1 //===-- M68kISelLowering.cpp - M68k DAG Lowering Impl ------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the interfaces that M68k uses to lower LLVM code into a
11 /// selection DAG.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "M68kISelLowering.h"
16 #include "M68kCallingConv.h"
17 #include "M68kMachineFunction.h"
18 #include "M68kSubtarget.h"
19 #include "M68kTargetMachine.h"
20 #include "M68kTargetObjectFile.h"
21
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SelectionDAG.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/raw_ostream.h"
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "M68k-isel"
43
44 STATISTIC(NumTailCalls, "Number of tail calls");
45
M68kTargetLowering(const M68kTargetMachine & TM,const M68kSubtarget & STI)46 M68kTargetLowering::M68kTargetLowering(const M68kTargetMachine &TM,
47 const M68kSubtarget &STI)
48 : TargetLowering(TM), Subtarget(STI), TM(TM) {
49
50 MVT PtrVT = MVT::i32;
51
52 setBooleanContents(ZeroOrOneBooleanContent);
53
54 auto *RegInfo = Subtarget.getRegisterInfo();
55 setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
56
57 // Set up the register classes.
58 addRegisterClass(MVT::i8, &M68k::DR8RegClass);
59 addRegisterClass(MVT::i16, &M68k::XR16RegClass);
60 addRegisterClass(MVT::i32, &M68k::XR32RegClass);
61
62 for (auto VT : MVT::integer_valuetypes()) {
63 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
64 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
65 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
66 }
67
68 // We don't accept any truncstore of integer registers.
69 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
70 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
71 setTruncStoreAction(MVT::i64, MVT::i8, Expand);
72 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
73 setTruncStoreAction(MVT::i32, MVT::i8, Expand);
74 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
75
76 setOperationAction(ISD::MUL, MVT::i8, Promote);
77 setOperationAction(ISD::MUL, MVT::i16, Legal);
78 if (Subtarget.atLeastM68020())
79 setOperationAction(ISD::MUL, MVT::i32, Legal);
80 else
81 setOperationAction(ISD::MUL, MVT::i32, LibCall);
82 setOperationAction(ISD::MUL, MVT::i64, LibCall);
83
84 for (auto OP :
85 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::UDIVREM, ISD::SDIVREM,
86 ISD::MULHS, ISD::MULHU, ISD::UMUL_LOHI, ISD::SMUL_LOHI}) {
87 setOperationAction(OP, MVT::i8, Promote);
88 setOperationAction(OP, MVT::i16, Legal);
89 setOperationAction(OP, MVT::i32, LibCall);
90 }
91
92 for (auto OP : {ISD::UMUL_LOHI, ISD::SMUL_LOHI}) {
93 setOperationAction(OP, MVT::i8, Expand);
94 setOperationAction(OP, MVT::i16, Expand);
95 }
96
97 // FIXME It would be better to use a custom lowering
98 for (auto OP : {ISD::SMULO, ISD::UMULO}) {
99 setOperationAction(OP, MVT::i8, Expand);
100 setOperationAction(OP, MVT::i16, Expand);
101 setOperationAction(OP, MVT::i32, Expand);
102 }
103
104 // Add/Sub overflow ops with MVT::Glues are lowered to CCR dependences.
105 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
106 setOperationAction(ISD::ADDC, VT, Custom);
107 setOperationAction(ISD::ADDE, VT, Custom);
108 setOperationAction(ISD::SUBC, VT, Custom);
109 setOperationAction(ISD::SUBE, VT, Custom);
110 }
111
112 // SADDO and friends are legal with this setup, i hope
113 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
114 setOperationAction(ISD::SADDO, VT, Custom);
115 setOperationAction(ISD::UADDO, VT, Custom);
116 setOperationAction(ISD::SSUBO, VT, Custom);
117 setOperationAction(ISD::USUBO, VT, Custom);
118 }
119
120 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
121 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
122
123 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
124 setOperationAction(ISD::BR_CC, VT, Expand);
125 setOperationAction(ISD::SELECT, VT, Custom);
126 setOperationAction(ISD::SELECT_CC, VT, Expand);
127 setOperationAction(ISD::SETCC, VT, Custom);
128 setOperationAction(ISD::SETCCCARRY, VT, Custom);
129 }
130
131 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
132 setOperationAction(ISD::BSWAP, VT, Expand);
133 setOperationAction(ISD::CTTZ, VT, Expand);
134 setOperationAction(ISD::CTLZ, VT, Expand);
135 setOperationAction(ISD::CTPOP, VT, Expand);
136 }
137
138 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
139 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
140 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
141 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
142 setOperationAction(ISD::ExternalSymbol, MVT::i32, Custom);
143 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
144
145 setOperationAction(ISD::VASTART, MVT::Other, Custom);
146 setOperationAction(ISD::VAEND, MVT::Other, Expand);
147 setOperationAction(ISD::VAARG, MVT::Other, Expand);
148 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
149
150 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
151 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
152
153 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
154
155 computeRegisterProperties(STI.getRegisterInfo());
156
157 // 2^2 bytes
158 // FIXME can it be just 2^1?
159 setMinFunctionAlignment(Align::Constant<2>());
160 }
161
getSetCCResultType(const DataLayout & DL,LLVMContext & Context,EVT VT) const162 EVT M68kTargetLowering::getSetCCResultType(const DataLayout &DL,
163 LLVMContext &Context, EVT VT) const {
164 // M68k SETcc producess either 0x00 or 0xFF
165 return MVT::i8;
166 }
167
getScalarShiftAmountTy(const DataLayout & DL,EVT Ty) const168 MVT M68kTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
169 EVT Ty) const {
170 if (Ty.isSimple()) {
171 return Ty.getSimpleVT();
172 }
173 return MVT::getIntegerVT(8 * DL.getPointerSize(0));
174 }
175
176 #include "M68kGenCallingConv.inc"
177
178 enum StructReturnType { NotStructReturn, RegStructReturn, StackStructReturn };
179
180 static StructReturnType
callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> & Outs)181 callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
182 if (Outs.empty())
183 return NotStructReturn;
184
185 const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
186 if (!Flags.isSRet())
187 return NotStructReturn;
188 if (Flags.isInReg())
189 return RegStructReturn;
190 return StackStructReturn;
191 }
192
193 /// Determines whether a function uses struct return semantics.
194 static StructReturnType
argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> & Ins)195 argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
196 if (Ins.empty())
197 return NotStructReturn;
198
199 const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
200 if (!Flags.isSRet())
201 return NotStructReturn;
202 if (Flags.isInReg())
203 return RegStructReturn;
204 return StackStructReturn;
205 }
206
207 /// Make a copy of an aggregate at address specified by "Src" to address
208 /// "Dst" with size and alignment information specified by the specific
209 /// parameter attribute. The copy will be passed as a byval function parameter.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & DL)210 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
211 SDValue Chain, ISD::ArgFlagsTy Flags,
212 SelectionDAG &DAG, const SDLoc &DL) {
213 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), DL, MVT::i32);
214
215 return DAG.getMemcpy(
216 Chain, DL, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
217 /*isVolatile=*/false, /*AlwaysInline=*/true,
218 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
219 }
220
221 /// Return true if the calling convention is one that we can guarantee TCO for.
canGuaranteeTCO(CallingConv::ID CC)222 static bool canGuaranteeTCO(CallingConv::ID CC) { return false; }
223
224 /// Return true if we might ever do TCO for calls with this calling convention.
mayTailCallThisCC(CallingConv::ID CC)225 static bool mayTailCallThisCC(CallingConv::ID CC) {
226 switch (CC) {
227 // C calling conventions:
228 case CallingConv::C:
229 return true;
230 default:
231 return canGuaranteeTCO(CC);
232 }
233 }
234
235 /// Return true if the function is being made into a tailcall target by
236 /// changing its ABI.
shouldGuaranteeTCO(CallingConv::ID CC,bool GuaranteedTailCallOpt)237 static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
238 return GuaranteedTailCallOpt && canGuaranteeTCO(CC);
239 }
240
241 /// Return true if the given stack call argument is already available in the
242 /// same position (relatively) of the caller's incoming argument stack.
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo & MFI,const MachineRegisterInfo * MRI,const M68kInstrInfo * TII,const CCValAssign & VA)243 static bool MatchingStackOffset(SDValue Arg, unsigned Offset,
244 ISD::ArgFlagsTy Flags, MachineFrameInfo &MFI,
245 const MachineRegisterInfo *MRI,
246 const M68kInstrInfo *TII,
247 const CCValAssign &VA) {
248 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
249
250 for (;;) {
251 // Look through nodes that don't alter the bits of the incoming value.
252 unsigned Op = Arg.getOpcode();
253 if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) {
254 Arg = Arg.getOperand(0);
255 continue;
256 }
257 if (Op == ISD::TRUNCATE) {
258 const SDValue &TruncInput = Arg.getOperand(0);
259 if (TruncInput.getOpcode() == ISD::AssertZext &&
260 cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
261 Arg.getValueType()) {
262 Arg = TruncInput.getOperand(0);
263 continue;
264 }
265 }
266 break;
267 }
268
269 int FI = INT_MAX;
270 if (Arg.getOpcode() == ISD::CopyFromReg) {
271 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
272 if (!Register::isVirtualRegister(VR))
273 return false;
274 MachineInstr *Def = MRI->getVRegDef(VR);
275 if (!Def)
276 return false;
277 if (!Flags.isByVal()) {
278 if (!TII->isLoadFromStackSlot(*Def, FI))
279 return false;
280 } else {
281 unsigned Opcode = Def->getOpcode();
282 if ((Opcode == M68k::LEA32p || Opcode == M68k::LEA32f) &&
283 Def->getOperand(1).isFI()) {
284 FI = Def->getOperand(1).getIndex();
285 Bytes = Flags.getByValSize();
286 } else
287 return false;
288 }
289 } else if (auto *Ld = dyn_cast<LoadSDNode>(Arg)) {
290 if (Flags.isByVal())
291 // ByVal argument is passed in as a pointer but it's now being
292 // dereferenced. e.g.
293 // define @foo(%struct.X* %A) {
294 // tail call @bar(%struct.X* byval %A)
295 // }
296 return false;
297 SDValue Ptr = Ld->getBasePtr();
298 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
299 if (!FINode)
300 return false;
301 FI = FINode->getIndex();
302 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
303 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
304 FI = FINode->getIndex();
305 Bytes = Flags.getByValSize();
306 } else
307 return false;
308
309 assert(FI != INT_MAX);
310 if (!MFI.isFixedObjectIndex(FI))
311 return false;
312
313 if (Offset != MFI.getObjectOffset(FI))
314 return false;
315
316 if (VA.getLocVT().getSizeInBits() > Arg.getValueType().getSizeInBits()) {
317 // If the argument location is wider than the argument type, check that any
318 // extension flags match.
319 if (Flags.isZExt() != MFI.isObjectZExt(FI) ||
320 Flags.isSExt() != MFI.isObjectSExt(FI)) {
321 return false;
322 }
323 }
324
325 return Bytes == MFI.getObjectSize(FI);
326 }
327
328 SDValue
getReturnAddressFrameIndex(SelectionDAG & DAG) const329 M68kTargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
330 MachineFunction &MF = DAG.getMachineFunction();
331 M68kMachineFunctionInfo *FuncInfo = MF.getInfo<M68kMachineFunctionInfo>();
332 int ReturnAddrIndex = FuncInfo->getRAIndex();
333
334 if (ReturnAddrIndex == 0) {
335 // Set up a frame object for the return address.
336 unsigned SlotSize = Subtarget.getSlotSize();
337 ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(
338 SlotSize, -(int64_t)SlotSize, false);
339 FuncInfo->setRAIndex(ReturnAddrIndex);
340 }
341
342 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
343 }
344
EmitTailCallLoadRetAddr(SelectionDAG & DAG,SDValue & OutRetAddr,SDValue Chain,bool IsTailCall,int FPDiff,const SDLoc & DL) const345 SDValue M68kTargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
346 SDValue &OutRetAddr,
347 SDValue Chain,
348 bool IsTailCall, int FPDiff,
349 const SDLoc &DL) const {
350 EVT VT = getPointerTy(DAG.getDataLayout());
351 OutRetAddr = getReturnAddressFrameIndex(DAG);
352
353 // Load the "old" Return address.
354 OutRetAddr = DAG.getLoad(VT, DL, Chain, OutRetAddr, MachinePointerInfo());
355 return SDValue(OutRetAddr.getNode(), 1);
356 }
357
EmitTailCallStoreRetAddr(SelectionDAG & DAG,MachineFunction & MF,SDValue Chain,SDValue RetFI,EVT PtrVT,unsigned SlotSize,int FPDiff,const SDLoc & DL) const358 SDValue M68kTargetLowering::EmitTailCallStoreRetAddr(
359 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue RetFI,
360 EVT PtrVT, unsigned SlotSize, int FPDiff, const SDLoc &DL) const {
361 if (!FPDiff)
362 return Chain;
363
364 // Calculate the new stack slot for the return address.
365 int NewFO = MF.getFrameInfo().CreateFixedObject(
366 SlotSize, (int64_t)FPDiff - SlotSize, false);
367
368 SDValue NewFI = DAG.getFrameIndex(NewFO, PtrVT);
369 // Store the return address to the appropriate stack slot.
370 Chain = DAG.getStore(
371 Chain, DL, RetFI, NewFI,
372 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFO));
373 return Chain;
374 }
375
376 SDValue
LowerMemArgument(SDValue Chain,CallingConv::ID CallConv,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,const CCValAssign & VA,MachineFrameInfo & MFI,unsigned ArgIdx) const377 M68kTargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
378 const SmallVectorImpl<ISD::InputArg> &Ins,
379 const SDLoc &DL, SelectionDAG &DAG,
380 const CCValAssign &VA,
381 MachineFrameInfo &MFI,
382 unsigned ArgIdx) const {
383 // Create the nodes corresponding to a load from this parameter slot.
384 ISD::ArgFlagsTy Flags = Ins[ArgIdx].Flags;
385 EVT ValVT;
386
387 // If value is passed by pointer we have address passed instead of the value
388 // itself.
389 if (VA.getLocInfo() == CCValAssign::Indirect)
390 ValVT = VA.getLocVT();
391 else
392 ValVT = VA.getValVT();
393
394 // Because we are dealing with BE architecture we need to offset loading of
395 // partial types
396 int Offset = VA.getLocMemOffset();
397 if (VA.getValVT() == MVT::i8) {
398 Offset += 3;
399 } else if (VA.getValVT() == MVT::i16) {
400 Offset += 2;
401 }
402
403 // TODO Interrupt handlers
404 // Calculate SP offset of interrupt parameter, re-arrange the slot normally
405 // taken by a return address.
406
407 // FIXME For now, all byval parameter objects are marked mutable. This can
408 // be changed with more analysis. In case of tail call optimization mark all
409 // arguments mutable. Since they could be overwritten by lowering of arguments
410 // in case of a tail call.
411 bool AlwaysUseMutable = shouldGuaranteeTCO(
412 CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
413 bool IsImmutable = !AlwaysUseMutable && !Flags.isByVal();
414
415 if (Flags.isByVal()) {
416 unsigned Bytes = Flags.getByValSize();
417 if (Bytes == 0)
418 Bytes = 1; // Don't create zero-sized stack objects.
419 int FI = MFI.CreateFixedObject(Bytes, Offset, IsImmutable);
420 // TODO Interrupt handlers
421 // Adjust SP offset of interrupt parameter.
422 return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
423 } else {
424 int FI =
425 MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, Offset, IsImmutable);
426
427 // Set SExt or ZExt flag.
428 if (VA.getLocInfo() == CCValAssign::ZExt) {
429 MFI.setObjectZExt(FI, true);
430 } else if (VA.getLocInfo() == CCValAssign::SExt) {
431 MFI.setObjectSExt(FI, true);
432 }
433
434 // TODO Interrupt handlers
435 // Adjust SP offset of interrupt parameter.
