1 //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declarations of classes that represent "derived
10 // types".  These are things like "arrays of x" or "structure of x, y, z" or
11 // "function returning x taking (y,z) as parameters", etc...
12 //
13 // The implementations of these classes live in the Type.cpp file.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_IR_DERIVEDTYPES_H
18 #define LLVM_IR_DERIVEDTYPES_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/TypeSize.h"
27 #include <cassert>
28 #include <cstdint>
29 
30 namespace llvm {
31 
32 class Value;
33 class APInt;
34 class LLVMContext;
35 
36 /// Class to represent integer types. Note that this class is also used to
37 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38 /// Int64Ty.
39 /// Integer representation type
40 class IntegerType : public Type {
41   friend class LLVMContextImpl;
42 
43 protected:
IntegerType(LLVMContext & C,unsigned NumBits)44   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45     setSubclassData(NumBits);
46   }
47 
48 public:
49   /// This enum is just used to hold constants we need for IntegerType.
50   enum {
51     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
52     MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
53       ///< Note that bit width is stored in the Type classes SubclassData field
54       ///< which has 24 bits. This yields a maximum bit width of 16,777,215
55       ///< bits.
56   };
57 
58   /// This static method is the primary way of constructing an IntegerType.
59   /// If an IntegerType with the same NumBits value was previously instantiated,
60   /// that instance will be returned. Otherwise a new one will be created. Only
61   /// one instance with a given NumBits value is ever created.
62   /// Get or create an IntegerType instance.
63   static IntegerType *get(LLVMContext &C, unsigned NumBits);
64 
65   /// Returns type twice as wide the input type.
getExtendedType()66   IntegerType *getExtendedType() const {
67     return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits());
68   }
69 
70   /// Get the number of bits in this IntegerType
getBitWidth()71   unsigned getBitWidth() const { return getSubclassData(); }
72 
73   /// Return a bitmask with ones set for all of the bits that can be set by an
74   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
getBitMask()75   uint64_t getBitMask() const {
76     return ~uint64_t(0UL) >> (64-getBitWidth());
77   }
78 
79   /// Return a uint64_t with just the most significant bit set (the sign bit, if
80   /// the value is treated as a signed number).
getSignBit()81   uint64_t getSignBit() const {
82     return 1ULL << (getBitWidth()-1);
83   }
84 
85   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
86   /// @returns a bit mask with ones set for all the bits of this type.
87   /// Get a bit mask for this type.
88   APInt getMask() const;
89 
90   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)91   static bool classof(const Type *T) {
92     return T->getTypeID() == IntegerTyID;
93   }
94 };
95 
getIntegerBitWidth()96 unsigned Type::getIntegerBitWidth() const {
97   return cast<IntegerType>(this)->getBitWidth();
98 }
99 
100 /// Class to represent function types
101 ///
102 class FunctionType : public Type {
103   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
104 
105 public:
106   FunctionType(const FunctionType &) = delete;
107   FunctionType &operator=(const FunctionType &) = delete;
108 
109   /// This static method is the primary way of constructing a FunctionType.
110   static FunctionType *get(Type *Result,
111                            ArrayRef<Type*> Params, bool isVarArg);
112 
113   /// Create a FunctionType taking no parameters.
114   static FunctionType *get(Type *Result, bool isVarArg);
115 
116   /// Return true if the specified type is valid as a return type.
117   static bool isValidReturnType(Type *RetTy);
118 
119   /// Return true if the specified type is valid as an argument type.
120   static bool isValidArgumentType(Type *ArgTy);
121 
isVarArg()122   bool isVarArg() const { return getSubclassData()!=0; }
getReturnType()123   Type *getReturnType() const { return ContainedTys[0]; }
124 
125   using param_iterator = Type::subtype_iterator;
126 
param_begin()127   param_iterator param_begin() const { return ContainedTys + 1; }
param_end()128   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
params()129   ArrayRef<Type *> params() const {
130     return makeArrayRef(param_begin(), param_end());
131   }
132 
133   /// Parameter type accessors.
getParamType(unsigned i)134   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
135 
136   /// Return the number of fixed parameters this function type requires.
