1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "SyntheticSections.h"
57 #include "Target.h"
58
59 #include "lld/Common/DWARF.h"
60 #include "lld/Common/ErrorHandler.h"
61 #include "lld/Common/Memory.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/Path.h"
69 #include "llvm/Support/TarWriter.h"
70 #include "llvm/TextAPI/Architecture.h"
71 #include "llvm/TextAPI/InterfaceFile.h"
72
73 using namespace llvm;
74 using namespace llvm::MachO;
75 using namespace llvm::support::endian;
76 using namespace llvm::sys;
77 using namespace lld;
78 using namespace lld::macho;
79
80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
toString(const InputFile * f)81 std::string lld::toString(const InputFile *f) {
82 if (!f)
83 return "<internal>";
84
85 // Multiple dylibs can be defined in one .tbd file.
86 if (auto dylibFile = dyn_cast<DylibFile>(f))
87 if (f->getName().endswith(".tbd"))
88 return (f->getName() + "(" + dylibFile->installName + ")").str();
89
90 if (f->archiveName.empty())
91 return std::string(f->getName());
92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
93 }
94
95 SetVector<InputFile *> macho::inputFiles;
96 std::unique_ptr<TarWriter> macho::tar;
97 int InputFile::idCount = 0;
98
decodeVersion(uint32_t version)99 static VersionTuple decodeVersion(uint32_t version) {
100 unsigned major = version >> 16;
101 unsigned minor = (version >> 8) & 0xffu;
102 unsigned subMinor = version & 0xffu;
103 return VersionTuple(major, minor, subMinor);
104 }
105
getPlatformInfos(const InputFile * input)106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
108 return {};
109
110 const char *hdr = input->mb.getBufferStart();
111
112 std::vector<PlatformInfo> platformInfos;
113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
114 PlatformInfo info;
115 info.target.Platform = static_cast<PlatformKind>(cmd->platform);
116 info.minimum = decodeVersion(cmd->minos);
117 platformInfos.emplace_back(std::move(info));
118 }
119 for (auto *cmd : findCommands<version_min_command>(
120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
122 PlatformInfo info;
123 switch (cmd->cmd) {
124 case LC_VERSION_MIN_MACOSX:
125 info.target.Platform = PlatformKind::macOS;
126 break;
127 case LC_VERSION_MIN_IPHONEOS:
128 info.target.Platform = PlatformKind::iOS;
129 break;
130 case LC_VERSION_MIN_TVOS:
131 info.target.Platform = PlatformKind::tvOS;
132 break;
133 case LC_VERSION_MIN_WATCHOS:
134 info.target.Platform = PlatformKind::watchOS;
135 break;
136 }
137 info.minimum = decodeVersion(cmd->version);
138 platformInfos.emplace_back(std::move(info));
139 }
140
141 return platformInfos;
142 }
143
checkCompatibility(const InputFile * input)144 static bool checkCompatibility(const InputFile *input) {
145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
146 if (platformInfos.empty())
147 return true;
148
149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
150 return removeSimulator(info.target.Platform) ==
151 removeSimulator(config->platform());
152 });
153 if (it == platformInfos.end()) {
154 std::string platformNames;
155 raw_string_ostream os(platformNames);
156 interleave(
157 platformInfos, os,
158 [&](const PlatformInfo &info) {
159 os << getPlatformName(info.target.Platform);
160 },
161 "/");
162 error(toString(input) + " has platform " + platformNames +
163 Twine(", which is different from target platform ") +
164 getPlatformName(config->platform()));
165 return false;
166 }
167
168 if (it->minimum > config->platformInfo.minimum)
169 warn(toString(input) + " has version " + it->minimum.getAsString() +
170 ", which is newer than target minimum of " +
171 config->platformInfo.minimum.getAsString());
172
173 return true;
174 }
175
176 // Open a given file path and return it as a memory-mapped file.
readFile(StringRef path)177 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
178 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
179 if (std::error_code ec = mbOrErr.getError()) {
180 error("cannot open " + path + ": " + ec.message());
181 return None;
182 }
183
184 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
185 MemoryBufferRef mbref = mb->getMemBufferRef();
186 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
187
188 // If this is a regular non-fat file, return it.
189 const char *buf = mbref.getBufferStart();
190 const auto *hdr = reinterpret_cast<const fat_header *>(buf);
191 if (mbref.getBufferSize() < sizeof(uint32_t) ||
192 read32be(&hdr->magic) != FAT_MAGIC) {
193 if (tar)
194 tar->append(relativeToRoot(path), mbref.getBuffer());
195 return mbref;
196 }
197
198 // Object files and archive files may be fat files, which contain multiple
199 // real files for different CPU ISAs. Here, we search for a file that matches
200 // with the current link target and returns it as a MemoryBufferRef.