436
437 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
438 SDValue Val = DAG.getLoad(
439 ValVT, DL, Chain, FIN,
440 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
441 return VA.isExtInLoc() ? DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val)
442 : Val;
443 }
444 }
445
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,const SDLoc & DL,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const446 SDValue M68kTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
447 SDValue Arg, const SDLoc &DL,
448 SelectionDAG &DAG,
449 const CCValAssign &VA,
450 ISD::ArgFlagsTy Flags) const {
451 unsigned LocMemOffset = VA.getLocMemOffset();
452 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, DL);
453 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
454 StackPtr, PtrOff);
455 if (Flags.isByVal())
456 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, DL);
457
458 return DAG.getStore(
459 Chain, DL, Arg, PtrOff,
460 MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
461 }
462
463 //===----------------------------------------------------------------------===//
464 // Call
465 //===----------------------------------------------------------------------===//
466
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const467 SDValue M68kTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
468 SmallVectorImpl<SDValue> &InVals) const {
469 SelectionDAG &DAG = CLI.DAG;
470 SDLoc &DL = CLI.DL;
471 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
472 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
473 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
474 SDValue Chain = CLI.Chain;
475 SDValue Callee = CLI.Callee;
476 CallingConv::ID CallConv = CLI.CallConv;
477 bool &IsTailCall = CLI.IsTailCall;
478 bool IsVarArg = CLI.IsVarArg;
479
480 MachineFunction &MF = DAG.getMachineFunction();
481 StructReturnType SR = callIsStructReturn(Outs);
482 bool IsSibcall = false;
483 M68kMachineFunctionInfo *MFI = MF.getInfo<M68kMachineFunctionInfo>();
484 // const M68kRegisterInfo *TRI = Subtarget.getRegisterInfo();
485
486 if (CallConv == CallingConv::M68k_INTR)
487 report_fatal_error("M68k interrupts may not be called directly");
488
489 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
490 if (Attr.getValueAsBool())
491 IsTailCall = false;
492
493 // FIXME Add tailcalls support
494
495 bool IsMustTail = CLI.CB && CLI.CB->isMustTailCall();
496 if (IsMustTail) {
497 // Force this to be a tail call. The verifier rules are enough to ensure
498 // that we can lower this successfully without moving the return address
499 // around.
500 IsTailCall = true;
501 } else if (IsTailCall) {
502 // Check if it's really possible to do a tail call.
503 IsTailCall = IsEligibleForTailCallOptimization(
504 Callee, CallConv, IsVarArg, SR != NotStructReturn,
505 MF.getFunction().hasStructRetAttr(), CLI.RetTy, Outs, OutVals, Ins,
506 DAG);
507
508 // Sibcalls are automatically detected tailcalls which do not require
509 // ABI changes.
510 if (!MF.getTarget().Options.GuaranteedTailCallOpt && IsTailCall)
511 IsSibcall = true;
512
513 if (IsTailCall)
514 ++NumTailCalls;
515 }
516
517 assert(!(IsVarArg && canGuaranteeTCO(CallConv)) &&
518 "Var args not supported with calling convention fastcc");
519
520 // Analyze operands of the call, assigning locations to each operand.
521 SmallVector<CCValAssign, 16> ArgLocs;
522 // It is empty for LibCall
523 const Function *CalleeFunc = CLI.CB ? CLI.CB->getCalledFunction() : nullptr;
524 M68kCCState CCInfo(*CalleeFunc, CallConv, IsVarArg, MF, ArgLocs,
525 *DAG.getContext());
526 CCInfo.AnalyzeCallOperands(Outs, CC_M68k);
527
528 // Get a count of how many bytes are to be pushed on the stack.
529 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
530 if (IsSibcall) {
531 // This is a sibcall. The memory operands are available in caller's
532 // own caller's stack.
533 NumBytes = 0;
534 } else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
535 canGuaranteeTCO(CallConv)) {
536 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
537 }
538
539 int FPDiff = 0;
540 if (IsTailCall && !IsSibcall && !IsMustTail) {
541 // Lower arguments at fp - stackoffset + fpdiff.
542 unsigned NumBytesCallerPushed = MFI->getBytesToPopOnReturn();
543
544 FPDiff = NumBytesCallerPushed - NumBytes;
545
546 // Set the delta of movement of the returnaddr stackslot.
547 // But only set if delta is greater than previous delta.
548 if (FPDiff < MFI->getTCReturnAddrDelta())
549 MFI->setTCReturnAddrDelta(FPDiff);
550 }
551
552 unsigned NumBytesToPush = NumBytes;
553 unsigned NumBytesToPop = NumBytes;
554
555 // If we have an inalloca argument, all stack space has already been allocated
556 // for us and be right at the top of the stack. We don't support multiple
557 // arguments passed in memory when using inalloca.
558 if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
559 NumBytesToPush = 0;
560 if (!ArgLocs.back().isMemLoc())
561 report_fatal_error("cannot use inalloca attribute on a register "
562 "parameter");
563 if (ArgLocs.back().getLocMemOffset() != 0)
564 report_fatal_error("any parameter with the inalloca attribute must be "
565 "the only memory argument");
566 }
567
568 if (!IsSibcall)
569 Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush,
570 NumBytes - NumBytesToPush, DL);
571
572 SDValue RetFI;
573 // Load return address for tail calls.
574 if (IsTailCall && FPDiff)
575 Chain = EmitTailCallLoadRetAddr(DAG, RetFI, Chain, IsTailCall, FPDiff, DL);
576
577 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
578 SmallVector<SDValue, 8> MemOpChains;
579 SDValue StackPtr;
580
581 // Walk the register/memloc assignments, inserting copies/loads. In the case
582 // of tail call optimization arguments are handle later.
583 const M68kRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
584 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
585 ISD::ArgFlagsTy Flags = Outs[i].Flags;
586
587 // Skip inalloca arguments, they have already been written.
588 if (Flags.isInAlloca())
589 continue;
590
591 CCValAssign &VA = ArgLocs[i];
592 EVT RegVT = VA.getLocVT();
593 SDValue Arg = OutVals[i];
594 bool IsByVal = Flags.isByVal();
595
596 // Promote the value if needed.
597 switch (VA.getLocInfo()) {
598 default:
599 llvm_unreachable("Unknown loc info!");
600 case CCValAssign::Full:
601 break;
602 case CCValAssign::SExt:
603 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
604 break;
605 case CCValAssign::ZExt:
606 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
607 break;
608 case CCValAssign::AExt:
609 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
610 break;
611 case CCValAssign::BCvt:
612 Arg = DAG.getBitcast(RegVT, Arg);
613 break;
614 case CCValAssign::Indirect: {
615 // Store the argument.
616 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
617 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
618 Chain = DAG.getStore(
619 Chain, DL, Arg, SpillSlot,
620 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
621 Arg = SpillSlot;
622 break;
623 }
624 }
625
626 if (VA.isRegLoc()) {
627 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
628 } else if (!IsSibcall && (!IsTailCall || IsByVal)) {
629 assert(VA.isMemLoc());
630 if (!StackPtr.getNode()) {
631 StackPtr = DAG.getCopyFromReg(Chain, DL, RegInfo->getStackRegister(),
632 getPointerTy(DAG.getDataLayout()));
633 }
634 MemOpChains.push_back(
635 LowerMemOpCallTo(Chain, StackPtr, Arg, DL, DAG, VA, Flags));
636 }
637 }
638
639 if (!MemOpChains.empty())
640 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
641
642 // FIXME Make sure PIC style GOT works as expected
643 // The only time GOT is really needed is for Medium-PIC static data
644 // otherwise we are happy with pc-rel or static references
645
646 if (IsVarArg && IsMustTail) {
647 const auto &Forwards = MFI->getForwardedMustTailRegParms();
648 for (const auto &F : Forwards) {
649 SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
650 RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
651 }
652 }
653
654 // For tail calls lower the arguments to the 'real' stack slots. Sibcalls
655 // don't need this because the eligibility check rejects calls that require
656 // shuffling arguments passed in memory.
657 if (!IsSibcall && IsTailCall) {
658 // Force all the incoming stack arguments to be loaded from the stack
659 // before any new outgoing arguments are stored to the stack, because the
660 // outgoing stack slots may alias the incoming argument stack slots, and
661 // the alias isn't otherwise explicit. This is slightly more conservative
662 // than necessary, because it means that each store effectively depends
663 // on every argument instead of just those arguments it would clobber.
664 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
665
666 SmallVector<SDValue, 8> MemOpChains2;
667 SDValue FIN;
668 int FI = 0;
669 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
670 CCValAssign &VA = ArgLocs[i];
671 if (VA.isRegLoc())
672 continue;
673 assert(VA.isMemLoc());
674 SDValue Arg = OutVals[i];
675 ISD::ArgFlagsTy Flags = Outs[i].Flags;
676 // Skip inalloca arguments. They don't require any work.
677 if (Flags.isInAlloca())
678 continue;
679 // Create frame index.
680 int32_t Offset = VA.getLocMemOffset() + FPDiff;
681 uint32_t OpSize = (VA.getLocVT().getSizeInBits() + 7) / 8;
682 FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
683 FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
684
685 if (Flags.isByVal()) {
686 // Copy relative to framepointer.
687 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), DL);
688 if (!StackPtr.getNode()) {
689 StackPtr = DAG.getCopyFromReg(Chain, DL, RegInfo->getStackRegister(),
690 getPointerTy(DAG.getDataLayout()));
691 }
692 Source = DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
693 StackPtr, Source);
694
695 MemOpChains2.push_back(
696 CreateCopyOfByValArgument(Source, FIN, ArgChain, Flags, DAG, DL));
697 } else {
698 // Store relative to framepointer.
699 MemOpChains2.push_back(DAG.getStore(
700 ArgChain, DL, Arg, FIN,
701 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
702 }
703 }
704
705 if (!MemOpChains2.empty())
706 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains2);
707
708 // Store the return address to the appropriate stack slot.
709 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetFI,
710 getPointerTy(DAG.getDataLayout()),
711 Subtarget.getSlotSize(), FPDiff, DL);
712 }
713
714 // Build a sequence of copy-to-reg nodes chained together with token chain
715 // and flag operands which copy the outgoing args into registers.
716 SDValue InFlag;
717 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
718 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
719 RegsToPass[i].second, InFlag);
720 InFlag = Chain.getValue(1);
721 }
722
723 if (Callee->getOpcode() == ISD::GlobalAddress) {
724 // If the callee is a GlobalAddress node (quite common, every direct call
725 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
726 // it.
727 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
728
729 // We should use extra load for direct calls to dllimported functions in
730 // non-JIT mode.
731 const GlobalValue *GV = G->getGlobal();
732 if (!GV->hasDLLImportStorageClass()) {
733 unsigned char OpFlags = Subtarget.classifyGlobalFunctionReference(GV);
734
735 Callee = DAG.getTargetGlobalAddress(
736 GV, DL, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags);
737
738 if (OpFlags == M68kII::MO_GOTPCREL) {
739
740 // Add a wrapper.
741 Callee = DAG.getNode(M68kISD::WrapperPC, DL,
742 getPointerTy(DAG.getDataLayout()), Callee);
743
744 // Add extra indirection
745 Callee = DAG.getLoad(
746 getPointerTy(DAG.getDataLayout()), DL, DAG.getEntryNode(), Callee,
747 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
748 }
749 }
750 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
751 const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
752 unsigned char OpFlags =
753 Subtarget.classifyGlobalFunctionReference(nullptr, *Mod);
754
755 Callee = DAG.getTargetExternalSymbol(
756 S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags);
757 }
758
759 // Returns a chain & a flag for retval copy to use.
760 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
761 SmallVector<SDValue, 8> Ops;
762
763 if (!IsSibcall && IsTailCall) {
764 Chain = DAG.getCALLSEQ_END(Chain,
765 DAG.getIntPtrConstant(NumBytesToPop, DL, true),
766 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
767 InFlag = Chain.getValue(1);
768 }
769
770 Ops.push_back(Chain);
771 Ops.push_back(Callee);
772
773 if (IsTailCall)
774 Ops.push_back(DAG.getConstant(FPDiff, DL, MVT::i32));
775
776 // Add argument registers to the end of the list so that they are known live
777 // into the call.
778 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
779 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
780 RegsToPass[i].second.getValueType()));
781
782 // Add a register mask operand representing the call-preserved registers.
783 const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv);
784 assert(Mask && "Missing call preserved mask for calling convention");
785
786 Ops.push_back(DAG.getRegisterMask(Mask));
787
788 if (InFlag.getNode())
789 Ops.push_back(InFlag);
790
791 if (IsTailCall) {
792 MF.getFrameInfo().setHasTailCall();
793 return DAG.getNode(M68kISD::TC_RETURN, DL, NodeTys, Ops);
794 }
795
796 Chain = DAG.getNode(M68kISD::CALL, DL, NodeTys, Ops);
797 InFlag = Chain.getValue(1);
798
799 // Create the CALLSEQ_END node.
800 unsigned NumBytesForCalleeToPop;
801 if (M68k::isCalleePop(CallConv, IsVarArg,
802 DAG.getTarget().Options.GuaranteedTailCallOpt)) {
803 NumBytesForCalleeToPop = NumBytes; // Callee pops everything
804 } else if (!canGuaranteeTCO(CallConv) && SR == StackStructReturn) {
805 // If this is a call to a struct-return function, the callee
806 // pops the hidden struct pointer, so we have to push it back.
807 NumBytesForCalleeToPop = 4;
808 } else {
809 NumBytesForCalleeToPop = 0; // Callee pops nothing.
810 }
811
812 if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) {
813 // No need to reset the stack after the call if the call doesn't return. To
814 // make the MI verify, we'll pretend the callee does it for us.
815 NumBytesForCalleeToPop = NumBytes;
816 }
817
818 // Returns a flag for retval copy to use.
819 if (!IsSibcall) {
820 Chain = DAG.getCALLSEQ_END(
821 Chain, DAG.getIntPtrConstant(NumBytesToPop, DL, true),
822 DAG.getIntPtrConstant(NumBytesForCalleeToPop, DL, true), InFlag, DL);
823 InFlag = Chain.getValue(1);
824 }
825
826 // Handle result values, copying them out of physregs into vregs that we
827 // return.
828 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
829 InVals);
830 }
831
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const832 SDValue M68kTargetLowering::LowerCallResult(
833 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
834 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
835 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
836
837 // Assign locations to each value returned by this call.
838 SmallVector<CCValAssign, 16> RVLocs;
839 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
840 *DAG.getContext());
841 CCInfo.AnalyzeCallResult(Ins, RetCC_M68k);
842
843 // Copy all of the result registers out of their specified physreg.
844 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
845 CCValAssign &VA = RVLocs[i];
846 EVT CopyVT = VA.getLocVT();
847
848 /// ??? is this correct?
849 Chain = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), CopyVT, InFlag)
850 .getValue(1);
851 SDValue Val = Chain.getValue(0);
852
853 if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1)
854 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
855
856 InFlag = Chain.getValue(2);
857 InVals.push_back(Val);
858 }
859
860 return Chain;
861 }
862
863 //===----------------------------------------------------------------------===//
864 // Formal Arguments Calling Convention Implementation
865 //===----------------------------------------------------------------------===//
866
LowerFormalArguments(SDValue Chain,CallingConv::ID CCID,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const867 SDValue M68kTargetLowering::LowerFormalArguments(
868 SDValue Chain, CallingConv::ID CCID, bool IsVarArg,
869 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
870 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
871 MachineFunction &MF = DAG.getMachineFunction();
872 M68kMachineFunctionInfo *MMFI = MF.getInfo<M68kMachineFunctionInfo>();
873 // const TargetFrameLowering &TFL = *Subtarget.getFrameLowering();
874
875 MachineFrameInfo &MFI = MF.getFrameInfo();
876
877 // Assign locations to all of the incoming arguments.
878 SmallVector<CCValAssign, 16> ArgLocs;
879 M68kCCState CCInfo(MF.getFunction(), CCID, IsVarArg, MF, ArgLocs,
880 *DAG.getContext());
881
882 CCInfo.AnalyzeFormalArguments(Ins, CC_M68k);
883
884 unsigned LastVal = ~0U;
885 SDValue ArgValue;
886 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
887 CCValAssign &VA = ArgLocs[i];
888 assert(VA.getValNo() != LastVal && "Same value in different locations");
889
890 LastVal = VA.getValNo();
891
892 if (VA.isRegLoc()) {
893 EVT RegVT = VA.getLocVT();
894 const TargetRegisterClass *RC;
895 if (RegVT == MVT::i32)
896 RC = &M68k::XR32RegClass;
897 else
898 llvm_unreachable("Unknown argument type!");
899
900 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
901 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
902
903 // If this is an 8 or 16-bit value, it is really passed promoted to 32
904 // bits. Insert an assert[sz]ext to capture this, then truncate to the
905 // right size.
906 if (VA.getLocInfo() == CCValAssign::SExt) {
907 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
908 DAG.getValueType(VA.getValVT()));
909 } else if (VA.getLocInfo() == CCValAssign::ZExt) {
910 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
911 DAG.getValueType(VA.getValVT()));
912 } else if (VA.getLocInfo() == CCValAssign::BCvt) {
913 ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
914 }
915
916 if (VA.isExtInLoc()) {
917 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
918 }
919 } else {
920 assert(VA.isMemLoc());
921 ArgValue = LowerMemArgument(Chain, CCID, Ins, DL, DAG, VA, MFI, i);
922 }
923
924 // If value is passed via pointer - do a load.
925 // TODO Make sure this handling on indirect arguments is correct
926 if (VA.getLocInfo() == CCValAssign::Indirect)
927 ArgValue =
928 DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, MachinePointerInfo());
929
930 InVals.push_back(ArgValue);
931 }
932
933 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
934 // Swift calling convention does not require we copy the sret argument
935 // into %D0 for the return. We don't set SRetReturnReg for Swift.
