if (attr.getTypePtr()->getImmediateNullability()) {
897           typeArg = attr.getTypePtr()->getModifiedType();
898           S.Diag(attr.getBeginLoc(),
899                  diag::err_objc_type_arg_explicit_nullability)
900               << typeArg << FixItHint::CreateRemoval(rangeToRemove);
901           diagnosed = true;
902         }
903       }
904 
905       if (!diagnosed) {
906         S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
907             << typeArg << typeArg.getQualifiers().getAsString()
908             << FixItHint::CreateRemoval(rangeToRemove);
909       }
910     }
911 
912     // Remove qualifiers even if they're non-local.
913     typeArg = typeArg.getUnqualifiedType();
914 
915     finalTypeArgs.push_back(typeArg);
916 
917     if (typeArg->getAs<PackExpansionType>())
918       anyPackExpansions = true;
919 
920     // Find the corresponding type parameter, if there is one.
921     ObjCTypeParamDecl *typeParam = nullptr;
922     if (!anyPackExpansions) {
923       if (i < numTypeParams) {
924         typeParam = typeParams->begin()[i];
925       } else {
926         // Too many arguments.
927         S.Diag(loc, diag::err_objc_type_args_wrong_arity)
928           << false
929           << objcClass->getDeclName()
930           << (unsigned)typeArgs.size()
931           << numTypeParams;
932         S.Diag(objcClass->getLocation(), diag::note_previous_decl)
933           << objcClass;
934 
935         if (failOnError)
936           return QualType();
937 
938         return type;
939       }
940     }
941 
942     // Objective-C object pointer types must be substitutable for the bounds.
943     if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
944       // If we don't have a type parameter to match against, assume
945       // everything is fine. There was a prior pack expansion that
946       // means we won't be able to match anything.
947       if (!typeParam) {
948         assert(anyPackExpansions && "Too many arguments?");
949         continue;
950       }
951 
952       // Retrieve the bound.
953       QualType bound = typeParam->getUnderlyingType();
954       const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
955 
956       // Determine whether the type argument is substitutable for the bound.
957       if (typeArgObjC->isObjCIdType()) {
958         // When the type argument is 'id', the only acceptable type
959         // parameter bound is 'id'.
960         if (boundObjC->isObjCIdType())
961           continue;
962       } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
963         // Otherwise, we follow the assignability rules.
964         continue;
965       }
966 
967       // Diagnose the mismatch.
968       S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
969              diag::err_objc_type_arg_does_not_match_bound)
970           << typeArg << bound << typeParam->getDeclName();
971       S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
972         << typeParam->getDeclName();
973 
974       if (failOnError)
975         return QualType();
976 
977       return type;
978     }
979 
980     // Block pointer types are permitted for unqualified 'id' bounds.
981     if (typeArg->isBlockPointerType()) {
982       // If we don't have a type parameter to match against, assume
983       // everything is fine. There was a prior pack expansion that
984       // means we won't be able to match anything.
985       if (!typeParam) {
986         assert(anyPackExpansions && "Too many arguments?");
987         continue;
988       }
989 
990       // Retrieve the bound.
991       QualType bound = typeParam->getUnderlyingType();
992       if (bound->isBlockCompatibleObjCPointerType(S.Context))
993         continue;
994 
995       // Diagnose the mismatch.
996       S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
997              diag::err_objc_type_arg_does_not_match_bound)
998           << typeArg << bound << typeParam->getDeclName();
999       S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
1000         << typeParam->getDeclName();
1001 
1002       if (failOnError)
1003         return QualType();
1004 
1005       return type;
1006     }
1007 
1008     // Dependent types will be checked at instantiation time.
1009     if (typeArg->isDependentType()) {
1010       continue;
1011     }
1012 
1013     // Diagnose non-id-compatible type arguments.
1014     S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1015            diag::err_objc_type_arg_not_id_compatible)
1016         << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1017 
1018     if (failOnError)
1019       return QualType();
1020 
1021     return type;
1022   }
1023 
1024   // Make sure we didn't have the wrong number of arguments.
1025   if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1026     S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1027       << (typeArgs.size() < typeParams->size())
1028       << objcClass->getDeclName()
1029       << (unsigned)finalTypeArgs.size()
1030       << (unsigned)numTypeParams;
1031     S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1032       << objcClass;
1033 
1034     if (failOnError)
1035       return QualType();
1036 
1037     return type;
1038   }
1039 
1040   // Success. Form the specialized type.
1041   return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1042 }
1043 
BuildObjCTypeParamType(const ObjCTypeParamDecl * Decl,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc,bool FailOnError)1044 QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1045                                       SourceLocation ProtocolLAngleLoc,
1046                                       ArrayRef<ObjCProtocolDecl *> Protocols,
1047                                       ArrayRef<SourceLocation> ProtocolLocs,
1048                                       SourceLocation ProtocolRAngleLoc,
1049                                       bool FailOnError) {
1050   QualType Result = QualType(Decl->getTypeForDecl(), 0);
1051   if (!Protocols.empty()) {
1052     bool HasError;
1053     Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1054                                                  HasError);
1055     if (HasError) {
1056       Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1057         << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1058       if (FailOnError) Result = QualType();
1059     }
1060     if (FailOnError && Result.isNull())
1061       return QualType();
1062   }
1063 
1064   return Result;
1065 }
1066 
BuildObjCObjectType(QualType BaseType,SourceLocation Loc,SourceLocation TypeArgsLAngleLoc,ArrayRef<TypeSourceInfo * > TypeArgs,SourceLocation TypeArgsRAngleLoc,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc,bool FailOnError)1067 QualType Sema::BuildObjCObjectType(QualType BaseType,
1068                                    SourceLocation Loc,
1069                                    SourceLocation TypeArgsLAngleLoc,
1070                                    ArrayRef<TypeSourceInfo *> TypeArgs,
1071                                    SourceLocation TypeArgsRAngleLoc,
1072                                    SourceLocation ProtocolLAngleLoc,
1073                                    ArrayRef<ObjCProtocolDecl *> Protocols,
1074                                    ArrayRef<SourceLocation> ProtocolLocs,
1075                                    SourceLocation ProtocolRAngleLoc,
1076                                    bool FailOnError) {
1077   QualType Result = BaseType;
1078   if (!TypeArgs.empty()) {
1079     Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1080                                SourceRange(TypeArgsLAngleLoc,
1081                                            TypeArgsRAngleLoc),
1082                                FailOnError);
1083     if (FailOnError && Result.isNull())
1084       return QualType();
1085   }
1086 
1087   if (!Protocols.empty()) {
1088     bool HasError;
1089     Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1090                                                  HasError);
1091     if (HasError) {
1092       Diag(Loc, diag::err_invalid_protocol_qualifiers)
1093         << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1094       if (FailOnError) Result = QualType();
1095     }
1096     if (FailOnError && Result.isNull())
1097       return QualType();
1098   }
1099 
1100   return Result;
1101 }
1102 
actOnObjCProtocolQualifierType(SourceLocation lAngleLoc,ArrayRef<Decl * > protocols,ArrayRef<SourceLocation> protocolLocs,SourceLocation rAngleLoc)1103 TypeResult Sema::actOnObjCProtocolQualifierType(
1104              SourceLocation lAngleLoc,
1105              ArrayRef<Decl *> protocols,
1106              ArrayRef<SourceLocation> protocolLocs,
1107              SourceLocation rAngleLoc) {
1108   // Form id<protocol-list>.
1109   QualType Result = Context.getObjCObjectType(
1110                       Context.ObjCBuiltinIdTy, { },
1111                       llvm::makeArrayRef(
1112                         (ObjCProtocolDecl * const *)protocols.data(),
1113                         protocols.size()),
1114                       false);
1115   Result = Context.getObjCObjectPointerType(Result);
1116 
1117   TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1118   TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1119 
1120   auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1121   ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1122 
1123   auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1124                         .castAs<ObjCObjectTypeLoc>();
1125   ObjCObjectTL.setHasBaseTypeAsWritten(false);
1126   ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1127 
1128   // No type arguments.
1129   ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1130   ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1131 
1132   // Fill in protocol qualifiers.
1133   ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1134   ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1135   for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1136     ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1137 
1138   // We're done. Return the completed type to the parser.
1139   return CreateParsedType(Result, ResultTInfo);
1140 }
1141 
actOnObjCTypeArgsAndProtocolQualifiers(Scope * S,SourceLocation Loc,ParsedType BaseType,SourceLocation TypeArgsLAngleLoc,ArrayRef<ParsedType> TypeArgs,SourceLocation TypeArgsRAngleLoc,SourceLocation ProtocolLAngleLoc,ArrayRef<Decl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc)1142 TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1143              Scope *S,
1144              SourceLocation Loc,
1145              ParsedType BaseType,
1146              SourceLocation TypeArgsLAngleLoc,
1147              ArrayRef<ParsedType> TypeArgs,
1148              SourceLocation TypeArgsRAngleLoc,
1149              SourceLocation ProtocolLAngleLoc,
1150              ArrayRef<Decl *> Protocols,
1151              ArrayRef<SourceLocation> ProtocolLocs,
1152              SourceLocation ProtocolRAngleLoc) {
1153   TypeSourceInfo *BaseTypeInfo = nullptr;
1154   QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1155   if (T.isNull())
1156     return true;
1157 
1158   // Handle missing type-source info.
1159   if (!BaseTypeInfo)
1160     BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1161 
1162   // Extract type arguments.
1163   SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1164   for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1165     TypeSourceInfo *TypeArgInfo = nullptr;
1166     QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1167     if (TypeArg.isNull()) {
1168       ActualTypeArgInfos.clear();
1169       break;
1170     }
1171 
1172     assert(TypeArgInfo && "No type source info?");
1173     ActualTypeArgInfos.push_back(TypeArgInfo);
1174   }
1175 
1176   // Build the object type.
1177   QualType Result = BuildObjCObjectType(
1178       T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1179       TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1180       ProtocolLAngleLoc,
1181       llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1182                          Protocols.size()),
1183       ProtocolLocs, ProtocolRAngleLoc,
1184       /*FailOnError=*/false);
1185 
1186   if (Result == T)
1187     return BaseType;
1188 
1189   // Create source information for this type.
1190   TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1191   TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1192 
1193   // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1194   // object pointer type. Fill in source information for it.
1195   if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1196     // The '*' is implicit.
1197     ObjCObjectPointerTL.setStarLoc(SourceLocation());
1198     ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1199   }
1200 
1201   if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1202     // Protocol qualifier information.
1203     if (OTPTL.getNumProtocols() > 0) {
1204       assert(OTPTL.getNumProtocols() == Protocols.size());
1205       OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1206       OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1207       for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1208         OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1209     }
1210 
1211     // We're done. Return the completed type to the parser.
1212     return CreateParsedType(Result, ResultTInfo);
1213   }
1214 
1215   auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1216 
1217   // Type argument information.
1218   if (ObjCObjectTL.getNumTypeArgs() > 0) {
1219     assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
1220     ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1221     ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1222     for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1223       ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1224   } else {
1225     ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1226     ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1227   }
1228 
1229   // Protocol qualifier information.
1230   if (ObjCObjectTL.getNumProtocols() > 0) {
1231     assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
1232     ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1233     ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1234     for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1235       ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1236   } else {
1237     ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1238     ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1239   }
1240 
1241   // Base type.
1242   ObjCObjectTL.setHasBaseTypeAsWritten(true);
1243   if (ObjCObjectTL.getType() == T)
1244     ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1245   else
1246     ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1247 
1248   // We're done. Return the completed type to the parser.
1249   return CreateParsedType(Result, ResultTInfo);
1250 }
1251 
1252 static OpenCLAccessAttr::Spelling
getImageAccess(const ParsedAttributesView & Attrs)1253 getImageAccess(const ParsedAttributesView &Attrs) {
1254   for (const ParsedAttr &AL : Attrs)
1255     if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1256       return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1257   return OpenCLAccessAttr::Keyword_read_only;
1258 }
1259 
1260 /// Convert the specified declspec to the appropriate type
1261 /// object.
1262 /// \param state Specifies the declarator containing the declaration specifier
1263 /// to be converted, along with other associated processing state.
1264 /// \returns The type described by the declaration specifiers.  This function
1265 /// never returns null.
ConvertDeclSpecToType(TypeProcessingState & state)1266 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1267   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1268   // checking.
1269 
1270   Sema &S = state.getSema();
1271   Declarator &declarator = state.getDeclarator();
1272   DeclSpec &DS = declarator.getMutableDeclSpec();
1273   SourceLocation DeclLoc = declarator.getIdentifierLoc();
1274   if (DeclLoc.isInvalid())
1275     DeclLoc = DS.getBeginLoc();
1276 
1277   ASTContext &Context = S.Context;
1278 
1279   QualType Result;
1280   switch (DS.getTypeSpecType()) {
1281   case DeclSpec::TST_void:
1282     Result = Context.VoidTy;
1283     break;
1284   case DeclSpec::TST_char:
1285     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1286       Result = Context.CharTy;
1287     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
1288       Result = Context.SignedCharTy;
1289     else {
1290       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
1291              "Unknown TSS value");
1292       Result = Context.UnsignedCharTy;
1293     }
1294     break;
1295   case DeclSpec::TST_wchar:
1296     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1297       Result = Context.WCharTy;
1298     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
1299       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1300         << DS.getSpecifierName(DS.getTypeSpecType(),
1301                                Context.getPrintingPolicy());
1302       Result = Context.getSignedWCharType();
1303     } else {
1304       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
1305              "Unknown TSS value");
1306       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1307         << DS.getSpecifierName(DS.getTypeSpecType(),
1308                                Context.getPrintingPolicy());
1309       Result = Context.getUnsignedWCharType();
1310     }
1311     break;
1312   case DeclSpec::TST_char8:
1313     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1314            "Unknown TSS value");
1315     Result = Context.Char8Ty;
1316     break;
1317   case DeclSpec::TST_char16:
1318     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1319            "Unknown TSS value");
1320     Result = Context.Char16Ty;
1321     break;
1322   case DeclSpec::TST_char32:
1323     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1324            "Unknown TSS value");
1325     Result = Context.Char32Ty;
1326     break;
1327   case DeclSpec::TST_unspecified:
1328     // If this is a missing declspec in a block literal return context, then it
1329     // is inferred from the return statements inside the block.
1330     // The declspec is always missing in a lambda expr context; it is either
1331     // specified with a trailing return type or inferred.
1332     if (S.getLangOpts().CPlusPlus14 &&
1333         declarator.getContext() == DeclaratorContext::LambdaExpr) {
1334       // In C++1y, a lambda's implicit return type is 'auto'.
1335       Result = Context.getAutoDeductType();
1336       break;
1337     } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
1338                checkOmittedBlockReturnType(S, declarator,
1339                                            Context.DependentTy)) {
1340       Result = Context.DependentTy;
1341       break;
1342     }
1343 
1344     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
1345     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1346     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
1347     // Note that the one exception to this is function definitions, which are
1348     // allowed to be completely missing a declspec.  This is handled in the
1349     // parser already though by it pretending to have seen an 'int' in this
1350     // case.
1351     if (S.getLangOpts().ImplicitInt) {
1352       // In C89 mode, we only warn if there is a completely missing declspec
1353       // when one is not allowed.
1354       if (DS.isEmpty()) {
1355         S.Diag(DeclLoc, diag::ext_missing_declspec)
1356             << DS.getSourceRange()
1357             << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1358       }
1359     } else if (!DS.hasTypeSpecifier()) {
1360       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
1361       // "At least one type specifier shall be given in the declaration
1362       // specifiers in each declaration, and in the specifier-qualifier list in
1363       // each struct declaration and type name."
1364       if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
1365         S.Diag(DeclLoc, diag::err_missing_type_specifier)
1366           << DS.getSourceRange();
1367 
1368         // When this occurs in C++ code, often something is very broken with the
1369         // value being declared, poison it as invalid so we don't get chains of
1370         // errors.
1371         declarator.setInvalidType(true);
1372       } else if ((S.getLangOpts().OpenCLVersion >= 200 ||
1373                   S.getLangOpts().OpenCLCPlusPlus) &&
1374                  DS.isTypeSpecPipe()) {
1375         S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1376           << DS.getSourceRange();
1377         declarator.setInvalidType(true);
1378       } else {
1379         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1380           << DS.getSourceRange();
1381       }
1382     }
1383 
1384     LLVM_FALLTHROUGH;
1385   case DeclSpec::TST_int: {
1386     if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1387       switch (DS.getTypeSpecWidth()) {
1388       case TypeSpecifierWidth::Unspecified:
1389         Result = Context.IntTy;
1390         break;
1391       case TypeSpecifierWidth::Short:
1392         Result = Context.ShortTy;
1393         break;
1394       case TypeSpecifierWidth::Long:
1395         Result = Context.LongTy;
1396         break;
1397       case TypeSpecifierWidth::LongLong:
1398         Result = Context.LongLongTy;
1399 
1400         // 'long long' is a C99 or C++11 feature.
1401         if (!S.getLangOpts().C99) {
1402           if (S.getLangOpts().CPlusPlus)
1403             S.Diag(DS.getTypeSpecWidthLoc(),
1404                    S.getLangOpts().CPlusPlus11 ?
1405                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1406           else
1407             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1408         }
1409         break;
1410       }
1411     } else {
1412       switch (DS.getTypeSpecWidth()) {
1413       case TypeSpecifierWidth::Unspecified:
1414         Result = Context.UnsignedIntTy;
1415         break;
1416       case TypeSpecifierWidth::Short:
1417         Result = Context.UnsignedShortTy;
1418         break;
1419       case TypeSpecifierWidth::Long:
1420         Result = Context.UnsignedLongTy;
1421         break;
1422       case TypeSpecifierWidth::LongLong:
1423         Result = Context.UnsignedLongLongTy;
1424 
1425         // 'long long' is a C99 or C++11 feature.
1426         if (!S.getLangOpts().C99) {
1427           if (S.getLangOpts().CPlusPlus)
1428             S.Diag(DS.getTypeSpecWidthLoc(),
1429                    S.getLangOpts().CPlusPlus11 ?
1430                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1431           else
1432             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1433         }
1434         break;
1435       }
1436     }
1437     break;
1438   }
1439   case DeclSpec::TST_extint: {
1440     if (!S.Context.getTargetInfo().hasExtIntType())
1441       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1442         << "_ExtInt";
1443     Result =
1444         S.BuildExtIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1445                           DS.getRepAsExpr(), DS.getBeginLoc());
1446     if (Result.isNull()) {
1447       Result = Context.IntTy;
1448       declarator.setInvalidType(true);
1449     }
1450     break;
1451   }
1452   case DeclSpec::TST_accum: {
1453     switch (DS.getTypeSpecWidth()) {
1454     case TypeSpecifierWidth::Short:
1455       Result = Context.ShortAccumTy;
1456       break;
1457     case TypeSpecifierWidth::Unspecified:
1458       Result = Context.AccumTy;
1459       break;
1460     case TypeSpecifierWidth::Long:
1461       Result = Context.LongAccumTy;
1462       break;
1463     case TypeSpecifierWidth::LongLong:
1464       llvm_unreachable("Unable to specify long long as _Accum width");
1465     }
1466 
1467     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1468       Result = Context.getCorrespondingUnsignedType(Result);
1469 
1470     if (DS.isTypeSpecSat())
1471       Result = Context.getCorrespondingSaturatedType(Result);
1472 
1473     break;
1474   }
1475   case DeclSpec::TST_fract: {
1476     switch (DS.getTypeSpecWidth()) {
1477     case TypeSpecifierWidth::Short:
1478       Result = Context.ShortFractTy;
1479       break;
1480     case TypeSpecifierWidth::Unspecified:
1481       Result = Context.FractTy;
1482       break;
1483     case TypeSpecifierWidth::Long:
1484       Result = Context.LongFractTy;
1485       break;
1486     case TypeSpecifierWidth::LongLong:
1487       llvm_unreachable("Unable to specify long long as _Fract width");
1488     }
1489 
1490     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1491       Result = Context.getCorrespondingUnsignedType(Result);
1492 
1493     if (DS.isTypeSpecSat())
1494       Result = Context.getCorrespondingSaturatedType(Result);
1495 
1496     break;
1497   }
1498   case DeclSpec::TST_int128:
1499     if (!S.Context.getTargetInfo().hasInt128Type() &&
1500         !S.getLangOpts().SYCLIsDevice &&
1501         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1502       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1503         << "__int128";
1504     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1505       Result = Context.UnsignedInt128Ty;
1506     else
1507       Result = Context.Int128Ty;
1508     break;
1509   case DeclSpec::TST_float16:
1510     // CUDA host and device may have different _Float16 support, therefore
1511     // do not diagnose _Float16 usage to avoid false alarm.
1512     // ToDo: more precise diagnostics for CUDA.
1513     if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1514         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1515       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1516         << "_Float16";
1517     Result = Context.Float16Ty;
1518     break;
1519   case DeclSpec::TST_half:    Result = Context.HalfTy; break;
1520   case DeclSpec::TST_BFloat16:
1521     if (!S.Context.getTargetInfo().hasBFloat16Type())
1522       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1523         << "__bf16";
1524     Result = Context.BFloat16Ty;
1525     break;
1526   case DeclSpec::TST_float:   Result = Context.FloatTy; break;
1527   case DeclSpec::TST_double:
1528     if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1529       Result = Context.LongDoubleTy;
1530     else
1531       Result = Context.DoubleTy;
1532     if (S.getLangOpts().OpenCL) {
1533       if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1534         S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1535             << 0 << Result
1536             << (S.getLangOpts().OpenCLVersion == 300
1537                     ? "cl_khr_fp64 and __opencl_c_fp64"
1538                     : "cl_khr_fp64");
1539       else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1540         S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1541     }
1542     break;
1543   case DeclSpec::TST_float128:
1544     if (!S.Context.getTargetInfo().hasFloat128Type() &&
1545         !S.getLangOpts().SYCLIsDevice &&
1546         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1547       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1548         << "__float128";
1549     Result = Context.Float128Ty;
1550     break;
1551   case DeclSpec::TST_bool:
1552     Result = Context.BoolTy; // _Bool or bool
1553     break;
1554   case DeclSpec::TST_decimal32:    // _Decimal32
1555   case DeclSpec::TST_decimal64:    // _Decimal64
1556   case DeclSpec::TST_decimal128:   // _Decimal128
1557     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1558     Result = Context.IntTy;
1559     declarator.setInvalidType(true);
1560     break;
1561   case DeclSpec::TST_class:
1562   case DeclSpec::TST_enum:
1563   case DeclSpec::TST_union:
1564   case DeclSpec::TST_struct:
1565   case DeclSpec::TST_interface: {
1566     TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1567     if (!D) {
1568       // This can happen in C++ with ambiguous lookups.
1569       Result = Context.IntTy;
1570       declarator.setInvalidType(true);
1571       break;
1572     }
1573 
1574     // If the type is deprecated or unavailable, diagnose it.
1575     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1576 
1577     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1578            DS.getTypeSpecComplex() == 0 &&
1579            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1580            "No qualifiers on tag names!");
1581 
1582     // TypeQuals handled by caller.
1583     Result = Context.getTypeDeclType(D);
1584 
1585     // In both C and C++, make an ElaboratedType.
1586     ElaboratedTypeKeyword Keyword
1587       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1588     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1589                                  DS.isTypeSpecOwned() ? D : nullptr);
1590     break;
1591   }
1592   case DeclSpec::TST_typename: {
1593     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1594            DS.getTypeSpecComplex() == 0 &&
1595            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1596            "Can't handle qualifiers on typedef names yet!");
1597     Result = S.GetTypeFromParser(DS.getRepAsType());
1598     if (Result.isNull()) {
1599       declarator.setInvalidType(true);
1600     }
1601 
1602     // TypeQuals handled by caller.
1603     break;
1604   }
1605   case DeclSpec::TST_typeofType:
1606     // FIXME: Preserve type source info.
1607     Result = S.GetTypeFromParser(DS.getRepAsType());
1608     assert(!Result.isNull() && "Didn't get a type for typeof?");
1609     if (!Result->isDependentType())
1610       if (const TagType *TT = Result->getAs<TagType>())
1611         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1612     // TypeQuals handled by caller.
1613     Result = Context.getTypeOfType(Result);
1614     break;
1615   case DeclSpec::TST_typeofExpr: {
1616     Expr *E = DS.getRepAsExpr();
1617     assert(E && "Didn't get an expression for typeof?");
1618     // TypeQuals handled by caller.
1619     Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1620     if (Result.isNull()) {
1621       Result = Context.IntTy;
1622       declarator.setInvalidType(true);
1623     }
1624     break;
1625   }
1626   case DeclSpec::TST_decltype: {
1627     Expr *E = DS.getRepAsExpr();
1628     assert(E && "Didn't get an expression for decltype?");
1629     // TypeQuals handled by caller.
1630     Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1631     if (Result.isNull()) {
1632       Result = Context.IntTy;
1633       declarator.setInvalidType(true);
1634     }
1635     break;
1636   }
1637   case DeclSpec::TST_underlyingType:
1638     Result = S.GetTypeFromParser(DS.getRepAsType());
1639     assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
1640     Result = S.BuildUnaryTransformType(Result,
1641                                        UnaryTransformType::EnumUnderlyingType,
1642                                        DS.getTypeSpecTypeLoc());
1643     if (Result.isNull()) {
1644       Result = Context.IntTy;
1645       declarator.setInvalidType(true);
1646     }
1647     break;
1648 
1649   case DeclSpec::TST_auto:
1650   case DeclSpec::TST_decltype_auto: {
1651     auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1652                       ? AutoTypeKeyword::DecltypeAuto
1653                       : AutoTypeKeyword::Auto;
1654 
1655     ConceptDecl *TypeConstraintConcept = nullptr;
1656     llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1657     if (DS.isConstrainedAuto()) {
1658       if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1659         TypeConstraintConcept =
1660             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1661         TemplateArgumentListInfo TemplateArgsInfo;
1662         TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1663         TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1664         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1665                                            TemplateId->NumArgs);
1666         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1667         for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1668           TemplateArgs.push_back(ArgLoc.getArgument());
1669       } else {
1670         declarator.setInvalidType(true);
1671       }
1672     }
1673     Result = S.Context.getAutoType(QualType(), AutoKW,
1674                                    /*IsDependent*/ false, /*IsPack=*/false,
1675                                    TypeConstraintConcept, TemplateArgs);
1676     break;
1677   }
1678 
1679   case DeclSpec::TST_auto_type:
1680     Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1681     break;
1682 
1683   case DeclSpec::TST_unknown_anytype:
1684     Result = Context.UnknownAnyTy;
1685     break;
1686 
1687   case DeclSpec::TST_atomic:
1688     Result = S.GetTypeFromParser(DS.getRepAsType());
1689     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1690     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1691     if (Result.isNull()) {
1692       Result = Context.IntTy;
1693       declarator.setInvalidType(true);
1694     }
1695     break;
1696 
1697 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
1698   case DeclSpec::TST_##ImgType##_t:                                            \
1699     switch (getImageAccess(DS.getAttributes())) {                              \
1700     case OpenCLAccessAttr::Keyword_write_only:                                 \
1701       Result = Context.Id##WOTy;                                               \
1702       break;                                                                   \
1703     case OpenCLAccessAttr::Keyword_read_write:                                 \
1704       Result = Context.Id##RWTy;                                               \
1705       break;                                                                   \
1706     case OpenCLAccessAttr::Keyword_read_only:                                  \
1707       Result = Context.Id##ROTy;                                               \
1708       break;                                                                   \
1709     case OpenCLAccessAttr::SpellingNotCalculated:                              \
1710       llvm_unreachable("Spelling not yet calculated");                         \
1711     }                                                                          \
1712     break;
1713 #include "clang/Basic/OpenCLImageTypes.def"
1714 
1715   case DeclSpec::TST_error:
1716     Result = Context.IntTy;
1717     declarator.setInvalidType(true);
1718     break;
1719   }
1720 
1721   // FIXME: we want resulting declarations to be marked invalid, but claiming
1722   // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1723   // a null type.
1724   if (Result->containsErrors())
1725     declarator.setInvalidType();
1726 
1727   if (S.getLangOpts().OpenCL) {
1728     const auto &OpenCLOptions = S.getOpenCLOptions();
1729     bool IsOpenCLC30 = (S.getLangOpts().OpenCLVersion == 300);
1730     // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1731     // support.
1732     // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1733     // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1734     // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1735     // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1736     // only when the optional feature is supported
1737     if ((Result->isImageType() || Result->isSamplerT()) &&
1738         (IsOpenCLC30 &&
1739          !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1740       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1741           << 0 << Result << "__opencl_c_images";
1742       declarator.setInvalidType();
1743     } else if (Result->isOCLImage3dWOType() &&
1744                !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1745                                           S.getLangOpts())) {
1746       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1747           << 0 << Result
1748           << (IsOpenCLC30
1749                   ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1750                   : "cl_khr_3d_image_writes");
1751       declarator.setInvalidType();
1752     }
1753   }
1754 
1755   bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1756                           DS.getTypeSpecType() == DeclSpec::TST_fract;
1757 
1758   // Only fixed point types can be saturated
1759   if (DS.isTypeSpecSat() && !IsFixedPointType)
1760     S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1761         << DS.getSpecifierName(DS.getTypeSpecType(),
1762                                Context.getPrintingPolicy());
1763 
1764   // Handle complex types.
1765   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1766     if (S.getLangOpts().Freestanding)
1767       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1768     Result = Context.getComplexType(Result);
1769   } else if (DS.isTypeAltiVecVector()) {
1770     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1771     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1772     VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1773     if (DS.isTypeAltiVecPixel())
1774       VecKind = VectorType::AltiVecPixel;
1775     else if (DS.isTypeAltiVecBool())
1776       VecKind = VectorType::AltiVecBool;
1777     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1778   }
1779 
1780   // FIXME: Imaginary.
1781   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1782     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1783 
1784   // Before we process any type attributes, synthesize a block literal
1785   // function declarator if necessary.
1786   if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1787     maybeSynthesizeBlockSignature(state, Result);
1788 
1789   // Apply any type attributes from the decl spec.  This may cause the
1790   // list of type attributes to be temporarily saved while the type
1791   // attributes are pushed around.
1792   // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1793   if (!DS.isTypeSpecPipe())
1794     processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1795 
1796   // Apply const/volatile/restrict qualifiers to T.
1797   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1798     // Warn about CV qualifiers on function types.
1799     // C99 6.7.3p8:
1800     //   If the specification of a function type includes any type qualifiers,
1801     //   the behavior is undefined.
1802     // C++11 [dcl.fct]p7:
1803     //   The effect of a cv-qualifier-seq in a function declarator is not the
1804     //   same as adding cv-qualification on top of the function type. In the
1805     //   latter case, the cv-qualifiers are ignored.
1806     if (Result->isFunctionType()) {
1807       diagnoseAndRemoveTypeQualifiers(
1808           S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1809           S.getLangOpts().CPlusPlus
1810               ? diag::warn_typecheck_function_qualifiers_ignored
1811               : diag::warn_typecheck_function_qualifiers_unspecified);
1812       // No diagnostic for 'restrict' or '_Atomic' applied to a
1813       // function type; we'll diagnose those later, in BuildQualifiedType.
1814     }
1815 
1816     // C++11 [dcl.ref]p1:
1817     //   Cv-qualified references are ill-formed except when the
1818     //   cv-qualifiers are introduced through the use of a typedef-name
1819     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1820     //
1821     // There don't appear to be any other contexts in which a cv-qualified
1822     // reference type could be formed, so the 'ill-formed' clause here appears
1823     // to never happen.
1824     if (TypeQuals && Result->isReferenceType()) {
1825       diagnoseAndRemoveTypeQualifiers(
1826           S, DS, TypeQuals, Result,
1827           DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1828           diag::warn_typecheck_reference_qualifiers);
1829     }
1830 
1831     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1832     // than once in the same specifier-list or qualifier-list, either directly
1833     // or via one or more typedefs."
1834     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1835         && TypeQuals & Result.getCVRQualifiers()) {
1836       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1837         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1838           << "const";
1839       }
1840 
1841       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1842         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1843           << "volatile";
1844       }
1845 
1846       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1847       // produce a warning in this case.
1848     }
1849 
1850     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1851 
1852     // If adding qualifiers fails, just use the unqualified type.
1853     if (Qualified.isNull())
1854       declarator.setInvalidType(true);
1855     else
1856       Result = Qualified;
1857   }
1858 
1859   assert(!Result.isNull() && "This function should not return a null type");
1860   return Result;
1861 }
1862 
getPrintableNameForEntity(DeclarationName Entity)1863 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1864   if (Entity)
1865     return Entity.getAsString();
1866 
1867   return "type name";
1868 }
1869 
BuildQualifiedType(QualType T,SourceLocation Loc,Qualifiers Qs,const DeclSpec * DS)1870 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1871                                   Qualifiers Qs, const DeclSpec *DS) {
1872   if (T.isNull())
1873     return QualType();
1874 
1875   // Ignore any attempt to form a cv-qualified reference.
1876   if (T->isReferenceType()) {
1877     Qs.removeConst();
1878     Qs.removeVolatile();
1879   }
1880 
1881   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1882   // object or incomplete types shall not be restrict-qualified."
1883   if (Qs.hasRestrict()) {
1884     unsigned DiagID = 0;
1885     QualType ProblemTy;
1886 
1887     if (T->isAnyPointerType() || T->isReferenceType() ||
1888         T->isMemberPointerType()) {
1889       QualType EltTy;
1890       if (T->isObjCObjectPointerType())
1891         EltTy = T;
1892       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1893         EltTy = PTy->getPointeeType();
1894       else
1895         EltTy = T->getPointeeType();
1896 
1897       // If we have a pointer or reference, the pointee must have an object
1898       // incomplete type.
1899       if (!EltTy->isIncompleteOrObjectType()) {
1900         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1901         ProblemTy = EltTy;
1902       }
1903     } else if (!T->isDependentType()) {
1904       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1905       ProblemTy = T;
1906     }
1907 
1908     if (DiagID) {
1909       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1910       Qs.removeRestrict();
1911     }
1912   }
1913 
1914   return Context.getQualifiedType(T, Qs);
1915 }
1916 
BuildQualifiedType(QualType T,SourceLocation Loc,unsigned CVRAU,const DeclSpec * DS)1917 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1918                                   unsigned CVRAU, const DeclSpec *DS) {
1919   if (T.isNull())
1920     return QualType();
1921 
1922   // Ignore any attempt to form a cv-qualified reference.
1923   if (T->isReferenceType())
1924     CVRAU &=
1925         ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1926 
1927   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1928   // TQ_unaligned;
1929   unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1930 
1931   // C11 6.7.3/5:
1932   //   If the same qualifier appears more than once in the same
1933   //   specifier-qualifier-list, either directly or via one or more typedefs,
1934   //   the behavior is the same as if it appeared only once.
1935   //
1936   // It's not specified what happens when the _Atomic qualifier is applied to
1937   // a type specified with the _Atomic specifier, but we assume that this
1938   // should be treated as if the _Atomic qualifier appeared multiple times.
1939   if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1940     // C11 6.7.3/5:
1941     //   If other qualifiers appear along with the _Atomic qualifier in a
1942     //   specifier-qualifier-list, the resulting type is the so-qualified
1943     //   atomic type.
1944     //
1945     // Don't need to worry about array types here, since _Atomic can't be
1946     // applied to such types.
1947     SplitQualType Split = T.getSplitUnqualifiedType();
1948     T = BuildAtomicType(QualType(Split.Ty, 0),
1949                         DS ? DS->getAtomicSpecLoc() : Loc);
1950     if (T.isNull())
1951       return T;
1952     Split.Quals.addCVRQualifiers(CVR);
1953     return BuildQualifiedType(T, Loc, Split.Quals);
1954   }
1955 
1956   Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1957   Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1958   return BuildQualifiedType(T, Loc, Q, DS);
1959 }
1960 
1961 /// Build a paren type including \p T.