201 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
202
203 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
204 if (reinterpret_cast<const char *>(arch + i + 1) >
205 buf + mbref.getBufferSize()) {
206 error(path + ": fat_arch struct extends beyond end of file");
207 return None;
208 }
209
210 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
211 read32be(&arch[i].cpusubtype) != target->cpuSubtype)
212 continue;
213
214 uint32_t offset = read32be(&arch[i].offset);
215 uint32_t size = read32be(&arch[i].size);
216 if (offset + size > mbref.getBufferSize())
217 error(path + ": slice extends beyond end of file");
218 if (tar)
219 tar->append(relativeToRoot(path), mbref.getBuffer());
220 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
221 }
222
223 error("unable to find matching architecture in " + path);
224 return None;
225 }
226
InputFile(Kind kind,const InterfaceFile & interface)227 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
228 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
229
230 template <class Section>
parseSections(ArrayRef<Section> sections)231 void ObjFile::parseSections(ArrayRef<Section> sections) {
232 subsections.reserve(sections.size());
233 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
234
235 for (const Section &sec : sections) {
236 StringRef name =
237 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
238 StringRef segname =
239 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
240 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
241 : buf + sec.offset,
242 static_cast<size_t>(sec.size)};
243 if (sec.align >= 32) {
244 error("alignment " + std::to_string(sec.align) + " of section " + name +
245 " is too large");
246 subsections.push_back({});
247 continue;
248 }
249 uint32_t align = 1 << sec.align;
250 uint32_t flags = sec.flags;
251
252 if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
253 (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
254 if (sec.nreloc && config->dedupLiterals)
255 fatal(toString(this) + " contains relocations in " + sec.segname + "," +
256 sec.sectname +
257 ", so LLD cannot deduplicate literals. Try re-running without "
258 "--deduplicate-literals.");
259
260 InputSection *isec;
261 if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
262 isec =
263 make<CStringInputSection>(segname, name, this, data, align, flags);
264 // FIXME: parallelize this?
265 cast<CStringInputSection>(isec)->splitIntoPieces();
266 } else {
267 isec = make<WordLiteralInputSection>(segname, name, this, data, align,
268 flags);
269 }
270 subsections.push_back({{0, isec}});
271 } else if (config->icfLevel != ICFLevel::none &&
272 (name == section_names::cfString &&
273 segname == segment_names::data)) {
274 uint64_t literalSize = target->wordSize == 8 ? 32 : 16;
275 subsections.push_back({});
276 SubsectionMap &subsecMap = subsections.back();
277 for (uint64_t off = 0; off < data.size(); off += literalSize)
278 subsecMap.push_back(
279 {off, make<ConcatInputSection>(segname, name, this,
280 data.slice(off, literalSize), align,
281 flags)});
282 } else {
283 auto *isec =
284 make<ConcatInputSection>(segname, name, this, data, align, flags);
285 if (!(isDebugSection(isec->getFlags()) &&
286 isec->getSegName() == segment_names::dwarf)) {
287 subsections.push_back({{0, isec}});
288 } else {
289 // Instead of emitting DWARF sections, we emit STABS symbols to the
290 // object files that contain them. We filter them out early to avoid
291 // parsing their relocations unnecessarily. But we must still push an
292 // empty map to ensure the indices line up for the remaining sections.
293 subsections.push_back({});
294 debugSections.push_back(isec);
295 }
296 }
297 }
298 }
299
300 // Find the subsection corresponding to the greatest section offset that is <=
301 // that of the given offset.
302 //
303 // offset: an offset relative to the start of the original InputSection (before
304 // any subsection splitting has occurred). It will be updated to represent the
305 // same location as an offset relative to the start of the containing
306 // subsection.
findContainingSubsection(SubsectionMap & map,uint64_t * offset)307 static InputSection *findContainingSubsection(SubsectionMap &map,
308 uint64_t *offset) {
309 auto it = std::prev(llvm::upper_bound(
310 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) {
311 return value < subsecEntry.offset;
312 }));
313 *offset -= it->offset;
314 return it->isec;
315 }
316
317 template <class Section>
validateRelocationInfo(InputFile * file,const Section & sec,relocation_info rel)318 static bool validateRelocationInfo(InputFile *file, const Section &sec,
319 relocation_info rel) {
320 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
321 bool valid = true;
322 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
323 valid = false;
324 return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
325 std::to_string(rel.r_address) + " of " + sec.segname + "," +
326 sec.sectname + " in " + toString(file))
327 .str();
328 };
329
330 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
331 error(message("must be extern"));
332 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
333 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
334 "be PC-relative"));
335 if (isThreadLocalVariables(sec.flags) &&
336 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
337 error(message("not allowed in thread-local section, must be UNSIGNED"));
338 if (rel.r_length < 2 || rel.r_length > 3 ||
339 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
340 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
341 error(message("has width " + std::to_string(1 << rel.r_length) +
342 " bytes, but must be " +
343 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
344 " bytes"));
345 }
346 return valid;
347 }
348
349 template <class Section>
parseRelocations(ArrayRef<Section> sectionHeaders,const Section & sec,SubsectionMap & subsecMap)350 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders,
351 const Section &sec, SubsectionMap &subsecMap) {
352 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
353 ArrayRef<relocation_info> relInfos(
354 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
355
356 auto subsecIt = subsecMap.rbegin();
357 for (size_t i = 0; i < relInfos.size(); i++) {
358 // Paired relocations serve as Mach-O's method for attaching a
359 // supplemental datum to a primary relocation record. ELF does not
360 // need them because the *_RELOC_RELA records contain the extra
361 // addend field, vs. *_RELOC_REL which omit the addend.
362 //
363 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
364 // and the paired *_RELOC_UNSIGNED record holds the minuend. The
365 // datum for each is a symbolic address. The result is the offset
366 // between two addresses.
367 //
368 // The ARM64_RELOC_ADDEND record holds the addend, and the paired
369 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
370 // base symbolic address.
371 //
372 // Note: X86 does not use *_RELOC_ADDEND because it can embed an
373 // addend into the instruction stream. On X86, a relocatable address
374 // field always occupies an entire contiguous sequence of byte(s),
375 // so there is no need to merge opcode bits with address
376 // bits. Therefore, it's easy and convenient to store addends in the
377 // instruction-stream bytes that would otherwise contain zeroes. By
378 // contrast, RISC ISAs such as ARM64 mix opcode bits with with
379 // address bits so that bitwise arithmetic is necessary to extract
380 // and insert them. Storing addends in the instruction stream is
381 // possible, but inconvenient and more costly at link time.