137   /// This does not consider varargs.
getNumParams()138   unsigned getNumParams() const { return NumContainedTys - 1; }
139 
140   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)141   static bool classof(const Type *T) {
142     return T->getTypeID() == FunctionTyID;
143   }
144 };
145 static_assert(alignof(FunctionType) >= alignof(Type *),
146               "Alignment sufficient for objects appended to FunctionType");
147 
isFunctionVarArg()148 bool Type::isFunctionVarArg() const {
149   return cast<FunctionType>(this)->isVarArg();
150 }
151 
getFunctionParamType(unsigned i)152 Type *Type::getFunctionParamType(unsigned i) const {
153   return cast<FunctionType>(this)->getParamType(i);
154 }
155 
getFunctionNumParams()156 unsigned Type::getFunctionNumParams() const {
157   return cast<FunctionType>(this)->getNumParams();
158 }
159 
160 /// A handy container for a FunctionType+Callee-pointer pair, which can be
161 /// passed around as a single entity. This assists in replacing the use of
162 /// PointerType::getElementType() to access the function's type, since that's
163 /// slated for removal as part of the [opaque pointer types] project.
164 class FunctionCallee {
165 public:
166   // Allow implicit conversion from types which have a getFunctionType member
167   // (e.g. Function and InlineAsm).
168   template <typename T, typename U = decltype(&T::getFunctionType)>
FunctionCallee(T * Fn)169   FunctionCallee(T *Fn)
170       : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
171 
FunctionCallee(FunctionType * FnTy,Value * Callee)172   FunctionCallee(FunctionType *FnTy, Value *Callee)
173       : FnTy(FnTy), Callee(Callee) {
174     assert((FnTy == nullptr) == (Callee == nullptr));
175   }
176 
FunctionCallee(std::nullptr_t)177   FunctionCallee(std::nullptr_t) {}
178 
179   FunctionCallee() = default;
180 
getFunctionType()181   FunctionType *getFunctionType() { return FnTy; }
182 
getCallee()183   Value *getCallee() { return Callee; }
184 
185   explicit operator bool() { return Callee; }
186 
187 private:
188   FunctionType *FnTy = nullptr;
189   Value *Callee = nullptr;
190 };
191 
192 /// Class to represent struct types. There are two different kinds of struct
193 /// types: Literal structs and Identified structs.
194 ///
195 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
196 /// always have a body when created.  You can get one of these by using one of
197 /// the StructType::get() forms.
198 ///
199 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
200 /// uniqued.  The names for identified structs are managed at the LLVMContext
201 /// level, so there can only be a single identified struct with a given name in
202 /// a particular LLVMContext.  Identified structs may also optionally be opaque
203 /// (have no body specified).  You get one of these by using one of the
204 /// StructType::create() forms.
205 ///
206 /// Independent of what kind of struct you have, the body of a struct type are
207 /// laid out in memory consecutively with the elements directly one after the
208 /// other (if the struct is packed) or (if not packed) with padding between the
209 /// elements as defined by DataLayout (which is required to match what the code
210 /// generator for a target expects).
211 ///
212 class StructType : public Type {
StructType(LLVMContext & C)213   StructType(LLVMContext &C) : Type(C, StructTyID) {}
214 
215   enum {
216     /// This is the contents of the SubClassData field.
217     SCDB_HasBody = 1,
218     SCDB_Packed = 2,
219     SCDB_IsLiteral = 4,
220     SCDB_IsSized = 8
221   };
222 
223   /// For a named struct that actually has a name, this is a pointer to the
224   /// symbol table entry (maintained by LLVMContext) for the struct.
225   /// This is null if the type is an literal struct or if it is a identified
226   /// type that has an empty name.
227   void *SymbolTableEntry = nullptr;
228 
229 public:
230   StructType(const StructType &) = delete;
231   StructType &operator=(const StructType &) = delete;
232 
233   /// This creates an identified struct.
234   static StructType *create(LLVMContext &Context, StringRef Name);
235   static StructType *create(LLVMContext &Context);
236 
237   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
238                             bool isPacked = false);
239   static StructType *create(ArrayRef<Type *> Elements);
240   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
241                             StringRef Name, bool isPacked = false);
242   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
243   template <class... Tys>
244   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
create(StringRef Name,Type * elt1,Tys * ...elts)245   create(StringRef Name, Type *elt1, Tys *... elts) {
246     assert(elt1 && "Cannot create a struct type with no elements with this");
247     return create(ArrayRef<Type *>({elt1, elts...}), Name);
248   }
249 
250   /// This static method is the primary way to create a literal StructType.
