1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/IR/PseudoProbe.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 using namespace llvm;
35
36 #define DEBUG_TYPE "instr-emitter"
37
38 /// MinRCSize - Smallest register class we allow when constraining virtual
39 /// registers. If satisfying all register class constraints would require
40 /// using a smaller register class, emit a COPY to a new virtual register
41 /// instead.
42 const unsigned MinRCSize = 4;
43
44 /// CountResults - The results of target nodes have register or immediate
45 /// operands first, then an optional chain, and optional glue operands (which do
46 /// not go into the resulting MachineInstr).
CountResults(SDNode * Node)47 unsigned InstrEmitter::CountResults(SDNode *Node) {
48 unsigned N = Node->getNumValues();
49 while (N && Node->getValueType(N - 1) == MVT::Glue)
50 --N;
51 if (N && Node->getValueType(N - 1) == MVT::Other)
52 --N; // Skip over chain result.
53 return N;
54 }
55
56 /// countOperands - The inputs to target nodes have any actual inputs first,
57 /// followed by an optional chain operand, then an optional glue operand.
58 /// Compute the number of actual operands that will go into the resulting
59 /// MachineInstr.
60 ///
61 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
62 /// the chain and glue. These operands may be implicit on the machine instr.
countOperands(SDNode * Node,unsigned NumExpUses,unsigned & NumImpUses)63 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
64 unsigned &NumImpUses) {
65 unsigned N = Node->getNumOperands();
66 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
67 --N;
68 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
69 --N; // Ignore chain if it exists.
70
71 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
72 NumImpUses = N - NumExpUses;
73 for (unsigned I = N; I > NumExpUses; --I) {
74 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
75 continue;
76 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
77 if (Register::isPhysicalRegister(RN->getReg()))
78 continue;
79 NumImpUses = N - I;
80 break;
81 }
82
83 return N;
84 }
85
86 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
87 /// implicit physical register output.
88 void InstrEmitter::
EmitCopyFromReg(SDNode * Node,unsigned ResNo,bool IsClone,bool IsCloned,Register SrcReg,DenseMap<SDValue,Register> & VRBaseMap)89 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
90 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
91 Register VRBase;
92 if (SrcReg.isVirtual()) {
93 // Just use the input register directly!
94 SDValue Op(Node, ResNo);
95 if (IsClone)
96 VRBaseMap.erase(Op);
97 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
98 (void)isNew; // Silence compiler warning.
99 assert(isNew && "Node emitted out of order - early");
100 return;
101 }
102
103 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
104 // the CopyToReg'd destination register instead of creating a new vreg.
105 bool MatchReg = true;
106 const TargetRegisterClass *UseRC = nullptr;
107 MVT VT = Node->getSimpleValueType(ResNo);
108
109 // Stick to the preferred register classes for legal types.
110 if (TLI->isTypeLegal(VT))
111 UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
112
113 if (!IsClone && !IsCloned)
114 for (SDNode *User : Node->uses()) {
115 bool Match = true;
116 if (User->getOpcode() == ISD::CopyToReg &&
117 User->getOperand(2).getNode() == Node &&
118 User->getOperand(2).getResNo() == ResNo) {
119 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
120 if (DestReg.isVirtual()) {
121 VRBase = DestReg;
122 Match = false;
123 } else if (DestReg != SrcReg)
124 Match = false;
125 } else {
126 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
127 SDValue Op = User->getOperand(i);
128 if (Op.getNode() != Node || Op.getResNo() != ResNo)
129 continue;
130 MVT VT = Node->getSimpleValueType(Op.getResNo());
131 if (VT == MVT::Other || VT == MVT::Glue)
132 continue;
133 Match = false;
134 if (User->isMachineOpcode()) {
135 const MCInstrDesc &II = TII->get(User->getMachineOpcode());
136 const TargetRegisterClass *RC = nullptr;
137 if (i+II.getNumDefs() < II.getNumOperands()) {
138 RC = TRI->getAllocatableClass(
139 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
140 }
141 if (!UseRC)
142 UseRC = RC;
143 else if (RC) {
144 const TargetRegisterClass *ComRC =
145 TRI->getCommonSubClass(UseRC, RC);
146 // If multiple uses expect disjoint register classes, we emit
147 // copies in AddRegisterOperand.
148 if (ComRC)
149 UseRC = ComRC;
150 }
151 }
152 }
153 }
154 MatchReg &= Match;
155 if (VRBase)
156 break;
157 }
158
159 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
160 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
161
162 // Figure out the register class to create for the destreg.
163 if (VRBase) {
164 DstRC = MRI->getRegClass(VRBase);
165 } else if (UseRC) {
166 assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
167 "Incompatible phys register def and uses!");
168 DstRC = UseRC;
169 } else
170 DstRC = SrcRC;
171
172 // If all uses are reading from the src physical register and copying the
173 // register is either impossible or very expensive, then don't create a copy.
174 if (MatchReg && SrcRC->getCopyCost() < 0) {
175 VRBase = SrcReg;
176 } else {
177 // Create the reg, emit the copy.
178 VRBase = MRI->createVirtualRegister(DstRC);
179 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
180 VRBase).addReg(SrcReg);
181 }
182
183 SDValue Op(Node, ResNo);
184 if (IsClone)
185 VRBaseMap.erase(Op);
186 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
187 (void)isNew; // Silence compiler warning.
188 assert(isNew && "Node emitted out of order - early");
189 }
190
CreateVirtualRegisters(SDNode * Node,MachineInstrBuilder & MIB,const MCInstrDesc & II,bool IsClone,bool IsCloned,DenseMap<SDValue,Register> & VRBaseMap)191 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
192 MachineInstrBuilder &MIB,
193 const MCInstrDesc &II,
194 bool IsClone, bool IsCloned,
195 DenseMap<SDValue, Register> &VRBaseMap) {
196 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
197 "IMPLICIT_DEF should have been handled as a special case elsewhere!");
198
199 unsigned NumResults = CountResults(Node);
200 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
201 II.isVariadic() && II.variadicOpsAreDefs();
202 unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
203 if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
204 NumVRegs = NumResults;
205 for (unsigned i = 0; i < NumVRegs; ++i) {
206 // If the specific node value is only used by a CopyToReg and the dest reg
207 // is a vreg in the same register class, use the CopyToReg'd destination
208 // register instead of creating a new vreg.