382
383 int64_t pairedAddend = 0;
384 relocation_info relInfo = relInfos[i];
385 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
386 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
387 relInfo = relInfos[++i];
388 }
389 assert(i < relInfos.size());
390 if (!validateRelocationInfo(this, sec, relInfo))
391 continue;
392 if (relInfo.r_address & R_SCATTERED)
393 fatal("TODO: Scattered relocations not supported");
394
395 bool isSubtrahend =
396 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
397 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
398 assert(!(embeddedAddend && pairedAddend));
399 int64_t totalAddend = pairedAddend + embeddedAddend;
400 Reloc r;
401 r.type = relInfo.r_type;
402 r.pcrel = relInfo.r_pcrel;
403 r.length = relInfo.r_length;
404 r.offset = relInfo.r_address;
405 if (relInfo.r_extern) {
406 r.referent = symbols[relInfo.r_symbolnum];
407 r.addend = isSubtrahend ? 0 : totalAddend;
408 } else {
409 assert(!isSubtrahend);
410 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
411 uint64_t referentOffset;
412 if (relInfo.r_pcrel) {
413 // The implicit addend for pcrel section relocations is the pcrel offset
414 // in terms of the addresses in the input file. Here we adjust it so
415 // that it describes the offset from the start of the referent section.
416 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
417 // have pcrel section relocations. We may want to factor this out into
418 // the arch-specific .cpp file.
419 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
420 referentOffset =
421 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr;
422 } else {
423 // The addend for a non-pcrel relocation is its absolute address.
424 referentOffset = totalAddend - referentSec.addr;
425 }
426 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
427 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
428 r.addend = referentOffset;
429 }
430
431 // Find the subsection that this relocation belongs to.
432 // Though not required by the Mach-O format, clang and gcc seem to emit
433 // relocations in order, so let's take advantage of it. However, ld64 emits
434 // unsorted relocations (in `-r` mode), so we have a fallback for that
435 // uncommon case.
436 InputSection *subsec;
437 while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset)
438 ++subsecIt;
439 if (subsecIt == subsecMap.rend() ||
440 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
441 subsec = findContainingSubsection(subsecMap, &r.offset);
442 // Now that we know the relocs are unsorted, avoid trying the 'fast path'
443 // for the other relocations.
444 subsecIt = subsecMap.rend();
445 } else {
446 subsec = subsecIt->isec;
447 r.offset -= subsecIt->offset;
448 }
449 subsec->relocs.push_back(r);
450
451 if (isSubtrahend) {
452 relocation_info minuendInfo = relInfos[++i];
453 // SUBTRACTOR relocations should always be followed by an UNSIGNED one
454 // attached to the same address.
455 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
456 relInfo.r_address == minuendInfo.r_address);
457 Reloc p;
458 p.type = minuendInfo.r_type;
459 if (minuendInfo.r_extern) {
460 p.referent = symbols[minuendInfo.r_symbolnum];
461 p.addend = totalAddend;
462 } else {
463 uint64_t referentOffset =
464 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
465 SubsectionMap &referentSubsecMap =
466 subsections[minuendInfo.r_symbolnum - 1];
467 p.referent =
468 findContainingSubsection(referentSubsecMap, &referentOffset);
469 p.addend = referentOffset;
470 }
471 subsec->relocs.push_back(p);
472 }
473 }
474 }
475
476 template <class NList>
createDefined(const NList & sym,StringRef name,InputSection * isec,uint64_t value,uint64_t size)477 static macho::Symbol *createDefined(const NList &sym, StringRef name,
478 InputSection *isec, uint64_t value,
479 uint64_t size) {
480 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
481 // N_EXT: Global symbols. These go in the symbol table during the link,
482 // and also in the export table of the output so that the dynamic
483 // linker sees them.
484 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
485 // symbol table during the link so that duplicates are
486 // either reported (for non-weak symbols) or merged
487 // (for weak symbols), but they do not go in the export
488 // table of the output.
489 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
490 // object files) may produce them. LLD does not yet support -r.
491 // These are translation-unit scoped, identical to the `0` case.
492 // 0: Translation-unit scoped. These are not in the symbol table during
493 // link, and not in the export table of the output either.
494 bool isWeakDefCanBeHidden =
495 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
496
497 if (sym.n_type & N_EXT) {
498 bool isPrivateExtern = sym.n_type & N_PEXT;
499 // lld's behavior for merging symbols is slightly different from ld64:
500 // ld64 picks the winning symbol based on several criteria (see
501 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
502 // just merges metadata and keeps the contents of the first symbol
503 // with that name (see SymbolTable::addDefined). For:
504 // * inline function F in a TU built with -fvisibility-inlines-hidden
505 // * and inline function F in another TU built without that flag
506 // ld64 will pick the one from the file built without
507 // -fvisibility-inlines-hidden.
508 // lld will instead pick the one listed first on the link command line and
509 // give it visibility as if the function was built without
510 // -fvisibility-inlines-hidden.
511 // If both functions have the same contents, this will have the same
512 // behavior. If not, it won't, but the input had an ODR violation in
513 // that case.
514 //
515 // Similarly, merging a symbol
516 // that's isPrivateExtern and not isWeakDefCanBeHidden with one
517 // that's not isPrivateExtern but isWeakDefCanBeHidden technically
518 // should produce one
519 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
520 // with ld64's semantics, because it means the non-private-extern
521 // definition will continue to take priority if more private extern
522 // definitions are encountered. With lld's semantics there's no observable
523 // difference between a symbol that's isWeakDefCanBeHidden or one that's
524 // privateExtern -- neither makes it into the dynamic symbol table. So just
525 // promote isWeakDefCanBeHidden to isPrivateExtern here.
