1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/Analysis/MemoryLocation.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineInstrBuilder.h"
14 #include "llvm/CodeGen/MachineRegisterInfo.h"
15 #include "llvm/InitializePasses.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/raw_ostream.h"
20
21 #define DEBUG_TYPE "pipeliner"
22 using namespace llvm;
23
print(raw_ostream & OS)24 void ModuloSchedule::print(raw_ostream &OS) {
25 for (MachineInstr *MI : ScheduledInstrs)
26 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
27 }
28
29 //===----------------------------------------------------------------------===//
30 // ModuloScheduleExpander implementation
31 //===----------------------------------------------------------------------===//
32
33 /// Return the register values for the operands of a Phi instruction.
34 /// This function assume the instruction is a Phi.
getPhiRegs(MachineInstr & Phi,MachineBasicBlock * Loop,unsigned & InitVal,unsigned & LoopVal)35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
36 unsigned &InitVal, unsigned &LoopVal) {
37 assert(Phi.isPHI() && "Expecting a Phi.");
38
39 InitVal = 0;
40 LoopVal = 0;
41 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
42 if (Phi.getOperand(i + 1).getMBB() != Loop)
43 InitVal = Phi.getOperand(i).getReg();
44 else
45 LoopVal = Phi.getOperand(i).getReg();
46
47 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
48 }
49
50 /// Return the Phi register value that comes from the incoming block.
getInitPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
52 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
53 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
54 return Phi.getOperand(i).getReg();
55 return 0;
56 }
57
58 /// Return the Phi register value that comes the loop block.
getLoopPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
60 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
61 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
62 return Phi.getOperand(i).getReg();
63 return 0;
64 }
65
expand()66 void ModuloScheduleExpander::expand() {
67 BB = Schedule.getLoop()->getTopBlock();
68 Preheader = *BB->pred_begin();
69 if (Preheader == BB)
70 Preheader = *std::next(BB->pred_begin());
71
72 // Iterate over the definitions in each instruction, and compute the
73 // stage difference for each use. Keep the maximum value.
74 for (MachineInstr *MI : Schedule.getInstructions()) {
75 int DefStage = Schedule.getStage(MI);
76 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
77 MachineOperand &Op = MI->getOperand(i);
78 if (!Op.isReg() || !Op.isDef())
79 continue;
80
81 Register Reg = Op.getReg();
82 unsigned MaxDiff = 0;
83 bool PhiIsSwapped = false;
84 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
85 EI = MRI.use_end();
86 UI != EI; ++UI) {
87 MachineOperand &UseOp = *UI;
88 MachineInstr *UseMI = UseOp.getParent();
89 int UseStage = Schedule.getStage(UseMI);
90 unsigned Diff = 0;
91 if (UseStage != -1 && UseStage >= DefStage)
92 Diff = UseStage - DefStage;
93 if (MI->isPHI()) {
94 if (isLoopCarried(*MI))
95 ++Diff;
96 else
97 PhiIsSwapped = true;
98 }
99 MaxDiff = std::max(Diff, MaxDiff);
100 }
101 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
102 }
103 }
104
105 generatePipelinedLoop();
106 }
107
generatePipelinedLoop()108 void ModuloScheduleExpander::generatePipelinedLoop() {
109 LoopInfo = TII->analyzeLoopForPipelining(BB);
110 assert(LoopInfo && "Must be able to analyze loop!");
111
112 // Create a new basic block for the kernel and add it to the CFG.
113 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
114
115 unsigned MaxStageCount = Schedule.getNumStages() - 1;
116
117 // Remember the registers that are used in different stages. The index is
118 // the iteration, or stage, that the instruction is scheduled in. This is
119 // a map between register names in the original block and the names created
120 // in each stage of the pipelined loop.
121 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
122 InstrMapTy InstrMap;
123
124 SmallVector<MachineBasicBlock *, 4> PrologBBs;
125
126 // Generate the prolog instructions that set up the pipeline.
127 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
128 MF.insert(BB->getIterator(), KernelBB);
129
130 // Rearrange the instructions to generate the new, pipelined loop,
131 // and update register names as needed.
132 for (MachineInstr *CI : Schedule.getInstructions()) {
133 if (CI->isPHI())
134 continue;
135 unsigned StageNum = Schedule.getStage(CI);
136 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
137 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
138 KernelBB->push_back(NewMI);
139 InstrMap[NewMI] = CI;
140 }
141
142 // Copy any terminator instructions to the new kernel, and update
143 // names as needed.
144 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
145 E = BB->instr_end();
146 I != E; ++I) {
147 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
148 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
149 KernelBB->push_back(NewMI);
150 InstrMap[NewMI] = &*I;
151 }
152
153 NewKernel = KernelBB;
154 KernelBB->transferSuccessors(BB);
155 KernelBB->replaceSuccessor(BB, KernelBB);
156
157 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
158 InstrMap, MaxStageCount, MaxStageCount, false);
159 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
160 MaxStageCount, MaxStageCount, false);
161
162 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
163
164 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
165 // Generate the epilog instructions to complete the pipeline.
166 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
167
168 // We need this step because the register allocation doesn't handle some
169 // situations well, so we insert copies to help out.
170 splitLifetimes(KernelBB, EpilogBBs);
171
172 // Remove dead instructions due to loop induction variables.
173 removeDeadInstructions(KernelBB, EpilogBBs);
174
175 // Add branches between prolog and epilog blocks.
176 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
177
178 delete[] VRMap;
179 }
180
cleanup()181 void ModuloScheduleExpander::cleanup() {
182 // Remove the original loop since it's no longer referenced.
183 for (auto &I : *BB)
184 LIS.RemoveMachineInstrFromMaps(I);
185 BB->clear();
186 BB->eraseFromParent();
187 }
188
189 /// Generate the pipeline prolog code.
generateProlog(unsigned LastStage,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,MBBVectorTy & PrologBBs)190 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
191 MachineBasicBlock *KernelBB,
192 ValueMapTy *VRMap,
193 MBBVectorTy &PrologBBs) {
194 MachineBasicBlock *PredBB = Preheader;
195 InstrMapTy InstrMap;
196
197 // Generate a basic block for each stage, not including the last stage,
198 // which will be generated in the kernel. Each basic block may contain
199 // instructions from multiple stages/iterations.
200 for (unsigned i = 0; i < LastStage; ++i) {
201 // Create and insert the prolog basic block prior to the original loop
202 // basic block. The original loop is removed later.
203 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
204 PrologBBs.push_back(NewBB);
205 MF.insert(BB->getIterator(), NewBB);
206 NewBB->transferSuccessors(PredBB);
207 PredBB->addSuccessor(NewBB);
208 PredBB = NewBB;
209
210 // Generate instructions for each appropriate stage. Process instructions
211 // in original program order.
212 for (int StageNum = i; StageNum >= 0; --StageNum) {
213 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
214 BBE = BB->getFirstTerminator();
215 BBI != BBE; ++BBI) {
216 if (Schedule.getStage(&*BBI) == StageNum) {
217 if (BBI->isPHI())
218 continue;
219 MachineInstr *NewMI =
220 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
221 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
222 NewBB->push_back(NewMI);
223 InstrMap[NewMI] = &*BBI;
224 }
225 }
226 }
227 rewritePhiValues(NewBB, i, VRMap, InstrMap);
228 LLVM_DEBUG({
229 dbgs() << "prolog:\n";
230 NewBB->dump();
231 });
232 }
233
234 PredBB->replaceSuccessor(BB, KernelBB);
235
236 // Check if we need to remove the branch from the preheader to the original
237 // loop, and replace it with a branch to the new loop.
238 unsigned numBranches = TII->removeBranch(*Preheader);
239 if (numBranches) {
240 SmallVector<MachineOperand, 0> Cond;
241 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
242 }
243 }
244
245 /// Generate the pipeline epilog code. The epilog code finishes the iterations
246 /// that were started in either the prolog or the kernel. We create a basic
247 /// block for each stage that needs to complete.
generateEpilog(unsigned LastStage,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,MBBVectorTy & EpilogBBs,MBBVectorTy & PrologBBs)248 void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
249 MachineBasicBlock *KernelBB,
250 ValueMapTy *VRMap,
251 MBBVectorTy &EpilogBBs,
252 MBBVectorTy &PrologBBs) {
253 // We need to change the branch from the kernel to the first epilog block, so
254 // this call to analyze branch uses the kernel rather than the original BB.
255 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
256 SmallVector<MachineOperand, 4> Cond;
257 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
258 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
259 if (checkBranch)
260 return;
261
262 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
263 if (*LoopExitI == KernelBB)
264 ++LoopExitI;
265 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
266 MachineBasicBlock *LoopExitBB = *LoopExitI;
267
268 MachineBasicBlock *PredBB = KernelBB;
269 MachineBasicBlock *EpilogStart = LoopExitBB;
270 InstrMapTy InstrMap;
271
272 // Generate a basic block for each stage, not including the last stage,
273 // which was generated for the kernel. Each basic block may contain
274 // instructions from multiple stages/iterations.
275 int EpilogStage = LastStage + 1;
276 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
277 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
278 EpilogBBs.push_back(NewBB);
279 MF.insert(BB->getIterator(), NewBB);
280
281 PredBB->replaceSuccessor(LoopExitBB, NewBB);
282 NewBB->addSuccessor(LoopExitBB);
283
284 if (EpilogStart == LoopExitBB)
285 EpilogStart = NewBB;
286
287 // Add instructions to the epilog depending on the current block.
288 // Process instructions in original program order.
289 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
290 for (auto &BBI : *BB) {
291 if (BBI.isPHI())
292 continue;
293 MachineInstr *In = &BBI;
294 if ((unsigned)Schedule.getStage(In) == StageNum) {
295 // Instructions with memoperands in the epilog are updated with
296 // conservative values.