209 Register VRBase;
210 const TargetRegisterClass *RC =
211 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
212 // Always let the value type influence the used register class. The
213 // constraints on the instruction may be too lax to represent the value
214 // type correctly. For example, a 64-bit float (X86::FR64) can't live in
215 // the 32-bit float super-class (X86::FR32).
216 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
217 const TargetRegisterClass *VTRC = TLI->getRegClassFor(
218 Node->getSimpleValueType(i),
219 (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
220 if (RC)
221 VTRC = TRI->getCommonSubClass(RC, VTRC);
222 if (VTRC)
223 RC = VTRC;
224 }
225
226 if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
227 // Optional def must be a physical register.
228 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
229 assert(VRBase.isPhysical());
230 MIB.addReg(VRBase, RegState::Define);
231 }
232
233 if (!VRBase && !IsClone && !IsCloned)
234 for (SDNode *User : Node->uses()) {
235 if (User->getOpcode() == ISD::CopyToReg &&
236 User->getOperand(2).getNode() == Node &&
237 User->getOperand(2).getResNo() == i) {
238 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
239 if (Register::isVirtualRegister(Reg)) {
240 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
241 if (RegRC == RC) {
242 VRBase = Reg;
243 MIB.addReg(VRBase, RegState::Define);
244 break;
245 }
246 }
247 }
248 }
249
250 // Create the result registers for this node and add the result regs to
251 // the machine instruction.
252 if (VRBase == 0) {
253 assert(RC && "Isn't a register operand!");
254 VRBase = MRI->createVirtualRegister(RC);
255 MIB.addReg(VRBase, RegState::Define);
256 }
257
258 // If this def corresponds to a result of the SDNode insert the VRBase into
259 // the lookup map.
260 if (i < NumResults) {
261 SDValue Op(Node, i);
262 if (IsClone)
263 VRBaseMap.erase(Op);
264 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
265 (void)isNew; // Silence compiler warning.
266 assert(isNew && "Node emitted out of order - early");
267 }
268 }
269 }
270
271 /// getVR - Return the virtual register corresponding to the specified result
272 /// of the specified node.
getVR(SDValue Op,DenseMap<SDValue,Register> & VRBaseMap)273 Register InstrEmitter::getVR(SDValue Op,
274 DenseMap<SDValue, Register> &VRBaseMap) {
275 if (Op.isMachineOpcode() &&
276 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
277 // Add an IMPLICIT_DEF instruction before every use.
278 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
279 // does not include operand register class info.
280 const TargetRegisterClass *RC = TLI->getRegClassFor(
281 Op.getSimpleValueType(), Op.getNode()->isDivergent());
282 Register VReg = MRI->createVirtualRegister(RC);
283 BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
284 TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
285 return VReg;
286 }
287
288 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
289 assert(I != VRBaseMap.end() && "Node emitted out of order - late");
290 return I->second;
291 }
292
293
294 /// AddRegisterOperand - Add the specified register as an operand to the
295 /// specified machine instr. Insert register copies if the register is
296 /// not in the required register class.
297 void
AddRegisterOperand(MachineInstrBuilder & MIB,SDValue Op,unsigned IIOpNum,const MCInstrDesc * II,DenseMap<SDValue,Register> & VRBaseMap,bool IsDebug,bool IsClone,bool IsCloned)298 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
299 SDValue Op,
300 unsigned IIOpNum,
301 const MCInstrDesc *II,
302 DenseMap<SDValue, Register> &VRBaseMap,
303 bool IsDebug, bool IsClone, bool IsCloned) {
304 assert(Op.getValueType() != MVT::Other &&
305 Op.getValueType() != MVT::Glue &&
306 "Chain and glue operands should occur at end of operand list!");
307 // Get/emit the operand.
308 Register VReg = getVR(Op, VRBaseMap);
309
310 const MCInstrDesc &MCID = MIB->getDesc();
311 bool isOptDef = IIOpNum < MCID.getNumOperands() &&
312 MCID.OpInfo[IIOpNum].isOptionalDef();
313
314 // If the instruction requires a register in a different class, create
315 // a new virtual register and copy the value into it, but first attempt to
316 // shrink VReg's register class within reason. For example, if VReg == GR32
317 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
318 if (II) {
319 const TargetRegisterClass *OpRC = nullptr;
320 if (IIOpNum < II->getNumOperands())
321 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
322
323 if (OpRC) {
324 const TargetRegisterClass *ConstrainedRC
325 = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
326 if (!ConstrainedRC) {
327 OpRC = TRI->getAllocatableClass(OpRC);
328 assert(OpRC && "Constraints cannot be fulfilled for allocation");
329 Register NewVReg = MRI->createVirtualRegister(OpRC);
330 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
331 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
332 VReg = NewVReg;
333 } else {
334 assert(ConstrainedRC->isAllocatable() &&
335 "Constraining an allocatable VReg produced an unallocatable class?");
336 }
337 }
338 }
339
340 // If this value has only one use, that use is a kill. This is a
341 // conservative approximation. InstrEmitter does trivial coalescing
342 // with CopyFromReg nodes, so don't emit kill flags for them.
343 // Avoid kill flags on Schedule cloned nodes, since there will be
344 // multiple uses.
345 // Tied operands are never killed, so we need to check that. And that
346 // means we need to determine the index of the operand.