BuildParenType(QualType T)1962 QualType Sema::BuildParenType(QualType T) {
1963   return Context.getParenType(T);
1964 }
1965 
1966 /// Given that we're building a pointer or reference to the given
inferARCLifetimeForPointee(Sema & S,QualType type,SourceLocation loc,bool isReference)1967 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1968                                            SourceLocation loc,
1969                                            bool isReference) {
1970   // Bail out if retention is unrequired or already specified.
1971   if (!type->isObjCLifetimeType() ||
1972       type.getObjCLifetime() != Qualifiers::OCL_None)
1973     return type;
1974 
1975   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1976 
1977   // If the object type is const-qualified, we can safely use
1978   // __unsafe_unretained.  This is safe (because there are no read
1979   // barriers), and it'll be safe to coerce anything but __weak* to
1980   // the resulting type.
1981   if (type.isConstQualified()) {
1982     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1983 
1984   // Otherwise, check whether the static type does not require
1985   // retaining.  This currently only triggers for Class (possibly
1986   // protocol-qualifed, and arrays thereof).
1987   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1988     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1989 
1990   // If we are in an unevaluated context, like sizeof, skip adding a
1991   // qualification.
1992   } else if (S.isUnevaluatedContext()) {
1993     return type;
1994 
1995   // If that failed, give an error and recover using __strong.  __strong
1996   // is the option most likely to prevent spurious second-order diagnostics,
1997   // like when binding a reference to a field.
1998   } else {
1999     // These types can show up in private ivars in system headers, so
2000     // we need this to not be an error in those cases.  Instead we
2001     // want to delay.
2002     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
2003       S.DelayedDiagnostics.add(
2004           sema::DelayedDiagnostic::makeForbiddenType(loc,
2005               diag::err_arc_indirect_no_ownership, type, isReference));
2006     } else {
2007       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
2008     }
2009     implicitLifetime = Qualifiers::OCL_Strong;
2010   }
2011   assert(implicitLifetime && "didn't infer any lifetime!");
2012 
2013   Qualifiers qs;
2014   qs.addObjCLifetime(implicitLifetime);
2015   return S.Context.getQualifiedType(type, qs);
2016 }
2017 
getFunctionQualifiersAsString(const FunctionProtoType * FnTy)2018 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2019   std::string Quals = FnTy->getMethodQuals().getAsString();
2020 
2021   switch (FnTy->getRefQualifier()) {
2022   case RQ_None:
2023     break;
2024 
2025   case RQ_LValue:
2026     if (!Quals.empty())
2027       Quals += ' ';
2028     Quals += '&';
2029     break;
2030 
2031   case RQ_RValue:
2032     if (!Quals.empty())
2033       Quals += ' ';
2034     Quals += "&&";
2035     break;
2036   }
2037 
2038   return Quals;
2039 }
2040 
2041 namespace {
2042 /// Kinds of declarator that cannot contain a qualified function type.
2043 ///
2044 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2045 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
2046 ///     at the topmost level of a type.
2047 ///
2048 /// Parens and member pointers are permitted. We don't diagnose array and
2049 /// function declarators, because they don't allow function types at all.
2050 ///
2051 /// The values of this enum are used in diagnostics.
2052 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
2053 } // end anonymous namespace
2054 
2055 /// Check whether the type T is a qualified function type, and if it is,
2056 /// diagnose that it cannot be contained within the given kind of declarator.
checkQualifiedFunction(Sema & S,QualType T,SourceLocation Loc,QualifiedFunctionKind QFK)2057 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
2058                                    QualifiedFunctionKind QFK) {
2059   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2060   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2061   if (!FPT ||
2062       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2063     return false;
2064 
2065   S.Diag(Loc, diag::err_compound_qualified_function_type)
2066     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
2067     << getFunctionQualifiersAsString(FPT);
2068   return true;
2069 }
2070 
CheckQualifiedFunctionForTypeId(QualType T,SourceLocation Loc)2071 bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2072   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2073   if (!FPT ||
2074       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2075     return false;
2076 
2077   Diag(Loc, diag::err_qualified_function_typeid)
2078       << T << getFunctionQualifiersAsString(FPT);
2079   return true;
2080 }
2081 
2082 // Helper to deduce addr space of a pointee type in OpenCL mode.
deduceOpenCLPointeeAddrSpace(Sema & S,QualType PointeeType)2083 static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2084   if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2085       !PointeeType->isSamplerT() &&
2086       !PointeeType.hasAddressSpace())
2087     PointeeType = S.getASTContext().getAddrSpaceQualType(
2088         PointeeType, S.getLangOpts().OpenCLGenericAddressSpace
2089                          ? LangAS::opencl_generic
2090                          : LangAS::opencl_private);
2091   return PointeeType;
2092 }
2093 
2094 /// Build a pointer type.
2095 ///
2096 /// \param T The type to which we'll be building a pointer.
2097 ///
2098 /// \param Loc The location of the entity whose type involves this
2099 /// pointer type or, if there is no such entity, the location of the
2100 /// type that will have pointer type.
2101 ///
2102 /// \param Entity The name of the entity that involves the pointer
2103 /// type, if known.
2104 ///
2105 /// \returns A suitable pointer type, if there are no
2106 /// errors. Otherwise, returns a NULL type.
BuildPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)2107 QualType Sema::BuildPointerType(QualType T,
2108                                 SourceLocation Loc, DeclarationName Entity) {
2109   if (T->isReferenceType()) {
2110     // C++ 8.3.2p4: There shall be no ... pointers to references ...
2111     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2112       << getPrintableNameForEntity(Entity) << T;
2113     return QualType();
2114   }
2115 
2116   if (T->isFunctionType() && getLangOpts().OpenCL &&
2117       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2118                                             getLangOpts())) {
2119     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2120     return QualType();
2121   }
2122 
2123   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
2124     return QualType();
2125 
2126   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
2127 
2128   // In ARC, it is forbidden to build pointers to unqualified pointers.
2129   if (getLangOpts().ObjCAutoRefCount)
2130     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2131 
2132   if (getLangOpts().OpenCL)
2133     T = deduceOpenCLPointeeAddrSpace(*this, T);
2134 
2135   // Build the pointer type.
2136   return Context.getPointerType(T);
2137 }
2138 
2139 /// Build a reference type.
2140 ///
2141 /// \param T The type to which we'll be building a reference.
2142 ///
2143 /// \param Loc The location of the entity whose type involves this
2144 /// reference type or, if there is no such entity, the location of the
2145 /// type that will have reference type.
2146 ///
2147 /// \param Entity The name of the entity that involves the reference
2148 /// type, if known.
2149 ///
2150 /// \returns A suitable reference type, if there are no
2151 /// errors. Otherwise, returns a NULL type.
BuildReferenceType(QualType T,bool SpelledAsLValue,SourceLocation Loc,DeclarationName Entity)2152 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2153                                   SourceLocation Loc,
2154                                   DeclarationName Entity) {
2155   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
2156          "Unresolved overloaded function type");
2157 
2158   // C++0x [dcl.ref]p6:
2159   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2160   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2161   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
2162   //   the type "lvalue reference to T", while an attempt to create the type
2163   //   "rvalue reference to cv TR" creates the type TR.
2164   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2165 
2166   // C++ [dcl.ref]p4: There shall be no references to references.
2167   //
2168   // According to C++ DR 106, references to references are only
2169   // diagnosed when they are written directly (e.g., "int & &"),
2170   // but not when they happen via a typedef:
2171   //
2172   //   typedef int& intref;
2173   //   typedef intref& intref2;
2174   //
2175   // Parser::ParseDeclaratorInternal diagnoses the case where
2176   // references are written directly; here, we handle the
2177   // collapsing of references-to-references as described in C++0x.
2178   // DR 106 and 540 introduce reference-collapsing into C++98/03.
2179 
2180   // C++ [dcl.ref]p1:
2181   //   A declarator that specifies the type "reference to cv void"
2182   //   is ill-formed.
2183   if (T->isVoidType()) {
2184     Diag(Loc, diag::err_reference_to_void);
2185     return QualType();
2186   }
2187 
2188   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2189     return QualType();
2190 
2191   if (T->isFunctionType() && getLangOpts().OpenCL &&
2192       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2193                                             getLangOpts())) {
2194     Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
2195     return QualType();
2196   }
2197 
2198   // In ARC, it is forbidden to build references to unqualified pointers.
2199   if (getLangOpts().ObjCAutoRefCount)
2200     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2201 
2202   if (getLangOpts().OpenCL)
2203     T = deduceOpenCLPointeeAddrSpace(*this, T);
2204 
2205   // Handle restrict on references.
2206   if (LValueRef)
2207     return Context.getLValueReferenceType(T, SpelledAsLValue);
2208   return Context.getRValueReferenceType(T);
2209 }
2210 
2211 /// Build a Read-only Pipe type.
2212 ///
2213 /// \param T The type to which we'll be building a Pipe.
2214 ///
2215 /// \param Loc We do not use it for now.
2216 ///
2217 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2218 /// NULL type.
BuildReadPipeType(QualType T,SourceLocation Loc)2219 QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2220   return Context.getReadPipeType(T);
2221 }
2222 
2223 /// Build a Write-only Pipe type.
2224 ///
2225 /// \param T The type to which we'll be building a Pipe.
2226 ///
2227 /// \param Loc We do not use it for now.
2228 ///
2229 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2230 /// NULL type.
BuildWritePipeType(QualType T,SourceLocation Loc)2231 QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2232   return Context.getWritePipeType(T);
2233 }
2234 
2235 /// Build a extended int type.
2236 ///
2237 /// \param IsUnsigned Boolean representing the signedness of the type.
2238 ///
2239 /// \param BitWidth Size of this int type in bits, or an expression representing
2240 /// that.
2241 ///
2242 /// \param Loc Location of the keyword.
BuildExtIntType(bool IsUnsigned,Expr * BitWidth,SourceLocation Loc)2243 QualType Sema::BuildExtIntType(bool IsUnsigned, Expr *BitWidth,
2244                                SourceLocation Loc) {
2245   if (BitWidth->isInstantiationDependent())
2246     return Context.getDependentExtIntType(IsUnsigned, BitWidth);
2247 
2248   llvm::APSInt Bits(32);
2249   ExprResult ICE =
2250       VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
2251 
2252   if (ICE.isInvalid())
2253     return QualType();
2254 
2255   int64_t NumBits = Bits.getSExtValue();
2256   if (!IsUnsigned && NumBits < 2) {
2257     Diag(Loc, diag::err_ext_int_bad_size) << 0;
2258     return QualType();
2259   }
2260 
2261   if (IsUnsigned && NumBits < 1) {
2262     Diag(Loc, diag::err_ext_int_bad_size) << 1;
2263     return QualType();
2264   }
2265 
2266   if (NumBits > llvm::IntegerType::MAX_INT_BITS) {
2267     Diag(Loc, diag::err_ext_int_max_size) << IsUnsigned
2268                                           << llvm::IntegerType::MAX_INT_BITS;
2269     return QualType();
2270   }
2271 
2272   return Context.getExtIntType(IsUnsigned, NumBits);
2273 }
2274 
2275 /// Check whether the specified array bound can be evaluated using the relevant
2276 /// language rules. If so, returns the possibly-converted expression and sets
2277 /// SizeVal to the size. If not, but the expression might be a VLA bound,
2278 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
2279 /// ExprError().
checkArraySize(Sema & S,Expr * & ArraySize,llvm::APSInt & SizeVal,unsigned VLADiag,bool VLAIsError)2280 static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
2281                                  llvm::APSInt &SizeVal, unsigned VLADiag,
2282                                  bool VLAIsError) {
2283   if (S.getLangOpts().CPlusPlus14 &&
2284       (VLAIsError ||
2285        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
2286     // C++14 [dcl.array]p1:
2287     //   The constant-expression shall be a converted constant expression of
2288     //   type std::size_t.
2289     //
2290     // Don't apply this rule if we might be forming a VLA: in that case, we
2291     // allow non-constant expressions and constant-folding. We only need to use
2292     // the converted constant expression rules (to properly convert the source)
2293     // when the source expression is of class type.
2294     return S.CheckConvertedConstantExpression(
2295         ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
2296   }
2297 
2298   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2299   // (like gnu99, but not c99) accept any evaluatable value as an extension.
2300   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2301   public:
2302     unsigned VLADiag;
2303     bool VLAIsError;
2304     bool IsVLA = false;
2305 
2306     VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2307         : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2308 
2309     Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2310                                                    QualType T) override {
2311       return S.Diag(Loc, diag::err_array_size_non_int) << T;
2312     }
2313 
2314     Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2315                                                SourceLocation Loc) override {
2316       IsVLA = !VLAIsError;
2317       return S.Diag(Loc, VLADiag);
2318     }
2319 
2320     Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2321                                              SourceLocation Loc) override {
2322       return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2323     }
2324   } Diagnoser(VLADiag, VLAIsError);
2325 
2326   ExprResult R =
2327       S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2328   if (Diagnoser.IsVLA)
2329     return ExprResult();
2330   return R;
2331 }
2332 
2333 /// Build an array type.
2334 ///
2335 /// \param T The type of each element in the array.
2336 ///
2337 /// \param ASM C99 array size modifier (e.g., '*', 'static').
2338 ///
2339 /// \param ArraySize Expression describing the size of the array.
2340 ///
2341 /// \param Brackets The range from the opening '[' to the closing ']'.
2342 ///
2343 /// \param Entity The name of the entity that involves the array
2344 /// type, if known.
2345 ///
2346 /// \returns A suitable array type, if there are no errors. Otherwise,
2347 /// returns a NULL type.
BuildArrayType(QualType T,ArrayType::ArraySizeModifier ASM,Expr * ArraySize,unsigned Quals,SourceRange Brackets,DeclarationName Entity)2348 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2349                               Expr *ArraySize, unsigned Quals,
2350                               SourceRange Brackets, DeclarationName Entity) {
2351 
2352   SourceLocation Loc = Brackets.getBegin();
2353   if (getLangOpts().CPlusPlus) {
2354     // C++ [dcl.array]p1:
2355     //   T is called the array element type; this type shall not be a reference
2356     //   type, the (possibly cv-qualified) type void, a function type or an
2357     //   abstract class type.
2358     //
2359     // C++ [dcl.array]p3:
2360     //   When several "array of" specifications are adjacent, [...] only the
2361     //   first of the constant expressions that specify the bounds of the arrays
2362     //   may be omitted.
2363     //
2364     // Note: function types are handled in the common path with C.
2365     if (T->isReferenceType()) {
2366       Diag(Loc, diag::err_illegal_decl_array_of_references)
2367       << getPrintableNameForEntity(Entity) << T;
2368       return QualType();
2369     }
2370 
2371     if (T->isVoidType() || T->isIncompleteArrayType()) {
2372       Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2373       return QualType();
2374     }
2375 
2376     if (RequireNonAbstractType(Brackets.getBegin(), T,
2377                                diag::err_array_of_abstract_type))
2378       return QualType();
2379 
2380     // Mentioning a member pointer type for an array type causes us to lock in
2381     // an inheritance model, even if it's inside an unused typedef.
2382     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2383       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2384         if (!MPTy->getClass()->isDependentType())
2385           (void)isCompleteType(Loc, T);
2386 
2387   } else {
2388     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2389     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2390     if (RequireCompleteSizedType(Loc, T,
2391                                  diag::err_array_incomplete_or_sizeless_type))
2392       return QualType();
2393   }
2394 
2395   if (T->isSizelessType()) {
2396     Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2397     return QualType();
2398   }
2399 
2400   if (T->isFunctionType()) {
2401     Diag(Loc, diag::err_illegal_decl_array_of_functions)
2402       << getPrintableNameForEntity(Entity) << T;
2403     return QualType();
2404   }
2405 
2406   if (const RecordType *EltTy = T->getAs<RecordType>()) {
2407     // If the element type is a struct or union that contains a variadic
2408     // array, accept it as a GNU extension: C99 6.7.2.1p2.
2409     if (EltTy->getDecl()->hasFlexibleArrayMember())
2410       Diag(Loc, diag::ext_flexible_array_in_array) << T;
2411   } else if (T->isObjCObjectType()) {
2412     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2413     return QualType();
2414   }
2415 
2416   // Do placeholder conversions on the array size expression.
2417   if (ArraySize && ArraySize->hasPlaceholderType()) {
2418     ExprResult Result = CheckPlaceholderExpr(ArraySize);
2419     if (Result.isInvalid()) return QualType();
2420     ArraySize = Result.get();
2421   }
2422 
2423   // Do lvalue-to-rvalue conversions on the array size expression.
2424   if (ArraySize && !ArraySize->isPRValue()) {
2425     ExprResult Result = DefaultLvalueConversion(ArraySize);
2426     if (Result.isInvalid())
2427       return QualType();
2428 
2429     ArraySize = Result.get();
2430   }
2431 
2432   // C99 6.7.5.2p1: The size expression shall have integer type.
2433   // C++11 allows contextual conversions to such types.
2434   if (!getLangOpts().CPlusPlus11 &&
2435       ArraySize && !ArraySize->isTypeDependent() &&
2436       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2437     Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2438         << ArraySize->getType() << ArraySize->getSourceRange();
2439     return QualType();
2440   }
2441 
2442   // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2443   unsigned VLADiag;
2444   bool VLAIsError;
2445   if (getLangOpts().OpenCL) {
2446     // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2447     VLADiag = diag::err_opencl_vla;
2448     VLAIsError = true;
2449   } else if (getLangOpts().C99) {
2450     VLADiag = diag::warn_vla_used;
2451     VLAIsError = false;
2452   } else if (isSFINAEContext()) {
2453     VLADiag = diag::err_vla_in_sfinae;
2454     VLAIsError = true;
2455   } else {
2456     VLADiag = diag::ext_vla;
2457     VLAIsError = false;
2458   }
2459 
2460   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2461   if (!ArraySize) {
2462     if (ASM == ArrayType::Star) {
2463       Diag(Loc, VLADiag);
2464       if (VLAIsError)
2465         return QualType();
2466 
2467       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2468     } else {
2469       T = Context.getIncompleteArrayType(T, ASM, Quals);
2470     }
2471   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2472     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2473   } else {
2474     ExprResult R =
2475         checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2476     if (R.isInvalid())
2477       return QualType();
2478 
2479     if (!R.isUsable()) {
2480       // C99: an array with a non-ICE size is a VLA. We accept any expression
2481       // that we can fold to a non-zero positive value as a non-VLA as an
2482       // extension.
2483       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2484     } else if (!T->isDependentType() && !T->isIncompleteType() &&
2485                !T->isConstantSizeType()) {
2486       // C99: an array with an element type that has a non-constant-size is a
2487       // VLA.
2488       // FIXME: Add a note to explain why this isn't a VLA.
2489       Diag(Loc, VLADiag);
2490       if (VLAIsError)
2491         return QualType();
2492       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2493     } else {
2494       // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2495       // have a value greater than zero.
2496       // In C++, this follows from narrowing conversions being disallowed.
2497       if (ConstVal.isSigned() && ConstVal.isNegative()) {
2498         if (Entity)
2499           Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2500               << getPrintableNameForEntity(Entity)
2501               << ArraySize->getSourceRange();
2502         else
2503           Diag(ArraySize->getBeginLoc(),
2504                diag::err_typecheck_negative_array_size)
2505               << ArraySize->getSourceRange();
2506         return QualType();
2507       }
2508       if (ConstVal == 0) {
2509         // GCC accepts zero sized static arrays. We allow them when
2510         // we're not in a SFINAE context.
2511         Diag(ArraySize->getBeginLoc(),
2512              isSFINAEContext() ? diag::err_typecheck_zero_array_size
2513                                : diag::ext_typecheck_zero_array_size)
2514             << ArraySize->getSourceRange();
2515       }
2516 
2517       // Is the array too large?
2518       unsigned ActiveSizeBits =
2519           (!T->isDependentType() && !T->isVariablyModifiedType() &&
2520            !T->isIncompleteType() && !T->isUndeducedType())
2521               ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2522               : ConstVal.getActiveBits();
2523       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2524         Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2525             << toString(ConstVal, 10) << ArraySize->getSourceRange();
2526         return QualType();
2527       }
2528 
2529       T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2530     }
2531   }
2532 
2533   if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2534     // CUDA device code and some other targets don't support VLAs.
2535     targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2536                         ? diag::err_cuda_vla
2537                         : diag::err_vla_unsupported)
2538         << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2539                 ? CurrentCUDATarget()
2540                 : CFT_InvalidTarget);
2541   }
2542 
2543   // If this is not C99, diagnose array size modifiers on non-VLAs.
2544   if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2545       (ASM != ArrayType::Normal || Quals != 0)) {
2546     Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2547                                       : diag::ext_c99_array_usage)
2548         << ASM;
2549   }
2550 
2551   // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2552   // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2553   // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2554   if (getLangOpts().OpenCL) {
2555     const QualType ArrType = Context.getBaseElementType(T);
2556     if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2557         ArrType->isSamplerT() || ArrType->isImageType()) {
2558       Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2559       return QualType();
2560     }
2561   }
2562 
2563   return T;
2564 }
2565 
BuildVectorType(QualType CurType,Expr * SizeExpr,SourceLocation AttrLoc)2566 QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2567                                SourceLocation AttrLoc) {
2568   // The base type must be integer (not Boolean or enumeration) or float, and
2569   // can't already be a vector.
2570   if ((!CurType->isDependentType() &&
2571        (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2572         (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) ||
2573       CurType->isArrayType()) {
2574     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2575     return QualType();
2576   }
2577 
2578   if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2579     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2580                                                VectorType::GenericVector);
2581 
2582   Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context);
2583   if (!VecSize) {
2584     Diag(AttrLoc, diag::err_attribute_argument_type)
2585         << "vector_size" << AANT_ArgumentIntegerConstant
2586         << SizeExpr->getSourceRange();
2587     return QualType();
2588   }
2589 
2590   if (CurType->isDependentType())
2591     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2592                                                VectorType::GenericVector);
2593 
2594   // vecSize is specified in bytes - convert to bits.
2595   if (!VecSize->isIntN(61)) {
2596     // Bit size will overflow uint64.
2597     Diag(AttrLoc, diag::err_attribute_size_too_large)
2598         << SizeExpr->getSourceRange() << "vector";
2599     return QualType();
2600   }
2601   uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2602   unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2603 
2604   if (VectorSizeBits == 0) {
2605     Diag(AttrLoc, diag::err_attribute_zero_size)
2606         << SizeExpr->getSourceRange() << "vector";
2607     return QualType();
2608   }
2609 
2610   if (VectorSizeBits % TypeSize) {
2611     Diag(AttrLoc, diag::err_attribute_invalid_size)
2612         << SizeExpr->getSourceRange();
2613     return QualType();
2614   }
2615 
2616   if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2617     Diag(AttrLoc, diag::err_attribute_size_too_large)
2618         << SizeExpr->getSourceRange() << "vector";
2619     return QualType();
2620   }
2621 
2622   return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2623                                VectorType::GenericVector);
2624 }
2625 
2626 /// Build an ext-vector type.
2627 ///
2628 /// Run the required checks for the extended vector type.
BuildExtVectorType(QualType T,Expr * ArraySize,SourceLocation AttrLoc)2629 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2630                                   SourceLocation AttrLoc) {
2631   // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2632   // in conjunction with complex types (pointers, arrays, functions, etc.).
2633   //
2634   // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2635   // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2636   // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2637   // of bool aren't allowed.
2638   if ((!T->isDependentType() && !T->isIntegerType() &&
2639        !T->isRealFloatingType()) ||
2640       T->isBooleanType()) {
2641     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2642     return QualType();
2643   }
2644 
2645   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2646     Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context);
2647     if (!vecSize) {
2648       Diag(AttrLoc, diag::err_attribute_argument_type)
2649         << "ext_vector_type" << AANT_ArgumentIntegerConstant
2650         << ArraySize->getSourceRange();
2651       return QualType();
2652     }
2653 
2654     if (!vecSize->isIntN(32)) {
2655       Diag(AttrLoc, diag::err_attribute_size_too_large)
2656           << ArraySize->getSourceRange() << "vector";
2657       return QualType();
2658     }
2659     // Unlike gcc's vector_size attribute, the size is specified as the
2660     // number of elements, not the number of bytes.
2661     unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2662 
2663     if (vectorSize == 0) {
2664       Diag(AttrLoc, diag::err_attribute_zero_size)
2665           << ArraySize->getSourceRange() << "vector";
2666       return QualType();
2667     }
2668 
2669     return Context.getExtVectorType(T, vectorSize);
2670   }
2671 
2672   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2673 }
2674 
BuildMatrixType(QualType ElementTy,Expr * NumRows,Expr * NumCols,SourceLocation AttrLoc)2675 QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2676                                SourceLocation AttrLoc) {
2677   assert(Context.getLangOpts().MatrixTypes &&
2678          "Should never build a matrix type when it is disabled");
2679 
2680   // Check element type, if it is not dependent.
2681   if (!ElementTy->isDependentType() &&
2682       !MatrixType::isValidElementType(ElementTy)) {
2683     Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2684     return QualType();
2685   }
2686 
2687   if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2688       NumRows->isValueDependent() || NumCols->isValueDependent())
2689     return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2690                                                AttrLoc);
2691 
2692   Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context);
2693   Optional<llvm::APSInt> ValueColumns =
2694       NumCols->getIntegerConstantExpr(Context);
2695 
2696   auto const RowRange = NumRows->getSourceRange();
2697   auto const ColRange = NumCols->getSourceRange();
2698 
2699   // Both are row and column expressions are invalid.
2700   if (!ValueRows && !ValueColumns) {
2701     Diag(AttrLoc, diag::err_attribute_argument_type)
2702         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2703         << ColRange;
2704     return QualType();
2705   }
2706 
2707   // Only the row expression is invalid.
2708   if (!ValueRows) {
2709     Diag(AttrLoc, diag::err_attribute_argument_type)
2710         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2711     return QualType();
2712   }
2713 
2714   // Only the column expression is invalid.
2715   if (!ValueColumns) {
2716     Diag(AttrLoc, diag::err_attribute_argument_type)
2717         << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2718     return QualType();
2719   }
2720 
2721   // Check the matrix dimensions.
2722   unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2723   unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2724   if (MatrixRows == 0 && MatrixColumns == 0) {
2725     Diag(AttrLoc, diag::err_attribute_zero_size)
2726         << "matrix" << RowRange << ColRange;
2727     return QualType();
2728   }
2729   if (MatrixRows == 0) {
2730     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2731     return QualType();
2732   }
2733   if (MatrixColumns == 0) {
2734     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2735     return QualType();
2736   }
2737   if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2738     Diag(AttrLoc, diag::err_attribute_size_too_large)
2739         << RowRange << "matrix row";
2740     return QualType();
2741   }
2742   if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2743     Diag(AttrLoc, diag::err_attribute_size_too_large)
2744         << ColRange << "matrix column";
2745     return QualType();
2746   }
2747   return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2748 }
2749 
CheckFunctionReturnType(QualType T,SourceLocation Loc)2750 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2751   if (T->isArrayType() || T->isFunctionType()) {
2752     Diag(Loc, diag::err_func_returning_array_function)
2753       << T->isFunctionType() << T;
2754     return true;
2755   }
2756 
2757   // Functions cannot return half FP.
2758   if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2759     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2760       FixItHint::CreateInsertion(Loc, "*");
2761     return true;
2762   }
2763 
2764   // Methods cannot return interface types. All ObjC objects are
2765   // passed by reference.
2766   if (T->isObjCObjectType()) {
2767     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2768         << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2769     return true;
2770   }
2771 
2772   if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2773       T.hasNonTrivialToPrimitiveCopyCUnion())
2774     checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2775                           NTCUK_Destruct|NTCUK_Copy);
2776 
2777   // C++2a [dcl.fct]p12:
2778   //   A volatile-qualified return type is deprecated
2779   if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2780     Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2781 
2782   return false;
2783 }
2784 
2785 /// Check the extended parameter information.  Most of the necessary
2786 /// checking should occur when applying the parameter attribute; the
2787 /// only other checks required are positional restrictions.
checkExtParameterInfos(Sema & S,ArrayRef<QualType> paramTypes,const FunctionProtoType::ExtProtoInfo & EPI,llvm::function_ref<SourceLocation (unsigned)> getParamLoc)2788 static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2789                     const FunctionProtoType::ExtProtoInfo &EPI,
2790                     llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2791   assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2792 
2793   bool emittedError = false;
2794   auto actualCC = EPI.ExtInfo.getCC();
2795   enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2796   auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2797     bool isCompatible =
2798         (required == RequiredCC::OnlySwift)
2799             ? (actualCC == CC_Swift)
2800             : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2801     if (isCompatible || emittedError)
2802       return;
2803     S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2804         << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2805         << (required == RequiredCC::OnlySwift);
2806     emittedError = true;
2807   };
2808   for (size_t paramIndex = 0, numParams = paramTypes.size();
2809           paramIndex != numParams; ++paramIndex) {
2810     switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2811     // Nothing interesting to check for orindary-ABI parameters.
2812     case ParameterABI::Ordinary:
2813       continue;
2814 
2815     // swift_indirect_result parameters must be a prefix of the function
2816     // arguments.
2817     case ParameterABI::SwiftIndirectResult:
2818       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2819       if (paramIndex != 0 &&
2820           EPI.ExtParameterInfos[paramIndex - 1].getABI()
2821             != ParameterABI::SwiftIndirectResult) {
2822         S.Diag(getParamLoc(paramIndex),
2823                diag::err_swift_indirect_result_not_first);
2824       }
2825       continue;
2826 
2827     case ParameterABI::SwiftContext:
2828       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2829       continue;
2830 
2831     // SwiftAsyncContext is not limited to swiftasynccall functions.
2832     case ParameterABI::SwiftAsyncContext:
2833       continue;
2834 
2835     // swift_error parameters must be preceded by a swift_context parameter.
2836     case ParameterABI::SwiftErrorResult:
2837       checkCompatible(paramIndex, RequiredCC::OnlySwift);
2838       if (paramIndex == 0 ||
2839           EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2840               ParameterABI::SwiftContext) {
2841         S.Diag(getParamLoc(paramIndex),
2842                diag::err_swift_error_result_not_after_swift_context);
2843       }
2844       continue;
2845     }
2846     llvm_unreachable("bad ABI kind");
2847   }
2848 }
2849 
BuildFunctionType(QualType T,MutableArrayRef<QualType> ParamTypes,SourceLocation Loc,DeclarationName Entity,const FunctionProtoType::ExtProtoInfo & EPI)2850 QualType Sema::BuildFunctionType(QualType T,
2851                                  MutableArrayRef<QualType> ParamTypes,
2852                                  SourceLocation Loc, DeclarationName Entity,
2853                                  const FunctionProtoType::ExtProtoInfo &EPI) {
2854   bool Invalid = false;
2855 
2856   Invalid |= CheckFunctionReturnType(T, Loc);
2857 
2858   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2859     // FIXME: Loc is too inprecise here, should use proper locations for args.
2860     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2861     if (ParamType->isVoidType()) {
2862       Diag(Loc, diag::err_param_with_void_type);
2863       Invalid = true;
2864     } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2865       // Disallow half FP arguments.
2866       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2867         FixItHint::CreateInsertion(Loc, "*");
2868       Invalid = true;
2869     }
2870 
2871     // C++2a [dcl.fct]p4:
2872     //   A parameter with volatile-qualified type is deprecated
2873     if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2874       Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2875 
2876     ParamTypes[Idx] = ParamType;
2877   }
2878 
2879   if (EPI.ExtParameterInfos) {
2880     checkExtParameterInfos(*this, ParamTypes, EPI,
2881                            [=](unsigned i) { return Loc; });
2882   }
2883 
2884   if (EPI.ExtInfo.getProducesResult()) {
2885     // This is just a warning, so we can't fail to build if we see it.
2886     checkNSReturnsRetainedReturnType(Loc, T);
2887   }
2888 
2889   if (Invalid)
2890     return QualType();
2891 
2892   return Context.getFunctionType(T, ParamTypes, EPI);
2893 }
2894 
2895 /// Build a member pointer type \c T Class::*.
2896 ///
2897 /// \param T the type to which the member pointer refers.
2898 /// \param Class the class type into which the member pointer points.
2899 /// \param Loc the location where this type begins
2900 /// \param Entity the name of the entity that will have this member pointer type
2901 ///
2902 /// \returns a member pointer type, if successful, or a NULL type if there was
2903 /// an error.
BuildMemberPointerType(QualType T,QualType Class,SourceLocation Loc,DeclarationName Entity)2904 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2905                                       SourceLocation Loc,
2906                                       DeclarationName Entity) {
2907   // Verify that we're not building a pointer to pointer to function with
2908   // exception specification.
2909   if (CheckDistantExceptionSpec(T)) {
2910     Diag(Loc, diag::err_distant_exception_spec);
2911     return QualType();
2912   }
2913 
2914   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2915   //   with reference type, or "cv void."
2916   if (T->isReferenceType()) {
2917     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2918       << getPrintableNameForEntity(Entity) << T;
2919     return QualType();
2920   }
2921 
2922   if (T->isVoidType()) {
2923     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2924       << getPrintableNameForEntity(Entity);
2925     return QualType();
2926   }
2927 
2928   if (!Class->isDependentType() && !Class->isRecordType()) {
2929     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2930     return QualType();
2931   }
2932 
2933   if (T->isFunctionType() && getLangOpts().OpenCL &&
2934       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2935                                             getLangOpts())) {
2936     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2937     return QualType();
2938   }
2939 
2940   // Adjust the default free function calling convention to the default method
2941   // calling convention.
2942   bool IsCtorOrDtor =
2943       (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2944       (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2945   if (T->isFunctionType())
2946     adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2947 
2948   return Context.getMemberPointerType(T, Class.getTypePtr());
2949 }
2950 
2951 /// Build a block pointer type.
2952 ///
2953 /// \param T The type to which we'll be building a block pointer.
2954 ///
2955 /// \param Loc The source location, used for diagnostics.
2956 ///
2957 /// \param Entity The name of the entity that involves the block pointer
2958 /// type, if known.
2959 ///
2960 /// \returns A suitable block pointer type, if there are no
2961 /// errors. Otherwise, returns a NULL type.
BuildBlockPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)2962 QualType Sema::BuildBlockPointerType(QualType T,
2963                                      SourceLocation Loc,
2964                                      DeclarationName Entity) {
2965   if (!T->isFunctionType()) {
2966     Diag(Loc, diag::err_nonfunction_block_type);
2967     return QualType();
2968   }
2969 
2970   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2971     return QualType();
2972 
2973   if (getLangOpts().OpenCL)
2974     T = deduceOpenCLPointeeAddrSpace(*this, T);
2975 
2976   return Context.getBlockPointerType(T);
2977 }
2978 
GetTypeFromParser(ParsedType Ty,TypeSourceInfo ** TInfo)2979 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2980   QualType QT = Ty.get();
2981   if (QT.isNull()) {
2982     if (TInfo) *TInfo = nullptr;
2983     return QualType();
2984   }
2985 
2986   TypeSourceInfo *DI = nullptr;
2987   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2988     QT = LIT->getType();
2989     DI = LIT->getTypeSourceInfo();
2990   }
2991 
2992   if (TInfo) *TInfo = DI;
2993   return QT;
2994 }
2995 
2996 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2997                                             Qualifiers::ObjCLifetime ownership,
2998                                             unsigned chunkIndex);
2999 
3000 /// Given that this is the declaration of a parameter under ARC,
3001 /// attempt to infer attributes and such for pointer-to-whatever
3002 /// types.
inferARCWriteback(TypeProcessingState & state,QualType & declSpecType)3003 static void inferARCWriteback(TypeProcessingState &state,
3004                               QualType &declSpecType) {
3005   Sema &S = state.getSema();
3006   Declarator &declarator = state.getDeclarator();
3007 
3008   // TODO: should we care about decl qualifiers?