936 if (CCID == CallingConv::Swift)
937 continue;
938
939 // ABI require that for returning structs by value we copy the sret argument
940 // into %D0 for the return. Save the argument into a virtual register so
941 // that we can access it from the return points.
942 if (Ins[i].Flags.isSRet()) {
943 unsigned Reg = MMFI->getSRetReturnReg();
944 if (!Reg) {
945 MVT PtrTy = getPointerTy(DAG.getDataLayout());
946 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
947 MMFI->setSRetReturnReg(Reg);
948 }
949 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
950 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
951 break;
952 }
953 }
954
955 unsigned StackSize = CCInfo.getNextStackOffset();
956 // Align stack specially for tail calls.
957 if (shouldGuaranteeTCO(CCID, MF.getTarget().Options.GuaranteedTailCallOpt))
958 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
959
960 // If the function takes variable number of arguments, make a frame index for
961 // the start of the first vararg value... for expansion of llvm.va_start. We
962 // can skip this if there are no va_start calls.
963 if (MFI.hasVAStart()) {
964 MMFI->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
965 }
966
967 if (IsVarArg && MFI.hasMustTailInVarArgFunc()) {
968 // We forward some GPRs and some vector types.
969 SmallVector<MVT, 2> RegParmTypes;
970 MVT IntVT = MVT::i32;
971 RegParmTypes.push_back(IntVT);
972
973 // Compute the set of forwarded registers. The rest are scratch.
974 // ??? what is this for?
975 SmallVectorImpl<ForwardedRegister> &Forwards =
976 MMFI->getForwardedMustTailRegParms();
977 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_M68k);
978
979 // Copy all forwards from physical to virtual registers.
980 for (ForwardedRegister &F : Forwards) {
981 // FIXME Can we use a less constrained schedule?
982 SDValue RegVal = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
983 F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
984 Chain = DAG.getCopyToReg(Chain, DL, F.VReg, RegVal);
985 }
986 }
987
988 // Some CCs need callee pop.
989 if (M68k::isCalleePop(CCID, IsVarArg,
990 MF.getTarget().Options.GuaranteedTailCallOpt)) {
991 MMFI->setBytesToPopOnReturn(StackSize); // Callee pops everything.
992 } else {
993 MMFI->setBytesToPopOnReturn(0); // Callee pops nothing.
994 // If this is an sret function, the return should pop the hidden pointer.
995 if (!canGuaranteeTCO(CCID) && argsAreStructReturn(Ins) == StackStructReturn)
996 MMFI->setBytesToPopOnReturn(4);
997 }
998
999 MMFI->setArgumentStackSize(StackSize);
1000
1001 return Chain;
1002 }
1003
1004 //===----------------------------------------------------------------------===//
1005 // Return Value Calling Convention Implementation
1006 //===----------------------------------------------------------------------===//
1007
1008 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CCID,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1009 M68kTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CCID,
1010 bool IsVarArg,
1011 const SmallVectorImpl<ISD::OutputArg> &Outs,
1012 const SmallVectorImpl<SDValue> &OutVals,
1013 const SDLoc &DL, SelectionDAG &DAG) const {
1014 MachineFunction &MF = DAG.getMachineFunction();
1015 M68kMachineFunctionInfo *MFI = MF.getInfo<M68kMachineFunctionInfo>();
1016
1017 SmallVector<CCValAssign, 16> RVLocs;
1018 CCState CCInfo(CCID, IsVarArg, MF, RVLocs, *DAG.getContext());
1019 CCInfo.AnalyzeReturn(Outs, RetCC_M68k);
1020
1021 SDValue Flag;
1022 SmallVector<SDValue, 6> RetOps;
1023 // Operand #0 = Chain (updated below)
1024 RetOps.push_back(Chain);
1025 // Operand #1 = Bytes To Pop
1026 RetOps.push_back(
1027 DAG.getTargetConstant(MFI->getBytesToPopOnReturn(), DL, MVT::i32));
1028
1029 // Copy the result values into the output registers.
1030 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1031 CCValAssign &VA = RVLocs[i];
1032 assert(VA.isRegLoc() && "Can only return in registers!");
1033 SDValue ValToCopy = OutVals[i];
1034 EVT ValVT = ValToCopy.getValueType();
1035
1036 // Promote values to the appropriate types.
1037 if (VA.getLocInfo() == CCValAssign::SExt)
1038 ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), ValToCopy);
1039 else if (VA.getLocInfo() == CCValAssign::ZExt)
1040 ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), ValToCopy);
1041 else if (VA.getLocInfo() == CCValAssign::AExt) {
1042 if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
1043 ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), ValToCopy);
1044 else
1045 ValToCopy = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), ValToCopy);
1046 } else if (VA.getLocInfo() == CCValAssign::BCvt)
1047 ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
1048
1049 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), ValToCopy, Flag);
1050 Flag = Chain.getValue(1);
1051 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1052 }
1053
1054 // Swift calling convention does not require we copy the sret argument
1055 // into %d0 for the return, and SRetReturnReg is not set for Swift.
1056
1057 // ABI require that for returning structs by value we copy the sret argument
1058 // into %D0 for the return. Save the argument into a virtual register so that
1059 // we can access it from the return points.
1060 //
1061 // Checking Function.hasStructRetAttr() here is insufficient because the IR
1062 // may not have an explicit sret argument. If MFI.CanLowerReturn is
1063 // false, then an sret argument may be implicitly inserted in the SelDAG. In
1064 // either case MFI->setSRetReturnReg() will have been called.
1065 if (unsigned SRetReg = MFI->getSRetReturnReg()) {
1066 // ??? Can i just move this to the top and escape this explanation?
1067 // When we have both sret and another return value, we should use the
1068 // original Chain stored in RetOps[0], instead of the current Chain updated
1069 // in the above loop. If we only have sret, RetOps[0] equals to Chain.
1070
1071 // For the case of sret and another return value, we have
1072 // Chain_0 at the function entry
1073 // Chain_1 = getCopyToReg(Chain_0) in the above loop
1074 // If we use Chain_1 in getCopyFromReg, we will have
1075 // Val = getCopyFromReg(Chain_1)
1076 // Chain_2 = getCopyToReg(Chain_1, Val) from below
1077
1078 // getCopyToReg(Chain_0) will be glued together with
1079 // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
1080 // in Unit B, and we will have cyclic dependency between Unit A and Unit B:
1081 // Data dependency from Unit B to Unit A due to usage of Val in
1082 // getCopyToReg(Chain_1, Val)
1083 // Chain dependency from Unit A to Unit B
1084
1085 // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
1086 SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
1087 getPointerTy(MF.getDataLayout()));
1088
1089 // ??? How will this work if CC does not use registers for args passing?
1090 // ??? What if I return multiple structs?
1091 unsigned RetValReg = M68k::D0;
1092 Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag);
1093 Flag = Chain.getValue(1);
1094
1095 RetOps.push_back(
1096 DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
1097 }
1098
1099 RetOps[0] = Chain; // Update chain.
1100
1101 // Add the flag if we have it.
1102 if (Flag.getNode())
1103 RetOps.push_back(Flag);
1104
1105 return DAG.getNode(M68kISD::RET, DL, MVT::Other, RetOps);
1106 }
1107
1108 //===----------------------------------------------------------------------===//
1109 // Fast Calling Convention (tail call) implementation
1110 //===----------------------------------------------------------------------===//
1111
1112 // Like std call, callee cleans arguments, convention except that ECX is
1113 // reserved for storing the tail called function address. Only 2 registers are
1114 // free for argument passing (inreg). Tail call optimization is performed
1115 // provided:
1116 // * tailcallopt is enabled
1117 // * caller/callee are fastcc
1118 // On M68k_64 architecture with GOT-style position independent code only
1119 // local (within module) calls are supported at the moment. To keep the stack
1120 // aligned according to platform abi the function GetAlignedArgumentStackSize
1121 // ensures that argument delta is always multiples of stack alignment. (Dynamic
1122 // linkers need this - darwin's dyld for example) If a tail called function
1123 // callee has more arguments than the caller the caller needs to make sure that
1124 // there is room to move the RETADDR to. This is achieved by reserving an area
1125 // the size of the argument delta right after the original RETADDR, but before
1126 // the saved framepointer or the spilled registers e.g. caller(arg1, arg2)
1127 // calls callee(arg1, arg2,arg3,arg4) stack layout:
1128 // arg1
1129 // arg2
1130 // RETADDR
1131 // [ new RETADDR
1132 // move area ]
1133 // (possible EBP)
1134 // ESI
1135 // EDI
1136 // local1 ..
1137
1138 /// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
1139 /// requirement.
1140 unsigned
GetAlignedArgumentStackSize(unsigned StackSize,SelectionDAG & DAG) const1141 M68kTargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1142 SelectionDAG &DAG) const {
1143 const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
1144 unsigned StackAlignment = TFI.getStackAlignment();
1145 uint64_t AlignMask = StackAlignment - 1;
1146 int64_t Offset = StackSize;
1147 unsigned SlotSize = Subtarget.getSlotSize();
1148 if ((Offset & AlignMask) <= (StackAlignment - SlotSize)) {
1149 // Number smaller than 12 so just add the difference.
1150 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1151 } else {
1152 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1153 Offset =
1154 ((~AlignMask) & Offset) + StackAlignment + (StackAlignment - SlotSize);
1155 }
1156 return Offset;
1157 }
1158
1159 /// Check whether the call is eligible for tail call optimization. Targets
1160 /// that want to do tail call optimization should implement this function.
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool IsVarArg,bool IsCalleeStructRet,bool IsCallerStructRet,Type * RetTy,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const1161 bool M68kTargetLowering::IsEligibleForTailCallOptimization(
1162 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
1163 bool IsCalleeStructRet, bool IsCallerStructRet, Type *RetTy,
1164 const SmallVectorImpl<ISD::OutputArg> &Outs,
1165 const SmallVectorImpl<SDValue> &OutVals,
1166 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
1167 if (!mayTailCallThisCC(CalleeCC))
1168 return false;
1169
1170 // If -tailcallopt is specified, make fastcc functions tail-callable.
1171 MachineFunction &MF = DAG.getMachineFunction();
1172 const auto &CallerF = MF.getFunction();
1173
1174 CallingConv::ID CallerCC = CallerF.getCallingConv();
1175 bool CCMatch = CallerCC == CalleeCC;
1176
1177 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
1178 if (canGuaranteeTCO(CalleeCC) && CCMatch)
1179 return true;
1180 return false;
1181 }
1182
1183 // Look for obvious safe cases to perform tail call optimization that do not
1184 // require ABI changes. This is what gcc calls sibcall.
1185
1186 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
1187 // emit a special epilogue.
1188 const M68kRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1189 if (RegInfo->hasStackRealignment(MF))
1190 return false;
1191
1192 // Also avoid sibcall optimization if either caller or callee uses struct
1193 // return semantics.
1194 if (IsCalleeStructRet || IsCallerStructRet)
1195 return false;
1196
1197 // Do not sibcall optimize vararg calls unless all arguments are passed via
1198 // registers.
1199 LLVMContext &C = *DAG.getContext();
1200 if (IsVarArg && !Outs.empty()) {
1201
1202 SmallVector<CCValAssign, 16> ArgLocs;
1203 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C);
1204
1205 CCInfo.AnalyzeCallOperands(Outs, CC_M68k);
1206 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1207 if (!ArgLocs[i].isRegLoc())
1208 return false;
1209 }
1210
1211 // Check that the call results are passed in the same way.
1212 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, RetCC_M68k,
1213 RetCC_M68k))
1214 return false;
1215
1216 // The callee has to preserve all registers the caller needs to preserve.
1217 const M68kRegisterInfo *TRI = Subtarget.getRegisterInfo();
1218 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1219 if (!CCMatch) {
1220 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1221 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1222 return false;
1223 }
1224
1225 unsigned StackArgsSize = 0;
1226
1227 // If the callee takes no arguments then go on to check the results of the
1228 // call.
1229 if (!Outs.empty()) {
1230 // Check if stack adjustment is needed. For now, do not do this if any
1231 // argument is passed on the stack.
1232 SmallVector<CCValAssign, 16> ArgLocs;
1233 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C);
1234
1235 CCInfo.AnalyzeCallOperands(Outs, CC_M68k);
1236 StackArgsSize = CCInfo.getNextStackOffset();
1237
1238 if (CCInfo.getNextStackOffset()) {
1239 // Check if the arguments are already laid out in the right way as
1240 // the caller's fixed stack objects.
1241 MachineFrameInfo &MFI = MF.getFrameInfo();
1242 const MachineRegisterInfo *MRI = &MF.getRegInfo();
1243 const M68kInstrInfo *TII = Subtarget.getInstrInfo();
1244 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1245 CCValAssign &VA = ArgLocs[i];
1246 SDValue Arg = OutVals[i];
1247 ISD::ArgFlagsTy Flags = Outs[i].Flags;
1248 if (VA.getLocInfo() == CCValAssign::Indirect)
1249 return false;
1250 if (!VA.isRegLoc()) {
1251 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI,
1252 TII, VA))
1253 return false;
1254 }
1255 }
1256 }
1257
1258 bool PositionIndependent = isPositionIndependent();
1259 // If the tailcall address may be in a register, then make sure it's
1260 // possible to register allocate for it. The call address can
1261 // only target %A0 or %A1 since the tail call must be scheduled after
1262 // callee-saved registers are restored. These happen to be the same
1263 // registers used to pass 'inreg' arguments so watch out for those.
1264 if ((!isa<GlobalAddressSDNode>(Callee) &&
1265 !isa<ExternalSymbolSDNode>(Callee)) ||
1266 PositionIndependent) {
1267 unsigned NumInRegs = 0;
1268 // In PIC we need an extra register to formulate the address computation
1269 // for the callee.
1270 unsigned MaxInRegs = PositionIndependent ? 1 : 2;
1271
1272 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1273 CCValAssign &VA = ArgLocs[i];
1274 if (!VA.isRegLoc())
1275 continue;
1276 unsigned Reg = VA.getLocReg();
1277 switch (Reg) {
1278 default:
1279 break;
1280 case M68k::A0:
1281 case M68k::A1:
1282 if (++NumInRegs == MaxInRegs)
1283 return false;
1284 break;
1285 }
1286 }
1287 }
1288
1289 const MachineRegisterInfo &MRI = MF.getRegInfo();
1290 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
1291 return false;
1292 }
1293
1294 bool CalleeWillPop = M68k::isCalleePop(
1295 CalleeCC, IsVarArg, MF.getTarget().Options.GuaranteedTailCallOpt);
1296
1297 if (unsigned BytesToPop =
1298 MF.getInfo<M68kMachineFunctionInfo>()->getBytesToPopOnReturn()) {
1299 // If we have bytes to pop, the callee must pop them.
1300 bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
1301 if (!CalleePopMatches)
1302 return false;
1303 } else if (CalleeWillPop && StackArgsSize > 0) {
1304 // If we don't have bytes to pop, make sure the callee doesn't pop any.
1305 return false;
1306 }
1307
1308 return true;
1309 }
1310
1311 //===----------------------------------------------------------------------===//
1312 // Custom Lower
1313 //===----------------------------------------------------------------------===//
1314
LowerOperation(SDValue Op,SelectionDAG & DAG) const1315 SDValue M68kTargetLowering::LowerOperation(SDValue Op,
1316 SelectionDAG &DAG) const {
1317 switch (Op.getOpcode()) {
1318 default:
1319 llvm_unreachable("Should not custom lower this!");
1320 case ISD::SADDO:
1321 case ISD::UADDO:
1322 case ISD::SSUBO:
1323 case ISD::USUBO:
1324 case ISD::SMULO:
1325 case ISD::UMULO:
1326 return LowerXALUO(Op, DAG);
1327 case ISD::SETCC:
1328 return LowerSETCC(Op, DAG);
1329 case ISD::SETCCCARRY:
1330 return LowerSETCCCARRY(Op, DAG);
1331 case ISD::SELECT:
1332 return LowerSELECT(Op, DAG);
1333 case ISD::BRCOND:
1334 return LowerBRCOND(Op, DAG);
1335 case ISD::ADDC:
1336 case ISD::ADDE:
1337 case ISD::SUBC:
1338 case ISD::SUBE:
1339 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1340 case ISD::ConstantPool:
1341 return LowerConstantPool(Op, DAG);
1342 case ISD::GlobalAddress:
1343 return LowerGlobalAddress(Op, DAG);
1344 case ISD::ExternalSymbol:
1345 return LowerExternalSymbol(Op, DAG);
1346 case ISD::BlockAddress:
1347 return LowerBlockAddress(Op, DAG);
1348 case ISD::JumpTable:
1349 return LowerJumpTable(Op, DAG);
1350 case ISD::VASTART:
1351 return LowerVASTART(Op, DAG);
1352 case ISD::DYNAMIC_STACKALLOC:
1353 return LowerDYNAMIC_STACKALLOC(Op, DAG);
1354 }
1355 }
1356
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C) const1357 bool M68kTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
1358 SDValue C) const {
1359 // Shifts and add instructions in M68000 and M68010 support
1360 // up to 32 bits, but mul only has 16-bit variant. So it's almost
1361 // certainly beneficial to lower 8/16/32-bit mul to their
1362 // add / shifts counterparts. But for 64-bits mul, it might be
1363 // safer to just leave it to compiler runtime implementations.