347 bool isKill = Op.hasOneUse() &&
348 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
349 !IsDebug &&
350 !(IsClone || IsCloned);
351 if (isKill) {
352 unsigned Idx = MIB->getNumOperands();
353 while (Idx > 0 &&
354 MIB->getOperand(Idx-1).isReg() &&
355 MIB->getOperand(Idx-1).isImplicit())
356 --Idx;
357 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
358 if (isTied)
359 isKill = false;
360 }
361
362 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
363 getDebugRegState(IsDebug));
364 }
365
366 /// AddOperand - Add the specified operand to the specified machine instr. II
367 /// specifies the instruction information for the node, and IIOpNum is the
368 /// operand number (in the II) that we are adding.
AddOperand(MachineInstrBuilder & MIB,SDValue Op,unsigned IIOpNum,const MCInstrDesc * II,DenseMap<SDValue,Register> & VRBaseMap,bool IsDebug,bool IsClone,bool IsCloned)369 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
370 SDValue Op,
371 unsigned IIOpNum,
372 const MCInstrDesc *II,
373 DenseMap<SDValue, Register> &VRBaseMap,
374 bool IsDebug, bool IsClone, bool IsCloned) {
375 if (Op.isMachineOpcode()) {
376 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
377 IsDebug, IsClone, IsCloned);
378 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
379 MIB.addImm(C->getSExtValue());
380 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
381 MIB.addFPImm(F->getConstantFPValue());
382 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
383 Register VReg = R->getReg();
384 MVT OpVT = Op.getSimpleValueType();
385 const TargetRegisterClass *IIRC =
386 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
387 : nullptr;
388 const TargetRegisterClass *OpRC =
389 TLI->isTypeLegal(OpVT)
390 ? TLI->getRegClassFor(OpVT,
391 Op.getNode()->isDivergent() ||
392 (IIRC && TRI->isDivergentRegClass(IIRC)))
393 : nullptr;
394
395 if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
396 Register NewVReg = MRI->createVirtualRegister(IIRC);
397 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
398 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
399 VReg = NewVReg;
400 }
401 // Turn additional physreg operands into implicit uses on non-variadic
402 // instructions. This is used by call and return instructions passing
403 // arguments in registers.
404 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
405 MIB.addReg(VReg, getImplRegState(Imp));
406 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
407 MIB.addRegMask(RM->getRegMask());
408 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
409 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
410 TGA->getTargetFlags());
411 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
412 MIB.addMBB(BBNode->getBasicBlock());
413 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
414 MIB.addFrameIndex(FI->getIndex());
415 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
416 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
417 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
418 int Offset = CP->getOffset();
419 Align Alignment = CP->getAlign();
420
421 unsigned Idx;
422 MachineConstantPool *MCP = MF->getConstantPool();
423 if (CP->isMachineConstantPoolEntry())
424 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
425 else
426 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
427 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
428 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
429 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
430 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
431 MIB.addSym(SymNode->getMCSymbol());
432 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
433 MIB.addBlockAddress(BA->getBlockAddress(),
434 BA->getOffset(),
435 BA->getTargetFlags());
436 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
437 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
438 } else {
439 assert(Op.getValueType() != MVT::Other &&
440 Op.getValueType() != MVT::Glue &&
441 "Chain and glue operands should occur at end of operand list!");
442 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
443 IsDebug, IsClone, IsCloned);
444 }
445 }
446
ConstrainForSubReg(Register VReg,unsigned SubIdx,MVT VT,bool isDivergent,const DebugLoc & DL)447 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
448 MVT VT, bool isDivergent, const DebugLoc &DL) {
449 const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
450 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
451
452 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg
453 // within reason.
454 if (RC && RC != VRC)
455 RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
456
457 // VReg has been adjusted. It can be used with SubIdx operands now.
458 if (RC)
459 return VReg;
460
461 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual
462 // register instead.
463 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
464 assert(RC && "No legal register class for VT supports that SubIdx");
465 Register NewReg = MRI->createVirtualRegister(RC);
466 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
467 .addReg(VReg);
468 return NewReg;
469 }
470
471 /// EmitSubregNode - Generate machine code for subreg nodes.
472 ///
EmitSubregNode(SDNode * Node,DenseMap<SDValue,Register> & VRBaseMap,bool IsClone,bool IsCloned)473 void InstrEmitter::EmitSubregNode(SDNode *Node,
474 DenseMap<SDValue, Register> &VRBaseMap,
475 bool IsClone, bool IsCloned) {
476 Register VRBase;
477 unsigned Opc = Node->getMachineOpcode();
478
479 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
480 // the CopyToReg'd destination register instead of creating a new vreg.
481 for (SDNode *User : Node->uses()) {
482 if (User->getOpcode() == ISD::CopyToReg &&
483 User->getOperand(2).getNode() == Node) {
484 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
485 if (DestReg.isVirtual()) {
486 VRBase = DestReg;
487 break;
488 }
489 }
490 }
491
492 if (Opc == TargetOpcode::EXTRACT_SUBREG) {
493 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no
494 // constraints on the %dst register, COPY can target all legal register
495 // classes.
496 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
497 const TargetRegisterClass *TRC =
498 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
499
500 Register Reg;
501 MachineInstr *DefMI;
502 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
503 if (R && Register::isPhysicalRegister(R->getReg())) {
504 Reg = R->getReg();
505 DefMI = nullptr;
506 } else {
507 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
508 DefMI = MRI->getVRegDef(Reg);
509 }
510
511 Register SrcReg, DstReg;
512 unsigned DefSubIdx;
513 if (DefMI &&
514 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
515 SubIdx == DefSubIdx &&
516 TRC == MRI->getRegClass(SrcReg)) {
517 // Optimize these:
518 // r1025 = s/zext r1024, 4
519 // r1026 = extract_subreg r1025, 4
520 // to a copy
521 // r1026 = copy r1024
522 VRBase = MRI->createVirtualRegister(TRC);
523 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
524 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
525 MRI->clearKillFlags(SrcReg);
526 } else {
527 // Reg may not support a SubIdx sub-register, and we may need to
528 // constrain its register class or issue a COPY to a compatible register
529 // class.