3009 
3010   // Check whether the declarator has the expected form.  We walk
3011   // from the inside out in order to make the block logic work.
3012   unsigned outermostPointerIndex = 0;
3013   bool isBlockPointer = false;
3014   unsigned numPointers = 0;
3015   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
3016     unsigned chunkIndex = i;
3017     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
3018     switch (chunk.Kind) {
3019     case DeclaratorChunk::Paren:
3020       // Ignore parens.
3021       break;
3022 
3023     case DeclaratorChunk::Reference:
3024     case DeclaratorChunk::Pointer:
3025       // Count the number of pointers.  Treat references
3026       // interchangeably as pointers; if they're mis-ordered, normal
3027       // type building will discover that.
3028       outermostPointerIndex = chunkIndex;
3029       numPointers++;
3030       break;
3031 
3032     case DeclaratorChunk::BlockPointer:
3033       // If we have a pointer to block pointer, that's an acceptable
3034       // indirect reference; anything else is not an application of
3035       // the rules.
3036       if (numPointers != 1) return;
3037       numPointers++;
3038       outermostPointerIndex = chunkIndex;
3039       isBlockPointer = true;
3040 
3041       // We don't care about pointer structure in return values here.
3042       goto done;
3043 
3044     case DeclaratorChunk::Array: // suppress if written (id[])?
3045     case DeclaratorChunk::Function:
3046     case DeclaratorChunk::MemberPointer:
3047     case DeclaratorChunk::Pipe:
3048       return;
3049     }
3050   }
3051  done:
3052 
3053   // If we have *one* pointer, then we want to throw the qualifier on
3054   // the declaration-specifiers, which means that it needs to be a
3055   // retainable object type.
3056   if (numPointers == 1) {
3057     // If it's not a retainable object type, the rule doesn't apply.
3058     if (!declSpecType->isObjCRetainableType()) return;
3059 
3060     // If it already has lifetime, don't do anything.
3061     if (declSpecType.getObjCLifetime()) return;
3062 
3063     // Otherwise, modify the type in-place.
3064     Qualifiers qs;
3065 
3066     if (declSpecType->isObjCARCImplicitlyUnretainedType())
3067       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
3068     else
3069       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
3070     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
3071 
3072   // If we have *two* pointers, then we want to throw the qualifier on
3073   // the outermost pointer.
3074   } else if (numPointers == 2) {
3075     // If we don't have a block pointer, we need to check whether the
3076     // declaration-specifiers gave us something that will turn into a
3077     // retainable object pointer after we slap the first pointer on it.
3078     if (!isBlockPointer && !declSpecType->isObjCObjectType())
3079       return;
3080 
3081     // Look for an explicit lifetime attribute there.
3082     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
3083     if (chunk.Kind != DeclaratorChunk::Pointer &&
3084         chunk.Kind != DeclaratorChunk::BlockPointer)
3085       return;
3086     for (const ParsedAttr &AL : chunk.getAttrs())
3087       if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
3088         return;
3089 
3090     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
3091                                           outermostPointerIndex);
3092 
3093   // Any other number of pointers/references does not trigger the rule.
3094   } else return;
3095 
3096   // TODO: mark whether we did this inference?
3097 }
3098 
diagnoseIgnoredQualifiers(unsigned DiagID,unsigned Quals,SourceLocation FallbackLoc,SourceLocation ConstQualLoc,SourceLocation VolatileQualLoc,SourceLocation RestrictQualLoc,SourceLocation AtomicQualLoc,SourceLocation UnalignedQualLoc)3099 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
3100                                      SourceLocation FallbackLoc,
3101                                      SourceLocation ConstQualLoc,
3102                                      SourceLocation VolatileQualLoc,
3103                                      SourceLocation RestrictQualLoc,
3104                                      SourceLocation AtomicQualLoc,
3105                                      SourceLocation UnalignedQualLoc) {
3106   if (!Quals)
3107     return;
3108 
3109   struct Qual {
3110     const char *Name;
3111     unsigned Mask;
3112     SourceLocation Loc;
3113   } const QualKinds[5] = {
3114     { "const", DeclSpec::TQ_const, ConstQualLoc },
3115     { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
3116     { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
3117     { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
3118     { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
3119   };
3120 
3121   SmallString<32> QualStr;
3122   unsigned NumQuals = 0;
3123   SourceLocation Loc;
3124   FixItHint FixIts[5];
3125 
3126   // Build a string naming the redundant qualifiers.
3127   for (auto &E : QualKinds) {
3128     if (Quals & E.Mask) {
3129       if (!QualStr.empty()) QualStr += ' ';
3130       QualStr += E.Name;
3131 
3132       // If we have a location for the qualifier, offer a fixit.
3133       SourceLocation QualLoc = E.Loc;
3134       if (QualLoc.isValid()) {
3135         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
3136         if (Loc.isInvalid() ||
3137             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
3138           Loc = QualLoc;
3139       }
3140 
3141       ++NumQuals;
3142     }
3143   }
3144 
3145   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
3146     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
3147 }
3148 
3149 // Diagnose pointless type qualifiers on the return type of a function.
diagnoseRedundantReturnTypeQualifiers(Sema & S,QualType RetTy,Declarator & D,unsigned FunctionChunkIndex)3150 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
3151                                                   Declarator &D,
3152                                                   unsigned FunctionChunkIndex) {
3153   const DeclaratorChunk::FunctionTypeInfo &FTI =
3154       D.getTypeObject(FunctionChunkIndex).Fun;
3155   if (FTI.hasTrailingReturnType()) {
3156     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3157                                 RetTy.getLocalCVRQualifiers(),
3158                                 FTI.getTrailingReturnTypeLoc());
3159     return;
3160   }
3161 
3162   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
3163                 End = D.getNumTypeObjects();
3164        OuterChunkIndex != End; ++OuterChunkIndex) {
3165     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
3166     switch (OuterChunk.Kind) {
3167     case DeclaratorChunk::Paren:
3168       continue;
3169 
3170     case DeclaratorChunk::Pointer: {
3171       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
3172       S.diagnoseIgnoredQualifiers(
3173           diag::warn_qual_return_type,
3174           PTI.TypeQuals,
3175           SourceLocation(),
3176           PTI.ConstQualLoc,
3177           PTI.VolatileQualLoc,
3178           PTI.RestrictQualLoc,
3179           PTI.AtomicQualLoc,
3180           PTI.UnalignedQualLoc);
3181       return;
3182     }
3183 
3184     case DeclaratorChunk::Function:
3185     case DeclaratorChunk::BlockPointer:
3186     case DeclaratorChunk::Reference:
3187     case DeclaratorChunk::Array:
3188     case DeclaratorChunk::MemberPointer:
3189     case DeclaratorChunk::Pipe:
3190       // FIXME: We can't currently provide an accurate source location and a
3191       // fix-it hint for these.
3192       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
3193       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3194                                   RetTy.getCVRQualifiers() | AtomicQual,
3195                                   D.getIdentifierLoc());
3196       return;
3197     }
3198 
3199     llvm_unreachable("unknown declarator chunk kind");
3200   }
3201 
3202   // If the qualifiers come from a conversion function type, don't diagnose
3203   // them -- they're not necessarily redundant, since such a conversion
3204   // operator can be explicitly called as "x.operator const int()".
3205   if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3206     return;
3207 
3208   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3209   // which are present there.
3210   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3211                               D.getDeclSpec().getTypeQualifiers(),
3212                               D.getIdentifierLoc(),
3213                               D.getDeclSpec().getConstSpecLoc(),
3214                               D.getDeclSpec().getVolatileSpecLoc(),
3215                               D.getDeclSpec().getRestrictSpecLoc(),
3216                               D.getDeclSpec().getAtomicSpecLoc(),
3217                               D.getDeclSpec().getUnalignedSpecLoc());
3218 }
3219 
3220 static std::pair<QualType, TypeSourceInfo *>
InventTemplateParameter(TypeProcessingState & state,QualType T,TypeSourceInfo * TrailingTSI,AutoType * Auto,InventedTemplateParameterInfo & Info)3221 InventTemplateParameter(TypeProcessingState &state, QualType T,
3222                         TypeSourceInfo *TrailingTSI, AutoType *Auto,
3223                         InventedTemplateParameterInfo &Info) {
3224   Sema &S = state.getSema();
3225   Declarator &D = state.getDeclarator();
3226 
3227   const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
3228   const unsigned AutoParameterPosition = Info.TemplateParams.size();
3229   const bool IsParameterPack = D.hasEllipsis();
3230 
3231   // If auto is mentioned in a lambda parameter or abbreviated function
3232   // template context, convert it to a template parameter type.
3233 
3234   // Create the TemplateTypeParmDecl here to retrieve the corresponding
3235   // template parameter type. Template parameters are temporarily added
3236   // to the TU until the associated TemplateDecl is created.
3237   TemplateTypeParmDecl *InventedTemplateParam =
3238       TemplateTypeParmDecl::Create(
3239           S.Context, S.Context.getTranslationUnitDecl(),
3240           /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3241           /*NameLoc=*/D.getIdentifierLoc(),
3242           TemplateParameterDepth, AutoParameterPosition,
3243           S.InventAbbreviatedTemplateParameterTypeName(
3244               D.getIdentifier(), AutoParameterPosition), false,
3245           IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3246   InventedTemplateParam->setImplicit();
3247   Info.TemplateParams.push_back(InventedTemplateParam);
3248 
3249   // Attach type constraints to the new parameter.
3250   if (Auto->isConstrained()) {
3251     if (TrailingTSI) {
3252       // The 'auto' appears in a trailing return type we've already built;
3253       // extract its type constraints to attach to the template parameter.
3254       AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3255       TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3256       bool Invalid = false;
3257       for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3258         if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3259             S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3260                                               Sema::UPPC_TypeConstraint))
3261           Invalid = true;
3262         TAL.addArgument(AutoLoc.getArgLoc(Idx));
3263       }
3264 
3265       if (!Invalid) {
3266         S.AttachTypeConstraint(
3267             AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3268             AutoLoc.getNamedConcept(),
3269             AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3270             InventedTemplateParam, D.getEllipsisLoc());
3271       }
3272     } else {
3273       // The 'auto' appears in the decl-specifiers; we've not finished forming
3274       // TypeSourceInfo for it yet.
3275       TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3276       TemplateArgumentListInfo TemplateArgsInfo;
3277       bool Invalid = false;
3278       if (TemplateId->LAngleLoc.isValid()) {
3279         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3280                                            TemplateId->NumArgs);
3281         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3282 
3283         if (D.getEllipsisLoc().isInvalid()) {
3284           for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3285             if (S.DiagnoseUnexpandedParameterPack(Arg,
3286                                                   Sema::UPPC_TypeConstraint)) {
3287               Invalid = true;
3288               break;
3289             }
3290           }
3291         }
3292       }
3293       if (!Invalid) {
3294         S.AttachTypeConstraint(
3295             D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3296             DeclarationNameInfo(DeclarationName(TemplateId->Name),
3297                                 TemplateId->TemplateNameLoc),
3298             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()),
3299             TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3300             InventedTemplateParam, D.getEllipsisLoc());
3301       }
3302     }
3303   }
3304 
3305   // Replace the 'auto' in the function parameter with this invented
3306   // template type parameter.
3307   // FIXME: Retain some type sugar to indicate that this was written
3308   //  as 'auto'?
3309   QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3310   QualType NewT = state.ReplaceAutoType(T, Replacement);
3311   TypeSourceInfo *NewTSI =
3312       TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3313                   : nullptr;
3314   return {NewT, NewTSI};
3315 }
3316 
3317 static TypeSourceInfo *
3318 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3319                                QualType T, TypeSourceInfo *ReturnTypeInfo);
3320 
GetDeclSpecTypeForDeclarator(TypeProcessingState & state,TypeSourceInfo * & ReturnTypeInfo)3321 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3322                                              TypeSourceInfo *&ReturnTypeInfo) {
3323   Sema &SemaRef = state.getSema();
3324   Declarator &D = state.getDeclarator();
3325   QualType T;
3326   ReturnTypeInfo = nullptr;
3327 
3328   // The TagDecl owned by the DeclSpec.
3329   TagDecl *OwnedTagDecl = nullptr;
3330 
3331   switch (D.getName().getKind()) {
3332   case UnqualifiedIdKind::IK_ImplicitSelfParam:
3333   case UnqualifiedIdKind::IK_OperatorFunctionId:
3334   case UnqualifiedIdKind::IK_Identifier:
3335   case UnqualifiedIdKind::IK_LiteralOperatorId:
3336   case UnqualifiedIdKind::IK_TemplateId:
3337     T = ConvertDeclSpecToType(state);
3338 
3339     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3340       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3341       // Owned declaration is embedded in declarator.
3342       OwnedTagDecl->setEmbeddedInDeclarator(true);
3343     }
3344     break;
3345 
3346   case UnqualifiedIdKind::IK_ConstructorName:
3347   case UnqualifiedIdKind::IK_ConstructorTemplateId:
3348   case UnqualifiedIdKind::IK_DestructorName:
3349     // Constructors and destructors don't have return types. Use
3350     // "void" instead.
3351     T = SemaRef.Context.VoidTy;
3352     processTypeAttrs(state, T, TAL_DeclSpec,
3353                      D.getMutableDeclSpec().getAttributes());
3354     break;
3355 
3356   case UnqualifiedIdKind::IK_DeductionGuideName:
3357     // Deduction guides have a trailing return type and no type in their
3358     // decl-specifier sequence. Use a placeholder return type for now.
3359     T = SemaRef.Context.DependentTy;
3360     break;
3361 
3362   case UnqualifiedIdKind::IK_ConversionFunctionId:
3363     // The result type of a conversion function is the type that it
3364     // converts to.
3365     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3366                                   &ReturnTypeInfo);
3367     break;
3368   }
3369 
3370   if (!D.getAttributes().empty())
3371     distributeTypeAttrsFromDeclarator(state, T);
3372 
3373   // Find the deduced type in this type. Look in the trailing return type if we
3374   // have one, otherwise in the DeclSpec type.
3375   // FIXME: The standard wording doesn't currently describe this.
3376   DeducedType *Deduced = T->getContainedDeducedType();
3377   bool DeducedIsTrailingReturnType = false;
3378   if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3379     QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3380     Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3381     DeducedIsTrailingReturnType = true;
3382   }
3383 
3384   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3385   if (Deduced) {
3386     AutoType *Auto = dyn_cast<AutoType>(Deduced);
3387     int Error = -1;
3388 
3389     // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3390     // class template argument deduction)?
3391     bool IsCXXAutoType =
3392         (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3393     bool IsDeducedReturnType = false;
3394 
3395     switch (D.getContext()) {
3396     case DeclaratorContext::LambdaExpr:
3397       // Declared return type of a lambda-declarator is implicit and is always
3398       // 'auto'.
3399       break;
3400     case DeclaratorContext::ObjCParameter:
3401     case DeclaratorContext::ObjCResult:
3402       Error = 0;
3403       break;
3404     case DeclaratorContext::RequiresExpr:
3405       Error = 22;
3406       break;
3407     case DeclaratorContext::Prototype:
3408     case DeclaratorContext::LambdaExprParameter: {
3409       InventedTemplateParameterInfo *Info = nullptr;
3410       if (D.getContext() == DeclaratorContext::Prototype) {
3411         // With concepts we allow 'auto' in function parameters.
3412         if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3413             Auto->getKeyword() != AutoTypeKeyword::Auto) {
3414           Error = 0;
3415           break;
3416         } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3417           Error = 21;
3418           break;
3419         }
3420 
3421         Info = &SemaRef.InventedParameterInfos.back();
3422       } else {
3423         // In C++14, generic lambdas allow 'auto' in their parameters.
3424         if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3425             Auto->getKeyword() != AutoTypeKeyword::Auto) {
3426           Error = 16;
3427           break;
3428         }
3429         Info = SemaRef.getCurLambda();
3430         assert(Info && "No LambdaScopeInfo on the stack!");
3431       }
3432 
3433       // We'll deal with inventing template parameters for 'auto' in trailing
3434       // return types when we pick up the trailing return type when processing
3435       // the function chunk.
3436       if (!DeducedIsTrailingReturnType)
3437         T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3438       break;
3439     }
3440     case DeclaratorContext::Member: {
3441       if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3442           D.isFunctionDeclarator())
3443         break;
3444       bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3445       if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3446         Error = 6; // Interface member.
3447       } else {
3448         switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3449         case TTK_Enum: llvm_unreachable("unhandled tag kind");
3450         case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
3451         case TTK_Union:  Error = Cxx ? 3 : 4; /* Union member */ break;
3452         case TTK_Class:  Error = 5; /* Class member */ break;
3453         case TTK_Interface: Error = 6; /* Interface member */ break;
3454         }
3455       }
3456       if (D.getDeclSpec().isFriendSpecified())
3457         Error = 20; // Friend type
3458       break;
3459     }
3460     case DeclaratorContext::CXXCatch:
3461     case DeclaratorContext::ObjCCatch:
3462       Error = 7; // Exception declaration
3463       break;
3464     case DeclaratorContext::TemplateParam:
3465       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3466           !SemaRef.getLangOpts().CPlusPlus20)
3467         Error = 19; // Template parameter (until C++20)
3468       else if (!SemaRef.getLangOpts().CPlusPlus17)
3469         Error = 8; // Template parameter (until C++17)
3470       break;
3471     case DeclaratorContext::BlockLiteral:
3472       Error = 9; // Block literal
3473       break;
3474     case DeclaratorContext::TemplateArg:
3475       // Within a template argument list, a deduced template specialization
3476       // type will be reinterpreted as a template template argument.
3477       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3478           !D.getNumTypeObjects() &&
3479           D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3480         break;
3481       LLVM_FALLTHROUGH;
3482     case DeclaratorContext::TemplateTypeArg:
3483       Error = 10; // Template type argument
3484       break;
3485     case DeclaratorContext::AliasDecl:
3486     case DeclaratorContext::AliasTemplate:
3487       Error = 12; // Type alias
3488       break;
3489     case DeclaratorContext::TrailingReturn:
3490     case DeclaratorContext::TrailingReturnVar:
3491       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3492         Error = 13; // Function return type
3493       IsDeducedReturnType = true;
3494       break;
3495     case DeclaratorContext::ConversionId:
3496       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3497         Error = 14; // conversion-type-id
3498       IsDeducedReturnType = true;
3499       break;
3500     case DeclaratorContext::FunctionalCast:
3501       if (isa<DeducedTemplateSpecializationType>(Deduced))
3502         break;
3503       LLVM_FALLTHROUGH;
3504     case DeclaratorContext::TypeName:
3505       Error = 15; // Generic
3506       break;
3507     case DeclaratorContext::File:
3508     case DeclaratorContext::Block:
3509     case DeclaratorContext::ForInit:
3510     case DeclaratorContext::SelectionInit:
3511     case DeclaratorContext::Condition:
3512       // FIXME: P0091R3 (erroneously) does not permit class template argument
3513       // deduction in conditions, for-init-statements, and other declarations
3514       // that are not simple-declarations.
3515       break;
3516     case DeclaratorContext::CXXNew:
3517       // FIXME: P0091R3 does not permit class template argument deduction here,
3518       // but we follow GCC and allow it anyway.
3519       if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3520         Error = 17; // 'new' type
3521       break;
3522     case DeclaratorContext::KNRTypeList:
3523       Error = 18; // K&R function parameter
3524       break;
3525     }
3526 
3527     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3528       Error = 11;
3529 
3530     // In Objective-C it is an error to use 'auto' on a function declarator
3531     // (and everywhere for '__auto_type').
3532     if (D.isFunctionDeclarator() &&
3533         (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3534       Error = 13;
3535 
3536     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3537     if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3538       AutoRange = D.getName().getSourceRange();
3539 
3540     if (Error != -1) {
3541       unsigned Kind;
3542       if (Auto) {
3543         switch (Auto->getKeyword()) {
3544         case AutoTypeKeyword::Auto: Kind = 0; break;
3545         case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3546         case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3547         }
3548       } else {
3549         assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3550                "unknown auto type");
3551         Kind = 3;
3552       }
3553 
3554       auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3555       TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3556 
3557       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3558         << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3559         << QualType(Deduced, 0) << AutoRange;
3560       if (auto *TD = TN.getAsTemplateDecl())
3561         SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3562 
3563       T = SemaRef.Context.IntTy;
3564       D.setInvalidType(true);
3565     } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3566       // If there was a trailing return type, we already got
3567       // warn_cxx98_compat_trailing_return_type in the parser.
3568       SemaRef.Diag(AutoRange.getBegin(),
3569                    D.getContext() == DeclaratorContext::LambdaExprParameter
3570                        ? diag::warn_cxx11_compat_generic_lambda
3571                    : IsDeducedReturnType
3572                        ? diag::warn_cxx11_compat_deduced_return_type
3573                        : diag::warn_cxx98_compat_auto_type_specifier)
3574           << AutoRange;
3575     }
3576   }
3577 
3578   if (SemaRef.getLangOpts().CPlusPlus &&
3579       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3580     // Check the contexts where C++ forbids the declaration of a new class
3581     // or enumeration in a type-specifier-seq.
3582     unsigned DiagID = 0;
3583     switch (D.getContext()) {
3584     case DeclaratorContext::TrailingReturn:
3585     case DeclaratorContext::TrailingReturnVar:
3586       // Class and enumeration definitions are syntactically not allowed in
3587       // trailing return types.
3588       llvm_unreachable("parser should not have allowed this");
3589       break;
3590     case DeclaratorContext::File:
3591     case DeclaratorContext::Member:
3592     case DeclaratorContext::Block:
3593     case DeclaratorContext::ForInit:
3594     case DeclaratorContext::SelectionInit:
3595     case DeclaratorContext::BlockLiteral:
3596     case DeclaratorContext::LambdaExpr:
3597       // C++11 [dcl.type]p3:
3598       //   A type-specifier-seq shall not define a class or enumeration unless
3599       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
3600       //   the declaration of a template-declaration.
3601     case DeclaratorContext::AliasDecl:
3602       break;
3603     case DeclaratorContext::AliasTemplate:
3604       DiagID = diag::err_type_defined_in_alias_template;
3605       break;
3606     case DeclaratorContext::TypeName:
3607     case DeclaratorContext::FunctionalCast:
3608     case DeclaratorContext::ConversionId:
3609     case DeclaratorContext::TemplateParam:
3610     case DeclaratorContext::CXXNew:
3611     case DeclaratorContext::CXXCatch:
3612     case DeclaratorContext::ObjCCatch:
3613     case DeclaratorContext::TemplateArg:
3614     case DeclaratorContext::TemplateTypeArg:
3615       DiagID = diag::err_type_defined_in_type_specifier;
3616       break;
3617     case DeclaratorContext::Prototype:
3618     case DeclaratorContext::LambdaExprParameter:
3619     case DeclaratorContext::ObjCParameter:
3620     case DeclaratorContext::ObjCResult:
3621     case DeclaratorContext::KNRTypeList:
3622     case DeclaratorContext::RequiresExpr:
3623       // C++ [dcl.fct]p6:
3624       //   Types shall not be defined in return or parameter types.
3625       DiagID = diag::err_type_defined_in_param_type;
3626       break;
3627     case DeclaratorContext::Condition:
3628       // C++ 6.4p2:
3629       // The type-specifier-seq shall not contain typedef and shall not declare
3630       // a new class or enumeration.
3631       DiagID = diag::err_type_defined_in_condition;
3632       break;
3633     }
3634 
3635     if (DiagID != 0) {
3636       SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3637           << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3638       D.setInvalidType(true);
3639     }
3640   }
3641 
3642   assert(!T.isNull() && "This function should not return a null type");
3643   return T;
3644 }
3645 
3646 /// Produce an appropriate diagnostic for an ambiguity between a function
3647 /// declarator and a C++ direct-initializer.
warnAboutAmbiguousFunction(Sema & S,Declarator & D,DeclaratorChunk & DeclType,QualType RT)3648 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3649                                        DeclaratorChunk &DeclType, QualType RT) {
3650   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3651   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3652 
3653   // If the return type is void there is no ambiguity.
3654   if (RT->isVoidType())
3655     return;
3656 
3657   // An initializer for a non-class type can have at most one argument.
3658   if (!RT->isRecordType() && FTI.NumParams > 1)
3659     return;
3660 
3661   // An initializer for a reference must have exactly one argument.
3662   if (RT->isReferenceType() && FTI.NumParams != 1)
3663     return;
3664 
3665   // Only warn if this declarator is declaring a function at block scope, and
3666   // doesn't have a storage class (such as 'extern') specified.
3667   if (!D.isFunctionDeclarator() ||
3668       D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3669       !S.CurContext->isFunctionOrMethod() ||
3670       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3671     return;
3672 
3673   // Inside a condition, a direct initializer is not permitted. We allow one to
3674   // be parsed in order to give better diagnostics in condition parsing.
3675   if (D.getContext() == DeclaratorContext::Condition)
3676     return;
3677 
3678   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3679 
3680   S.Diag(DeclType.Loc,
3681          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3682                        : diag::warn_empty_parens_are_function_decl)
3683       << ParenRange;
3684 
3685   // If the declaration looks like:
3686   //   T var1,
3687   //   f();
3688   // and name lookup finds a function named 'f', then the ',' was
3689   // probably intended to be a ';'.
3690   if (!D.isFirstDeclarator() && D.getIdentifier()) {
3691     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3692     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3693     if (Comma.getFileID() != Name.getFileID() ||
3694         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3695       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3696                           Sema::LookupOrdinaryName);
3697       if (S.LookupName(Result, S.getCurScope()))
3698         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3699           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3700           << D.getIdentifier();
3701       Result.suppressDiagnostics();
3702     }
3703   }
3704 
3705   if (FTI.NumParams > 0) {
3706     // For a declaration with parameters, eg. "T var(T());", suggest adding
3707     // parens around the first parameter to turn the declaration into a
3708     // variable declaration.
3709     SourceRange Range = FTI.Params[0].Param->getSourceRange();
3710     SourceLocation B = Range.getBegin();
3711     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3712     // FIXME: Maybe we should suggest adding braces instead of parens
3713     // in C++11 for classes that don't have an initializer_list constructor.
3714     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3715       << FixItHint::CreateInsertion(B, "(")
3716       << FixItHint::CreateInsertion(E, ")");
3717   } else {
3718     // For a declaration without parameters, eg. "T var();", suggest replacing
3719     // the parens with an initializer to turn the declaration into a variable
3720     // declaration.
3721     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3722 
3723     // Empty parens mean value-initialization, and no parens mean
3724     // default initialization. These are equivalent if the default
3725     // constructor is user-provided or if zero-initialization is a
3726     // no-op.
3727     if (RD && RD->hasDefinition() &&
3728         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3729       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3730         << FixItHint::CreateRemoval(ParenRange);
3731     else {
3732       std::string Init =
3733           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3734       if (Init.empty() && S.LangOpts.CPlusPlus11)
3735         Init = "{}";
3736       if (!Init.empty())
3737         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3738           << FixItHint::CreateReplacement(ParenRange, Init);
3739     }
3740   }
3741 }
3742 
3743 /// Produce an appropriate diagnostic for a declarator with top-level
3744 /// parentheses.
warnAboutRedundantParens(Sema & S,Declarator & D,QualType T)3745 static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3746   DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3747   assert(Paren.Kind == DeclaratorChunk::Paren &&
3748          "do not have redundant top-level parentheses");
3749 
3750   // This is a syntactic check; we're not interested in cases that arise
3751   // during template instantiation.
3752   if (S.inTemplateInstantiation())
3753     return;
3754 
3755   // Check whether this could be intended to be a construction of a temporary
3756   // object in C++ via a function-style cast.
3757   bool CouldBeTemporaryObject =
3758       S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3759       !D.isInvalidType() && D.getIdentifier() &&
3760       D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3761       (T->isRecordType() || T->isDependentType()) &&
3762       D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3763 
3764   bool StartsWithDeclaratorId = true;
3765   for (auto &C : D.type_objects()) {
3766     switch (C.Kind) {
3767     case DeclaratorChunk::Paren:
3768       if (&C == &Paren)
3769         continue;
3770       LLVM_FALLTHROUGH;
3771     case DeclaratorChunk::Pointer:
3772       StartsWithDeclaratorId = false;
3773       continue;
3774 
3775     case DeclaratorChunk::Array:
3776       if (!C.Arr.NumElts)
3777         CouldBeTemporaryObject = false;
3778       continue;
3779 
3780     case DeclaratorChunk::Reference:
3781       // FIXME: Suppress the warning here if there is no initializer; we're
3782       // going to give an error anyway.
3783       // We assume that something like 'T (&x) = y;' is highly likely to not
3784       // be intended to be a temporary object.
3785       CouldBeTemporaryObject = false;
3786       StartsWithDeclaratorId = false;
3787       continue;
3788 
3789     case DeclaratorChunk::Function:
3790       // In a new-type-id, function chunks require parentheses.
3791       if (D.getContext() == DeclaratorContext::CXXNew)
3792         return;
3793       // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3794       // redundant-parens warning, but we don't know whether the function
3795       // chunk was syntactically valid as an expression here.
3796       CouldBeTemporaryObject = false;
3797       continue;
3798 
3799     case DeclaratorChunk::BlockPointer:
3800     case DeclaratorChunk::MemberPointer:
3801     case DeclaratorChunk::Pipe:
3802       // These cannot appear in expressions.
3803       CouldBeTemporaryObject = false;
3804       StartsWithDeclaratorId = false;
3805       continue;
3806     }
3807   }
3808 
3809   // FIXME: If there is an initializer, assume that this is not intended to be
3810   // a construction of a temporary object.
3811 
3812   // Check whether the name has already been declared; if not, this is not a
3813   // function-style cast.
3814   if (CouldBeTemporaryObject) {
3815     LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3816                         Sema::LookupOrdinaryName);
3817     if (!S.LookupName(Result, S.getCurScope()))
3818       CouldBeTemporaryObject = false;
3819     Result.suppressDiagnostics();
3820   }
3821 
3822   SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3823 
3824   if (!CouldBeTemporaryObject) {
3825     // If we have A (::B), the parentheses affect the meaning of the program.
3826     // Suppress the warning in that case. Don't bother looking at the DeclSpec
3827     // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3828     // formally unambiguous.
3829     if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3830       for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3831            NNS = NNS->getPrefix()) {
3832         if (NNS->getKind() == NestedNameSpecifier::Global)
3833           return;
3834       }
3835     }
3836 
3837     S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3838         << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3839         << FixItHint::CreateRemoval(Paren.EndLoc);
3840     return;
3841   }
3842 
3843   S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3844       << ParenRange << D.getIdentifier();
3845   auto *RD = T->getAsCXXRecordDecl();
3846   if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3847     S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3848         << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3849         << D.getIdentifier();
3850   // FIXME: A cast to void is probably a better suggestion in cases where it's
3851   // valid (when there is no initializer and we're not in a condition).
3852   S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3853       << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3854       << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3855   S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3856       << FixItHint::CreateRemoval(Paren.Loc)
3857       << FixItHint::CreateRemoval(Paren.EndLoc);
3858 }
3859 
3860 /// Helper for figuring out the default CC for a function declarator type.  If
3861 /// this is the outermost chunk, then we can determine the CC from the
3862 /// declarator context.  If not, then this could be either a member function
3863 /// type or normal function type.
getCCForDeclaratorChunk(Sema & S,Declarator & D,const ParsedAttributesView & AttrList,const DeclaratorChunk::FunctionTypeInfo & FTI,unsigned ChunkIndex)3864 static CallingConv getCCForDeclaratorChunk(
3865     Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3866     const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3867   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3868 
3869   // Check for an explicit CC attribute.
3870   for (const ParsedAttr &AL : AttrList) {
3871     switch (AL.getKind()) {
3872     CALLING_CONV_ATTRS_CASELIST : {
3873       // Ignore attributes that don't validate or can't apply to the
3874       // function type.  We'll diagnose the failure to apply them in
3875       // handleFunctionTypeAttr.
3876       CallingConv CC;
3877       if (!S.CheckCallingConvAttr(AL, CC) &&
3878           (!FTI.isVariadic || supportsVariadicCall(CC))) {
3879         return CC;
3880       }
3881       break;
3882     }
3883 
3884     default:
3885       break;
3886     }
3887   }
3888 
3889   bool IsCXXInstanceMethod = false;
3890 
3891   if (S.getLangOpts().CPlusPlus) {
3892     // Look inwards through parentheses to see if this chunk will form a
3893     // member pointer type or if we're the declarator.  Any type attributes
3894     // between here and there will override the CC we choose here.
3895     unsigned I = ChunkIndex;
3896     bool FoundNonParen = false;
3897     while (I && !FoundNonParen) {
3898       --I;
3899       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3900         FoundNonParen = true;
3901     }
3902 
3903     if (FoundNonParen) {
3904       // If we're not the declarator, we're a regular function type unless we're
3905       // in a member pointer.
3906       IsCXXInstanceMethod =
3907           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3908     } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3909       // This can only be a call operator for a lambda, which is an instance
3910       // method.
3911       IsCXXInstanceMethod = true;
3912     } else {
3913       // We're the innermost decl chunk, so must be a function declarator.
3914       assert(D.isFunctionDeclarator());
3915 
3916       // If we're inside a record, we're declaring a method, but it could be
3917       // explicitly or implicitly static.
3918       IsCXXInstanceMethod =
3919           D.isFirstDeclarationOfMember() &&
3920           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3921           !D.isStaticMember();
3922     }
3923   }
3924 
3925   CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3926                                                          IsCXXInstanceMethod);
3927 
3928   // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3929   // and AMDGPU targets, hence it cannot be treated as a calling
3930   // convention attribute. This is the simplest place to infer
3931   // calling convention for OpenCL kernels.
3932   if (S.getLangOpts().OpenCL) {
3933     for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3934       if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3935         CC = CC_OpenCLKernel;
3936         break;
3937       }
3938     }
3939   }
3940 
3941   return CC;
3942 }
3943 
3944 namespace {
3945   /// A simple notion of pointer kinds, which matches up with the various
3946   /// pointer declarators.
3947   enum class SimplePointerKind {
3948     Pointer,
3949     BlockPointer,
3950     MemberPointer,
3951     Array,
3952   };
3953 } // end anonymous namespace
3954 
getNullabilityKeyword(NullabilityKind nullability)3955 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3956   switch (nullability) {
3957   case NullabilityKind::NonNull:
3958     if (!Ident__Nonnull)
3959       Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3960     return Ident__Nonnull;
3961 
3962   case NullabilityKind::Nullable:
3963     if (!Ident__Nullable)
3964       Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3965     return Ident__Nullable;
3966 
3967   case NullabilityKind::NullableResult:
3968     if (!Ident__Nullable_result)
3969       Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3970     return Ident__Nullable_result;
3971 
3972   case NullabilityKind::Unspecified:
3973     if (!Ident__Null_unspecified)
3974       Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3975     return Ident__Null_unspecified;
3976   }
3977   llvm_unreachable("Unknown nullability kind.");
3978 }
3979 
3980 /// Retrieve the identifier "NSError".
getNSErrorIdent()3981 IdentifierInfo *Sema::getNSErrorIdent() {
3982   if (!Ident_NSError)
3983     Ident_NSError = PP.getIdentifierInfo("NSError");
3984 
3985   return Ident_NSError;
3986 }
3987 
3988 /// Check whether there is a nullability attribute of any kind in the given
3989 /// attribute list.
hasNullabilityAttr(const ParsedAttributesView & attrs)3990 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3991   for (const ParsedAttr &AL : attrs) {
3992     if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3993         AL.getKind() == ParsedAttr::AT_TypeNullable ||
3994         AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3995         AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3996       return true;
3997   }
3998 
3999   return false;
4000 }
4001 
4002 namespace {
4003   /// Describes the kind of a pointer a declarator describes.
4004   enum class PointerDeclaratorKind {
4005     // Not a pointer.
4006     NonPointer,
4007     // Single-level pointer.