1364 return VT.bitsLE(MVT::i32) || Subtarget.atLeastM68020();
1365 }
1366
LowerXALUO(SDValue Op,SelectionDAG & DAG) const1367 SDValue M68kTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
1368 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
1369 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
1370 // looks for this combo and may remove the "setcc" instruction if the "setcc"
1371 // has only one use.
1372 SDNode *N = Op.getNode();
1373 SDValue LHS = N->getOperand(0);
1374 SDValue RHS = N->getOperand(1);
1375 unsigned BaseOp = 0;
1376 unsigned Cond = 0;
1377 SDLoc DL(Op);
1378 switch (Op.getOpcode()) {
1379 default:
1380 llvm_unreachable("Unknown ovf instruction!");
1381 case ISD::SADDO:
1382 BaseOp = M68kISD::ADD;
1383 Cond = M68k::COND_VS;
1384 break;
1385 case ISD::UADDO:
1386 BaseOp = M68kISD::ADD;
1387 Cond = M68k::COND_CS;
1388 break;
1389 case ISD::SSUBO:
1390 BaseOp = M68kISD::SUB;
1391 Cond = M68k::COND_VS;
1392 break;
1393 case ISD::USUBO:
1394 BaseOp = M68kISD::SUB;
1395 Cond = M68k::COND_CS;
1396 break;
1397 }
1398
1399 // Also sets CCR.
1400 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i8);
1401 SDValue Arith = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
1402 SDValue SetCC = DAG.getNode(M68kISD::SETCC, DL, N->getValueType(1),
1403 DAG.getConstant(Cond, DL, MVT::i8),
1404 SDValue(Arith.getNode(), 1));
1405
1406 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Arith, SetCC);
1407 }
1408
1409 /// Create a BT (Bit Test) node - Test bit \p BitNo in \p Src and set condition
1410 /// according to equal/not-equal condition code \p CC.
getBitTestCondition(SDValue Src,SDValue BitNo,ISD::CondCode CC,const SDLoc & DL,SelectionDAG & DAG)1411 static SDValue getBitTestCondition(SDValue Src, SDValue BitNo, ISD::CondCode CC,
1412 const SDLoc &DL, SelectionDAG &DAG) {
1413 // If Src is i8, promote it to i32 with any_extend. There is no i8 BT
1414 // instruction. Since the shift amount is in-range-or-undefined, we know
1415 // that doing a bittest on the i32 value is ok.
1416 if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16)
1417 Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Src);
1418
1419 // If the operand types disagree, extend the shift amount to match. Since
1420 // BT ignores high bits (like shifts) we can use anyextend.
1421 if (Src.getValueType() != BitNo.getValueType())
1422 BitNo = DAG.getNode(ISD::ANY_EXTEND, DL, Src.getValueType(), BitNo);
1423
1424 SDValue BT = DAG.getNode(M68kISD::BT, DL, MVT::i32, Src, BitNo);
1425
1426 // NOTE BTST sets CCR.Z flag
1427 M68k::CondCode Cond = CC == ISD::SETEQ ? M68k::COND_NE : M68k::COND_EQ;
1428 return DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
1429 DAG.getConstant(Cond, DL, MVT::i8), BT);
1430 }
1431
1432 /// Result of 'and' is compared against zero. Change to a BT node if possible.
LowerAndToBT(SDValue And,ISD::CondCode CC,const SDLoc & DL,SelectionDAG & DAG)1433 static SDValue LowerAndToBT(SDValue And, ISD::CondCode CC, const SDLoc &DL,
1434 SelectionDAG &DAG) {
1435 SDValue Op0 = And.getOperand(0);
1436 SDValue Op1 = And.getOperand(1);
1437 if (Op0.getOpcode() == ISD::TRUNCATE)
1438 Op0 = Op0.getOperand(0);
1439 if (Op1.getOpcode() == ISD::TRUNCATE)
1440 Op1 = Op1.getOperand(0);
1441
1442 SDValue LHS, RHS;
1443 if (Op1.getOpcode() == ISD::SHL)
1444 std::swap(Op0, Op1);
1445 if (Op0.getOpcode() == ISD::SHL) {
1446 if (isOneConstant(Op0.getOperand(0))) {
1447 // If we looked past a truncate, check that it's only truncating away
1448 // known zeros.
1449 unsigned BitWidth = Op0.getValueSizeInBits();
1450 unsigned AndBitWidth = And.getValueSizeInBits();
1451 if (BitWidth > AndBitWidth) {
1452 auto Known = DAG.computeKnownBits(Op0);
1453 if (Known.countMinLeadingZeros() < BitWidth - AndBitWidth)
1454 return SDValue();
1455 }
1456 LHS = Op1;
1457 RHS = Op0.getOperand(1);
1458 }
1459 } else if (auto *AndRHS = dyn_cast<ConstantSDNode>(Op1)) {
1460 uint64_t AndRHSVal = AndRHS->getZExtValue();
1461 SDValue AndLHS = Op0;
1462
1463 if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
1464 LHS = AndLHS.getOperand(0);
1465 RHS = AndLHS.getOperand(1);
1466 }
1467
1468 // Use BT if the immediate can't be encoded in a TEST instruction.
1469 if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
1470 LHS = AndLHS;
1471 RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), DL, LHS.getValueType());
1472 }
1473 }
1474
1475 if (LHS.getNode())
1476 return getBitTestCondition(LHS, RHS, CC, DL, DAG);
1477
1478 return SDValue();
1479 }
1480
TranslateIntegerM68kCC(ISD::CondCode SetCCOpcode)1481 static M68k::CondCode TranslateIntegerM68kCC(ISD::CondCode SetCCOpcode) {
1482 switch (SetCCOpcode) {
1483 default:
1484 llvm_unreachable("Invalid integer condition!");
1485 case ISD::SETEQ:
1486 return M68k::COND_EQ;
1487 case ISD::SETGT:
1488 return M68k::COND_GT;
1489 case ISD::SETGE:
1490 return M68k::COND_GE;
1491 case ISD::SETLT:
1492 return M68k::COND_LT;
1493 case ISD::SETLE:
1494 return M68k::COND_LE;
1495 case ISD::SETNE:
1496 return M68k::COND_NE;
1497 case ISD::SETULT:
1498 return M68k::COND_CS;
1499 case ISD::SETUGE:
1500 return M68k::COND_CC;
1501 case ISD::SETUGT:
1502 return M68k::COND_HI;
1503 case ISD::SETULE:
1504 return M68k::COND_LS;
1505 }
1506 }
1507
1508 /// Do a one-to-one translation of a ISD::CondCode to the M68k-specific
1509 /// condition code, returning the condition code and the LHS/RHS of the
1510 /// comparison to make.
TranslateM68kCC(ISD::CondCode SetCCOpcode,const SDLoc & DL,bool IsFP,SDValue & LHS,SDValue & RHS,SelectionDAG & DAG)1511 static unsigned TranslateM68kCC(ISD::CondCode SetCCOpcode, const SDLoc &DL,
1512 bool IsFP, SDValue &LHS, SDValue &RHS,
1513 SelectionDAG &DAG) {
1514 if (!IsFP) {
1515 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1516 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1517 // X > -1 -> X == 0, jump !sign.
1518 RHS = DAG.getConstant(0, DL, RHS.getValueType());
1519 return M68k::COND_PL;
1520 }
1521 if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1522 // X < 0 -> X == 0, jump on sign.
1523 return M68k::COND_MI;
1524 }
1525 if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
1526 // X < 1 -> X <= 0
1527 RHS = DAG.getConstant(0, DL, RHS.getValueType());
1528 return M68k::COND_LE;
1529 }
1530 }
1531
1532 return TranslateIntegerM68kCC(SetCCOpcode);
1533 }
1534
1535 // First determine if it is required or is profitable to flip the operands.
1536
1537 // If LHS is a foldable load, but RHS is not, flip the condition.
1538 if (ISD::isNON_EXTLoad(LHS.getNode()) && !ISD::isNON_EXTLoad(RHS.getNode())) {
1539 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
1540 std::swap(LHS, RHS);
1541 }
1542
1543 switch (SetCCOpcode) {
1544 default:
1545 break;
1546 case ISD::SETOLT:
1547 case ISD::SETOLE:
1548 case ISD::SETUGT:
1549 case ISD::SETUGE:
1550 std::swap(LHS, RHS);
1551 break;
1552 }
1553
1554 // On a floating point condition, the flags are set as follows:
1555 // ZF PF CF op
1556 // 0 | 0 | 0 | X > Y
1557 // 0 | 0 | 1 | X < Y
1558 // 1 | 0 | 0 | X == Y
1559 // 1 | 1 | 1 | unordered
1560 switch (SetCCOpcode) {
1561 default:
1562 llvm_unreachable("Condcode should be pre-legalized away");
1563 case ISD::SETUEQ:
1564 case ISD::SETEQ:
1565 return M68k::COND_EQ;
1566 case ISD::SETOLT: // flipped
1567 case ISD::SETOGT:
1568 case ISD::SETGT:
1569 return M68k::COND_HI;
1570 case ISD::SETOLE: // flipped
1571 case ISD::SETOGE:
1572 case ISD::SETGE:
1573 return M68k::COND_CC;
1574 case ISD::SETUGT: // flipped
1575 case ISD::SETULT:
1576 case ISD::SETLT:
1577 return M68k::COND_CS;
1578 case ISD::SETUGE: // flipped
1579 case ISD::SETULE:
1580 case ISD::SETLE:
1581 return M68k::COND_LS;
1582 case ISD::SETONE:
1583 case ISD::SETNE:
1584 return M68k::COND_NE;
1585 case ISD::SETOEQ:
1586 case ISD::SETUNE:
1587 return M68k::COND_INVALID;
1588 }
1589 }
1590
1591 // Convert (truncate (srl X, N) to i1) to (bt X, N)
LowerTruncateToBT(SDValue Op,ISD::CondCode CC,const SDLoc & DL,SelectionDAG & DAG)1592 static SDValue LowerTruncateToBT(SDValue Op, ISD::CondCode CC, const SDLoc &DL,
1593 SelectionDAG &DAG) {
1594
1595 assert(Op.getOpcode() == ISD::TRUNCATE && Op.getValueType() == MVT::i1 &&
1596 "Expected TRUNCATE to i1 node");
1597
1598 if (Op.getOperand(0).getOpcode() != ISD::SRL)
1599 return SDValue();
1600
1601 SDValue ShiftRight = Op.getOperand(0);
1602 return getBitTestCondition(ShiftRight.getOperand(0), ShiftRight.getOperand(1),
1603 CC, DL, DAG);
1604 }
1605
1606 /// \brief return true if \c Op has a use that doesn't just read flags.
hasNonFlagsUse(SDValue Op)1607 static bool hasNonFlagsUse(SDValue Op) {
1608 for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
1609 ++UI) {
1610 SDNode *User = *UI;
1611 unsigned UOpNo = UI.getOperandNo();
1612 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
1613 // Look pass truncate.
1614 UOpNo = User->use_begin().getOperandNo();
1615 User = *User->use_begin();
1616 }
1617
1618 if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
1619 !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
1620 return true;
1621 }
1622 return false;
1623 }
1624
EmitTest(SDValue Op,unsigned M68kCC,const SDLoc & DL,SelectionDAG & DAG) const1625 SDValue M68kTargetLowering::EmitTest(SDValue Op, unsigned M68kCC,
1626 const SDLoc &DL, SelectionDAG &DAG) const {
1627
1628 // CF and OF aren't always set the way we want. Determine which
1629 // of these we need.
1630 bool NeedCF = false;
1631 bool NeedOF = false;
1632 switch (M68kCC) {
1633 default:
1634 break;
1635 case M68k::COND_HI:
1636 case M68k::COND_CC:
1637 case M68k::COND_CS:
1638 case M68k::COND_LS:
1639 NeedCF = true;
1640 break;
1641 case M68k::COND_GT:
1642 case M68k::COND_GE:
1643 case M68k::COND_LT:
1644 case M68k::COND_LE:
1645 case M68k::COND_VS:
1646 case M68k::COND_VC: {
1647 // Check if we really need to set the
1648 // Overflow flag. If NoSignedWrap is present
1649 // that is not actually needed.
1650 switch (Op->getOpcode()) {
1651 case ISD::ADD:
1652 case ISD::SUB:
1653 case ISD::MUL:
1654 case ISD::SHL: {
1655 if (Op.getNode()->getFlags().hasNoSignedWrap())
1656 break;
1657 LLVM_FALLTHROUGH;
1658 }
1659 default:
1660 NeedOF = true;
1661 break;
1662 }
1663 break;
1664 }
1665 }
1666 // See if we can use the CCR value from the operand instead of
1667 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
1668 // we prove that the arithmetic won't overflow, we can't use OF or CF.
1669 if (Op.getResNo() != 0 || NeedOF || NeedCF) {
1670 // Emit a CMP with 0, which is the TEST pattern.
1671 return DAG.getNode(M68kISD::CMP, DL, MVT::i8,
1672 DAG.getConstant(0, DL, Op.getValueType()), Op);
1673 }
1674 unsigned Opcode = 0;
1675 unsigned NumOperands = 0;
1676
1677 // Truncate operations may prevent the merge of the SETCC instruction
1678 // and the arithmetic instruction before it. Attempt to truncate the operands
1679 // of the arithmetic instruction and use a reduced bit-width instruction.
1680 bool NeedTruncation = false;
1681 SDValue ArithOp = Op;
1682 if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
1683 SDValue Arith = Op->getOperand(0);
1684 // Both the trunc and the arithmetic op need to have one user each.
1685 if (Arith->hasOneUse())
1686 switch (Arith.getOpcode()) {
1687 default:
1688 break;
1689 case ISD::ADD:
1690 case ISD::SUB:
1691 case ISD::AND:
1692 case ISD::OR:
1693 case ISD::XOR: {
1694 NeedTruncation = true;
1695 ArithOp = Arith;
1696 }
1697 }
1698 }
1699
1700 // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
1701 // which may be the result of a CAST. We use the variable 'Op', which is the
1702 // non-casted variable when we check for possible users.
1703 switch (ArithOp.getOpcode()) {
1704 case ISD::ADD:
1705 Opcode = M68kISD::ADD;
1706 NumOperands = 2;
1707 break;
1708 case ISD::SHL:
1709 case ISD::SRL:
1710 // If we have a constant logical shift that's only used in a comparison
1711 // against zero turn it into an equivalent AND. This allows turning it into
1712 // a TEST instruction later.
1713 if ((M68kCC == M68k::COND_EQ || M68kCC == M68k::COND_NE) &&
1714 Op->hasOneUse() && isa<ConstantSDNode>(Op->getOperand(1)) &&
1715 !hasNonFlagsUse(Op)) {
1716 EVT VT = Op.getValueType();
1717 unsigned BitWidth = VT.getSizeInBits();
1718 unsigned ShAmt = Op->getConstantOperandVal(1);
1719 if (ShAmt >= BitWidth) // Avoid undefined shifts.
1720 break;
1721 APInt Mask = ArithOp.getOpcode() == ISD::SRL
1722 ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
1723 : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
1724 if (!Mask.isSignedIntN(32)) // Avoid large immediates.
1725 break;
1726 Op = DAG.getNode(ISD::AND, DL, VT, Op->getOperand(0),
1727 DAG.getConstant(Mask, DL, VT));
1728 }
1729 break;
1730
1731 case ISD::AND:
1732 // If the primary 'and' result isn't used, don't bother using
1733 // M68kISD::AND, because a TEST instruction will be better.
1734 if (!hasNonFlagsUse(Op)) {
1735 SDValue Op0 = ArithOp->getOperand(0);
1736 SDValue Op1 = ArithOp->getOperand(1);
1737 EVT VT = ArithOp.getValueType();
1738 bool IsAndn = isBitwiseNot(Op0) || isBitwiseNot(Op1);
1739 bool IsLegalAndnType = VT == MVT::i32 || VT == MVT::i64;
1740
1741 // But if we can combine this into an ANDN operation, then create an AND
1742 // now and allow it to be pattern matched into an ANDN.
1743 if (/*!Subtarget.hasBMI() ||*/ !IsAndn || !IsLegalAndnType)
1744 break;
1745 }
1746 LLVM_FALLTHROUGH;
1747 case ISD::SUB:
1748 case ISD::OR:
1749 case ISD::XOR:
1750 // Due to the ISEL shortcoming noted above, be conservative if this op is
1751 // likely to be selected as part of a load-modify-store instruction.