297 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
298 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
299 NewBB->push_back(NewMI);
300 InstrMap[NewMI] = In;
301 }
302 }
303 }
304 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
305 InstrMap, LastStage, EpilogStage, i == 1);
306 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
307 LastStage, EpilogStage, i == 1);
308 PredBB = NewBB;
309
310 LLVM_DEBUG({
311 dbgs() << "epilog:\n";
312 NewBB->dump();
313 });
314 }
315
316 // Fix any Phi nodes in the loop exit block.
317 LoopExitBB->replacePhiUsesWith(BB, PredBB);
318
319 // Create a branch to the new epilog from the kernel.
320 // Remove the original branch and add a new branch to the epilog.
321 TII->removeBranch(*KernelBB);
322 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
323 // Add a branch to the loop exit.
324 if (EpilogBBs.size() > 0) {
325 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
326 SmallVector<MachineOperand, 4> Cond1;
327 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
328 }
329 }
330
331 /// Replace all uses of FromReg that appear outside the specified
332 /// basic block with ToReg.
replaceRegUsesAfterLoop(unsigned FromReg,unsigned ToReg,MachineBasicBlock * MBB,MachineRegisterInfo & MRI,LiveIntervals & LIS)333 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
334 MachineBasicBlock *MBB,
335 MachineRegisterInfo &MRI,
336 LiveIntervals &LIS) {
337 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
338 E = MRI.use_end();
339 I != E;) {
340 MachineOperand &O = *I;
341 ++I;
342 if (O.getParent()->getParent() != MBB)
343 O.setReg(ToReg);
344 }
345 if (!LIS.hasInterval(ToReg))
346 LIS.createEmptyInterval(ToReg);
347 }
348
349 /// Return true if the register has a use that occurs outside the
350 /// specified loop.
hasUseAfterLoop(unsigned Reg,MachineBasicBlock * BB,MachineRegisterInfo & MRI)351 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
352 MachineRegisterInfo &MRI) {
353 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
354 E = MRI.use_end();
355 I != E; ++I)
356 if (I->getParent()->getParent() != BB)
357 return true;
358 return false;
359 }
360
361 /// Generate Phis for the specific block in the generated pipelined code.
362 /// This function looks at the Phis from the original code to guide the
363 /// creation of new Phis.
generateExistingPhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)364 void ModuloScheduleExpander::generateExistingPhis(
365 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
366 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
367 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
368 // Compute the stage number for the initial value of the Phi, which
369 // comes from the prolog. The prolog to use depends on to which kernel/
370 // epilog that we're adding the Phi.
371 unsigned PrologStage = 0;
372 unsigned PrevStage = 0;
373 bool InKernel = (LastStageNum == CurStageNum);
374 if (InKernel) {
375 PrologStage = LastStageNum - 1;
376 PrevStage = CurStageNum;
377 } else {
378 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
379 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
380 }
381
382 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
383 BBE = BB->getFirstNonPHI();
384 BBI != BBE; ++BBI) {
385 Register Def = BBI->getOperand(0).getReg();
386
387 unsigned InitVal = 0;
388 unsigned LoopVal = 0;
389 getPhiRegs(*BBI, BB, InitVal, LoopVal);
390
391 unsigned PhiOp1 = 0;
392 // The Phi value from the loop body typically is defined in the loop, but
393 // not always. So, we need to check if the value is defined in the loop.
394 unsigned PhiOp2 = LoopVal;
395 if (VRMap[LastStageNum].count(LoopVal))
396 PhiOp2 = VRMap[LastStageNum][LoopVal];
397
398 int StageScheduled = Schedule.getStage(&*BBI);
399 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
400 unsigned NumStages = getStagesForReg(Def, CurStageNum);
401 if (NumStages == 0) {
402 // We don't need to generate a Phi anymore, but we need to rename any uses
403 // of the Phi value.
404 unsigned NewReg = VRMap[PrevStage][LoopVal];
405 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
406 InitVal, NewReg);
407 if (VRMap[CurStageNum].count(LoopVal))
408 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
409 }
410 // Adjust the number of Phis needed depending on the number of prologs left,
411 // and the distance from where the Phi is first scheduled. The number of
412 // Phis cannot exceed the number of prolog stages. Each stage can
413 // potentially define two values.
414 unsigned MaxPhis = PrologStage + 2;
415 if (!InKernel && (int)PrologStage <= LoopValStage)
416 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
417 unsigned NumPhis = std::min(NumStages, MaxPhis);
418
419 unsigned NewReg = 0;
420 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
421 // In the epilog, we may need to look back one stage to get the correct
422 // Phi name, because the epilog and prolog blocks execute the same stage.
423 // The correct name is from the previous block only when the Phi has
424 // been completely scheduled prior to the epilog, and Phi value is not
425 // needed in multiple stages.
426 int StageDiff = 0;
427 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
428 NumPhis == 1)
429 StageDiff = 1;
430 // Adjust the computations below when the phi and the loop definition
431 // are scheduled in different stages.
432 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
433 StageDiff = StageScheduled - LoopValStage;
434 for (unsigned np = 0; np < NumPhis; ++np) {
435 // If the Phi hasn't been scheduled, then use the initial Phi operand
436 // value. Otherwise, use the scheduled version of the instruction. This
437 // is a little complicated when a Phi references another Phi.
438 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
439 PhiOp1 = InitVal;
440 // Check if the Phi has already been scheduled in a prolog stage.
441 else if (PrologStage >= AccessStage + StageDiff + np &&
442 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
443 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
444 // Check if the Phi has already been scheduled, but the loop instruction
445 // is either another Phi, or doesn't occur in the loop.
446 else if (PrologStage >= AccessStage + StageDiff + np) {
447 // If the Phi references another Phi, we need to examine the other
448 // Phi to get the correct value.
449 PhiOp1 = LoopVal;
450 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
451 int Indirects = 1;
452 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
453 int PhiStage = Schedule.getStage(InstOp1);
454 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
455 PhiOp1 = getInitPhiReg(*InstOp1, BB);
456 else
457 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
458 InstOp1 = MRI.getVRegDef(PhiOp1);
459 int PhiOpStage = Schedule.getStage(InstOp1);
460 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
461 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
462 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
463 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
464 break;
465 }
466 ++Indirects;
467 }
468 } else
469 PhiOp1 = InitVal;
470 // If this references a generated Phi in the kernel, get the Phi operand
471 // from the incoming block.
472 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
473 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
474 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
475
476 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
477 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
478 // In the epilog, a map lookup is needed to get the value from the kernel,
479 // or previous epilog block. How is does this depends on if the
480 // instruction is scheduled in the previous block.
481 if (!InKernel) {
482 int StageDiffAdj = 0;
483 if (LoopValStage != -1 && StageScheduled > LoopValStage)
484 StageDiffAdj = StageScheduled - LoopValStage;
485 // Use the loop value defined in the kernel, unless the kernel
486 // contains the last definition of the Phi.
487 if (np == 0 && PrevStage == LastStageNum &&
488 (StageScheduled != 0 || LoopValStage != 0) &&
489 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
490 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
491 // Use the value defined by the Phi. We add one because we switch
492 // from looking at the loop value to the Phi definition.
493 else if (np > 0 && PrevStage == LastStageNum &&
494 VRMap[PrevStage - np + 1].count(Def))
495 PhiOp2 = VRMap[PrevStage - np + 1][Def];
496 // Use the loop value defined in the kernel.
497 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
498 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
499 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
500 // Use the value defined by the Phi, unless we're generating the first
501 // epilog and the Phi refers to a Phi in a different stage.
502 else if (VRMap[PrevStage - np].count(Def) &&
503 (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
504 (LoopValStage == StageScheduled)))
505 PhiOp2 = VRMap[PrevStage - np][Def];
506 }
507
508 // Check if we can reuse an existing Phi. This occurs when a Phi
509 // references another Phi, and the other Phi is scheduled in an
510 // earlier stage. We can try to reuse an existing Phi up until the last
511 // stage of the current Phi.
512 if (LoopDefIsPhi) {
513 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
514 int LVNumStages = getStagesForPhi(LoopVal);
515 int StageDiff = (StageScheduled - LoopValStage);
516 LVNumStages -= StageDiff;
517 // Make sure the loop value Phi has been processed already.
518 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
519 NewReg = PhiOp2;
520 unsigned ReuseStage = CurStageNum;
521 if (isLoopCarried(*PhiInst))
522 ReuseStage -= LVNumStages;
523 // Check if the Phi to reuse has been generated yet. If not, then
524 // there is nothing to reuse.
525 if (VRMap[ReuseStage - np].count(LoopVal)) {
526 NewReg = VRMap[ReuseStage - np][LoopVal];
527
528 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
529 Def, NewReg);
530 // Update the map with the new Phi name.
531 VRMap[CurStageNum - np][Def] = NewReg;
532 PhiOp2 = NewReg;
533 if (VRMap[LastStageNum - np - 1].count(LoopVal))
534 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
535
536 if (IsLast && np == NumPhis - 1)
537 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
538 continue;
539 }
540 }
541 }
542 if (InKernel && StageDiff > 0 &&
543 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
544 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
545 }
546
547 const TargetRegisterClass *RC = MRI.getRegClass(Def);
548 NewReg = MRI.createVirtualRegister(RC);
549
550 MachineInstrBuilder NewPhi =
551 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
552 TII->get(TargetOpcode::PHI), NewReg);
553 NewPhi.addReg(PhiOp1).addMBB(BB1);
554 NewPhi.addReg(PhiOp2).addMBB(BB2);
555 if (np == 0)
556 InstrMap[NewPhi] = &*BBI;
557
558 // We define the Phis after creating the new pipelined code, so
559 // we need to rename the Phi values in scheduled instructions.
560
561 unsigned PrevReg = 0;
562 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
563 PrevReg = VRMap[PrevStage - np][LoopVal];
564 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
565 NewReg, PrevReg);
566 // If the Phi has been scheduled, use the new name for rewriting.