530 if (Reg.isVirtual())
531 Reg = ConstrainForSubReg(Reg, SubIdx,
532 Node->getOperand(0).getSimpleValueType(),
533 Node->isDivergent(), Node->getDebugLoc());
534 // Create the destreg if it is missing.
535 if (!VRBase)
536 VRBase = MRI->createVirtualRegister(TRC);
537
538 // Create the extract_subreg machine instruction.
539 MachineInstrBuilder CopyMI =
540 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
541 TII->get(TargetOpcode::COPY), VRBase);
542 if (Reg.isVirtual())
543 CopyMI.addReg(Reg, 0, SubIdx);
544 else
545 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
546 }
547 } else if (Opc == TargetOpcode::INSERT_SUBREG ||
548 Opc == TargetOpcode::SUBREG_TO_REG) {
549 SDValue N0 = Node->getOperand(0);
550 SDValue N1 = Node->getOperand(1);
551 SDValue N2 = Node->getOperand(2);
552 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
553
554 // Figure out the register class to create for the destreg. It should be
555 // the largest legal register class supporting SubIdx sub-registers.
556 // RegisterCoalescer will constrain it further if it decides to eliminate
557 // the INSERT_SUBREG instruction.
558 //
559 // %dst = INSERT_SUBREG %src, %sub, SubIdx
560 //
561 // is lowered by TwoAddressInstructionPass to:
562 //
563 // %dst = COPY %src
564 // %dst:SubIdx = COPY %sub
565 //
566 // There is no constraint on the %src register class.
567 //
568 const TargetRegisterClass *SRC =
569 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
570 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
571 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
572
573 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
574 VRBase = MRI->createVirtualRegister(SRC);
575
576 // Create the insert_subreg or subreg_to_reg machine instruction.
577 MachineInstrBuilder MIB =
578 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
579
580 // If creating a subreg_to_reg, then the first input operand
581 // is an implicit value immediate, otherwise it's a register
582 if (Opc == TargetOpcode::SUBREG_TO_REG) {
583 const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
584 MIB.addImm(SD->getZExtValue());
585 } else
586 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
587 IsClone, IsCloned);
588 // Add the subregister being inserted
589 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
590 IsClone, IsCloned);
591 MIB.addImm(SubIdx);
592 MBB->insert(InsertPos, MIB);
593 } else
594 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
595
596 SDValue Op(Node, 0);
597 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
598 (void)isNew; // Silence compiler warning.
599 assert(isNew && "Node emitted out of order - early");
600 }
601
602 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
603 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
604 /// register is constrained to be in a particular register class.
605 ///
606 void
EmitCopyToRegClassNode(SDNode * Node,DenseMap<SDValue,Register> & VRBaseMap)607 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
608 DenseMap<SDValue, Register> &VRBaseMap) {
609 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
610
611 // Create the new VReg in the destination class and emit a copy.
612 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
613 const TargetRegisterClass *DstRC =
614 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
615 Register NewVReg = MRI->createVirtualRegister(DstRC);
616 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
617 NewVReg).addReg(VReg);
618
619 SDValue Op(Node, 0);
620 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
621 (void)isNew; // Silence compiler warning.
622 assert(isNew && "Node emitted out of order - early");
623 }
624
625 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
626 ///
EmitRegSequence(SDNode * Node,DenseMap<SDValue,Register> & VRBaseMap,bool IsClone,bool IsCloned)627 void InstrEmitter::EmitRegSequence(SDNode *Node,
628 DenseMap<SDValue, Register> &VRBaseMap,
629 bool IsClone, bool IsCloned) {
630 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
631 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
632 Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
633 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
634 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
635 unsigned NumOps = Node->getNumOperands();
636 // If the input pattern has a chain, then the root of the corresponding
637 // output pattern will get a chain as well. This can happen to be a
638 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
639 if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
640 --NumOps; // Ignore chain if it exists.
641
642 assert((NumOps & 1) == 1 &&
643 "REG_SEQUENCE must have an odd number of operands!");
644 for (unsigned i = 1; i != NumOps; ++i) {
645 SDValue Op = Node->getOperand(i);
646 if ((i & 1) == 0) {
647 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
648 // Skip physical registers as they don't have a vreg to get and we'll
649 // insert copies for them in TwoAddressInstructionPass anyway.
650 if (!R || !Register::isPhysicalRegister(R->getReg())) {
651 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
652 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
653 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
654 const TargetRegisterClass *SRC =
655 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
656 if (SRC && SRC != RC) {
657 MRI->setRegClass(NewVReg, SRC);
658 RC = SRC;
659 }
660 }
661 }
662 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
663 IsClone, IsCloned);
664 }
665
666 MBB->insert(InsertPos, MIB);
667 SDValue Op(Node, 0);
668 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
669 (void)isNew; // Silence compiler warning.
670 assert(isNew && "Node emitted out of order - early");
671 }
672
673 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
674 ///
675 MachineInstr *
EmitDbgValue(SDDbgValue * SD,DenseMap<SDValue,Register> & VRBaseMap)676 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
677 DenseMap<SDValue, Register> &VRBaseMap) {
678 MDNode *Var = SD->getVariable();
679 MDNode *Expr = SD->getExpression();
680 DebugLoc DL = SD->getDebugLoc();
681 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
682 "Expected inlined-at fields to agree");
683
684 SD->setIsEmitted();
685
686 ArrayRef<SDDbgOperand> LocationOps = SD->getLocationOps();
687 assert(!LocationOps.empty() && "dbg_value with no location operands?");
688
689 if (SD->isInvalidated())
690 return EmitDbgNoLocation(SD);
691
692 // Emit variadic dbg_value nodes as DBG_VALUE_LIST.
693 if (SD->isVariadic()) {
694 // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
695 const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
696 // Build the DBG_VALUE_LIST instruction base.