1752 for (const auto *U : Op.getNode()->uses())
1753 if (U->getOpcode() == ISD::STORE)
1754 goto default_case;
1755
1756 // Otherwise use a regular CCR-setting instruction.
1757 switch (ArithOp.getOpcode()) {
1758 default:
1759 llvm_unreachable("unexpected operator!");
1760 case ISD::SUB:
1761 Opcode = M68kISD::SUB;
1762 break;
1763 case ISD::XOR:
1764 Opcode = M68kISD::XOR;
1765 break;
1766 case ISD::AND:
1767 Opcode = M68kISD::AND;
1768 break;
1769 case ISD::OR:
1770 Opcode = M68kISD::OR;
1771 break;
1772 }
1773
1774 NumOperands = 2;
1775 break;
1776 case M68kISD::ADD:
1777 case M68kISD::SUB:
1778 case M68kISD::OR:
1779 case M68kISD::XOR:
1780 case M68kISD::AND:
1781 return SDValue(Op.getNode(), 1);
1782 default:
1783 default_case:
1784 break;
1785 }
1786
1787 // If we found that truncation is beneficial, perform the truncation and
1788 // update 'Op'.
1789 if (NeedTruncation) {
1790 EVT VT = Op.getValueType();
1791 SDValue WideVal = Op->getOperand(0);
1792 EVT WideVT = WideVal.getValueType();
1793 unsigned ConvertedOp = 0;
1794 // Use a target machine opcode to prevent further DAGCombine
1795 // optimizations that may separate the arithmetic operations
1796 // from the setcc node.
1797 switch (WideVal.getOpcode()) {
1798 default:
1799 break;
1800 case ISD::ADD:
1801 ConvertedOp = M68kISD::ADD;
1802 break;
1803 case ISD::SUB:
1804 ConvertedOp = M68kISD::SUB;
1805 break;
1806 case ISD::AND:
1807 ConvertedOp = M68kISD::AND;
1808 break;
1809 case ISD::OR:
1810 ConvertedOp = M68kISD::OR;
1811 break;
1812 case ISD::XOR:
1813 ConvertedOp = M68kISD::XOR;
1814 break;
1815 }
1816
1817 if (ConvertedOp) {
1818 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1819 if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
1820 SDValue V0 = DAG.getNode(ISD::TRUNCATE, DL, VT, WideVal.getOperand(0));
1821 SDValue V1 = DAG.getNode(ISD::TRUNCATE, DL, VT, WideVal.getOperand(1));
1822 Op = DAG.getNode(ConvertedOp, DL, VT, V0, V1);
1823 }
1824 }
1825 }
1826
1827 if (Opcode == 0) {
1828 // Emit a CMP with 0, which is the TEST pattern.
1829 return DAG.getNode(M68kISD::CMP, DL, MVT::i8,
1830 DAG.getConstant(0, DL, Op.getValueType()), Op);
1831 }
1832 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i8);
1833 SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
1834
1835 SDValue New = DAG.getNode(Opcode, DL, VTs, Ops);
1836 DAG.ReplaceAllUsesWith(Op, New);
1837 return SDValue(New.getNode(), 1);
1838 }
1839
1840 /// \brief Return true if the condition is an unsigned comparison operation.
isM68kCCUnsigned(unsigned M68kCC)1841 static bool isM68kCCUnsigned(unsigned M68kCC) {
1842 switch (M68kCC) {
1843 default:
1844 llvm_unreachable("Invalid integer condition!");
1845 case M68k::COND_EQ:
1846 case M68k::COND_NE:
1847 case M68k::COND_CS:
1848 case M68k::COND_HI:
1849 case M68k::COND_LS:
1850 case M68k::COND_CC:
1851 return true;
1852 case M68k::COND_GT:
1853 case M68k::COND_GE:
1854 case M68k::COND_LT:
1855 case M68k::COND_LE:
1856 return false;
1857 }
1858 }
1859
EmitCmp(SDValue Op0,SDValue Op1,unsigned M68kCC,const SDLoc & DL,SelectionDAG & DAG) const1860 SDValue M68kTargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned M68kCC,
1861 const SDLoc &DL, SelectionDAG &DAG) const {
1862 if (isNullConstant(Op1))
1863 return EmitTest(Op0, M68kCC, DL, DAG);
1864
1865 assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) &&
1866 "Unexpected comparison operation for MVT::i1 operands");
1867
1868 if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
1869 Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
1870 // Only promote the compare up to I32 if it is a 16 bit operation
1871 // with an immediate. 16 bit immediates are to be avoided.
1872 if ((Op0.getValueType() == MVT::i16 &&
1873 (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1))) &&
1874 !DAG.getMachineFunction().getFunction().hasMinSize()) {
1875 unsigned ExtendOp =
1876 isM68kCCUnsigned(M68kCC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
1877 Op0 = DAG.getNode(ExtendOp, DL, MVT::i32, Op0);
1878 Op1 = DAG.getNode(ExtendOp, DL, MVT::i32, Op1);
1879 }
1880 // Use SUB instead of CMP to enable CSE between SUB and CMP.
1881 SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i8);
1882 SDValue Sub = DAG.getNode(M68kISD::SUB, DL, VTs, Op0, Op1);
1883 return SDValue(Sub.getNode(), 1);
1884 }
1885 return DAG.getNode(M68kISD::CMP, DL, MVT::i8, Op0, Op1);
1886 }
1887
1888 /// Result of 'and' or 'trunc to i1' is compared against zero.
1889 /// Change to a BT node if possible.
LowerToBT(SDValue Op,ISD::CondCode CC,const SDLoc & DL,SelectionDAG & DAG) const1890 SDValue M68kTargetLowering::LowerToBT(SDValue Op, ISD::CondCode CC,
1891 const SDLoc &DL,
1892 SelectionDAG &DAG) const {
1893 if (Op.getOpcode() == ISD::AND)
1894 return LowerAndToBT(Op, CC, DL, DAG);
1895 if (Op.getOpcode() == ISD::TRUNCATE && Op.getValueType() == MVT::i1)
1896 return LowerTruncateToBT(Op, CC, DL, DAG);
1897 return SDValue();
1898 }
1899
LowerSETCC(SDValue Op,SelectionDAG & DAG) const1900 SDValue M68kTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1901 MVT VT = Op.getSimpleValueType();
1902 assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
1903
1904 SDValue Op0 = Op.getOperand(0);
1905 SDValue Op1 = Op.getOperand(1);
1906 SDLoc DL(Op);
1907 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1908
1909 // Optimize to BT if possible.
1910 // Lower (X & (1 << N)) == 0 to BT(X, N).
1911 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
1912 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
1913 // Lower (trunc (X >> N) to i1) to BT(X, N).
1914 if (Op0.hasOneUse() && isNullConstant(Op1) &&
1915 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1916 if (SDValue NewSetCC = LowerToBT(Op0, CC, DL, DAG)) {
1917 if (VT == MVT::i1)
1918 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, NewSetCC);
1919 return NewSetCC;
1920 }
1921 }
1922
1923 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
1924 // these.
1925 if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
1926 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1927
1928 // If the input is a setcc, then reuse the input setcc or use a new one with
1929 // the inverted condition.
1930 if (Op0.getOpcode() == M68kISD::SETCC) {
1931 M68k::CondCode CCode = (M68k::CondCode)Op0.getConstantOperandVal(0);
1932 bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
1933 if (!Invert)
1934 return Op0;
1935
1936 CCode = M68k::GetOppositeBranchCondition(CCode);
1937 SDValue SetCC =
1938 DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
1939 DAG.getConstant(CCode, DL, MVT::i8), Op0.getOperand(1));
1940 if (VT == MVT::i1)
1941 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
1942 return SetCC;
1943 }
1944 }
1945 if (Op0.getValueType() == MVT::i1 && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1946 if (isOneConstant(Op1)) {
1947 ISD::CondCode NewCC = ISD::GlobalISel::getSetCCInverse(CC, true);
1948 return DAG.getSetCC(DL, VT, Op0, DAG.getConstant(0, DL, MVT::i1), NewCC);
1949 }
1950 if (!isNullConstant(Op1)) {
1951 SDValue Xor = DAG.getNode(ISD::XOR, DL, MVT::i1, Op0, Op1);
1952 return DAG.getSetCC(DL, VT, Xor, DAG.getConstant(0, DL, MVT::i1), CC);
1953 }
1954 }
1955
1956 bool IsFP = Op1.getSimpleValueType().isFloatingPoint();
1957 unsigned M68kCC = TranslateM68kCC(CC, DL, IsFP, Op0, Op1, DAG);
1958 if (M68kCC == M68k::COND_INVALID)
1959 return SDValue();
1960
1961 SDValue CCR = EmitCmp(Op0, Op1, M68kCC, DL, DAG);
1962 return DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
1963 DAG.getConstant(M68kCC, DL, MVT::i8), CCR);
1964 }
1965
LowerSETCCCARRY(SDValue Op,SelectionDAG & DAG) const1966 SDValue M68kTargetLowering::LowerSETCCCARRY(SDValue Op,
1967 SelectionDAG &DAG) const {
1968 SDValue LHS = Op.getOperand(0);
1969 SDValue RHS = Op.getOperand(1);
1970 SDValue Carry = Op.getOperand(2);
1971 SDValue Cond = Op.getOperand(3);
1972 SDLoc DL(Op);
1973
1974 assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
1975 M68k::CondCode CC = TranslateIntegerM68kCC(cast<CondCodeSDNode>(Cond)->get());
1976
1977 EVT CarryVT = Carry.getValueType();
1978 APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits());
1979 Carry = DAG.getNode(M68kISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32), Carry,
1980 DAG.getConstant(NegOne, DL, CarryVT));
1981
1982 SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
1983 SDValue Cmp =
1984 DAG.getNode(M68kISD::SUBX, DL, VTs, LHS, RHS, Carry.getValue(1));
1985
1986 return DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
1987 DAG.getConstant(CC, DL, MVT::i8), Cmp.getValue(1));
1988 }
1989
1990 /// Return true if opcode is a M68k logical comparison.
isM68kLogicalCmp(SDValue Op)1991 static bool isM68kLogicalCmp(SDValue Op) {
1992 unsigned Opc = Op.getNode()->getOpcode();
1993 if (Opc == M68kISD::CMP)
1994 return true;
1995 if (Op.getResNo() == 1 &&
1996 (Opc == M68kISD::ADD || Opc == M68kISD::SUB || Opc == M68kISD::ADDX ||
1997 Opc == M68kISD::SUBX || Opc == M68kISD::SMUL || Opc == M68kISD::UMUL ||
1998 Opc == M68kISD::OR || Opc == M68kISD::XOR || Opc == M68kISD::AND))
1999 return true;
2000
2001 if (Op.getResNo() == 2 && Opc == M68kISD::UMUL)
2002 return true;
2003
2004 return false;
2005 }
2006
isTruncWithZeroHighBitsInput(SDValue V,SelectionDAG & DAG)2007 static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
2008 if (V.getOpcode() != ISD::TRUNCATE)
2009 return false;
2010
2011 SDValue VOp0 = V.getOperand(0);
2012 unsigned InBits = VOp0.getValueSizeInBits();
2013 unsigned Bits = V.getValueSizeInBits();
2014 return DAG.MaskedValueIsZero(VOp0,
2015 APInt::getHighBitsSet(InBits, InBits - Bits));
2016 }
2017
LowerSELECT(SDValue Op,SelectionDAG & DAG) const2018 SDValue M68kTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2019 bool addTest = true;
2020 SDValue Cond = Op.getOperand(0);
2021 SDValue Op1 = Op.getOperand(1);
2022 SDValue Op2 = Op.getOperand(2);
2023 SDLoc DL(Op);
2024 SDValue CC;
2025
2026 if (Cond.getOpcode() == ISD::SETCC) {
2027 if (SDValue NewCond = LowerSETCC(Cond, DAG))
2028 Cond = NewCond;
2029 }
2030
2031 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
2032 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
2033 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
2034 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
2035 if (Cond.getOpcode() == M68kISD::SETCC &&
2036 Cond.getOperand(1).getOpcode() == M68kISD::CMP &&
2037 isNullConstant(Cond.getOperand(1).getOperand(0))) {
2038 SDValue Cmp = Cond.getOperand(1);
2039
2040 unsigned CondCode =
2041 cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
2042
2043 if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
2044 (CondCode == M68k::COND_EQ || CondCode == M68k::COND_NE)) {
2045 SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
2046
2047 SDValue CmpOp0 = Cmp.getOperand(1);
2048 // Apply further optimizations for special cases
2049 // (select (x != 0), -1, 0) -> neg & sbb
2050 // (select (x == 0), 0, -1) -> neg & sbb
2051 if (isNullConstant(Y) &&
2052 (isAllOnesConstant(Op1) == (CondCode == M68k::COND_NE))) {
2053
2054 SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
2055
2056 SDValue Neg =
2057 DAG.getNode(M68kISD::SUB, DL, VTs,
2058 DAG.getConstant(0, DL, CmpOp0.getValueType()), CmpOp0);
2059
2060 SDValue Res = DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(),
2061 DAG.getConstant(M68k::COND_CS, DL, MVT::i8),
2062 SDValue(Neg.getNode(), 1));
2063 return Res;
2064 }
2065
2066 Cmp = DAG.getNode(M68kISD::CMP, DL, MVT::i8,
2067 DAG.getConstant(1, DL, CmpOp0.getValueType()), CmpOp0);
2068
2069 SDValue Res = // Res = 0 or -1.
2070 DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(),
2071 DAG.getConstant(M68k::COND_CS, DL, MVT::i8), Cmp);
2072
2073 if (isAllOnesConstant(Op1) != (CondCode == M68k::COND_EQ))
2074 Res = DAG.getNOT(DL, Res, Res.getValueType());
2075
2076 if (!isNullConstant(Op2))
2077 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
2078 return Res;
2079 }
2080 }
2081
2082 // Look past (and (setcc_carry (cmp ...)), 1).
2083 if (Cond.getOpcode() == ISD::AND &&
2084 Cond.getOperand(0).getOpcode() == M68kISD::SETCC_CARRY &&
2085 isOneConstant(Cond.getOperand(1)))
2086 Cond = Cond.getOperand(0);
2087
2088 // If condition flag is set by a M68kISD::CMP, then use it as the condition
2089 // setting operand in place of the M68kISD::SETCC.
2090 unsigned CondOpcode = Cond.getOpcode();
2091 if (CondOpcode == M68kISD::SETCC || CondOpcode == M68kISD::SETCC_CARRY) {
2092 CC = Cond.getOperand(0);
2093
2094 SDValue Cmp = Cond.getOperand(1);
2095 unsigned Opc = Cmp.getOpcode();
2096
2097 bool IllegalFPCMov = false;
2098
2099 if ((isM68kLogicalCmp(Cmp) && !IllegalFPCMov) || Opc == M68kISD::BT) {
2100 Cond = Cmp;
2101 addTest = false;
2102 }
2103 } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
2104 CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
2105 CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) {
2106 SDValue LHS = Cond.getOperand(0);
2107 SDValue RHS = Cond.getOperand(1);
2108 unsigned MxOpcode;
2109 unsigned MxCond;
2110 SDVTList VTs;
2111 switch (CondOpcode) {
2112 case ISD::UADDO:
2113 MxOpcode = M68kISD::ADD;
2114 MxCond = M68k::COND_CS;
2115 break;
2116 case ISD::SADDO:
2117 MxOpcode = M68kISD::ADD;
2118 MxCond = M68k::COND_VS;
2119 break;
2120 case ISD::USUBO:
2121 MxOpcode = M68kISD::SUB;
2122 MxCond = M68k::COND_CS;
2123 break;
2124 case ISD::SSUBO:
2125 MxOpcode = M68kISD::SUB;
2126 MxCond = M68k::COND_VS;
2127 break;
2128 case ISD::UMULO:
2129 MxOpcode = M68kISD::UMUL;
2130 MxCond = M68k::COND_VS;
2131 break;
2132 case ISD::SMULO:
2133 MxOpcode = M68kISD::SMUL;
2134 MxCond = M68k::COND_VS;
2135 break;
2136 default:
2137 llvm_unreachable("unexpected overflowing operator");
2138 }
2139 if (CondOpcode == ISD::UMULO)
2140 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), MVT::i32);
2141 else
2142 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
2143
2144 SDValue MxOp = DAG.getNode(MxOpcode, DL, VTs, LHS, RHS);
2145
2146 if (CondOpcode == ISD::UMULO)
2147 Cond = MxOp.getValue(2);
2148 else
2149 Cond = MxOp.getValue(1);
2150
2151 CC = DAG.getConstant(MxCond, DL, MVT::i8);
2152 addTest = false;
2153 }
2154
2155 if (addTest) {
2156 // Look past the truncate if the high bits are known zero.