251   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
252                          bool isPacked = false);
253 
254   /// Create an empty structure type.
255   static StructType *get(LLVMContext &Context, bool isPacked = false);
256 
257   /// This static method is a convenience method for creating structure types by
258   /// specifying the elements as arguments. Note that this method always returns
259   /// a non-packed struct, and requires at least one element type.
260   template <class... Tys>
261   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
get(Type * elt1,Tys * ...elts)262   get(Type *elt1, Tys *... elts) {
263     assert(elt1 && "Cannot create a struct type with no elements with this");
264     LLVMContext &Ctx = elt1->getContext();
265     return StructType::get(Ctx, ArrayRef<Type *>({elt1, elts...}));
266   }
267 
268   /// Return the type with the specified name, or null if there is none by that
269   /// name.
270   static StructType *getTypeByName(LLVMContext &C, StringRef Name);
271 
isPacked()272   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
273 
274   /// Return true if this type is uniqued by structural equivalence, false if it
275   /// is a struct definition.
isLiteral()276   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
277 
278   /// Return true if this is a type with an identity that has no body specified
279   /// yet. These prints as 'opaque' in .ll files.
isOpaque()280   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
281 
282   /// isSized - Return true if this is a sized type.
283   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
284 
285   /// Returns true if this struct contains a scalable vector.
286   bool containsScalableVectorType() const;
287 
288   /// Return true if this is a named struct that has a non-empty name.
hasName()289   bool hasName() const { return SymbolTableEntry != nullptr; }
290 
291   /// Return the name for this struct type if it has an identity.
292   /// This may return an empty string for an unnamed struct type.  Do not call
293   /// this on an literal type.
294   StringRef getName() const;
295 
296   /// Change the name of this type to the specified name, or to a name with a
297   /// suffix if there is a collision. Do not call this on an literal type.
298   void setName(StringRef Name);
299 
300   /// Specify a body for an opaque identified type.
301   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
302 
303   template <typename... Tys>
304   std::enable_if_t<are_base_of<Type, Tys...>::value, void>
setBody(Type * elt1,Tys * ...elts)305   setBody(Type *elt1, Tys *... elts) {
306     assert(elt1 && "Cannot create a struct type with no elements with this");
307     setBody(ArrayRef<Type *>({elt1, elts...}));
308   }
309 
310   /// Return true if the specified type is valid as a element type.
311   static bool isValidElementType(Type *ElemTy);
312 
313   // Iterator access to the elements.
314   using element_iterator = Type::subtype_iterator;
315 
element_begin()316   element_iterator element_begin() const { return ContainedTys; }
element_end()317   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
elements()318   ArrayRef<Type *> elements() const {
319     return makeArrayRef(element_begin(), element_end());
320   }
321 
322   /// Return true if this is layout identical to the specified struct.
323   bool isLayoutIdentical(StructType *Other) const;
324 
325   /// Random access to the elements
getNumElements()326   unsigned getNumElements() const { return NumContainedTys; }
getElementType(unsigned N)327   Type *getElementType(unsigned N) const {
328     assert(N < NumContainedTys && "Element number out of range!");
329     return ContainedTys[N];
330   }
331   /// Given an index value into the type, return the type of the element.
332   Type *getTypeAtIndex(const Value *V) const;
getTypeAtIndex(unsigned N)333   Type *getTypeAtIndex(unsigned N) const { return getElementType(N); }
334   bool indexValid(const Value *V) const;
indexValid(unsigned Idx)335   bool indexValid(unsigned Idx) const { return Idx < getNumElements(); }
336 
337   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)338   static bool classof(const Type *T) {
339     return T->getTypeID() == StructTyID;
340   }
341 };
342 
getStructName()343 StringRef Type::getStructName() const {
344   return cast<StructType>(this)->getName();
345 }
346 
getStructNumElements()347 unsigned Type::getStructNumElements() const {
348   return cast<StructType>(this)->getNumElements();
349 }
350 
getStructElementType(unsigned N)351 Type *Type::getStructElementType(unsigned N) const {
352   return cast<StructType>(this)->getElementType(N);
353 }
354 
355 /// Class to represent array types.