697 auto MIB = BuildMI(*MF, DL, DbgValDesc);
698 MIB.addMetadata(Var);
699 MIB.addMetadata(Expr);
700 AddDbgValueLocationOps(MIB, DbgValDesc, LocationOps, VRBaseMap);
701 return &*MIB;
702 }
703
704 // Attempt to produce a DBG_INSTR_REF if we've been asked to.
705 // We currently exclude the possibility of instruction references for
706 // variadic nodes; if at some point we enable them, this should be moved
707 // above the variadic block.
708 if (EmitDebugInstrRefs)
709 if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
710 return InstrRef;
711
712 return EmitDbgValueFromSingleOp(SD, VRBaseMap);
713 }
714
AddDbgValueLocationOps(MachineInstrBuilder & MIB,const MCInstrDesc & DbgValDesc,ArrayRef<SDDbgOperand> LocationOps,DenseMap<SDValue,Register> & VRBaseMap)715 void InstrEmitter::AddDbgValueLocationOps(
716 MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
717 ArrayRef<SDDbgOperand> LocationOps,
718 DenseMap<SDValue, Register> &VRBaseMap) {
719 for (const SDDbgOperand &Op : LocationOps) {
720 switch (Op.getKind()) {
721 case SDDbgOperand::FRAMEIX:
722 MIB.addFrameIndex(Op.getFrameIx());
723 break;
724 case SDDbgOperand::VREG:
725 MIB.addReg(Op.getVReg(), RegState::Debug);
726 break;
727 case SDDbgOperand::SDNODE: {
728 SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
729 // It's possible we replaced this SDNode with other(s) and therefore
730 // didn't generate code for it. It's better to catch these cases where
731 // they happen and transfer the debug info, but trying to guarantee that
732 // in all cases would be very fragile; this is a safeguard for any
733 // that were missed.
734 if (VRBaseMap.count(V) == 0)
735 MIB.addReg(0U); // undef
736 else
737 AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
738 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
739 } break;
740 case SDDbgOperand::CONST: {
741 const Value *V = Op.getConst();
742 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
743 if (CI->getBitWidth() > 64)
744 MIB.addCImm(CI);
745 else
746 MIB.addImm(CI->getSExtValue());
747 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
748 MIB.addFPImm(CF);
749 } else if (isa<ConstantPointerNull>(V)) {
750 // Note: This assumes that all nullptr constants are zero-valued.
751 MIB.addImm(0);
752 } else {
753 // Could be an Undef. In any case insert an Undef so we can see what we
754 // dropped.
755 MIB.addReg(0U);
756 }
757 } break;
758 }
759 }
760 }
761
762 MachineInstr *
EmitDbgInstrRef(SDDbgValue * SD,DenseMap<SDValue,Register> & VRBaseMap)763 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
764 DenseMap<SDValue, Register> &VRBaseMap) {
765 assert(!SD->isVariadic());
766 SDDbgOperand DbgOperand = SD->getLocationOps()[0];
767 MDNode *Var = SD->getVariable();
768 MDNode *Expr = SD->getExpression();
769 DebugLoc DL = SD->getDebugLoc();
770 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
771
772 // Handle variable locations that don't actually depend on the instructions
773 // in the program: constants and stack locations.
774 if (DbgOperand.getKind() == SDDbgOperand::FRAMEIX ||
775 DbgOperand.getKind() == SDDbgOperand::CONST)
776 return EmitDbgValueFromSingleOp(SD, VRBaseMap);
777
778 // It may not be immediately possible to identify the MachineInstr that
779 // defines a VReg, it can depend for example on the order blocks are
780 // emitted in. When this happens, or when further analysis is needed later,
781 // produce an instruction like this:
782 //
783 // DBG_INSTR_REF %0:gr64, 0, !123, !456
784 //
785 // i.e., point the instruction at the vreg, and patch it up later in
786 // MachineFunction::finalizeDebugInstrRefs.
787 auto EmitHalfDoneInstrRef = [&](unsigned VReg) -> MachineInstr * {
788 auto MIB = BuildMI(*MF, DL, RefII);
789 MIB.addReg(VReg);
790 MIB.addImm(0);
791 MIB.addMetadata(Var);
792 MIB.addMetadata(Expr);
793 return MIB;
794 };
795
796 // Try to find both the defined register and the instruction defining it.
797 MachineInstr *DefMI = nullptr;
798 unsigned VReg;
799
800 if (DbgOperand.getKind() == SDDbgOperand::VREG) {
801 VReg = DbgOperand.getVReg();
802
803 // No definition means that block hasn't been emitted yet. Leave a vreg
804 // reference to be fixed later.
805 if (!MRI->hasOneDef(VReg))
806 return EmitHalfDoneInstrRef(VReg);
807
808 DefMI = &*MRI->def_instr_begin(VReg);
809 } else {
810 assert(DbgOperand.getKind() == SDDbgOperand::SDNODE);
811 // Look up the corresponding VReg for the given SDNode, if any.
812 SDNode *Node = DbgOperand.getSDNode();
813 SDValue Op = SDValue(Node, DbgOperand.getResNo());
814 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
815 // No VReg -> produce a DBG_VALUE $noreg instead.
816 if (I==VRBaseMap.end())
817 return EmitDbgNoLocation(SD);
818
819 // Try to pick out a defining instruction at this point.
820 VReg = getVR(Op, VRBaseMap);
821
822 // Again, if there's no instruction defining the VReg right now, fix it up
823 // later.
824 if (!MRI->hasOneDef(VReg))
825 return EmitHalfDoneInstrRef(VReg);
826
827 DefMI = &*MRI->def_instr_begin(VReg);
828 }
829
830 // Avoid copy like instructions: they don't define values, only move them.
831 // Leave a virtual-register reference until it can be fixed up later, to find
832 // the underlying value definition.
833 if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI))
834 return EmitHalfDoneInstrRef(VReg);
835
836 auto MIB = BuildMI(*MF, DL, RefII);
837
838 // Find the operand number which defines the specified VReg.