2157 if (isTruncWithZeroHighBitsInput(Cond, DAG))
2158 Cond = Cond.getOperand(0);
2159
2160 // We know the result of AND is compared against zero. Try to match
2161 // it to BT.
2162 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
2163 if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG)) {
2164 CC = NewSetCC.getOperand(0);
2165 Cond = NewSetCC.getOperand(1);
2166 addTest = false;
2167 }
2168 }
2169 }
2170
2171 if (addTest) {
2172 CC = DAG.getConstant(M68k::COND_NE, DL, MVT::i8);
2173 Cond = EmitTest(Cond, M68k::COND_NE, DL, DAG);
2174 }
2175
2176 // a < b ? -1 : 0 -> RES = ~setcc_carry
2177 // a < b ? 0 : -1 -> RES = setcc_carry
2178 // a >= b ? -1 : 0 -> RES = setcc_carry
2179 // a >= b ? 0 : -1 -> RES = ~setcc_carry
2180 if (Cond.getOpcode() == M68kISD::SUB) {
2181 unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
2182
2183 if ((CondCode == M68k::COND_CC || CondCode == M68k::COND_CS) &&
2184 (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
2185 (isNullConstant(Op1) || isNullConstant(Op2))) {
2186 SDValue Res =
2187 DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(),
2188 DAG.getConstant(M68k::COND_CS, DL, MVT::i8), Cond);
2189 if (isAllOnesConstant(Op1) != (CondCode == M68k::COND_CS))
2190 return DAG.getNOT(DL, Res, Res.getValueType());
2191 return Res;
2192 }
2193 }
2194
2195 // M68k doesn't have an i8 cmov. If both operands are the result of a
2196 // truncate widen the cmov and push the truncate through. This avoids
2197 // introducing a new branch during isel and doesn't add any extensions.
2198 if (Op.getValueType() == MVT::i8 && Op1.getOpcode() == ISD::TRUNCATE &&
2199 Op2.getOpcode() == ISD::TRUNCATE) {
2200 SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
2201 if (T1.getValueType() == T2.getValueType() &&
2202 // Blacklist CopyFromReg to avoid partial register stalls.
2203 T1.getOpcode() != ISD::CopyFromReg &&
2204 T2.getOpcode() != ISD::CopyFromReg) {
2205 SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
2206 SDValue Cmov = DAG.getNode(M68kISD::CMOV, DL, VTs, T2, T1, CC, Cond);
2207 return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
2208 }
2209 }
2210
2211 // M68kISD::CMOV means set the result (which is operand 1) to the RHS if
2212 // condition is true.
2213 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
2214 SDValue Ops[] = {Op2, Op1, CC, Cond};
2215 return DAG.getNode(M68kISD::CMOV, DL, VTs, Ops);
2216 }
2217
2218 /// Return true if node is an ISD::AND or ISD::OR of two M68k::SETcc nodes
2219 /// each of which has no other use apart from the AND / OR.
isAndOrOfSetCCs(SDValue Op,unsigned & Opc)2220 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
2221 Opc = Op.getOpcode();
2222 if (Opc != ISD::OR && Opc != ISD::AND)
2223 return false;
2224 return (M68k::IsSETCC(Op.getOperand(0).getOpcode()) &&
2225 Op.getOperand(0).hasOneUse() &&
2226 M68k::IsSETCC(Op.getOperand(1).getOpcode()) &&
2227 Op.getOperand(1).hasOneUse());
2228 }
2229
2230 /// Return true if node is an ISD::XOR of a M68kISD::SETCC and 1 and that the
2231 /// SETCC node has a single use.
isXor1OfSetCC(SDValue Op)2232 static bool isXor1OfSetCC(SDValue Op) {
2233 if (Op.getOpcode() != ISD::XOR)
2234 return false;
2235 if (isOneConstant(Op.getOperand(1)))
2236 return Op.getOperand(0).getOpcode() == M68kISD::SETCC &&
2237 Op.getOperand(0).hasOneUse();
2238 return false;
2239 }
2240
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const2241 SDValue M68kTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2242 bool AddTest = true;
2243 SDValue Chain = Op.getOperand(0);
2244 SDValue Cond = Op.getOperand(1);
2245 SDValue Dest = Op.getOperand(2);
2246 SDLoc DL(Op);
2247 SDValue CC;
2248 bool Inverted = false;
2249
2250 if (Cond.getOpcode() == ISD::SETCC) {
2251 // Check for setcc([su]{add,sub}o == 0).
2252 if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
2253 isNullConstant(Cond.getOperand(1)) &&
2254 Cond.getOperand(0).getResNo() == 1 &&
2255 (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
2256 Cond.getOperand(0).getOpcode() == ISD::UADDO ||
2257 Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
2258 Cond.getOperand(0).getOpcode() == ISD::USUBO)) {
2259 Inverted = true;
2260 Cond = Cond.getOperand(0);
2261 } else {
2262 if (SDValue NewCond = LowerSETCC(Cond, DAG))
2263 Cond = NewCond;
2264 }
2265 }
2266
2267 // Look pass (and (setcc_carry (cmp ...)), 1).
2268 if (Cond.getOpcode() == ISD::AND &&
2269 Cond.getOperand(0).getOpcode() == M68kISD::SETCC_CARRY &&
2270 isOneConstant(Cond.getOperand(1)))
2271 Cond = Cond.getOperand(0);
2272
2273 // If condition flag is set by a M68kISD::CMP, then use it as the condition
2274 // setting operand in place of the M68kISD::SETCC.
2275 unsigned CondOpcode = Cond.getOpcode();
2276 if (CondOpcode == M68kISD::SETCC || CondOpcode == M68kISD::SETCC_CARRY) {
2277 CC = Cond.getOperand(0);
2278
2279 SDValue Cmp = Cond.getOperand(1);
2280 unsigned Opc = Cmp.getOpcode();
2281
2282 if (isM68kLogicalCmp(Cmp) || Opc == M68kISD::BT) {
2283 Cond = Cmp;
2284 AddTest = false;
2285 } else {
2286 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
2287 default:
2288 break;
2289 case M68k::COND_VS:
2290 case M68k::COND_CS:
2291 // These can only come from an arithmetic instruction with overflow,
2292 // e.g. SADDO, UADDO.
2293 Cond = Cond.getNode()->getOperand(1);
2294 AddTest = false;
2295 break;
2296 }
2297 }
2298 }
2299 CondOpcode = Cond.getOpcode();
2300 if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
2301 CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO) {
2302 SDValue LHS = Cond.getOperand(0);
2303 SDValue RHS = Cond.getOperand(1);
2304 unsigned MxOpcode;
2305 unsigned MxCond;
2306 SDVTList VTs;
2307 // Keep this in sync with LowerXALUO, otherwise we might create redundant
2308 // instructions that can't be removed afterwards (i.e. M68kISD::ADD and
2309 // M68kISD::INC).
2310 switch (CondOpcode) {
2311 case ISD::UADDO:
2312 MxOpcode = M68kISD::ADD;
2313 MxCond = M68k::COND_CS;
2314 break;
2315 case ISD::SADDO:
2316 MxOpcode = M68kISD::ADD;
2317 MxCond = M68k::COND_VS;
2318 break;
2319 case ISD::USUBO:
2320 MxOpcode = M68kISD::SUB;
2321 MxCond = M68k::COND_CS;
2322 break;
2323 case ISD::SSUBO:
2324 MxOpcode = M68kISD::SUB;
2325 MxCond = M68k::COND_VS;
2326 break;
2327 case ISD::UMULO:
2328 MxOpcode = M68kISD::UMUL;
2329 MxCond = M68k::COND_VS;
2330 break;
2331 case ISD::SMULO:
2332 MxOpcode = M68kISD::SMUL;
2333 MxCond = M68k::COND_VS;
2334 break;
2335 default:
2336 llvm_unreachable("unexpected overflowing operator");
2337 }
2338
2339 if (Inverted)
2340 MxCond = M68k::GetOppositeBranchCondition((M68k::CondCode)MxCond);
2341
2342 if (CondOpcode == ISD::UMULO)
2343 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), MVT::i8);
2344 else
2345 VTs = DAG.getVTList(LHS.getValueType(), MVT::i8);
2346
2347 SDValue MxOp = DAG.getNode(MxOpcode, DL, VTs, LHS, RHS);
2348
2349 if (CondOpcode == ISD::UMULO)
2350 Cond = MxOp.getValue(2);
2351 else
2352 Cond = MxOp.getValue(1);
2353
2354 CC = DAG.getConstant(MxCond, DL, MVT::i8);
2355 AddTest = false;
2356 } else {
2357 unsigned CondOpc;
2358 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
2359 SDValue Cmp = Cond.getOperand(0).getOperand(1);
2360 if (CondOpc == ISD::OR) {
2361 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
2362 // two branches instead of an explicit OR instruction with a
2363 // separate test.
2364 if (Cmp == Cond.getOperand(1).getOperand(1) && isM68kLogicalCmp(Cmp)) {
2365 CC = Cond.getOperand(0).getOperand(0);
2366 Chain = DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain,
2367 Dest, CC, Cmp);
2368 CC = Cond.getOperand(1).getOperand(0);
2369 Cond = Cmp;
2370 AddTest = false;
2371 }
2372 } else { // ISD::AND
2373 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
2374 // two branches instead of an explicit AND instruction with a
2375 // separate test. However, we only do this if this block doesn't
2376 // have a fall-through edge, because this requires an explicit
2377 // jmp when the condition is false.
2378 if (Cmp == Cond.getOperand(1).getOperand(1) && isM68kLogicalCmp(Cmp) &&
2379 Op.getNode()->hasOneUse()) {
2380 M68k::CondCode CCode =
2381 (M68k::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
2382 CCode = M68k::GetOppositeBranchCondition(CCode);
2383 CC = DAG.getConstant(CCode, DL, MVT::i8);
2384 SDNode *User = *Op.getNode()->use_begin();
2385 // Look for an unconditional branch following this conditional branch.
2386 // We need this because we need to reverse the successors in order
2387 // to implement FCMP_OEQ.
2388 if (User->getOpcode() == ISD::BR) {
2389 SDValue FalseBB = User->getOperand(1);
2390 SDNode *NewBR =
2391 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
2392 assert(NewBR == User);
2393 (void)NewBR;
2394 Dest = FalseBB;
2395
2396 Chain = DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain,
2397 Dest, CC, Cmp);
2398 M68k::CondCode CCode =
2399 (M68k::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
2400 CCode = M68k::GetOppositeBranchCondition(CCode);
2401 CC = DAG.getConstant(CCode, DL, MVT::i8);
2402 Cond = Cmp;
2403 AddTest = false;
2404 }
2405 }
2406 }
2407 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
2408 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
2409 // It should be transformed during dag combiner except when the condition
2410 // is set by a arithmetics with overflow node.
2411 M68k::CondCode CCode =
2412 (M68k::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
2413 CCode = M68k::GetOppositeBranchCondition(CCode);
2414 CC = DAG.getConstant(CCode, DL, MVT::i8);
2415 Cond = Cond.getOperand(0).getOperand(1);
2416 AddTest = false;
2417 }
2418 }
2419
2420 if (AddTest) {
2421 // Look pass the truncate if the high bits are known zero.
2422 if (isTruncWithZeroHighBitsInput(Cond, DAG))
2423 Cond = Cond.getOperand(0);
2424
2425 // We know the result is compared against zero. Try to match it to BT.
2426 if (Cond.hasOneUse()) {
2427 if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG)) {
2428 CC = NewSetCC.getOperand(0);
2429 Cond = NewSetCC.getOperand(1);
2430 AddTest = false;
2431 }
2432 }
2433 }
2434
2435 if (AddTest) {
2436 M68k::CondCode MxCond = Inverted ? M68k::COND_EQ : M68k::COND_NE;
2437 CC = DAG.getConstant(MxCond, DL, MVT::i8);
2438 Cond = EmitTest(Cond, MxCond, DL, DAG);
2439 }
2440 return DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain, Dest, CC,
2441 Cond);
2442 }
2443
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG) const2444 SDValue M68kTargetLowering::LowerADDC_ADDE_SUBC_SUBE(SDValue Op,
2445 SelectionDAG &DAG) const {
2446 MVT VT = Op.getNode()->getSimpleValueType(0);
2447
2448 // Let legalize expand this if it isn't a legal type yet.
2449 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2450 return SDValue();
2451
2452 SDVTList VTs = DAG.getVTList(VT, MVT::i8);
2453
2454 unsigned Opc;
2455 bool ExtraOp = false;
2456 switch (Op.getOpcode()) {
2457 default:
2458 llvm_unreachable("Invalid code");
2459 case ISD::ADDC:
2460 Opc = M68kISD::ADD;
2461 break;
2462 case ISD::ADDE:
2463 Opc = M68kISD::ADDX;
2464 ExtraOp = true;
2465 break;
2466 case ISD::SUBC:
2467 Opc = M68kISD::SUB;
2468 break;
2469 case ISD::SUBE:
2470 Opc = M68kISD::SUBX;
2471 ExtraOp = true;
2472 break;
2473 }
2474
2475 if (!ExtraOp)
2476 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
2477 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
2478 Op.getOperand(2));
2479 }
2480
2481 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2482 // their target countpart wrapped in the M68kISD::Wrapper node. Suppose N is
2483 // one of the above mentioned nodes. It has to be wrapped because otherwise
2484 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2485 // be used to form addressing mode. These wrapped nodes will be selected
2486 // into MOV32ri.
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const2487 SDValue M68kTargetLowering::LowerConstantPool(SDValue Op,
2488 SelectionDAG &DAG) const {
2489 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2490
2491 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2492 // global base reg.
2493 unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
2494
2495 unsigned WrapperKind = M68kISD::Wrapper;
2496 if (M68kII::isPCRelGlobalReference(OpFlag)) {
2497 WrapperKind = M68kISD::WrapperPC;
2498 }
2499
2500 MVT PtrVT = getPointerTy(DAG.getDataLayout());
2501 SDValue Result = DAG.getTargetConstantPool(
2502 CP->getConstVal(), PtrVT, CP->getAlign(), CP->getOffset(), OpFlag);
2503
2504 SDLoc DL(CP);
2505 Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
2506
2507 // With PIC, the address is actually $g + Offset.
2508 if (M68kII::isGlobalRelativeToPICBase(OpFlag)) {
2509 Result = DAG.getNode(ISD::ADD, DL, PtrVT,
2510 DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT),
2511 Result);
2512 }
2513
2514 return Result;
2515 }
2516
LowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const2517 SDValue M68kTargetLowering::LowerExternalSymbol(SDValue Op,
2518 SelectionDAG &DAG) const {
2519 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
2520
2521 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2522 // global base reg.
2523 const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
2524 unsigned char OpFlag = Subtarget.classifyExternalReference(*Mod);
2525
2526 unsigned WrapperKind = M68kISD::Wrapper;
2527 if (M68kII::isPCRelGlobalReference(OpFlag)) {
2528 WrapperKind = M68kISD::WrapperPC;
2529 }
2530
2531 auto PtrVT = getPointerTy(DAG.getDataLayout());
2532 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag);
2533
2534 SDLoc DL(Op);
2535 Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
2536
2537 // With PIC, the address is actually $g + Offset.
2538 if (M68kII::isGlobalRelativeToPICBase(OpFlag)) {
2539 Result = DAG.getNode(ISD::ADD, DL, PtrVT,
2540 DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT),
2541 Result);
2542 }
2543
2544 // For symbols that require a load from a stub to get the address, emit the
2545 // load.
2546 if (M68kII::isGlobalStubReference(OpFlag)) {
2547 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2548 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2549 }
2550
2551 return Result;
2552 }
2553
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2554 SDValue M68kTargetLowering::LowerBlockAddress(SDValue Op,
2555 SelectionDAG &DAG) const {
2556 unsigned char OpFlags = Subtarget.classifyBlockAddressReference();
2557 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2558 int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
2559 SDLoc DL(Op);
2560 auto PtrVT = getPointerTy(DAG.getDataLayout());
2561
2562 // Create the TargetBlockAddressAddress node.
2563 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
2564
2565 if (M68kII::isPCRelBlockReference(OpFlags)) {
2566 Result = DAG.getNode(M68kISD::WrapperPC, DL, PtrVT, Result);
2567 } else {
2568 Result = DAG.getNode(M68kISD::Wrapper, DL, PtrVT, Result);
2569 }
2570
2571 // With PIC, the address is actually $g + Offset.