567 if (VRMap[CurStageNum - np].count(Def)) {
568 unsigned R = VRMap[CurStageNum - np][Def];
569 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
570 NewReg);
571 }
572
573 // Check if we need to rename any uses that occurs after the loop. The
574 // register to replace depends on whether the Phi is scheduled in the
575 // epilog.
576 if (IsLast && np == NumPhis - 1)
577 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
578
579 // In the kernel, a dependent Phi uses the value from this Phi.
580 if (InKernel)
581 PhiOp2 = NewReg;
582
583 // Update the map with the new Phi name.
584 VRMap[CurStageNum - np][Def] = NewReg;
585 }
586
587 while (NumPhis++ < NumStages) {
588 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
589 NewReg, 0);
590 }
591
592 // Check if we need to rename a Phi that has been eliminated due to
593 // scheduling.
594 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
595 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
596 }
597 }
598
599 /// Generate Phis for the specified block in the generated pipelined code.
600 /// These are new Phis needed because the definition is scheduled after the
601 /// use in the pipelined sequence.
generatePhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)602 void ModuloScheduleExpander::generatePhis(
603 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
604 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
605 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
606 // Compute the stage number that contains the initial Phi value, and
607 // the Phi from the previous stage.
608 unsigned PrologStage = 0;
609 unsigned PrevStage = 0;
610 unsigned StageDiff = CurStageNum - LastStageNum;
611 bool InKernel = (StageDiff == 0);
612 if (InKernel) {
613 PrologStage = LastStageNum - 1;
614 PrevStage = CurStageNum;
615 } else {
616 PrologStage = LastStageNum - StageDiff;
617 PrevStage = LastStageNum + StageDiff - 1;
618 }
619
620 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
621 BBE = BB->instr_end();
622 BBI != BBE; ++BBI) {
623 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
624 MachineOperand &MO = BBI->getOperand(i);
625 if (!MO.isReg() || !MO.isDef() ||
626 !Register::isVirtualRegister(MO.getReg()))
627 continue;
628
629 int StageScheduled = Schedule.getStage(&*BBI);
630 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
631 Register Def = MO.getReg();
632 unsigned NumPhis = getStagesForReg(Def, CurStageNum);
633 // An instruction scheduled in stage 0 and is used after the loop
634 // requires a phi in the epilog for the last definition from either
635 // the kernel or prolog.
636 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
637 hasUseAfterLoop(Def, BB, MRI))
638 NumPhis = 1;
639 if (!InKernel && (unsigned)StageScheduled > PrologStage)
640 continue;
641
642 unsigned PhiOp2 = VRMap[PrevStage][Def];
643 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
644 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
645 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
646 // The number of Phis can't exceed the number of prolog stages. The
647 // prolog stage number is zero based.
648 if (NumPhis > PrologStage + 1 - StageScheduled)
649 NumPhis = PrologStage + 1 - StageScheduled;
650 for (unsigned np = 0; np < NumPhis; ++np) {
651 unsigned PhiOp1 = VRMap[PrologStage][Def];
652 if (np <= PrologStage)
653 PhiOp1 = VRMap[PrologStage - np][Def];
654 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
655 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
656 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
657 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
658 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
659 }
660 if (!InKernel)
661 PhiOp2 = VRMap[PrevStage - np][Def];
662
663 const TargetRegisterClass *RC = MRI.getRegClass(Def);
664 Register NewReg = MRI.createVirtualRegister(RC);
665
666 MachineInstrBuilder NewPhi =
667 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
668 TII->get(TargetOpcode::PHI), NewReg);
669 NewPhi.addReg(PhiOp1).addMBB(BB1);
670 NewPhi.addReg(PhiOp2).addMBB(BB2);
671 if (np == 0)
672 InstrMap[NewPhi] = &*BBI;
673
674 // Rewrite uses and update the map. The actions depend upon whether
675 // we generating code for the kernel or epilog blocks.
676 if (InKernel) {
677 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
678 NewReg);
679 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
680 NewReg);
681
682 PhiOp2 = NewReg;
683 VRMap[PrevStage - np - 1][Def] = NewReg;
684 } else {
685 VRMap[CurStageNum - np][Def] = NewReg;
686 if (np == NumPhis - 1)
687 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
688 NewReg);
689 }
690 if (IsLast && np == NumPhis - 1)
691 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
692 }
693 }
694 }
695 }
696
697 /// Remove instructions that generate values with no uses.
698 /// Typically, these are induction variable operations that generate values
699 /// used in the loop itself. A dead instruction has a definition with
700 /// no uses, or uses that occur in the original loop only.
removeDeadInstructions(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs)701 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
702 MBBVectorTy &EpilogBBs) {
703 // For each epilog block, check that the value defined by each instruction
704 // is used. If not, delete it.
705 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
706 MBE = EpilogBBs.rend();
707 MBB != MBE; ++MBB)
708 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
709 ME = (*MBB)->instr_rend();
710 MI != ME;) {
711 // From DeadMachineInstructionElem. Don't delete inline assembly.
712 if (MI->isInlineAsm()) {
713 ++MI;
714 continue;
715 }
716 bool SawStore = false;
717 // Check if it's safe to remove the instruction due to side effects.
718 // We can, and want to, remove Phis here.
719 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
720 ++MI;
721 continue;
722 }
723 bool used = true;
724 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
725 MOE = MI->operands_end();
726 MOI != MOE; ++MOI) {
727 if (!MOI->isReg() || !MOI->isDef())
728 continue;
729 Register reg = MOI->getReg();
730 // Assume physical registers are used, unless they are marked dead.
731 if (Register::isPhysicalRegister(reg)) {
732 used = !MOI->isDead();
733 if (used)
734 break;
735 continue;
736 }
737 unsigned realUses = 0;
738 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
739 EI = MRI.use_end();
740 UI != EI; ++UI) {
741 // Check if there are any uses that occur only in the original
742 // loop. If so, that's not a real use.
743 if (UI->getParent()->getParent() != BB) {
744 realUses++;
745 used = true;
746 break;
747 }
748 }
749 if (realUses > 0)
750 break;
751 used = false;
752 }
753 if (!used) {
754 LIS.RemoveMachineInstrFromMaps(*MI);
755 MI++->eraseFromParent();
756 continue;
757 }
758 ++MI;
759 }
760 // In the kernel block, check if we can remove a Phi that generates a value
761 // used in an instruction removed in the epilog block.
762 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
763 BBE = KernelBB->getFirstNonPHI();
764 BBI != BBE;) {
765 MachineInstr *MI = &*BBI;
766 ++BBI;
767 Register reg = MI->getOperand(0).getReg();
768 if (MRI.use_begin(reg) == MRI.use_end()) {
769 LIS.RemoveMachineInstrFromMaps(*MI);
770 MI->eraseFromParent();
771 }
772 }
773 }
774
775 /// For loop carried definitions, we split the lifetime of a virtual register
776 /// that has uses past the definition in the next iteration. A copy with a new
777 /// virtual register is inserted before the definition, which helps with
778 /// generating a better register assignment.
779 ///
780 /// v1 = phi(a, v2) v1 = phi(a, v2)
781 /// v2 = phi(b, v3) v2 = phi(b, v3)
782 /// v3 = .. v4 = copy v1
783 /// .. = V1 v3 = ..
784 /// .. = v4
splitLifetimes(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs)785 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
786 MBBVectorTy &EpilogBBs) {
787 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
788 for (auto &PHI : KernelBB->phis()) {
789 Register Def = PHI.getOperand(0).getReg();
790 // Check for any Phi definition that used as an operand of another Phi
791 // in the same block.
792 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
793 E = MRI.use_instr_end();
794 I != E; ++I) {
795 if (I->isPHI() && I->getParent() == KernelBB) {
796 // Get the loop carried definition.
797 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
798 if (!LCDef)
799 continue;
800 MachineInstr *MI = MRI.getVRegDef(LCDef);
801 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
802 continue;
803 // Search through the rest of the block looking for uses of the Phi
804 // definition. If one occurs, then split the lifetime.
805 unsigned SplitReg = 0;
806 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
807 KernelBB->instr_end()))
808 if (BBJ.readsRegister(Def)) {
809 // We split the lifetime when we find the first use.
810 if (SplitReg == 0) {
811 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
812 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
813 TII->get(TargetOpcode::COPY), SplitReg)
814 .addReg(Def);
815 }
816 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
817 }
818 if (!SplitReg)
819 continue;
820 // Search through each of the epilog blocks for any uses to be renamed.
821 for (auto &Epilog : EpilogBBs)
822 for (auto &I : *Epilog)
823 if (I.readsRegister(Def))
824 I.substituteRegister(Def, SplitReg, 0, *TRI);
825 break;
826 }
827 }
828 }
829 }
830
831 /// Remove the incoming block from the Phis in a basic block.
removePhis(MachineBasicBlock * BB,MachineBasicBlock * Incoming)832 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
833 for (MachineInstr &MI : *BB) {
834 if (!MI.isPHI())
835 break;
836 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
837 if (MI.getOperand(i + 1).getMBB() == Incoming) {
838 MI.RemoveOperand(i + 1);
839 MI.RemoveOperand(i);
840 break;
841 }
842 }
843 }
844
845 /// Create branches from each prolog basic block to the appropriate epilog
846 /// block. These edges are needed if the loop ends before reaching the
847 /// kernel.
addBranches(MachineBasicBlock & PreheaderBB,MBBVectorTy & PrologBBs,MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs,ValueMapTy * VRMap)848 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
849 MBBVectorTy &PrologBBs,
850 MachineBasicBlock *KernelBB,
851 MBBVectorTy &EpilogBBs,
852 ValueMapTy *VRMap) {
853 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
854 MachineBasicBlock *LastPro = KernelBB;
855 MachineBasicBlock *LastEpi = KernelBB;
856
857 // Start from the blocks connected to the kernel and work "out"
858 // to the first prolog and the last epilog blocks.
859 SmallVector<MachineInstr *, 4> PrevInsts;
860 unsigned MaxIter = PrologBBs.size() - 1;
861 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
862 // Add branches to the prolog that go to the corresponding
863 // epilog, and the fall-thru prolog/kernel block.