839 unsigned OperandIdx = 0;
840 for (const auto &MO : DefMI->operands()) {
841 if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
842 break;
843 ++OperandIdx;
844 }
845 assert(OperandIdx < DefMI->getNumOperands());
846
847 // Make the DBG_INSTR_REF refer to that instruction, and that operand.
848 unsigned InstrNum = DefMI->getDebugInstrNum();
849 MIB.addImm(InstrNum);
850 MIB.addImm(OperandIdx);
851 MIB.addMetadata(Var);
852 MIB.addMetadata(Expr);
853 return &*MIB;
854 }
855
EmitDbgNoLocation(SDDbgValue * SD)856 MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
857 // An invalidated SDNode must generate an undef DBG_VALUE: although the
858 // original value is no longer computed, earlier DBG_VALUEs live ranges
859 // must not leak into later code.
860 MDNode *Var = SD->getVariable();
861 MDNode *Expr = SD->getExpression();
862 DebugLoc DL = SD->getDebugLoc();
863 auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
864 MIB.addReg(0U);
865 MIB.addReg(0U, RegState::Debug);
866 MIB.addMetadata(Var);
867 MIB.addMetadata(Expr);
868 return &*MIB;
869 }
870
871 MachineInstr *
EmitDbgValueFromSingleOp(SDDbgValue * SD,DenseMap<SDValue,Register> & VRBaseMap)872 InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
873 DenseMap<SDValue, Register> &VRBaseMap) {
874 MDNode *Var = SD->getVariable();
875 MDNode *Expr = SD->getExpression();
876 DebugLoc DL = SD->getDebugLoc();
877 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
878
879 assert(SD->getLocationOps().size() == 1 &&
880 "Non variadic dbg_value should have only one location op");
881
882 // Emit non-variadic dbg_value nodes as DBG_VALUE.
883 // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
884 auto MIB = BuildMI(*MF, DL, II);
885 AddDbgValueLocationOps(MIB, II, SD->getLocationOps(), VRBaseMap);
886
887 if (SD->isIndirect())
888 MIB.addImm(0U);
889 else
890 MIB.addReg(0U, RegState::Debug);
891
892 return MIB.addMetadata(Var).addMetadata(Expr);
893 }
894
895 MachineInstr *
EmitDbgLabel(SDDbgLabel * SD)896 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
897 MDNode *Label = SD->getLabel();
898 DebugLoc DL = SD->getDebugLoc();
899 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
900 "Expected inlined-at fields to agree");
901
902 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
903 MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
904 MIB.addMetadata(Label);
905
906 return &*MIB;
907 }
908
909 /// EmitMachineNode - Generate machine code for a target-specific node and
910 /// needed dependencies.
911 ///
912 void InstrEmitter::
EmitMachineNode(SDNode * Node,bool IsClone,bool IsCloned,DenseMap<SDValue,Register> & VRBaseMap)913 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
914 DenseMap<SDValue, Register> &VRBaseMap) {
915 unsigned Opc = Node->getMachineOpcode();
916
917 // Handle subreg insert/extract specially
918 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
919 Opc == TargetOpcode::INSERT_SUBREG ||
920 Opc == TargetOpcode::SUBREG_TO_REG) {
921 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
922 return;
923 }
924
925 // Handle COPY_TO_REGCLASS specially.
926 if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
927 EmitCopyToRegClassNode(Node, VRBaseMap);
928 return;
929 }
930
931 // Handle REG_SEQUENCE specially.
932 if (Opc == TargetOpcode::REG_SEQUENCE) {
933 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
934 return;
935 }
936
937 if (Opc == TargetOpcode::IMPLICIT_DEF)
938 // We want a unique VR for each IMPLICIT_DEF use.
939 return;
940
941 const MCInstrDesc &II = TII->get(Opc);
942 unsigned NumResults = CountResults(Node);
943 unsigned NumDefs = II.getNumDefs();
944 const MCPhysReg *ScratchRegs = nullptr;
945
946 // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
947 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
948 // Stackmaps do not have arguments and do not preserve their calling
949 // convention. However, to simplify runtime support, they clobber the same
950 // scratch registers as AnyRegCC.
951 unsigned CC = CallingConv::AnyReg;
952 if (Opc == TargetOpcode::PATCHPOINT) {
953 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
954 NumDefs = NumResults;
955 }
956 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
957 } else if (Opc == TargetOpcode::STATEPOINT) {
958 NumDefs = NumResults;
959 }
960
961 unsigned NumImpUses = 0;
962 unsigned NodeOperands =
963 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
964 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
965 II.isVariadic() && II.variadicOpsAreDefs();
966 bool HasPhysRegOuts = NumResults > NumDefs &&
967 II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
968 #ifndef NDEBUG
969 unsigned NumMIOperands = NodeOperands + NumResults;
970 if (II.isVariadic())
971 assert(NumMIOperands >= II.getNumOperands() &&
972 "Too few operands for a variadic node!");
973 else
974 assert(NumMIOperands >= II.getNumOperands() &&
975 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
976 NumImpUses &&
977 "#operands for dag node doesn't match .td file!");
978 #endif
979
980 // Create the new machine instruction.
981 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
982
983 // Add result register values for things that are defined by this
984 // instruction.