2572 if (M68kII::isGlobalRelativeToPICBase(OpFlags)) {
2573 Result =
2574 DAG.getNode(ISD::ADD, DL, PtrVT,
2575 DAG.getNode(M68kISD::GLOBAL_BASE_REG, DL, PtrVT), Result);
2576 }
2577
2578 return Result;
2579 }
2580
LowerGlobalAddress(const GlobalValue * GV,const SDLoc & DL,int64_t Offset,SelectionDAG & DAG) const2581 SDValue M68kTargetLowering::LowerGlobalAddress(const GlobalValue *GV,
2582 const SDLoc &DL, int64_t Offset,
2583 SelectionDAG &DAG) const {
2584 unsigned char OpFlags = Subtarget.classifyGlobalReference(GV);
2585 auto PtrVT = getPointerTy(DAG.getDataLayout());
2586
2587 // Create the TargetGlobalAddress node, folding in the constant
2588 // offset if it is legal.
2589 SDValue Result;
2590 if (M68kII::isDirectGlobalReference(OpFlags)) {
2591 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
2592 Offset = 0;
2593 } else {
2594 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2595 }
2596
2597 if (M68kII::isPCRelGlobalReference(OpFlags))
2598 Result = DAG.getNode(M68kISD::WrapperPC, DL, PtrVT, Result);
2599 else
2600 Result = DAG.getNode(M68kISD::Wrapper, DL, PtrVT, Result);
2601
2602 // With PIC, the address is actually $g + Offset.
2603 if (M68kII::isGlobalRelativeToPICBase(OpFlags)) {
2604 Result =
2605 DAG.getNode(ISD::ADD, DL, PtrVT,
2606 DAG.getNode(M68kISD::GLOBAL_BASE_REG, DL, PtrVT), Result);
2607 }
2608
2609 // For globals that require a load from a stub to get the address, emit the
2610 // load.
2611 if (M68kII::isGlobalStubReference(OpFlags)) {
2612 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2613 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2614 }
2615
2616 // If there was a non-zero offset that we didn't fold, create an explicit
2617 // addition for it.
2618 if (Offset != 0) {
2619 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2620 DAG.getConstant(Offset, DL, PtrVT));
2621 }
2622
2623 return Result;
2624 }
2625
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const2626 SDValue M68kTargetLowering::LowerGlobalAddress(SDValue Op,
2627 SelectionDAG &DAG) const {
2628 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2629 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
2630 return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
2631 }
2632
2633 //===----------------------------------------------------------------------===//
2634 // Custom Lower Jump Table
2635 //===----------------------------------------------------------------------===//
2636
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const2637 SDValue M68kTargetLowering::LowerJumpTable(SDValue Op,
2638 SelectionDAG &DAG) const {
2639 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2640
2641 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2642 // global base reg.
2643 unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
2644
2645 unsigned WrapperKind = M68kISD::Wrapper;
2646 if (M68kII::isPCRelGlobalReference(OpFlag)) {
2647 WrapperKind = M68kISD::WrapperPC;
2648 }
2649
2650 auto PtrVT = getPointerTy(DAG.getDataLayout());
2651 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
2652 SDLoc DL(JT);
2653 Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
2654
2655 // With PIC, the address is actually $g + Offset.
2656 if (M68kII::isGlobalRelativeToPICBase(OpFlag)) {
2657 Result = DAG.getNode(ISD::ADD, DL, PtrVT,
2658 DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT),
2659 Result);
2660 }
2661
2662 return Result;
2663 }
2664
getJumpTableEncoding() const2665 unsigned M68kTargetLowering::getJumpTableEncoding() const {
2666 return Subtarget.getJumpTableEncoding();
2667 }
2668
LowerCustomJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned uid,MCContext & Ctx) const2669 const MCExpr *M68kTargetLowering::LowerCustomJumpTableEntry(
2670 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
2671 unsigned uid, MCContext &Ctx) const {
2672 return MCSymbolRefExpr::create(MBB->getSymbol(), MCSymbolRefExpr::VK_GOTOFF,
2673 Ctx);
2674 }
2675
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const2676 SDValue M68kTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2677 SelectionDAG &DAG) const {
2678 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_Custom32)
2679 return DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(),
2680 getPointerTy(DAG.getDataLayout()));
2681
2682 // MachineJumpTableInfo::EK_LabelDifference32 entry
2683 return Table;
2684 }
2685
2686 // NOTE This only used for MachineJumpTableInfo::EK_LabelDifference32 entries
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const2687 const MCExpr *M68kTargetLowering::getPICJumpTableRelocBaseExpr(
2688 const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const {
2689 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
2690 }
2691
2692 M68kTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const2693 M68kTargetLowering::getConstraintType(StringRef Constraint) const {
2694 if (Constraint.size() > 0) {
2695 switch (Constraint[0]) {
2696 case 'a':
2697 case 'd':
2698 return C_RegisterClass;
2699 case 'I':
2700 case 'J':
2701 case 'K':
2702 case 'L':
2703 case 'M':
2704 case 'N':
2705 case 'O':
2706 case 'P':
2707 return C_Immediate;
2708 case 'C':
2709 if (Constraint.size() == 2)
2710 switch (Constraint[1]) {
2711 case '0':
2712 case 'i':
2713 case 'j':
2714 return C_Immediate;
2715 default:
2716 break;
2717 }
2718 break;
2719 default:
2720 break;
2721 }
2722 }
2723
2724 return TargetLowering::getConstraintType(Constraint);
2725 }
2726
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2727 void M68kTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2728 std::string &Constraint,
2729 std::vector<SDValue> &Ops,
2730 SelectionDAG &DAG) const {
2731 SDValue Result;
2732
2733 if (Constraint.size() == 1) {
2734 // Constant constraints
2735 switch (Constraint[0]) {
2736 case 'I':
2737 case 'J':
2738 case 'K':
2739 case 'L':
2740 case 'M':
2741 case 'N':
2742 case 'O':
2743 case 'P': {
2744 auto *C = dyn_cast<ConstantSDNode>(Op);
2745 if (!C)
2746 return;
2747
2748 int64_t Val = C->getSExtValue();
2749 switch (Constraint[0]) {
2750 case 'I': // constant integer in the range [1,8]
2751 if (Val > 0 && Val <= 8)
2752 break;
2753 return;
2754 case 'J': // constant signed 16-bit integer
2755 if (isInt<16>(Val))
2756 break;
2757 return;
2758 case 'K': // constant that is NOT in the range of [-0x80, 0x80)
2759 if (Val < -0x80 || Val >= 0x80)
2760 break;
2761 return;
2762 case 'L': // constant integer in the range [-8,-1]
2763 if (Val < 0 && Val >= -8)
2764 break;
2765 return;
2766 case 'M': // constant that is NOT in the range of [-0x100, 0x100]
2767 if (Val < -0x100 || Val >= 0x100)
2768 break;
2769 return;
2770 case 'N': // constant integer in the range [24,31]
2771 if (Val >= 24 && Val <= 31)
2772 break;
2773 return;
2774 case 'O': // constant integer 16
2775 if (Val == 16)
2776 break;
2777 return;
2778 case 'P': // constant integer in the range [8,15]
2779 if (Val >= 8 && Val <= 15)
2780 break;
2781 return;
2782 default:
2783 llvm_unreachable("Unhandled constant constraint");
2784 }
2785
2786 Result = DAG.getTargetConstant(Val, SDLoc(Op), Op.getValueType());
2787 break;
2788 }
2789 default:
2790 break;
2791 }
2792 }
2793
2794 if (Constraint.size() == 2) {
2795 switch (Constraint[0]) {
2796 case 'C':
2797 // Constant constraints start with 'C'
2798 switch (Constraint[1]) {
2799 case '0':
2800 case 'i':
2801 case 'j': {
2802 auto *C = dyn_cast<ConstantSDNode>(Op);
2803 if (!C)
2804 break;
2805
2806 int64_t Val = C->getSExtValue();
2807 switch (Constraint[1]) {
2808 case '0': // constant integer 0
2809 if (!Val)
2810 break;
2811 return;
2812 case 'i': // constant integer
2813 break;
2814 case 'j': // integer constant that doesn't fit in 16 bits
2815 if (!isInt<16>(C->getSExtValue()))
2816 break;
2817 return;
2818 default:
2819 llvm_unreachable("Unhandled constant constraint");
2820 }
2821
2822 Result = DAG.getTargetConstant(Val, SDLoc(Op), Op.getValueType());
2823 break;
2824 }
2825 default:
2826 break;
2827 }
2828 break;
2829 default:
2830 break;
2831 }
2832 }
2833
2834 if (Result.getNode()) {
2835 Ops.push_back(Result);
2836 return;
2837 }
2838
2839 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2840 }
2841
2842 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const2843 M68kTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2844 StringRef Constraint,
2845 MVT VT) const {
2846 if (Constraint.size() == 1) {
2847 switch (Constraint[0]) {
2848 case 'r':
2849 case 'd':
2850 switch (VT.SimpleTy) {
2851 case MVT::i8:
2852 return std::make_pair(0U, &M68k::DR8RegClass);
2853 case MVT::i16:
2854 return std::make_pair(0U, &M68k::DR16RegClass);
2855 case MVT::i32:
2856 return std::make_pair(0U, &M68k::DR32RegClass);
2857 default:
2858 break;
2859 }
2860 break;
2861 case 'a':
2862 switch (VT.SimpleTy) {
2863 case MVT::i16:
2864 return std::make_pair(0U, &M68k::AR16RegClass);
2865 case MVT::i32:
2866 return std::make_pair(0U, &M68k::AR32RegClass);
2867 default:
2868 break;
2869 }
2870 break;
2871 default:
2872 break;
2873 }
2874 }
2875
2876 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2877 }
2878
2879 /// Determines whether the callee is required to pop its own arguments.
2880 /// Callee pop is necessary to support tail calls.
isCalleePop(CallingConv::ID CallingConv,bool IsVarArg,bool GuaranteeTCO)2881 bool M68k::isCalleePop(CallingConv::ID CallingConv, bool IsVarArg,
2882 bool GuaranteeTCO) {
2883 return false;
2884 }
2885
2886 // Return true if it is OK for this CMOV pseudo-opcode to be cascaded
2887 // together with other CMOV pseudo-opcodes into a single basic-block with
2888 // conditional jump around it.
isCMOVPseudo(MachineInstr & MI)2889 static bool isCMOVPseudo(MachineInstr &MI) {
2890 switch (MI.getOpcode()) {
2891 case M68k::CMOV8d:
2892 case M68k::CMOV16d:
2893 case M68k::CMOV32r:
2894 return true;
2895
2896 default:
2897 return false;
2898 }
2899 }
2900
2901 // The CCR operand of SelectItr might be missing a kill marker
2902 // because there were multiple uses of CCR, and ISel didn't know
2903 // which to mark. Figure out whether SelectItr should have had a
2904 // kill marker, and set it if it should. Returns the correct kill
2905 // marker value.
checkAndUpdateCCRKill(MachineBasicBlock::iterator SelectItr,MachineBasicBlock * BB,const TargetRegisterInfo * TRI)2906 static bool checkAndUpdateCCRKill(MachineBasicBlock::iterator SelectItr,
2907 MachineBasicBlock *BB,
2908 const TargetRegisterInfo *TRI) {
2909 // Scan forward through BB for a use/def of CCR.
2910 MachineBasicBlock::iterator miI(std::next(SelectItr));
2911 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
2912 const MachineInstr &mi = *miI;
2913 if (mi.readsRegister(M68k::CCR))
2914 return false;
2915 if (mi.definesRegister(M68k::CCR))
2916 break; // Should have kill-flag - update below.
2917 }
2918
2919 // If we hit the end of the block, check whether CCR is live into a
2920 // successor.
2921 if (miI == BB->end())
2922 for (const auto *SBB : BB->successors())
2923 if (SBB->isLiveIn(M68k::CCR))
2924 return false;
2925
2926 // We found a def, or hit the end of the basic block and CCR wasn't live
2927 // out. SelectMI should have a kill flag on CCR.
2928 SelectItr->addRegisterKilled(M68k::CCR, TRI);
2929 return true;
2930 }
2931
2932 MachineBasicBlock *
EmitLoweredSelect(MachineInstr & MI,MachineBasicBlock * MBB) const2933 M68kTargetLowering::EmitLoweredSelect(MachineInstr &MI,
2934 MachineBasicBlock *MBB) const {
2935 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2936 DebugLoc DL = MI.getDebugLoc();
2937
2938 // To "insert" a SELECT_CC instruction, we actually have to insert the
2939 // diamond control-flow pattern. The incoming instruction knows the
2940 // destination vreg to set, the condition code register to branch on, the
2941 // true/false values to select between, and a branch opcode to use.
2942 const BasicBlock *BB = MBB->getBasicBlock();
2943 MachineFunction::iterator It = ++MBB->getIterator();
2944
2945 // ThisMBB:
2946 // ...
2947 // TrueVal = ...
2948 // cmp ccX, r1, r2
2949 // bcc Copy1MBB
2950 // fallthrough --> Copy0MBB
2951 MachineBasicBlock *ThisMBB = MBB;
2952 MachineFunction *F = MBB->getParent();
2953
2954 // This code lowers all pseudo-CMOV instructions. Generally it lowers these
2955 // as described above, by inserting a MBB, and then making a PHI at the join
2956 // point to select the true and false operands of the CMOV in the PHI.
2957 //
2958 // The code also handles two different cases of multiple CMOV opcodes
2959 // in a row.
2960 //
2961 // Case 1:
2962 // In this case, there are multiple CMOVs in a row, all which are based on
2963 // the same condition setting (or the exact opposite condition setting).
2964 // In this case we can lower all the CMOVs using a single inserted MBB, and
2965 // then make a number of PHIs at the join point to model the CMOVs. The only
2966 // trickiness here, is that in a case like:
2967 //
2968 // t2 = CMOV cond1 t1, f1
2969 // t3 = CMOV cond1 t2, f2
2970 //
2971 // when rewriting this into PHIs, we have to perform some renaming on the
2972 // temps since you cannot have a PHI operand refer to a PHI result earlier
2973 // in the same block. The "simple" but wrong lowering would be:
2974 //
2975 // t2 = PHI t1(BB1), f1(BB2)
2976 // t3 = PHI t2(BB1), f2(BB2)
2977 //
2978 // but clearly t2 is not defined in BB1, so that is incorrect. The proper
2979 // renaming is to note that on the path through BB1, t2 is really just a
2980 // copy of t1, and do that renaming, properly generating:
2981 //
2982 // t2 = PHI t1(BB1), f1(BB2)
2983 // t3 = PHI t1(BB1), f2(BB2)
2984 //
2985 // Case 2, we lower cascaded CMOVs such as
2986 //
2987 // (CMOV (CMOV F, T, cc1), T, cc2)
2988 //
2989 // to two successives branches.
2990 MachineInstr *CascadedCMOV = nullptr;
2991 MachineInstr *LastCMOV = &MI;
2992 M68k::CondCode CC = M68k::CondCode(MI.getOperand(3).getImm());
2993 M68k::CondCode OppCC = M68k::GetOppositeBranchCondition(CC);
2994 MachineBasicBlock::iterator NextMIIt =
2995 std::next(MachineBasicBlock::iterator(MI));
2996
2997 // Check for case 1, where there are multiple CMOVs with the same condition
2998 // first. Of the two cases of multiple CMOV lowerings, case 1 reduces the
2999 // number of jumps the most.
3000
3001 if (isCMOVPseudo(MI)) {
3002 // See if we have a string of CMOVS with the same condition.
3003 while (NextMIIt != MBB->end() && isCMOVPseudo(*NextMIIt) &&
3004 (NextMIIt->getOperand(3).getImm() == CC ||
3005 NextMIIt->getOperand(3).getImm() == OppCC)) {
3006 LastCMOV = &*NextMIIt;
3007 ++NextMIIt;
3008 }
3009 }
3010
3011 // This checks for case 2, but only do this if we didn't already find
3012 // case 1, as indicated by LastCMOV == MI.
3013 if (LastCMOV == &MI && NextMIIt != MBB->end() &&
3014 NextMIIt->getOpcode() == MI.getOpcode() &&
3015 NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() &&
3016 NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() &&
3017 NextMIIt->getOperand(1).isKill()) {
3018 CascadedCMOV = &*NextMIIt;
3019 }
3020
3021 MachineBasicBlock *Jcc1MBB = nullptr;
3022
3023 // If we have a cascaded CMOV, we lower it to two successive branches to
3024 // the same block. CCR is used by both, so mark it as live in the second.
3025 if (CascadedCMOV) {
3026 Jcc1MBB = F->CreateMachineBasicBlock(BB);
3027 F->insert(It, Jcc1MBB);
3028 Jcc1MBB->addLiveIn(M68k::CCR);
3029 }
3030
3031 MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(BB);
3032 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
3033 F->insert(It, Copy0MBB);
3034 F->insert(It, SinkMBB);
3035
3036 // If the CCR register isn't dead in the terminator, then claim that it's
3037 // live into the sink and copy blocks.
3038 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3039
3040 MachineInstr *LastCCRSUser = CascadedCMOV ? CascadedCMOV : LastCMOV;
3041 if (!LastCCRSUser->killsRegister(M68k::CCR) &&
3042 !checkAndUpdateCCRKill(LastCCRSUser, MBB, TRI)) {
3043 Copy0MBB->addLiveIn(M68k::CCR);
3044 SinkMBB->addLiveIn(M68k::CCR);
3045 }
3046
3047 // Transfer the remainder of MBB and its successor edges to SinkMBB.