864 MachineBasicBlock *Prolog = PrologBBs[j];
865 MachineBasicBlock *Epilog = EpilogBBs[i];
866
867 SmallVector<MachineOperand, 4> Cond;
868 Optional<bool> StaticallyGreater =
869 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
870 unsigned numAdded = 0;
871 if (!StaticallyGreater.hasValue()) {
872 Prolog->addSuccessor(Epilog);
873 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
874 } else if (*StaticallyGreater == false) {
875 Prolog->addSuccessor(Epilog);
876 Prolog->removeSuccessor(LastPro);
877 LastEpi->removeSuccessor(Epilog);
878 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
879 removePhis(Epilog, LastEpi);
880 // Remove the blocks that are no longer referenced.
881 if (LastPro != LastEpi) {
882 LastEpi->clear();
883 LastEpi->eraseFromParent();
884 }
885 if (LastPro == KernelBB) {
886 LoopInfo->disposed();
887 NewKernel = nullptr;
888 }
889 LastPro->clear();
890 LastPro->eraseFromParent();
891 } else {
892 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
893 removePhis(Epilog, Prolog);
894 }
895 LastPro = Prolog;
896 LastEpi = Epilog;
897 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
898 E = Prolog->instr_rend();
899 I != E && numAdded > 0; ++I, --numAdded)
900 updateInstruction(&*I, false, j, 0, VRMap);
901 }
902
903 if (NewKernel) {
904 LoopInfo->setPreheader(PrologBBs[MaxIter]);
905 LoopInfo->adjustTripCount(-(MaxIter + 1));
906 }
907 }
908
909 /// Return true if we can compute the amount the instruction changes
910 /// during each iteration. Set Delta to the amount of the change.
computeDelta(MachineInstr & MI,unsigned & Delta)911 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
912 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
913 const MachineOperand *BaseOp;
914 int64_t Offset;
915 bool OffsetIsScalable;
916 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
917 return false;
918
919 // FIXME: This algorithm assumes instructions have fixed-size offsets.
920 if (OffsetIsScalable)
921 return false;
922
923 if (!BaseOp->isReg())
924 return false;
925
926 Register BaseReg = BaseOp->getReg();
927
928 MachineRegisterInfo &MRI = MF.getRegInfo();
929 // Check if there is a Phi. If so, get the definition in the loop.
930 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
931 if (BaseDef && BaseDef->isPHI()) {
932 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
933 BaseDef = MRI.getVRegDef(BaseReg);
934 }
935 if (!BaseDef)
936 return false;
937
938 int D = 0;
939 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
940 return false;
941
942 Delta = D;
943 return true;
944 }
945
946 /// Update the memory operand with a new offset when the pipeliner
947 /// generates a new copy of the instruction that refers to a
948 /// different memory location.
updateMemOperands(MachineInstr & NewMI,MachineInstr & OldMI,unsigned Num)949 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
950 MachineInstr &OldMI,
951 unsigned Num) {
952 if (Num == 0)
953 return;
954 // If the instruction has memory operands, then adjust the offset
955 // when the instruction appears in different stages.
956 if (NewMI.memoperands_empty())
957 return;
958 SmallVector<MachineMemOperand *, 2> NewMMOs;
959 for (MachineMemOperand *MMO : NewMI.memoperands()) {
960 // TODO: Figure out whether isAtomic is really necessary (see D57601).
961 if (MMO->isVolatile() || MMO->isAtomic() ||
962 (MMO->isInvariant() && MMO->isDereferenceable()) ||
963 (!MMO->getValue())) {
964 NewMMOs.push_back(MMO);
965 continue;
966 }
967 unsigned Delta;
968 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
969 int64_t AdjOffset = Delta * Num;
970 NewMMOs.push_back(
971 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
972 } else {
973 NewMMOs.push_back(
974 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
975 }
976 }
977 NewMI.setMemRefs(MF, NewMMOs);
978 }
979
980 /// Clone the instruction for the new pipelined loop and update the
981 /// memory operands, if needed.
cloneInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum)982 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
983 unsigned CurStageNum,
984 unsigned InstStageNum) {
985 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
986 // Check for tied operands in inline asm instructions. This should be handled
987 // elsewhere, but I'm not sure of the best solution.
988 if (OldMI->isInlineAsm())
989 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
990 const auto &MO = OldMI->getOperand(i);
991 if (MO.isReg() && MO.isUse())
992 break;
993 unsigned UseIdx;
994 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
995 NewMI->tieOperands(i, UseIdx);
996 }
997 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
998 return NewMI;
999 }
1000
1001 /// Clone the instruction for the new pipelined loop. If needed, this
1002 /// function updates the instruction using the values saved in the
1003 /// InstrChanges structure.
cloneAndChangeInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum)1004 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1005 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1006 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1007 auto It = InstrChanges.find(OldMI);
1008 if (It != InstrChanges.end()) {
1009 std::pair<unsigned, int64_t> RegAndOffset = It->second;
1010 unsigned BasePos, OffsetPos;
1011 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1012 return nullptr;
1013 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1014 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1015 if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1016 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1017 NewMI->getOperand(OffsetPos).setImm(NewOffset);
1018 }
1019 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1020 return NewMI;
1021 }
1022
1023 /// Update the machine instruction with new virtual registers. This
1024 /// function may change the defintions and/or uses.
updateInstruction(MachineInstr * NewMI,bool LastDef,unsigned CurStageNum,unsigned InstrStageNum,ValueMapTy * VRMap)1025 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1026 bool LastDef,
1027 unsigned CurStageNum,
1028 unsigned InstrStageNum,
1029 ValueMapTy *VRMap) {
1030 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1031 MachineOperand &MO = NewMI->getOperand(i);
1032 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1033 continue;
1034 Register reg = MO.getReg();
1035 if (MO.isDef()) {
1036 // Create a new virtual register for the definition.
1037 const TargetRegisterClass *RC = MRI.getRegClass(reg);
1038 Register NewReg = MRI.createVirtualRegister(RC);
1039 MO.setReg(NewReg);
1040 VRMap[CurStageNum][reg] = NewReg;
1041 if (LastDef)
1042 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1043 } else if (MO.isUse()) {
1044 MachineInstr *Def = MRI.getVRegDef(reg);
1045 // Compute the stage that contains the last definition for instruction.
1046 int DefStageNum = Schedule.getStage(Def);
1047 unsigned StageNum = CurStageNum;
1048 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1049 // Compute the difference in stages between the defintion and the use.
1050 unsigned StageDiff = (InstrStageNum - DefStageNum);
1051 // Make an adjustment to get the last definition.
1052 StageNum -= StageDiff;
1053 }
1054 if (VRMap[StageNum].count(reg))
1055 MO.setReg(VRMap[StageNum][reg]);
1056 }
1057 }
1058 }
1059
1060 /// Return the instruction in the loop that defines the register.
1061 /// If the definition is a Phi, then follow the Phi operand to
1062 /// the instruction in the loop.
findDefInLoop(unsigned Reg)1063 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1064 SmallPtrSet<MachineInstr *, 8> Visited;
1065 MachineInstr *Def = MRI.getVRegDef(Reg);
1066 while (Def->isPHI()) {
1067 if (!Visited.insert(Def).second)
1068 break;
1069 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1070 if (Def->getOperand(i + 1).getMBB() == BB) {
1071 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1072 break;
1073 }
1074 }
1075 return Def;
1076 }
1077
1078 /// Return the new name for the value from the previous stage.
getPrevMapVal(unsigned StageNum,unsigned PhiStage,unsigned LoopVal,unsigned LoopStage,ValueMapTy * VRMap,MachineBasicBlock * BB)1079 unsigned ModuloScheduleExpander::getPrevMapVal(
1080 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1081 ValueMapTy *VRMap, MachineBasicBlock *BB) {
1082 unsigned PrevVal = 0;
1083 if (StageNum > PhiStage) {
1084 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1085 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1086 // The name is defined in the previous stage.
1087 PrevVal = VRMap[StageNum - 1][LoopVal];
1088 else if (VRMap[StageNum].count(LoopVal))
1089 // The previous name is defined in the current stage when the instruction
1090 // order is swapped.
1091 PrevVal = VRMap[StageNum][LoopVal];
1092 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1093 // The loop value hasn't yet been scheduled.
1094 PrevVal = LoopVal;
1095 else if (StageNum == PhiStage + 1)
1096 // The loop value is another phi, which has not been scheduled.
1097 PrevVal = getInitPhiReg(*LoopInst, BB);
1098 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1099 // The loop value is another phi, which has been scheduled.
1100 PrevVal =
1101 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1102 LoopStage, VRMap, BB);
1103 }
1104 return PrevVal;
1105 }
1106
1107 /// Rewrite the Phi values in the specified block to use the mappings
1108 /// from the initial operand. Once the Phi is scheduled, we switch
1109 /// to using the loop value instead of the Phi value, so those names
1110 /// do not need to be rewritten.
rewritePhiValues(MachineBasicBlock * NewBB,unsigned StageNum,ValueMapTy * VRMap,InstrMapTy & InstrMap)1111 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1112 unsigned StageNum,
1113 ValueMapTy *VRMap,
1114 InstrMapTy &InstrMap) {
1115 for (auto &PHI : BB->phis()) {
1116 unsigned InitVal = 0;
1117 unsigned LoopVal = 0;
1118 getPhiRegs(PHI, BB, InitVal, LoopVal);
1119 Register PhiDef = PHI.getOperand(0).getReg();
1120
1121 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1122 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1123 unsigned NumPhis = getStagesForPhi(PhiDef);
1124 if (NumPhis > StageNum)
1125 NumPhis = StageNum;
1126 for (unsigned np = 0; np <= NumPhis; ++np) {
1127 unsigned NewVal =
1128 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1129 if (!NewVal)
1130 NewVal = InitVal;
1131 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1132 NewVal);
1133 }
1134 }
1135 }
1136
1137 /// Rewrite a previously scheduled instruction to use the register value
1138 /// from the new instruction. Make sure the instruction occurs in the
1139 /// basic block, and we don't change the uses in the new instruction.
rewriteScheduledInstr(MachineBasicBlock * BB,InstrMapTy & InstrMap,unsigned CurStageNum,unsigned PhiNum,MachineInstr * Phi,unsigned OldReg,unsigned NewReg,unsigned PrevReg)1140 void ModuloScheduleExpander::rewriteScheduledInstr(
1141 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1142 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1143 unsigned PrevReg) {
1144 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1145 int StagePhi = Schedule.getStage(Phi) + PhiNum;
1146 // Rewrite uses that have been scheduled already to use the new
1147 // Phi register.