4008     SingleLevelPointer,
4009     // Multi-level pointer (of any pointer kind).
4010     MultiLevelPointer,
4011     // CFFooRef*
4012     MaybePointerToCFRef,
4013     // CFErrorRef*
4014     CFErrorRefPointer,
4015     // NSError**
4016     NSErrorPointerPointer,
4017   };
4018 
4019   /// Describes a declarator chunk wrapping a pointer that marks inference as
4020   /// unexpected.
4021   // These values must be kept in sync with diagnostics.
4022   enum class PointerWrappingDeclaratorKind {
4023     /// Pointer is top-level.
4024     None = -1,
4025     /// Pointer is an array element.
4026     Array = 0,
4027     /// Pointer is the referent type of a C++ reference.
4028     Reference = 1
4029   };
4030 } // end anonymous namespace
4031 
4032 /// Classify the given declarator, whose type-specified is \c type, based on
4033 /// what kind of pointer it refers to.
4034 ///
4035 /// This is used to determine the default nullability.
4036 static PointerDeclaratorKind
classifyPointerDeclarator(Sema & S,QualType type,Declarator & declarator,PointerWrappingDeclaratorKind & wrappingKind)4037 classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
4038                           PointerWrappingDeclaratorKind &wrappingKind) {
4039   unsigned numNormalPointers = 0;
4040 
4041   // For any dependent type, we consider it a non-pointer.
4042   if (type->isDependentType())
4043     return PointerDeclaratorKind::NonPointer;
4044 
4045   // Look through the declarator chunks to identify pointers.
4046   for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
4047     DeclaratorChunk &chunk = declarator.getTypeObject(i);
4048     switch (chunk.Kind) {
4049     case DeclaratorChunk::Array:
4050       if (numNormalPointers == 0)
4051         wrappingKind = PointerWrappingDeclaratorKind::Array;
4052       break;
4053 
4054     case DeclaratorChunk::Function:
4055     case DeclaratorChunk::Pipe:
4056       break;
4057 
4058     case DeclaratorChunk::BlockPointer:
4059     case DeclaratorChunk::MemberPointer:
4060       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4061                                    : PointerDeclaratorKind::SingleLevelPointer;
4062 
4063     case DeclaratorChunk::Paren:
4064       break;
4065 
4066     case DeclaratorChunk::Reference:
4067       if (numNormalPointers == 0)
4068         wrappingKind = PointerWrappingDeclaratorKind::Reference;
4069       break;
4070 
4071     case DeclaratorChunk::Pointer:
4072       ++numNormalPointers;
4073       if (numNormalPointers > 2)
4074         return PointerDeclaratorKind::MultiLevelPointer;
4075       break;
4076     }
4077   }
4078 
4079   // Then, dig into the type specifier itself.
4080   unsigned numTypeSpecifierPointers = 0;
4081   do {
4082     // Decompose normal pointers.
4083     if (auto ptrType = type->getAs<PointerType>()) {
4084       ++numNormalPointers;
4085 
4086       if (numNormalPointers > 2)
4087         return PointerDeclaratorKind::MultiLevelPointer;
4088 
4089       type = ptrType->getPointeeType();
4090       ++numTypeSpecifierPointers;
4091       continue;
4092     }
4093 
4094     // Decompose block pointers.
4095     if (type->getAs<BlockPointerType>()) {
4096       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4097                                    : PointerDeclaratorKind::SingleLevelPointer;
4098     }
4099 
4100     // Decompose member pointers.
4101     if (type->getAs<MemberPointerType>()) {
4102       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4103                                    : PointerDeclaratorKind::SingleLevelPointer;
4104     }
4105 
4106     // Look at Objective-C object pointers.
4107     if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
4108       ++numNormalPointers;
4109       ++numTypeSpecifierPointers;
4110 
4111       // If this is NSError**, report that.
4112       if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
4113         if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
4114             numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
4115           return PointerDeclaratorKind::NSErrorPointerPointer;
4116         }
4117       }
4118 
4119       break;
4120     }
4121 
4122     // Look at Objective-C class types.
4123     if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
4124       if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
4125         if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
4126           return PointerDeclaratorKind::NSErrorPointerPointer;
4127       }
4128 
4129       break;
4130     }
4131 
4132     // If at this point we haven't seen a pointer, we won't see one.
4133     if (numNormalPointers == 0)
4134       return PointerDeclaratorKind::NonPointer;
4135 
4136     if (auto recordType = type->getAs<RecordType>()) {
4137       RecordDecl *recordDecl = recordType->getDecl();
4138 
4139       // If this is CFErrorRef*, report it as such.
4140       if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
4141           S.isCFError(recordDecl)) {
4142         return PointerDeclaratorKind::CFErrorRefPointer;
4143       }
4144       break;
4145     }
4146 
4147     break;
4148   } while (true);
4149 
4150   switch (numNormalPointers) {
4151   case 0:
4152     return PointerDeclaratorKind::NonPointer;
4153 
4154   case 1:
4155     return PointerDeclaratorKind::SingleLevelPointer;
4156 
4157   case 2:
4158     return PointerDeclaratorKind::MaybePointerToCFRef;
4159 
4160   default:
4161     return PointerDeclaratorKind::MultiLevelPointer;
4162   }
4163 }
4164 
isCFError(RecordDecl * RD)4165 bool Sema::isCFError(RecordDecl *RD) {
4166   // If we already know about CFError, test it directly.
4167   if (CFError)
4168     return CFError == RD;
4169 
4170   // Check whether this is CFError, which we identify based on its bridge to
4171   // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4172   // declared with "objc_bridge_mutable", so look for either one of the two
4173   // attributes.
4174   if (RD->getTagKind() == TTK_Struct) {
4175     IdentifierInfo *bridgedType = nullptr;
4176     if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>())
4177       bridgedType = bridgeAttr->getBridgedType();
4178     else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>())
4179       bridgedType = bridgeAttr->getBridgedType();
4180 
4181     if (bridgedType == getNSErrorIdent()) {
4182       CFError = RD;
4183       return true;
4184     }
4185   }
4186 
4187   return false;
4188 }
4189 
getNullabilityCompletenessCheckFileID(Sema & S,SourceLocation loc)4190 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
4191                                                     SourceLocation loc) {
4192   // If we're anywhere in a function, method, or closure context, don't perform
4193   // completeness checks.
4194   for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
4195     if (ctx->isFunctionOrMethod())
4196       return FileID();
4197 
4198     if (ctx->isFileContext())
4199       break;
4200   }
4201 
4202   // We only care about the expansion location.
4203   loc = S.SourceMgr.getExpansionLoc(loc);
4204   FileID file = S.SourceMgr.getFileID(loc);
4205   if (file.isInvalid())
4206     return FileID();
4207 
4208   // Retrieve file information.
4209   bool invalid = false;
4210   const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
4211   if (invalid || !sloc.isFile())
4212     return FileID();
4213 
4214   // We don't want to perform completeness checks on the main file or in
4215   // system headers.
4216   const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4217   if (fileInfo.getIncludeLoc().isInvalid())
4218     return FileID();
4219   if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4220       S.Diags.getSuppressSystemWarnings()) {
4221     return FileID();
4222   }
4223 
4224   return file;
4225 }
4226 
4227 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4228 /// taking into account whitespace before and after.
4229 template <typename DiagBuilderT>
fixItNullability(Sema & S,DiagBuilderT & Diag,SourceLocation PointerLoc,NullabilityKind Nullability)4230 static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4231                              SourceLocation PointerLoc,
4232                              NullabilityKind Nullability) {
4233   assert(PointerLoc.isValid());
4234   if (PointerLoc.isMacroID())
4235     return;
4236 
4237   SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4238   if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4239     return;
4240 
4241   const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4242   if (!NextChar)
4243     return;
4244 
4245   SmallString<32> InsertionTextBuf{" "};
4246   InsertionTextBuf += getNullabilitySpelling(Nullability);
4247   InsertionTextBuf += " ";
4248   StringRef InsertionText = InsertionTextBuf.str();
4249 
4250   if (isWhitespace(*NextChar)) {
4251     InsertionText = InsertionText.drop_back();
4252   } else if (NextChar[-1] == '[') {
4253     if (NextChar[0] == ']')
4254       InsertionText = InsertionText.drop_back().drop_front();
4255     else
4256       InsertionText = InsertionText.drop_front();
4257   } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
4258              !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
4259     InsertionText = InsertionText.drop_back().drop_front();
4260   }
4261 
4262   Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4263 }
4264 
emitNullabilityConsistencyWarning(Sema & S,SimplePointerKind PointerKind,SourceLocation PointerLoc,SourceLocation PointerEndLoc)4265 static void emitNullabilityConsistencyWarning(Sema &S,
4266                                               SimplePointerKind PointerKind,
4267                                               SourceLocation PointerLoc,
4268                                               SourceLocation PointerEndLoc) {
4269   assert(PointerLoc.isValid());
4270 
4271   if (PointerKind == SimplePointerKind::Array) {
4272     S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4273   } else {
4274     S.Diag(PointerLoc, diag::warn_nullability_missing)
4275       << static_cast<unsigned>(PointerKind);
4276   }
4277 
4278   auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4279   if (FixItLoc.isMacroID())
4280     return;
4281 
4282   auto addFixIt = [&](NullabilityKind Nullability) {
4283     auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4284     Diag << static_cast<unsigned>(Nullability);
4285     Diag << static_cast<unsigned>(PointerKind);
4286     fixItNullability(S, Diag, FixItLoc, Nullability);
4287   };
4288   addFixIt(NullabilityKind::Nullable);
4289   addFixIt(NullabilityKind::NonNull);
4290 }
4291 
4292 /// Complains about missing nullability if the file containing \p pointerLoc
4293 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4294 /// pragma).
4295 ///
4296 /// If the file has \e not seen other uses of nullability, this particular
4297 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4298 static void
checkNullabilityConsistency(Sema & S,SimplePointerKind pointerKind,SourceLocation pointerLoc,SourceLocation pointerEndLoc=SourceLocation ())4299 checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4300                             SourceLocation pointerLoc,
4301                             SourceLocation pointerEndLoc = SourceLocation()) {
4302   // Determine which file we're performing consistency checking for.
4303   FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4304   if (file.isInvalid())
4305     return;
4306 
4307   // If we haven't seen any type nullability in this file, we won't warn now
4308   // about anything.
4309   FileNullability &fileNullability = S.NullabilityMap[file];
4310   if (!fileNullability.SawTypeNullability) {
4311     // If this is the first pointer declarator in the file, and the appropriate
4312     // warning is on, record it in case we need to diagnose it retroactively.
4313     diag::kind diagKind;
4314     if (pointerKind == SimplePointerKind::Array)
4315       diagKind = diag::warn_nullability_missing_array;
4316     else
4317       diagKind = diag::warn_nullability_missing;
4318 
4319     if (fileNullability.PointerLoc.isInvalid() &&
4320         !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4321       fileNullability.PointerLoc = pointerLoc;
4322       fileNullability.PointerEndLoc = pointerEndLoc;
4323       fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4324     }
4325 
4326     return;
4327   }
4328 
4329   // Complain about missing nullability.
4330   emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4331 }
4332 
4333 /// Marks that a nullability feature has been used in the file containing
4334 /// \p loc.
4335 ///
4336 /// If this file already had pointer types in it that were missing nullability,
4337 /// the first such instance is retroactively diagnosed.
4338 ///
4339 /// \sa checkNullabilityConsistency
recordNullabilitySeen(Sema & S,SourceLocation loc)4340 static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4341   FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4342   if (file.isInvalid())
4343     return;
4344 
4345   FileNullability &fileNullability = S.NullabilityMap[file];
4346   if (fileNullability.SawTypeNullability)
4347     return;
4348   fileNullability.SawTypeNullability = true;
4349 
4350   // If we haven't seen any type nullability before, now we have. Retroactively
4351   // diagnose the first unannotated pointer, if there was one.
4352   if (fileNullability.PointerLoc.isInvalid())
4353     return;
4354 
4355   auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4356   emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4357                                     fileNullability.PointerEndLoc);
4358 }
4359 
4360 /// Returns true if any of the declarator chunks before \p endIndex include a
4361 /// level of indirection: array, pointer, reference, or pointer-to-member.
4362 ///
4363 /// Because declarator chunks are stored in outer-to-inner order, testing
4364 /// every chunk before \p endIndex is testing all chunks that embed the current
4365 /// chunk as part of their type.
4366 ///
4367 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4368 /// end index, in which case all chunks are tested.
hasOuterPointerLikeChunk(const Declarator & D,unsigned endIndex)4369 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4370   unsigned i = endIndex;
4371   while (i != 0) {
4372     // Walk outwards along the declarator chunks.
4373     --i;
4374     const DeclaratorChunk &DC = D.getTypeObject(i);
4375     switch (DC.Kind) {
4376     case DeclaratorChunk::Paren:
4377       break;
4378     case DeclaratorChunk::Array:
4379     case DeclaratorChunk::Pointer:
4380     case DeclaratorChunk::Reference:
4381     case DeclaratorChunk::MemberPointer:
4382       return true;
4383     case DeclaratorChunk::Function:
4384     case DeclaratorChunk::BlockPointer:
4385     case DeclaratorChunk::Pipe:
4386       // These are invalid anyway, so just ignore.
4387       break;
4388     }
4389   }
4390   return false;
4391 }
4392 
IsNoDerefableChunk(DeclaratorChunk Chunk)4393 static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
4394   return (Chunk.Kind == DeclaratorChunk::Pointer ||
4395           Chunk.Kind == DeclaratorChunk::Array);
4396 }
4397 
4398 template<typename AttrT>
createSimpleAttr(ASTContext & Ctx,ParsedAttr & AL)4399 static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4400   AL.setUsedAsTypeAttr();
4401   return ::new (Ctx) AttrT(Ctx, AL);
4402 }
4403 
createNullabilityAttr(ASTContext & Ctx,ParsedAttr & Attr,NullabilityKind NK)4404 static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4405                                    NullabilityKind NK) {
4406   switch (NK) {
4407   case NullabilityKind::NonNull:
4408     return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4409 
4410   case NullabilityKind::Nullable:
4411     return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4412 
4413   case NullabilityKind::NullableResult:
4414     return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4415 
4416   case NullabilityKind::Unspecified:
4417     return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4418   }
4419   llvm_unreachable("unknown NullabilityKind");
4420 }
4421 
4422 // Diagnose whether this is a case with the multiple addr spaces.
4423 // Returns true if this is an invalid case.
4424 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4425 // by qualifiers for two or more different address spaces."
DiagnoseMultipleAddrSpaceAttributes(Sema & S,LangAS ASOld,LangAS ASNew,SourceLocation AttrLoc)4426 static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4427                                                 LangAS ASNew,
4428                                                 SourceLocation AttrLoc) {
4429   if (ASOld != LangAS::Default) {
4430     if (ASOld != ASNew) {
4431       S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4432       return true;
4433     }
4434     // Emit a warning if they are identical; it's likely unintended.
4435     S.Diag(AttrLoc,
4436            diag::warn_attribute_address_multiple_identical_qualifiers);
4437   }
4438   return false;
4439 }
4440 
GetFullTypeForDeclarator(TypeProcessingState & state,QualType declSpecType,TypeSourceInfo * TInfo)4441 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4442                                                 QualType declSpecType,
4443                                                 TypeSourceInfo *TInfo) {
4444   // The TypeSourceInfo that this function returns will not be a null type.
4445   // If there is an error, this function will fill in a dummy type as fallback.
4446   QualType T = declSpecType;
4447   Declarator &D = state.getDeclarator();
4448   Sema &S = state.getSema();
4449   ASTContext &Context = S.Context;
4450   const LangOptions &LangOpts = S.getLangOpts();
4451 
4452   // The name we're declaring, if any.
4453   DeclarationName Name;
4454   if (D.getIdentifier())
4455     Name = D.getIdentifier();
4456 
4457   // Does this declaration declare a typedef-name?
4458   bool IsTypedefName =
4459       D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4460       D.getContext() == DeclaratorContext::AliasDecl ||
4461       D.getContext() == DeclaratorContext::AliasTemplate;
4462 
4463   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4464   bool IsQualifiedFunction = T->isFunctionProtoType() &&
4465       (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4466        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4467 
4468   // If T is 'decltype(auto)', the only declarators we can have are parens
4469   // and at most one function declarator if this is a function declaration.
4470   // If T is a deduced class template specialization type, we can have no
4471   // declarator chunks at all.
4472   if (auto *DT = T->getAs<DeducedType>()) {
4473     const AutoType *AT = T->getAs<AutoType>();
4474     bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4475     if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4476       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4477         unsigned Index = E - I - 1;
4478         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4479         unsigned DiagId = IsClassTemplateDeduction
4480                               ? diag::err_deduced_class_template_compound_type
4481                               : diag::err_decltype_auto_compound_type;
4482         unsigned DiagKind = 0;
4483         switch (DeclChunk.Kind) {
4484         case DeclaratorChunk::Paren:
4485           // FIXME: Rejecting this is a little silly.
4486           if (IsClassTemplateDeduction) {
4487             DiagKind = 4;
4488             break;
4489           }
4490           continue;
4491         case DeclaratorChunk::Function: {
4492           if (IsClassTemplateDeduction) {
4493             DiagKind = 3;
4494             break;
4495           }
4496           unsigned FnIndex;
4497           if (D.isFunctionDeclarationContext() &&
4498               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4499             continue;
4500           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4501           break;
4502         }
4503         case DeclaratorChunk::Pointer:
4504         case DeclaratorChunk::BlockPointer:
4505         case DeclaratorChunk::MemberPointer:
4506           DiagKind = 0;
4507           break;
4508         case DeclaratorChunk::Reference:
4509           DiagKind = 1;
4510           break;
4511         case DeclaratorChunk::Array:
4512           DiagKind = 2;
4513           break;
4514         case DeclaratorChunk::Pipe:
4515           break;
4516         }
4517 
4518         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4519         D.setInvalidType(true);
4520         break;
4521       }
4522     }
4523   }
4524 
4525   // Determine whether we should infer _Nonnull on pointer types.
4526   Optional<NullabilityKind> inferNullability;
4527   bool inferNullabilityCS = false;
4528   bool inferNullabilityInnerOnly = false;
4529   bool inferNullabilityInnerOnlyComplete = false;
4530 
4531   // Are we in an assume-nonnull region?
4532   bool inAssumeNonNullRegion = false;
4533   SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4534   if (assumeNonNullLoc.isValid()) {
4535     inAssumeNonNullRegion = true;
4536     recordNullabilitySeen(S, assumeNonNullLoc);
4537   }
4538 
4539   // Whether to complain about missing nullability specifiers or not.
4540   enum {
4541     /// Never complain.
4542     CAMN_No,
4543     /// Complain on the inner pointers (but not the outermost
4544     /// pointer).
4545     CAMN_InnerPointers,
4546     /// Complain about any pointers that don't have nullability
4547     /// specified or inferred.
4548     CAMN_Yes
4549   } complainAboutMissingNullability = CAMN_No;
4550   unsigned NumPointersRemaining = 0;
4551   auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4552 
4553   if (IsTypedefName) {
4554     // For typedefs, we do not infer any nullability (the default),
4555     // and we only complain about missing nullability specifiers on
4556     // inner pointers.
4557     complainAboutMissingNullability = CAMN_InnerPointers;
4558 
4559     if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4560         !T->getNullability(S.Context)) {
4561       // Note that we allow but don't require nullability on dependent types.
4562       ++NumPointersRemaining;
4563     }
4564 
4565     for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4566       DeclaratorChunk &chunk = D.getTypeObject(i);
4567       switch (chunk.Kind) {
4568       case DeclaratorChunk::Array:
4569       case DeclaratorChunk::Function:
4570       case DeclaratorChunk::Pipe:
4571         break;
4572 
4573       case DeclaratorChunk::BlockPointer:
4574       case DeclaratorChunk::MemberPointer:
4575         ++NumPointersRemaining;
4576         break;
4577 
4578       case DeclaratorChunk::Paren:
4579       case DeclaratorChunk::Reference:
4580         continue;
4581 
4582       case DeclaratorChunk::Pointer:
4583         ++NumPointersRemaining;
4584         continue;
4585       }
4586     }
4587   } else {
4588     bool isFunctionOrMethod = false;
4589     switch (auto context = state.getDeclarator().getContext()) {
4590     case DeclaratorContext::ObjCParameter:
4591     case DeclaratorContext::ObjCResult:
4592     case DeclaratorContext::Prototype:
4593     case DeclaratorContext::TrailingReturn:
4594     case DeclaratorContext::TrailingReturnVar:
4595       isFunctionOrMethod = true;
4596       LLVM_FALLTHROUGH;
4597 
4598     case DeclaratorContext::Member:
4599       if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4600         complainAboutMissingNullability = CAMN_No;
4601         break;
4602       }
4603 
4604       // Weak properties are inferred to be nullable.
4605       if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4606         inferNullability = NullabilityKind::Nullable;
4607         break;
4608       }
4609 
4610       LLVM_FALLTHROUGH;
4611 
4612     case DeclaratorContext::File:
4613     case DeclaratorContext::KNRTypeList: {
4614       complainAboutMissingNullability = CAMN_Yes;
4615 
4616       // Nullability inference depends on the type and declarator.
4617       auto wrappingKind = PointerWrappingDeclaratorKind::None;
4618       switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4619       case PointerDeclaratorKind::NonPointer:
4620       case PointerDeclaratorKind::MultiLevelPointer:
4621         // Cannot infer nullability.
4622         break;
4623 
4624       case PointerDeclaratorKind::SingleLevelPointer:
4625         // Infer _Nonnull if we are in an assumes-nonnull region.
4626         if (inAssumeNonNullRegion) {
4627           complainAboutInferringWithinChunk = wrappingKind;
4628           inferNullability = NullabilityKind::NonNull;
4629           inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4630                                 context == DeclaratorContext::ObjCResult);
4631         }
4632         break;
4633 
4634       case PointerDeclaratorKind::CFErrorRefPointer:
4635       case PointerDeclaratorKind::NSErrorPointerPointer:
4636         // Within a function or method signature, infer _Nullable at both
4637         // levels.
4638         if (isFunctionOrMethod && inAssumeNonNullRegion)
4639           inferNullability = NullabilityKind::Nullable;
4640         break;
4641 
4642       case PointerDeclaratorKind::MaybePointerToCFRef:
4643         if (isFunctionOrMethod) {
4644           // On pointer-to-pointer parameters marked cf_returns_retained or
4645           // cf_returns_not_retained, if the outer pointer is explicit then
4646           // infer the inner pointer as _Nullable.
4647           auto hasCFReturnsAttr =
4648               [](const ParsedAttributesView &AttrList) -> bool {
4649             return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4650                    AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4651           };
4652           if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4653             if (hasCFReturnsAttr(D.getAttributes()) ||
4654                 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4655                 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4656               inferNullability = NullabilityKind::Nullable;
4657               inferNullabilityInnerOnly = true;
4658             }
4659           }
4660         }
4661         break;
4662       }
4663       break;
4664     }
4665 
4666     case DeclaratorContext::ConversionId:
4667       complainAboutMissingNullability = CAMN_Yes;
4668       break;
4669 
4670     case DeclaratorContext::AliasDecl:
4671     case DeclaratorContext::AliasTemplate:
4672     case DeclaratorContext::Block:
4673     case DeclaratorContext::BlockLiteral:
4674     case DeclaratorContext::Condition:
4675     case DeclaratorContext::CXXCatch:
4676     case DeclaratorContext::CXXNew:
4677     case DeclaratorContext::ForInit:
4678     case DeclaratorContext::SelectionInit:
4679     case DeclaratorContext::LambdaExpr:
4680     case DeclaratorContext::LambdaExprParameter:
4681     case DeclaratorContext::ObjCCatch:
4682     case DeclaratorContext::TemplateParam:
4683     case DeclaratorContext::TemplateArg:
4684     case DeclaratorContext::TemplateTypeArg:
4685     case DeclaratorContext::TypeName:
4686     case DeclaratorContext::FunctionalCast:
4687     case DeclaratorContext::RequiresExpr:
4688       // Don't infer in these contexts.
4689       break;
4690     }
4691   }
4692 
4693   // Local function that returns true if its argument looks like a va_list.
4694   auto isVaList = [&S](QualType T) -> bool {
4695     auto *typedefTy = T->getAs<TypedefType>();
4696     if (!typedefTy)
4697       return false;
4698     TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4699     do {
4700       if (typedefTy->getDecl() == vaListTypedef)
4701         return true;
4702       if (auto *name = typedefTy->getDecl()->getIdentifier())
4703         if (name->isStr("va_list"))
4704           return true;
4705       typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4706     } while (typedefTy);
4707     return false;
4708   };
4709 
4710   // Local function that checks the nullability for a given pointer declarator.
4711   // Returns true if _Nonnull was inferred.
4712   auto inferPointerNullability =
4713       [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4714           SourceLocation pointerEndLoc,
4715           ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4716     // We've seen a pointer.
4717     if (NumPointersRemaining > 0)
4718       --NumPointersRemaining;
4719 
4720     // If a nullability attribute is present, there's nothing to do.
4721     if (hasNullabilityAttr(attrs))
4722       return nullptr;
4723 
4724     // If we're supposed to infer nullability, do so now.
4725     if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4726       ParsedAttr::Syntax syntax = inferNullabilityCS
4727                                       ? ParsedAttr::AS_ContextSensitiveKeyword
4728                                       : ParsedAttr::AS_Keyword;
4729       ParsedAttr *nullabilityAttr = Pool.create(
4730           S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4731           nullptr, SourceLocation(), nullptr, 0, syntax);
4732 
4733       attrs.addAtEnd(nullabilityAttr);
4734 
4735       if (inferNullabilityCS) {
4736         state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4737           ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4738       }
4739 
4740       if (pointerLoc.isValid() &&
4741           complainAboutInferringWithinChunk !=
4742             PointerWrappingDeclaratorKind::None) {
4743         auto Diag =
4744             S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4745         Diag << static_cast<int>(complainAboutInferringWithinChunk);
4746         fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4747       }
4748 
4749       if (inferNullabilityInnerOnly)
4750         inferNullabilityInnerOnlyComplete = true;
4751       return nullabilityAttr;
4752     }
4753 
4754     // If we're supposed to complain about missing nullability, do so
4755     // now if it's truly missing.
4756     switch (complainAboutMissingNullability) {
4757     case CAMN_No:
4758       break;
4759 
4760     case CAMN_InnerPointers:
4761       if (NumPointersRemaining == 0)
4762         break;
4763       LLVM_FALLTHROUGH;
4764 
4765     case CAMN_Yes:
4766       checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4767     }
4768     return nullptr;
4769   };
4770 
4771   // If the type itself could have nullability but does not, infer pointer
4772   // nullability and perform consistency checking.
4773   if (S.CodeSynthesisContexts.empty()) {
4774     if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4775         !T->getNullability(S.Context)) {
4776       if (isVaList(T)) {
4777         // Record that we've seen a pointer, but do nothing else.
4778         if (NumPointersRemaining > 0)
4779           --NumPointersRemaining;
4780       } else {
4781         SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4782         if (T->isBlockPointerType())
4783           pointerKind = SimplePointerKind::BlockPointer;
4784         else if (T->isMemberPointerType())
4785           pointerKind = SimplePointerKind::MemberPointer;
4786 
4787         if (auto *attr = inferPointerNullability(
4788                 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4789                 D.getDeclSpec().getEndLoc(),
4790                 D.getMutableDeclSpec().getAttributes(),
4791                 D.getMutableDeclSpec().getAttributePool())) {
4792           T = state.getAttributedType(
4793               createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4794         }
4795       }
4796     }
4797 
4798     if (complainAboutMissingNullability == CAMN_Yes &&
4799         T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4800         D.isPrototypeContext() &&
4801         !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4802       checkNullabilityConsistency(S, SimplePointerKind::Array,
4803                                   D.getDeclSpec().getTypeSpecTypeLoc());
4804     }
4805   }
4806 
4807   bool ExpectNoDerefChunk =
4808       state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4809 
4810   // Walk the DeclTypeInfo, building the recursive type as we go.
4811   // DeclTypeInfos are ordered from the identifier out, which is
4812   // opposite of what we want :).
4813   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4814     unsigned chunkIndex = e - i - 1;
4815     state.setCurrentChunkIndex(chunkIndex);
4816     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4817     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4818     switch (DeclType.Kind) {
4819     case DeclaratorChunk::Paren:
4820       if (i == 0)
4821         warnAboutRedundantParens(S, D, T);
4822       T = S.BuildParenType(T);
4823       break;
4824     case DeclaratorChunk::BlockPointer:
4825       // If blocks are disabled, emit an error.
4826       if (!LangOpts.Blocks)
4827         S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4828 
4829       // Handle pointer nullability.
4830       inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4831                               DeclType.EndLoc, DeclType.getAttrs(),
4832                               state.getDeclarator().getAttributePool());
4833 
4834       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4835       if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4836         // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4837         // qualified with const.
4838         if (LangOpts.OpenCL)
4839           DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4840         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4841       }
4842       break;
4843     case DeclaratorChunk::Pointer:
4844       // Verify that we're not building a pointer to pointer to function with
4845       // exception specification.
4846       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4847         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4848         D.setInvalidType(true);
4849         // Build the type anyway.
4850       }
4851 
4852       // Handle pointer nullability
4853       inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4854                               DeclType.EndLoc, DeclType.getAttrs(),
4855                               state.getDeclarator().getAttributePool());
4856 
4857       if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4858         T = Context.getObjCObjectPointerType(T);
4859         if (DeclType.Ptr.TypeQuals)
4860           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4861         break;
4862       }
4863 
4864       // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4865       // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4866       // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4867       if (LangOpts.OpenCL) {
4868         if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4869             T->isBlockPointerType()) {
4870           S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4871           D.setInvalidType(true);
4872         }
4873       }
4874 
4875       T = S.BuildPointerType(T, DeclType.Loc, Name);
4876       if (DeclType.Ptr.TypeQuals)
4877         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4878       break;
4879     case DeclaratorChunk::Reference: {
4880       // Verify that we're not building a reference to pointer to function with
4881       // exception specification.
4882       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4883         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4884         D.setInvalidType(true);
4885         // Build the type anyway.
4886       }
4887       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4888 
4889       if (DeclType.Ref.HasRestrict)
4890         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4891       break;
4892     }
4893     case DeclaratorChunk::Array: {
4894       // Verify that we're not building an array of pointers to function with
4895       // exception specification.
4896       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4897         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4898         D.setInvalidType(true);
4899         // Build the type anyway.
4900       }
4901       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4902       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4903       ArrayType::ArraySizeModifier ASM;
4904       if (ATI.isStar)
4905         ASM = ArrayType::Star;
4906       else if (ATI.hasStatic)
4907         ASM = ArrayType::Static;
4908       else
4909         ASM = ArrayType::Normal;
4910       if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4911         // FIXME: This check isn't quite right: it allows star in prototypes
4912         // for function definitions, and disallows some edge cases detailed
4913         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4914         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4915         ASM = ArrayType::Normal;
4916         D.setInvalidType(true);
4917       }
4918 
4919       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4920       // shall appear only in a declaration of a function parameter with an
4921       // array type, ...
4922       if (ASM == ArrayType::Static || ATI.TypeQuals) {
4923         if (!(D.isPrototypeContext() ||
4924               D.getContext() == DeclaratorContext::KNRTypeList)) {
4925           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4926               (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4927           // Remove the 'static' and the type qualifiers.
4928           if (ASM == ArrayType::Static)
4929             ASM = ArrayType::Normal;
4930           ATI.TypeQuals = 0;
4931           D.setInvalidType(true);
4932         }
4933 
4934         // C99 6.7.5.2p1: ... and then only in the outermost array type
4935         // derivation.
4936         if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4937           S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4938             (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4939           if (ASM == ArrayType::Static)
4940             ASM = ArrayType::Normal;
4941           ATI.TypeQuals = 0;
4942           D.setInvalidType(true);
4943         }
4944       }
4945       const AutoType *AT = T->getContainedAutoType();
4946       // Allow arrays of auto if we are a generic lambda parameter.
4947       // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4948       if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) {
4949         // We've already diagnosed this for decltype(auto).
4950         if (!AT->isDecltypeAuto())
4951           S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4952               << getPrintableNameForEntity(Name) << T;
4953         T = QualType();
4954         break;
4955       }
4956 
4957       // Array parameters can be marked nullable as well, although it's not
4958       // necessary if they're marked 'static'.
4959       if (complainAboutMissingNullability == CAMN_Yes &&
4960           !hasNullabilityAttr(DeclType.getAttrs()) &&
4961           ASM != ArrayType::Static &&
4962           D.isPrototypeContext() &&
4963           !hasOuterPointerLikeChunk(D, chunkIndex)) {
4964         checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4965       }
4966 
4967       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4968                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4969       break;
4970     }
4971     case DeclaratorChunk::Function: {
4972       // If the function declarator has a prototype (i.e. it is not () and
4973       // does not have a K&R-style identifier list), then the arguments are part
4974       // of the type, otherwise the argument list is ().
4975       DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4976       IsQualifiedFunction =
4977           FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4978 
4979       // Check for auto functions and trailing return type and adjust the
4980       // return type accordingly.
4981       if (!D.isInvalidType()) {
4982         // trailing-return-type is only required if we're declaring a function,
4983         // and not, for instance, a pointer to a function.
4984         if (D.getDeclSpec().hasAutoTypeSpec() &&
4985             !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4986           if (!S.getLangOpts().CPlusPlus14) {
4987             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4988                    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4989                        ? diag::err_auto_missing_trailing_return
4990                        : diag::err_deduced_return_type);
4991             T = Context.IntTy;
4992             D.setInvalidType(true);
4993           } else {
4994             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4995                    diag::warn_cxx11_compat_deduced_return_type);
4996           }
4997         } else if (FTI.hasTrailingReturnType()) {
4998           // T must be exactly 'auto' at this point. See CWG issue 681.
4999           if (isa<ParenType>(T)) {
5000             S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
5001                 << T << D.getSourceRange();
5002             D.setInvalidType(true);
5003           } else if (D.getName().getKind() ==
5004                      UnqualifiedIdKind::IK_DeductionGuideName) {
5005             if (T != Context.DependentTy) {
5006               S.Diag(D.getDeclSpec().getBeginLoc(),
5007                      diag::err_deduction_guide_with_complex_decl)
5008                   << D.getSourceRange();
5009               D.setInvalidType(true);
5010             }
5011           } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
5012                      (T.hasQualifiers() || !isa<AutoType>(T) ||
5013                       cast<AutoType>(T)->getKeyword() !=
5014                           AutoTypeKeyword::Auto ||
5015                       cast<AutoType>(T)->isConstrained())) {
5016             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5017                    diag::err_trailing_return_without_auto)
5018                 << T << D.getDeclSpec().getSourceRange();
5019             D.setInvalidType(true);
5020           }
5021           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
5022           if (T.isNull()) {
5023             // An error occurred parsing the trailing return type.
5024             T = Context.IntTy;
5025             D.setInvalidType(true);
5026           } else if (AutoType *Auto = T->getContainedAutoType()) {
5027             // If the trailing return type contains an `auto`, we may need to
5028             // invent a template parameter for it, for cases like
5029             // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
5030             InventedTemplateParameterInfo *InventedParamInfo = nullptr;
5031             if (D.getContext() == DeclaratorContext::Prototype)
5032               InventedParamInfo = &S.InventedParameterInfos.back();
5033             else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
5034               InventedParamInfo = S.getCurLambda();
5035             if (InventedParamInfo) {
5036               std::tie(T, TInfo) = InventTemplateParameter(
5037                   state, T, TInfo, Auto, *InventedParamInfo);
5038             }
5039           }
5040         } else {
5041           // This function type is not the type of the entity being declared,
5042           // so checking the 'auto' is not the responsibility of this chunk.