526 if (isWeakDefCanBeHidden)
527 isPrivateExtern = true;
528
529 return symtab->addDefined(
530 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
531 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
532 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
533 }
534
535 assert(!isWeakDefCanBeHidden &&
536 "weak_def_can_be_hidden on already-hidden symbol?");
537 return make<Defined>(
538 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
539 /*isExternal=*/false, /*isPrivateExtern=*/false,
540 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
541 sym.n_desc & N_NO_DEAD_STRIP);
542 }
543
544 // Absolute symbols are defined symbols that do not have an associated
545 // InputSection. They cannot be weak.
546 template <class NList>
createAbsolute(const NList & sym,InputFile * file,StringRef name)547 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
548 StringRef name) {
549 if (sym.n_type & N_EXT) {
550 return symtab->addDefined(
551 name, file, nullptr, sym.n_value, /*size=*/0,
552 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
553 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP);
554 }
555 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
556 /*isWeakDef=*/false,
557 /*isExternal=*/false, /*isPrivateExtern=*/false,
558 sym.n_desc & N_ARM_THUMB_DEF,
559 /*isReferencedDynamically=*/false,
560 sym.n_desc & N_NO_DEAD_STRIP);
561 }
562
563 template <class NList>
parseNonSectionSymbol(const NList & sym,StringRef name)564 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
565 StringRef name) {
566 uint8_t type = sym.n_type & N_TYPE;
567 switch (type) {
568 case N_UNDF:
569 return sym.n_value == 0
570 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
571 : symtab->addCommon(name, this, sym.n_value,
572 1 << GET_COMM_ALIGN(sym.n_desc),
573 sym.n_type & N_PEXT);
574 case N_ABS:
575 return createAbsolute(sym, this, name);
576 case N_PBUD:
577 case N_INDR:
578 error("TODO: support symbols of type " + std::to_string(type));
579 return nullptr;
580 case N_SECT:
581 llvm_unreachable(
582 "N_SECT symbols should not be passed to parseNonSectionSymbol");
583 default:
584 llvm_unreachable("invalid symbol type");
585 }
586 }
587
588 template <class NList>
isUndef(const NList & sym)589 static bool isUndef(const NList &sym) {
590 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
591 }
592
593 template <class LP>
parseSymbols(ArrayRef<typename LP::section> sectionHeaders,ArrayRef<typename LP::nlist> nList,const char * strtab,bool subsectionsViaSymbols)594 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
595 ArrayRef<typename LP::nlist> nList,
596 const char *strtab, bool subsectionsViaSymbols) {
597 using NList = typename LP::nlist;
598
599 // Groups indices of the symbols by the sections that contain them.
600 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size());
601 symbols.resize(nList.size());
602 SmallVector<unsigned, 32> undefineds;
603 for (uint32_t i = 0; i < nList.size(); ++i) {
604 const NList &sym = nList[i];
605
606 // Ignore debug symbols for now.
607 // FIXME: may need special handling.
608 if (sym.n_type & N_STAB)
609 continue;
610
611 StringRef name = strtab + sym.n_strx;
612 if ((sym.n_type & N_TYPE) == N_SECT) {
613 SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
614 // parseSections() may have chosen not to parse this section.
615 if (subsecMap.empty())
616 continue;
617 symbolsBySection[sym.n_sect - 1].push_back(i);
618 } else if (isUndef(sym)) {
619 undefineds.push_back(i);
620 } else {
621 symbols[i] = parseNonSectionSymbol(sym, name);
622 }
623 }
624
625 for (size_t i = 0; i < subsections.size(); ++i) {
626 SubsectionMap &subsecMap = subsections[i];
627 if (subsecMap.empty())
628 continue;
629
630 std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
631 uint64_t sectionAddr = sectionHeaders[i].addr;
632 uint32_t sectionAlign = 1u << sectionHeaders[i].align;
633
634 InputSection *isec = subsecMap.back().isec;
635 // __cfstring has already been split into subsections during
636 // parseSections(), so we simply need to match Symbols to the corresponding
637 // subsection here.
638 if (config->icfLevel != ICFLevel::none && isCfStringSection(isec)) {
639 for (size_t j = 0; j < symbolIndices.size(); ++j) {
640 uint32_t symIndex = symbolIndices[j];
641 const NList &sym = nList[symIndex];
642 StringRef name = strtab + sym.n_strx;
643 uint64_t symbolOffset = sym.n_value - sectionAddr;
644 InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset);
645 if (symbolOffset != 0) {
646 error(toString(this) + ": __cfstring contains symbol " + name +
647 " at misaligned offset");
648 continue;
649 }
650 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
651 }
652 continue;
653 }
654
655 // Calculate symbol sizes and create subsections by splitting the sections
656 // along symbol boundaries.
657 // We populate subsecMap by repeatedly splitting the last (highest address)
658 // subsection.
659 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
660 return nList[lhs].n_value < nList[rhs].n_value;
661 });
662 SubsectionEntry subsecEntry = subsecMap.back();
663 for (size_t j = 0; j < symbolIndices.size(); ++j) {
664 uint32_t symIndex = symbolIndices[j];
665 const NList &sym = nList[symIndex];
666 StringRef name = strtab + sym.n_strx;
667 InputSection *isec = subsecEntry.isec;
668
669 uint64_t subsecAddr = sectionAddr + subsecEntry.offset;
670 size_t symbolOffset = sym.n_value - subsecAddr;
671 uint64_t symbolSize =
672 j + 1 < symbolIndices.size()
673 ? nList[symbolIndices[j + 1]].n_value - sym.n_value
674 : isec->data.size() - symbolOffset;
675 // There are 4 cases where we do not need to create a new subsection:
676 // 1. If the input file does not use subsections-via-symbols.
677 // 2. Multiple symbols at the same address only induce one subsection.
678 // (The symbolOffset == 0 check covers both this case as well as
679 // the first loop iteration.)