1148 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
1149 EI = MRI.use_end();
1150 UI != EI;) {
1151 MachineOperand &UseOp = *UI;
1152 MachineInstr *UseMI = UseOp.getParent();
1153 ++UI;
1154 if (UseMI->getParent() != BB)
1155 continue;
1156 if (UseMI->isPHI()) {
1157 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1158 continue;
1159 if (getLoopPhiReg(*UseMI, BB) != OldReg)
1160 continue;
1161 }
1162 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1163 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1164 MachineInstr *OrigMI = OrigInstr->second;
1165 int StageSched = Schedule.getStage(OrigMI);
1166 int CycleSched = Schedule.getCycle(OrigMI);
1167 unsigned ReplaceReg = 0;
1168 // This is the stage for the scheduled instruction.
1169 if (StagePhi == StageSched && Phi->isPHI()) {
1170 int CyclePhi = Schedule.getCycle(Phi);
1171 if (PrevReg && InProlog)
1172 ReplaceReg = PrevReg;
1173 else if (PrevReg && !isLoopCarried(*Phi) &&
1174 (CyclePhi <= CycleSched || OrigMI->isPHI()))
1175 ReplaceReg = PrevReg;
1176 else
1177 ReplaceReg = NewReg;
1178 }
1179 // The scheduled instruction occurs before the scheduled Phi, and the
1180 // Phi is not loop carried.
1181 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1182 ReplaceReg = NewReg;
1183 if (StagePhi > StageSched && Phi->isPHI())
1184 ReplaceReg = NewReg;
1185 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1186 ReplaceReg = NewReg;
1187 if (ReplaceReg) {
1188 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1189 UseOp.setReg(ReplaceReg);
1190 }
1191 }
1192 }
1193
isLoopCarried(MachineInstr & Phi)1194 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1195 if (!Phi.isPHI())
1196 return false;
1197 int DefCycle = Schedule.getCycle(&Phi);
1198 int DefStage = Schedule.getStage(&Phi);
1199
1200 unsigned InitVal = 0;
1201 unsigned LoopVal = 0;
1202 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1203 MachineInstr *Use = MRI.getVRegDef(LoopVal);
1204 if (!Use || Use->isPHI())
1205 return true;
1206 int LoopCycle = Schedule.getCycle(Use);
1207 int LoopStage = Schedule.getStage(Use);
1208 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1209 }
1210
1211 //===----------------------------------------------------------------------===//
1212 // PeelingModuloScheduleExpander implementation
1213 //===----------------------------------------------------------------------===//
1214 // This is a reimplementation of ModuloScheduleExpander that works by creating
1215 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1216 //===----------------------------------------------------------------------===//
1217
1218 namespace {
1219 // Remove any dead phis in MBB. Dead phis either have only one block as input
1220 // (in which case they are the identity) or have no uses.
EliminateDeadPhis(MachineBasicBlock * MBB,MachineRegisterInfo & MRI,LiveIntervals * LIS,bool KeepSingleSrcPhi=false)1221 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1222 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1223 bool Changed = true;
1224 while (Changed) {
1225 Changed = false;
1226 for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
1227 MachineInstr &MI = *I++;
1228 assert(MI.isPHI());
1229 if (MRI.use_empty(MI.getOperand(0).getReg())) {
1230 if (LIS)
1231 LIS->RemoveMachineInstrFromMaps(MI);
1232 MI.eraseFromParent();
1233 Changed = true;
1234 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1235 MRI.constrainRegClass(MI.getOperand(1).getReg(),
1236 MRI.getRegClass(MI.getOperand(0).getReg()));
1237 MRI.replaceRegWith(MI.getOperand(0).getReg(),
1238 MI.getOperand(1).getReg());
1239 if (LIS)
1240 LIS->RemoveMachineInstrFromMaps(MI);
1241 MI.eraseFromParent();
1242 Changed = true;
1243 }
1244 }
1245 }
1246 }
1247
1248 /// Rewrites the kernel block in-place to adhere to the given schedule.
1249 /// KernelRewriter holds all of the state required to perform the rewriting.
1250 class KernelRewriter {
1251 ModuloSchedule &S;
1252 MachineBasicBlock *BB;
1253 MachineBasicBlock *PreheaderBB, *ExitBB;
1254 MachineRegisterInfo &MRI;
1255 const TargetInstrInfo *TII;
1256 LiveIntervals *LIS;
1257
1258 // Map from register class to canonical undef register for that class.
1259 DenseMap<const TargetRegisterClass *, Register> Undefs;
1260 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1261 // this map is only used when InitReg is non-undef.
1262 DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1263 // Map from LoopReg to phi register where the InitReg is undef.
1264 DenseMap<Register, Register> UndefPhis;
1265
1266 // Reg is used by MI. Return the new register MI should use to adhere to the
1267 // schedule. Insert phis as necessary.
1268 Register remapUse(Register Reg, MachineInstr &MI);
1269 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1270 // If InitReg is not given it is chosen arbitrarily. It will either be undef
1271 // or will be chosen so as to share another phi.
1272 Register phi(Register LoopReg, Optional<Register> InitReg = {},
1273 const TargetRegisterClass *RC = nullptr);
1274 // Create an undef register of the given register class.
1275 Register undef(const TargetRegisterClass *RC);
1276
1277 public:
1278 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1279 LiveIntervals *LIS = nullptr);
1280 void rewrite();
1281 };
1282 } // namespace
1283
KernelRewriter(MachineLoop & L,ModuloSchedule & S,MachineBasicBlock * LoopBB,LiveIntervals * LIS)1284 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1285 MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1286 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1287 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1288 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1289 PreheaderBB = *BB->pred_begin();
1290 if (PreheaderBB == BB)
1291 PreheaderBB = *std::next(BB->pred_begin());
1292 }
1293
rewrite()1294 void KernelRewriter::rewrite() {
1295 // Rearrange the loop to be in schedule order. Note that the schedule may
1296 // contain instructions that are not owned by the loop block (InstrChanges and
1297 // friends), so we gracefully handle unowned instructions and delete any
1298 // instructions that weren't in the schedule.
1299 auto InsertPt = BB->getFirstTerminator();
1300 MachineInstr *FirstMI = nullptr;
1301 for (MachineInstr *MI : S.getInstructions()) {
1302 if (MI->isPHI())
1303 continue;
1304 if (MI->getParent())
1305 MI->removeFromParent();
1306 BB->insert(InsertPt, MI);
1307 if (!FirstMI)
1308 FirstMI = MI;
1309 }
1310 assert(FirstMI && "Failed to find first MI in schedule");
1311
1312 // At this point all of the scheduled instructions are between FirstMI
1313 // and the end of the block. Kill from the first non-phi to FirstMI.
1314 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1315 if (LIS)
1316 LIS->RemoveMachineInstrFromMaps(*I);
1317 (I++)->eraseFromParent();
1318 }
1319
1320 // Now remap every instruction in the loop.
1321 for (MachineInstr &MI : *BB) {
1322 if (MI.isPHI() || MI.isTerminator())
1323 continue;
1324 for (MachineOperand &MO : MI.uses()) {
1325 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1326 continue;
1327 Register Reg = remapUse(MO.getReg(), MI);
1328 MO.setReg(Reg);
1329 }
1330 }
1331 EliminateDeadPhis(BB, MRI, LIS);
1332
1333 // Ensure a phi exists for all instructions that are either referenced by
1334 // an illegal phi or by an instruction outside the loop. This allows us to
1335 // treat remaps of these values the same as "normal" values that come from
1336 // loop-carried phis.
1337 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1338 if (MI->isPHI()) {
1339 Register R = MI->getOperand(0).getReg();
1340 phi(R);
1341 continue;
1342 }
1343
1344 for (MachineOperand &Def : MI->defs()) {
1345 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1346 if (MI.getParent() != BB) {
1347 phi(Def.getReg());
1348 break;
1349 }
1350 }
1351 }
1352 }
1353 }
1354
remapUse(Register Reg,MachineInstr & MI)1355 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1356 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1357 if (!Producer)
1358 return Reg;
1359
1360 int ConsumerStage = S.getStage(&MI);
1361 if (!Producer->isPHI()) {
1362 // Non-phi producers are simple to remap. Insert as many phis as the
1363 // difference between the consumer and producer stages.
1364 if (Producer->getParent() != BB)
1365 // Producer was not inside the loop. Use the register as-is.
1366 return Reg;
1367 int ProducerStage = S.getStage(Producer);
1368 assert(ConsumerStage != -1 &&
1369 "In-loop consumer should always be scheduled!");
1370 assert(ConsumerStage >= ProducerStage);
1371 unsigned StageDiff = ConsumerStage - ProducerStage;
1372
1373 for (unsigned I = 0; I < StageDiff; ++I)
1374 Reg = phi(Reg);
1375 return Reg;
1376 }
1377
1378 // First, dive through the phi chain to find the defaults for the generated
1379 // phis.
1380 SmallVector<Optional<Register>, 4> Defaults;
1381 Register LoopReg = Reg;
1382 auto LoopProducer = Producer;
1383 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1384 LoopReg = getLoopPhiReg(*LoopProducer, BB);
1385 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1386 LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1387 assert(LoopProducer);
1388 }
1389 int LoopProducerStage = S.getStage(LoopProducer);
1390
1391 Optional<Register> IllegalPhiDefault;
1392
1393 if (LoopProducerStage == -1) {
1394 // Do nothing.