5043         }
5044       }
5045 
5046       // C99 6.7.5.3p1: The return type may not be a function or array type.
5047       // For conversion functions, we'll diagnose this particular error later.
5048       if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
5049           (D.getName().getKind() !=
5050            UnqualifiedIdKind::IK_ConversionFunctionId)) {
5051         unsigned diagID = diag::err_func_returning_array_function;
5052         // Last processing chunk in block context means this function chunk
5053         // represents the block.
5054         if (chunkIndex == 0 &&
5055             D.getContext() == DeclaratorContext::BlockLiteral)
5056           diagID = diag::err_block_returning_array_function;
5057         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
5058         T = Context.IntTy;
5059         D.setInvalidType(true);
5060       }
5061 
5062       // Do not allow returning half FP value.
5063       // FIXME: This really should be in BuildFunctionType.
5064       if (T->isHalfType()) {
5065         if (S.getLangOpts().OpenCL) {
5066           if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5067                                                       S.getLangOpts())) {
5068             S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5069                 << T << 0 /*pointer hint*/;
5070             D.setInvalidType(true);
5071           }
5072         } else if (!S.getLangOpts().HalfArgsAndReturns) {
5073           S.Diag(D.getIdentifierLoc(),
5074             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
5075           D.setInvalidType(true);
5076         }
5077       }
5078 
5079       if (LangOpts.OpenCL) {
5080         // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5081         // function.
5082         if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
5083             T->isPipeType()) {
5084           S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5085               << T << 1 /*hint off*/;
5086           D.setInvalidType(true);
5087         }
5088         // OpenCL doesn't support variadic functions and blocks
5089         // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5090         // We also allow here any toolchain reserved identifiers.
5091         if (FTI.isVariadic &&
5092             !S.getOpenCLOptions().isAvailableOption(
5093                 "__cl_clang_variadic_functions", S.getLangOpts()) &&
5094             !(D.getIdentifier() &&
5095               ((D.getIdentifier()->getName() == "printf" &&
5096                 (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
5097                D.getIdentifier()->getName().startswith("__")))) {
5098           S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
5099           D.setInvalidType(true);
5100         }
5101       }
5102 
5103       // Methods cannot return interface types. All ObjC objects are
5104       // passed by reference.
5105       if (T->isObjCObjectType()) {
5106         SourceLocation DiagLoc, FixitLoc;
5107         if (TInfo) {
5108           DiagLoc = TInfo->getTypeLoc().getBeginLoc();
5109           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
5110         } else {
5111           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5112           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
5113         }
5114         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5115           << 0 << T
5116           << FixItHint::CreateInsertion(FixitLoc, "*");
5117 
5118         T = Context.getObjCObjectPointerType(T);
5119         if (TInfo) {
5120           TypeLocBuilder TLB;
5121           TLB.pushFullCopy(TInfo->getTypeLoc());
5122           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5123           TLoc.setStarLoc(FixitLoc);
5124           TInfo = TLB.getTypeSourceInfo(Context, T);
5125         }
5126 
5127         D.setInvalidType(true);
5128       }
5129 
5130       // cv-qualifiers on return types are pointless except when the type is a
5131       // class type in C++.
5132       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5133           !(S.getLangOpts().CPlusPlus &&
5134             (T->isDependentType() || T->isRecordType()))) {
5135         if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5136             D.getFunctionDefinitionKind() ==
5137                 FunctionDefinitionKind::Definition) {
5138           // [6.9.1/3] qualified void return is invalid on a C
5139           // function definition.  Apparently ok on declarations and
5140           // in C++ though (!)
5141           S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5142         } else
5143           diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5144 
5145         // C++2a [dcl.fct]p12:
5146         //   A volatile-qualified return type is deprecated
5147         if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5148           S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5149       }
5150 
5151       // Objective-C ARC ownership qualifiers are ignored on the function
5152       // return type (by type canonicalization). Complain if this attribute
5153       // was written here.
5154       if (T.getQualifiers().hasObjCLifetime()) {
5155         SourceLocation AttrLoc;
5156         if (chunkIndex + 1 < D.getNumTypeObjects()) {
5157           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5158           for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5159             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5160               AttrLoc = AL.getLoc();
5161               break;
5162             }
5163           }
5164         }
5165         if (AttrLoc.isInvalid()) {
5166           for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5167             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5168               AttrLoc = AL.getLoc();
5169               break;
5170             }
5171           }
5172         }
5173 
5174         if (AttrLoc.isValid()) {
5175           // The ownership attributes are almost always written via
5176           // the predefined
5177           // __strong/__weak/__autoreleasing/__unsafe_unretained.
5178           if (AttrLoc.isMacroID())
5179             AttrLoc =
5180                 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5181 
5182           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5183             << T.getQualifiers().getObjCLifetime();
5184         }
5185       }
5186 
5187       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5188         // C++ [dcl.fct]p6:
5189         //   Types shall not be defined in return or parameter types.
5190         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5191         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5192           << Context.getTypeDeclType(Tag);
5193       }
5194 
5195       // Exception specs are not allowed in typedefs. Complain, but add it
5196       // anyway.
5197       if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5198         S.Diag(FTI.getExceptionSpecLocBeg(),
5199                diag::err_exception_spec_in_typedef)
5200             << (D.getContext() == DeclaratorContext::AliasDecl ||
5201                 D.getContext() == DeclaratorContext::AliasTemplate);
5202 
5203       // If we see "T var();" or "T var(T());" at block scope, it is probably
5204       // an attempt to initialize a variable, not a function declaration.
5205       if (FTI.isAmbiguous)
5206         warnAboutAmbiguousFunction(S, D, DeclType, T);
5207 
5208       FunctionType::ExtInfo EI(
5209           getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5210 
5211       if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
5212                                             && !LangOpts.OpenCL) {
5213         // Simple void foo(), where the incoming T is the result type.
5214         T = Context.getFunctionNoProtoType(T, EI);
5215       } else {
5216         // We allow a zero-parameter variadic function in C if the
5217         // function is marked with the "overloadable" attribute. Scan
5218         // for this attribute now.
5219         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
5220           if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
5221             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5222 
5223         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5224           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5225           // definition.
5226           S.Diag(FTI.Params[0].IdentLoc,
5227                  diag::err_ident_list_in_fn_declaration);
5228           D.setInvalidType(true);
5229           // Recover by creating a K&R-style function type.
5230           T = Context.getFunctionNoProtoType(T, EI);
5231           break;
5232         }
5233 
5234         FunctionProtoType::ExtProtoInfo EPI;
5235         EPI.ExtInfo = EI;
5236         EPI.Variadic = FTI.isVariadic;
5237         EPI.EllipsisLoc = FTI.getEllipsisLoc();
5238         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5239         EPI.TypeQuals.addCVRUQualifiers(
5240             FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5241                                  : 0);
5242         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5243                     : FTI.RefQualifierIsLValueRef? RQ_LValue
5244                     : RQ_RValue;
5245 
5246         // Otherwise, we have a function with a parameter list that is
5247         // potentially variadic.
5248         SmallVector<QualType, 16> ParamTys;
5249         ParamTys.reserve(FTI.NumParams);
5250 
5251         SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5252           ExtParameterInfos(FTI.NumParams);
5253         bool HasAnyInterestingExtParameterInfos = false;
5254 
5255         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5256           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5257           QualType ParamTy = Param->getType();
5258           assert(!ParamTy.isNull() && "Couldn't parse type?");
5259 
5260           // Look for 'void'.  void is allowed only as a single parameter to a
5261           // function with no other parameters (C99 6.7.5.3p10).  We record
5262           // int(void) as a FunctionProtoType with an empty parameter list.
5263           if (ParamTy->isVoidType()) {
5264             // If this is something like 'float(int, void)', reject it.  'void'
5265             // is an incomplete type (C99 6.2.5p19) and function decls cannot
5266             // have parameters of incomplete type.
5267             if (FTI.NumParams != 1 || FTI.isVariadic) {
5268               S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5269               ParamTy = Context.IntTy;
5270               Param->setType(ParamTy);
5271             } else if (FTI.Params[i].Ident) {
5272               // Reject, but continue to parse 'int(void abc)'.
5273               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5274               ParamTy = Context.IntTy;
5275               Param->setType(ParamTy);
5276             } else {
5277               // Reject, but continue to parse 'float(const void)'.
5278               if (ParamTy.hasQualifiers())
5279                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5280 
5281               // Do not add 'void' to the list.
5282               break;
5283             }
5284           } else if (ParamTy->isHalfType()) {
5285             // Disallow half FP parameters.
5286             // FIXME: This really should be in BuildFunctionType.
5287             if (S.getLangOpts().OpenCL) {
5288               if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5289                                                           S.getLangOpts())) {
5290                 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5291                     << ParamTy << 0;
5292                 D.setInvalidType();
5293                 Param->setInvalidDecl();
5294               }
5295             } else if (!S.getLangOpts().HalfArgsAndReturns) {
5296               S.Diag(Param->getLocation(),
5297                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5298               D.setInvalidType();
5299             }
5300           } else if (!FTI.hasPrototype) {
5301             if (ParamTy->isPromotableIntegerType()) {
5302               ParamTy = Context.getPromotedIntegerType(ParamTy);
5303               Param->setKNRPromoted(true);
5304             } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
5305               if (BTy->getKind() == BuiltinType::Float) {
5306                 ParamTy = Context.DoubleTy;
5307                 Param->setKNRPromoted(true);
5308               }
5309             }
5310           } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5311             // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5312             S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5313                 << ParamTy << 1 /*hint off*/;
5314             D.setInvalidType();
5315           }
5316 
5317           if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5318             ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5319             HasAnyInterestingExtParameterInfos = true;
5320           }
5321 
5322           if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5323             ExtParameterInfos[i] =
5324               ExtParameterInfos[i].withABI(attr->getABI());
5325             HasAnyInterestingExtParameterInfos = true;
5326           }
5327 
5328           if (Param->hasAttr<PassObjectSizeAttr>()) {
5329             ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5330             HasAnyInterestingExtParameterInfos = true;
5331           }
5332 
5333           if (Param->hasAttr<NoEscapeAttr>()) {
5334             ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5335             HasAnyInterestingExtParameterInfos = true;
5336           }
5337 
5338           ParamTys.push_back(ParamTy);
5339         }
5340 
5341         if (HasAnyInterestingExtParameterInfos) {
5342           EPI.ExtParameterInfos = ExtParameterInfos.data();
5343           checkExtParameterInfos(S, ParamTys, EPI,
5344               [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5345         }
5346 
5347         SmallVector<QualType, 4> Exceptions;
5348         SmallVector<ParsedType, 2> DynamicExceptions;
5349         SmallVector<SourceRange, 2> DynamicExceptionRanges;
5350         Expr *NoexceptExpr = nullptr;
5351 
5352         if (FTI.getExceptionSpecType() == EST_Dynamic) {
5353           // FIXME: It's rather inefficient to have to split into two vectors
5354           // here.
5355           unsigned N = FTI.getNumExceptions();
5356           DynamicExceptions.reserve(N);
5357           DynamicExceptionRanges.reserve(N);
5358           for (unsigned I = 0; I != N; ++I) {
5359             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5360             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5361           }
5362         } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5363           NoexceptExpr = FTI.NoexceptExpr;
5364         }
5365 
5366         S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5367                                       FTI.getExceptionSpecType(),
5368                                       DynamicExceptions,
5369                                       DynamicExceptionRanges,
5370                                       NoexceptExpr,
5371                                       Exceptions,
5372                                       EPI.ExceptionSpec);
5373 
5374         // FIXME: Set address space from attrs for C++ mode here.
5375         // OpenCLCPlusPlus: A class member function has an address space.
5376         auto IsClassMember = [&]() {
5377           return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5378                   state.getDeclarator()
5379                           .getCXXScopeSpec()
5380                           .getScopeRep()
5381                           ->getKind() == NestedNameSpecifier::TypeSpec) ||
5382                  state.getDeclarator().getContext() ==
5383                      DeclaratorContext::Member ||
5384                  state.getDeclarator().getContext() ==
5385                      DeclaratorContext::LambdaExpr;
5386         };
5387 
5388         if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5389           LangAS ASIdx = LangAS::Default;
5390           // Take address space attr if any and mark as invalid to avoid adding
5391           // them later while creating QualType.
5392           if (FTI.MethodQualifiers)
5393             for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5394               LangAS ASIdxNew = attr.asOpenCLLangAS();
5395               if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5396                                                       attr.getLoc()))
5397                 D.setInvalidType(true);
5398               else
5399                 ASIdx = ASIdxNew;
5400             }
5401           // If a class member function's address space is not set, set it to
5402           // __generic.
5403           LangAS AS =
5404               (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5405                                         : ASIdx);
5406           EPI.TypeQuals.addAddressSpace(AS);
5407         }
5408         T = Context.getFunctionType(T, ParamTys, EPI);
5409       }
5410       break;
5411     }
5412     case DeclaratorChunk::MemberPointer: {
5413       // The scope spec must refer to a class, or be dependent.
5414       CXXScopeSpec &SS = DeclType.Mem.Scope();
5415       QualType ClsType;
5416 
5417       // Handle pointer nullability.
5418       inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5419                               DeclType.EndLoc, DeclType.getAttrs(),
5420                               state.getDeclarator().getAttributePool());
5421 
5422       if (SS.isInvalid()) {
5423         // Avoid emitting extra errors if we already errored on the scope.
5424         D.setInvalidType(true);
5425       } else if (S.isDependentScopeSpecifier(SS) ||
5426                  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
5427         NestedNameSpecifier *NNS = SS.getScopeRep();
5428         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5429         switch (NNS->getKind()) {
5430         case NestedNameSpecifier::Identifier:
5431           ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
5432                                                  NNS->getAsIdentifier());
5433           break;
5434 
5435         case NestedNameSpecifier::Namespace:
5436         case NestedNameSpecifier::NamespaceAlias:
5437         case NestedNameSpecifier::Global:
5438         case NestedNameSpecifier::Super:
5439           llvm_unreachable("Nested-name-specifier must name a type");
5440 
5441         case NestedNameSpecifier::TypeSpec:
5442         case NestedNameSpecifier::TypeSpecWithTemplate:
5443           ClsType = QualType(NNS->getAsType(), 0);
5444           // Note: if the NNS has a prefix and ClsType is a nondependent
5445           // TemplateSpecializationType, then the NNS prefix is NOT included
5446           // in ClsType; hence we wrap ClsType into an ElaboratedType.
5447           // NOTE: in particular, no wrap occurs if ClsType already is an
5448           // Elaborated, DependentName, or DependentTemplateSpecialization.
5449           if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
5450             ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
5451           break;
5452         }
5453       } else {
5454         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5455              diag::err_illegal_decl_mempointer_in_nonclass)
5456           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5457           << DeclType.Mem.Scope().getRange();
5458         D.setInvalidType(true);
5459       }
5460 
5461       if (!ClsType.isNull())
5462         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5463                                      D.getIdentifier());
5464       if (T.isNull()) {
5465         T = Context.IntTy;
5466         D.setInvalidType(true);
5467       } else if (DeclType.Mem.TypeQuals) {
5468         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5469       }
5470       break;
5471     }
5472 
5473     case DeclaratorChunk::Pipe: {
5474       T = S.BuildReadPipeType(T, DeclType.Loc);
5475       processTypeAttrs(state, T, TAL_DeclSpec,
5476                        D.getMutableDeclSpec().getAttributes());
5477       break;
5478     }
5479     }
5480 
5481     if (T.isNull()) {
5482       D.setInvalidType(true);
5483       T = Context.IntTy;
5484     }
5485 
5486     // See if there are any attributes on this declarator chunk.
5487     processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5488 
5489     if (DeclType.Kind != DeclaratorChunk::Paren) {
5490       if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5491         S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5492 
5493       ExpectNoDerefChunk = state.didParseNoDeref();
5494     }
5495   }
5496 
5497   if (ExpectNoDerefChunk)
5498     S.Diag(state.getDeclarator().getBeginLoc(),
5499            diag::warn_noderef_on_non_pointer_or_array);
5500 
5501   // GNU warning -Wstrict-prototypes
5502   //   Warn if a function declaration is without a prototype.
5503   //   This warning is issued for all kinds of unprototyped function
5504   //   declarations (i.e. function type typedef, function pointer etc.)
5505   //   C99 6.7.5.3p14:
5506   //   The empty list in a function declarator that is not part of a definition
5507   //   of that function specifies that no information about the number or types
5508   //   of the parameters is supplied.
5509   if (!LangOpts.CPlusPlus &&
5510       D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) {
5511     bool IsBlock = false;
5512     for (const DeclaratorChunk &DeclType : D.type_objects()) {
5513       switch (DeclType.Kind) {
5514       case DeclaratorChunk::BlockPointer:
5515         IsBlock = true;
5516         break;
5517       case DeclaratorChunk::Function: {
5518         const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5519         // We supress the warning when there's no LParen location, as this
5520         // indicates the declaration was an implicit declaration, which gets
5521         // warned about separately via -Wimplicit-function-declaration.
5522         if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
5523           S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5524               << IsBlock
5525               << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5526         IsBlock = false;
5527         break;
5528       }
5529       default:
5530         break;
5531       }
5532     }
5533   }
5534 
5535   assert(!T.isNull() && "T must not be null after this point");
5536 
5537   if (LangOpts.CPlusPlus && T->isFunctionType()) {
5538     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5539     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5540 
5541     // C++ 8.3.5p4:
5542     //   A cv-qualifier-seq shall only be part of the function type
5543     //   for a nonstatic member function, the function type to which a pointer
5544     //   to member refers, or the top-level function type of a function typedef
5545     //   declaration.
5546     //
5547     // Core issue 547 also allows cv-qualifiers on function types that are
5548     // top-level template type arguments.
5549     enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5550     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5551       Kind = DeductionGuide;
5552     else if (!D.getCXXScopeSpec().isSet()) {
5553       if ((D.getContext() == DeclaratorContext::Member ||
5554            D.getContext() == DeclaratorContext::LambdaExpr) &&
5555           !D.getDeclSpec().isFriendSpecified())
5556         Kind = Member;
5557     } else {
5558       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5559       if (!DC || DC->isRecord())
5560         Kind = Member;
5561     }
5562 
5563     // C++11 [dcl.fct]p6 (w/DR1417):
5564     // An attempt to specify a function type with a cv-qualifier-seq or a
5565     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5566     //  - the function type for a non-static member function,
5567     //  - the function type to which a pointer to member refers,
5568     //  - the top-level function type of a function typedef declaration or
5569     //    alias-declaration,
5570     //  - the type-id in the default argument of a type-parameter, or
5571     //  - the type-id of a template-argument for a type-parameter
5572     //
5573     // FIXME: Checking this here is insufficient. We accept-invalid on:
5574     //
5575     //   template<typename T> struct S { void f(T); };
5576     //   S<int() const> s;
5577     //
5578     // ... for instance.
5579     if (IsQualifiedFunction &&
5580         !(Kind == Member &&
5581           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5582         !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5583         D.getContext() != DeclaratorContext::TemplateTypeArg) {
5584       SourceLocation Loc = D.getBeginLoc();
5585       SourceRange RemovalRange;
5586       unsigned I;
5587       if (D.isFunctionDeclarator(I)) {
5588         SmallVector<SourceLocation, 4> RemovalLocs;
5589         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5590         assert(Chunk.Kind == DeclaratorChunk::Function);
5591 
5592         if (Chunk.Fun.hasRefQualifier())
5593           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5594 
5595         if (Chunk.Fun.hasMethodTypeQualifiers())
5596           Chunk.Fun.MethodQualifiers->forEachQualifier(
5597               [&](DeclSpec::TQ TypeQual, StringRef QualName,
5598                   SourceLocation SL) { RemovalLocs.push_back(SL); });
5599 
5600         if (!RemovalLocs.empty()) {
5601           llvm::sort(RemovalLocs,
5602                      BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5603           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5604           Loc = RemovalLocs.front();
5605         }
5606       }
5607 
5608       S.Diag(Loc, diag::err_invalid_qualified_function_type)
5609         << Kind << D.isFunctionDeclarator() << T
5610         << getFunctionQualifiersAsString(FnTy)
5611         << FixItHint::CreateRemoval(RemovalRange);
5612 
5613       // Strip the cv-qualifiers and ref-qualifiers from the type.
5614       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5615       EPI.TypeQuals.removeCVRQualifiers();
5616       EPI.RefQualifier = RQ_None;
5617 
5618       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5619                                   EPI);
5620       // Rebuild any parens around the identifier in the function type.
5621       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5622         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5623           break;
5624         T = S.BuildParenType(T);
5625       }
5626     }
5627   }
5628 
5629   // Apply any undistributed attributes from the declarator.
5630   processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5631 
5632   // Diagnose any ignored type attributes.
5633   state.diagnoseIgnoredTypeAttrs(T);
5634 
5635   // C++0x [dcl.constexpr]p9:
5636   //  A constexpr specifier used in an object declaration declares the object
5637   //  as const.
5638   if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5639       T->isObjectType())
5640     T.addConst();
5641 
5642   // C++2a [dcl.fct]p4:
5643   //   A parameter with volatile-qualified type is deprecated
5644   if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5645       (D.getContext() == DeclaratorContext::Prototype ||
5646        D.getContext() == DeclaratorContext::LambdaExprParameter))
5647     S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5648 
5649   // If there was an ellipsis in the declarator, the declaration declares a
5650   // parameter pack whose type may be a pack expansion type.
5651   if (D.hasEllipsis()) {
5652     // C++0x [dcl.fct]p13:
5653     //   A declarator-id or abstract-declarator containing an ellipsis shall
5654     //   only be used in a parameter-declaration. Such a parameter-declaration
5655     //   is a parameter pack (14.5.3). [...]
5656     switch (D.getContext()) {
5657     case DeclaratorContext::Prototype:
5658     case DeclaratorContext::LambdaExprParameter:
5659     case DeclaratorContext::RequiresExpr:
5660       // C++0x [dcl.fct]p13:
5661       //   [...] When it is part of a parameter-declaration-clause, the
5662       //   parameter pack is a function parameter pack (14.5.3). The type T
5663       //   of the declarator-id of the function parameter pack shall contain
5664       //   a template parameter pack; each template parameter pack in T is
5665       //   expanded by the function parameter pack.
5666       //
5667       // We represent function parameter packs as function parameters whose
5668       // type is a pack expansion.
5669       if (!T->containsUnexpandedParameterPack() &&
5670           (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5671         S.Diag(D.getEllipsisLoc(),
5672              diag::err_function_parameter_pack_without_parameter_packs)
5673           << T <<  D.getSourceRange();
5674         D.setEllipsisLoc(SourceLocation());
5675       } else {
5676         T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false);
5677       }
5678       break;
5679     case DeclaratorContext::TemplateParam:
5680       // C++0x [temp.param]p15:
5681       //   If a template-parameter is a [...] is a parameter-declaration that
5682       //   declares a parameter pack (8.3.5), then the template-parameter is a
5683       //   template parameter pack (14.5.3).
5684       //
5685       // Note: core issue 778 clarifies that, if there are any unexpanded
5686       // parameter packs in the type of the non-type template parameter, then
5687       // it expands those parameter packs.
5688       if (T->containsUnexpandedParameterPack())
5689         T = Context.getPackExpansionType(T, None);
5690       else
5691         S.Diag(D.getEllipsisLoc(),
5692                LangOpts.CPlusPlus11
5693                  ? diag::warn_cxx98_compat_variadic_templates
5694                  : diag::ext_variadic_templates);
5695       break;
5696 
5697     case DeclaratorContext::File:
5698     case DeclaratorContext::KNRTypeList:
5699     case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5700     case DeclaratorContext::ObjCResult:    // FIXME: special diagnostic here?
5701     case DeclaratorContext::TypeName:
5702     case DeclaratorContext::FunctionalCast:
5703     case DeclaratorContext::CXXNew:
5704     case DeclaratorContext::AliasDecl:
5705     case DeclaratorContext::AliasTemplate:
5706     case DeclaratorContext::Member:
5707     case DeclaratorContext::Block:
5708     case DeclaratorContext::ForInit:
5709     case DeclaratorContext::SelectionInit:
5710     case DeclaratorContext::Condition:
5711     case DeclaratorContext::CXXCatch:
5712     case DeclaratorContext::ObjCCatch:
5713     case DeclaratorContext::BlockLiteral:
5714     case DeclaratorContext::LambdaExpr:
5715     case DeclaratorContext::ConversionId:
5716     case DeclaratorContext::TrailingReturn:
5717     case DeclaratorContext::TrailingReturnVar:
5718     case DeclaratorContext::TemplateArg:
5719     case DeclaratorContext::TemplateTypeArg:
5720       // FIXME: We may want to allow parameter packs in block-literal contexts
5721       // in the future.
5722       S.Diag(D.getEllipsisLoc(),
5723              diag::err_ellipsis_in_declarator_not_parameter);
5724       D.setEllipsisLoc(SourceLocation());
5725       break;
5726     }
5727   }
5728 
5729   assert(!T.isNull() && "T must not be null at the end of this function");
5730   if (D.isInvalidType())
5731     return Context.getTrivialTypeSourceInfo(T);
5732 
5733   return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5734 }
5735 
5736 /// GetTypeForDeclarator - Convert the type for the specified
5737 /// declarator to Type instances.
5738 ///
5739 /// The result of this call will never be null, but the associated
5740 /// type may be a null type if there's an unrecoverable error.
GetTypeForDeclarator(Declarator & D,Scope * S)5741 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5742   // Determine the type of the declarator. Not all forms of declarator
5743   // have a type.
5744 
5745   TypeProcessingState state(*this, D);
5746 
5747   TypeSourceInfo *ReturnTypeInfo = nullptr;
5748   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5749   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5750     inferARCWriteback(state, T);
5751 
5752   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5753 }
5754 
transferARCOwnershipToDeclSpec(Sema & S,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)5755 static void transferARCOwnershipToDeclSpec(Sema &S,
5756                                            QualType &declSpecTy,
5757                                            Qualifiers::ObjCLifetime ownership) {
5758   if (declSpecTy->isObjCRetainableType() &&
5759       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5760     Qualifiers qs;
5761     qs.addObjCLifetime(ownership);
5762     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5763   }
5764 }
5765 
transferARCOwnershipToDeclaratorChunk(TypeProcessingState & state,Qualifiers::ObjCLifetime ownership,unsigned chunkIndex)5766 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5767                                             Qualifiers::ObjCLifetime ownership,
5768                                             unsigned chunkIndex) {
5769   Sema &S = state.getSema();
5770   Declarator &D = state.getDeclarator();
5771 
5772   // Look for an explicit lifetime attribute.
5773   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5774   if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5775     return;
5776 
5777   const char *attrStr = nullptr;
5778   switch (ownership) {
5779   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5780   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5781   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5782   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5783   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5784   }
5785 
5786   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5787   Arg->Ident = &S.Context.Idents.get(attrStr);
5788   Arg->Loc = SourceLocation();
5789 
5790   ArgsUnion Args(Arg);
5791 
5792   // If there wasn't one, add one (with an invalid source location
5793   // so that we don't make an AttributedType for it).
5794   ParsedAttr *attr = D.getAttributePool().create(
5795       &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5796       /*scope*/ nullptr, SourceLocation(),
5797       /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5798   chunk.getAttrs().addAtEnd(attr);
5799   // TODO: mark whether we did this inference?
5800 }
5801 
5802 /// Used for transferring ownership in casts resulting in l-values.
transferARCOwnership(TypeProcessingState & state,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)5803 static void transferARCOwnership(TypeProcessingState &state,
5804                                  QualType &declSpecTy,
5805                                  Qualifiers::ObjCLifetime ownership) {
5806   Sema &S = state.getSema();
5807   Declarator &D = state.getDeclarator();
5808 
5809   int inner = -1;
5810   bool hasIndirection = false;
5811   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5812     DeclaratorChunk &chunk = D.getTypeObject(i);
5813     switch (chunk.Kind) {
5814     case DeclaratorChunk::Paren:
5815       // Ignore parens.
5816       break;
5817 
5818     case DeclaratorChunk::Array:
5819     case DeclaratorChunk::Reference:
5820     case DeclaratorChunk::Pointer:
5821       if (inner != -1)
5822         hasIndirection = true;
5823       inner = i;
5824       break;
5825 
5826     case DeclaratorChunk::BlockPointer:
5827       if (inner != -1)
5828         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5829       return;
5830 
5831     case DeclaratorChunk::Function:
5832     case DeclaratorChunk::MemberPointer:
5833     case DeclaratorChunk::Pipe:
5834       return;
5835     }
5836   }
5837 
5838   if (inner == -1)
5839     return;
5840 
5841   DeclaratorChunk &chunk = D.getTypeObject(inner);
5842   if (chunk.Kind == DeclaratorChunk::Pointer) {
5843     if (declSpecTy->isObjCRetainableType())
5844       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5845     if (declSpecTy->isObjCObjectType() && hasIndirection)
5846       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5847   } else {
5848     assert(chunk.Kind == DeclaratorChunk::Array ||
5849            chunk.Kind == DeclaratorChunk::Reference);
5850     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5851   }
5852 }
5853 
GetTypeForDeclaratorCast(Declarator & D,QualType FromTy)5854 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5855   TypeProcessingState state(*this, D);
5856 
5857   TypeSourceInfo *ReturnTypeInfo = nullptr;
5858   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5859 
5860   if (getLangOpts().ObjC) {
5861     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5862     if (ownership != Qualifiers::OCL_None)
5863       transferARCOwnership(state, declSpecTy, ownership);
5864   }
5865 
5866   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5867 }
5868 
fillAttributedTypeLoc(AttributedTypeLoc TL,TypeProcessingState & State)5869 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5870                                   TypeProcessingState &State) {
5871   TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5872 }
5873 
5874 namespace {
5875   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5876     Sema &SemaRef;
5877     ASTContext &Context;
5878     TypeProcessingState &State;
5879     const DeclSpec &DS;
5880 
5881   public:
TypeSpecLocFiller(Sema & S,ASTContext & Context,TypeProcessingState & State,const DeclSpec & DS)5882     TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5883                       const DeclSpec &DS)
5884         : SemaRef(S), Context(Context), State(State), DS(DS) {}
5885 
VisitAttributedTypeLoc(AttributedTypeLoc TL)5886     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5887       Visit(TL.getModifiedLoc());
5888       fillAttributedTypeLoc(TL, State);
5889     }
VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL)5890     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5891       Visit(TL.getInnerLoc());
5892       TL.setExpansionLoc(
5893           State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5894     }
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)5895     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5896       Visit(TL.getUnqualifiedLoc());
5897     }
VisitTypedefTypeLoc(TypedefTypeLoc TL)5898     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5899       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5900     }
VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL)5901     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5902       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5903       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5904       // addition field. What we have is good enough for dispay of location
5905       // of 'fixit' on interface name.
5906       TL.setNameEndLoc(DS.getEndLoc());
5907     }
VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL)5908     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5909       TypeSourceInfo *RepTInfo = nullptr;
5910       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5911       TL.copy(RepTInfo->getTypeLoc());
5912     }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)5913     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5914       TypeSourceInfo *RepTInfo = nullptr;
5915       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5916       TL.copy(RepTInfo->getTypeLoc());
5917     }
VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL)5918     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5919       TypeSourceInfo *TInfo = nullptr;
5920       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5921 
5922       // If we got no declarator info from previous Sema routines,
5923       // just fill with the typespec loc.
5924       if (!TInfo) {
5925         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5926         return;
5927       }
5928 
5929       TypeLoc OldTL = TInfo->getTypeLoc();
5930       if (TInfo->getType()->getAs<ElaboratedType>()) {
5931         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5932         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5933             .castAs<TemplateSpecializationTypeLoc>();
5934         TL.copy(NamedTL);
5935       } else {
5936         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5937         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5938       }
5939 
5940     }
VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL)5941     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5942       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
5943       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5944       TL.setParensRange(DS.getTypeofParensRange());
5945     }
VisitTypeOfTypeLoc(TypeOfTypeLoc TL)5946     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5947       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
5948       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5949       TL.setParensRange(DS.getTypeofParensRange());
5950       assert(DS.getRepAsType());
5951       TypeSourceInfo *TInfo = nullptr;
5952       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5953       TL.setUnderlyingTInfo(TInfo);
5954     }
VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL)5955     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5956       // FIXME: This holds only because we only have one unary transform.
5957       assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
5958       TL.setKWLoc(DS.getTypeSpecTypeLoc());
5959       TL.setParensRange(DS.getTypeofParensRange());
5960       assert(DS.getRepAsType());
5961       TypeSourceInfo *TInfo = nullptr;
5962       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5963       TL.setUnderlyingTInfo(TInfo);
5964     }
VisitBuiltinTypeLoc(BuiltinTypeLoc TL)5965     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5966       // By default, use the source location of the type specifier.
5967       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5968       if (TL.needsExtraLocalData()) {
5969         // Set info for the written builtin specifiers.
5970         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5971         // Try to have a meaningful source location.
5972         if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5973           TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5974         if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5975           TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5976       }
5977     }
VisitElaboratedTypeLoc(ElaboratedTypeLoc TL)5978     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5979       ElaboratedTypeKeyword Keyword
5980         = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
5981       if (DS.getTypeSpecType() == TST_typename) {
5982         TypeSourceInfo *TInfo = nullptr;
5983         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5984         if (TInfo) {
5985           TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5986           return;
5987         }
5988       }
5989       TL.setElaboratedKeywordLoc(Keyword != ETK_None
5990                                  ? DS.getTypeSpecTypeLoc()
5991                                  : SourceLocation());
5992       const CXXScopeSpec& SS = DS.getTypeSpecScope();
5993       TL.setQualifierLoc(SS.getWithLocInContext(Context));
5994       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5995     }
VisitDependentNameTypeLoc(DependentNameTypeLoc TL)5996     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5997       assert(DS.getTypeSpecType() == TST_typename);
5998       TypeSourceInfo *TInfo = nullptr;
5999       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6000       assert(TInfo);
6001       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
6002     }
VisitDependentTemplateSpecializationTypeLoc(DependentTemplateSpecializationTypeLoc TL)6003     void VisitDependentTemplateSpecializationTypeLoc(
6004                                  DependentTemplateSpecializationTypeLoc TL) {
6005       assert(DS.getTypeSpecType() == TST_typename);
6006       TypeSourceInfo *TInfo = nullptr;
6007       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6008       assert(TInfo);
6009       TL.copy(
6010           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
6011     }
VisitAutoTypeLoc(AutoTypeLoc TL)6012     void VisitAutoTypeLoc(AutoTypeLoc TL) {
6013       assert(DS.getTypeSpecType() == TST_auto ||
6014              DS.getTypeSpecType() == TST_decltype_auto ||
6015              DS.getTypeSpecType() == TST_auto_type ||
6016              DS.getTypeSpecType() == TST_unspecified);
6017       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6018       if (!DS.isConstrainedAuto())
6019         return;
6020       TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6021       if (!TemplateId)
6022         return;
6023       if (DS.getTypeSpecScope().isNotEmpty())
6024         TL.setNestedNameSpecifierLoc(
6025             DS.getTypeSpecScope().getWithLocInContext(Context));
6026       else
6027         TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc());
6028       TL.setTemplateKWLoc(TemplateId->TemplateKWLoc);
6029       TL.setConceptNameLoc(TemplateId->TemplateNameLoc);
6030       TL.setFoundDecl(nullptr);
6031       TL.setLAngleLoc(TemplateId->LAngleLoc);
6032       TL.setRAngleLoc(TemplateId->RAngleLoc);
6033       if (TemplateId->NumArgs == 0)
6034         return;
6035       TemplateArgumentListInfo TemplateArgsInfo;
6036       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6037                                          TemplateId->NumArgs);
6038       SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6039       for (unsigned I = 0; I < TemplateId->NumArgs; ++I)
6040         TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo());
6041     }
VisitTagTypeLoc(TagTypeLoc TL)6042     void VisitTagTypeLoc(TagTypeLoc TL) {
6043       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6044     }
VisitAtomicTypeLoc(AtomicTypeLoc TL)6045     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6046       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6047       // or an _Atomic qualifier.