680 // 3. Alternative entry points do not induce new subsections.
681 // 4. If we have a literal section (e.g. __cstring and __literal4).
682 if (!subsectionsViaSymbols || symbolOffset == 0 ||
683 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
684 symbols[symIndex] =
685 createDefined(sym, name, isec, symbolOffset, symbolSize);
686 continue;
687 }
688 auto *concatIsec = cast<ConcatInputSection>(isec);
689
690 auto *nextIsec = make<ConcatInputSection>(*concatIsec);
691 nextIsec->numRefs = 0;
692 nextIsec->wasCoalesced = false;
693 if (isZeroFill(isec->getFlags())) {
694 // Zero-fill sections have NULL data.data() non-zero data.size()
695 nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
696 isec->data = {nullptr, symbolOffset};
697 } else {
698 nextIsec->data = isec->data.slice(symbolOffset);
699 isec->data = isec->data.slice(0, symbolOffset);
700 }
701
702 // By construction, the symbol will be at offset zero in the new
703 // subsection.
704 symbols[symIndex] =
705 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
706 // TODO: ld64 appears to preserve the original alignment as well as each
707 // subsection's offset from the last aligned address. We should consider
708 // emulating that behavior.
709 nextIsec->align = MinAlign(sectionAlign, sym.n_value);
710 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec});
711 subsecEntry = subsecMap.back();
712 }
713 }
714
715 // Undefined symbols can trigger recursive fetch from Archives due to
716 // LazySymbols. Process defined symbols first so that the relative order
717 // between a defined symbol and an undefined symbol does not change the
718 // symbol resolution behavior. In addition, a set of interconnected symbols
719 // will all be resolved to the same file, instead of being resolved to
720 // different files.
721 for (unsigned i : undefineds) {
722 const NList &sym = nList[i];
723 StringRef name = strtab + sym.n_strx;
724 symbols[i] = parseNonSectionSymbol(sym, name);
725 }
726 }
727
OpaqueFile(MemoryBufferRef mb,StringRef segName,StringRef sectName)728 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
729 StringRef sectName)
730 : InputFile(OpaqueKind, mb) {
731 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
732 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
733 ConcatInputSection *isec =
734 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16),
735 /*file=*/this, data);
736 isec->live = true;
737 subsections.push_back({{0, isec}});
738 }
739
ObjFile(MemoryBufferRef mb,uint32_t modTime,StringRef archiveName)740 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
741 : InputFile(ObjKind, mb), modTime(modTime) {
742 this->archiveName = std::string(archiveName);
743 if (target->wordSize == 8)
744 parse<LP64>();
745 else
746 parse<ILP32>();
747 }
748
parse()749 template <class LP> void ObjFile::parse() {
750 using Header = typename LP::mach_header;
751 using SegmentCommand = typename LP::segment_command;
752 using Section = typename LP::section;
753 using NList = typename LP::nlist;
754
755 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
756 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
757
758 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
759 if (arch != config->arch()) {
760 error(toString(this) + " has architecture " + getArchitectureName(arch) +
761 " which is incompatible with target architecture " +
762 getArchitectureName(config->arch()));
763 return;
764 }
765
766 if (!checkCompatibility(this))
767 return;
768
769 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
770 StringRef data{reinterpret_cast<const char *>(cmd + 1),
771 cmd->cmdsize - sizeof(linker_option_command)};
772 parseLCLinkerOption(this, cmd->count, data);
773 }
774
775 ArrayRef<Section> sectionHeaders;
776 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
777 auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
778 sectionHeaders =
779 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects};
780 parseSections(sectionHeaders);
781 }
782
783 // TODO: Error on missing LC_SYMTAB?
784 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
785 auto *c = reinterpret_cast<const symtab_command *>(cmd);
786 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
787 c->nsyms);
788 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
789 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
790 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
791 }
792
793 // The relocations may refer to the symbols, so we parse them after we have
794 // parsed all the symbols.
795 for (size_t i = 0, n = subsections.size(); i < n; ++i)
796 if (!subsections[i].empty())
797 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]);
798
799 parseDebugInfo();
800 if (config->emitDataInCodeInfo)
801 parseDataInCode();
802 }
803
parseDebugInfo()804 void ObjFile::parseDebugInfo() {
805 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
806 if (!dObj)
807 return;
808
809 auto *ctx = make<DWARFContext>(
810 std::move(dObj), "",
811 [&](Error err) {
812 warn(toString(this) + ": " + toString(std::move(err)));
813 },
814 [&](Error warning) {
815 warn(toString(this) + ": " + toString(std::move(warning)));
816 });
817
818 // TODO: Since object files can contain a lot of DWARF info, we should verify
819 // that we are parsing just the info we need
820 const DWARFContext::compile_unit_range &units = ctx->compile_units();
821 // FIXME: There can be more than one compile unit per object file. See
822 // PR48637.
823 auto it = units.begin();
824 compileUnit = it->get();
825 }
826
parseDataInCode()827 void ObjFile::parseDataInCode() {
828 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
829 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
830 if (!cmd)
831 return;
832 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
833 dataInCodeEntries = {
834 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
835 c->datasize / sizeof(data_in_code_entry)};
836 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
837 const data_in_code_entry &rhs) {
838 return lhs.offset < rhs.offset;
839 }));
840 }
841
842 // The path can point to either a dylib or a .tbd file.
loadDylib(StringRef path,DylibFile * umbrella)843 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
844 Optional<MemoryBufferRef> mbref = readFile(path);
845 if (!mbref) {
846 error("could not read dylib file at " + path);
847 return nullptr;
848 }
849 return loadDylib(*mbref, umbrella);
850 }
851
852 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
853 // the first document storing child pointers to the rest of them. When we are
854 // processing a given TBD file, we store that top-level document in
855 // currentTopLevelTapi. When processing re-exports, we search its children for
856 // potentially matching documents in the same TBD file. Note that the children
857 // themselves don't point to further documents, i.e. this is a two-level tree.