1395 } else if (LoopProducerStage > ConsumerStage) {
1396 // This schedule is only representable if ProducerStage == ConsumerStage+1.
1397 // In addition, Consumer's cycle must be scheduled after Producer in the
1398 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1399 // functions.
1400 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1401 int LoopProducerCycle = S.getCycle(LoopProducer);
1402 int ConsumerCycle = S.getCycle(&MI);
1403 #endif
1404 assert(LoopProducerCycle <= ConsumerCycle);
1405 assert(LoopProducerStage == ConsumerStage + 1);
1406 // Peel off the first phi from Defaults and insert a phi between producer
1407 // and consumer. This phi will not be at the front of the block so we
1408 // consider it illegal. It will only exist during the rewrite process; it
1409 // needs to exist while we peel off prologs because these could take the
1410 // default value. After that we can replace all uses with the loop producer
1411 // value.
1412 IllegalPhiDefault = Defaults.front();
1413 Defaults.erase(Defaults.begin());
1414 } else {
1415 assert(ConsumerStage >= LoopProducerStage);
1416 int StageDiff = ConsumerStage - LoopProducerStage;
1417 if (StageDiff > 0) {
1418 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1419 << " to " << (Defaults.size() + StageDiff) << "\n");
1420 // If we need more phis than we have defaults for, pad out with undefs for
1421 // the earliest phis, which are at the end of the defaults chain (the
1422 // chain is in reverse order).
1423 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1424 ? Optional<Register>()
1425 : Defaults.back());
1426 }
1427 }
1428
1429 // Now we know the number of stages to jump back, insert the phi chain.
1430 auto DefaultI = Defaults.rbegin();
1431 while (DefaultI != Defaults.rend())
1432 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1433
1434 if (IllegalPhiDefault.hasValue()) {
1435 // The consumer optionally consumes LoopProducer in the same iteration
1436 // (because the producer is scheduled at an earlier cycle than the consumer)
1437 // or the initial value. To facilitate this we create an illegal block here
1438 // by embedding a phi in the middle of the block. We will fix this up
1439 // immediately prior to pruning.
1440 auto RC = MRI.getRegClass(Reg);
1441 Register R = MRI.createVirtualRegister(RC);
1442 MachineInstr *IllegalPhi =
1443 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1444 .addReg(IllegalPhiDefault.getValue())
1445 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1446 .addReg(LoopReg)
1447 .addMBB(BB); // Block choice is arbitrary and has no effect.
1448 // Illegal phi should belong to the producer stage so that it can be
1449 // filtered correctly during peeling.
1450 S.setStage(IllegalPhi, LoopProducerStage);
1451 return R;
1452 }
1453
1454 return LoopReg;
1455 }
1456
phi(Register LoopReg,Optional<Register> InitReg,const TargetRegisterClass * RC)1457 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1458 const TargetRegisterClass *RC) {
1459 // If the init register is not undef, try and find an existing phi.
1460 if (InitReg.hasValue()) {
1461 auto I = Phis.find({LoopReg, InitReg.getValue()});
1462 if (I != Phis.end())
1463 return I->second;
1464 } else {
1465 for (auto &KV : Phis) {
1466 if (KV.first.first == LoopReg)
1467 return KV.second;
1468 }
1469 }
1470
1471 // InitReg is either undef or no existing phi takes InitReg as input. Try and
1472 // find a phi that takes undef as input.
1473 auto I = UndefPhis.find(LoopReg);
1474 if (I != UndefPhis.end()) {
1475 Register R = I->second;
1476 if (!InitReg.hasValue())
1477 // Found a phi taking undef as input, and this input is undef so return
1478 // without any more changes.
1479 return R;
1480 // Found a phi taking undef as input, so rewrite it to take InitReg.
1481 MachineInstr *MI = MRI.getVRegDef(R);
1482 MI->getOperand(1).setReg(InitReg.getValue());
1483 Phis.insert({{LoopReg, InitReg.getValue()}, R});
1484 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1485 UndefPhis.erase(I);
1486 return R;
1487 }
1488
1489 // Failed to find any existing phi to reuse, so create a new one.
1490 if (!RC)
1491 RC = MRI.getRegClass(LoopReg);
1492 Register R = MRI.createVirtualRegister(RC);
1493 if (InitReg.hasValue())
1494 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1495 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1496 .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1497 .addMBB(PreheaderBB)
1498 .addReg(LoopReg)
1499 .addMBB(BB);
1500 if (!InitReg.hasValue())
1501 UndefPhis[LoopReg] = R;
1502 else
1503 Phis[{LoopReg, *InitReg}] = R;
1504 return R;
1505 }
1506
undef(const TargetRegisterClass * RC)1507 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1508 Register &R = Undefs[RC];
1509 if (R == 0) {
1510 // Create an IMPLICIT_DEF that defines this register if we need it.
1511 // All uses of this should be removed by the time we have finished unrolling
1512 // prologs and epilogs.
1513 R = MRI.createVirtualRegister(RC);
1514 auto *InsertBB = &PreheaderBB->getParent()->front();
1515 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1516 TII->get(TargetOpcode::IMPLICIT_DEF), R);
1517 }
1518 return R;
1519 }
1520
1521 namespace {
1522 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1523 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1524 /// through and defaults for these phis.
1525 class KernelOperandInfo {
1526 MachineBasicBlock *BB;
1527 MachineRegisterInfo &MRI;
1528 SmallVector<Register, 4> PhiDefaults;
1529 MachineOperand *Source;
1530 MachineOperand *Target;
1531
1532 public:
KernelOperandInfo(MachineOperand * MO,MachineRegisterInfo & MRI,const SmallPtrSetImpl<MachineInstr * > & IllegalPhis)1533 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1534 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1535 : MRI(MRI) {
1536 Source = MO;
1537 BB = MO->getParent()->getParent();
1538 while (isRegInLoop(MO)) {
1539 MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1540 if (MI->isFullCopy()) {
1541 MO = &MI->getOperand(1);
1542 continue;
1543 }
1544 if (!MI->isPHI())
1545 break;
1546 // If this is an illegal phi, don't count it in distance.
1547 if (IllegalPhis.count(MI)) {
1548 MO = &MI->getOperand(3);
1549 continue;
1550 }
1551
1552 Register Default = getInitPhiReg(*MI, BB);
1553 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1554 : &MI->getOperand(3);
1555 PhiDefaults.push_back(Default);
1556 }
1557 Target = MO;
1558 }
1559
operator ==(const KernelOperandInfo & Other) const1560 bool operator==(const KernelOperandInfo &Other) const {
1561 return PhiDefaults.size() == Other.PhiDefaults.size();
1562 }
1563
print(raw_ostream & OS) const1564 void print(raw_ostream &OS) const {
1565 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1566 << *Source->getParent();
1567 }
1568
1569 private:
isRegInLoop(MachineOperand * MO)1570 bool isRegInLoop(MachineOperand *MO) {
1571 return MO->isReg() && MO->getReg().isVirtual() &&
1572 MRI.getVRegDef(MO->getReg())->getParent() == BB;
1573 }
1574 };
1575 } // namespace
1576
1577 MachineBasicBlock *
peelKernel(LoopPeelDirection LPD)1578 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1579 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1580 if (LPD == LPD_Front)
1581 PeeledFront.push_back(NewBB);
1582 else
1583 PeeledBack.push_front(NewBB);
1584 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1585 ++I, ++NI) {
1586 CanonicalMIs[&*I] = &*I;
1587 CanonicalMIs[&*NI] = &*I;
1588 BlockMIs[{NewBB, &*I}] = &*NI;
1589 BlockMIs[{BB, &*I}] = &*I;
1590 }
1591 return NewBB;
1592 }
1593
filterInstructions(MachineBasicBlock * MB,int MinStage)1594 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1595 int MinStage) {
1596 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1597 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1598 MachineInstr *MI = &*I++;
1599 int Stage = getStage(MI);
1600 if (Stage == -1 || Stage >= MinStage)
1601 continue;
1602
1603 for (MachineOperand &DefMO : MI->defs()) {
1604 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1605 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1606 // Only PHIs can use values from this block by construction.
1607 // Match with the equivalent PHI in B.
1608 assert(UseMI.isPHI());
1609 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1610 MI->getParent());
1611 Subs.emplace_back(&UseMI, Reg);
1612 }
1613 for (auto &Sub : Subs)
1614 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1615 *MRI.getTargetRegisterInfo());
1616 }
1617 if (LIS)
1618 LIS->RemoveMachineInstrFromMaps(*MI);
1619 MI->eraseFromParent();
1620 }
1621 }
1622
moveStageBetweenBlocks(MachineBasicBlock * DestBB,MachineBasicBlock * SourceBB,unsigned Stage)1623 void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1624 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1625 auto InsertPt = DestBB->getFirstNonPHI();
1626 DenseMap<Register, Register> Remaps;
1627 for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
1628 MachineInstr *MI = &*I++;
1629 if (MI->isPHI()) {
1630 // This is an illegal PHI. If we move any instructions using an illegal
1631 // PHI, we need to create a legal Phi.
1632 if (getStage(MI) != Stage) {
1633 // The legal Phi is not necessary if the illegal phi's stage
1634 // is being moved.