356 class ArrayType : public Type {
357   /// The element type of the array.
358   Type *ContainedType;
359   /// Number of elements in the array.
360   uint64_t NumElements;
361 
362   ArrayType(Type *ElType, uint64_t NumEl);
363 
364 public:
365   ArrayType(const ArrayType &) = delete;
366   ArrayType &operator=(const ArrayType &) = delete;
367 
getNumElements()368   uint64_t getNumElements() const { return NumElements; }
getElementType()369   Type *getElementType() const { return ContainedType; }
370 
371   /// This static method is the primary way to construct an ArrayType
372   static ArrayType *get(Type *ElementType, uint64_t NumElements);
373 
374   /// Return true if the specified type is valid as a element type.
375   static bool isValidElementType(Type *ElemTy);
376 
377   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)378   static bool classof(const Type *T) {
379     return T->getTypeID() == ArrayTyID;
380   }
381 };
382 
getArrayNumElements()383 uint64_t Type::getArrayNumElements() const {
384   return cast<ArrayType>(this)->getNumElements();
385 }
386 
387 /// Base class of all SIMD vector types
388 class VectorType : public Type {
389   /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
390   /// minimum number of elements of type Ty contained within the vector, and
391   /// 'vscale x' indicates that the total element count is an integer multiple
392   /// of 'n', where the multiple is either guaranteed to be one, or is
393   /// statically unknown at compile time.
394   ///
395   /// If the multiple is known to be 1, then the extra term is discarded in
396   /// textual IR:
397   ///
398   /// <4 x i32>          - a vector containing 4 i32s
399   /// <vscale x 4 x i32> - a vector containing an unknown integer multiple
400   ///                      of 4 i32s
401 
402   /// The element type of the vector.
403   Type *ContainedType;
404 
405 protected:
406   /// The element quantity of this vector. The meaning of this value depends
407   /// on the type of vector:
408   /// - For FixedVectorType = <ElementQuantity x ty>, there are
409   ///   exactly ElementQuantity elements in this vector.
410   /// - For ScalableVectorType = <vscale x ElementQuantity x ty>,
411   ///   there are vscale * ElementQuantity elements in this vector, where
412   ///   vscale is a runtime-constant integer greater than 0.
413   const unsigned ElementQuantity;
414 
415   VectorType(Type *ElType, unsigned EQ, Type::TypeID TID);
416 
417 public:
418   VectorType(const VectorType &) = delete;
419   VectorType &operator=(const VectorType &) = delete;
420 
getElementType()421   Type *getElementType() const { return ContainedType; }
422 
423   /// This static method is the primary way to construct an VectorType.
424   static VectorType *get(Type *ElementType, ElementCount EC);
425 
get(Type * ElementType,unsigned NumElements,bool Scalable)426   static VectorType *get(Type *ElementType, unsigned NumElements,
427                          bool Scalable) {
428     return VectorType::get(ElementType,
429                            ElementCount::get(NumElements, Scalable));
430   }
431 
get(Type * ElementType,const VectorType * Other)432   static VectorType *get(Type *ElementType, const VectorType *Other) {
433     return VectorType::get(ElementType, Other->getElementCount());
434   }
435 
436   /// This static method gets a VectorType with the same number of elements as
437   /// the input type, and the element type is an integer type of the same width
438   /// as the input element type.
getInteger(VectorType * VTy)439   static VectorType *getInteger(VectorType *VTy) {
440     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
441     assert(EltBits && "Element size must be of a non-zero size");
442     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
443     return VectorType::get(EltTy, VTy->getElementCount());
444   }
445 
446   /// This static method is like getInteger except that the element types are
447   /// twice as wide as the elements in the input type.
getExtendedElementVectorType(VectorType * VTy)448   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
449     assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints.");
450     auto *EltTy = cast<IntegerType>(VTy->getElementType());
451     return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount());
452   }
453 
454   // This static method gets a VectorType with the same number of elements as
455   // the input type, and the element type is an integer or float type which
456   // is half as wide as the elements in the input type.