858 //
859 // Re-exports can either refer to on-disk files, or to documents within .tbd
860 // files.
findDylib(StringRef path,DylibFile * umbrella,const InterfaceFile * currentTopLevelTapi)861 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
862 const InterfaceFile *currentTopLevelTapi) {
863 // Search order:
864 // 1. Install name basename in -F / -L directories.
865 {
866 StringRef stem = path::stem(path);
867 SmallString<128> frameworkName;
868 path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
869 bool isFramework = path.endswith(frameworkName);
870 if (isFramework) {
871 for (StringRef dir : config->frameworkSearchPaths) {
872 SmallString<128> candidate = dir;
873 path::append(candidate, frameworkName);
874 if (Optional<std::string> dylibPath = resolveDylibPath(candidate))
875 return loadDylib(*dylibPath, umbrella);
876 }
877 } else if (Optional<StringRef> dylibPath = findPathCombination(
878 stem, config->librarySearchPaths, {".tbd", ".dylib"}))
879 return loadDylib(*dylibPath, umbrella);
880 }
881
882 // 2. As absolute path.
883 if (path::is_absolute(path, path::Style::posix))
884 for (StringRef root : config->systemLibraryRoots)
885 if (Optional<std::string> dylibPath =
886 resolveDylibPath((root + path).str()))
887 return loadDylib(*dylibPath, umbrella);
888
889 // 3. As relative path.
890
891 // TODO: Handle -dylib_file
892
893 // Replace @executable_path, @loader_path, @rpath prefixes in install name.
894 SmallString<128> newPath;
895 if (config->outputType == MH_EXECUTE &&
896 path.consume_front("@executable_path/")) {
897 // ld64 allows overriding this with the undocumented flag -executable_path.
898 // lld doesn't currently implement that flag.
899 // FIXME: Consider using finalOutput instead of outputFile.
900 path::append(newPath, path::parent_path(config->outputFile), path);
901 path = newPath;
902 } else if (path.consume_front("@loader_path/")) {
903 fs::real_path(umbrella->getName(), newPath);
904 path::remove_filename(newPath);
905 path::append(newPath, path);
906 path = newPath;
907 } else if (path.startswith("@rpath/")) {
908 for (StringRef rpath : umbrella->rpaths) {
909 newPath.clear();
910 if (rpath.consume_front("@loader_path/")) {
911 fs::real_path(umbrella->getName(), newPath);
912 path::remove_filename(newPath);
913 }
914 path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
915 if (Optional<std::string> dylibPath = resolveDylibPath(newPath))
916 return loadDylib(*dylibPath, umbrella);
917 }
918 }
919
920 // FIXME: Should this be further up?
921 if (currentTopLevelTapi) {
922 for (InterfaceFile &child :
923 make_pointee_range(currentTopLevelTapi->documents())) {
924 assert(child.documents().empty());
925 if (path == child.getInstallName()) {
926 auto file = make<DylibFile>(child, umbrella);
927 file->parseReexports(child);
928 return file;
929 }
930 }
931 }
932
933 if (Optional<std::string> dylibPath = resolveDylibPath(path))
934 return loadDylib(*dylibPath, umbrella);
935
936 return nullptr;
937 }
938
939 // If a re-exported dylib is public (lives in /usr/lib or
940 // /System/Library/Frameworks), then it is considered implicitly linked: we
941 // should bind to its symbols directly instead of via the re-exporting umbrella
942 // library.
isImplicitlyLinked(StringRef path)943 static bool isImplicitlyLinked(StringRef path) {
944 if (!config->implicitDylibs)
945 return false;
946
947 if (path::parent_path(path) == "/usr/lib")
948 return true;
949
950 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
951 if (path.consume_front("/System/Library/Frameworks/")) {
952 StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
953 return path::filename(path) == frameworkName;
954 }
955
956 return false;
957 }
958
loadReexport(StringRef path,DylibFile * umbrella,const InterfaceFile * currentTopLevelTapi)959 static void loadReexport(StringRef path, DylibFile *umbrella,
960 const InterfaceFile *currentTopLevelTapi) {
961 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
962 if (!reexport)
963 error("unable to locate re-export with install name " + path);
964 }
965
DylibFile(MemoryBufferRef mb,DylibFile * umbrella,bool isBundleLoader)966 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
967 bool isBundleLoader)
968 : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
969 isBundleLoader(isBundleLoader) {
970 assert(!isBundleLoader || !umbrella);
971 if (umbrella == nullptr)
972 umbrella = this;
973 this->umbrella = umbrella;
974
975 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
976 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
977
978 // Initialize installName.
979 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
980 auto *c = reinterpret_cast<const dylib_command *>(cmd);
981 currentVersion = read32le(&c->dylib.current_version);
982 compatibilityVersion = read32le(&c->dylib.compatibility_version);
983 installName =
984 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
985 } else if (!isBundleLoader) {
986 // macho_executable and macho_bundle don't have LC_ID_DYLIB,
987 // so it's OK.
988 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
989 return;
990 }
991
992 if (config->printEachFile)
993 message(toString(this));
994 inputFiles.insert(this);
995
996 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
997
998 if (!checkCompatibility(this))
999 return;
1000
1001 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1002
1003 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1004 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1005 rpaths.push_back(rpath);
1006 }
1007
1008 // Initialize symbols.