3048 SinkMBB->splice(SinkMBB->begin(), MBB,
3049 std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
3050 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
3051
3052 // Add the true and fallthrough blocks as its successors.
3053 if (CascadedCMOV) {
3054 // The fallthrough block may be Jcc1MBB, if we have a cascaded CMOV.
3055 MBB->addSuccessor(Jcc1MBB);
3056
3057 // In that case, Jcc1MBB will itself fallthrough the Copy0MBB, and
3058 // jump to the SinkMBB.
3059 Jcc1MBB->addSuccessor(Copy0MBB);
3060 Jcc1MBB->addSuccessor(SinkMBB);
3061 } else {
3062 MBB->addSuccessor(Copy0MBB);
3063 }
3064
3065 // The true block target of the first (or only) branch is always SinkMBB.
3066 MBB->addSuccessor(SinkMBB);
3067
3068 // Create the conditional branch instruction.
3069 unsigned Opc = M68k::GetCondBranchFromCond(CC);
3070 BuildMI(MBB, DL, TII->get(Opc)).addMBB(SinkMBB);
3071
3072 if (CascadedCMOV) {
3073 unsigned Opc2 = M68k::GetCondBranchFromCond(
3074 (M68k::CondCode)CascadedCMOV->getOperand(3).getImm());
3075 BuildMI(Jcc1MBB, DL, TII->get(Opc2)).addMBB(SinkMBB);
3076 }
3077
3078 // Copy0MBB:
3079 // %FalseValue = ...
3080 // # fallthrough to SinkMBB
3081 Copy0MBB->addSuccessor(SinkMBB);
3082
3083 // SinkMBB:
3084 // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
3085 // ...
3086 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
3087 MachineBasicBlock::iterator MIItEnd =
3088 std::next(MachineBasicBlock::iterator(LastCMOV));
3089 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
3090 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
3091 MachineInstrBuilder MIB;
3092
3093 // As we are creating the PHIs, we have to be careful if there is more than
3094 // one. Later CMOVs may reference the results of earlier CMOVs, but later
3095 // PHIs have to reference the individual true/false inputs from earlier PHIs.
3096 // That also means that PHI construction must work forward from earlier to
3097 // later, and that the code must maintain a mapping from earlier PHI's
3098 // destination registers, and the registers that went into the PHI.
3099
3100 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
3101 unsigned DestReg = MIIt->getOperand(0).getReg();
3102 unsigned Op1Reg = MIIt->getOperand(1).getReg();
3103 unsigned Op2Reg = MIIt->getOperand(2).getReg();
3104
3105 // If this CMOV we are generating is the opposite condition from
3106 // the jump we generated, then we have to swap the operands for the
3107 // PHI that is going to be generated.
3108 if (MIIt->getOperand(3).getImm() == OppCC)
3109 std::swap(Op1Reg, Op2Reg);
3110
3111 if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
3112 Op1Reg = RegRewriteTable[Op1Reg].first;
3113
3114 if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
3115 Op2Reg = RegRewriteTable[Op2Reg].second;
3116
3117 MIB =
3118 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(M68k::PHI), DestReg)
3119 .addReg(Op1Reg)
3120 .addMBB(Copy0MBB)
3121 .addReg(Op2Reg)
3122 .addMBB(ThisMBB);
3123
3124 // Add this PHI to the rewrite table.
3125 RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
3126 }
3127
3128 // If we have a cascaded CMOV, the second Jcc provides the same incoming
3129 // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
3130 if (CascadedCMOV) {
3131 MIB.addReg(MI.getOperand(2).getReg()).addMBB(Jcc1MBB);
3132 // Copy the PHI result to the register defined by the second CMOV.
3133 BuildMI(*SinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
3134 DL, TII->get(TargetOpcode::COPY),
3135 CascadedCMOV->getOperand(0).getReg())
3136 .addReg(MI.getOperand(0).getReg());
3137 CascadedCMOV->eraseFromParent();
3138 }
3139
3140 // Now remove the CMOV(s).
3141 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;)
3142 (MIIt++)->eraseFromParent();
3143
3144 return SinkMBB;
3145 }
3146
3147 MachineBasicBlock *
EmitLoweredSegAlloca(MachineInstr & MI,MachineBasicBlock * BB) const3148 M68kTargetLowering::EmitLoweredSegAlloca(MachineInstr &MI,
3149 MachineBasicBlock *BB) const {
3150 llvm_unreachable("Cannot lower Segmented Stack Alloca with stack-split on");
3151 }
3152
3153 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const3154 M68kTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
3155 MachineBasicBlock *BB) const {
3156 switch (MI.getOpcode()) {
3157 default:
3158 llvm_unreachable("Unexpected instr type to insert");
3159 case M68k::CMOV8d:
3160 case M68k::CMOV16d:
3161 case M68k::CMOV32r:
3162 return EmitLoweredSelect(MI, BB);
3163 case M68k::SALLOCA:
3164 return EmitLoweredSegAlloca(MI, BB);
3165 }
3166 }
3167
LowerVASTART(SDValue Op,SelectionDAG & DAG) const3168 SDValue M68kTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3169 MachineFunction &MF = DAG.getMachineFunction();
3170 auto PtrVT = getPointerTy(MF.getDataLayout());
3171 M68kMachineFunctionInfo *FuncInfo = MF.getInfo<M68kMachineFunctionInfo>();
3172
3173 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3174 SDLoc DL(Op);
3175
3176 // vastart just stores the address of the VarArgsFrameIndex slot into the
3177 // memory location argument.
3178 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3179 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3180 MachinePointerInfo(SV));
3181 }
3182
3183 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3184 // Calls to _alloca are needed to probe the stack when allocating more than 4k
3185 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
3186 // that the guard pages used by the OS virtual memory manager are allocated in
3187 // correct sequence.
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const3188 SDValue M68kTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3189 SelectionDAG &DAG) const {
3190 MachineFunction &MF = DAG.getMachineFunction();
3191 bool SplitStack = MF.shouldSplitStack();
3192
3193 SDLoc DL(Op);
3194
3195 // Get the inputs.
3196 SDNode *Node = Op.getNode();
3197 SDValue Chain = Op.getOperand(0);
3198 SDValue Size = Op.getOperand(1);
3199 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3200 EVT VT = Node->getValueType(0);
3201
3202 // Chain the dynamic stack allocation so that it doesn't modify the stack
3203 // pointer when other instructions are using the stack.
3204 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3205
3206 SDValue Result;
3207 if (SplitStack) {
3208 auto &MRI = MF.getRegInfo();
3209 auto SPTy = getPointerTy(DAG.getDataLayout());
3210 auto *ARClass = getRegClassFor(SPTy);
3211 unsigned Vreg = MRI.createVirtualRegister(ARClass);
3212 Chain = DAG.getCopyToReg(Chain, DL, Vreg, Size);
3213 Result = DAG.getNode(M68kISD::SEG_ALLOCA, DL, SPTy, Chain,
3214 DAG.getRegister(Vreg, SPTy));
3215 } else {
3216 auto &TLI = DAG.getTargetLoweringInfo();
3217 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
3218 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
3219 " not tell us which reg is the stack pointer!");
3220
3221 SDValue SP = DAG.getCopyFromReg(Chain, DL, SPReg, VT);
3222 Chain = SP.getValue(1);
3223 const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
3224 unsigned StackAlign = TFI.getStackAlignment();
3225 Result = DAG.getNode(ISD::SUB, DL, VT, SP, Size); // Value
3226 if (Align > StackAlign)
3227 Result = DAG.getNode(ISD::AND, DL, VT, Result,
3228 DAG.getConstant(-(uint64_t)Align, DL, VT));
3229 Chain = DAG.getCopyToReg(Chain, DL, SPReg, Result); // Output chain
3230 }
3231
3232 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
3233 DAG.getIntPtrConstant(0, DL, true), SDValue(), DL);
3234
3235 SDValue Ops[2] = {Result, Chain};
3236 return DAG.getMergeValues(Ops, DL);
3237 }
3238
3239 //===----------------------------------------------------------------------===//
3240 // DAG Combine
3241 //===----------------------------------------------------------------------===//
3242
getSETCC(M68k::CondCode Cond,SDValue CCR,const SDLoc & dl,SelectionDAG & DAG)3243 static SDValue getSETCC(M68k::CondCode Cond, SDValue CCR, const SDLoc &dl,
3244 SelectionDAG &DAG) {
3245 return DAG.getNode(M68kISD::SETCC, dl, MVT::i8,
3246 DAG.getConstant(Cond, dl, MVT::i8), CCR);
3247 }
3248 // When legalizing carry, we create carries via add X, -1
3249 // If that comes from an actual carry, via setcc, we use the
3250 // carry directly.
combineCarryThroughADD(SDValue CCR)3251 static SDValue combineCarryThroughADD(SDValue CCR) {
3252 if (CCR.getOpcode() == M68kISD::ADD) {
3253 if (isAllOnesConstant(CCR.getOperand(1))) {
3254 SDValue Carry = CCR.getOperand(0);
3255 while (Carry.getOpcode() == ISD::TRUNCATE ||
3256 Carry.getOpcode() == ISD::ZERO_EXTEND ||
3257 Carry.getOpcode() == ISD::SIGN_EXTEND ||
3258 Carry.getOpcode() == ISD::ANY_EXTEND ||
3259 (Carry.getOpcode() == ISD::AND &&
3260 isOneConstant(Carry.getOperand(1))))
3261 Carry = Carry.getOperand(0);
3262 if (Carry.getOpcode() == M68kISD::SETCC ||
3263 Carry.getOpcode() == M68kISD::SETCC_CARRY) {
3264 if (Carry.getConstantOperandVal(0) == M68k::COND_CS)
3265 return Carry.getOperand(1);
3266 }
3267 }
3268 }
3269
3270 return SDValue();
3271 }
3272
3273 /// Optimize a CCR definition used according to the condition code \p CC into
3274 /// a simpler CCR value, potentially returning a new \p CC and replacing uses
3275 /// of chain values.
combineSetCCCCR(SDValue CCR,M68k::CondCode & CC,SelectionDAG & DAG,const M68kSubtarget & Subtarget)3276 static SDValue combineSetCCCCR(SDValue CCR, M68k::CondCode &CC,
3277 SelectionDAG &DAG,
3278 const M68kSubtarget &Subtarget) {
3279 if (CC == M68k::COND_CS)
3280 if (SDValue Flags = combineCarryThroughADD(CCR))
3281 return Flags;
3282
3283 return SDValue();
3284 }
3285
3286 // Optimize RES = M68kISD::SETCC CONDCODE, CCR_INPUT
combineM68kSetCC(SDNode * N,SelectionDAG & DAG,const M68kSubtarget & Subtarget)3287 static SDValue combineM68kSetCC(SDNode *N, SelectionDAG &DAG,
3288 const M68kSubtarget &Subtarget) {
3289 SDLoc DL(N);
3290 M68k::CondCode CC = M68k::CondCode(N->getConstantOperandVal(0));
3291 SDValue CCR = N->getOperand(1);
3292
3293 // Try to simplify the CCR and condition code operands.
3294 if (SDValue Flags = combineSetCCCCR(CCR, CC, DAG, Subtarget))
3295 return getSETCC(CC, Flags, DL, DAG);
3296
3297 return SDValue();
3298 }
combineM68kBrCond(SDNode * N,SelectionDAG & DAG,const M68kSubtarget & Subtarget)3299 static SDValue combineM68kBrCond(SDNode *N, SelectionDAG &DAG,
3300 const M68kSubtarget &Subtarget) {
3301 SDLoc DL(N);
3302 M68k::CondCode CC = M68k::CondCode(N->getConstantOperandVal(2));
3303 SDValue CCR = N->getOperand(3);
3304
3305 // Try to simplify the CCR and condition code operands.
3306 // Make sure to not keep references to operands, as combineSetCCCCR can
3307 // RAUW them under us.
3308 if (SDValue Flags = combineSetCCCCR(CCR, CC, DAG, Subtarget)) {
3309 SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
3310 return DAG.getNode(M68kISD::BRCOND, DL, N->getVTList(), N->getOperand(0),
3311 N->getOperand(1), Cond, Flags);
3312 }
3313
3314 return SDValue();
3315 }
3316
combineSUBX(SDNode * N,SelectionDAG & DAG)3317 static SDValue combineSUBX(SDNode *N, SelectionDAG &DAG) {
3318 if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) {
3319 MVT VT = N->getSimpleValueType(0);
3320 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3321 return DAG.getNode(M68kISD::SUBX, SDLoc(N), VTs, N->getOperand(0),
3322 N->getOperand(1), Flags);
3323 }
3324
3325 return SDValue();
3326 }
3327
3328 // Optimize RES, CCR = M68kISD::ADDX LHS, RHS, CCR
combineADDX(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI)3329 static SDValue combineADDX(SDNode *N, SelectionDAG &DAG,
3330 TargetLowering::DAGCombinerInfo &DCI) {
3331 if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) {
3332 MVT VT = N->getSimpleValueType(0);
3333 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3334 return DAG.getNode(M68kISD::ADDX, SDLoc(N), VTs, N->getOperand(0),
3335 N->getOperand(1), Flags);
3336 }
3337
3338 return SDValue();
3339 }
3340
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const3341 SDValue M68kTargetLowering::PerformDAGCombine(SDNode *N,
3342 DAGCombinerInfo &DCI) const {
3343 SelectionDAG &DAG = DCI.DAG;
3344 switch (N->getOpcode()) {
3345 case M68kISD::SUBX:
3346 return combineSUBX(N, DAG);
3347 case M68kISD::ADDX:
3348 return combineADDX(N, DAG, DCI);
3349 case M68kISD::SETCC:
3350 return combineM68kSetCC(N, DAG, Subtarget);
3351 case M68kISD::BRCOND:
3352 return combineM68kBrCond(N, DAG, Subtarget);
3353 }
3354
3355 return SDValue();
3356 }
3357
3358 //===----------------------------------------------------------------------===//
3359 // M68kISD Node Names
3360 //===----------------------------------------------------------------------===//
getTargetNodeName(unsigned Opcode) const3361 const char *M68kTargetLowering::getTargetNodeName(unsigned Opcode) const {
3362 switch (Opcode) {
3363 case M68kISD::CALL:
3364 return "M68kISD::CALL";
3365 case M68kISD::TAIL_CALL:
3366 return "M68kISD::TAIL_CALL";
3367 case M68kISD::RET:
3368 return "M68kISD::RET";
3369 case M68kISD::TC_RETURN:
3370 return "M68kISD::TC_RETURN";
3371 case M68kISD::ADD:
3372 return "M68kISD::ADD";
3373 case M68kISD::SUB:
3374 return "M68kISD::SUB";
3375 case M68kISD::ADDX:
3376 return "M68kISD::ADDX";
3377 case M68kISD::SUBX:
3378 return "M68kISD::SUBX";
3379 case M68kISD::SMUL:
3380 return "M68kISD::SMUL";
3381 case M68kISD::UMUL:
3382 return "M68kISD::UMUL";
3383 case M68kISD::OR:
3384 return "M68kISD::OR";
3385 case M68kISD::XOR:
3386 return "M68kISD::XOR";
3387 case M68kISD::AND:
3388 return "M68kISD::AND";
3389 case M68kISD::CMP:
3390 return "M68kISD::CMP";
3391 case M68kISD::BT:
3392 return "M68kISD::BT";
3393 case M68kISD::SELECT:
3394 return "M68kISD::SELECT";
3395 case M68kISD::CMOV:
3396 return "M68kISD::CMOV";
3397 case M68kISD::BRCOND:
3398 return "M68kISD::BRCOND";
3399 case M68kISD::SETCC:
3400 return "M68kISD::SETCC";
3401 case M68kISD::SETCC_CARRY:
3402 return "M68kISD::SETCC_CARRY";
3403 case M68kISD::GLOBAL_BASE_REG:
3404 return "M68kISD::GLOBAL_BASE_REG";
3405 case M68kISD::Wrapper:
3406 return "M68kISD::Wrapper";
3407 case M68kISD::WrapperPC:
3408 return "M68kISD::WrapperPC";
3409 case M68kISD::SEG_ALLOCA:
3410 return "M68kISD::SEG_ALLOCA";
3411 default:
3412 return NULL;
3413 }
3414 }
3415
getCCAssignFn(CallingConv::ID CC,bool Return,bool IsVarArg) const3416 CCAssignFn *M68kTargetLowering::getCCAssignFn(CallingConv::ID CC, bool Return,
3417 bool IsVarArg) const {
3418 if (Return)
3419 return RetCC_M68k_C;
3420 else
3421 return CC_M68k_C;
3422 }
3423