getTruncatedElementVectorType(VectorType * VTy)457   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
458     Type *EltTy;
459     if (VTy->getElementType()->isFloatingPointTy()) {
460       switch(VTy->getElementType()->getTypeID()) {
461       case DoubleTyID:
462         EltTy = Type::getFloatTy(VTy->getContext());
463         break;
464       case FloatTyID:
465         EltTy = Type::getHalfTy(VTy->getContext());
466         break;
467       default:
468         llvm_unreachable("Cannot create narrower fp vector element type");
469       }
470     } else {
471       unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
472       assert((EltBits & 1) == 0 &&
473              "Cannot truncate vector element with odd bit-width");
474       EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
475     }
476     return VectorType::get(EltTy, VTy->getElementCount());
477   }
478 
479   // This static method returns a VectorType with a smaller number of elements
480   // of a larger type than the input element type. For example, a <16 x i8>
481   // subdivided twice would return <4 x i32>
getSubdividedVectorType(VectorType * VTy,int NumSubdivs)482   static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) {
483     for (int i = 0; i < NumSubdivs; ++i) {
484       VTy = VectorType::getDoubleElementsVectorType(VTy);
485       VTy = VectorType::getTruncatedElementVectorType(VTy);
486     }
487     return VTy;
488   }
489 
490   /// This static method returns a VectorType with half as many elements as the
491   /// input type and the same element type.
getHalfElementsVectorType(VectorType * VTy)492   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
493     auto EltCnt = VTy->getElementCount();
494     assert(EltCnt.isKnownEven() &&
495            "Cannot halve vector with odd number of elements.");
496     return VectorType::get(VTy->getElementType(),
497                            EltCnt.divideCoefficientBy(2));
498   }
499 
500   /// This static method returns a VectorType with twice as many elements as the
501   /// input type and the same element type.
getDoubleElementsVectorType(VectorType * VTy)502   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
503     auto EltCnt = VTy->getElementCount();
504     assert((EltCnt.getKnownMinValue() * 2ull) <= UINT_MAX &&
505            "Too many elements in vector");
506     return VectorType::get(VTy->getElementType(), EltCnt * 2);
507   }
508 
509   /// Return true if the specified type is valid as a element type.
510   static bool isValidElementType(Type *ElemTy);
511 
512   /// Return an ElementCount instance to represent the (possibly scalable)
513   /// number of elements in the vector.
514   inline ElementCount getElementCount() const;
515 
516   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)517   static bool classof(const Type *T) {
518     return T->getTypeID() == FixedVectorTyID ||
519            T->getTypeID() == ScalableVectorTyID;
520   }
521 };
522 
523 /// Class to represent fixed width SIMD vectors
524 class FixedVectorType : public VectorType {
525 protected:
FixedVectorType(Type * ElTy,unsigned NumElts)526   FixedVectorType(Type *ElTy, unsigned NumElts)
527       : VectorType(ElTy, NumElts, FixedVectorTyID) {}
528 
529 public:
530   static FixedVectorType *get(Type *ElementType, unsigned NumElts);
531 
get(Type * ElementType,const FixedVectorType * FVTy)532   static FixedVectorType *get(Type *ElementType, const FixedVectorType *FVTy) {
533     return get(ElementType, FVTy->getNumElements());
534   }
535 
getInteger(FixedVectorType * VTy)536   static FixedVectorType *getInteger(FixedVectorType *VTy) {
537     return cast<FixedVectorType>(VectorType::getInteger(VTy));
538   }
539 
getExtendedElementVectorType(FixedVectorType * VTy)540   static FixedVectorType *getExtendedElementVectorType(FixedVectorType *VTy) {
541     return cast<FixedVectorType>(VectorType::getExtendedElementVectorType(VTy));
542   }
543 
getTruncatedElementVectorType(FixedVectorType * VTy)544   static FixedVectorType *getTruncatedElementVectorType(FixedVectorType *VTy) {
545     return cast<FixedVectorType>(
546         VectorType::getTruncatedElementVectorType(VTy));
547   }
548 