1009 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1010 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
1011 auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
1012 parseTrie(buf + c->export_off, c->export_size,
1013 [&](const Twine &name, uint64_t flags) {
1014 StringRef savedName = saver.save(name);
1015 if (handleLDSymbol(savedName))
1016 return;
1017 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1018 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1019 symbols.push_back(symtab->addDylib(savedName, exportingFile,
1020 isWeakDef, isTlv));
1021 });
1022 } else {
1023 error("LC_DYLD_INFO_ONLY not found in " + toString(this));
1024 return;
1025 }
1026 }
1027
parseLoadCommands(MemoryBufferRef mb)1028 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1029 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1030 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1031 target->headerSize;
1032 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1033 auto *cmd = reinterpret_cast<const load_command *>(p);
1034 p += cmd->cmdsize;
1035
1036 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1037 cmd->cmd == LC_REEXPORT_DYLIB) {
1038 const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1039 StringRef reexportPath =
1040 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1041 loadReexport(reexportPath, exportingFile, nullptr);
1042 }
1043
1044 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1045 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1046 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1047 if (config->namespaceKind == NamespaceKind::flat &&
1048 cmd->cmd == LC_LOAD_DYLIB) {
1049 const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1050 StringRef dylibPath =
1051 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1052 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1053 if (!dylib)
1054 error(Twine("unable to locate library '") + dylibPath +
1055 "' loaded from '" + toString(this) + "' for -flat_namespace");
1056 }
1057 }
1058 }
1059
1060 // Some versions of XCode ship with .tbd files that don't have the right
1061 // platform settings.
1062 static constexpr std::array<StringRef, 3> skipPlatformChecks{
1063 "/usr/lib/system/libsystem_kernel.dylib",
1064 "/usr/lib/system/libsystem_platform.dylib",
1065 "/usr/lib/system/libsystem_pthread.dylib"};
1066
DylibFile(const InterfaceFile & interface,DylibFile * umbrella,bool isBundleLoader)1067 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1068 bool isBundleLoader)
1069 : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1070 isBundleLoader(isBundleLoader) {
1071 // FIXME: Add test for the missing TBD code path.
1072
1073 if (umbrella == nullptr)
1074 umbrella = this;
1075 this->umbrella = umbrella;
1076
1077 installName = saver.save(interface.getInstallName());
1078 compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1079 currentVersion = interface.getCurrentVersion().rawValue();
1080
1081 if (config->printEachFile)
1082 message(toString(this));
1083 inputFiles.insert(this);
1084
1085 if (!is_contained(skipPlatformChecks, installName) &&
1086 !is_contained(interface.targets(), config->platformInfo.target)) {
1087 error(toString(this) + " is incompatible with " +
1088 std::string(config->platformInfo.target));
1089 return;
1090 }
1091
1092 checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1093
1094 exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1095 auto addSymbol = [&](const Twine &name) -> void {
1096 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
1097 /*isWeakDef=*/false,
1098 /*isTlv=*/false));
1099 };
1100 // TODO(compnerd) filter out symbols based on the target platform
1101 // TODO: handle weak defs, thread locals
1102 for (const auto *symbol : interface.symbols()) {
1103 if (!symbol->getArchitectures().has(config->arch()))
1104 continue;
1105
1106 if (handleLDSymbol(symbol->getName()))
1107 continue;
1108
1109 switch (symbol->getKind()) {
1110 case SymbolKind::GlobalSymbol:
1111 addSymbol(symbol->getName());
1112 break;
1113 case SymbolKind::ObjectiveCClass:
1114 // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1115 // want to emulate that.
1116 addSymbol(objc::klass + symbol->getName());
1117 addSymbol(objc::metaclass + symbol->getName());
1118 break;
1119 case SymbolKind::ObjectiveCClassEHType:
1120 addSymbol(objc::ehtype + symbol->getName());
1121 break;
1122 case SymbolKind::ObjectiveCInstanceVariable:
1123 addSymbol(objc::ivar + symbol->getName());
1124 break;
1125 }
1126 }
1127 }
1128
parseReexports(const InterfaceFile & interface)1129 void DylibFile::parseReexports(const InterfaceFile &interface) {
1130 const InterfaceFile *topLevel =
1131 interface.getParent() == nullptr ? &interface : interface.getParent();
1132 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) {
1133 InterfaceFile::const_target_range targets = intfRef.targets();
1134 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1135 is_contained(targets, config->platformInfo.target))
1136 loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1137 }
1138 }
1139
1140 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1141 // name, compatibility version or hide/add symbols) for specific target
1142 // versions.
handleLDSymbol(StringRef originalName)1143 bool DylibFile::handleLDSymbol(StringRef originalName) {
1144 if (!originalName.startswith("$ld$"))
1145 return false;
1146
1147 StringRef action;
1148 StringRef name;
1149 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1150 if (action == "previous")
1151 handleLDPreviousSymbol(name, originalName);
1152 else if (action == "install_name")
1153 handleLDInstallNameSymbol(name, originalName);
1154 return true;
1155 }
1156
handleLDPreviousSymbol(StringRef name,StringRef originalName)1157 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1158 // originalName: $ld$ previous $ <installname> $ <compatversion> $
1159 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1160 StringRef installName;
1161 StringRef compatVersion;
1162 StringRef platformStr;
1163 StringRef startVersion;
1164 StringRef endVersion;
1165 StringRef symbolName;
1166 StringRef rest;
1167
1168 std::tie(installName, name) = name.split('$');
1169 std::tie(compatVersion, name) = name.split('$');
1170 std::tie(platformStr, name) = name.split('$');
1171 std::tie(startVersion, name) = name.split('$');
1172 std::tie(endVersion, name) = name.split('$');
1173 std::tie(symbolName, rest) = name.split('$');
1174 // TODO: ld64 contains some logic for non-empty symbolName as well.