6048       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6049         TL.setKWLoc(DS.getTypeSpecTypeLoc());
6050         TL.setParensRange(DS.getTypeofParensRange());
6051 
6052         TypeSourceInfo *TInfo = nullptr;
6053         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6054         assert(TInfo);
6055         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6056       } else {
6057         TL.setKWLoc(DS.getAtomicSpecLoc());
6058         // No parens, to indicate this was spelled as an _Atomic qualifier.
6059         TL.setParensRange(SourceRange());
6060         Visit(TL.getValueLoc());
6061       }
6062     }
6063 
VisitPipeTypeLoc(PipeTypeLoc TL)6064     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6065       TL.setKWLoc(DS.getTypeSpecTypeLoc());
6066 
6067       TypeSourceInfo *TInfo = nullptr;
6068       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6069       TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6070     }
6071 
VisitExtIntTypeLoc(ExtIntTypeLoc TL)6072     void VisitExtIntTypeLoc(ExtIntTypeLoc TL) {
6073       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6074     }
6075 
VisitDependentExtIntTypeLoc(DependentExtIntTypeLoc TL)6076     void VisitDependentExtIntTypeLoc(DependentExtIntTypeLoc TL) {
6077       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6078     }
6079 
VisitTypeLoc(TypeLoc TL)6080     void VisitTypeLoc(TypeLoc TL) {
6081       // FIXME: add other typespec types and change this to an assert.
6082       TL.initialize(Context, DS.getTypeSpecTypeLoc());
6083     }
6084   };
6085 
6086   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6087     ASTContext &Context;
6088     TypeProcessingState &State;
6089     const DeclaratorChunk &Chunk;
6090 
6091   public:
DeclaratorLocFiller(ASTContext & Context,TypeProcessingState & State,const DeclaratorChunk & Chunk)6092     DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6093                         const DeclaratorChunk &Chunk)
6094         : Context(Context), State(State), Chunk(Chunk) {}
6095 
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)6096     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6097       llvm_unreachable("qualified type locs not expected here!");
6098     }
VisitDecayedTypeLoc(DecayedTypeLoc TL)6099     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6100       llvm_unreachable("decayed type locs not expected here!");
6101     }
6102 
VisitAttributedTypeLoc(AttributedTypeLoc TL)6103     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6104       fillAttributedTypeLoc(TL, State);
6105     }
VisitAdjustedTypeLoc(AdjustedTypeLoc TL)6106     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6107       // nothing
6108     }
VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL)6109     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6110       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
6111       TL.setCaretLoc(Chunk.Loc);
6112     }
VisitPointerTypeLoc(PointerTypeLoc TL)6113     void VisitPointerTypeLoc(PointerTypeLoc TL) {
6114       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6115       TL.setStarLoc(Chunk.Loc);
6116     }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)6117     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6118       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6119       TL.setStarLoc(Chunk.Loc);
6120     }
VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL)6121     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6122       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
6123       const CXXScopeSpec& SS = Chunk.Mem.Scope();
6124       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6125 
6126       const Type* ClsTy = TL.getClass();
6127       QualType ClsQT = QualType(ClsTy, 0);
6128       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6129       // Now copy source location info into the type loc component.
6130       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6131       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6132       case NestedNameSpecifier::Identifier:
6133         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
6134         {
6135           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6136           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6137           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6138           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6139         }
6140         break;
6141 
6142       case NestedNameSpecifier::TypeSpec:
6143       case NestedNameSpecifier::TypeSpecWithTemplate:
6144         if (isa<ElaboratedType>(ClsTy)) {
6145           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6146           ETLoc.setElaboratedKeywordLoc(SourceLocation());
6147           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6148           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6149           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6150         } else {
6151           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6152         }
6153         break;
6154 
6155       case NestedNameSpecifier::Namespace:
6156       case NestedNameSpecifier::NamespaceAlias:
6157       case NestedNameSpecifier::Global:
6158       case NestedNameSpecifier::Super:
6159         llvm_unreachable("Nested-name-specifier must name a type");
6160       }
6161 
6162       // Finally fill in MemberPointerLocInfo fields.
6163       TL.setStarLoc(Chunk.Mem.StarLoc);
6164       TL.setClassTInfo(ClsTInfo);
6165     }
VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL)6166     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6167       assert(Chunk.Kind == DeclaratorChunk::Reference);
6168       // 'Amp' is misleading: this might have been originally
6169       /// spelled with AmpAmp.
6170       TL.setAmpLoc(Chunk.Loc);
6171     }
VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL)6172     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6173       assert(Chunk.Kind == DeclaratorChunk::Reference);
6174       assert(!Chunk.Ref.LValueRef);
6175       TL.setAmpAmpLoc(Chunk.Loc);
6176     }
VisitArrayTypeLoc(ArrayTypeLoc TL)6177     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6178       assert(Chunk.Kind == DeclaratorChunk::Array);
6179       TL.setLBracketLoc(Chunk.Loc);
6180       TL.setRBracketLoc(Chunk.EndLoc);
6181       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6182     }
VisitFunctionTypeLoc(FunctionTypeLoc TL)6183     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6184       assert(Chunk.Kind == DeclaratorChunk::Function);
6185       TL.setLocalRangeBegin(Chunk.Loc);
6186       TL.setLocalRangeEnd(Chunk.EndLoc);
6187 
6188       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6189       TL.setLParenLoc(FTI.getLParenLoc());
6190       TL.setRParenLoc(FTI.getRParenLoc());
6191       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6192         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6193         TL.setParam(tpi++, Param);
6194       }
6195       TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6196     }
VisitParenTypeLoc(ParenTypeLoc TL)6197     void VisitParenTypeLoc(ParenTypeLoc TL) {
6198       assert(Chunk.Kind == DeclaratorChunk::Paren);
6199       TL.setLParenLoc(Chunk.Loc);
6200       TL.setRParenLoc(Chunk.EndLoc);
6201     }
VisitPipeTypeLoc(PipeTypeLoc TL)6202     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6203       assert(Chunk.Kind == DeclaratorChunk::Pipe);
6204       TL.setKWLoc(Chunk.Loc);
6205     }
VisitExtIntTypeLoc(ExtIntTypeLoc TL)6206     void VisitExtIntTypeLoc(ExtIntTypeLoc TL) {
6207       TL.setNameLoc(Chunk.Loc);
6208     }
VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL)6209     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6210       TL.setExpansionLoc(Chunk.Loc);
6211     }
VisitVectorTypeLoc(VectorTypeLoc TL)6212     void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL)6213     void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6214       TL.setNameLoc(Chunk.Loc);
6215     }
VisitExtVectorTypeLoc(ExtVectorTypeLoc TL)6216     void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6217       TL.setNameLoc(Chunk.Loc);
6218     }
6219     void
VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL)6220     VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6221       TL.setNameLoc(Chunk.Loc);
6222     }
6223 
VisitTypeLoc(TypeLoc TL)6224     void VisitTypeLoc(TypeLoc TL) {
6225       llvm_unreachable("unsupported TypeLoc kind in declarator!");
6226     }
6227   };
6228 } // end anonymous namespace
6229 
fillAtomicQualLoc(AtomicTypeLoc ATL,const DeclaratorChunk & Chunk)6230 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6231   SourceLocation Loc;
6232   switch (Chunk.Kind) {
6233   case DeclaratorChunk::Function:
6234   case DeclaratorChunk::Array:
6235   case DeclaratorChunk::Paren:
6236   case DeclaratorChunk::Pipe:
6237     llvm_unreachable("cannot be _Atomic qualified");
6238 
6239   case DeclaratorChunk::Pointer:
6240     Loc = Chunk.Ptr.AtomicQualLoc;
6241     break;
6242 
6243   case DeclaratorChunk::BlockPointer:
6244   case DeclaratorChunk::Reference:
6245   case DeclaratorChunk::MemberPointer:
6246     // FIXME: Provide a source location for the _Atomic keyword.
6247     break;
6248   }
6249 
6250   ATL.setKWLoc(Loc);
6251   ATL.setParensRange(SourceRange());
6252 }
6253 
6254 static void
fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,const ParsedAttributesView & Attrs)6255 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6256                                  const ParsedAttributesView &Attrs) {
6257   for (const ParsedAttr &AL : Attrs) {
6258     if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6259       DASTL.setAttrNameLoc(AL.getLoc());
6260       DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6261       DASTL.setAttrOperandParensRange(SourceRange());
6262       return;
6263     }
6264   }
6265 
6266   llvm_unreachable(
6267       "no address_space attribute found at the expected location!");
6268 }
6269 
fillMatrixTypeLoc(MatrixTypeLoc MTL,const ParsedAttributesView & Attrs)6270 static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
6271                               const ParsedAttributesView &Attrs) {
6272   for (const ParsedAttr &AL : Attrs) {
6273     if (AL.getKind() == ParsedAttr::AT_MatrixType) {
6274       MTL.setAttrNameLoc(AL.getLoc());
6275       MTL.setAttrRowOperand(AL.getArgAsExpr(0));
6276       MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
6277       MTL.setAttrOperandParensRange(SourceRange());
6278       return;
6279     }
6280   }
6281 
6282   llvm_unreachable("no matrix_type attribute found at the expected location!");
6283 }
6284 
6285 /// Create and instantiate a TypeSourceInfo with type source information.
6286 ///
6287 /// \param T QualType referring to the type as written in source code.
6288 ///
6289 /// \param ReturnTypeInfo For declarators whose return type does not show
6290 /// up in the normal place in the declaration specifiers (such as a C++
6291 /// conversion function), this pointer will refer to a type source information
6292 /// for that return type.
6293 static TypeSourceInfo *
GetTypeSourceInfoForDeclarator(TypeProcessingState & State,QualType T,TypeSourceInfo * ReturnTypeInfo)6294 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6295                                QualType T, TypeSourceInfo *ReturnTypeInfo) {
6296   Sema &S = State.getSema();
6297   Declarator &D = State.getDeclarator();
6298 
6299   TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6300   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6301 
6302   // Handle parameter packs whose type is a pack expansion.
6303   if (isa<PackExpansionType>(T)) {
6304     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6305     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6306   }
6307 
6308   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6309     // An AtomicTypeLoc might be produced by an atomic qualifier in this
6310     // declarator chunk.
6311     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6312       fillAtomicQualLoc(ATL, D.getTypeObject(i));
6313       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6314     }
6315 
6316     while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
6317       TL.setExpansionLoc(
6318           State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6319       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6320     }
6321 
6322     while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
6323       fillAttributedTypeLoc(TL, State);
6324       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6325     }
6326 
6327     while (DependentAddressSpaceTypeLoc TL =
6328                CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
6329       fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6330       CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6331     }
6332 
6333     if (MatrixTypeLoc TL = CurrTL.getAs<MatrixTypeLoc>())
6334       fillMatrixTypeLoc(TL, D.getTypeObject(i).getAttrs());
6335 
6336     // FIXME: Ordering here?
6337     while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
6338       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6339 
6340     DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6341     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6342   }
6343 
6344   // If we have different source information for the return type, use
6345   // that.  This really only applies to C++ conversion functions.
6346   if (ReturnTypeInfo) {
6347     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6348     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
6349     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6350   } else {
6351     TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6352   }
6353 
6354   return TInfo;
6355 }
6356 
6357 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
CreateParsedType(QualType T,TypeSourceInfo * TInfo)6358 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6359   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6360   // and Sema during declaration parsing. Try deallocating/caching them when
6361   // it's appropriate, instead of allocating them and keeping them around.
6362   LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
6363                                                        TypeAlignment);
6364   new (LocT) LocInfoType(T, TInfo);
6365   assert(LocT->getTypeClass() != T->getTypeClass() &&
6366          "LocInfoType's TypeClass conflicts with an existing Type class");
6367   return ParsedType::make(QualType(LocT, 0));
6368 }
6369 
getAsStringInternal(std::string & Str,const PrintingPolicy & Policy) const6370 void LocInfoType::getAsStringInternal(std::string &Str,
6371                                       const PrintingPolicy &Policy) const {
6372   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6373          " was used directly instead of getting the QualType through"
6374          " GetTypeFromParser");
6375 }
6376 
ActOnTypeName(Scope * S,Declarator & D)6377 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
6378   // C99 6.7.6: Type names have no identifier.  This is already validated by
6379   // the parser.
6380   assert(D.getIdentifier() == nullptr &&
6381          "Type name should have no identifier!");
6382 
6383   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6384   QualType T = TInfo->getType();
6385   if (D.isInvalidType())
6386     return true;
6387 
6388   // Make sure there are no unused decl attributes on the declarator.
6389   // We don't want to do this for ObjC parameters because we're going
6390   // to apply them to the actual parameter declaration.
6391   // Likewise, we don't want to do this for alias declarations, because
6392   // we are actually going to build a declaration from this eventually.
6393   if (D.getContext() != DeclaratorContext::ObjCParameter &&
6394       D.getContext() != DeclaratorContext::AliasDecl &&
6395       D.getContext() != DeclaratorContext::AliasTemplate)
6396     checkUnusedDeclAttributes(D);
6397 
6398   if (getLangOpts().CPlusPlus) {
6399     // Check that there are no default arguments (C++ only).
6400     CheckExtraCXXDefaultArguments(D);
6401   }
6402 
6403   return CreateParsedType(T, TInfo);
6404 }
6405 
ActOnObjCInstanceType(SourceLocation Loc)6406 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
6407   QualType T = Context.getObjCInstanceType();
6408   TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6409   return CreateParsedType(T, TInfo);
6410 }
6411 
6412 //===----------------------------------------------------------------------===//
6413 // Type Attribute Processing
6414 //===----------------------------------------------------------------------===//
6415 
6416 /// Build an AddressSpace index from a constant expression and diagnose any
6417 /// errors related to invalid address_spaces. Returns true on successfully
6418 /// building an AddressSpace index.
BuildAddressSpaceIndex(Sema & S,LangAS & ASIdx,const Expr * AddrSpace,SourceLocation AttrLoc)6419 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6420                                    const Expr *AddrSpace,
6421                                    SourceLocation AttrLoc) {
6422   if (!AddrSpace->isValueDependent()) {
6423     Optional<llvm::APSInt> OptAddrSpace =
6424         AddrSpace->getIntegerConstantExpr(S.Context);
6425     if (!OptAddrSpace) {
6426       S.Diag(AttrLoc, diag::err_attribute_argument_type)
6427           << "'address_space'" << AANT_ArgumentIntegerConstant
6428           << AddrSpace->getSourceRange();
6429       return false;
6430     }
6431     llvm::APSInt &addrSpace = *OptAddrSpace;
6432 
6433     // Bounds checking.
6434     if (addrSpace.isSigned()) {
6435       if (addrSpace.isNegative()) {
6436         S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6437             << AddrSpace->getSourceRange();
6438         return false;
6439       }
6440       addrSpace.setIsSigned(false);
6441     }
6442 
6443     llvm::APSInt max(addrSpace.getBitWidth());
6444     max =
6445         Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6446 
6447     if (addrSpace > max) {
6448       S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6449           << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6450       return false;
6451     }
6452 
6453     ASIdx =
6454         getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6455     return true;
6456   }
6457 
6458   // Default value for DependentAddressSpaceTypes
6459   ASIdx = LangAS::Default;
6460   return true;
6461 }
6462 
6463 /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6464 /// is uninstantiated. If instantiated it will apply the appropriate address
6465 /// space to the type. This function allows dependent template variables to be
6466 /// used in conjunction with the address_space attribute
BuildAddressSpaceAttr(QualType & T,LangAS ASIdx,Expr * AddrSpace,SourceLocation AttrLoc)6467 QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6468                                      SourceLocation AttrLoc) {
6469   if (!AddrSpace->isValueDependent()) {
6470     if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6471                                             AttrLoc))
6472       return QualType();
6473 
6474     return Context.getAddrSpaceQualType(T, ASIdx);
6475   }
6476 
6477   // A check with similar intentions as checking if a type already has an
6478   // address space except for on a dependent types, basically if the
6479   // current type is already a DependentAddressSpaceType then its already
6480   // lined up to have another address space on it and we can't have
6481   // multiple address spaces on the one pointer indirection
6482   if (T->getAs<DependentAddressSpaceType>()) {
6483     Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6484     return QualType();
6485   }
6486 
6487   return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6488 }
6489 
BuildAddressSpaceAttr(QualType & T,Expr * AddrSpace,SourceLocation AttrLoc)6490 QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6491                                      SourceLocation AttrLoc) {
6492   LangAS ASIdx;
6493   if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6494     return QualType();
6495   return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6496 }
6497 
6498 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6499 /// specified type.  The attribute contains 1 argument, the id of the address
6500 /// space for the type.
HandleAddressSpaceTypeAttribute(QualType & Type,const ParsedAttr & Attr,TypeProcessingState & State)6501 static void HandleAddressSpaceTypeAttribute(QualType &Type,
6502                                             const ParsedAttr &Attr,
6503                                             TypeProcessingState &State) {
6504   Sema &S = State.getSema();
6505 
6506   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6507   // qualified by an address-space qualifier."
6508   if (Type->isFunctionType()) {
6509     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6510     Attr.setInvalid();
6511     return;
6512   }
6513 
6514   LangAS ASIdx;
6515   if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6516 
6517     // Check the attribute arguments.
6518     if (Attr.getNumArgs() != 1) {
6519       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6520                                                                         << 1;
6521       Attr.setInvalid();
6522       return;
6523     }
6524 
6525     Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6526     LangAS ASIdx;
6527     if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6528       Attr.setInvalid();
6529       return;
6530     }
6531 
6532     ASTContext &Ctx = S.Context;
6533     auto *ASAttr =
6534         ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6535 
6536     // If the expression is not value dependent (not templated), then we can
6537     // apply the address space qualifiers just to the equivalent type.
6538     // Otherwise, we make an AttributedType with the modified and equivalent
6539     // type the same, and wrap it in a DependentAddressSpaceType. When this
6540     // dependent type is resolved, the qualifier is added to the equivalent type
6541     // later.
6542     QualType T;
6543     if (!ASArgExpr->isValueDependent()) {
6544       QualType EquivType =
6545           S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6546       if (EquivType.isNull()) {
6547         Attr.setInvalid();
6548         return;
6549       }
6550       T = State.getAttributedType(ASAttr, Type, EquivType);
6551     } else {
6552       T = State.getAttributedType(ASAttr, Type, Type);
6553       T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6554     }
6555 
6556     if (!T.isNull())
6557       Type = T;
6558     else
6559       Attr.setInvalid();
6560   } else {
6561     // The keyword-based type attributes imply which address space to use.
6562     ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6563                                          : Attr.asOpenCLLangAS();
6564 
6565     if (ASIdx == LangAS::Default)
6566       llvm_unreachable("Invalid address space");
6567 
6568     if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6569                                             Attr.getLoc())) {
6570       Attr.setInvalid();
6571       return;
6572     }
6573 
6574     Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6575   }
6576 }
6577 
6578 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6579 /// attribute on the specified type.
6580 ///
6581 /// Returns 'true' if the attribute was handled.
handleObjCOwnershipTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)6582 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6583                                         ParsedAttr &attr, QualType &type) {
6584   bool NonObjCPointer = false;
6585 
6586   if (!type->isDependentType() && !type->isUndeducedType()) {
6587     if (const PointerType *ptr = type->getAs<PointerType>()) {
6588       QualType pointee = ptr->getPointeeType();
6589       if (pointee->isObjCRetainableType() || pointee->isPointerType())
6590         return false;
6591       // It is important not to lose the source info that there was an attribute
6592       // applied to non-objc pointer. We will create an attributed type but
6593       // its type will be the same as the original type.
6594       NonObjCPointer = true;
6595     } else if (!type->isObjCRetainableType()) {
6596       return false;
6597     }
6598 
6599     // Don't accept an ownership attribute in the declspec if it would
6600     // just be the return type of a block pointer.
6601     if (state.isProcessingDeclSpec()) {
6602       Declarator &D = state.getDeclarator();
6603       if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6604                                   /*onlyBlockPointers=*/true))
6605         return false;
6606     }
6607   }
6608 
6609   Sema &S = state.getSema();
6610   SourceLocation AttrLoc = attr.getLoc();
6611   if (AttrLoc.isMacroID())
6612     AttrLoc =
6613         S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6614 
6615   if (!attr.isArgIdent(0)) {
6616     S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6617                                                        << AANT_ArgumentString;
6618     attr.setInvalid();
6619     return true;
6620   }
6621 
6622   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6623   Qualifiers::ObjCLifetime lifetime;
6624   if (II->isStr("none"))
6625     lifetime = Qualifiers::OCL_ExplicitNone;
6626   else if (II->isStr("strong"))
6627     lifetime = Qualifiers::OCL_Strong;
6628   else if (II->isStr("weak"))
6629     lifetime = Qualifiers::OCL_Weak;
6630   else if (II->isStr("autoreleasing"))
6631     lifetime = Qualifiers::OCL_Autoreleasing;
6632   else {
6633     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6634     attr.setInvalid();
6635     return true;
6636   }
6637 
6638   // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6639   // outside of ARC mode.
6640   if (!S.getLangOpts().ObjCAutoRefCount &&
6641       lifetime != Qualifiers::OCL_Weak &&
6642       lifetime != Qualifiers::OCL_ExplicitNone) {
6643     return true;
6644   }
6645 
6646   SplitQualType underlyingType = type.split();
6647 
6648   // Check for redundant/conflicting ownership qualifiers.
6649   if (Qualifiers::ObjCLifetime previousLifetime
6650         = type.getQualifiers().getObjCLifetime()) {
6651     // If it's written directly, that's an error.
6652     if (S.Context.hasDirectOwnershipQualifier(type)) {
6653       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6654         << type;
6655       return true;
6656     }
6657 
6658     // Otherwise, if the qualifiers actually conflict, pull sugar off
6659     // and remove the ObjCLifetime qualifiers.
6660     if (previousLifetime != lifetime) {
6661       // It's possible to have multiple local ObjCLifetime qualifiers. We
6662       // can't stop after we reach a type that is directly qualified.
6663       const Type *prevTy = nullptr;
6664       while (!prevTy || prevTy != underlyingType.Ty) {
6665         prevTy = underlyingType.Ty;
6666         underlyingType = underlyingType.getSingleStepDesugaredType();
6667       }
6668       underlyingType.Quals.removeObjCLifetime();
6669     }
6670   }
6671 
6672   underlyingType.Quals.addObjCLifetime(lifetime);
6673 
6674   if (NonObjCPointer) {
6675     StringRef name = attr.getAttrName()->getName();
6676     switch (lifetime) {
6677     case Qualifiers::OCL_None:
6678     case Qualifiers::OCL_ExplicitNone:
6679       break;
6680     case Qualifiers::OCL_Strong: name = "__strong"; break;
6681     case Qualifiers::OCL_Weak: name = "__weak"; break;
6682     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6683     }
6684     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6685       << TDS_ObjCObjOrBlock << type;
6686   }
6687 
6688   // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6689   // because having both 'T' and '__unsafe_unretained T' exist in the type
6690   // system causes unfortunate widespread consistency problems.  (For example,
6691   // they're not considered compatible types, and we mangle them identicially
6692   // as template arguments.)  These problems are all individually fixable,
6693   // but it's easier to just not add the qualifier and instead sniff it out
6694   // in specific places using isObjCInertUnsafeUnretainedType().
6695   //
6696   // Doing this does means we miss some trivial consistency checks that
6697   // would've triggered in ARC, but that's better than trying to solve all
6698   // the coexistence problems with __unsafe_unretained.
6699   if (!S.getLangOpts().ObjCAutoRefCount &&
6700       lifetime == Qualifiers::OCL_ExplicitNone) {
6701     type = state.getAttributedType(
6702         createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6703         type, type);
6704     return true;
6705   }
6706 
6707   QualType origType = type;
6708   if (!NonObjCPointer)
6709     type = S.Context.getQualifiedType(underlyingType);
6710 
6711   // If we have a valid source location for the attribute, use an
6712   // AttributedType instead.
6713   if (AttrLoc.isValid()) {
6714     type = state.getAttributedType(::new (S.Context)
6715                                        ObjCOwnershipAttr(S.Context, attr, II),
6716                                    origType, type);
6717   }
6718 
6719   auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6720                             unsigned diagnostic, QualType type) {
6721     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6722       S.DelayedDiagnostics.add(
6723           sema::DelayedDiagnostic::makeForbiddenType(
6724               S.getSourceManager().getExpansionLoc(loc),
6725               diagnostic, type, /*ignored*/ 0));
6726     } else {
6727       S.Diag(loc, diagnostic);
6728     }
6729   };
6730 
6731   // Sometimes, __weak isn't allowed.
6732   if (lifetime == Qualifiers::OCL_Weak &&
6733       !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6734 
6735     // Use a specialized diagnostic if the runtime just doesn't support them.
6736     unsigned diagnostic =
6737       (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6738                                        : diag::err_arc_weak_no_runtime);
6739 
6740     // In any case, delay the diagnostic until we know what we're parsing.
6741     diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6742 
6743     attr.setInvalid();
6744     return true;
6745   }
6746 
6747   // Forbid __weak for class objects marked as
6748   // objc_arc_weak_reference_unavailable
6749   if (lifetime == Qualifiers::OCL_Weak) {
6750     if (const ObjCObjectPointerType *ObjT =
6751           type->getAs<ObjCObjectPointerType>()) {
6752       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6753         if (Class->isArcWeakrefUnavailable()) {
6754           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6755           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6756                  diag::note_class_declared);
6757         }
6758       }
6759     }
6760   }
6761 
6762   return true;
6763 }
6764 
6765 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6766 /// attribute on the specified type.  Returns true to indicate that
6767 /// the attribute was handled, false to indicate that the type does
6768 /// not permit the attribute.
handleObjCGCTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)6769 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6770                                  QualType &type) {
6771   Sema &S = state.getSema();
6772 
6773   // Delay if this isn't some kind of pointer.
6774   if (!type->isPointerType() &&
6775       !type->isObjCObjectPointerType() &&
6776       !type->isBlockPointerType())
6777     return false;
6778 
6779   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6780     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6781     attr.setInvalid();
6782     return true;
6783   }
6784 
6785   // Check the attribute arguments.
6786   if (!attr.isArgIdent(0)) {
6787     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6788         << attr << AANT_ArgumentString;
6789     attr.setInvalid();
6790     return true;
6791   }
6792   Qualifiers::GC GCAttr;
6793   if (attr.getNumArgs() > 1) {
6794     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6795                                                                       << 1;
6796     attr.setInvalid();
6797     return true;
6798   }
6799 
6800   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6801   if (II->isStr("weak"))
6802     GCAttr = Qualifiers::Weak;
6803   else if (II->isStr("strong"))
6804     GCAttr = Qualifiers::Strong;
6805   else {
6806     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6807         << attr << II;
6808     attr.setInvalid();
6809     return true;
6810   }
6811 
6812   QualType origType = type;
6813   type = S.Context.getObjCGCQualType(origType, GCAttr);
6814 
6815   // Make an attributed type to preserve the source information.
6816   if (attr.getLoc().isValid())
6817     type = state.getAttributedType(
6818         ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6819 
6820   return true;
6821 }
6822 
6823 namespace {
6824   /// A helper class to unwrap a type down to a function for the
6825   /// purposes of applying attributes there.
6826   ///
6827   /// Use:
6828   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
6829   ///   if (unwrapped.isFunctionType()) {
6830   ///     const FunctionType *fn = unwrapped.get();
6831   ///     // change fn somehow
6832   ///     T = unwrapped.wrap(fn);
6833   ///   }
6834   struct FunctionTypeUnwrapper {
6835     enum WrapKind {
6836       Desugar,
6837       Attributed,
6838       Parens,
6839       Array,
6840       Pointer,
6841       BlockPointer,
6842       Reference,
6843       MemberPointer,
6844       MacroQualified,
6845     };
6846 
6847     QualType Original;
6848     const FunctionType *Fn;
6849     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6850 
FunctionTypeUnwrapper__anon6856d05d1311::FunctionTypeUnwrapper6851     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6852       while (true) {
6853         const Type *Ty = T.getTypePtr();
6854         if (isa<FunctionType>(Ty)) {
6855           Fn = cast<FunctionType>(Ty);
6856           return;
6857         } else if (isa<ParenType>(Ty)) {
6858           T = cast<ParenType>(Ty)->getInnerType();
6859           Stack.push_back(Parens);
6860         } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6861                    isa<IncompleteArrayType>(Ty)) {
6862           T = cast<ArrayType>(Ty)->getElementType();
6863           Stack.push_back(Array);
6864         } else if (isa<PointerType>(Ty)) {
6865           T = cast<PointerType>(Ty)->getPointeeType();
6866           Stack.push_back(Pointer);
6867         } else if (isa<BlockPointerType>(Ty)) {
6868           T = cast<BlockPointerType>(Ty)->getPointeeType();
6869           Stack.push_back(BlockPointer);
6870         } else if (isa<MemberPointerType>(Ty)) {
6871           T = cast<MemberPointerType>(Ty)->getPointeeType();
6872           Stack.push_back(MemberPointer);
6873         } else if (isa<ReferenceType>(Ty)) {
6874           T = cast<ReferenceType>(Ty)->getPointeeType();
6875           Stack.push_back(Reference);
6876         } else if (isa<AttributedType>(Ty)) {
6877           T = cast<AttributedType>(Ty)->getEquivalentType();
6878           Stack.push_back(Attributed);
6879         } else if (isa<MacroQualifiedType>(Ty)) {
6880           T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6881           Stack.push_back(MacroQualified);
6882         } else {
6883           const Type *DTy = Ty->getUnqualifiedDesugaredType();
6884           if (Ty == DTy) {
6885             Fn = nullptr;
6886             return;
6887           }
6888 
6889           T = QualType(DTy, 0);
6890           Stack.push_back(Desugar);
6891         }
6892       }
6893     }
6894 
isFunctionType__anon6856d05d1311::FunctionTypeUnwrapper6895     bool isFunctionType() const { return (Fn != nullptr); }
get__anon6856d05d1311::FunctionTypeUnwrapper6896     const FunctionType *get() const { return Fn; }
6897 
wrap__anon6856d05d1311::FunctionTypeUnwrapper6898     QualType wrap(Sema &S, const FunctionType *New) {
6899       // If T wasn't modified from the unwrapped type, do nothing.
6900       if (New == get()) return Original;
6901 
6902       Fn = New;
6903       return wrap(S.Context, Original, 0);
6904     }
6905 
6906   private:
wrap__anon6856d05d1311::FunctionTypeUnwrapper6907     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6908       if (I == Stack.size())
6909         return C.getQualifiedType(Fn, Old.getQualifiers());
6910 
6911       // Build up the inner type, applying the qualifiers from the old
6912       // type to the new type.
6913       SplitQualType SplitOld = Old.split();
6914 
6915       // As a special case, tail-recurse if there are no qualifiers.
6916       if (SplitOld.Quals.empty())
6917         return wrap(C, SplitOld.Ty, I);
6918       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6919     }
6920 
wrap__anon6856d05d1311::FunctionTypeUnwrapper6921     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6922       if (I == Stack.size()) return QualType(Fn, 0);
6923 
6924       switch (static_cast<WrapKind>(Stack[I++])) {
6925       case Desugar:
6926         // This is the point at which we potentially lose source
6927         // information.
6928         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6929 
6930       case Attributed:
6931         return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6932 
6933       case Parens: {
6934         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6935         return C.getParenType(New);
6936       }
6937 
6938       case MacroQualified:
6939         return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6940 
6941       case Array: {
6942         if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
6943           QualType New = wrap(C, CAT->getElementType(), I);
6944           return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
6945                                         CAT->getSizeModifier(),
6946                                         CAT->getIndexTypeCVRQualifiers());
6947         }
6948 
6949         if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
6950           QualType New = wrap(C, VAT->getElementType(), I);
6951           return C.getVariableArrayType(
6952               New, VAT->getSizeExpr(), VAT->getSizeModifier(),
6953               VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
6954         }
6955 
6956         const auto *IAT = cast<IncompleteArrayType>(Old);
6957         QualType New = wrap(C, IAT->getElementType(), I);
6958         return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
6959                                         IAT->getIndexTypeCVRQualifiers());
6960       }
6961 
6962       case Pointer: {
6963         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6964         return C.getPointerType(New);
6965       }
6966 
6967       case BlockPointer: {
6968         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6969         return C.getBlockPointerType(New);
6970       }
6971 
6972       case MemberPointer: {
6973         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6974         QualType New = wrap(C, OldMPT->getPointeeType(), I);
6975         return C.getMemberPointerType(New, OldMPT->getClass());
6976       }
6977 
6978       case Reference: {
6979         const ReferenceType *OldRef = cast<ReferenceType>(Old);
6980         QualType New = wrap(C, OldRef->getPointeeType(), I);
6981         if (isa<LValueReferenceType>(OldRef))
6982           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6983         else
6984           return C.getRValueReferenceType(New);
6985       }
6986       }
6987 
6988       llvm_unreachable("unknown wrapping kind");
6989     }
6990   };
6991 } // end anonymous namespace
6992 
handleMSPointerTypeQualifierAttr(TypeProcessingState & State,ParsedAttr & PAttr,QualType & Type)6993 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6994                                              ParsedAttr &PAttr, QualType &Type) {
6995   Sema &S = State.getSema();
6996 
6997   Attr *A;
6998   switch (PAttr.getKind()) {
6999   default: llvm_unreachable("Unknown attribute kind");
7000   case ParsedAttr::AT_Ptr32:
7001     A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7002     break;
7003   case ParsedAttr::AT_Ptr64:
7004     A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7005     break;
7006   case ParsedAttr::AT_SPtr:
7007     A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7008     break;
7009   case ParsedAttr::AT_UPtr:
7010     A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7011     break;
7012   }
7013 
7014   std::bitset<attr::LastAttr> Attrs;
7015   attr::Kind NewAttrKind = A->getKind();
7016   QualType Desugared = Type;
7017   const AttributedType *AT = dyn_cast<AttributedType>(Type);
7018   while (AT) {
7019     Attrs[AT->getAttrKind()] = true;
7020     Desugared = AT->getModifiedType();
7021     AT = dyn_cast<AttributedType>(Desugared);
7022   }
7023 
7024   // You cannot specify duplicate type attributes, so if the attribute has
7025   // already been applied, flag it.
7026   if (Attrs[NewAttrKind]) {
7027     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7028     return true;
7029   }
7030   Attrs[NewAttrKind] = true;
7031 
7032   // You cannot have both __sptr and __uptr on the same type, nor can you
7033   // have __ptr32 and __ptr64.
7034   if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7035     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7036         << "'__ptr32'"
7037         << "'__ptr64'";
7038     return true;
7039   } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7040     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7041         << "'__sptr'"
7042         << "'__uptr'";
7043     return true;
7044   }
7045 
7046   // Pointer type qualifiers can only operate on pointer types, but not
7047   // pointer-to-member types.
7048   //
7049   // FIXME: Should we really be disallowing this attribute if there is any
7050   // type sugar between it and the pointer (other than attributes)? Eg, this
7051   // disallows the attribute on a parenthesized pointer.
7052   // And if so, should we really allow *any* type attribute?
7053   if (!isa<PointerType>(Desugared)) {
7054     if (Type->isMemberPointerType())
7055       S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7056     else
7057       S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7058     return true;
7059   }
7060 
7061   // Add address space to type based on its attributes.