getSubdividedVectorType(FixedVectorType * VTy,int NumSubdivs)549   static FixedVectorType *getSubdividedVectorType(FixedVectorType *VTy,
550                                                   int NumSubdivs) {
551     return cast<FixedVectorType>(
552         VectorType::getSubdividedVectorType(VTy, NumSubdivs));
553   }
554 
getHalfElementsVectorType(FixedVectorType * VTy)555   static FixedVectorType *getHalfElementsVectorType(FixedVectorType *VTy) {
556     return cast<FixedVectorType>(VectorType::getHalfElementsVectorType(VTy));
557   }
558 
getDoubleElementsVectorType(FixedVectorType * VTy)559   static FixedVectorType *getDoubleElementsVectorType(FixedVectorType *VTy) {
560     return cast<FixedVectorType>(VectorType::getDoubleElementsVectorType(VTy));
561   }
562 
classof(const Type * T)563   static bool classof(const Type *T) {
564     return T->getTypeID() == FixedVectorTyID;
565   }
566 
getNumElements()567   unsigned getNumElements() const { return ElementQuantity; }
568 };
569 
570 /// Class to represent scalable SIMD vectors
571 class ScalableVectorType : public VectorType {
572 protected:
ScalableVectorType(Type * ElTy,unsigned MinNumElts)573   ScalableVectorType(Type *ElTy, unsigned MinNumElts)
574       : VectorType(ElTy, MinNumElts, ScalableVectorTyID) {}
575 
576 public:
577   static ScalableVectorType *get(Type *ElementType, unsigned MinNumElts);
578 
get(Type * ElementType,const ScalableVectorType * SVTy)579   static ScalableVectorType *get(Type *ElementType,
580                                  const ScalableVectorType *SVTy) {
581     return get(ElementType, SVTy->getMinNumElements());
582   }
583 
getInteger(ScalableVectorType * VTy)584   static ScalableVectorType *getInteger(ScalableVectorType *VTy) {
585     return cast<ScalableVectorType>(VectorType::getInteger(VTy));
586   }
587 
588   static ScalableVectorType *
getExtendedElementVectorType(ScalableVectorType * VTy)589   getExtendedElementVectorType(ScalableVectorType *VTy) {
590     return cast<ScalableVectorType>(
591         VectorType::getExtendedElementVectorType(VTy));
592   }
593 
594   static ScalableVectorType *
getTruncatedElementVectorType(ScalableVectorType * VTy)595   getTruncatedElementVectorType(ScalableVectorType *VTy) {
596     return cast<ScalableVectorType>(
597         VectorType::getTruncatedElementVectorType(VTy));
598   }
599 
getSubdividedVectorType(ScalableVectorType * VTy,int NumSubdivs)600   static ScalableVectorType *getSubdividedVectorType(ScalableVectorType *VTy,
601                                                      int NumSubdivs) {
602     return cast<ScalableVectorType>(
603         VectorType::getSubdividedVectorType(VTy, NumSubdivs));
604   }
605 
606   static ScalableVectorType *
getHalfElementsVectorType(ScalableVectorType * VTy)607   getHalfElementsVectorType(ScalableVectorType *VTy) {
608     return cast<ScalableVectorType>(VectorType::getHalfElementsVectorType(VTy));
609   }
610 
611   static ScalableVectorType *
getDoubleElementsVectorType(ScalableVectorType * VTy)612   getDoubleElementsVectorType(ScalableVectorType *VTy) {
613     return cast<ScalableVectorType>(
614         VectorType::getDoubleElementsVectorType(VTy));
615   }
616 
617   /// Get the minimum number of elements in this vector. The actual number of
618   /// elements in the vector is an integer multiple of this value.
getMinNumElements()619   uint64_t getMinNumElements() const { return ElementQuantity; }
620 
classof(const Type * T)621   static bool classof(const Type *T) {
622     return T->getTypeID() == ScalableVectorTyID;
623   }
624 };
625 
getElementCount()626 inline ElementCount VectorType::getElementCount() const {
627   return ElementCount::get(ElementQuantity, isa<ScalableVectorType>(this));
628 }
629 
630 /// Class to represent pointers.
631 class PointerType : public Type {
632   explicit PointerType(Type *ElType, unsigned AddrSpace);
633   explicit PointerType(LLVMContext &C, unsigned AddrSpace);
634 
635   Type *PointeeTy;
636 
637 public:
638   PointerType(const PointerType &) = delete;
639   PointerType &operator=(const PointerType &) = delete;
640 
641   /// This constructs a pointer to an object of the specified type in a numbered
642   /// address space.