1635 Register PhiR = MI->getOperand(0).getReg();
1636 auto RC = MRI.getRegClass(PhiR);
1637 Register NR = MRI.createVirtualRegister(RC);
1638 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1639 DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1640 .addReg(PhiR)
1641 .addMBB(SourceBB);
1642 BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
1643 CanonicalMIs[NI] = CanonicalMIs[MI];
1644 Remaps[PhiR] = NR;
1645 }
1646 }
1647 if (getStage(MI) != Stage)
1648 continue;
1649 MI->removeFromParent();
1650 DestBB->insert(InsertPt, MI);
1651 auto *KernelMI = CanonicalMIs[MI];
1652 BlockMIs[{DestBB, KernelMI}] = MI;
1653 BlockMIs.erase({SourceBB, KernelMI});
1654 }
1655 SmallVector<MachineInstr *, 4> PhiToDelete;
1656 for (MachineInstr &MI : DestBB->phis()) {
1657 assert(MI.getNumOperands() == 3);
1658 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1659 // If the instruction referenced by the phi is moved inside the block
1660 // we don't need the phi anymore.
1661 if (getStage(Def) == Stage) {
1662 Register PhiReg = MI.getOperand(0).getReg();
1663 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1664 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1665 MI.getOperand(0).setReg(PhiReg);
1666 PhiToDelete.push_back(&MI);
1667 }
1668 }
1669 for (auto *P : PhiToDelete)
1670 P->eraseFromParent();
1671 InsertPt = DestBB->getFirstNonPHI();
1672 // Helper to clone Phi instructions into the destination block. We clone Phi
1673 // greedily to avoid combinatorial explosion of Phi instructions.
1674 auto clonePhi = [&](MachineInstr *Phi) {
1675 MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1676 DestBB->insert(InsertPt, NewMI);
1677 Register OrigR = Phi->getOperand(0).getReg();
1678 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1679 NewMI->getOperand(0).setReg(R);
1680 NewMI->getOperand(1).setReg(OrigR);
1681 NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1682 Remaps[OrigR] = R;
1683 CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1684 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1685 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1686 return R;
1687 };
1688 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1689 for (MachineOperand &MO : I->uses()) {
1690 if (!MO.isReg())
1691 continue;
1692 if (Remaps.count(MO.getReg()))
1693 MO.setReg(Remaps[MO.getReg()]);
1694 else {
1695 // If we are using a phi from the source block we need to add a new phi
1696 // pointing to the old one.
1697 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1698 if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1699 Register R = clonePhi(Use);
1700 MO.setReg(R);
1701 }
1702 }
1703 }
1704 }
1705 }
1706
1707 Register
getPhiCanonicalReg(MachineInstr * CanonicalPhi,MachineInstr * Phi)1708 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1709 MachineInstr *Phi) {
1710 unsigned distance = PhiNodeLoopIteration[Phi];
1711 MachineInstr *CanonicalUse = CanonicalPhi;
1712 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1713 for (unsigned I = 0; I < distance; ++I) {
1714 assert(CanonicalUse->isPHI());
1715 assert(CanonicalUse->getNumOperands() == 5);
1716 unsigned LoopRegIdx = 3, InitRegIdx = 1;
1717 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1718 std::swap(LoopRegIdx, InitRegIdx);
1719 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1720 CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1721 }
1722 return CanonicalUseReg;
1723 }
1724
peelPrologAndEpilogs()1725 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1726 BitVector LS(Schedule.getNumStages(), true);
1727 BitVector AS(Schedule.getNumStages(), true);
1728 LiveStages[BB] = LS;
1729 AvailableStages[BB] = AS;
1730
1731 // Peel out the prologs.
1732 LS.reset();
1733 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1734 LS[I] = 1;
1735 Prologs.push_back(peelKernel(LPD_Front));
1736 LiveStages[Prologs.back()] = LS;
1737 AvailableStages[Prologs.back()] = LS;
1738 }
1739
1740 // Create a block that will end up as the new loop exiting block (dominated by
1741 // all prologs and epilogs). It will only contain PHIs, in the same order as
1742 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1743 // that the exiting block is a (sub) clone of BB. This in turn gives us the
1744 // property that any value deffed in BB but used outside of BB is used by a
1745 // PHI in the exiting block.
1746 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1747 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1748 // Push out the epilogs, again in reverse order.
1749 // We can't assume anything about the minumum loop trip count at this point,
1750 // so emit a fairly complex epilog.
1751
1752 // We first peel number of stages minus one epilogue. Then we remove dead
1753 // stages and reorder instructions based on their stage. If we have 3 stages
1754 // we generate first:
1755 // E0[3, 2, 1]
1756 // E1[3', 2']
1757 // E2[3'']
1758 // And then we move instructions based on their stages to have:
1759 // E0[3]
1760 // E1[2, 3']
1761 // E2[1, 2', 3'']
1762 // The transformation is legal because we only move instructions past
1763 // instructions of a previous loop iteration.
1764 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1765 Epilogs.push_back(peelKernel(LPD_Back));
1766 MachineBasicBlock *B = Epilogs.back();
1767 filterInstructions(B, Schedule.getNumStages() - I);
1768 // Keep track at which iteration each phi belongs to. We need it to know
1769 // what version of the variable to use during prologue/epilogue stitching.
1770 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1771 for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi)
1772 PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I;
1773 }
1774 for (size_t I = 0; I < Epilogs.size(); I++) {
1775 LS.reset();
1776 for (size_t J = I; J < Epilogs.size(); J++) {
1777 int Iteration = J;
1778 unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1779 // Move stage one block at a time so that Phi nodes are updated correctly.
1780 for (size_t K = Iteration; K > I; K--)
1781 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1782 LS[Stage] = 1;
1783 }
1784 LiveStages[Epilogs[I]] = LS;
1785 AvailableStages[Epilogs[I]] = AS;
1786 }
1787
1788 // Now we've defined all the prolog and epilog blocks as a fallthrough
1789 // sequence, add the edges that will be followed if the loop trip count is
1790 // lower than the number of stages (connecting prologs directly with epilogs).
1791 auto PI = Prologs.begin();
1792 auto EI = Epilogs.begin();
1793 assert(Prologs.size() == Epilogs.size());
1794 for (; PI != Prologs.end(); ++PI, ++EI) {
1795 MachineBasicBlock *Pred = *(*EI)->pred_begin();
1796 (*PI)->addSuccessor(*EI);
1797 for (MachineInstr &MI : (*EI)->phis()) {
1798 Register Reg = MI.getOperand(1).getReg();
1799 MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1800 if (Use && Use->getParent() == Pred) {
1801 MachineInstr *CanonicalUse = CanonicalMIs[Use];
1802 if (CanonicalUse->isPHI()) {
1803 // If the use comes from a phi we need to skip as many phi as the
1804 // distance between the epilogue and the kernel. Trace through the phi
1805 // chain to find the right value.
1806 Reg = getPhiCanonicalReg(CanonicalUse, Use);
1807 }
1808 Reg = getEquivalentRegisterIn(Reg, *PI);
1809 }
1810 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1811 MI.addOperand(MachineOperand::CreateMBB(*PI));
1812 }
1813 }
1814
1815 // Create a list of all blocks in order.
1816 SmallVector<MachineBasicBlock *, 8> Blocks;
1817 llvm::copy(PeeledFront, std::back_inserter(Blocks));
1818 Blocks.push_back(BB);
1819 llvm::copy(PeeledBack, std::back_inserter(Blocks));
1820
1821 // Iterate in reverse order over all instructions, remapping as we go.
1822 for (MachineBasicBlock *B : reverse(Blocks)) {
1823 for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
1824 I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1825 MachineInstr *MI = &*I++;
1826 rewriteUsesOf(MI);
1827 }
1828 }
1829 for (auto *MI : IllegalPhisToDelete) {
1830 if (LIS)
1831 LIS->RemoveMachineInstrFromMaps(*MI);
1832 MI->eraseFromParent();
1833 }
1834 IllegalPhisToDelete.clear();
1835
1836 // Now all remapping has been done, we're free to optimize the generated code.
1837 for (MachineBasicBlock *B : reverse(Blocks))
1838 EliminateDeadPhis(B, MRI, LIS);
1839 EliminateDeadPhis(ExitingBB, MRI, LIS);
1840 }
1841
CreateLCSSAExitingBlock()1842 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1843 MachineFunction &MF = *BB->getParent();
1844 MachineBasicBlock *Exit = *BB->succ_begin();
1845 if (Exit == BB)
1846 Exit = *std::next(BB->succ_begin());
1847
1848 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1849 MF.insert(std::next(BB->getIterator()), NewBB);
1850
1851 // Clone all phis in BB into NewBB and rewrite.
1852 for (MachineInstr &MI : BB->phis()) {
1853 auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1854 Register OldR = MI.getOperand(3).getReg();
1855 Register R = MRI.createVirtualRegister(RC);
1856 SmallVector<MachineInstr *, 4> Uses;
1857 for (MachineInstr &Use : MRI.use_instructions(OldR))
1858 if (Use.getParent() != BB)
1859 Uses.push_back(&Use);
1860 for (MachineInstr *Use : Uses)
1861 Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1862 *MRI.getTargetRegisterInfo());
1863 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1864 .addReg(OldR)
1865 .addMBB(BB);
1866 BlockMIs[{NewBB, &MI}] = NI;
1867 CanonicalMIs[NI] = &MI;
1868 }
1869 BB->replaceSuccessor(Exit, NewBB);
1870 Exit->replacePhiUsesWith(BB, NewBB);
1871 NewBB->addSuccessor(Exit);
1872
1873 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1874 SmallVector<MachineOperand, 4> Cond;
1875 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1876 (void)CanAnalyzeBr;
1877 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1878 TII->removeBranch(*BB);
1879 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1880 Cond, DebugLoc());
1881 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1882 return NewBB;
1883 }
1884
1885 Register
getEquivalentRegisterIn(Register Reg,MachineBasicBlock * BB)1886 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1887 MachineBasicBlock *BB) {
1888 MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1889 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1890 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1891 }
1892
rewriteUsesOf(MachineInstr * MI)1893 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1894 if (MI->isPHI()) {
1895 // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1896 // and it is produced by this block.
1897 Register PhiR = MI->getOperand(0).getReg();
1898 Register R = MI->getOperand(3).getReg();
1899 int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1900 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1901 R = MI->getOperand(1).getReg();
1902 MRI.setRegClass(R, MRI.getRegClass(PhiR));
1903 MRI.replaceRegWith(PhiR, R);
1904 // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1905 // later to figure out how to remap registers.