1175 if (!symbolName.empty())
1176 return;
1177 unsigned platform;
1178 if (platformStr.getAsInteger(10, platform) ||
1179 platform != static_cast<unsigned>(config->platform()))
1180 return;
1181
1182 VersionTuple start;
1183 if (start.tryParse(startVersion)) {
1184 warn("failed to parse start version, symbol '" + originalName +
1185 "' ignored");
1186 return;
1187 }
1188 VersionTuple end;
1189 if (end.tryParse(endVersion)) {
1190 warn("failed to parse end version, symbol '" + originalName + "' ignored");
1191 return;
1192 }
1193 if (config->platformInfo.minimum < start ||
1194 config->platformInfo.minimum >= end)
1195 return;
1196
1197 this->installName = saver.save(installName);
1198
1199 if (!compatVersion.empty()) {
1200 VersionTuple cVersion;
1201 if (cVersion.tryParse(compatVersion)) {
1202 warn("failed to parse compatibility version, symbol '" + originalName +
1203 "' ignored");
1204 return;
1205 }
1206 compatibilityVersion = encodeVersion(cVersion);
1207 }
1208 }
1209
handleLDInstallNameSymbol(StringRef name,StringRef originalName)1210 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1211 StringRef originalName) {
1212 // originalName: $ld$ install_name $ os<version> $ install_name
1213 StringRef condition, installName;
1214 std::tie(condition, installName) = name.split('$');
1215 VersionTuple version;
1216 if (!condition.consume_front("os") || version.tryParse(condition))
1217 warn("failed to parse os version, symbol '" + originalName + "' ignored");
1218 else if (version == config->platformInfo.minimum)
1219 this->installName = saver.save(installName);
1220 }
1221
checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const1222 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
1223 if (config->applicationExtension && !dylibIsAppExtensionSafe)
1224 warn("using '-application_extension' with unsafe dylib: " + toString(this));
1225 }
1226
ArchiveFile(std::unique_ptr<object::Archive> && f)1227 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1228 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
1229 for (const object::Archive::Symbol &sym : file->symbols())
1230 symtab->addLazy(sym.getName(), this, sym);
1231 }
1232
fetch(const object::Archive::Symbol & sym)1233 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1234 object::Archive::Child c =
1235 CHECK(sym.getMember(), toString(this) +
1236 ": could not get the member for symbol " +
1237 toMachOString(sym));
1238
1239 if (!seen.insert(c.getChildOffset()).second)
1240 return;
1241
1242 MemoryBufferRef mb =
1243 CHECK(c.getMemoryBufferRef(),
1244 toString(this) +
1245 ": could not get the buffer for the member defining symbol " +
1246 toMachOString(sym));
1247
1248 if (tar && c.getParent()->isThin())
1249 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1250
1251 uint32_t modTime = toTimeT(
1252 CHECK(c.getLastModified(), toString(this) +
1253 ": could not get the modification time "
1254 "for the member defining symbol " +
1255 toMachOString(sym)));
1256
1257 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1258 // and become invalid after that call. Copy it to the stack so we can refer
1259 // to it later.
1260 const object::Archive::Symbol symCopy = sym;
1261
1262 if (Optional<InputFile *> file = loadArchiveMember(
1263 mb, modTime, getName(), /*objCOnly=*/false, c.getChildOffset())) {
1264 inputFiles.insert(*file);
1265 // ld64 doesn't demangle sym here even with -demangle.
1266 // Match that: intentionally don't call toMachOString().
1267 printArchiveMemberLoad(symCopy.getName(), *file);
1268 }
1269 }
1270
createBitcodeSymbol(const lto::InputFile::Symbol & objSym,BitcodeFile & file)1271 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1272 BitcodeFile &file) {
1273 StringRef name = saver.save(objSym.getName());
1274
1275 // TODO: support weak references
1276 if (objSym.isUndefined())
1277 return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
1278
1279 assert(!objSym.isCommon() && "TODO: support common symbols in LTO");
1280
1281 // TODO: Write a test demonstrating why computing isPrivateExtern before
1282 // LTO compilation is important.
1283 bool isPrivateExtern = false;
1284 switch (objSym.getVisibility()) {
1285 case GlobalValue::HiddenVisibility:
1286 isPrivateExtern = true;
1287 break;
1288 case GlobalValue::ProtectedVisibility:
1289 error(name + " has protected visibility, which is not supported by Mach-O");
1290 break;
1291 case GlobalValue::DefaultVisibility:
1292 break;
1293 }
1294
1295 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1296 /*size=*/0, objSym.isWeak(), isPrivateExtern,
1297 /*isThumb=*/false,
1298 /*isReferencedDynamically=*/false,
1299 /*noDeadStrip=*/false);
1300 }
1301
BitcodeFile(MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive)1302 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1303 uint64_t offsetInArchive)
1304 : InputFile(BitcodeKind, mb) {
1305 std::string path = mb.getBufferIdentifier().str();
1306 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1307 // name. If two members with the same name are provided, this causes a
1308 // collision and ThinLTO can't proceed.
1309 // So, we append the archive name to disambiguate two members with the same
1310 // name from multiple different archives, and offset within the archive to
1311 // disambiguate two members of the same name from a single archive.
1312 MemoryBufferRef mbref(
1313 mb.getBuffer(),
1314 saver.save(archiveName.empty() ? path
1315 : archiveName + sys::path::filename(path) +
1316 utostr(offsetInArchive)));
1317
1318 obj = check(lto::InputFile::create(mbref));
1319
1320 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1321 // "winning" symbol will then be marked as Prevailing at LTO compilation
1322 // time.
1323 for (const lto::InputFile::Symbol &objSym : obj->symbols())
1324 symbols.push_back(createBitcodeSymbol(objSym, *this));
1325 }
1326
1327 template void ObjFile::parse<LP64>();
1328