643   static PointerType *get(Type *ElementType, unsigned AddressSpace);
644   /// This constructs an opaque pointer to an object in a numbered address
645   /// space.
646   static PointerType *get(LLVMContext &C, unsigned AddressSpace);
647 
648   /// This constructs a pointer to an object of the specified type in the
649   /// default address space (address space zero).
getUnqual(Type * ElementType)650   static PointerType *getUnqual(Type *ElementType) {
651     return PointerType::get(ElementType, 0);
652   }
653 
654   /// This constructs an opaque pointer to an object in the
655   /// default address space (address space zero).
getUnqual(LLVMContext & C)656   static PointerType *getUnqual(LLVMContext &C) {
657     return PointerType::get(C, 0);
658   }
659 
660   /// This constructs a pointer type with the same pointee type as input
661   /// PointerType (or opaque pointer is the input PointerType is opaque) and the
662   /// given address space. This is only useful during the opaque pointer
663   /// transition.
664   /// TODO: remove after opaque pointer transition is complete.
getWithSamePointeeType(PointerType * PT,unsigned AddressSpace)665   static PointerType *getWithSamePointeeType(PointerType *PT,
666                                              unsigned AddressSpace) {
667     if (PT->isOpaque())
668       return get(PT->getContext(), AddressSpace);
669     return get(PT->getElementType(), AddressSpace);
670   }
671 
getElementType()672   Type *getElementType() const {
673     assert(!isOpaque() && "Attempting to get element type of opaque pointer");
674     return PointeeTy;
675   }
676 
isOpaque()677   bool isOpaque() const { return !PointeeTy; }
678 
679   /// Return true if the specified type is valid as a element type.
680   static bool isValidElementType(Type *ElemTy);
681 
682   /// Return true if we can load or store from a pointer to this type.
683   static bool isLoadableOrStorableType(Type *ElemTy);
684 
685   /// Return the address space of the Pointer type.
getAddressSpace()686   inline unsigned getAddressSpace() const { return getSubclassData(); }
687 
688   /// Return true if either this is an opaque pointer type or if this pointee
689   /// type matches Ty. Primarily used for checking if an instruction's pointer
690   /// operands are valid types. Will be useless after non-opaque pointers are
691   /// removed.
isOpaqueOrPointeeTypeMatches(Type * Ty)692   bool isOpaqueOrPointeeTypeMatches(Type *Ty) {
693     return isOpaque() || PointeeTy == Ty;
694   }
695 
696   /// Return true if both pointer types have the same element type. Two opaque
697   /// pointers are considered to have the same element type, while an opaque
698   /// and a non-opaque pointer have different element types.
699   /// TODO: Remove after opaque pointer transition is complete.
hasSameElementTypeAs(PointerType * Other)700   bool hasSameElementTypeAs(PointerType *Other) {
701     return PointeeTy == Other->PointeeTy;
702   }
703 
704   /// Implement support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)705   static bool classof(const Type *T) {
706     return T->getTypeID() == PointerTyID;
707   }
708 };
709 
getExtendedType()710 Type *Type::getExtendedType() const {
711   assert(
712       isIntOrIntVectorTy() &&
713       "Original type expected to be a vector of integers or a scalar integer.");
714   if (auto *VTy = dyn_cast<VectorType>(this))
715     return VectorType::getExtendedElementVectorType(
716         const_cast<VectorType *>(VTy));
717   return cast<IntegerType>(this)->getExtendedType();
718 }
719 
getWithNewType(Type * EltTy)720 Type *Type::getWithNewType(Type *EltTy) const {
721   if (auto *VTy = dyn_cast<VectorType>(this))
722     return VectorType::get(EltTy, VTy->getElementCount());
723   return EltTy;
724 }
725 
getWithNewBitWidth(unsigned NewBitWidth)726 Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const {
727   assert(
728       isIntOrIntVectorTy() &&
729       "Original type expected to be a vector of integers or a scalar integer.");
730   return getWithNewType(getIntNTy(getContext(), NewBitWidth));
731 }
732 
getPointerAddressSpace()733 unsigned Type::getPointerAddressSpace() const {
734   return cast<PointerType>(getScalarType())->getAddressSpace();
735 }
736 
737 } // end namespace llvm
738 
739 #endif // LLVM_IR_DERIVEDTYPES_H
740