985 if (NumResults) {
986 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
987
988 // Transfer any IR flags from the SDNode to the MachineInstr
989 MachineInstr *MI = MIB.getInstr();
990 const SDNodeFlags Flags = Node->getFlags();
991 if (Flags.hasNoSignedZeros())
992 MI->setFlag(MachineInstr::MIFlag::FmNsz);
993
994 if (Flags.hasAllowReciprocal())
995 MI->setFlag(MachineInstr::MIFlag::FmArcp);
996
997 if (Flags.hasNoNaNs())
998 MI->setFlag(MachineInstr::MIFlag::FmNoNans);
999
1000 if (Flags.hasNoInfs())
1001 MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
1002
1003 if (Flags.hasAllowContract())
1004 MI->setFlag(MachineInstr::MIFlag::FmContract);
1005
1006 if (Flags.hasApproximateFuncs())
1007 MI->setFlag(MachineInstr::MIFlag::FmAfn);
1008
1009 if (Flags.hasAllowReassociation())
1010 MI->setFlag(MachineInstr::MIFlag::FmReassoc);
1011
1012 if (Flags.hasNoUnsignedWrap())
1013 MI->setFlag(MachineInstr::MIFlag::NoUWrap);
1014
1015 if (Flags.hasNoSignedWrap())
1016 MI->setFlag(MachineInstr::MIFlag::NoSWrap);
1017
1018 if (Flags.hasExact())
1019 MI->setFlag(MachineInstr::MIFlag::IsExact);
1020
1021 if (Flags.hasNoFPExcept())
1022 MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
1023 }
1024
1025 // Emit all of the actual operands of this instruction, adding them to the
1026 // instruction as appropriate.
1027 bool HasOptPRefs = NumDefs > NumResults;
1028 assert((!HasOptPRefs || !HasPhysRegOuts) &&
1029 "Unable to cope with optional defs and phys regs defs!");
1030 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
1031 for (unsigned i = NumSkip; i != NodeOperands; ++i)
1032 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
1033 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
1034
1035 // Add scratch registers as implicit def and early clobber
1036 if (ScratchRegs)
1037 for (unsigned i = 0; ScratchRegs[i]; ++i)
1038 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1039 RegState::EarlyClobber);
1040
1041 // Set the memory reference descriptions of this instruction now that it is
1042 // part of the function.
1043 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1044
1045 // Insert the instruction into position in the block. This needs to
1046 // happen before any custom inserter hook is called so that the
1047 // hook knows where in the block to insert the replacement code.
1048 MBB->insert(InsertPos, MIB);
1049
1050 // The MachineInstr may also define physregs instead of virtregs. These
1051 // physreg values can reach other instructions in different ways:
1052 //
1053 // 1. When there is a use of a Node value beyond the explicitly defined
1054 // virtual registers, we emit a CopyFromReg for one of the implicitly
1055 // defined physregs. This only happens when HasPhysRegOuts is true.
1056 //
1057 // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1058 //
1059 // 3. A glued instruction may implicitly use a physreg.
1060 //
1061 // 4. A glued instruction may use a RegisterSDNode operand.
1062 //
1063 // Collect all the used physreg defs, and make sure that any unused physreg
1064 // defs are marked as dead.
1065 SmallVector<Register, 8> UsedRegs;
1066
1067 // Additional results must be physical register defs.
1068 if (HasPhysRegOuts) {
1069 for (unsigned i = NumDefs; i < NumResults; ++i) {
1070 Register Reg = II.getImplicitDefs()[i - NumDefs];
1071 if (!Node->hasAnyUseOfValue(i))
1072 continue;
1073 // This implicitly defined physreg has a use.
1074 UsedRegs.push_back(Reg);
1075 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
1076 }
1077 }
1078
1079 // Scan the glue chain for any used physregs.
1080 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1081 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1082 if (F->getOpcode() == ISD::CopyFromReg) {
1083 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1084 continue;
1085 } else if (F->getOpcode() == ISD::CopyToReg) {
1086 // Skip CopyToReg nodes that are internal to the glue chain.
1087 continue;
1088 }
1089 // Collect declared implicit uses.
1090 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1091 UsedRegs.append(MCID.getImplicitUses(),
1092 MCID.getImplicitUses() + MCID.getNumImplicitUses());
1093 // In addition to declared implicit uses, we must also check for
1094 // direct RegisterSDNode operands.
1095 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
1096 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
1097 Register Reg = R->getReg();
1098 if (Reg.isPhysical())
1099 UsedRegs.push_back(Reg);
1100 }
1101 }
1102 }
1103
1104 // Finally mark unused registers as dead.
1105 if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
1106 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1107
1108 // STATEPOINT is too 'dynamic' to have meaningful machine description.
1109 // We have to manually tie operands.
1110 if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1111 assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1112 MachineInstr *MI = MIB;
1113 unsigned Def = 0;
1114 int First = StatepointOpers(MI).getFirstGCPtrIdx();
1115 assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1116 unsigned Use = (unsigned)First;
1117 while (Def < NumDefs) {
1118 if (MI->getOperand(Use).isReg())
1119 MI->tieOperands(Def++, Use);
1120 Use = StackMaps::getNextMetaArgIdx(MI, Use);
1121 }
1122 }
1123
1124 // Run post-isel target hook to adjust this instruction if needed.
1125 if (II.hasPostISelHook())
1126 TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1127 }
1128
1129 /// EmitSpecialNode - Generate machine code for a target-independent node and
1130 /// needed dependencies.
1131 void InstrEmitter::
EmitSpecialNode(SDNode * Node,bool IsClone,bool IsCloned,DenseMap<SDValue,Register> & VRBaseMap)1132 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1133 DenseMap<SDValue, Register> &VRBaseMap) {
1134 switch (Node->getOpcode()) {
1135 default:
1136 #ifndef NDEBUG
1137 Node->dump();
1138 #endif
1139 llvm_unreachable("This target-independent node should have been selected!");
1140 case ISD::EntryToken:
1141 llvm_unreachable("EntryToken should have been excluded from the schedule!");
1142 case ISD::MERGE_VALUES:
1143 case ISD::TokenFactor: // fall thru
1144 break;
1145 case ISD::CopyToReg: {
1146 Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1147 SDValue SrcVal = Node->getOperand(2);
1148 if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
1149 SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1150 // Instead building a COPY to that vreg destination, build an
1151 // IMPLICIT_DEF instruction instead.