7062   LangAS ASIdx = LangAS::Default;
7063   uint64_t PtrWidth = S.Context.getTargetInfo().getPointerWidth(0);
7064   if (PtrWidth == 32) {
7065     if (Attrs[attr::Ptr64])
7066       ASIdx = LangAS::ptr64;
7067     else if (Attrs[attr::UPtr])
7068       ASIdx = LangAS::ptr32_uptr;
7069   } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7070     if (Attrs[attr::UPtr])
7071       ASIdx = LangAS::ptr32_uptr;
7072     else
7073       ASIdx = LangAS::ptr32_sptr;
7074   }
7075 
7076   QualType Pointee = Type->getPointeeType();
7077   if (ASIdx != LangAS::Default)
7078     Pointee = S.Context.getAddrSpaceQualType(
7079         S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7080   Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7081   return false;
7082 }
7083 
7084 /// Map a nullability attribute kind to a nullability kind.
mapNullabilityAttrKind(ParsedAttr::Kind kind)7085 static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7086   switch (kind) {
7087   case ParsedAttr::AT_TypeNonNull:
7088     return NullabilityKind::NonNull;
7089 
7090   case ParsedAttr::AT_TypeNullable:
7091     return NullabilityKind::Nullable;
7092 
7093   case ParsedAttr::AT_TypeNullableResult:
7094     return NullabilityKind::NullableResult;
7095 
7096   case ParsedAttr::AT_TypeNullUnspecified:
7097     return NullabilityKind::Unspecified;
7098 
7099   default:
7100     llvm_unreachable("not a nullability attribute kind");
7101   }
7102 }
7103 
7104 /// Applies a nullability type specifier to the given type, if possible.
7105 ///
7106 /// \param state The type processing state.
7107 ///
7108 /// \param type The type to which the nullability specifier will be
7109 /// added. On success, this type will be updated appropriately.
7110 ///
7111 /// \param attr The attribute as written on the type.
7112 ///
7113 /// \param allowOnArrayType Whether to accept nullability specifiers on an
7114 /// array type (e.g., because it will decay to a pointer).
7115 ///
7116 /// \returns true if a problem has been diagnosed, false on success.
checkNullabilityTypeSpecifier(TypeProcessingState & state,QualType & type,ParsedAttr & attr,bool allowOnArrayType)7117 static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
7118                                           QualType &type,
7119                                           ParsedAttr &attr,
7120                                           bool allowOnArrayType) {
7121   Sema &S = state.getSema();
7122 
7123   NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
7124   SourceLocation nullabilityLoc = attr.getLoc();
7125   bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
7126 
7127   recordNullabilitySeen(S, nullabilityLoc);
7128 
7129   // Check for existing nullability attributes on the type.
7130   QualType desugared = type;
7131   while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
7132     // Check whether there is already a null
7133     if (auto existingNullability = attributed->getImmediateNullability()) {
7134       // Duplicated nullability.
7135       if (nullability == *existingNullability) {
7136         S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
7137           << DiagNullabilityKind(nullability, isContextSensitive)
7138           << FixItHint::CreateRemoval(nullabilityLoc);
7139 
7140         break;
7141       }
7142 
7143       // Conflicting nullability.
7144       S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7145         << DiagNullabilityKind(nullability, isContextSensitive)
7146         << DiagNullabilityKind(*existingNullability, false);
7147       return true;
7148     }
7149 
7150     desugared = attributed->getModifiedType();
7151   }
7152 
7153   // If there is already a different nullability specifier, complain.
7154   // This (unlike the code above) looks through typedefs that might
7155   // have nullability specifiers on them, which means we cannot
7156   // provide a useful Fix-It.
7157   if (auto existingNullability = desugared->getNullability(S.Context)) {
7158     if (nullability != *existingNullability) {
7159       S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7160         << DiagNullabilityKind(nullability, isContextSensitive)
7161         << DiagNullabilityKind(*existingNullability, false);
7162 
7163       // Try to find the typedef with the existing nullability specifier.
7164       if (auto typedefType = desugared->getAs<TypedefType>()) {
7165         TypedefNameDecl *typedefDecl = typedefType->getDecl();
7166         QualType underlyingType = typedefDecl->getUnderlyingType();
7167         if (auto typedefNullability
7168               = AttributedType::stripOuterNullability(underlyingType)) {
7169           if (*typedefNullability == *existingNullability) {
7170             S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7171               << DiagNullabilityKind(*existingNullability, false);
7172           }
7173         }
7174       }
7175 
7176       return true;
7177     }
7178   }
7179 
7180   // If this definitely isn't a pointer type, reject the specifier.
7181   if (!desugared->canHaveNullability() &&
7182       !(allowOnArrayType && desugared->isArrayType())) {
7183     S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
7184       << DiagNullabilityKind(nullability, isContextSensitive) << type;
7185     return true;
7186   }
7187 
7188   // For the context-sensitive keywords/Objective-C property
7189   // attributes, require that the type be a single-level pointer.
7190   if (isContextSensitive) {
7191     // Make sure that the pointee isn't itself a pointer type.
7192     const Type *pointeeType = nullptr;
7193     if (desugared->isArrayType())
7194       pointeeType = desugared->getArrayElementTypeNoTypeQual();
7195     else if (desugared->isAnyPointerType())
7196       pointeeType = desugared->getPointeeType().getTypePtr();
7197 
7198     if (pointeeType && (pointeeType->isAnyPointerType() ||
7199                         pointeeType->isObjCObjectPointerType() ||
7200                         pointeeType->isMemberPointerType())) {
7201       S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
7202         << DiagNullabilityKind(nullability, true)
7203         << type;
7204       S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
7205         << DiagNullabilityKind(nullability, false)
7206         << type
7207         << FixItHint::CreateReplacement(nullabilityLoc,
7208                                         getNullabilitySpelling(nullability));
7209       return true;
7210     }
7211   }
7212 
7213   // Form the attributed type.
7214   type = state.getAttributedType(
7215       createNullabilityAttr(S.Context, attr, nullability), type, type);
7216   return false;
7217 }
7218 
7219 /// Check the application of the Objective-C '__kindof' qualifier to
7220 /// the given type.
checkObjCKindOfType(TypeProcessingState & state,QualType & type,ParsedAttr & attr)7221 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7222                                 ParsedAttr &attr) {
7223   Sema &S = state.getSema();
7224 
7225   if (isa<ObjCTypeParamType>(type)) {
7226     // Build the attributed type to record where __kindof occurred.
7227     type = state.getAttributedType(
7228         createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7229     return false;
7230   }
7231 
7232   // Find out if it's an Objective-C object or object pointer type;
7233   const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7234   const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7235                                           : type->getAs<ObjCObjectType>();
7236 
7237   // If not, we can't apply __kindof.
7238   if (!objType) {
7239     // FIXME: Handle dependent types that aren't yet object types.
7240     S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7241       << type;
7242     return true;
7243   }
7244 
7245   // Rebuild the "equivalent" type, which pushes __kindof down into
7246   // the object type.
7247   // There is no need to apply kindof on an unqualified id type.
7248   QualType equivType = S.Context.getObjCObjectType(
7249       objType->getBaseType(), objType->getTypeArgsAsWritten(),
7250       objType->getProtocols(),
7251       /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7252 
7253   // If we started with an object pointer type, rebuild it.
7254   if (ptrType) {
7255     equivType = S.Context.getObjCObjectPointerType(equivType);
7256     if (auto nullability = type->getNullability(S.Context)) {
7257       // We create a nullability attribute from the __kindof attribute.
7258       // Make sure that will make sense.
7259       assert(attr.getAttributeSpellingListIndex() == 0 &&
7260              "multiple spellings for __kindof?");
7261       Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7262       A->setImplicit(true);
7263       equivType = state.getAttributedType(A, equivType, equivType);
7264     }
7265   }
7266 
7267   // Build the attributed type to record where __kindof occurred.
7268   type = state.getAttributedType(
7269       createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7270   return false;
7271 }
7272 
7273 /// Distribute a nullability type attribute that cannot be applied to
7274 /// the type specifier to a pointer, block pointer, or member pointer
7275 /// declarator, complaining if necessary.
7276 ///
7277 /// \returns true if the nullability annotation was distributed, false
7278 /// otherwise.
distributeNullabilityTypeAttr(TypeProcessingState & state,QualType type,ParsedAttr & attr)7279 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7280                                           QualType type, ParsedAttr &attr) {
7281   Declarator &declarator = state.getDeclarator();
7282 
7283   /// Attempt to move the attribute to the specified chunk.
7284   auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7285     // If there is already a nullability attribute there, don't add
7286     // one.
7287     if (hasNullabilityAttr(chunk.getAttrs()))
7288       return false;
7289 
7290     // Complain about the nullability qualifier being in the wrong
7291     // place.
7292     enum {
7293       PK_Pointer,
7294       PK_BlockPointer,
7295       PK_MemberPointer,
7296       PK_FunctionPointer,
7297       PK_MemberFunctionPointer,
7298     } pointerKind
7299       = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7300                                                              : PK_Pointer)
7301         : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7302         : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7303 
7304     auto diag = state.getSema().Diag(attr.getLoc(),
7305                                      diag::warn_nullability_declspec)
7306       << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7307                              attr.isContextSensitiveKeywordAttribute())
7308       << type
7309       << static_cast<unsigned>(pointerKind);
7310 
7311     // FIXME: MemberPointer chunks don't carry the location of the *.
7312     if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7313       diag << FixItHint::CreateRemoval(attr.getLoc())
7314            << FixItHint::CreateInsertion(
7315                   state.getSema().getPreprocessor().getLocForEndOfToken(
7316                       chunk.Loc),
7317                   " " + attr.getAttrName()->getName().str() + " ");
7318     }
7319 
7320     moveAttrFromListToList(attr, state.getCurrentAttributes(),
7321                            chunk.getAttrs());
7322     return true;
7323   };
7324 
7325   // Move it to the outermost pointer, member pointer, or block
7326   // pointer declarator.
7327   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7328     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7329     switch (chunk.Kind) {
7330     case DeclaratorChunk::Pointer:
7331     case DeclaratorChunk::BlockPointer:
7332     case DeclaratorChunk::MemberPointer:
7333       return moveToChunk(chunk, false);
7334 
7335     case DeclaratorChunk::Paren:
7336     case DeclaratorChunk::Array:
7337       continue;
7338 
7339     case DeclaratorChunk::Function:
7340       // Try to move past the return type to a function/block/member
7341       // function pointer.
7342       if (DeclaratorChunk *dest = maybeMovePastReturnType(
7343                                     declarator, i,
7344                                     /*onlyBlockPointers=*/false)) {
7345         return moveToChunk(*dest, true);
7346       }
7347 
7348       return false;
7349 
7350     // Don't walk through these.
7351     case DeclaratorChunk::Reference:
7352     case DeclaratorChunk::Pipe:
7353       return false;
7354     }
7355   }
7356 
7357   return false;
7358 }
7359 
getCCTypeAttr(ASTContext & Ctx,ParsedAttr & Attr)7360 static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7361   assert(!Attr.isInvalid());
7362   switch (Attr.getKind()) {
7363   default:
7364     llvm_unreachable("not a calling convention attribute");
7365   case ParsedAttr::AT_CDecl:
7366     return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7367   case ParsedAttr::AT_FastCall:
7368     return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7369   case ParsedAttr::AT_StdCall:
7370     return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7371   case ParsedAttr::AT_ThisCall:
7372     return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7373   case ParsedAttr::AT_RegCall:
7374     return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7375   case ParsedAttr::AT_Pascal:
7376     return createSimpleAttr<PascalAttr>(Ctx, Attr);
7377   case ParsedAttr::AT_SwiftCall:
7378     return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7379   case ParsedAttr::AT_SwiftAsyncCall:
7380     return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7381   case ParsedAttr::AT_VectorCall:
7382     return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7383   case ParsedAttr::AT_AArch64VectorPcs:
7384     return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7385   case ParsedAttr::AT_Pcs: {
7386     // The attribute may have had a fixit applied where we treated an
7387     // identifier as a string literal.  The contents of the string are valid,
7388     // but the form may not be.
7389     StringRef Str;
7390     if (Attr.isArgExpr(0))
7391       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7392     else
7393       Str = Attr.getArgAsIdent(0)->Ident->getName();
7394     PcsAttr::PCSType Type;
7395     if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7396       llvm_unreachable("already validated the attribute");
7397     return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7398   }
7399   case ParsedAttr::AT_IntelOclBicc:
7400     return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7401   case ParsedAttr::AT_MSABI:
7402     return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7403   case ParsedAttr::AT_SysVABI:
7404     return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7405   case ParsedAttr::AT_PreserveMost:
7406     return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7407   case ParsedAttr::AT_PreserveAll:
7408     return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7409   }
7410   llvm_unreachable("unexpected attribute kind!");
7411 }
7412 
7413 /// Process an individual function attribute.  Returns true to
7414 /// indicate that the attribute was handled, false if it wasn't.
handleFunctionTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)7415 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7416                                    QualType &type) {
7417   Sema &S = state.getSema();
7418 
7419   FunctionTypeUnwrapper unwrapped(S, type);
7420 
7421   if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7422     if (S.CheckAttrNoArgs(attr))
7423       return true;
7424 
7425     // Delay if this is not a function type.
7426     if (!unwrapped.isFunctionType())
7427       return false;
7428 
7429     // Otherwise we can process right away.
7430     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7431     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7432     return true;
7433   }
7434 
7435   if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7436     // Delay if this is not a function type.
7437     if (!unwrapped.isFunctionType())
7438       return false;
7439 
7440     // Ignore if we don't have CMSE enabled.
7441     if (!S.getLangOpts().Cmse) {
7442       S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7443       attr.setInvalid();
7444       return true;
7445     }
7446 
7447     // Otherwise we can process right away.
7448     FunctionType::ExtInfo EI =
7449         unwrapped.get()->getExtInfo().withCmseNSCall(true);
7450     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7451     return true;
7452   }
7453 
7454   // ns_returns_retained is not always a type attribute, but if we got
7455   // here, we're treating it as one right now.
7456   if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7457     if (attr.getNumArgs()) return true;
7458 
7459     // Delay if this is not a function type.
7460     if (!unwrapped.isFunctionType())
7461       return false;
7462 
7463     // Check whether the return type is reasonable.
7464     if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
7465                                            unwrapped.get()->getReturnType()))
7466       return true;
7467 
7468     // Only actually change the underlying type in ARC builds.
7469     QualType origType = type;
7470     if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7471       FunctionType::ExtInfo EI
7472         = unwrapped.get()->getExtInfo().withProducesResult(true);
7473       type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7474     }
7475     type = state.getAttributedType(
7476         createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7477         origType, type);
7478     return true;
7479   }
7480 
7481   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7482     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7483       return true;
7484 
7485     // Delay if this is not a function type.
7486     if (!unwrapped.isFunctionType())
7487       return false;
7488 
7489     FunctionType::ExtInfo EI =
7490         unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7491     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7492     return true;
7493   }
7494 
7495   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7496     if (!S.getLangOpts().CFProtectionBranch) {
7497       S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7498       attr.setInvalid();
7499       return true;
7500     }
7501 
7502     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7503       return true;
7504 
7505     // If this is not a function type, warning will be asserted by subject
7506     // check.
7507     if (!unwrapped.isFunctionType())
7508       return true;
7509 
7510     FunctionType::ExtInfo EI =
7511       unwrapped.get()->getExtInfo().withNoCfCheck(true);
7512     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7513     return true;
7514   }
7515 
7516   if (attr.getKind() == ParsedAttr::AT_Regparm) {
7517     unsigned value;
7518     if (S.CheckRegparmAttr(attr, value))
7519       return true;
7520 
7521     // Delay if this is not a function type.
7522     if (!unwrapped.isFunctionType())
7523       return false;
7524 
7525     // Diagnose regparm with fastcall.
7526     const FunctionType *fn = unwrapped.get();
7527     CallingConv CC = fn->getCallConv();
7528     if (CC == CC_X86FastCall) {
7529       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7530         << FunctionType::getNameForCallConv(CC)
7531         << "regparm";
7532       attr.setInvalid();
7533       return true;
7534     }
7535 
7536     FunctionType::ExtInfo EI =
7537       unwrapped.get()->getExtInfo().withRegParm(value);
7538     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7539     return true;
7540   }
7541 
7542   if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7543     // Delay if this is not a function type.
7544     if (!unwrapped.isFunctionType())
7545       return false;
7546 
7547     if (S.CheckAttrNoArgs(attr)) {
7548       attr.setInvalid();
7549       return true;
7550     }
7551 
7552     // Otherwise we can process right away.
7553     auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7554 
7555     // MSVC ignores nothrow if it is in conflict with an explicit exception
7556     // specification.
7557     if (Proto->hasExceptionSpec()) {
7558       switch (Proto->getExceptionSpecType()) {
7559       case EST_None:
7560         llvm_unreachable("This doesn't have an exception spec!");
7561 
7562       case EST_DynamicNone:
7563       case EST_BasicNoexcept:
7564       case EST_NoexceptTrue:
7565       case EST_NoThrow:
7566         // Exception spec doesn't conflict with nothrow, so don't warn.
7567         LLVM_FALLTHROUGH;
7568       case EST_Unparsed:
7569       case EST_Uninstantiated:
7570       case EST_DependentNoexcept:
7571       case EST_Unevaluated:
7572         // We don't have enough information to properly determine if there is a
7573         // conflict, so suppress the warning.
7574         break;
7575       case EST_Dynamic:
7576       case EST_MSAny:
7577       case EST_NoexceptFalse:
7578         S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
7579         break;
7580       }
7581       return true;
7582     }
7583 
7584     type = unwrapped.wrap(
7585         S, S.Context
7586                .getFunctionTypeWithExceptionSpec(
7587                    QualType{Proto, 0},
7588                    FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
7589                ->getAs<FunctionType>());
7590     return true;
7591   }
7592 
7593   // Delay if the type didn't work out to a function.
7594   if (!unwrapped.isFunctionType()) return false;
7595 
7596   // Otherwise, a calling convention.
7597   CallingConv CC;
7598   if (S.CheckCallingConvAttr(attr, CC))
7599     return true;
7600 
7601   const FunctionType *fn = unwrapped.get();
7602   CallingConv CCOld = fn->getCallConv();
7603   Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7604 
7605   if (CCOld != CC) {
7606     // Error out on when there's already an attribute on the type
7607     // and the CCs don't match.
7608     if (S.getCallingConvAttributedType(type)) {
7609       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7610         << FunctionType::getNameForCallConv(CC)
7611         << FunctionType::getNameForCallConv(CCOld);
7612       attr.setInvalid();
7613       return true;
7614     }
7615   }
7616 
7617   // Diagnose use of variadic functions with calling conventions that
7618   // don't support them (e.g. because they're callee-cleanup).
7619   // We delay warning about this on unprototyped function declarations
7620   // until after redeclaration checking, just in case we pick up a
7621   // prototype that way.  And apparently we also "delay" warning about
7622   // unprototyped function types in general, despite not necessarily having
7623   // much ability to diagnose it later.
7624   if (!supportsVariadicCall(CC)) {
7625     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7626     if (FnP && FnP->isVariadic()) {
7627       // stdcall and fastcall are ignored with a warning for GCC and MS
7628       // compatibility.
7629       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7630         return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7631                << FunctionType::getNameForCallConv(CC)
7632                << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
7633 
7634       attr.setInvalid();
7635       return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
7636              << FunctionType::getNameForCallConv(CC);
7637     }
7638   }
7639 
7640   // Also diagnose fastcall with regparm.
7641   if (CC == CC_X86FastCall && fn->getHasRegParm()) {
7642     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7643         << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
7644     attr.setInvalid();
7645     return true;
7646   }
7647 
7648   // Modify the CC from the wrapped function type, wrap it all back, and then
7649   // wrap the whole thing in an AttributedType as written.  The modified type
7650   // might have a different CC if we ignored the attribute.
7651   QualType Equivalent;
7652   if (CCOld == CC) {
7653     Equivalent = type;
7654   } else {
7655     auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7656     Equivalent =
7657       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7658   }
7659   type = state.getAttributedType(CCAttr, type, Equivalent);
7660   return true;
7661 }
7662 
hasExplicitCallingConv(QualType T)7663 bool Sema::hasExplicitCallingConv(QualType T) {
7664   const AttributedType *AT;
7665 
7666   // Stop if we'd be stripping off a typedef sugar node to reach the
7667   // AttributedType.
7668   while ((AT = T->getAs<AttributedType>()) &&
7669          AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7670     if (AT->isCallingConv())
7671       return true;
7672     T = AT->getModifiedType();
7673   }
7674   return false;
7675 }
7676 
adjustMemberFunctionCC(QualType & T,bool IsStatic,bool IsCtorOrDtor,SourceLocation Loc)7677 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
7678                                   SourceLocation Loc) {
7679   FunctionTypeUnwrapper Unwrapped(*this, T);
7680   const FunctionType *FT = Unwrapped.get();
7681   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
7682                      cast<FunctionProtoType>(FT)->isVariadic());
7683   CallingConv CurCC = FT->getCallConv();
7684   CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
7685 
7686   if (CurCC == ToCC)
7687     return;
7688 
7689   // MS compiler ignores explicit calling convention attributes on structors. We
7690   // should do the same.
7691   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
7692     // Issue a warning on ignored calling convention -- except of __stdcall.
7693     // Again, this is what MS compiler does.
7694     if (CurCC != CC_X86StdCall)
7695       Diag(Loc, diag::warn_cconv_unsupported)
7696           << FunctionType::getNameForCallConv(CurCC)
7697           << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
7698   // Default adjustment.
7699   } else {
7700     // Only adjust types with the default convention.  For example, on Windows
7701     // we should adjust a __cdecl type to __thiscall for instance methods, and a
7702     // __thiscall type to __cdecl for static methods.
7703     CallingConv DefaultCC =
7704         Context.getDefaultCallingConvention(IsVariadic, IsStatic);
7705 
7706     if (CurCC != DefaultCC || DefaultCC == ToCC)
7707       return;
7708 
7709     if (hasExplicitCallingConv(T))
7710       return;
7711   }
7712 
7713   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
7714   QualType Wrapped = Unwrapped.wrap(*this, FT);
7715   T = Context.getAdjustedType(T, Wrapped);
7716 }
7717 
7718 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
7719 /// and float scalars, although arrays, pointers, and function return values are
7720 /// allowed in conjunction with this construct. Aggregates with this attribute
7721 /// are invalid, even if they are of the same size as a corresponding scalar.
7722 /// The raw attribute should contain precisely 1 argument, the vector size for
7723 /// the variable, measured in bytes. If curType and rawAttr are well formed,
7724 /// this routine will return a new vector type.
HandleVectorSizeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)7725 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
7726                                  Sema &S) {
7727   // Check the attribute arguments.
7728   if (Attr.getNumArgs() != 1) {
7729     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7730                                                                       << 1;
7731     Attr.setInvalid();
7732     return;
7733   }
7734 
7735   Expr *SizeExpr = Attr.getArgAsExpr(0);
7736   QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7737   if (!T.isNull())
7738     CurType = T;
7739   else
7740     Attr.setInvalid();
7741 }
7742 
7743 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
7744 /// a type.
HandleExtVectorTypeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)7745 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7746                                     Sema &S) {
7747   // check the attribute arguments.
7748   if (Attr.getNumArgs() != 1) {
7749     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7750                                                                       << 1;
7751     return;
7752   }
7753 
7754   Expr *SizeExpr = Attr.getArgAsExpr(0);
7755   QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
7756   if (!T.isNull())
7757     CurType = T;
7758 }
7759 
isPermittedNeonBaseType(QualType & Ty,VectorType::VectorKind VecKind,Sema & S)7760 static bool isPermittedNeonBaseType(QualType &Ty,
7761                                     VectorType::VectorKind VecKind, Sema &S) {
7762   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7763   if (!BTy)
7764     return false;
7765 
7766   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7767 
7768   // Signed poly is mathematically wrong, but has been baked into some ABIs by
7769   // now.
7770   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7771                         Triple.getArch() == llvm::Triple::aarch64_32 ||
7772                         Triple.getArch() == llvm::Triple::aarch64_be;
7773   if (VecKind == VectorType::NeonPolyVector) {
7774     if (IsPolyUnsigned) {
7775       // AArch64 polynomial vectors are unsigned.
7776       return BTy->getKind() == BuiltinType::UChar ||
7777              BTy->getKind() == BuiltinType::UShort ||
7778              BTy->getKind() == BuiltinType::ULong ||
7779              BTy->getKind() == BuiltinType::ULongLong;
7780     } else {
7781       // AArch32 polynomial vectors are signed.
7782       return BTy->getKind() == BuiltinType::SChar ||
7783              BTy->getKind() == BuiltinType::Short ||
7784              BTy->getKind() == BuiltinType::LongLong;
7785     }
7786   }
7787 
7788   // Non-polynomial vector types: the usual suspects are allowed, as well as
7789   // float64_t on AArch64.
7790   if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
7791       BTy->getKind() == BuiltinType::Double)
7792     return true;
7793 
7794   return BTy->getKind() == BuiltinType::SChar ||
7795          BTy->getKind() == BuiltinType::UChar ||
7796          BTy->getKind() == BuiltinType::Short ||
7797          BTy->getKind() == BuiltinType::UShort ||
7798          BTy->getKind() == BuiltinType::Int ||
7799          BTy->getKind() == BuiltinType::UInt ||
7800          BTy->getKind() == BuiltinType::Long ||
7801          BTy->getKind() == BuiltinType::ULong ||
7802          BTy->getKind() == BuiltinType::LongLong ||
7803          BTy->getKind() == BuiltinType::ULongLong ||
7804          BTy->getKind() == BuiltinType::Float ||
7805          BTy->getKind() == BuiltinType::Half ||
7806          BTy->getKind() == BuiltinType::BFloat16;
7807 }
7808 
verifyValidIntegerConstantExpr(Sema & S,const ParsedAttr & Attr,llvm::APSInt & Result)7809 static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
7810                                            llvm::APSInt &Result) {
7811   const auto *AttrExpr = Attr.getArgAsExpr(0);
7812   if (!AttrExpr->isTypeDependent() && !AttrExpr->isValueDependent()) {
7813     if (Optional<llvm::APSInt> Res =
7814             AttrExpr->getIntegerConstantExpr(S.Context)) {
7815       Result = *Res;
7816       return true;
7817     }
7818   }
7819   S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7820       << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
7821   Attr.setInvalid();
7822   return false;
7823 }
7824 
7825 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7826 /// "neon_polyvector_type" attributes are used to create vector types that
7827 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
7828 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
7829 /// the argument to these Neon attributes is the number of vector elements,
7830 /// not the vector size in bytes.  The vector width and element type must
7831 /// match one of the standard Neon vector types.
HandleNeonVectorTypeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S,VectorType::VectorKind VecKind)7832 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7833                                      Sema &S, VectorType::VectorKind VecKind) {
7834   // Target must have NEON (or MVE, whose vectors are similar enough
7835   // not to need a separate attribute)
7836   if (!S.Context.getTargetInfo().hasFeature("neon") &&
7837       !S.Context.getTargetInfo().hasFeature("mve")) {
7838     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
7839         << Attr << "'neon' or 'mve'";
7840     Attr.setInvalid();
7841     return;
7842   }
7843   // Check the attribute arguments.
7844   if (Attr.getNumArgs() != 1) {
7845     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7846                                                                       << 1;
7847     Attr.setInvalid();
7848     return;
7849   }
7850   // The number of elements must be an ICE.
7851   llvm::APSInt numEltsInt(32);
7852   if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
7853     return;
7854 
7855   // Only certain element types are supported for Neon vectors.
7856   if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7857     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7858     Attr.setInvalid();
7859     return;
7860   }
7861 
7862   // The total size of the vector must be 64 or 128 bits.
7863   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7864   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7865   unsigned vecSize = typeSize * numElts;
7866   if (vecSize != 64 && vecSize != 128) {
7867     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7868     Attr.setInvalid();
7869     return;
7870   }
7871 
7872   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7873 }
7874 
7875 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
7876 /// used to create fixed-length versions of sizeless SVE types defined by
7877 /// the ACLE, such as svint32_t and svbool_t.
HandleArmSveVectorBitsTypeAttr(QualType & CurType,ParsedAttr & Attr,Sema & S)7878 static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
7879                                            Sema &S) {
7880   // Target must have SVE.
7881   if (!S.Context.getTargetInfo().hasFeature("sve")) {
7882     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
7883     Attr.setInvalid();
7884     return;
7885   }
7886 
7887   // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified.
7888   if (!S.getLangOpts().ArmSveVectorBits) {
7889     S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
7890         << Attr;
7891     Attr.setInvalid();
7892     return;
7893   }
7894 
7895   // Check the attribute arguments.
7896   if (Attr.getNumArgs() != 1) {
7897     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
7898         << Attr << 1;
7899     Attr.setInvalid();
7900     return;
7901   }
7902 
7903   // The vector size must be an integer constant expression.
7904   llvm::APSInt SveVectorSizeInBits(32);
7905   if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
7906     return;
7907 
7908   unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
7909 
7910   // The attribute vector size must match -msve-vector-bits.
7911   if (VecSize != S.getLangOpts().ArmSveVectorBits) {
7912     S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
7913         << VecSize << S.getLangOpts().ArmSveVectorBits;
7914     Attr.setInvalid();
7915     return;
7916   }
7917 
7918   // Attribute can only be attached to a single SVE vector or predicate type.
7919   if (!CurType->isVLSTBuiltinType()) {
7920     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
7921         << Attr << CurType;
7922     Attr.setInvalid();
7923     return;
7924   }
7925 
7926   const auto *BT = CurType->castAs<BuiltinType>();
7927 
7928   QualType EltType = CurType->getSveEltType(S.Context);
7929   unsigned TypeSize = S.Context.getTypeSize(EltType);
7930   VectorType::VectorKind VecKind = VectorType::SveFixedLengthDataVector;
7931   if (BT->getKind() == BuiltinType::SveBool) {
7932     // Predicates are represented as i8.
7933     VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
7934     VecKind = VectorType::SveFixedLengthPredicateVector;
7935   } else
7936     VecSize /= TypeSize;
7937   CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
7938 }
7939 
HandleArmMveStrictPolymorphismAttr(TypeProcessingState & State,QualType & CurType,ParsedAttr & Attr)7940 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
7941                                                QualType &CurType,
7942                                                ParsedAttr &Attr) {
7943   const VectorType *VT = dyn_cast<VectorType>(CurType);
7944   if (!VT || VT->getVectorKind() != VectorType::NeonVector) {
7945     State.getSema().Diag(Attr.getLoc(),
7946                          diag::err_attribute_arm_mve_polymorphism);
7947     Attr.setInvalid();
7948     return;
7949   }
7950 
7951   CurType =
7952       State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
7953                                   State.getSema().Context, Attr),
7954                               CurType, CurType);
7955 }
7956 
7957 /// Handle OpenCL Access Qualifier Attribute.
HandleOpenCLAccessAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)7958 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
7959                                    Sema &S) {
7960   // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7961   if (!(CurType->isImageType() || CurType->isPipeType())) {
7962     S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7963     Attr.setInvalid();
7964     return;
7965   }
7966 
7967   if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7968     QualType BaseTy = TypedefTy->desugar();
7969 
7970     std::string PrevAccessQual;
7971     if (BaseTy->isPipeType()) {
7972       if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
7973         OpenCLAccessAttr *Attr =
7974             TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
7975         PrevAccessQual = Attr->getSpelling();
7976       } else {
7977         PrevAccessQual = "read_only";
7978       }
7979     } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
7980 
7981       switch (ImgType->getKind()) {
7982         #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7983       case BuiltinType::Id:                                          \
7984         PrevAccessQual = #Access;                                    \
7985         break;
7986         #include "clang/Basic/OpenCLImageTypes.def"
7987       default:
7988         llvm_unreachable("Unable to find corresponding image type.");
7989       }
7990     } else {
7991       llvm_unreachable("unexpected type");
7992     }
7993     StringRef AttrName = Attr.getAttrName()->getName();
7994     if (PrevAccessQual == AttrName.ltrim("_")) {
7995       // Duplicated qualifiers
7996       S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
7997          << AttrName << Attr.getRange();
7998     } else {
7999       // Contradicting qualifiers
8000       S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8001     }
8002 
8003     S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8004            diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8005   } else if (CurType->isPipeType()) {
8006     if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8007       QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8008       CurType = S.Context.getWritePipeType(ElemType);
8009     }
8010   }
8011 }
8012 
8013 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
HandleMatrixTypeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)8014 static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8015                                  Sema &S) {
8016   if (!S.getLangOpts().MatrixTypes) {
8017     S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8018     return;
8019   }
8020 
8021   if (Attr.getNumArgs() != 2) {
8022     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8023         << Attr << 2;
8024     return;
8025   }
8026 
8027   Expr *RowsExpr = Attr.getArgAsExpr(0);
8028   Expr *ColsExpr = Attr.getArgAsExpr(1);
8029   QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8030   if (!T.isNull())
8031     CurType = T;
8032 }
8033 
HandleLifetimeBoundAttr(TypeProcessingState & State,QualType & CurType,ParsedAttr & Attr)8034 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8035                                     QualType &CurType,
8036                                     ParsedAttr &Attr) {
8037   if (State.getDeclarator().isDeclarationOfFunction()) {
8038     CurType = State.getAttributedType(
8039         createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8040         CurType, CurType);
8041   }
8042 }
8043 
isAddressSpaceKind(const ParsedAttr & attr)8044 static bool isAddressSpaceKind(const ParsedAttr &attr) {
8045   auto attrKind = attr.getKind();
8046 
8047   return attrKind == ParsedAttr::AT_AddressSpace ||
8048          attrKind == ParsedAttr::AT_OpenCLPrivateAddressSpace ||
8049          attrKind == ParsedAttr::AT_OpenCLGlobalAddressSpace ||
8050          attrKind == ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace ||
8051          attrKind == ParsedAttr::AT_OpenCLGlobalHostAddressSpace ||
8052          attrKind == ParsedAttr::AT_OpenCLLocalAddressSpace ||
8053          attrKind == ParsedAttr::AT_OpenCLConstantAddressSpace ||
8054          attrKind == ParsedAttr::AT_OpenCLGenericAddressSpace;
8055 }
8056 
processTypeAttrs(TypeProcessingState & state,QualType & type,TypeAttrLocation TAL,ParsedAttributesView & attrs)8057 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8058                              TypeAttrLocation TAL,
8059                              ParsedAttributesView &attrs) {
8060   // Scan through and apply attributes to this type where it makes sense.  Some
8061   // attributes (such as __address_space__, __vector_size__, etc) apply to the
8062   // type, but others can be present in the type specifiers even though they
8063   // apply to the decl.  Here we apply type attributes and ignore the rest.
8064 
8065   // This loop modifies the list pretty frequently, but we still need to make
8066   // sure we visit every element once. Copy the attributes list, and iterate
8067   // over that.
8068   ParsedAttributesView AttrsCopy{attrs};
8069 
8070   state.setParsedNoDeref(false);
8071 
8072   for (ParsedAttr &attr : AttrsCopy) {
8073 
8074     // Skip attributes that were marked to be invalid.
8075     if (attr.isInvalid())
8076       continue;
8077 
8078     if (attr.isStandardAttributeSyntax()) {
8079       // [[gnu::...]] attributes are treated as declaration attributes, so may
8080       // not appertain to a DeclaratorChunk. If we handle them as type
8081       // attributes, accept them in that position and diagnose the GCC
8082       // incompatibility.
8083       if (attr.isGNUScope()) {
8084         bool IsTypeAttr = attr.isTypeAttr();
8085         if (TAL == TAL_DeclChunk) {
8086           state.getSema().Diag(attr.getLoc(),
8087                                IsTypeAttr
8088                                    ? diag::warn_gcc_ignores_type_attr
8089                                    : diag::warn_cxx11_gnu_attribute_on_type)
8090               << attr;
8091           if (!IsTypeAttr)
8092             continue;
8093         }
8094       } else if (TAL != TAL_DeclChunk && !isAddressSpaceKind(attr)) {
8095         // Otherwise, only consider type processing for a C++11 attribute if
8096         // it's actually been applied to a type.
8097         // We also allow C++11 address_space and
8098         // OpenCL language address space attributes to pass through.