1906 MI->getOperand(0).setReg(PhiR);
1907 IllegalPhisToDelete.push_back(MI);
1908 return;
1909 }
1910
1911 int Stage = getStage(MI);
1912 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1913 LiveStages[MI->getParent()].test(Stage))
1914 // Instruction is live, no rewriting to do.
1915 return;
1916
1917 for (MachineOperand &DefMO : MI->defs()) {
1918 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1919 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1920 // Only PHIs can use values from this block by construction.
1921 // Match with the equivalent PHI in B.
1922 assert(UseMI.isPHI());
1923 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1924 MI->getParent());
1925 Subs.emplace_back(&UseMI, Reg);
1926 }
1927 for (auto &Sub : Subs)
1928 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1929 *MRI.getTargetRegisterInfo());
1930 }
1931 if (LIS)
1932 LIS->RemoveMachineInstrFromMaps(*MI);
1933 MI->eraseFromParent();
1934 }
1935
fixupBranches()1936 void PeelingModuloScheduleExpander::fixupBranches() {
1937 // Work outwards from the kernel.
1938 bool KernelDisposed = false;
1939 int TC = Schedule.getNumStages() - 1;
1940 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1941 ++PI, ++EI, --TC) {
1942 MachineBasicBlock *Prolog = *PI;
1943 MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1944 MachineBasicBlock *Epilog = *EI;
1945 SmallVector<MachineOperand, 4> Cond;
1946 TII->removeBranch(*Prolog);
1947 Optional<bool> StaticallyGreater =
1948 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1949 if (!StaticallyGreater.hasValue()) {
1950 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1951 // Dynamically branch based on Cond.
1952 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1953 } else if (*StaticallyGreater == false) {
1954 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1955 // Prolog never falls through; branch to epilog and orphan interior
1956 // blocks. Leave it to unreachable-block-elim to clean up.
1957 Prolog->removeSuccessor(Fallthrough);
1958 for (MachineInstr &P : Fallthrough->phis()) {
1959 P.RemoveOperand(2);
1960 P.RemoveOperand(1);
1961 }
1962 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1963 KernelDisposed = true;
1964 } else {
1965 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1966 // Prolog always falls through; remove incoming values in epilog.
1967 Prolog->removeSuccessor(Epilog);
1968 for (MachineInstr &P : Epilog->phis()) {
1969 P.RemoveOperand(4);
1970 P.RemoveOperand(3);
1971 }
1972 }
1973 }
1974
1975 if (!KernelDisposed) {
1976 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1977 LoopInfo->setPreheader(Prologs.back());
1978 } else {
1979 LoopInfo->disposed();
1980 }
1981 }
1982
rewriteKernel()1983 void PeelingModuloScheduleExpander::rewriteKernel() {
1984 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
1985 KR.rewrite();
1986 }
1987
expand()1988 void PeelingModuloScheduleExpander::expand() {
1989 BB = Schedule.getLoop()->getTopBlock();
1990 Preheader = Schedule.getLoop()->getLoopPreheader();
1991 LLVM_DEBUG(Schedule.dump());
1992 LoopInfo = TII->analyzeLoopForPipelining(BB);
1993 assert(LoopInfo);
1994
1995 rewriteKernel();
1996 peelPrologAndEpilogs();
1997 fixupBranches();
1998 }
1999
validateAgainstModuloScheduleExpander()2000 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2001 BB = Schedule.getLoop()->getTopBlock();
2002 Preheader = Schedule.getLoop()->getLoopPreheader();
2003
2004 // Dump the schedule before we invalidate and remap all its instructions.
2005 // Stash it in a string so we can print it if we found an error.
2006 std::string ScheduleDump;
2007 raw_string_ostream OS(ScheduleDump);
2008 Schedule.print(OS);
2009 OS.flush();
2010
2011 // First, run the normal ModuleScheduleExpander. We don't support any
2012 // InstrChanges.
2013 assert(LIS && "Requires LiveIntervals!");
2014 ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2015 ModuloScheduleExpander::InstrChangesTy());
2016 MSE.expand();
2017 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2018 if (!ExpandedKernel) {
2019 // The expander optimized away the kernel. We can't do any useful checking.
2020 MSE.cleanup();
2021 return;
2022 }
2023 // Before running the KernelRewriter, re-add BB into the CFG.
2024 Preheader->addSuccessor(BB);
2025
2026 // Now run the new expansion algorithm.
2027 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2028 KR.rewrite();
2029 peelPrologAndEpilogs();
2030
2031 // Collect all illegal phis that the new algorithm created. We'll give these
2032 // to KernelOperandInfo.
2033 SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2034 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2035 if (NI->isPHI())
2036 IllegalPhis.insert(&*NI);
2037 }
2038
2039 // Co-iterate across both kernels. We expect them to be identical apart from
2040 // phis and full COPYs (we look through both).
2041 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2042 auto OI = ExpandedKernel->begin();
2043 auto NI = BB->begin();
2044 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2045 while (OI->isPHI() || OI->isFullCopy())
2046 ++OI;
2047 while (NI->isPHI() || NI->isFullCopy())
2048 ++NI;
2049 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2050 // Analyze every operand separately.
2051 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2052 OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2053 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2054 KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2055 }
2056
2057 bool Failed = false;
2058 for (auto &OldAndNew : KOIs) {
2059 if (OldAndNew.first == OldAndNew.second)
2060 continue;
2061 Failed = true;
2062 errs() << "Modulo kernel validation error: [\n";
2063 errs() << " [golden] ";
2064 OldAndNew.first.print(errs());
2065 errs() << " ";
2066 OldAndNew.second.print(errs());
2067 errs() << "]\n";
2068 }
2069
2070 if (Failed) {
2071 errs() << "Golden reference kernel:\n";
2072 ExpandedKernel->print(errs());
2073 errs() << "New kernel:\n";
2074 BB->print(errs());
2075 errs() << ScheduleDump;
2076 report_fatal_error(
2077 "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2078 }
2079
2080 // Cleanup by removing BB from the CFG again as the original
2081 // ModuloScheduleExpander intended.
2082 Preheader->removeSuccessor(BB);
2083 MSE.cleanup();
2084 }
2085
2086 //===----------------------------------------------------------------------===//
2087 // ModuloScheduleTestPass implementation
2088 //===----------------------------------------------------------------------===//
2089 // This pass constructs a ModuloSchedule from its module and runs
2090 // ModuloScheduleExpander.
2091 //
2092 // The module is expected to contain a single-block analyzable loop.
2093 // The total order of instructions is taken from the loop as-is.
2094 // Instructions are expected to be annotated with a PostInstrSymbol.
2095 // This PostInstrSymbol must have the following format:
2096 // "Stage=%d Cycle=%d".
2097 //===----------------------------------------------------------------------===//
2098
2099 namespace {
2100 class ModuloScheduleTest : public MachineFunctionPass {
2101 public:
2102 static char ID;
2103
ModuloScheduleTest()2104 ModuloScheduleTest() : MachineFunctionPass(ID) {
2105 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2106 }
2107
2108 bool runOnMachineFunction(MachineFunction &MF) override;
2109 void runOnLoop(MachineFunction &MF, MachineLoop &L);
2110
getAnalysisUsage(AnalysisUsage & AU) const2111 void getAnalysisUsage(AnalysisUsage &AU) const override {
2112 AU.addRequired<MachineLoopInfo>();
2113 AU.addRequired<LiveIntervals>();
2114 MachineFunctionPass::getAnalysisUsage(AU);
2115 }
2116 };
2117 } // namespace
2118
2119 char ModuloScheduleTest::ID = 0;
2120
2121 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2122 "Modulo Schedule test pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)2123 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2124 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2125 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2126 "Modulo Schedule test pass", false, false)
2127
2128 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2129 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2130 for (auto *L : MLI) {
2131 if (L->getTopBlock() != L->getBottomBlock())
2132 continue;
2133 runOnLoop(MF, *L);
2134 return false;
2135 }
2136 return false;
2137 }
2138
parseSymbolString(StringRef S,int & Cycle,int & Stage)2139 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2140 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2141 std::pair<StringRef, StringRef> StageTokenAndValue =
2142 getToken(StageAndCycle.first, "-");
2143 std::pair<StringRef, StringRef> CycleTokenAndValue =
2144 getToken(StageAndCycle.second, "-");
2145 if (StageTokenAndValue.first != "Stage" ||
2146 CycleTokenAndValue.first != "_Cycle") {
2147 llvm_unreachable(
2148 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2149 return;
2150 }
2151
2152 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2153 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2154
2155 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2156 }
2157
runOnLoop(MachineFunction & MF,MachineLoop & L)2158 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2159 LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2160 MachineBasicBlock *BB = L.getTopBlock();
2161 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2162
2163 DenseMap<MachineInstr *, int> Cycle, Stage;
2164 std::vector<MachineInstr *> Instrs;
2165 for (MachineInstr &MI : *BB) {
2166 if (MI.isTerminator())
2167 continue;
2168 Instrs.push_back(&MI);
2169 if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2170 dbgs() << "Parsing post-instr symbol for " << MI;
2171 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2172 }
2173 }
2174
2175 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2176 std::move(Stage));
2177 ModuloScheduleExpander MSE(
2178 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2179 MSE.expand();
2180 MSE.cleanup();
2181 }
2182
2183 //===----------------------------------------------------------------------===//
2184 // ModuloScheduleTestAnnotater implementation
2185 //===----------------------------------------------------------------------===//
2186
annotate()2187 void ModuloScheduleTestAnnotater::annotate() {
2188 for (MachineInstr *MI : S.getInstructions()) {
2189 SmallVector<char, 16> SV;
2190 raw_svector_ostream OS(SV);
2191 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2192 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2193 MI->setPostInstrSymbol(MF, Sym);
2194 }
2195 }
2196