1152 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1153 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1154 break;
1155 }
1156 Register SrcReg;
1157 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1158 SrcReg = R->getReg();
1159 else
1160 SrcReg = getVR(SrcVal, VRBaseMap);
1161
1162 if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1163 break;
1164
1165 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1166 DestReg).addReg(SrcReg);
1167 break;
1168 }
1169 case ISD::CopyFromReg: {
1170 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1171 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1172 break;
1173 }
1174 case ISD::EH_LABEL:
1175 case ISD::ANNOTATION_LABEL: {
1176 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1177 ? TargetOpcode::EH_LABEL
1178 : TargetOpcode::ANNOTATION_LABEL;
1179 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1180 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1181 TII->get(Opc)).addSym(S);
1182 break;
1183 }
1184
1185 case ISD::LIFETIME_START:
1186 case ISD::LIFETIME_END: {
1187 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
1188 ? TargetOpcode::LIFETIME_START
1189 : TargetOpcode::LIFETIME_END;
1190 auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
1191 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1192 .addFrameIndex(FI->getIndex());
1193 break;
1194 }
1195
1196 case ISD::PSEUDO_PROBE: {
1197 unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1198 auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1199 auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1200 auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1201
1202 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1203 .addImm(Guid)
1204 .addImm(Index)
1205 .addImm((uint8_t)PseudoProbeType::Block)
1206 .addImm(Attr);
1207 break;
1208 }
1209
1210 case ISD::INLINEASM:
1211 case ISD::INLINEASM_BR: {
1212 unsigned NumOps = Node->getNumOperands();
1213 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1214 --NumOps; // Ignore the glue operand.
1215
1216 // Create the inline asm machine instruction.
1217 unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1218 ? TargetOpcode::INLINEASM_BR
1219 : TargetOpcode::INLINEASM;
1220 MachineInstrBuilder MIB =
1221 BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1222
1223 // Add the asm string as an external symbol operand.
1224 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1225 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1226 MIB.addExternalSymbol(AsmStr);
1227
1228 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1229 // bits.
1230 int64_t ExtraInfo =
1231 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1232 getZExtValue();
1233 MIB.addImm(ExtraInfo);
1234
1235 // Remember to operand index of the group flags.
1236 SmallVector<unsigned, 8> GroupIdx;
1237
1238 // Remember registers that are part of early-clobber defs.
1239 SmallVector<unsigned, 8> ECRegs;
1240
1241 // Add all of the operand registers to the instruction.
1242 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1243 unsigned Flags =
1244 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1245 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1246
1247 GroupIdx.push_back(MIB->getNumOperands());
1248 MIB.addImm(Flags);
1249 ++i; // Skip the ID value.
1250
1251 switch (InlineAsm::getKind(Flags)) {
1252 default: llvm_unreachable("Bad flags!");
1253 case InlineAsm::Kind_RegDef:
1254 for (unsigned j = 0; j != NumVals; ++j, ++i) {
1255 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1256 // FIXME: Add dead flags for physical and virtual registers defined.
1257 // For now, mark physical register defs as implicit to help fast
1258 // regalloc. This makes inline asm look a lot like calls.
1259 MIB.addReg(Reg,
1260 RegState::Define |
1261 getImplRegState(Register::isPhysicalRegister(Reg)));
1262 }
1263 break;
1264 case InlineAsm::Kind_RegDefEarlyClobber:
1265 case InlineAsm::Kind_Clobber:
1266 for (unsigned j = 0; j != NumVals; ++j, ++i) {
1267 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1268 MIB.addReg(Reg,
1269 RegState::Define | RegState::EarlyClobber |
1270 getImplRegState(Register::isPhysicalRegister(Reg)));
1271 ECRegs.push_back(Reg);
1272 }
1273 break;
1274 case InlineAsm::Kind_RegUse: // Use of register.
1275 case InlineAsm::Kind_Imm: // Immediate.
1276 case InlineAsm::Kind_Mem: // Addressing mode.
1277 // The addressing mode has been selected, just add all of the
1278 // operands to the machine instruction.
1279 for (unsigned j = 0; j != NumVals; ++j, ++i)
1280 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1281 /*IsDebug=*/false, IsClone, IsCloned);
1282
1283 // Manually set isTied bits.
1284 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1285 unsigned DefGroup = 0;
1286 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1287 unsigned DefIdx = GroupIdx[DefGroup] + 1;
1288 unsigned UseIdx = GroupIdx.back() + 1;
1289 for (unsigned j = 0; j != NumVals; ++j)
1290 MIB->tieOperands(DefIdx + j, UseIdx + j);
1291 }
1292 }
1293 break;
1294 }
1295 }
1296
1297 // GCC inline assembly allows input operands to also be early-clobber
1298 // output operands (so long as the operand is written only after it's
1299 // used), but this does not match the semantics of our early-clobber flag.
1300 // If an early-clobber operand register is also an input operand register,
1301 // then remove the early-clobber flag.
1302 for (unsigned Reg : ECRegs) {
1303 if (MIB->readsRegister(Reg, TRI)) {
1304 MachineOperand *MO =
1305 MIB->findRegisterDefOperand(Reg, false, false, TRI);
1306 assert(MO && "No def operand for clobbered register?");
1307 MO->setIsEarlyClobber(false);
1308 }
1309 }
1310
1311 // Get the mdnode from the asm if it exists and add it to the instruction.
1312 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1313 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1314 if (MD)
1315 MIB.addMetadata(MD);
1316
1317 MBB->insert(InsertPos, MIB);
1318 break;
1319 }
1320 }
1321 }
1322
1323 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1324 /// at the given position in the given block.
InstrEmitter(const TargetMachine & TM,MachineBasicBlock * mbb,MachineBasicBlock::iterator insertpos)1325 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1326 MachineBasicBlock::iterator insertpos)
1327 : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1328 TII(MF->getSubtarget().getInstrInfo()),
1329 TRI(MF->getSubtarget().getRegisterInfo()),
1330 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1331 InsertPos(insertpos) {
1332 EmitDebugInstrRefs = TM.Options.ValueTrackingVariableLocations;
1333 }
1334