8099         continue;
8100       }
8101     }
8102 
8103     // If this is an attribute we can handle, do so now,
8104     // otherwise, add it to the FnAttrs list for rechaining.
8105     switch (attr.getKind()) {
8106     default:
8107       // A [[]] attribute on a declarator chunk must appertain to a type.
8108       if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk) {
8109         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8110             << attr;
8111         attr.setUsedAsTypeAttr();
8112       }
8113       break;
8114 
8115     case ParsedAttr::UnknownAttribute:
8116       if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk)
8117         state.getSema().Diag(attr.getLoc(),
8118                              diag::warn_unknown_attribute_ignored)
8119             << attr << attr.getRange();
8120       break;
8121 
8122     case ParsedAttr::IgnoredAttribute:
8123       break;
8124 
8125     case ParsedAttr::AT_MayAlias:
8126       // FIXME: This attribute needs to actually be handled, but if we ignore
8127       // it it breaks large amounts of Linux software.
8128       attr.setUsedAsTypeAttr();
8129       break;
8130     case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8131     case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8132     case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8133     case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8134     case ParsedAttr::AT_OpenCLLocalAddressSpace:
8135     case ParsedAttr::AT_OpenCLConstantAddressSpace:
8136     case ParsedAttr::AT_OpenCLGenericAddressSpace:
8137     case ParsedAttr::AT_AddressSpace:
8138       HandleAddressSpaceTypeAttribute(type, attr, state);
8139       attr.setUsedAsTypeAttr();
8140       break;
8141     OBJC_POINTER_TYPE_ATTRS_CASELIST:
8142       if (!handleObjCPointerTypeAttr(state, attr, type))
8143         distributeObjCPointerTypeAttr(state, attr, type);
8144       attr.setUsedAsTypeAttr();
8145       break;
8146     case ParsedAttr::AT_VectorSize:
8147       HandleVectorSizeAttr(type, attr, state.getSema());
8148       attr.setUsedAsTypeAttr();
8149       break;
8150     case ParsedAttr::AT_ExtVectorType:
8151       HandleExtVectorTypeAttr(type, attr, state.getSema());
8152       attr.setUsedAsTypeAttr();
8153       break;
8154     case ParsedAttr::AT_NeonVectorType:
8155       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8156                                VectorType::NeonVector);
8157       attr.setUsedAsTypeAttr();
8158       break;
8159     case ParsedAttr::AT_NeonPolyVectorType:
8160       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8161                                VectorType::NeonPolyVector);
8162       attr.setUsedAsTypeAttr();
8163       break;
8164     case ParsedAttr::AT_ArmSveVectorBits:
8165       HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8166       attr.setUsedAsTypeAttr();
8167       break;
8168     case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8169       HandleArmMveStrictPolymorphismAttr(state, type, attr);
8170       attr.setUsedAsTypeAttr();
8171       break;
8172     }
8173     case ParsedAttr::AT_OpenCLAccess:
8174       HandleOpenCLAccessAttr(type, attr, state.getSema());
8175       attr.setUsedAsTypeAttr();
8176       break;
8177     case ParsedAttr::AT_LifetimeBound:
8178       if (TAL == TAL_DeclChunk)
8179         HandleLifetimeBoundAttr(state, type, attr);
8180       break;
8181 
8182     case ParsedAttr::AT_NoDeref: {
8183       ASTContext &Ctx = state.getSema().Context;
8184       type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8185                                      type, type);
8186       attr.setUsedAsTypeAttr();
8187       state.setParsedNoDeref(true);
8188       break;
8189     }
8190 
8191     case ParsedAttr::AT_MatrixType:
8192       HandleMatrixTypeAttr(type, attr, state.getSema());
8193       attr.setUsedAsTypeAttr();
8194       break;
8195 
8196     MS_TYPE_ATTRS_CASELIST:
8197       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8198         attr.setUsedAsTypeAttr();
8199       break;
8200 
8201 
8202     NULLABILITY_TYPE_ATTRS_CASELIST:
8203       // Either add nullability here or try to distribute it.  We
8204       // don't want to distribute the nullability specifier past any
8205       // dependent type, because that complicates the user model.
8206       if (type->canHaveNullability() || type->isDependentType() ||
8207           type->isArrayType() ||
8208           !distributeNullabilityTypeAttr(state, type, attr)) {
8209         unsigned endIndex;
8210         if (TAL == TAL_DeclChunk)
8211           endIndex = state.getCurrentChunkIndex();
8212         else
8213           endIndex = state.getDeclarator().getNumTypeObjects();
8214         bool allowOnArrayType =
8215             state.getDeclarator().isPrototypeContext() &&
8216             !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8217         if (checkNullabilityTypeSpecifier(
8218               state,
8219               type,
8220               attr,
8221               allowOnArrayType)) {
8222           attr.setInvalid();
8223         }
8224 
8225         attr.setUsedAsTypeAttr();
8226       }
8227       break;
8228 
8229     case ParsedAttr::AT_ObjCKindOf:
8230       // '__kindof' must be part of the decl-specifiers.
8231       switch (TAL) {
8232       case TAL_DeclSpec:
8233         break;
8234 
8235       case TAL_DeclChunk:
8236       case TAL_DeclName:
8237         state.getSema().Diag(attr.getLoc(),
8238                              diag::err_objc_kindof_wrong_position)
8239             << FixItHint::CreateRemoval(attr.getLoc())
8240             << FixItHint::CreateInsertion(
8241                    state.getDeclarator().getDeclSpec().getBeginLoc(),
8242                    "__kindof ");
8243         break;
8244       }
8245 
8246       // Apply it regardless.
8247       if (checkObjCKindOfType(state, type, attr))
8248         attr.setInvalid();
8249       break;
8250 
8251     case ParsedAttr::AT_NoThrow:
8252     // Exception Specifications aren't generally supported in C mode throughout
8253     // clang, so revert to attribute-based handling for C.
8254       if (!state.getSema().getLangOpts().CPlusPlus)
8255         break;
8256       LLVM_FALLTHROUGH;
8257     FUNCTION_TYPE_ATTRS_CASELIST:
8258       attr.setUsedAsTypeAttr();
8259 
8260       // Never process function type attributes as part of the
8261       // declaration-specifiers.
8262       if (TAL == TAL_DeclSpec)
8263         distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
8264 
8265       // Otherwise, handle the possible delays.
8266       else if (!handleFunctionTypeAttr(state, attr, type))
8267         distributeFunctionTypeAttr(state, attr, type);
8268       break;
8269     case ParsedAttr::AT_AcquireHandle: {
8270       if (!type->isFunctionType())
8271         return;
8272 
8273       if (attr.getNumArgs() != 1) {
8274         state.getSema().Diag(attr.getLoc(),
8275                              diag::err_attribute_wrong_number_arguments)
8276             << attr << 1;
8277         attr.setInvalid();
8278         return;
8279       }
8280 
8281       StringRef HandleType;
8282       if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8283         return;
8284       type = state.getAttributedType(
8285           AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8286           type, type);
8287       attr.setUsedAsTypeAttr();
8288       break;
8289     }
8290     }
8291 
8292     // Handle attributes that are defined in a macro. We do not want this to be
8293     // applied to ObjC builtin attributes.
8294     if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8295         !type.getQualifiers().hasObjCLifetime() &&
8296         !type.getQualifiers().hasObjCGCAttr() &&
8297         attr.getKind() != ParsedAttr::AT_ObjCGC &&
8298         attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8299       const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8300       type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8301       state.setExpansionLocForMacroQualifiedType(
8302           cast<MacroQualifiedType>(type.getTypePtr()),
8303           attr.getMacroExpansionLoc());
8304     }
8305   }
8306 
8307   if (!state.getSema().getLangOpts().OpenCL ||
8308       type.getAddressSpace() != LangAS::Default)
8309     return;
8310 }
8311 
completeExprArrayBound(Expr * E)8312 void Sema::completeExprArrayBound(Expr *E) {
8313   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8314     if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8315       if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8316         auto *Def = Var->getDefinition();
8317         if (!Def) {
8318           SourceLocation PointOfInstantiation = E->getExprLoc();
8319           runWithSufficientStackSpace(PointOfInstantiation, [&] {
8320             InstantiateVariableDefinition(PointOfInstantiation, Var);
8321           });
8322           Def = Var->getDefinition();
8323 
8324           // If we don't already have a point of instantiation, and we managed
8325           // to instantiate a definition, this is the point of instantiation.
8326           // Otherwise, we don't request an end-of-TU instantiation, so this is
8327           // not a point of instantiation.
8328           // FIXME: Is this really the right behavior?
8329           if (Var->getPointOfInstantiation().isInvalid() && Def) {
8330             assert(Var->getTemplateSpecializationKind() ==
8331                        TSK_ImplicitInstantiation &&
8332                    "explicit instantiation with no point of instantiation");
8333             Var->setTemplateSpecializationKind(
8334                 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8335           }
8336         }
8337 
8338         // Update the type to the definition's type both here and within the
8339         // expression.
8340         if (Def) {
8341           DRE->setDecl(Def);
8342           QualType T = Def->getType();
8343           DRE->setType(T);
8344           // FIXME: Update the type on all intervening expressions.
8345           E->setType(T);
8346         }
8347 
8348         // We still go on to try to complete the type independently, as it
8349         // may also require instantiations or diagnostics if it remains
8350         // incomplete.
8351       }
8352     }
8353   }
8354 }
8355 
getCompletedType(Expr * E)8356 QualType Sema::getCompletedType(Expr *E) {
8357   // Incomplete array types may be completed by the initializer attached to
8358   // their definitions. For static data members of class templates and for
8359   // variable templates, we need to instantiate the definition to get this
8360   // initializer and complete the type.
8361   if (E->getType()->isIncompleteArrayType())
8362     completeExprArrayBound(E);
8363 
8364   // FIXME: Are there other cases which require instantiating something other
8365   // than the type to complete the type of an expression?
8366 
8367   return E->getType();
8368 }
8369 
8370 /// Ensure that the type of the given expression is complete.
8371 ///
8372 /// This routine checks whether the expression \p E has a complete type. If the
8373 /// expression refers to an instantiable construct, that instantiation is
8374 /// performed as needed to complete its type. Furthermore
8375 /// Sema::RequireCompleteType is called for the expression's type (or in the
8376 /// case of a reference type, the referred-to type).
8377 ///
8378 /// \param E The expression whose type is required to be complete.
8379 /// \param Kind Selects which completeness rules should be applied.
8380 /// \param Diagnoser The object that will emit a diagnostic if the type is
8381 /// incomplete.
8382 ///
8383 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
8384 /// otherwise.
RequireCompleteExprType(Expr * E,CompleteTypeKind Kind,TypeDiagnoser & Diagnoser)8385 bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
8386                                    TypeDiagnoser &Diagnoser) {
8387   return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
8388                              Diagnoser);
8389 }
8390 
RequireCompleteExprType(Expr * E,unsigned DiagID)8391 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
8392   BoundTypeDiagnoser<> Diagnoser(DiagID);
8393   return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
8394 }
8395 
8396 /// Ensure that the type T is a complete type.
8397 ///
8398 /// This routine checks whether the type @p T is complete in any
8399 /// context where a complete type is required. If @p T is a complete
8400 /// type, returns false. If @p T is a class template specialization,
8401 /// this routine then attempts to perform class template
8402 /// instantiation. If instantiation fails, or if @p T is incomplete
8403 /// and cannot be completed, issues the diagnostic @p diag (giving it
8404 /// the type @p T) and returns true.
8405 ///
8406 /// @param Loc  The location in the source that the incomplete type
8407 /// diagnostic should refer to.
8408 ///
8409 /// @param T  The type that this routine is examining for completeness.
8410 ///
8411 /// @param Kind Selects which completeness rules should be applied.
8412 ///
8413 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
8414 /// @c false otherwise.
RequireCompleteType(SourceLocation Loc,QualType T,CompleteTypeKind Kind,TypeDiagnoser & Diagnoser)8415 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8416                                CompleteTypeKind Kind,
8417                                TypeDiagnoser &Diagnoser) {
8418   if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
8419     return true;
8420   if (const TagType *Tag = T->getAs<TagType>()) {
8421     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
8422       Tag->getDecl()->setCompleteDefinitionRequired();
8423       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
8424     }
8425   }
8426   return false;
8427 }
8428 
hasStructuralCompatLayout(Decl * D,Decl * Suggested)8429 bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
8430   llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
8431   if (!Suggested)
8432     return false;
8433 
8434   // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
8435   // and isolate from other C++ specific checks.
8436   StructuralEquivalenceContext Ctx(
8437       D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
8438       StructuralEquivalenceKind::Default,
8439       false /*StrictTypeSpelling*/, true /*Complain*/,
8440       true /*ErrorOnTagTypeMismatch*/);
8441   return Ctx.IsEquivalent(D, Suggested);
8442 }
8443 
8444 /// Determine whether there is any declaration of \p D that was ever a
8445 ///        definition (perhaps before module merging) and is currently visible.
8446 /// \param D The definition of the entity.
8447 /// \param Suggested Filled in with the declaration that should be made visible
8448 ///        in order to provide a definition of this entity.
8449 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8450 ///        not defined. This only matters for enums with a fixed underlying
8451 ///        type, since in all other cases, a type is complete if and only if it
8452 ///        is defined.
hasVisibleDefinition(NamedDecl * D,NamedDecl ** Suggested,bool OnlyNeedComplete)8453 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
8454                                 bool OnlyNeedComplete) {
8455   // Easy case: if we don't have modules, all declarations are visible.
8456   if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
8457     return true;
8458 
8459   // If this definition was instantiated from a template, map back to the
8460   // pattern from which it was instantiated.
8461   if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
8462     // We're in the middle of defining it; this definition should be treated
8463     // as visible.
8464     return true;
8465   } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
8466     if (auto *Pattern = RD->getTemplateInstantiationPattern())
8467       RD = Pattern;
8468     D = RD->getDefinition();
8469   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
8470     if (auto *Pattern = ED->getTemplateInstantiationPattern())
8471       ED = Pattern;
8472     if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
8473       // If the enum has a fixed underlying type, it may have been forward
8474       // declared. In -fms-compatibility, `enum Foo;` will also forward declare
8475       // the enum and assign it the underlying type of `int`. Since we're only
8476       // looking for a complete type (not a definition), any visible declaration
8477       // of it will do.
8478       *Suggested = nullptr;
8479       for (auto *Redecl : ED->redecls()) {
8480         if (isVisible(Redecl))
8481           return true;
8482         if (Redecl->isThisDeclarationADefinition() ||
8483             (Redecl->isCanonicalDecl() && !*Suggested))
8484           *Suggested = Redecl;
8485       }
8486       return false;
8487     }
8488     D = ED->getDefinition();
8489   } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8490     if (auto *Pattern = FD->getTemplateInstantiationPattern())
8491       FD = Pattern;
8492     D = FD->getDefinition();
8493   } else if (auto *VD = dyn_cast<VarDecl>(D)) {
8494     if (auto *Pattern = VD->getTemplateInstantiationPattern())
8495       VD = Pattern;
8496     D = VD->getDefinition();
8497   }
8498   assert(D && "missing definition for pattern of instantiated definition");
8499 
8500   *Suggested = D;
8501 
8502   auto DefinitionIsVisible = [&] {
8503     // The (primary) definition might be in a visible module.
8504     if (isVisible(D))
8505       return true;
8506 
8507     // A visible module might have a merged definition instead.
8508     if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
8509                              : hasVisibleMergedDefinition(D)) {
8510       if (CodeSynthesisContexts.empty() &&
8511           !getLangOpts().ModulesLocalVisibility) {
8512         // Cache the fact that this definition is implicitly visible because
8513         // there is a visible merged definition.
8514         D->setVisibleDespiteOwningModule();
8515       }
8516       return true;
8517     }
8518 
8519     return false;
8520   };
8521 
8522   if (DefinitionIsVisible())
8523     return true;
8524 
8525   // The external source may have additional definitions of this entity that are
8526   // visible, so complete the redeclaration chain now and ask again.
8527   if (auto *Source = Context.getExternalSource()) {
8528     Source->CompleteRedeclChain(D);
8529     return DefinitionIsVisible();
8530   }
8531 
8532   return false;
8533 }
8534 
8535 /// Locks in the inheritance model for the given class and all of its bases.
assignInheritanceModel(Sema & S,CXXRecordDecl * RD)8536 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
8537   RD = RD->getMostRecentNonInjectedDecl();
8538   if (!RD->hasAttr<MSInheritanceAttr>()) {
8539     MSInheritanceModel IM;
8540     bool BestCase = false;
8541     switch (S.MSPointerToMemberRepresentationMethod) {
8542     case LangOptions::PPTMK_BestCase:
8543       BestCase = true;
8544       IM = RD->calculateInheritanceModel();
8545       break;
8546     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
8547       IM = MSInheritanceModel::Single;
8548       break;
8549     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
8550       IM = MSInheritanceModel::Multiple;
8551       break;
8552     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
8553       IM = MSInheritanceModel::Unspecified;
8554       break;
8555     }
8556 
8557     SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
8558                           ? S.ImplicitMSInheritanceAttrLoc
8559                           : RD->getSourceRange();
8560     RD->addAttr(MSInheritanceAttr::CreateImplicit(
8561         S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft,
8562         MSInheritanceAttr::Spelling(IM)));
8563     S.Consumer.AssignInheritanceModel(RD);
8564   }
8565 }
8566 
8567 /// The implementation of RequireCompleteType
RequireCompleteTypeImpl(SourceLocation Loc,QualType T,CompleteTypeKind Kind,TypeDiagnoser * Diagnoser)8568 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
8569                                    CompleteTypeKind Kind,
8570                                    TypeDiagnoser *Diagnoser) {
8571   // FIXME: Add this assertion to make sure we always get instantiation points.
8572   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
8573   // FIXME: Add this assertion to help us flush out problems with
8574   // checking for dependent types and type-dependent expressions.
8575   //
8576   //  assert(!T->isDependentType() &&
8577   //         "Can't ask whether a dependent type is complete");
8578 
8579   if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
8580     if (!MPTy->getClass()->isDependentType()) {
8581       if (getLangOpts().CompleteMemberPointers &&
8582           !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
8583           RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
8584                               diag::err_memptr_incomplete))
8585         return true;
8586 
8587       // We lock in the inheritance model once somebody has asked us to ensure
8588       // that a pointer-to-member type is complete.
8589       if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
8590         (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
8591         assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
8592       }
8593     }
8594   }
8595 
8596   NamedDecl *Def = nullptr;
8597   bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
8598   bool Incomplete = (T->isIncompleteType(&Def) ||
8599                      (!AcceptSizeless && T->isSizelessBuiltinType()));
8600 
8601   // Check that any necessary explicit specializations are visible. For an
8602   // enum, we just need the declaration, so don't check this.
8603   if (Def && !isa<EnumDecl>(Def))
8604     checkSpecializationVisibility(Loc, Def);
8605 
8606   // If we have a complete type, we're done.
8607   if (!Incomplete) {
8608     // If we know about the definition but it is not visible, complain.
8609     NamedDecl *SuggestedDef = nullptr;
8610     if (Def &&
8611         !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
8612       // If the user is going to see an error here, recover by making the
8613       // definition visible.
8614       bool TreatAsComplete = Diagnoser && !isSFINAEContext();
8615       if (Diagnoser && SuggestedDef)
8616         diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
8617                               /*Recover*/TreatAsComplete);
8618       return !TreatAsComplete;
8619     } else if (Def && !TemplateInstCallbacks.empty()) {
8620       CodeSynthesisContext TempInst;
8621       TempInst.Kind = CodeSynthesisContext::Memoization;
8622       TempInst.Template = Def;
8623       TempInst.Entity = Def;
8624       TempInst.PointOfInstantiation = Loc;
8625       atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
8626       atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
8627     }
8628 
8629     return false;
8630   }
8631 
8632   TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
8633   ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
8634 
8635   // Give the external source a chance to provide a definition of the type.
8636   // This is kept separate from completing the redeclaration chain so that
8637   // external sources such as LLDB can avoid synthesizing a type definition
8638   // unless it's actually needed.
8639   if (Tag || IFace) {
8640     // Avoid diagnosing invalid decls as incomplete.
8641     if (Def->isInvalidDecl())
8642       return true;
8643 
8644     // Give the external AST source a chance to complete the type.
8645     if (auto *Source = Context.getExternalSource()) {
8646       if (Tag && Tag->hasExternalLexicalStorage())
8647           Source->CompleteType(Tag);
8648       if (IFace && IFace->hasExternalLexicalStorage())
8649           Source->CompleteType(IFace);
8650       // If the external source completed the type, go through the motions
8651       // again to ensure we're allowed to use the completed type.
8652       if (!T->isIncompleteType())
8653         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8654     }
8655   }
8656 
8657   // If we have a class template specialization or a class member of a
8658   // class template specialization, or an array with known size of such,
8659   // try to instantiate it.
8660   if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
8661     bool Instantiated = false;
8662     bool Diagnosed = false;
8663     if (RD->isDependentContext()) {
8664       // Don't try to instantiate a dependent class (eg, a member template of
8665       // an instantiated class template specialization).
8666       // FIXME: Can this ever happen?
8667     } else if (auto *ClassTemplateSpec =
8668             dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
8669       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
8670         runWithSufficientStackSpace(Loc, [&] {
8671           Diagnosed = InstantiateClassTemplateSpecialization(
8672               Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
8673               /*Complain=*/Diagnoser);
8674         });
8675         Instantiated = true;
8676       }
8677     } else {
8678       CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
8679       if (!RD->isBeingDefined() && Pattern) {
8680         MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
8681         assert(MSI && "Missing member specialization information?");
8682         // This record was instantiated from a class within a template.
8683         if (MSI->getTemplateSpecializationKind() !=
8684             TSK_ExplicitSpecialization) {
8685           runWithSufficientStackSpace(Loc, [&] {
8686             Diagnosed = InstantiateClass(Loc, RD, Pattern,
8687                                          getTemplateInstantiationArgs(RD),
8688                                          TSK_ImplicitInstantiation,
8689                                          /*Complain=*/Diagnoser);
8690           });
8691           Instantiated = true;
8692         }
8693       }
8694     }
8695 
8696     if (Instantiated) {
8697       // Instantiate* might have already complained that the template is not
8698       // defined, if we asked it to.
8699       if (Diagnoser && Diagnosed)
8700         return true;
8701       // If we instantiated a definition, check that it's usable, even if
8702       // instantiation produced an error, so that repeated calls to this
8703       // function give consistent answers.
8704       if (!T->isIncompleteType())
8705         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8706     }
8707   }
8708 
8709   // FIXME: If we didn't instantiate a definition because of an explicit
8710   // specialization declaration, check that it's visible.
8711 
8712   if (!Diagnoser)
8713     return true;
8714 
8715   Diagnoser->diagnose(*this, Loc, T);
8716 
8717   // If the type was a forward declaration of a class/struct/union
8718   // type, produce a note.
8719   if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
8720     Diag(Tag->getLocation(),
8721          Tag->isBeingDefined() ? diag::note_type_being_defined
8722                                : diag::note_forward_declaration)
8723       << Context.getTagDeclType(Tag);
8724 
8725   // If the Objective-C class was a forward declaration, produce a note.
8726   if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
8727     Diag(IFace->getLocation(), diag::note_forward_class);
8728 
8729   // If we have external information that we can use to suggest a fix,
8730   // produce a note.
8731   if (ExternalSource)
8732     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
8733 
8734   return true;
8735 }
8736 
RequireCompleteType(SourceLocation Loc,QualType T,CompleteTypeKind Kind,unsigned DiagID)8737 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8738                                CompleteTypeKind Kind, unsigned DiagID) {
8739   BoundTypeDiagnoser<> Diagnoser(DiagID);
8740   return RequireCompleteType(Loc, T, Kind, Diagnoser);
8741 }
8742 
8743 /// Get diagnostic %select index for tag kind for
8744 /// literal type diagnostic message.
8745 /// WARNING: Indexes apply to particular diagnostics only!
8746 ///
8747 /// \returns diagnostic %select index.
getLiteralDiagFromTagKind(TagTypeKind Tag)8748 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
8749   switch (Tag) {
8750   case TTK_Struct: return 0;
8751   case TTK_Interface: return 1;
8752   case TTK_Class:  return 2;
8753   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
8754   }
8755 }
8756 
8757 /// Ensure that the type T is a literal type.
8758 ///
8759 /// This routine checks whether the type @p T is a literal type. If @p T is an
8760 /// incomplete type, an attempt is made to complete it. If @p T is a literal
8761 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
8762 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
8763 /// it the type @p T), along with notes explaining why the type is not a
8764 /// literal type, and returns true.
8765 ///
8766 /// @param Loc  The location in the source that the non-literal type
8767 /// diagnostic should refer to.
8768 ///
8769 /// @param T  The type that this routine is examining for literalness.
8770 ///
8771 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
8772 ///
8773 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
8774 /// @c false otherwise.
RequireLiteralType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)8775 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
8776                               TypeDiagnoser &Diagnoser) {
8777   assert(!T->isDependentType() && "type should not be dependent");
8778 
8779   QualType ElemType = Context.getBaseElementType(T);
8780   if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
8781       T->isLiteralType(Context))
8782     return false;
8783 
8784   Diagnoser.diagnose(*this, Loc, T);
8785 
8786   if (T->isVariableArrayType())
8787     return true;
8788 
8789   const RecordType *RT = ElemType->getAs<RecordType>();
8790   if (!RT)
8791     return true;
8792 
8793   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
8794 
8795   // A partially-defined class type can't be a literal type, because a literal
8796   // class type must have a trivial destructor (which can't be checked until
8797   // the class definition is complete).
8798   if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
8799     return true;
8800 
8801   // [expr.prim.lambda]p3:
8802   //   This class type is [not] a literal type.
8803   if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
8804     Diag(RD->getLocation(), diag::note_non_literal_lambda);
8805     return true;
8806   }
8807 
8808   // If the class has virtual base classes, then it's not an aggregate, and
8809   // cannot have any constexpr constructors or a trivial default constructor,
8810   // so is non-literal. This is better to diagnose than the resulting absence
8811   // of constexpr constructors.
8812   if (RD->getNumVBases()) {
8813     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
8814       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
8815     for (const auto &I : RD->vbases())
8816       Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
8817           << I.getSourceRange();
8818   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
8819              !RD->hasTrivialDefaultConstructor()) {
8820     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
8821   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
8822     for (const auto &I : RD->bases()) {
8823       if (!I.getType()->isLiteralType(Context)) {
8824         Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
8825             << RD << I.getType() << I.getSourceRange();
8826         return true;
8827       }
8828     }
8829     for (const auto *I : RD->fields()) {
8830       if (!I->getType()->isLiteralType(Context) ||
8831           I->getType().isVolatileQualified()) {
8832         Diag(I->getLocation(), diag::note_non_literal_field)
8833           << RD << I << I->getType()
8834           << I->getType().isVolatileQualified();
8835         return true;
8836       }
8837     }
8838   } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
8839                                        : !RD->hasTrivialDestructor()) {
8840     // All fields and bases are of literal types, so have trivial or constexpr
8841     // destructors. If this class's destructor is non-trivial / non-constexpr,
8842     // it must be user-declared.
8843     CXXDestructorDecl *Dtor = RD->getDestructor();
8844     assert(Dtor && "class has literal fields and bases but no dtor?");
8845     if (!Dtor)
8846       return true;
8847 
8848     if (getLangOpts().CPlusPlus20) {
8849       Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
8850           << RD;
8851     } else {
8852       Diag(Dtor->getLocation(), Dtor->isUserProvided()
8853                                     ? diag::note_non_literal_user_provided_dtor
8854                                     : diag::note_non_literal_nontrivial_dtor)
8855           << RD;
8856       if (!Dtor->isUserProvided())
8857         SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
8858                                /*Diagnose*/ true);
8859     }
8860   }
8861 
8862   return true;
8863 }
8864 
RequireLiteralType(SourceLocation Loc,QualType T,unsigned DiagID)8865 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
8866   BoundTypeDiagnoser<> Diagnoser(DiagID);
8867   return RequireLiteralType(Loc, T, Diagnoser);
8868 }
8869 
8870 /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
8871 /// by the nested-name-specifier contained in SS, and that is (re)declared by
8872 /// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
getElaboratedType(ElaboratedTypeKeyword Keyword,const CXXScopeSpec & SS,QualType T,TagDecl * OwnedTagDecl)8873 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
8874                                  const CXXScopeSpec &SS, QualType T,
8875                                  TagDecl *OwnedTagDecl) {
8876   if (T.isNull())
8877     return T;
8878   NestedNameSpecifier *NNS;
8879   if (SS.isValid())
8880     NNS = SS.getScopeRep();
8881   else {
8882     if (Keyword == ETK_None)
8883       return T;
8884     NNS = nullptr;
8885   }
8886   return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
8887 }
8888 
BuildTypeofExprType(Expr * E,SourceLocation Loc)8889 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
8890   assert(!E->hasPlaceholderType() && "unexpected placeholder");
8891 
8892   if (!getLangOpts().CPlusPlus && E->refersToBitField())
8893     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
8894 
8895   if (!E->isTypeDependent()) {
8896     QualType T = E->getType();
8897     if (const TagType *TT = T->getAs<TagType>())
8898       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
8899   }
8900   return Context.getTypeOfExprType(E);
8901 }
8902 
8903 /// getDecltypeForParenthesizedExpr - Given an expr, will return the type for
8904 /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
8905 /// and class member access into account.
getDecltypeForParenthesizedExpr(Expr * E)8906 QualType Sema::getDecltypeForParenthesizedExpr(Expr *E) {
8907   // C++11 [dcl.type.simple]p4:
8908   //   [...]
8909   QualType T = E->getType();
8910   switch (E->getValueKind()) {
8911   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
8912   //       type of e;
8913   case VK_XValue:
8914     return Context.getRValueReferenceType(T);
8915   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
8916   //       type of e;
8917   case VK_LValue:
8918     return Context.getLValueReferenceType(T);
8919   //  - otherwise, decltype(e) is the type of e.
8920   case VK_PRValue:
8921     return T;
8922   }
8923   llvm_unreachable("Unknown value kind");
8924 }
8925 
8926 /// getDecltypeForExpr - Given an expr, will return the decltype for
8927 /// that expression, according to the rules in C++11
8928 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
getDecltypeForExpr(Sema & S,Expr * E)8929 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
8930   if (E->isTypeDependent())
8931     return S.Context.DependentTy;
8932 
8933   Expr *IDExpr = E;
8934   if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
8935     IDExpr = ImplCastExpr->getSubExpr();
8936 
8937   // C++11 [dcl.type.simple]p4:
8938   //   The type denoted by decltype(e) is defined as follows:
8939 
8940   // C++20:
8941   //     - if E is an unparenthesized id-expression naming a non-type
8942   //       template-parameter (13.2), decltype(E) is the type of the
8943   //       template-parameter after performing any necessary type deduction
8944   // Note that this does not pick up the implicit 'const' for a template
8945   // parameter object. This rule makes no difference before C++20 so we apply
8946   // it unconditionally.
8947   if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
8948     return SNTTPE->getParameterType(S.Context);
8949 
8950   //     - if e is an unparenthesized id-expression or an unparenthesized class
8951   //       member access (5.2.5), decltype(e) is the type of the entity named
8952   //       by e. If there is no such entity, or if e names a set of overloaded
8953   //       functions, the program is ill-formed;
8954   //
8955   // We apply the same rules for Objective-C ivar and property references.
8956   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
8957     const ValueDecl *VD = DRE->getDecl();
8958     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(VD))
8959       return TPO->getType().getUnqualifiedType();
8960     return VD->getType();
8961   } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(IDExpr)) {
8962     if (const ValueDecl *VD = ME->getMemberDecl())
8963       if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
8964         return VD->getType();
8965   } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
8966     return IR->getDecl()->getType();
8967   } else if (const ObjCPropertyRefExpr *PR =
8968                  dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
8969     if (PR->isExplicitProperty())
8970       return PR->getExplicitProperty()->getType();
8971   } else if (auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
8972     return PE->getType();
8973   }
8974 
8975   // C++11 [expr.lambda.prim]p18:
8976   //   Every occurrence of decltype((x)) where x is a possibly
8977   //   parenthesized id-expression that names an entity of automatic
8978   //   storage duration is treated as if x were transformed into an
8979   //   access to a corresponding data member of the closure type that
8980   //   would have been declared if x were an odr-use of the denoted
8981   //   entity.
8982   using namespace sema;
8983   if (S.getCurLambda()) {
8984     if (isa<ParenExpr>(IDExpr)) {
8985       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
8986         if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8987           QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
8988           if (!T.isNull())
8989             return S.Context.getLValueReferenceType(T);
8990         }
8991       }
8992     }
8993   }
8994 
8995   return S.getDecltypeForParenthesizedExpr(E);
8996 }
8997 
BuildDecltypeType(Expr * E,SourceLocation Loc,bool AsUnevaluated)8998 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
8999                                  bool AsUnevaluated) {
9000   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9001 
9002   if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9003       !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9004     // The expression operand for decltype is in an unevaluated expression
9005     // context, so side effects could result in unintended consequences.
9006     // Exclude instantiation-dependent expressions, because 'decltype' is often
9007     // used to build SFINAE gadgets.
9008     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9009   }
9010 
9011   return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
9012 }
9013 
BuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)9014 QualType Sema::BuildUnaryTransformType(QualType BaseType,
9015                                        UnaryTransformType::UTTKind UKind,
9016                                        SourceLocation Loc) {
9017   switch (UKind) {
9018   case UnaryTransformType::EnumUnderlyingType:
9019     if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
9020       Diag(Loc, diag::err_only_enums_have_underlying_types);
9021       return QualType();
9022     } else {
9023       QualType Underlying = BaseType;
9024       if (!BaseType->isDependentType()) {
9025         // The enum could be incomplete if we're parsing its definition or
9026         // recovering from an error.
9027         NamedDecl *FwdDecl = nullptr;
9028         if (BaseType->isIncompleteType(&FwdDecl)) {
9029           Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9030           Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9031           return QualType();
9032         }
9033 
9034         EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9035         assert(ED && "EnumType has no EnumDecl");
9036 
9037         DiagnoseUseOfDecl(ED, Loc);
9038 
9039         Underlying = ED->getIntegerType();
9040         assert(!Underlying.isNull());
9041       }
9042       return Context.getUnaryTransformType(BaseType, Underlying,
9043                                         UnaryTransformType::EnumUnderlyingType);
9044     }
9045   }
9046   llvm_unreachable("unknown unary transform type");
9047 }
9048 
BuildAtomicType(QualType T,SourceLocation Loc)9049 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9050   if (!T->isDependentType()) {
9051     // FIXME: It isn't entirely clear whether incomplete atomic types
9052     // are allowed or not; for simplicity, ban them for the moment.
9053     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9054       return QualType();
9055 
9056     int DisallowedKind = -1;
9057     if (T->isArrayType())
9058       DisallowedKind = 1;
9059     else if (T->isFunctionType())
9060       DisallowedKind = 2;
9061     else if (T->isReferenceType())
9062       DisallowedKind = 3;
9063     else if (T->isAtomicType())
9064       DisallowedKind = 4;
9065     else if (T.hasQualifiers())
9066       DisallowedKind = 5;
9067     else if (T->isSizelessType())
9068       DisallowedKind = 6;
9069     else if (!T.isTriviallyCopyableType(Context))
9070       // Some other non-trivially-copyable type (probably a C++ class)
9071       DisallowedKind = 7;
9072     else if (T->isExtIntType()) {
9073         DisallowedKind = 8;
9074     }
9075 
9076     if (DisallowedKind != -1) {
9077       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9078       return QualType();
9079     }
9080 
9081     // FIXME: Do we need any handling for ARC here?
9082   }
9083 
9084   // Build the pointer type.
9085   return Context.getAtomicType(T);
9086 }
9087